2012-01-24 Pedro Alves <pedro@codesourcery.com>
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2012 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "exceptions.h"
28 #include "breakpoint.h"
29 #include "gdb_wait.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "cli/cli-script.h"
33 #include "target.h"
34 #include "gdbthread.h"
35 #include "annotate.h"
36 #include "symfile.h"
37 #include "top.h"
38 #include <signal.h>
39 #include "inf-loop.h"
40 #include "regcache.h"
41 #include "value.h"
42 #include "observer.h"
43 #include "language.h"
44 #include "solib.h"
45 #include "main.h"
46 #include "dictionary.h"
47 #include "block.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51 #include "record.h"
52 #include "inline-frame.h"
53 #include "jit.h"
54 #include "tracepoint.h"
55 #include "continuations.h"
56 #include "interps.h"
57 #include "skip.h"
58
59 /* Prototypes for local functions */
60
61 static void signals_info (char *, int);
62
63 static void handle_command (char *, int);
64
65 static void sig_print_info (enum target_signal);
66
67 static void sig_print_header (void);
68
69 static void resume_cleanups (void *);
70
71 static int hook_stop_stub (void *);
72
73 static int restore_selected_frame (void *);
74
75 static int follow_fork (void);
76
77 static void set_schedlock_func (char *args, int from_tty,
78 struct cmd_list_element *c);
79
80 static int currently_stepping (struct thread_info *tp);
81
82 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
83 void *data);
84
85 static void xdb_handle_command (char *args, int from_tty);
86
87 static int prepare_to_proceed (int);
88
89 static void print_exited_reason (int exitstatus);
90
91 static void print_signal_exited_reason (enum target_signal siggnal);
92
93 static void print_no_history_reason (void);
94
95 static void print_signal_received_reason (enum target_signal siggnal);
96
97 static void print_end_stepping_range_reason (void);
98
99 void _initialize_infrun (void);
100
101 void nullify_last_target_wait_ptid (void);
102
103 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
104
105 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
106
107 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
108
109 /* When set, stop the 'step' command if we enter a function which has
110 no line number information. The normal behavior is that we step
111 over such function. */
112 int step_stop_if_no_debug = 0;
113 static void
114 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
115 struct cmd_list_element *c, const char *value)
116 {
117 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
118 }
119
120 /* In asynchronous mode, but simulating synchronous execution. */
121
122 int sync_execution = 0;
123
124 /* wait_for_inferior and normal_stop use this to notify the user
125 when the inferior stopped in a different thread than it had been
126 running in. */
127
128 static ptid_t previous_inferior_ptid;
129
130 /* Default behavior is to detach newly forked processes (legacy). */
131 int detach_fork = 1;
132
133 int debug_displaced = 0;
134 static void
135 show_debug_displaced (struct ui_file *file, int from_tty,
136 struct cmd_list_element *c, const char *value)
137 {
138 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
139 }
140
141 int debug_infrun = 0;
142 static void
143 show_debug_infrun (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145 {
146 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
147 }
148
149
150 /* Support for disabling address space randomization. */
151
152 int disable_randomization = 1;
153
154 static void
155 show_disable_randomization (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157 {
158 if (target_supports_disable_randomization ())
159 fprintf_filtered (file,
160 _("Disabling randomization of debuggee's "
161 "virtual address space is %s.\n"),
162 value);
163 else
164 fputs_filtered (_("Disabling randomization of debuggee's "
165 "virtual address space is unsupported on\n"
166 "this platform.\n"), file);
167 }
168
169 static void
170 set_disable_randomization (char *args, int from_tty,
171 struct cmd_list_element *c)
172 {
173 if (!target_supports_disable_randomization ())
174 error (_("Disabling randomization of debuggee's "
175 "virtual address space is unsupported on\n"
176 "this platform."));
177 }
178
179
180 /* If the program uses ELF-style shared libraries, then calls to
181 functions in shared libraries go through stubs, which live in a
182 table called the PLT (Procedure Linkage Table). The first time the
183 function is called, the stub sends control to the dynamic linker,
184 which looks up the function's real address, patches the stub so
185 that future calls will go directly to the function, and then passes
186 control to the function.
187
188 If we are stepping at the source level, we don't want to see any of
189 this --- we just want to skip over the stub and the dynamic linker.
190 The simple approach is to single-step until control leaves the
191 dynamic linker.
192
193 However, on some systems (e.g., Red Hat's 5.2 distribution) the
194 dynamic linker calls functions in the shared C library, so you
195 can't tell from the PC alone whether the dynamic linker is still
196 running. In this case, we use a step-resume breakpoint to get us
197 past the dynamic linker, as if we were using "next" to step over a
198 function call.
199
200 in_solib_dynsym_resolve_code() says whether we're in the dynamic
201 linker code or not. Normally, this means we single-step. However,
202 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
203 address where we can place a step-resume breakpoint to get past the
204 linker's symbol resolution function.
205
206 in_solib_dynsym_resolve_code() can generally be implemented in a
207 pretty portable way, by comparing the PC against the address ranges
208 of the dynamic linker's sections.
209
210 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
211 it depends on internal details of the dynamic linker. It's usually
212 not too hard to figure out where to put a breakpoint, but it
213 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
214 sanity checking. If it can't figure things out, returning zero and
215 getting the (possibly confusing) stepping behavior is better than
216 signalling an error, which will obscure the change in the
217 inferior's state. */
218
219 /* This function returns TRUE if pc is the address of an instruction
220 that lies within the dynamic linker (such as the event hook, or the
221 dld itself).
222
223 This function must be used only when a dynamic linker event has
224 been caught, and the inferior is being stepped out of the hook, or
225 undefined results are guaranteed. */
226
227 #ifndef SOLIB_IN_DYNAMIC_LINKER
228 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
229 #endif
230
231 /* "Observer mode" is somewhat like a more extreme version of
232 non-stop, in which all GDB operations that might affect the
233 target's execution have been disabled. */
234
235 static int non_stop_1 = 0;
236
237 int observer_mode = 0;
238 static int observer_mode_1 = 0;
239
240 static void
241 set_observer_mode (char *args, int from_tty,
242 struct cmd_list_element *c)
243 {
244 extern int pagination_enabled;
245
246 if (target_has_execution)
247 {
248 observer_mode_1 = observer_mode;
249 error (_("Cannot change this setting while the inferior is running."));
250 }
251
252 observer_mode = observer_mode_1;
253
254 may_write_registers = !observer_mode;
255 may_write_memory = !observer_mode;
256 may_insert_breakpoints = !observer_mode;
257 may_insert_tracepoints = !observer_mode;
258 /* We can insert fast tracepoints in or out of observer mode,
259 but enable them if we're going into this mode. */
260 if (observer_mode)
261 may_insert_fast_tracepoints = 1;
262 may_stop = !observer_mode;
263 update_target_permissions ();
264
265 /* Going *into* observer mode we must force non-stop, then
266 going out we leave it that way. */
267 if (observer_mode)
268 {
269 target_async_permitted = 1;
270 pagination_enabled = 0;
271 non_stop = non_stop_1 = 1;
272 }
273
274 if (from_tty)
275 printf_filtered (_("Observer mode is now %s.\n"),
276 (observer_mode ? "on" : "off"));
277 }
278
279 static void
280 show_observer_mode (struct ui_file *file, int from_tty,
281 struct cmd_list_element *c, const char *value)
282 {
283 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
284 }
285
286 /* This updates the value of observer mode based on changes in
287 permissions. Note that we are deliberately ignoring the values of
288 may-write-registers and may-write-memory, since the user may have
289 reason to enable these during a session, for instance to turn on a
290 debugging-related global. */
291
292 void
293 update_observer_mode (void)
294 {
295 int newval;
296
297 newval = (!may_insert_breakpoints
298 && !may_insert_tracepoints
299 && may_insert_fast_tracepoints
300 && !may_stop
301 && non_stop);
302
303 /* Let the user know if things change. */
304 if (newval != observer_mode)
305 printf_filtered (_("Observer mode is now %s.\n"),
306 (newval ? "on" : "off"));
307
308 observer_mode = observer_mode_1 = newval;
309 }
310
311 /* Tables of how to react to signals; the user sets them. */
312
313 static unsigned char *signal_stop;
314 static unsigned char *signal_print;
315 static unsigned char *signal_program;
316
317 /* Table of signals that the target may silently handle.
318 This is automatically determined from the flags above,
319 and simply cached here. */
320 static unsigned char *signal_pass;
321
322 #define SET_SIGS(nsigs,sigs,flags) \
323 do { \
324 int signum = (nsigs); \
325 while (signum-- > 0) \
326 if ((sigs)[signum]) \
327 (flags)[signum] = 1; \
328 } while (0)
329
330 #define UNSET_SIGS(nsigs,sigs,flags) \
331 do { \
332 int signum = (nsigs); \
333 while (signum-- > 0) \
334 if ((sigs)[signum]) \
335 (flags)[signum] = 0; \
336 } while (0)
337
338 /* Value to pass to target_resume() to cause all threads to resume. */
339
340 #define RESUME_ALL minus_one_ptid
341
342 /* Command list pointer for the "stop" placeholder. */
343
344 static struct cmd_list_element *stop_command;
345
346 /* Function inferior was in as of last step command. */
347
348 static struct symbol *step_start_function;
349
350 /* Nonzero if we want to give control to the user when we're notified
351 of shared library events by the dynamic linker. */
352 int stop_on_solib_events;
353 static void
354 show_stop_on_solib_events (struct ui_file *file, int from_tty,
355 struct cmd_list_element *c, const char *value)
356 {
357 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
358 value);
359 }
360
361 /* Nonzero means expecting a trace trap
362 and should stop the inferior and return silently when it happens. */
363
364 int stop_after_trap;
365
366 /* Save register contents here when executing a "finish" command or are
367 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
368 Thus this contains the return value from the called function (assuming
369 values are returned in a register). */
370
371 struct regcache *stop_registers;
372
373 /* Nonzero after stop if current stack frame should be printed. */
374
375 static int stop_print_frame;
376
377 /* This is a cached copy of the pid/waitstatus of the last event
378 returned by target_wait()/deprecated_target_wait_hook(). This
379 information is returned by get_last_target_status(). */
380 static ptid_t target_last_wait_ptid;
381 static struct target_waitstatus target_last_waitstatus;
382
383 static void context_switch (ptid_t ptid);
384
385 void init_thread_stepping_state (struct thread_info *tss);
386
387 void init_infwait_state (void);
388
389 static const char follow_fork_mode_child[] = "child";
390 static const char follow_fork_mode_parent[] = "parent";
391
392 static const char *follow_fork_mode_kind_names[] = {
393 follow_fork_mode_child,
394 follow_fork_mode_parent,
395 NULL
396 };
397
398 static const char *follow_fork_mode_string = follow_fork_mode_parent;
399 static void
400 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
401 struct cmd_list_element *c, const char *value)
402 {
403 fprintf_filtered (file,
404 _("Debugger response to a program "
405 "call of fork or vfork is \"%s\".\n"),
406 value);
407 }
408 \f
409
410 /* Tell the target to follow the fork we're stopped at. Returns true
411 if the inferior should be resumed; false, if the target for some
412 reason decided it's best not to resume. */
413
414 static int
415 follow_fork (void)
416 {
417 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
418 int should_resume = 1;
419 struct thread_info *tp;
420
421 /* Copy user stepping state to the new inferior thread. FIXME: the
422 followed fork child thread should have a copy of most of the
423 parent thread structure's run control related fields, not just these.
424 Initialized to avoid "may be used uninitialized" warnings from gcc. */
425 struct breakpoint *step_resume_breakpoint = NULL;
426 struct breakpoint *exception_resume_breakpoint = NULL;
427 CORE_ADDR step_range_start = 0;
428 CORE_ADDR step_range_end = 0;
429 struct frame_id step_frame_id = { 0 };
430
431 if (!non_stop)
432 {
433 ptid_t wait_ptid;
434 struct target_waitstatus wait_status;
435
436 /* Get the last target status returned by target_wait(). */
437 get_last_target_status (&wait_ptid, &wait_status);
438
439 /* If not stopped at a fork event, then there's nothing else to
440 do. */
441 if (wait_status.kind != TARGET_WAITKIND_FORKED
442 && wait_status.kind != TARGET_WAITKIND_VFORKED)
443 return 1;
444
445 /* Check if we switched over from WAIT_PTID, since the event was
446 reported. */
447 if (!ptid_equal (wait_ptid, minus_one_ptid)
448 && !ptid_equal (inferior_ptid, wait_ptid))
449 {
450 /* We did. Switch back to WAIT_PTID thread, to tell the
451 target to follow it (in either direction). We'll
452 afterwards refuse to resume, and inform the user what
453 happened. */
454 switch_to_thread (wait_ptid);
455 should_resume = 0;
456 }
457 }
458
459 tp = inferior_thread ();
460
461 /* If there were any forks/vforks that were caught and are now to be
462 followed, then do so now. */
463 switch (tp->pending_follow.kind)
464 {
465 case TARGET_WAITKIND_FORKED:
466 case TARGET_WAITKIND_VFORKED:
467 {
468 ptid_t parent, child;
469
470 /* If the user did a next/step, etc, over a fork call,
471 preserve the stepping state in the fork child. */
472 if (follow_child && should_resume)
473 {
474 step_resume_breakpoint = clone_momentary_breakpoint
475 (tp->control.step_resume_breakpoint);
476 step_range_start = tp->control.step_range_start;
477 step_range_end = tp->control.step_range_end;
478 step_frame_id = tp->control.step_frame_id;
479 exception_resume_breakpoint
480 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
481
482 /* For now, delete the parent's sr breakpoint, otherwise,
483 parent/child sr breakpoints are considered duplicates,
484 and the child version will not be installed. Remove
485 this when the breakpoints module becomes aware of
486 inferiors and address spaces. */
487 delete_step_resume_breakpoint (tp);
488 tp->control.step_range_start = 0;
489 tp->control.step_range_end = 0;
490 tp->control.step_frame_id = null_frame_id;
491 delete_exception_resume_breakpoint (tp);
492 }
493
494 parent = inferior_ptid;
495 child = tp->pending_follow.value.related_pid;
496
497 /* Tell the target to do whatever is necessary to follow
498 either parent or child. */
499 if (target_follow_fork (follow_child))
500 {
501 /* Target refused to follow, or there's some other reason
502 we shouldn't resume. */
503 should_resume = 0;
504 }
505 else
506 {
507 /* This pending follow fork event is now handled, one way
508 or another. The previous selected thread may be gone
509 from the lists by now, but if it is still around, need
510 to clear the pending follow request. */
511 tp = find_thread_ptid (parent);
512 if (tp)
513 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
514
515 /* This makes sure we don't try to apply the "Switched
516 over from WAIT_PID" logic above. */
517 nullify_last_target_wait_ptid ();
518
519 /* If we followed the child, switch to it... */
520 if (follow_child)
521 {
522 switch_to_thread (child);
523
524 /* ... and preserve the stepping state, in case the
525 user was stepping over the fork call. */
526 if (should_resume)
527 {
528 tp = inferior_thread ();
529 tp->control.step_resume_breakpoint
530 = step_resume_breakpoint;
531 tp->control.step_range_start = step_range_start;
532 tp->control.step_range_end = step_range_end;
533 tp->control.step_frame_id = step_frame_id;
534 tp->control.exception_resume_breakpoint
535 = exception_resume_breakpoint;
536 }
537 else
538 {
539 /* If we get here, it was because we're trying to
540 resume from a fork catchpoint, but, the user
541 has switched threads away from the thread that
542 forked. In that case, the resume command
543 issued is most likely not applicable to the
544 child, so just warn, and refuse to resume. */
545 warning (_("Not resuming: switched threads "
546 "before following fork child.\n"));
547 }
548
549 /* Reset breakpoints in the child as appropriate. */
550 follow_inferior_reset_breakpoints ();
551 }
552 else
553 switch_to_thread (parent);
554 }
555 }
556 break;
557 case TARGET_WAITKIND_SPURIOUS:
558 /* Nothing to follow. */
559 break;
560 default:
561 internal_error (__FILE__, __LINE__,
562 "Unexpected pending_follow.kind %d\n",
563 tp->pending_follow.kind);
564 break;
565 }
566
567 return should_resume;
568 }
569
570 void
571 follow_inferior_reset_breakpoints (void)
572 {
573 struct thread_info *tp = inferior_thread ();
574
575 /* Was there a step_resume breakpoint? (There was if the user
576 did a "next" at the fork() call.) If so, explicitly reset its
577 thread number.
578
579 step_resumes are a form of bp that are made to be per-thread.
580 Since we created the step_resume bp when the parent process
581 was being debugged, and now are switching to the child process,
582 from the breakpoint package's viewpoint, that's a switch of
583 "threads". We must update the bp's notion of which thread
584 it is for, or it'll be ignored when it triggers. */
585
586 if (tp->control.step_resume_breakpoint)
587 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
588
589 if (tp->control.exception_resume_breakpoint)
590 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
591
592 /* Reinsert all breakpoints in the child. The user may have set
593 breakpoints after catching the fork, in which case those
594 were never set in the child, but only in the parent. This makes
595 sure the inserted breakpoints match the breakpoint list. */
596
597 breakpoint_re_set ();
598 insert_breakpoints ();
599 }
600
601 /* The child has exited or execed: resume threads of the parent the
602 user wanted to be executing. */
603
604 static int
605 proceed_after_vfork_done (struct thread_info *thread,
606 void *arg)
607 {
608 int pid = * (int *) arg;
609
610 if (ptid_get_pid (thread->ptid) == pid
611 && is_running (thread->ptid)
612 && !is_executing (thread->ptid)
613 && !thread->stop_requested
614 && thread->suspend.stop_signal == TARGET_SIGNAL_0)
615 {
616 if (debug_infrun)
617 fprintf_unfiltered (gdb_stdlog,
618 "infrun: resuming vfork parent thread %s\n",
619 target_pid_to_str (thread->ptid));
620
621 switch_to_thread (thread->ptid);
622 clear_proceed_status ();
623 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
624 }
625
626 return 0;
627 }
628
629 /* Called whenever we notice an exec or exit event, to handle
630 detaching or resuming a vfork parent. */
631
632 static void
633 handle_vfork_child_exec_or_exit (int exec)
634 {
635 struct inferior *inf = current_inferior ();
636
637 if (inf->vfork_parent)
638 {
639 int resume_parent = -1;
640
641 /* This exec or exit marks the end of the shared memory region
642 between the parent and the child. If the user wanted to
643 detach from the parent, now is the time. */
644
645 if (inf->vfork_parent->pending_detach)
646 {
647 struct thread_info *tp;
648 struct cleanup *old_chain;
649 struct program_space *pspace;
650 struct address_space *aspace;
651
652 /* follow-fork child, detach-on-fork on. */
653
654 old_chain = make_cleanup_restore_current_thread ();
655
656 /* We're letting loose of the parent. */
657 tp = any_live_thread_of_process (inf->vfork_parent->pid);
658 switch_to_thread (tp->ptid);
659
660 /* We're about to detach from the parent, which implicitly
661 removes breakpoints from its address space. There's a
662 catch here: we want to reuse the spaces for the child,
663 but, parent/child are still sharing the pspace at this
664 point, although the exec in reality makes the kernel give
665 the child a fresh set of new pages. The problem here is
666 that the breakpoints module being unaware of this, would
667 likely chose the child process to write to the parent
668 address space. Swapping the child temporarily away from
669 the spaces has the desired effect. Yes, this is "sort
670 of" a hack. */
671
672 pspace = inf->pspace;
673 aspace = inf->aspace;
674 inf->aspace = NULL;
675 inf->pspace = NULL;
676
677 if (debug_infrun || info_verbose)
678 {
679 target_terminal_ours ();
680
681 if (exec)
682 fprintf_filtered (gdb_stdlog,
683 "Detaching vfork parent process "
684 "%d after child exec.\n",
685 inf->vfork_parent->pid);
686 else
687 fprintf_filtered (gdb_stdlog,
688 "Detaching vfork parent process "
689 "%d after child exit.\n",
690 inf->vfork_parent->pid);
691 }
692
693 target_detach (NULL, 0);
694
695 /* Put it back. */
696 inf->pspace = pspace;
697 inf->aspace = aspace;
698
699 do_cleanups (old_chain);
700 }
701 else if (exec)
702 {
703 /* We're staying attached to the parent, so, really give the
704 child a new address space. */
705 inf->pspace = add_program_space (maybe_new_address_space ());
706 inf->aspace = inf->pspace->aspace;
707 inf->removable = 1;
708 set_current_program_space (inf->pspace);
709
710 resume_parent = inf->vfork_parent->pid;
711
712 /* Break the bonds. */
713 inf->vfork_parent->vfork_child = NULL;
714 }
715 else
716 {
717 struct cleanup *old_chain;
718 struct program_space *pspace;
719
720 /* If this is a vfork child exiting, then the pspace and
721 aspaces were shared with the parent. Since we're
722 reporting the process exit, we'll be mourning all that is
723 found in the address space, and switching to null_ptid,
724 preparing to start a new inferior. But, since we don't
725 want to clobber the parent's address/program spaces, we
726 go ahead and create a new one for this exiting
727 inferior. */
728
729 /* Switch to null_ptid, so that clone_program_space doesn't want
730 to read the selected frame of a dead process. */
731 old_chain = save_inferior_ptid ();
732 inferior_ptid = null_ptid;
733
734 /* This inferior is dead, so avoid giving the breakpoints
735 module the option to write through to it (cloning a
736 program space resets breakpoints). */
737 inf->aspace = NULL;
738 inf->pspace = NULL;
739 pspace = add_program_space (maybe_new_address_space ());
740 set_current_program_space (pspace);
741 inf->removable = 1;
742 clone_program_space (pspace, inf->vfork_parent->pspace);
743 inf->pspace = pspace;
744 inf->aspace = pspace->aspace;
745
746 /* Put back inferior_ptid. We'll continue mourning this
747 inferior. */
748 do_cleanups (old_chain);
749
750 resume_parent = inf->vfork_parent->pid;
751 /* Break the bonds. */
752 inf->vfork_parent->vfork_child = NULL;
753 }
754
755 inf->vfork_parent = NULL;
756
757 gdb_assert (current_program_space == inf->pspace);
758
759 if (non_stop && resume_parent != -1)
760 {
761 /* If the user wanted the parent to be running, let it go
762 free now. */
763 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
764
765 if (debug_infrun)
766 fprintf_unfiltered (gdb_stdlog,
767 "infrun: resuming vfork parent process %d\n",
768 resume_parent);
769
770 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
771
772 do_cleanups (old_chain);
773 }
774 }
775 }
776
777 /* Enum strings for "set|show displaced-stepping". */
778
779 static const char follow_exec_mode_new[] = "new";
780 static const char follow_exec_mode_same[] = "same";
781 static const char *follow_exec_mode_names[] =
782 {
783 follow_exec_mode_new,
784 follow_exec_mode_same,
785 NULL,
786 };
787
788 static const char *follow_exec_mode_string = follow_exec_mode_same;
789 static void
790 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
791 struct cmd_list_element *c, const char *value)
792 {
793 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
794 }
795
796 /* EXECD_PATHNAME is assumed to be non-NULL. */
797
798 static void
799 follow_exec (ptid_t pid, char *execd_pathname)
800 {
801 struct thread_info *th = inferior_thread ();
802 struct inferior *inf = current_inferior ();
803
804 /* This is an exec event that we actually wish to pay attention to.
805 Refresh our symbol table to the newly exec'd program, remove any
806 momentary bp's, etc.
807
808 If there are breakpoints, they aren't really inserted now,
809 since the exec() transformed our inferior into a fresh set
810 of instructions.
811
812 We want to preserve symbolic breakpoints on the list, since
813 we have hopes that they can be reset after the new a.out's
814 symbol table is read.
815
816 However, any "raw" breakpoints must be removed from the list
817 (e.g., the solib bp's), since their address is probably invalid
818 now.
819
820 And, we DON'T want to call delete_breakpoints() here, since
821 that may write the bp's "shadow contents" (the instruction
822 value that was overwritten witha TRAP instruction). Since
823 we now have a new a.out, those shadow contents aren't valid. */
824
825 mark_breakpoints_out ();
826
827 update_breakpoints_after_exec ();
828
829 /* If there was one, it's gone now. We cannot truly step-to-next
830 statement through an exec(). */
831 th->control.step_resume_breakpoint = NULL;
832 th->control.exception_resume_breakpoint = NULL;
833 th->control.step_range_start = 0;
834 th->control.step_range_end = 0;
835
836 /* The target reports the exec event to the main thread, even if
837 some other thread does the exec, and even if the main thread was
838 already stopped --- if debugging in non-stop mode, it's possible
839 the user had the main thread held stopped in the previous image
840 --- release it now. This is the same behavior as step-over-exec
841 with scheduler-locking on in all-stop mode. */
842 th->stop_requested = 0;
843
844 /* What is this a.out's name? */
845 printf_unfiltered (_("%s is executing new program: %s\n"),
846 target_pid_to_str (inferior_ptid),
847 execd_pathname);
848
849 /* We've followed the inferior through an exec. Therefore, the
850 inferior has essentially been killed & reborn. */
851
852 gdb_flush (gdb_stdout);
853
854 breakpoint_init_inferior (inf_execd);
855
856 if (gdb_sysroot && *gdb_sysroot)
857 {
858 char *name = alloca (strlen (gdb_sysroot)
859 + strlen (execd_pathname)
860 + 1);
861
862 strcpy (name, gdb_sysroot);
863 strcat (name, execd_pathname);
864 execd_pathname = name;
865 }
866
867 /* Reset the shared library package. This ensures that we get a
868 shlib event when the child reaches "_start", at which point the
869 dld will have had a chance to initialize the child. */
870 /* Also, loading a symbol file below may trigger symbol lookups, and
871 we don't want those to be satisfied by the libraries of the
872 previous incarnation of this process. */
873 no_shared_libraries (NULL, 0);
874
875 if (follow_exec_mode_string == follow_exec_mode_new)
876 {
877 struct program_space *pspace;
878
879 /* The user wants to keep the old inferior and program spaces
880 around. Create a new fresh one, and switch to it. */
881
882 inf = add_inferior (current_inferior ()->pid);
883 pspace = add_program_space (maybe_new_address_space ());
884 inf->pspace = pspace;
885 inf->aspace = pspace->aspace;
886
887 exit_inferior_num_silent (current_inferior ()->num);
888
889 set_current_inferior (inf);
890 set_current_program_space (pspace);
891 }
892
893 gdb_assert (current_program_space == inf->pspace);
894
895 /* That a.out is now the one to use. */
896 exec_file_attach (execd_pathname, 0);
897
898 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
899 (Position Independent Executable) main symbol file will get applied by
900 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
901 the breakpoints with the zero displacement. */
902
903 symbol_file_add (execd_pathname, SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET,
904 NULL, 0);
905
906 set_initial_language ();
907
908 #ifdef SOLIB_CREATE_INFERIOR_HOOK
909 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
910 #else
911 solib_create_inferior_hook (0);
912 #endif
913
914 jit_inferior_created_hook ();
915
916 breakpoint_re_set ();
917
918 /* Reinsert all breakpoints. (Those which were symbolic have
919 been reset to the proper address in the new a.out, thanks
920 to symbol_file_command...). */
921 insert_breakpoints ();
922
923 /* The next resume of this inferior should bring it to the shlib
924 startup breakpoints. (If the user had also set bp's on
925 "main" from the old (parent) process, then they'll auto-
926 matically get reset there in the new process.). */
927 }
928
929 /* Non-zero if we just simulating a single-step. This is needed
930 because we cannot remove the breakpoints in the inferior process
931 until after the `wait' in `wait_for_inferior'. */
932 static int singlestep_breakpoints_inserted_p = 0;
933
934 /* The thread we inserted single-step breakpoints for. */
935 static ptid_t singlestep_ptid;
936
937 /* PC when we started this single-step. */
938 static CORE_ADDR singlestep_pc;
939
940 /* If another thread hit the singlestep breakpoint, we save the original
941 thread here so that we can resume single-stepping it later. */
942 static ptid_t saved_singlestep_ptid;
943 static int stepping_past_singlestep_breakpoint;
944
945 /* If not equal to null_ptid, this means that after stepping over breakpoint
946 is finished, we need to switch to deferred_step_ptid, and step it.
947
948 The use case is when one thread has hit a breakpoint, and then the user
949 has switched to another thread and issued 'step'. We need to step over
950 breakpoint in the thread which hit the breakpoint, but then continue
951 stepping the thread user has selected. */
952 static ptid_t deferred_step_ptid;
953 \f
954 /* Displaced stepping. */
955
956 /* In non-stop debugging mode, we must take special care to manage
957 breakpoints properly; in particular, the traditional strategy for
958 stepping a thread past a breakpoint it has hit is unsuitable.
959 'Displaced stepping' is a tactic for stepping one thread past a
960 breakpoint it has hit while ensuring that other threads running
961 concurrently will hit the breakpoint as they should.
962
963 The traditional way to step a thread T off a breakpoint in a
964 multi-threaded program in all-stop mode is as follows:
965
966 a0) Initially, all threads are stopped, and breakpoints are not
967 inserted.
968 a1) We single-step T, leaving breakpoints uninserted.
969 a2) We insert breakpoints, and resume all threads.
970
971 In non-stop debugging, however, this strategy is unsuitable: we
972 don't want to have to stop all threads in the system in order to
973 continue or step T past a breakpoint. Instead, we use displaced
974 stepping:
975
976 n0) Initially, T is stopped, other threads are running, and
977 breakpoints are inserted.
978 n1) We copy the instruction "under" the breakpoint to a separate
979 location, outside the main code stream, making any adjustments
980 to the instruction, register, and memory state as directed by
981 T's architecture.
982 n2) We single-step T over the instruction at its new location.
983 n3) We adjust the resulting register and memory state as directed
984 by T's architecture. This includes resetting T's PC to point
985 back into the main instruction stream.
986 n4) We resume T.
987
988 This approach depends on the following gdbarch methods:
989
990 - gdbarch_max_insn_length and gdbarch_displaced_step_location
991 indicate where to copy the instruction, and how much space must
992 be reserved there. We use these in step n1.
993
994 - gdbarch_displaced_step_copy_insn copies a instruction to a new
995 address, and makes any necessary adjustments to the instruction,
996 register contents, and memory. We use this in step n1.
997
998 - gdbarch_displaced_step_fixup adjusts registers and memory after
999 we have successfuly single-stepped the instruction, to yield the
1000 same effect the instruction would have had if we had executed it
1001 at its original address. We use this in step n3.
1002
1003 - gdbarch_displaced_step_free_closure provides cleanup.
1004
1005 The gdbarch_displaced_step_copy_insn and
1006 gdbarch_displaced_step_fixup functions must be written so that
1007 copying an instruction with gdbarch_displaced_step_copy_insn,
1008 single-stepping across the copied instruction, and then applying
1009 gdbarch_displaced_insn_fixup should have the same effects on the
1010 thread's memory and registers as stepping the instruction in place
1011 would have. Exactly which responsibilities fall to the copy and
1012 which fall to the fixup is up to the author of those functions.
1013
1014 See the comments in gdbarch.sh for details.
1015
1016 Note that displaced stepping and software single-step cannot
1017 currently be used in combination, although with some care I think
1018 they could be made to. Software single-step works by placing
1019 breakpoints on all possible subsequent instructions; if the
1020 displaced instruction is a PC-relative jump, those breakpoints
1021 could fall in very strange places --- on pages that aren't
1022 executable, or at addresses that are not proper instruction
1023 boundaries. (We do generally let other threads run while we wait
1024 to hit the software single-step breakpoint, and they might
1025 encounter such a corrupted instruction.) One way to work around
1026 this would be to have gdbarch_displaced_step_copy_insn fully
1027 simulate the effect of PC-relative instructions (and return NULL)
1028 on architectures that use software single-stepping.
1029
1030 In non-stop mode, we can have independent and simultaneous step
1031 requests, so more than one thread may need to simultaneously step
1032 over a breakpoint. The current implementation assumes there is
1033 only one scratch space per process. In this case, we have to
1034 serialize access to the scratch space. If thread A wants to step
1035 over a breakpoint, but we are currently waiting for some other
1036 thread to complete a displaced step, we leave thread A stopped and
1037 place it in the displaced_step_request_queue. Whenever a displaced
1038 step finishes, we pick the next thread in the queue and start a new
1039 displaced step operation on it. See displaced_step_prepare and
1040 displaced_step_fixup for details. */
1041
1042 struct displaced_step_request
1043 {
1044 ptid_t ptid;
1045 struct displaced_step_request *next;
1046 };
1047
1048 /* Per-inferior displaced stepping state. */
1049 struct displaced_step_inferior_state
1050 {
1051 /* Pointer to next in linked list. */
1052 struct displaced_step_inferior_state *next;
1053
1054 /* The process this displaced step state refers to. */
1055 int pid;
1056
1057 /* A queue of pending displaced stepping requests. One entry per
1058 thread that needs to do a displaced step. */
1059 struct displaced_step_request *step_request_queue;
1060
1061 /* If this is not null_ptid, this is the thread carrying out a
1062 displaced single-step in process PID. This thread's state will
1063 require fixing up once it has completed its step. */
1064 ptid_t step_ptid;
1065
1066 /* The architecture the thread had when we stepped it. */
1067 struct gdbarch *step_gdbarch;
1068
1069 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1070 for post-step cleanup. */
1071 struct displaced_step_closure *step_closure;
1072
1073 /* The address of the original instruction, and the copy we
1074 made. */
1075 CORE_ADDR step_original, step_copy;
1076
1077 /* Saved contents of copy area. */
1078 gdb_byte *step_saved_copy;
1079 };
1080
1081 /* The list of states of processes involved in displaced stepping
1082 presently. */
1083 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1084
1085 /* Get the displaced stepping state of process PID. */
1086
1087 static struct displaced_step_inferior_state *
1088 get_displaced_stepping_state (int pid)
1089 {
1090 struct displaced_step_inferior_state *state;
1091
1092 for (state = displaced_step_inferior_states;
1093 state != NULL;
1094 state = state->next)
1095 if (state->pid == pid)
1096 return state;
1097
1098 return NULL;
1099 }
1100
1101 /* Add a new displaced stepping state for process PID to the displaced
1102 stepping state list, or return a pointer to an already existing
1103 entry, if it already exists. Never returns NULL. */
1104
1105 static struct displaced_step_inferior_state *
1106 add_displaced_stepping_state (int pid)
1107 {
1108 struct displaced_step_inferior_state *state;
1109
1110 for (state = displaced_step_inferior_states;
1111 state != NULL;
1112 state = state->next)
1113 if (state->pid == pid)
1114 return state;
1115
1116 state = xcalloc (1, sizeof (*state));
1117 state->pid = pid;
1118 state->next = displaced_step_inferior_states;
1119 displaced_step_inferior_states = state;
1120
1121 return state;
1122 }
1123
1124 /* If inferior is in displaced stepping, and ADDR equals to starting address
1125 of copy area, return corresponding displaced_step_closure. Otherwise,
1126 return NULL. */
1127
1128 struct displaced_step_closure*
1129 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1130 {
1131 struct displaced_step_inferior_state *displaced
1132 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1133
1134 /* If checking the mode of displaced instruction in copy area. */
1135 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1136 && (displaced->step_copy == addr))
1137 return displaced->step_closure;
1138
1139 return NULL;
1140 }
1141
1142 /* Remove the displaced stepping state of process PID. */
1143
1144 static void
1145 remove_displaced_stepping_state (int pid)
1146 {
1147 struct displaced_step_inferior_state *it, **prev_next_p;
1148
1149 gdb_assert (pid != 0);
1150
1151 it = displaced_step_inferior_states;
1152 prev_next_p = &displaced_step_inferior_states;
1153 while (it)
1154 {
1155 if (it->pid == pid)
1156 {
1157 *prev_next_p = it->next;
1158 xfree (it);
1159 return;
1160 }
1161
1162 prev_next_p = &it->next;
1163 it = *prev_next_p;
1164 }
1165 }
1166
1167 static void
1168 infrun_inferior_exit (struct inferior *inf)
1169 {
1170 remove_displaced_stepping_state (inf->pid);
1171 }
1172
1173 /* Enum strings for "set|show displaced-stepping". */
1174
1175 static const char can_use_displaced_stepping_auto[] = "auto";
1176 static const char can_use_displaced_stepping_on[] = "on";
1177 static const char can_use_displaced_stepping_off[] = "off";
1178 static const char *can_use_displaced_stepping_enum[] =
1179 {
1180 can_use_displaced_stepping_auto,
1181 can_use_displaced_stepping_on,
1182 can_use_displaced_stepping_off,
1183 NULL,
1184 };
1185
1186 /* If ON, and the architecture supports it, GDB will use displaced
1187 stepping to step over breakpoints. If OFF, or if the architecture
1188 doesn't support it, GDB will instead use the traditional
1189 hold-and-step approach. If AUTO (which is the default), GDB will
1190 decide which technique to use to step over breakpoints depending on
1191 which of all-stop or non-stop mode is active --- displaced stepping
1192 in non-stop mode; hold-and-step in all-stop mode. */
1193
1194 static const char *can_use_displaced_stepping =
1195 can_use_displaced_stepping_auto;
1196
1197 static void
1198 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1199 struct cmd_list_element *c,
1200 const char *value)
1201 {
1202 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
1203 fprintf_filtered (file,
1204 _("Debugger's willingness to use displaced stepping "
1205 "to step over breakpoints is %s (currently %s).\n"),
1206 value, non_stop ? "on" : "off");
1207 else
1208 fprintf_filtered (file,
1209 _("Debugger's willingness to use displaced stepping "
1210 "to step over breakpoints is %s.\n"), value);
1211 }
1212
1213 /* Return non-zero if displaced stepping can/should be used to step
1214 over breakpoints. */
1215
1216 static int
1217 use_displaced_stepping (struct gdbarch *gdbarch)
1218 {
1219 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1220 && non_stop)
1221 || can_use_displaced_stepping == can_use_displaced_stepping_on)
1222 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1223 && !RECORD_IS_USED);
1224 }
1225
1226 /* Clean out any stray displaced stepping state. */
1227 static void
1228 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1229 {
1230 /* Indicate that there is no cleanup pending. */
1231 displaced->step_ptid = null_ptid;
1232
1233 if (displaced->step_closure)
1234 {
1235 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1236 displaced->step_closure);
1237 displaced->step_closure = NULL;
1238 }
1239 }
1240
1241 static void
1242 displaced_step_clear_cleanup (void *arg)
1243 {
1244 struct displaced_step_inferior_state *state = arg;
1245
1246 displaced_step_clear (state);
1247 }
1248
1249 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1250 void
1251 displaced_step_dump_bytes (struct ui_file *file,
1252 const gdb_byte *buf,
1253 size_t len)
1254 {
1255 int i;
1256
1257 for (i = 0; i < len; i++)
1258 fprintf_unfiltered (file, "%02x ", buf[i]);
1259 fputs_unfiltered ("\n", file);
1260 }
1261
1262 /* Prepare to single-step, using displaced stepping.
1263
1264 Note that we cannot use displaced stepping when we have a signal to
1265 deliver. If we have a signal to deliver and an instruction to step
1266 over, then after the step, there will be no indication from the
1267 target whether the thread entered a signal handler or ignored the
1268 signal and stepped over the instruction successfully --- both cases
1269 result in a simple SIGTRAP. In the first case we mustn't do a
1270 fixup, and in the second case we must --- but we can't tell which.
1271 Comments in the code for 'random signals' in handle_inferior_event
1272 explain how we handle this case instead.
1273
1274 Returns 1 if preparing was successful -- this thread is going to be
1275 stepped now; or 0 if displaced stepping this thread got queued. */
1276 static int
1277 displaced_step_prepare (ptid_t ptid)
1278 {
1279 struct cleanup *old_cleanups, *ignore_cleanups;
1280 struct regcache *regcache = get_thread_regcache (ptid);
1281 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1282 CORE_ADDR original, copy;
1283 ULONGEST len;
1284 struct displaced_step_closure *closure;
1285 struct displaced_step_inferior_state *displaced;
1286
1287 /* We should never reach this function if the architecture does not
1288 support displaced stepping. */
1289 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1290
1291 /* We have to displaced step one thread at a time, as we only have
1292 access to a single scratch space per inferior. */
1293
1294 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1295
1296 if (!ptid_equal (displaced->step_ptid, null_ptid))
1297 {
1298 /* Already waiting for a displaced step to finish. Defer this
1299 request and place in queue. */
1300 struct displaced_step_request *req, *new_req;
1301
1302 if (debug_displaced)
1303 fprintf_unfiltered (gdb_stdlog,
1304 "displaced: defering step of %s\n",
1305 target_pid_to_str (ptid));
1306
1307 new_req = xmalloc (sizeof (*new_req));
1308 new_req->ptid = ptid;
1309 new_req->next = NULL;
1310
1311 if (displaced->step_request_queue)
1312 {
1313 for (req = displaced->step_request_queue;
1314 req && req->next;
1315 req = req->next)
1316 ;
1317 req->next = new_req;
1318 }
1319 else
1320 displaced->step_request_queue = new_req;
1321
1322 return 0;
1323 }
1324 else
1325 {
1326 if (debug_displaced)
1327 fprintf_unfiltered (gdb_stdlog,
1328 "displaced: stepping %s now\n",
1329 target_pid_to_str (ptid));
1330 }
1331
1332 displaced_step_clear (displaced);
1333
1334 old_cleanups = save_inferior_ptid ();
1335 inferior_ptid = ptid;
1336
1337 original = regcache_read_pc (regcache);
1338
1339 copy = gdbarch_displaced_step_location (gdbarch);
1340 len = gdbarch_max_insn_length (gdbarch);
1341
1342 /* Save the original contents of the copy area. */
1343 displaced->step_saved_copy = xmalloc (len);
1344 ignore_cleanups = make_cleanup (free_current_contents,
1345 &displaced->step_saved_copy);
1346 read_memory (copy, displaced->step_saved_copy, len);
1347 if (debug_displaced)
1348 {
1349 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1350 paddress (gdbarch, copy));
1351 displaced_step_dump_bytes (gdb_stdlog,
1352 displaced->step_saved_copy,
1353 len);
1354 };
1355
1356 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1357 original, copy, regcache);
1358
1359 /* We don't support the fully-simulated case at present. */
1360 gdb_assert (closure);
1361
1362 /* Save the information we need to fix things up if the step
1363 succeeds. */
1364 displaced->step_ptid = ptid;
1365 displaced->step_gdbarch = gdbarch;
1366 displaced->step_closure = closure;
1367 displaced->step_original = original;
1368 displaced->step_copy = copy;
1369
1370 make_cleanup (displaced_step_clear_cleanup, displaced);
1371
1372 /* Resume execution at the copy. */
1373 regcache_write_pc (regcache, copy);
1374
1375 discard_cleanups (ignore_cleanups);
1376
1377 do_cleanups (old_cleanups);
1378
1379 if (debug_displaced)
1380 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1381 paddress (gdbarch, copy));
1382
1383 return 1;
1384 }
1385
1386 static void
1387 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1388 const gdb_byte *myaddr, int len)
1389 {
1390 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1391
1392 inferior_ptid = ptid;
1393 write_memory (memaddr, myaddr, len);
1394 do_cleanups (ptid_cleanup);
1395 }
1396
1397 /* Restore the contents of the copy area for thread PTID. */
1398
1399 static void
1400 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1401 ptid_t ptid)
1402 {
1403 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1404
1405 write_memory_ptid (ptid, displaced->step_copy,
1406 displaced->step_saved_copy, len);
1407 if (debug_displaced)
1408 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1409 target_pid_to_str (ptid),
1410 paddress (displaced->step_gdbarch,
1411 displaced->step_copy));
1412 }
1413
1414 static void
1415 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1416 {
1417 struct cleanup *old_cleanups;
1418 struct displaced_step_inferior_state *displaced
1419 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1420
1421 /* Was any thread of this process doing a displaced step? */
1422 if (displaced == NULL)
1423 return;
1424
1425 /* Was this event for the pid we displaced? */
1426 if (ptid_equal (displaced->step_ptid, null_ptid)
1427 || ! ptid_equal (displaced->step_ptid, event_ptid))
1428 return;
1429
1430 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1431
1432 displaced_step_restore (displaced, displaced->step_ptid);
1433
1434 /* Did the instruction complete successfully? */
1435 if (signal == TARGET_SIGNAL_TRAP)
1436 {
1437 /* Fix up the resulting state. */
1438 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1439 displaced->step_closure,
1440 displaced->step_original,
1441 displaced->step_copy,
1442 get_thread_regcache (displaced->step_ptid));
1443 }
1444 else
1445 {
1446 /* Since the instruction didn't complete, all we can do is
1447 relocate the PC. */
1448 struct regcache *regcache = get_thread_regcache (event_ptid);
1449 CORE_ADDR pc = regcache_read_pc (regcache);
1450
1451 pc = displaced->step_original + (pc - displaced->step_copy);
1452 regcache_write_pc (regcache, pc);
1453 }
1454
1455 do_cleanups (old_cleanups);
1456
1457 displaced->step_ptid = null_ptid;
1458
1459 /* Are there any pending displaced stepping requests? If so, run
1460 one now. Leave the state object around, since we're likely to
1461 need it again soon. */
1462 while (displaced->step_request_queue)
1463 {
1464 struct displaced_step_request *head;
1465 ptid_t ptid;
1466 struct regcache *regcache;
1467 struct gdbarch *gdbarch;
1468 CORE_ADDR actual_pc;
1469 struct address_space *aspace;
1470
1471 head = displaced->step_request_queue;
1472 ptid = head->ptid;
1473 displaced->step_request_queue = head->next;
1474 xfree (head);
1475
1476 context_switch (ptid);
1477
1478 regcache = get_thread_regcache (ptid);
1479 actual_pc = regcache_read_pc (regcache);
1480 aspace = get_regcache_aspace (regcache);
1481
1482 if (breakpoint_here_p (aspace, actual_pc))
1483 {
1484 if (debug_displaced)
1485 fprintf_unfiltered (gdb_stdlog,
1486 "displaced: stepping queued %s now\n",
1487 target_pid_to_str (ptid));
1488
1489 displaced_step_prepare (ptid);
1490
1491 gdbarch = get_regcache_arch (regcache);
1492
1493 if (debug_displaced)
1494 {
1495 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1496 gdb_byte buf[4];
1497
1498 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1499 paddress (gdbarch, actual_pc));
1500 read_memory (actual_pc, buf, sizeof (buf));
1501 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1502 }
1503
1504 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1505 displaced->step_closure))
1506 target_resume (ptid, 1, TARGET_SIGNAL_0);
1507 else
1508 target_resume (ptid, 0, TARGET_SIGNAL_0);
1509
1510 /* Done, we're stepping a thread. */
1511 break;
1512 }
1513 else
1514 {
1515 int step;
1516 struct thread_info *tp = inferior_thread ();
1517
1518 /* The breakpoint we were sitting under has since been
1519 removed. */
1520 tp->control.trap_expected = 0;
1521
1522 /* Go back to what we were trying to do. */
1523 step = currently_stepping (tp);
1524
1525 if (debug_displaced)
1526 fprintf_unfiltered (gdb_stdlog,
1527 "breakpoint is gone %s: step(%d)\n",
1528 target_pid_to_str (tp->ptid), step);
1529
1530 target_resume (ptid, step, TARGET_SIGNAL_0);
1531 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1532
1533 /* This request was discarded. See if there's any other
1534 thread waiting for its turn. */
1535 }
1536 }
1537 }
1538
1539 /* Update global variables holding ptids to hold NEW_PTID if they were
1540 holding OLD_PTID. */
1541 static void
1542 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1543 {
1544 struct displaced_step_request *it;
1545 struct displaced_step_inferior_state *displaced;
1546
1547 if (ptid_equal (inferior_ptid, old_ptid))
1548 inferior_ptid = new_ptid;
1549
1550 if (ptid_equal (singlestep_ptid, old_ptid))
1551 singlestep_ptid = new_ptid;
1552
1553 if (ptid_equal (deferred_step_ptid, old_ptid))
1554 deferred_step_ptid = new_ptid;
1555
1556 for (displaced = displaced_step_inferior_states;
1557 displaced;
1558 displaced = displaced->next)
1559 {
1560 if (ptid_equal (displaced->step_ptid, old_ptid))
1561 displaced->step_ptid = new_ptid;
1562
1563 for (it = displaced->step_request_queue; it; it = it->next)
1564 if (ptid_equal (it->ptid, old_ptid))
1565 it->ptid = new_ptid;
1566 }
1567 }
1568
1569 \f
1570 /* Resuming. */
1571
1572 /* Things to clean up if we QUIT out of resume (). */
1573 static void
1574 resume_cleanups (void *ignore)
1575 {
1576 normal_stop ();
1577 }
1578
1579 static const char schedlock_off[] = "off";
1580 static const char schedlock_on[] = "on";
1581 static const char schedlock_step[] = "step";
1582 static const char *scheduler_enums[] = {
1583 schedlock_off,
1584 schedlock_on,
1585 schedlock_step,
1586 NULL
1587 };
1588 static const char *scheduler_mode = schedlock_off;
1589 static void
1590 show_scheduler_mode (struct ui_file *file, int from_tty,
1591 struct cmd_list_element *c, const char *value)
1592 {
1593 fprintf_filtered (file,
1594 _("Mode for locking scheduler "
1595 "during execution is \"%s\".\n"),
1596 value);
1597 }
1598
1599 static void
1600 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1601 {
1602 if (!target_can_lock_scheduler)
1603 {
1604 scheduler_mode = schedlock_off;
1605 error (_("Target '%s' cannot support this command."), target_shortname);
1606 }
1607 }
1608
1609 /* True if execution commands resume all threads of all processes by
1610 default; otherwise, resume only threads of the current inferior
1611 process. */
1612 int sched_multi = 0;
1613
1614 /* Try to setup for software single stepping over the specified location.
1615 Return 1 if target_resume() should use hardware single step.
1616
1617 GDBARCH the current gdbarch.
1618 PC the location to step over. */
1619
1620 static int
1621 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1622 {
1623 int hw_step = 1;
1624
1625 if (execution_direction == EXEC_FORWARD
1626 && gdbarch_software_single_step_p (gdbarch)
1627 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1628 {
1629 hw_step = 0;
1630 /* Do not pull these breakpoints until after a `wait' in
1631 `wait_for_inferior'. */
1632 singlestep_breakpoints_inserted_p = 1;
1633 singlestep_ptid = inferior_ptid;
1634 singlestep_pc = pc;
1635 }
1636 return hw_step;
1637 }
1638
1639 /* Return a ptid representing the set of threads that we will proceed,
1640 in the perspective of the user/frontend. We may actually resume
1641 fewer threads at first, e.g., if a thread is stopped at a
1642 breakpoint that needs stepping-off, but that should not be visible
1643 to the user/frontend, and neither should the frontend/user be
1644 allowed to proceed any of the threads that happen to be stopped for
1645 internal run control handling, if a previous command wanted them
1646 resumed. */
1647
1648 ptid_t
1649 user_visible_resume_ptid (int step)
1650 {
1651 /* By default, resume all threads of all processes. */
1652 ptid_t resume_ptid = RESUME_ALL;
1653
1654 /* Maybe resume only all threads of the current process. */
1655 if (!sched_multi && target_supports_multi_process ())
1656 {
1657 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1658 }
1659
1660 /* Maybe resume a single thread after all. */
1661 if (non_stop)
1662 {
1663 /* With non-stop mode on, threads are always handled
1664 individually. */
1665 resume_ptid = inferior_ptid;
1666 }
1667 else if ((scheduler_mode == schedlock_on)
1668 || (scheduler_mode == schedlock_step
1669 && (step || singlestep_breakpoints_inserted_p)))
1670 {
1671 /* User-settable 'scheduler' mode requires solo thread resume. */
1672 resume_ptid = inferior_ptid;
1673 }
1674
1675 return resume_ptid;
1676 }
1677
1678 /* Resume the inferior, but allow a QUIT. This is useful if the user
1679 wants to interrupt some lengthy single-stepping operation
1680 (for child processes, the SIGINT goes to the inferior, and so
1681 we get a SIGINT random_signal, but for remote debugging and perhaps
1682 other targets, that's not true).
1683
1684 STEP nonzero if we should step (zero to continue instead).
1685 SIG is the signal to give the inferior (zero for none). */
1686 void
1687 resume (int step, enum target_signal sig)
1688 {
1689 int should_resume = 1;
1690 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1691 struct regcache *regcache = get_current_regcache ();
1692 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1693 struct thread_info *tp = inferior_thread ();
1694 CORE_ADDR pc = regcache_read_pc (regcache);
1695 struct address_space *aspace = get_regcache_aspace (regcache);
1696
1697 QUIT;
1698
1699 if (current_inferior ()->waiting_for_vfork_done)
1700 {
1701 /* Don't try to single-step a vfork parent that is waiting for
1702 the child to get out of the shared memory region (by exec'ing
1703 or exiting). This is particularly important on software
1704 single-step archs, as the child process would trip on the
1705 software single step breakpoint inserted for the parent
1706 process. Since the parent will not actually execute any
1707 instruction until the child is out of the shared region (such
1708 are vfork's semantics), it is safe to simply continue it.
1709 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1710 the parent, and tell it to `keep_going', which automatically
1711 re-sets it stepping. */
1712 if (debug_infrun)
1713 fprintf_unfiltered (gdb_stdlog,
1714 "infrun: resume : clear step\n");
1715 step = 0;
1716 }
1717
1718 if (debug_infrun)
1719 fprintf_unfiltered (gdb_stdlog,
1720 "infrun: resume (step=%d, signal=%d), "
1721 "trap_expected=%d, current thread [%s] at %s\n",
1722 step, sig, tp->control.trap_expected,
1723 target_pid_to_str (inferior_ptid),
1724 paddress (gdbarch, pc));
1725
1726 /* Normally, by the time we reach `resume', the breakpoints are either
1727 removed or inserted, as appropriate. The exception is if we're sitting
1728 at a permanent breakpoint; we need to step over it, but permanent
1729 breakpoints can't be removed. So we have to test for it here. */
1730 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1731 {
1732 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1733 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1734 else
1735 error (_("\
1736 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1737 how to step past a permanent breakpoint on this architecture. Try using\n\
1738 a command like `return' or `jump' to continue execution."));
1739 }
1740
1741 /* If enabled, step over breakpoints by executing a copy of the
1742 instruction at a different address.
1743
1744 We can't use displaced stepping when we have a signal to deliver;
1745 the comments for displaced_step_prepare explain why. The
1746 comments in the handle_inferior event for dealing with 'random
1747 signals' explain what we do instead.
1748
1749 We can't use displaced stepping when we are waiting for vfork_done
1750 event, displaced stepping breaks the vfork child similarly as single
1751 step software breakpoint. */
1752 if (use_displaced_stepping (gdbarch)
1753 && (tp->control.trap_expected
1754 || (step && gdbarch_software_single_step_p (gdbarch)))
1755 && sig == TARGET_SIGNAL_0
1756 && !current_inferior ()->waiting_for_vfork_done)
1757 {
1758 struct displaced_step_inferior_state *displaced;
1759
1760 if (!displaced_step_prepare (inferior_ptid))
1761 {
1762 /* Got placed in displaced stepping queue. Will be resumed
1763 later when all the currently queued displaced stepping
1764 requests finish. The thread is not executing at this point,
1765 and the call to set_executing will be made later. But we
1766 need to call set_running here, since from frontend point of view,
1767 the thread is running. */
1768 set_running (inferior_ptid, 1);
1769 discard_cleanups (old_cleanups);
1770 return;
1771 }
1772
1773 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1774 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1775 displaced->step_closure);
1776 }
1777
1778 /* Do we need to do it the hard way, w/temp breakpoints? */
1779 else if (step)
1780 step = maybe_software_singlestep (gdbarch, pc);
1781
1782 /* Currently, our software single-step implementation leads to different
1783 results than hardware single-stepping in one situation: when stepping
1784 into delivering a signal which has an associated signal handler,
1785 hardware single-step will stop at the first instruction of the handler,
1786 while software single-step will simply skip execution of the handler.
1787
1788 For now, this difference in behavior is accepted since there is no
1789 easy way to actually implement single-stepping into a signal handler
1790 without kernel support.
1791
1792 However, there is one scenario where this difference leads to follow-on
1793 problems: if we're stepping off a breakpoint by removing all breakpoints
1794 and then single-stepping. In this case, the software single-step
1795 behavior means that even if there is a *breakpoint* in the signal
1796 handler, GDB still would not stop.
1797
1798 Fortunately, we can at least fix this particular issue. We detect
1799 here the case where we are about to deliver a signal while software
1800 single-stepping with breakpoints removed. In this situation, we
1801 revert the decisions to remove all breakpoints and insert single-
1802 step breakpoints, and instead we install a step-resume breakpoint
1803 at the current address, deliver the signal without stepping, and
1804 once we arrive back at the step-resume breakpoint, actually step
1805 over the breakpoint we originally wanted to step over. */
1806 if (singlestep_breakpoints_inserted_p
1807 && tp->control.trap_expected && sig != TARGET_SIGNAL_0)
1808 {
1809 /* If we have nested signals or a pending signal is delivered
1810 immediately after a handler returns, might might already have
1811 a step-resume breakpoint set on the earlier handler. We cannot
1812 set another step-resume breakpoint; just continue on until the
1813 original breakpoint is hit. */
1814 if (tp->control.step_resume_breakpoint == NULL)
1815 {
1816 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1817 tp->step_after_step_resume_breakpoint = 1;
1818 }
1819
1820 remove_single_step_breakpoints ();
1821 singlestep_breakpoints_inserted_p = 0;
1822
1823 insert_breakpoints ();
1824 tp->control.trap_expected = 0;
1825 }
1826
1827 if (should_resume)
1828 {
1829 ptid_t resume_ptid;
1830
1831 /* If STEP is set, it's a request to use hardware stepping
1832 facilities. But in that case, we should never
1833 use singlestep breakpoint. */
1834 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1835
1836 /* Decide the set of threads to ask the target to resume. Start
1837 by assuming everything will be resumed, than narrow the set
1838 by applying increasingly restricting conditions. */
1839 resume_ptid = user_visible_resume_ptid (step);
1840
1841 /* Maybe resume a single thread after all. */
1842 if (singlestep_breakpoints_inserted_p
1843 && stepping_past_singlestep_breakpoint)
1844 {
1845 /* The situation here is as follows. In thread T1 we wanted to
1846 single-step. Lacking hardware single-stepping we've
1847 set breakpoint at the PC of the next instruction -- call it
1848 P. After resuming, we've hit that breakpoint in thread T2.
1849 Now we've removed original breakpoint, inserted breakpoint
1850 at P+1, and try to step to advance T2 past breakpoint.
1851 We need to step only T2, as if T1 is allowed to freely run,
1852 it can run past P, and if other threads are allowed to run,
1853 they can hit breakpoint at P+1, and nested hits of single-step
1854 breakpoints is not something we'd want -- that's complicated
1855 to support, and has no value. */
1856 resume_ptid = inferior_ptid;
1857 }
1858 else if ((step || singlestep_breakpoints_inserted_p)
1859 && tp->control.trap_expected)
1860 {
1861 /* We're allowing a thread to run past a breakpoint it has
1862 hit, by single-stepping the thread with the breakpoint
1863 removed. In which case, we need to single-step only this
1864 thread, and keep others stopped, as they can miss this
1865 breakpoint if allowed to run.
1866
1867 The current code actually removes all breakpoints when
1868 doing this, not just the one being stepped over, so if we
1869 let other threads run, we can actually miss any
1870 breakpoint, not just the one at PC. */
1871 resume_ptid = inferior_ptid;
1872 }
1873
1874 if (gdbarch_cannot_step_breakpoint (gdbarch))
1875 {
1876 /* Most targets can step a breakpoint instruction, thus
1877 executing it normally. But if this one cannot, just
1878 continue and we will hit it anyway. */
1879 if (step && breakpoint_inserted_here_p (aspace, pc))
1880 step = 0;
1881 }
1882
1883 if (debug_displaced
1884 && use_displaced_stepping (gdbarch)
1885 && tp->control.trap_expected)
1886 {
1887 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1888 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1889 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1890 gdb_byte buf[4];
1891
1892 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1893 paddress (resume_gdbarch, actual_pc));
1894 read_memory (actual_pc, buf, sizeof (buf));
1895 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1896 }
1897
1898 /* Install inferior's terminal modes. */
1899 target_terminal_inferior ();
1900
1901 /* Avoid confusing the next resume, if the next stop/resume
1902 happens to apply to another thread. */
1903 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1904
1905 /* Advise target which signals may be handled silently. If we have
1906 removed breakpoints because we are stepping over one (which can
1907 happen only if we are not using displaced stepping), we need to
1908 receive all signals to avoid accidentally skipping a breakpoint
1909 during execution of a signal handler. */
1910 if ((step || singlestep_breakpoints_inserted_p)
1911 && tp->control.trap_expected
1912 && !use_displaced_stepping (gdbarch))
1913 target_pass_signals (0, NULL);
1914 else
1915 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
1916
1917 target_resume (resume_ptid, step, sig);
1918 }
1919
1920 discard_cleanups (old_cleanups);
1921 }
1922 \f
1923 /* Proceeding. */
1924
1925 /* Clear out all variables saying what to do when inferior is continued.
1926 First do this, then set the ones you want, then call `proceed'. */
1927
1928 static void
1929 clear_proceed_status_thread (struct thread_info *tp)
1930 {
1931 if (debug_infrun)
1932 fprintf_unfiltered (gdb_stdlog,
1933 "infrun: clear_proceed_status_thread (%s)\n",
1934 target_pid_to_str (tp->ptid));
1935
1936 tp->control.trap_expected = 0;
1937 tp->control.step_range_start = 0;
1938 tp->control.step_range_end = 0;
1939 tp->control.step_frame_id = null_frame_id;
1940 tp->control.step_stack_frame_id = null_frame_id;
1941 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1942 tp->stop_requested = 0;
1943
1944 tp->control.stop_step = 0;
1945
1946 tp->control.proceed_to_finish = 0;
1947
1948 /* Discard any remaining commands or status from previous stop. */
1949 bpstat_clear (&tp->control.stop_bpstat);
1950 }
1951
1952 static int
1953 clear_proceed_status_callback (struct thread_info *tp, void *data)
1954 {
1955 if (is_exited (tp->ptid))
1956 return 0;
1957
1958 clear_proceed_status_thread (tp);
1959 return 0;
1960 }
1961
1962 void
1963 clear_proceed_status (void)
1964 {
1965 if (!non_stop)
1966 {
1967 /* In all-stop mode, delete the per-thread status of all
1968 threads, even if inferior_ptid is null_ptid, there may be
1969 threads on the list. E.g., we may be launching a new
1970 process, while selecting the executable. */
1971 iterate_over_threads (clear_proceed_status_callback, NULL);
1972 }
1973
1974 if (!ptid_equal (inferior_ptid, null_ptid))
1975 {
1976 struct inferior *inferior;
1977
1978 if (non_stop)
1979 {
1980 /* If in non-stop mode, only delete the per-thread status of
1981 the current thread. */
1982 clear_proceed_status_thread (inferior_thread ());
1983 }
1984
1985 inferior = current_inferior ();
1986 inferior->control.stop_soon = NO_STOP_QUIETLY;
1987 }
1988
1989 stop_after_trap = 0;
1990
1991 observer_notify_about_to_proceed ();
1992
1993 if (stop_registers)
1994 {
1995 regcache_xfree (stop_registers);
1996 stop_registers = NULL;
1997 }
1998 }
1999
2000 /* Check the current thread against the thread that reported the most recent
2001 event. If a step-over is required return TRUE and set the current thread
2002 to the old thread. Otherwise return FALSE.
2003
2004 This should be suitable for any targets that support threads. */
2005
2006 static int
2007 prepare_to_proceed (int step)
2008 {
2009 ptid_t wait_ptid;
2010 struct target_waitstatus wait_status;
2011 int schedlock_enabled;
2012
2013 /* With non-stop mode on, threads are always handled individually. */
2014 gdb_assert (! non_stop);
2015
2016 /* Get the last target status returned by target_wait(). */
2017 get_last_target_status (&wait_ptid, &wait_status);
2018
2019 /* Make sure we were stopped at a breakpoint. */
2020 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2021 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
2022 && wait_status.value.sig != TARGET_SIGNAL_ILL
2023 && wait_status.value.sig != TARGET_SIGNAL_SEGV
2024 && wait_status.value.sig != TARGET_SIGNAL_EMT))
2025 {
2026 return 0;
2027 }
2028
2029 schedlock_enabled = (scheduler_mode == schedlock_on
2030 || (scheduler_mode == schedlock_step
2031 && step));
2032
2033 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2034 if (schedlock_enabled)
2035 return 0;
2036
2037 /* Don't switch over if we're about to resume some other process
2038 other than WAIT_PTID's, and schedule-multiple is off. */
2039 if (!sched_multi
2040 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2041 return 0;
2042
2043 /* Switched over from WAIT_PID. */
2044 if (!ptid_equal (wait_ptid, minus_one_ptid)
2045 && !ptid_equal (inferior_ptid, wait_ptid))
2046 {
2047 struct regcache *regcache = get_thread_regcache (wait_ptid);
2048
2049 if (breakpoint_here_p (get_regcache_aspace (regcache),
2050 regcache_read_pc (regcache)))
2051 {
2052 /* If stepping, remember current thread to switch back to. */
2053 if (step)
2054 deferred_step_ptid = inferior_ptid;
2055
2056 /* Switch back to WAIT_PID thread. */
2057 switch_to_thread (wait_ptid);
2058
2059 if (debug_infrun)
2060 fprintf_unfiltered (gdb_stdlog,
2061 "infrun: prepare_to_proceed (step=%d), "
2062 "switched to [%s]\n",
2063 step, target_pid_to_str (inferior_ptid));
2064
2065 /* We return 1 to indicate that there is a breakpoint here,
2066 so we need to step over it before continuing to avoid
2067 hitting it straight away. */
2068 return 1;
2069 }
2070 }
2071
2072 return 0;
2073 }
2074
2075 /* Basic routine for continuing the program in various fashions.
2076
2077 ADDR is the address to resume at, or -1 for resume where stopped.
2078 SIGGNAL is the signal to give it, or 0 for none,
2079 or -1 for act according to how it stopped.
2080 STEP is nonzero if should trap after one instruction.
2081 -1 means return after that and print nothing.
2082 You should probably set various step_... variables
2083 before calling here, if you are stepping.
2084
2085 You should call clear_proceed_status before calling proceed. */
2086
2087 void
2088 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
2089 {
2090 struct regcache *regcache;
2091 struct gdbarch *gdbarch;
2092 struct thread_info *tp;
2093 CORE_ADDR pc;
2094 struct address_space *aspace;
2095 int oneproc = 0;
2096
2097 /* If we're stopped at a fork/vfork, follow the branch set by the
2098 "set follow-fork-mode" command; otherwise, we'll just proceed
2099 resuming the current thread. */
2100 if (!follow_fork ())
2101 {
2102 /* The target for some reason decided not to resume. */
2103 normal_stop ();
2104 if (target_can_async_p ())
2105 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2106 return;
2107 }
2108
2109 /* We'll update this if & when we switch to a new thread. */
2110 previous_inferior_ptid = inferior_ptid;
2111
2112 regcache = get_current_regcache ();
2113 gdbarch = get_regcache_arch (regcache);
2114 aspace = get_regcache_aspace (regcache);
2115 pc = regcache_read_pc (regcache);
2116
2117 if (step > 0)
2118 step_start_function = find_pc_function (pc);
2119 if (step < 0)
2120 stop_after_trap = 1;
2121
2122 if (addr == (CORE_ADDR) -1)
2123 {
2124 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2125 && execution_direction != EXEC_REVERSE)
2126 /* There is a breakpoint at the address we will resume at,
2127 step one instruction before inserting breakpoints so that
2128 we do not stop right away (and report a second hit at this
2129 breakpoint).
2130
2131 Note, we don't do this in reverse, because we won't
2132 actually be executing the breakpoint insn anyway.
2133 We'll be (un-)executing the previous instruction. */
2134
2135 oneproc = 1;
2136 else if (gdbarch_single_step_through_delay_p (gdbarch)
2137 && gdbarch_single_step_through_delay (gdbarch,
2138 get_current_frame ()))
2139 /* We stepped onto an instruction that needs to be stepped
2140 again before re-inserting the breakpoint, do so. */
2141 oneproc = 1;
2142 }
2143 else
2144 {
2145 regcache_write_pc (regcache, addr);
2146 }
2147
2148 if (debug_infrun)
2149 fprintf_unfiltered (gdb_stdlog,
2150 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2151 paddress (gdbarch, addr), siggnal, step);
2152
2153 if (non_stop)
2154 /* In non-stop, each thread is handled individually. The context
2155 must already be set to the right thread here. */
2156 ;
2157 else
2158 {
2159 /* In a multi-threaded task we may select another thread and
2160 then continue or step.
2161
2162 But if the old thread was stopped at a breakpoint, it will
2163 immediately cause another breakpoint stop without any
2164 execution (i.e. it will report a breakpoint hit incorrectly).
2165 So we must step over it first.
2166
2167 prepare_to_proceed checks the current thread against the
2168 thread that reported the most recent event. If a step-over
2169 is required it returns TRUE and sets the current thread to
2170 the old thread. */
2171 if (prepare_to_proceed (step))
2172 oneproc = 1;
2173 }
2174
2175 /* prepare_to_proceed may change the current thread. */
2176 tp = inferior_thread ();
2177
2178 if (oneproc)
2179 {
2180 tp->control.trap_expected = 1;
2181 /* If displaced stepping is enabled, we can step over the
2182 breakpoint without hitting it, so leave all breakpoints
2183 inserted. Otherwise we need to disable all breakpoints, step
2184 one instruction, and then re-add them when that step is
2185 finished. */
2186 if (!use_displaced_stepping (gdbarch))
2187 remove_breakpoints ();
2188 }
2189
2190 /* We can insert breakpoints if we're not trying to step over one,
2191 or if we are stepping over one but we're using displaced stepping
2192 to do so. */
2193 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2194 insert_breakpoints ();
2195
2196 if (!non_stop)
2197 {
2198 /* Pass the last stop signal to the thread we're resuming,
2199 irrespective of whether the current thread is the thread that
2200 got the last event or not. This was historically GDB's
2201 behaviour before keeping a stop_signal per thread. */
2202
2203 struct thread_info *last_thread;
2204 ptid_t last_ptid;
2205 struct target_waitstatus last_status;
2206
2207 get_last_target_status (&last_ptid, &last_status);
2208 if (!ptid_equal (inferior_ptid, last_ptid)
2209 && !ptid_equal (last_ptid, null_ptid)
2210 && !ptid_equal (last_ptid, minus_one_ptid))
2211 {
2212 last_thread = find_thread_ptid (last_ptid);
2213 if (last_thread)
2214 {
2215 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2216 last_thread->suspend.stop_signal = TARGET_SIGNAL_0;
2217 }
2218 }
2219 }
2220
2221 if (siggnal != TARGET_SIGNAL_DEFAULT)
2222 tp->suspend.stop_signal = siggnal;
2223 /* If this signal should not be seen by program,
2224 give it zero. Used for debugging signals. */
2225 else if (!signal_program[tp->suspend.stop_signal])
2226 tp->suspend.stop_signal = TARGET_SIGNAL_0;
2227
2228 annotate_starting ();
2229
2230 /* Make sure that output from GDB appears before output from the
2231 inferior. */
2232 gdb_flush (gdb_stdout);
2233
2234 /* Refresh prev_pc value just prior to resuming. This used to be
2235 done in stop_stepping, however, setting prev_pc there did not handle
2236 scenarios such as inferior function calls or returning from
2237 a function via the return command. In those cases, the prev_pc
2238 value was not set properly for subsequent commands. The prev_pc value
2239 is used to initialize the starting line number in the ecs. With an
2240 invalid value, the gdb next command ends up stopping at the position
2241 represented by the next line table entry past our start position.
2242 On platforms that generate one line table entry per line, this
2243 is not a problem. However, on the ia64, the compiler generates
2244 extraneous line table entries that do not increase the line number.
2245 When we issue the gdb next command on the ia64 after an inferior call
2246 or a return command, we often end up a few instructions forward, still
2247 within the original line we started.
2248
2249 An attempt was made to refresh the prev_pc at the same time the
2250 execution_control_state is initialized (for instance, just before
2251 waiting for an inferior event). But this approach did not work
2252 because of platforms that use ptrace, where the pc register cannot
2253 be read unless the inferior is stopped. At that point, we are not
2254 guaranteed the inferior is stopped and so the regcache_read_pc() call
2255 can fail. Setting the prev_pc value here ensures the value is updated
2256 correctly when the inferior is stopped. */
2257 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2258
2259 /* Fill in with reasonable starting values. */
2260 init_thread_stepping_state (tp);
2261
2262 /* Reset to normal state. */
2263 init_infwait_state ();
2264
2265 /* Resume inferior. */
2266 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
2267
2268 /* Wait for it to stop (if not standalone)
2269 and in any case decode why it stopped, and act accordingly. */
2270 /* Do this only if we are not using the event loop, or if the target
2271 does not support asynchronous execution. */
2272 if (!target_can_async_p ())
2273 {
2274 wait_for_inferior ();
2275 normal_stop ();
2276 }
2277 }
2278 \f
2279
2280 /* Start remote-debugging of a machine over a serial link. */
2281
2282 void
2283 start_remote (int from_tty)
2284 {
2285 struct inferior *inferior;
2286
2287 inferior = current_inferior ();
2288 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2289
2290 /* Always go on waiting for the target, regardless of the mode. */
2291 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2292 indicate to wait_for_inferior that a target should timeout if
2293 nothing is returned (instead of just blocking). Because of this,
2294 targets expecting an immediate response need to, internally, set
2295 things up so that the target_wait() is forced to eventually
2296 timeout. */
2297 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2298 differentiate to its caller what the state of the target is after
2299 the initial open has been performed. Here we're assuming that
2300 the target has stopped. It should be possible to eventually have
2301 target_open() return to the caller an indication that the target
2302 is currently running and GDB state should be set to the same as
2303 for an async run. */
2304 wait_for_inferior ();
2305
2306 /* Now that the inferior has stopped, do any bookkeeping like
2307 loading shared libraries. We want to do this before normal_stop,
2308 so that the displayed frame is up to date. */
2309 post_create_inferior (&current_target, from_tty);
2310
2311 normal_stop ();
2312 }
2313
2314 /* Initialize static vars when a new inferior begins. */
2315
2316 void
2317 init_wait_for_inferior (void)
2318 {
2319 /* These are meaningless until the first time through wait_for_inferior. */
2320
2321 breakpoint_init_inferior (inf_starting);
2322
2323 clear_proceed_status ();
2324
2325 stepping_past_singlestep_breakpoint = 0;
2326 deferred_step_ptid = null_ptid;
2327
2328 target_last_wait_ptid = minus_one_ptid;
2329
2330 previous_inferior_ptid = inferior_ptid;
2331 init_infwait_state ();
2332
2333 /* Discard any skipped inlined frames. */
2334 clear_inline_frame_state (minus_one_ptid);
2335 }
2336
2337 \f
2338 /* This enum encodes possible reasons for doing a target_wait, so that
2339 wfi can call target_wait in one place. (Ultimately the call will be
2340 moved out of the infinite loop entirely.) */
2341
2342 enum infwait_states
2343 {
2344 infwait_normal_state,
2345 infwait_thread_hop_state,
2346 infwait_step_watch_state,
2347 infwait_nonstep_watch_state
2348 };
2349
2350 /* The PTID we'll do a target_wait on.*/
2351 ptid_t waiton_ptid;
2352
2353 /* Current inferior wait state. */
2354 enum infwait_states infwait_state;
2355
2356 /* Data to be passed around while handling an event. This data is
2357 discarded between events. */
2358 struct execution_control_state
2359 {
2360 ptid_t ptid;
2361 /* The thread that got the event, if this was a thread event; NULL
2362 otherwise. */
2363 struct thread_info *event_thread;
2364
2365 struct target_waitstatus ws;
2366 int random_signal;
2367 int stop_func_filled_in;
2368 CORE_ADDR stop_func_start;
2369 CORE_ADDR stop_func_end;
2370 char *stop_func_name;
2371 int new_thread_event;
2372 int wait_some_more;
2373 };
2374
2375 static void handle_inferior_event (struct execution_control_state *ecs);
2376
2377 static void handle_step_into_function (struct gdbarch *gdbarch,
2378 struct execution_control_state *ecs);
2379 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2380 struct execution_control_state *ecs);
2381 static void check_exception_resume (struct execution_control_state *,
2382 struct frame_info *, struct symbol *);
2383
2384 static void stop_stepping (struct execution_control_state *ecs);
2385 static void prepare_to_wait (struct execution_control_state *ecs);
2386 static void keep_going (struct execution_control_state *ecs);
2387
2388 /* Callback for iterate over threads. If the thread is stopped, but
2389 the user/frontend doesn't know about that yet, go through
2390 normal_stop, as if the thread had just stopped now. ARG points at
2391 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2392 ptid_is_pid(PTID) is true, applies to all threads of the process
2393 pointed at by PTID. Otherwise, apply only to the thread pointed by
2394 PTID. */
2395
2396 static int
2397 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2398 {
2399 ptid_t ptid = * (ptid_t *) arg;
2400
2401 if ((ptid_equal (info->ptid, ptid)
2402 || ptid_equal (minus_one_ptid, ptid)
2403 || (ptid_is_pid (ptid)
2404 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2405 && is_running (info->ptid)
2406 && !is_executing (info->ptid))
2407 {
2408 struct cleanup *old_chain;
2409 struct execution_control_state ecss;
2410 struct execution_control_state *ecs = &ecss;
2411
2412 memset (ecs, 0, sizeof (*ecs));
2413
2414 old_chain = make_cleanup_restore_current_thread ();
2415
2416 switch_to_thread (info->ptid);
2417
2418 /* Go through handle_inferior_event/normal_stop, so we always
2419 have consistent output as if the stop event had been
2420 reported. */
2421 ecs->ptid = info->ptid;
2422 ecs->event_thread = find_thread_ptid (info->ptid);
2423 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2424 ecs->ws.value.sig = TARGET_SIGNAL_0;
2425
2426 handle_inferior_event (ecs);
2427
2428 if (!ecs->wait_some_more)
2429 {
2430 struct thread_info *tp;
2431
2432 normal_stop ();
2433
2434 /* Finish off the continuations. */
2435 tp = inferior_thread ();
2436 do_all_intermediate_continuations_thread (tp, 1);
2437 do_all_continuations_thread (tp, 1);
2438 }
2439
2440 do_cleanups (old_chain);
2441 }
2442
2443 return 0;
2444 }
2445
2446 /* This function is attached as a "thread_stop_requested" observer.
2447 Cleanup local state that assumed the PTID was to be resumed, and
2448 report the stop to the frontend. */
2449
2450 static void
2451 infrun_thread_stop_requested (ptid_t ptid)
2452 {
2453 struct displaced_step_inferior_state *displaced;
2454
2455 /* PTID was requested to stop. Remove it from the displaced
2456 stepping queue, so we don't try to resume it automatically. */
2457
2458 for (displaced = displaced_step_inferior_states;
2459 displaced;
2460 displaced = displaced->next)
2461 {
2462 struct displaced_step_request *it, **prev_next_p;
2463
2464 it = displaced->step_request_queue;
2465 prev_next_p = &displaced->step_request_queue;
2466 while (it)
2467 {
2468 if (ptid_match (it->ptid, ptid))
2469 {
2470 *prev_next_p = it->next;
2471 it->next = NULL;
2472 xfree (it);
2473 }
2474 else
2475 {
2476 prev_next_p = &it->next;
2477 }
2478
2479 it = *prev_next_p;
2480 }
2481 }
2482
2483 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2484 }
2485
2486 static void
2487 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2488 {
2489 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2490 nullify_last_target_wait_ptid ();
2491 }
2492
2493 /* Callback for iterate_over_threads. */
2494
2495 static int
2496 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2497 {
2498 if (is_exited (info->ptid))
2499 return 0;
2500
2501 delete_step_resume_breakpoint (info);
2502 delete_exception_resume_breakpoint (info);
2503 return 0;
2504 }
2505
2506 /* In all-stop, delete the step resume breakpoint of any thread that
2507 had one. In non-stop, delete the step resume breakpoint of the
2508 thread that just stopped. */
2509
2510 static void
2511 delete_step_thread_step_resume_breakpoint (void)
2512 {
2513 if (!target_has_execution
2514 || ptid_equal (inferior_ptid, null_ptid))
2515 /* If the inferior has exited, we have already deleted the step
2516 resume breakpoints out of GDB's lists. */
2517 return;
2518
2519 if (non_stop)
2520 {
2521 /* If in non-stop mode, only delete the step-resume or
2522 longjmp-resume breakpoint of the thread that just stopped
2523 stepping. */
2524 struct thread_info *tp = inferior_thread ();
2525
2526 delete_step_resume_breakpoint (tp);
2527 delete_exception_resume_breakpoint (tp);
2528 }
2529 else
2530 /* In all-stop mode, delete all step-resume and longjmp-resume
2531 breakpoints of any thread that had them. */
2532 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2533 }
2534
2535 /* A cleanup wrapper. */
2536
2537 static void
2538 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2539 {
2540 delete_step_thread_step_resume_breakpoint ();
2541 }
2542
2543 /* Pretty print the results of target_wait, for debugging purposes. */
2544
2545 static void
2546 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2547 const struct target_waitstatus *ws)
2548 {
2549 char *status_string = target_waitstatus_to_string (ws);
2550 struct ui_file *tmp_stream = mem_fileopen ();
2551 char *text;
2552
2553 /* The text is split over several lines because it was getting too long.
2554 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2555 output as a unit; we want only one timestamp printed if debug_timestamp
2556 is set. */
2557
2558 fprintf_unfiltered (tmp_stream,
2559 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2560 if (PIDGET (waiton_ptid) != -1)
2561 fprintf_unfiltered (tmp_stream,
2562 " [%s]", target_pid_to_str (waiton_ptid));
2563 fprintf_unfiltered (tmp_stream, ", status) =\n");
2564 fprintf_unfiltered (tmp_stream,
2565 "infrun: %d [%s],\n",
2566 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2567 fprintf_unfiltered (tmp_stream,
2568 "infrun: %s\n",
2569 status_string);
2570
2571 text = ui_file_xstrdup (tmp_stream, NULL);
2572
2573 /* This uses %s in part to handle %'s in the text, but also to avoid
2574 a gcc error: the format attribute requires a string literal. */
2575 fprintf_unfiltered (gdb_stdlog, "%s", text);
2576
2577 xfree (status_string);
2578 xfree (text);
2579 ui_file_delete (tmp_stream);
2580 }
2581
2582 /* Prepare and stabilize the inferior for detaching it. E.g.,
2583 detaching while a thread is displaced stepping is a recipe for
2584 crashing it, as nothing would readjust the PC out of the scratch
2585 pad. */
2586
2587 void
2588 prepare_for_detach (void)
2589 {
2590 struct inferior *inf = current_inferior ();
2591 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2592 struct cleanup *old_chain_1;
2593 struct displaced_step_inferior_state *displaced;
2594
2595 displaced = get_displaced_stepping_state (inf->pid);
2596
2597 /* Is any thread of this process displaced stepping? If not,
2598 there's nothing else to do. */
2599 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2600 return;
2601
2602 if (debug_infrun)
2603 fprintf_unfiltered (gdb_stdlog,
2604 "displaced-stepping in-process while detaching");
2605
2606 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2607 inf->detaching = 1;
2608
2609 while (!ptid_equal (displaced->step_ptid, null_ptid))
2610 {
2611 struct cleanup *old_chain_2;
2612 struct execution_control_state ecss;
2613 struct execution_control_state *ecs;
2614
2615 ecs = &ecss;
2616 memset (ecs, 0, sizeof (*ecs));
2617
2618 overlay_cache_invalid = 1;
2619
2620 if (deprecated_target_wait_hook)
2621 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2622 else
2623 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2624
2625 if (debug_infrun)
2626 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2627
2628 /* If an error happens while handling the event, propagate GDB's
2629 knowledge of the executing state to the frontend/user running
2630 state. */
2631 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2632 &minus_one_ptid);
2633
2634 /* In non-stop mode, each thread is handled individually.
2635 Switch early, so the global state is set correctly for this
2636 thread. */
2637 if (non_stop
2638 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2639 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2640 context_switch (ecs->ptid);
2641
2642 /* Now figure out what to do with the result of the result. */
2643 handle_inferior_event (ecs);
2644
2645 /* No error, don't finish the state yet. */
2646 discard_cleanups (old_chain_2);
2647
2648 /* Breakpoints and watchpoints are not installed on the target
2649 at this point, and signals are passed directly to the
2650 inferior, so this must mean the process is gone. */
2651 if (!ecs->wait_some_more)
2652 {
2653 discard_cleanups (old_chain_1);
2654 error (_("Program exited while detaching"));
2655 }
2656 }
2657
2658 discard_cleanups (old_chain_1);
2659 }
2660
2661 /* Wait for control to return from inferior to debugger.
2662
2663 If inferior gets a signal, we may decide to start it up again
2664 instead of returning. That is why there is a loop in this function.
2665 When this function actually returns it means the inferior
2666 should be left stopped and GDB should read more commands. */
2667
2668 void
2669 wait_for_inferior (void)
2670 {
2671 struct cleanup *old_cleanups;
2672 struct execution_control_state ecss;
2673 struct execution_control_state *ecs;
2674
2675 if (debug_infrun)
2676 fprintf_unfiltered
2677 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2678
2679 old_cleanups =
2680 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2681
2682 ecs = &ecss;
2683 memset (ecs, 0, sizeof (*ecs));
2684
2685 while (1)
2686 {
2687 struct cleanup *old_chain;
2688
2689 overlay_cache_invalid = 1;
2690
2691 if (deprecated_target_wait_hook)
2692 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2693 else
2694 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2695
2696 if (debug_infrun)
2697 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2698
2699 /* If an error happens while handling the event, propagate GDB's
2700 knowledge of the executing state to the frontend/user running
2701 state. */
2702 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2703
2704 /* Now figure out what to do with the result of the result. */
2705 handle_inferior_event (ecs);
2706
2707 /* No error, don't finish the state yet. */
2708 discard_cleanups (old_chain);
2709
2710 if (!ecs->wait_some_more)
2711 break;
2712 }
2713
2714 do_cleanups (old_cleanups);
2715 }
2716
2717 /* Asynchronous version of wait_for_inferior. It is called by the
2718 event loop whenever a change of state is detected on the file
2719 descriptor corresponding to the target. It can be called more than
2720 once to complete a single execution command. In such cases we need
2721 to keep the state in a global variable ECSS. If it is the last time
2722 that this function is called for a single execution command, then
2723 report to the user that the inferior has stopped, and do the
2724 necessary cleanups. */
2725
2726 void
2727 fetch_inferior_event (void *client_data)
2728 {
2729 struct execution_control_state ecss;
2730 struct execution_control_state *ecs = &ecss;
2731 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2732 struct cleanup *ts_old_chain;
2733 int was_sync = sync_execution;
2734 int cmd_done = 0;
2735
2736 memset (ecs, 0, sizeof (*ecs));
2737
2738 /* We're handling a live event, so make sure we're doing live
2739 debugging. If we're looking at traceframes while the target is
2740 running, we're going to need to get back to that mode after
2741 handling the event. */
2742 if (non_stop)
2743 {
2744 make_cleanup_restore_current_traceframe ();
2745 set_current_traceframe (-1);
2746 }
2747
2748 if (non_stop)
2749 /* In non-stop mode, the user/frontend should not notice a thread
2750 switch due to internal events. Make sure we reverse to the
2751 user selected thread and frame after handling the event and
2752 running any breakpoint commands. */
2753 make_cleanup_restore_current_thread ();
2754
2755 overlay_cache_invalid = 1;
2756
2757 make_cleanup_restore_integer (&execution_direction);
2758 execution_direction = target_execution_direction ();
2759
2760 if (deprecated_target_wait_hook)
2761 ecs->ptid =
2762 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2763 else
2764 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2765
2766 if (debug_infrun)
2767 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2768
2769 if (non_stop
2770 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2771 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2772 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2773 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2774 /* In non-stop mode, each thread is handled individually. Switch
2775 early, so the global state is set correctly for this
2776 thread. */
2777 context_switch (ecs->ptid);
2778
2779 /* If an error happens while handling the event, propagate GDB's
2780 knowledge of the executing state to the frontend/user running
2781 state. */
2782 if (!non_stop)
2783 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2784 else
2785 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2786
2787 /* Get executed before make_cleanup_restore_current_thread above to apply
2788 still for the thread which has thrown the exception. */
2789 make_bpstat_clear_actions_cleanup ();
2790
2791 /* Now figure out what to do with the result of the result. */
2792 handle_inferior_event (ecs);
2793
2794 if (!ecs->wait_some_more)
2795 {
2796 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2797
2798 delete_step_thread_step_resume_breakpoint ();
2799
2800 /* We may not find an inferior if this was a process exit. */
2801 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2802 normal_stop ();
2803
2804 if (target_has_execution
2805 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2806 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2807 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2808 && ecs->event_thread->step_multi
2809 && ecs->event_thread->control.stop_step)
2810 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2811 else
2812 {
2813 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2814 cmd_done = 1;
2815 }
2816 }
2817
2818 /* No error, don't finish the thread states yet. */
2819 discard_cleanups (ts_old_chain);
2820
2821 /* Revert thread and frame. */
2822 do_cleanups (old_chain);
2823
2824 /* If the inferior was in sync execution mode, and now isn't,
2825 restore the prompt (a synchronous execution command has finished,
2826 and we're ready for input). */
2827 if (interpreter_async && was_sync && !sync_execution)
2828 display_gdb_prompt (0);
2829
2830 if (cmd_done
2831 && !was_sync
2832 && exec_done_display_p
2833 && (ptid_equal (inferior_ptid, null_ptid)
2834 || !is_running (inferior_ptid)))
2835 printf_unfiltered (_("completed.\n"));
2836 }
2837
2838 /* Record the frame and location we're currently stepping through. */
2839 void
2840 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2841 {
2842 struct thread_info *tp = inferior_thread ();
2843
2844 tp->control.step_frame_id = get_frame_id (frame);
2845 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2846
2847 tp->current_symtab = sal.symtab;
2848 tp->current_line = sal.line;
2849 }
2850
2851 /* Clear context switchable stepping state. */
2852
2853 void
2854 init_thread_stepping_state (struct thread_info *tss)
2855 {
2856 tss->stepping_over_breakpoint = 0;
2857 tss->step_after_step_resume_breakpoint = 0;
2858 }
2859
2860 /* Return the cached copy of the last pid/waitstatus returned by
2861 target_wait()/deprecated_target_wait_hook(). The data is actually
2862 cached by handle_inferior_event(), which gets called immediately
2863 after target_wait()/deprecated_target_wait_hook(). */
2864
2865 void
2866 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2867 {
2868 *ptidp = target_last_wait_ptid;
2869 *status = target_last_waitstatus;
2870 }
2871
2872 void
2873 nullify_last_target_wait_ptid (void)
2874 {
2875 target_last_wait_ptid = minus_one_ptid;
2876 }
2877
2878 /* Switch thread contexts. */
2879
2880 static void
2881 context_switch (ptid_t ptid)
2882 {
2883 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
2884 {
2885 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2886 target_pid_to_str (inferior_ptid));
2887 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2888 target_pid_to_str (ptid));
2889 }
2890
2891 switch_to_thread (ptid);
2892 }
2893
2894 static void
2895 adjust_pc_after_break (struct execution_control_state *ecs)
2896 {
2897 struct regcache *regcache;
2898 struct gdbarch *gdbarch;
2899 struct address_space *aspace;
2900 CORE_ADDR breakpoint_pc;
2901
2902 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2903 we aren't, just return.
2904
2905 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2906 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2907 implemented by software breakpoints should be handled through the normal
2908 breakpoint layer.
2909
2910 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2911 different signals (SIGILL or SIGEMT for instance), but it is less
2912 clear where the PC is pointing afterwards. It may not match
2913 gdbarch_decr_pc_after_break. I don't know any specific target that
2914 generates these signals at breakpoints (the code has been in GDB since at
2915 least 1992) so I can not guess how to handle them here.
2916
2917 In earlier versions of GDB, a target with
2918 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2919 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2920 target with both of these set in GDB history, and it seems unlikely to be
2921 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2922
2923 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2924 return;
2925
2926 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2927 return;
2928
2929 /* In reverse execution, when a breakpoint is hit, the instruction
2930 under it has already been de-executed. The reported PC always
2931 points at the breakpoint address, so adjusting it further would
2932 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2933 architecture:
2934
2935 B1 0x08000000 : INSN1
2936 B2 0x08000001 : INSN2
2937 0x08000002 : INSN3
2938 PC -> 0x08000003 : INSN4
2939
2940 Say you're stopped at 0x08000003 as above. Reverse continuing
2941 from that point should hit B2 as below. Reading the PC when the
2942 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2943 been de-executed already.
2944
2945 B1 0x08000000 : INSN1
2946 B2 PC -> 0x08000001 : INSN2
2947 0x08000002 : INSN3
2948 0x08000003 : INSN4
2949
2950 We can't apply the same logic as for forward execution, because
2951 we would wrongly adjust the PC to 0x08000000, since there's a
2952 breakpoint at PC - 1. We'd then report a hit on B1, although
2953 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2954 behaviour. */
2955 if (execution_direction == EXEC_REVERSE)
2956 return;
2957
2958 /* If this target does not decrement the PC after breakpoints, then
2959 we have nothing to do. */
2960 regcache = get_thread_regcache (ecs->ptid);
2961 gdbarch = get_regcache_arch (regcache);
2962 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2963 return;
2964
2965 aspace = get_regcache_aspace (regcache);
2966
2967 /* Find the location where (if we've hit a breakpoint) the
2968 breakpoint would be. */
2969 breakpoint_pc = regcache_read_pc (regcache)
2970 - gdbarch_decr_pc_after_break (gdbarch);
2971
2972 /* Check whether there actually is a software breakpoint inserted at
2973 that location.
2974
2975 If in non-stop mode, a race condition is possible where we've
2976 removed a breakpoint, but stop events for that breakpoint were
2977 already queued and arrive later. To suppress those spurious
2978 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2979 and retire them after a number of stop events are reported. */
2980 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2981 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
2982 {
2983 struct cleanup *old_cleanups = NULL;
2984
2985 if (RECORD_IS_USED)
2986 old_cleanups = record_gdb_operation_disable_set ();
2987
2988 /* When using hardware single-step, a SIGTRAP is reported for both
2989 a completed single-step and a software breakpoint. Need to
2990 differentiate between the two, as the latter needs adjusting
2991 but the former does not.
2992
2993 The SIGTRAP can be due to a completed hardware single-step only if
2994 - we didn't insert software single-step breakpoints
2995 - the thread to be examined is still the current thread
2996 - this thread is currently being stepped
2997
2998 If any of these events did not occur, we must have stopped due
2999 to hitting a software breakpoint, and have to back up to the
3000 breakpoint address.
3001
3002 As a special case, we could have hardware single-stepped a
3003 software breakpoint. In this case (prev_pc == breakpoint_pc),
3004 we also need to back up to the breakpoint address. */
3005
3006 if (singlestep_breakpoints_inserted_p
3007 || !ptid_equal (ecs->ptid, inferior_ptid)
3008 || !currently_stepping (ecs->event_thread)
3009 || ecs->event_thread->prev_pc == breakpoint_pc)
3010 regcache_write_pc (regcache, breakpoint_pc);
3011
3012 if (RECORD_IS_USED)
3013 do_cleanups (old_cleanups);
3014 }
3015 }
3016
3017 void
3018 init_infwait_state (void)
3019 {
3020 waiton_ptid = pid_to_ptid (-1);
3021 infwait_state = infwait_normal_state;
3022 }
3023
3024 void
3025 error_is_running (void)
3026 {
3027 error (_("Cannot execute this command while "
3028 "the selected thread is running."));
3029 }
3030
3031 void
3032 ensure_not_running (void)
3033 {
3034 if (is_running (inferior_ptid))
3035 error_is_running ();
3036 }
3037
3038 static int
3039 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3040 {
3041 for (frame = get_prev_frame (frame);
3042 frame != NULL;
3043 frame = get_prev_frame (frame))
3044 {
3045 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3046 return 1;
3047 if (get_frame_type (frame) != INLINE_FRAME)
3048 break;
3049 }
3050
3051 return 0;
3052 }
3053
3054 /* Auxiliary function that handles syscall entry/return events.
3055 It returns 1 if the inferior should keep going (and GDB
3056 should ignore the event), or 0 if the event deserves to be
3057 processed. */
3058
3059 static int
3060 handle_syscall_event (struct execution_control_state *ecs)
3061 {
3062 struct regcache *regcache;
3063 struct gdbarch *gdbarch;
3064 int syscall_number;
3065
3066 if (!ptid_equal (ecs->ptid, inferior_ptid))
3067 context_switch (ecs->ptid);
3068
3069 regcache = get_thread_regcache (ecs->ptid);
3070 gdbarch = get_regcache_arch (regcache);
3071 syscall_number = ecs->ws.value.syscall_number;
3072 stop_pc = regcache_read_pc (regcache);
3073
3074 if (catch_syscall_enabled () > 0
3075 && catching_syscall_number (syscall_number) > 0)
3076 {
3077 if (debug_infrun)
3078 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3079 syscall_number);
3080
3081 ecs->event_thread->control.stop_bpstat
3082 = bpstat_stop_status (get_regcache_aspace (regcache),
3083 stop_pc, ecs->ptid, &ecs->ws);
3084 ecs->random_signal
3085 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3086
3087 if (!ecs->random_signal)
3088 {
3089 /* Catchpoint hit. */
3090 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3091 return 0;
3092 }
3093 }
3094
3095 /* If no catchpoint triggered for this, then keep going. */
3096 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3097 keep_going (ecs);
3098 return 1;
3099 }
3100
3101 /* Clear the supplied execution_control_state's stop_func_* fields. */
3102
3103 static void
3104 clear_stop_func (struct execution_control_state *ecs)
3105 {
3106 ecs->stop_func_filled_in = 0;
3107 ecs->stop_func_start = 0;
3108 ecs->stop_func_end = 0;
3109 ecs->stop_func_name = NULL;
3110 }
3111
3112 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3113
3114 static void
3115 fill_in_stop_func (struct gdbarch *gdbarch,
3116 struct execution_control_state *ecs)
3117 {
3118 if (!ecs->stop_func_filled_in)
3119 {
3120 /* Don't care about return value; stop_func_start and stop_func_name
3121 will both be 0 if it doesn't work. */
3122 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3123 &ecs->stop_func_start, &ecs->stop_func_end);
3124 ecs->stop_func_start
3125 += gdbarch_deprecated_function_start_offset (gdbarch);
3126
3127 ecs->stop_func_filled_in = 1;
3128 }
3129 }
3130
3131 /* Given an execution control state that has been freshly filled in
3132 by an event from the inferior, figure out what it means and take
3133 appropriate action. */
3134
3135 static void
3136 handle_inferior_event (struct execution_control_state *ecs)
3137 {
3138 struct frame_info *frame;
3139 struct gdbarch *gdbarch;
3140 int stopped_by_watchpoint;
3141 int stepped_after_stopped_by_watchpoint = 0;
3142 struct symtab_and_line stop_pc_sal;
3143 enum stop_kind stop_soon;
3144
3145 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3146 {
3147 /* We had an event in the inferior, but we are not interested in
3148 handling it at this level. The lower layers have already
3149 done what needs to be done, if anything.
3150
3151 One of the possible circumstances for this is when the
3152 inferior produces output for the console. The inferior has
3153 not stopped, and we are ignoring the event. Another possible
3154 circumstance is any event which the lower level knows will be
3155 reported multiple times without an intervening resume. */
3156 if (debug_infrun)
3157 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3158 prepare_to_wait (ecs);
3159 return;
3160 }
3161
3162 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3163 && target_can_async_p () && !sync_execution)
3164 {
3165 /* There were no unwaited-for children left in the target, but,
3166 we're not synchronously waiting for events either. Just
3167 ignore. Otherwise, if we were running a synchronous
3168 execution command, we need to cancel it and give the user
3169 back the terminal. */
3170 if (debug_infrun)
3171 fprintf_unfiltered (gdb_stdlog,
3172 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3173 prepare_to_wait (ecs);
3174 return;
3175 }
3176
3177 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3178 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3179 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3180 {
3181 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3182
3183 gdb_assert (inf);
3184 stop_soon = inf->control.stop_soon;
3185 }
3186 else
3187 stop_soon = NO_STOP_QUIETLY;
3188
3189 /* Cache the last pid/waitstatus. */
3190 target_last_wait_ptid = ecs->ptid;
3191 target_last_waitstatus = ecs->ws;
3192
3193 /* Always clear state belonging to the previous time we stopped. */
3194 stop_stack_dummy = STOP_NONE;
3195
3196 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3197 {
3198 /* No unwaited-for children left. IOW, all resumed children
3199 have exited. */
3200 if (debug_infrun)
3201 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3202
3203 stop_print_frame = 0;
3204 stop_stepping (ecs);
3205 return;
3206 }
3207
3208 /* If it's a new process, add it to the thread database. */
3209
3210 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
3211 && !ptid_equal (ecs->ptid, minus_one_ptid)
3212 && !in_thread_list (ecs->ptid));
3213
3214 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3215 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
3216 add_thread (ecs->ptid);
3217
3218 ecs->event_thread = find_thread_ptid (ecs->ptid);
3219
3220 /* Dependent on valid ECS->EVENT_THREAD. */
3221 adjust_pc_after_break (ecs);
3222
3223 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3224 reinit_frame_cache ();
3225
3226 breakpoint_retire_moribund ();
3227
3228 /* First, distinguish signals caused by the debugger from signals
3229 that have to do with the program's own actions. Note that
3230 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3231 on the operating system version. Here we detect when a SIGILL or
3232 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3233 something similar for SIGSEGV, since a SIGSEGV will be generated
3234 when we're trying to execute a breakpoint instruction on a
3235 non-executable stack. This happens for call dummy breakpoints
3236 for architectures like SPARC that place call dummies on the
3237 stack. */
3238 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3239 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
3240 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
3241 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
3242 {
3243 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3244
3245 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3246 regcache_read_pc (regcache)))
3247 {
3248 if (debug_infrun)
3249 fprintf_unfiltered (gdb_stdlog,
3250 "infrun: Treating signal as SIGTRAP\n");
3251 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
3252 }
3253 }
3254
3255 /* Mark the non-executing threads accordingly. In all-stop, all
3256 threads of all processes are stopped when we get any event
3257 reported. In non-stop mode, only the event thread stops. If
3258 we're handling a process exit in non-stop mode, there's nothing
3259 to do, as threads of the dead process are gone, and threads of
3260 any other process were left running. */
3261 if (!non_stop)
3262 set_executing (minus_one_ptid, 0);
3263 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3264 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3265 set_executing (ecs->ptid, 0);
3266
3267 switch (infwait_state)
3268 {
3269 case infwait_thread_hop_state:
3270 if (debug_infrun)
3271 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3272 break;
3273
3274 case infwait_normal_state:
3275 if (debug_infrun)
3276 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3277 break;
3278
3279 case infwait_step_watch_state:
3280 if (debug_infrun)
3281 fprintf_unfiltered (gdb_stdlog,
3282 "infrun: infwait_step_watch_state\n");
3283
3284 stepped_after_stopped_by_watchpoint = 1;
3285 break;
3286
3287 case infwait_nonstep_watch_state:
3288 if (debug_infrun)
3289 fprintf_unfiltered (gdb_stdlog,
3290 "infrun: infwait_nonstep_watch_state\n");
3291 insert_breakpoints ();
3292
3293 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3294 handle things like signals arriving and other things happening
3295 in combination correctly? */
3296 stepped_after_stopped_by_watchpoint = 1;
3297 break;
3298
3299 default:
3300 internal_error (__FILE__, __LINE__, _("bad switch"));
3301 }
3302
3303 infwait_state = infwait_normal_state;
3304 waiton_ptid = pid_to_ptid (-1);
3305
3306 switch (ecs->ws.kind)
3307 {
3308 case TARGET_WAITKIND_LOADED:
3309 if (debug_infrun)
3310 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3311 /* Ignore gracefully during startup of the inferior, as it might
3312 be the shell which has just loaded some objects, otherwise
3313 add the symbols for the newly loaded objects. Also ignore at
3314 the beginning of an attach or remote session; we will query
3315 the full list of libraries once the connection is
3316 established. */
3317 if (stop_soon == NO_STOP_QUIETLY)
3318 {
3319 /* Check for any newly added shared libraries if we're
3320 supposed to be adding them automatically. Switch
3321 terminal for any messages produced by
3322 breakpoint_re_set. */
3323 target_terminal_ours_for_output ();
3324 /* NOTE: cagney/2003-11-25: Make certain that the target
3325 stack's section table is kept up-to-date. Architectures,
3326 (e.g., PPC64), use the section table to perform
3327 operations such as address => section name and hence
3328 require the table to contain all sections (including
3329 those found in shared libraries). */
3330 #ifdef SOLIB_ADD
3331 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
3332 #else
3333 solib_add (NULL, 0, &current_target, auto_solib_add);
3334 #endif
3335 target_terminal_inferior ();
3336
3337 /* If requested, stop when the dynamic linker notifies
3338 gdb of events. This allows the user to get control
3339 and place breakpoints in initializer routines for
3340 dynamically loaded objects (among other things). */
3341 if (stop_on_solib_events)
3342 {
3343 /* Make sure we print "Stopped due to solib-event" in
3344 normal_stop. */
3345 stop_print_frame = 1;
3346
3347 stop_stepping (ecs);
3348 return;
3349 }
3350
3351 /* NOTE drow/2007-05-11: This might be a good place to check
3352 for "catch load". */
3353 }
3354
3355 /* If we are skipping through a shell, or through shared library
3356 loading that we aren't interested in, resume the program. If
3357 we're running the program normally, also resume. But stop if
3358 we're attaching or setting up a remote connection. */
3359 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3360 {
3361 /* Loading of shared libraries might have changed breakpoint
3362 addresses. Make sure new breakpoints are inserted. */
3363 if (stop_soon == NO_STOP_QUIETLY
3364 && !breakpoints_always_inserted_mode ())
3365 insert_breakpoints ();
3366 resume (0, TARGET_SIGNAL_0);
3367 prepare_to_wait (ecs);
3368 return;
3369 }
3370
3371 break;
3372
3373 case TARGET_WAITKIND_SPURIOUS:
3374 if (debug_infrun)
3375 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3376 resume (0, TARGET_SIGNAL_0);
3377 prepare_to_wait (ecs);
3378 return;
3379
3380 case TARGET_WAITKIND_EXITED:
3381 if (debug_infrun)
3382 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
3383 inferior_ptid = ecs->ptid;
3384 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3385 set_current_program_space (current_inferior ()->pspace);
3386 handle_vfork_child_exec_or_exit (0);
3387 target_terminal_ours (); /* Must do this before mourn anyway. */
3388 print_exited_reason (ecs->ws.value.integer);
3389
3390 /* Record the exit code in the convenience variable $_exitcode, so
3391 that the user can inspect this again later. */
3392 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3393 (LONGEST) ecs->ws.value.integer);
3394
3395 /* Also record this in the inferior itself. */
3396 current_inferior ()->has_exit_code = 1;
3397 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3398
3399 gdb_flush (gdb_stdout);
3400 target_mourn_inferior ();
3401 singlestep_breakpoints_inserted_p = 0;
3402 cancel_single_step_breakpoints ();
3403 stop_print_frame = 0;
3404 stop_stepping (ecs);
3405 return;
3406
3407 case TARGET_WAITKIND_SIGNALLED:
3408 if (debug_infrun)
3409 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
3410 inferior_ptid = ecs->ptid;
3411 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3412 set_current_program_space (current_inferior ()->pspace);
3413 handle_vfork_child_exec_or_exit (0);
3414 stop_print_frame = 0;
3415 target_terminal_ours (); /* Must do this before mourn anyway. */
3416
3417 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3418 reach here unless the inferior is dead. However, for years
3419 target_kill() was called here, which hints that fatal signals aren't
3420 really fatal on some systems. If that's true, then some changes
3421 may be needed. */
3422 target_mourn_inferior ();
3423
3424 print_signal_exited_reason (ecs->ws.value.sig);
3425 singlestep_breakpoints_inserted_p = 0;
3426 cancel_single_step_breakpoints ();
3427 stop_stepping (ecs);
3428 return;
3429
3430 /* The following are the only cases in which we keep going;
3431 the above cases end in a continue or goto. */
3432 case TARGET_WAITKIND_FORKED:
3433 case TARGET_WAITKIND_VFORKED:
3434 if (debug_infrun)
3435 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3436
3437 /* Check whether the inferior is displaced stepping. */
3438 {
3439 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3440 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3441 struct displaced_step_inferior_state *displaced
3442 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3443
3444 /* If checking displaced stepping is supported, and thread
3445 ecs->ptid is displaced stepping. */
3446 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3447 {
3448 struct inferior *parent_inf
3449 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3450 struct regcache *child_regcache;
3451 CORE_ADDR parent_pc;
3452
3453 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3454 indicating that the displaced stepping of syscall instruction
3455 has been done. Perform cleanup for parent process here. Note
3456 that this operation also cleans up the child process for vfork,
3457 because their pages are shared. */
3458 displaced_step_fixup (ecs->ptid, TARGET_SIGNAL_TRAP);
3459
3460 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3461 {
3462 /* Restore scratch pad for child process. */
3463 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3464 }
3465
3466 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3467 the child's PC is also within the scratchpad. Set the child's PC
3468 to the parent's PC value, which has already been fixed up.
3469 FIXME: we use the parent's aspace here, although we're touching
3470 the child, because the child hasn't been added to the inferior
3471 list yet at this point. */
3472
3473 child_regcache
3474 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3475 gdbarch,
3476 parent_inf->aspace);
3477 /* Read PC value of parent process. */
3478 parent_pc = regcache_read_pc (regcache);
3479
3480 if (debug_displaced)
3481 fprintf_unfiltered (gdb_stdlog,
3482 "displaced: write child pc from %s to %s\n",
3483 paddress (gdbarch,
3484 regcache_read_pc (child_regcache)),
3485 paddress (gdbarch, parent_pc));
3486
3487 regcache_write_pc (child_regcache, parent_pc);
3488 }
3489 }
3490
3491 if (!ptid_equal (ecs->ptid, inferior_ptid))
3492 {
3493 context_switch (ecs->ptid);
3494 reinit_frame_cache ();
3495 }
3496
3497 /* Immediately detach breakpoints from the child before there's
3498 any chance of letting the user delete breakpoints from the
3499 breakpoint lists. If we don't do this early, it's easy to
3500 leave left over traps in the child, vis: "break foo; catch
3501 fork; c; <fork>; del; c; <child calls foo>". We only follow
3502 the fork on the last `continue', and by that time the
3503 breakpoint at "foo" is long gone from the breakpoint table.
3504 If we vforked, then we don't need to unpatch here, since both
3505 parent and child are sharing the same memory pages; we'll
3506 need to unpatch at follow/detach time instead to be certain
3507 that new breakpoints added between catchpoint hit time and
3508 vfork follow are detached. */
3509 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3510 {
3511 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3512
3513 /* This won't actually modify the breakpoint list, but will
3514 physically remove the breakpoints from the child. */
3515 detach_breakpoints (child_pid);
3516 }
3517
3518 if (singlestep_breakpoints_inserted_p)
3519 {
3520 /* Pull the single step breakpoints out of the target. */
3521 remove_single_step_breakpoints ();
3522 singlestep_breakpoints_inserted_p = 0;
3523 }
3524
3525 /* In case the event is caught by a catchpoint, remember that
3526 the event is to be followed at the next resume of the thread,
3527 and not immediately. */
3528 ecs->event_thread->pending_follow = ecs->ws;
3529
3530 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3531
3532 ecs->event_thread->control.stop_bpstat
3533 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3534 stop_pc, ecs->ptid, &ecs->ws);
3535
3536 /* Note that we're interested in knowing the bpstat actually
3537 causes a stop, not just if it may explain the signal.
3538 Software watchpoints, for example, always appear in the
3539 bpstat. */
3540 ecs->random_signal
3541 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
3542
3543 /* If no catchpoint triggered for this, then keep going. */
3544 if (ecs->random_signal)
3545 {
3546 ptid_t parent;
3547 ptid_t child;
3548 int should_resume;
3549 int follow_child
3550 = (follow_fork_mode_string == follow_fork_mode_child);
3551
3552 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3553
3554 should_resume = follow_fork ();
3555
3556 parent = ecs->ptid;
3557 child = ecs->ws.value.related_pid;
3558
3559 /* In non-stop mode, also resume the other branch. */
3560 if (non_stop && !detach_fork)
3561 {
3562 if (follow_child)
3563 switch_to_thread (parent);
3564 else
3565 switch_to_thread (child);
3566
3567 ecs->event_thread = inferior_thread ();
3568 ecs->ptid = inferior_ptid;
3569 keep_going (ecs);
3570 }
3571
3572 if (follow_child)
3573 switch_to_thread (child);
3574 else
3575 switch_to_thread (parent);
3576
3577 ecs->event_thread = inferior_thread ();
3578 ecs->ptid = inferior_ptid;
3579
3580 if (should_resume)
3581 keep_going (ecs);
3582 else
3583 stop_stepping (ecs);
3584 return;
3585 }
3586 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3587 goto process_event_stop_test;
3588
3589 case TARGET_WAITKIND_VFORK_DONE:
3590 /* Done with the shared memory region. Re-insert breakpoints in
3591 the parent, and keep going. */
3592
3593 if (debug_infrun)
3594 fprintf_unfiltered (gdb_stdlog,
3595 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3596
3597 if (!ptid_equal (ecs->ptid, inferior_ptid))
3598 context_switch (ecs->ptid);
3599
3600 current_inferior ()->waiting_for_vfork_done = 0;
3601 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3602 /* This also takes care of reinserting breakpoints in the
3603 previously locked inferior. */
3604 keep_going (ecs);
3605 return;
3606
3607 case TARGET_WAITKIND_EXECD:
3608 if (debug_infrun)
3609 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3610
3611 if (!ptid_equal (ecs->ptid, inferior_ptid))
3612 {
3613 context_switch (ecs->ptid);
3614 reinit_frame_cache ();
3615 }
3616
3617 singlestep_breakpoints_inserted_p = 0;
3618 cancel_single_step_breakpoints ();
3619
3620 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3621
3622 /* Do whatever is necessary to the parent branch of the vfork. */
3623 handle_vfork_child_exec_or_exit (1);
3624
3625 /* This causes the eventpoints and symbol table to be reset.
3626 Must do this now, before trying to determine whether to
3627 stop. */
3628 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3629
3630 ecs->event_thread->control.stop_bpstat
3631 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3632 stop_pc, ecs->ptid, &ecs->ws);
3633 ecs->random_signal
3634 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3635
3636 /* Note that this may be referenced from inside
3637 bpstat_stop_status above, through inferior_has_execd. */
3638 xfree (ecs->ws.value.execd_pathname);
3639 ecs->ws.value.execd_pathname = NULL;
3640
3641 /* If no catchpoint triggered for this, then keep going. */
3642 if (ecs->random_signal)
3643 {
3644 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3645 keep_going (ecs);
3646 return;
3647 }
3648 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3649 goto process_event_stop_test;
3650
3651 /* Be careful not to try to gather much state about a thread
3652 that's in a syscall. It's frequently a losing proposition. */
3653 case TARGET_WAITKIND_SYSCALL_ENTRY:
3654 if (debug_infrun)
3655 fprintf_unfiltered (gdb_stdlog,
3656 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3657 /* Getting the current syscall number. */
3658 if (handle_syscall_event (ecs) != 0)
3659 return;
3660 goto process_event_stop_test;
3661
3662 /* Before examining the threads further, step this thread to
3663 get it entirely out of the syscall. (We get notice of the
3664 event when the thread is just on the verge of exiting a
3665 syscall. Stepping one instruction seems to get it back
3666 into user code.) */
3667 case TARGET_WAITKIND_SYSCALL_RETURN:
3668 if (debug_infrun)
3669 fprintf_unfiltered (gdb_stdlog,
3670 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3671 if (handle_syscall_event (ecs) != 0)
3672 return;
3673 goto process_event_stop_test;
3674
3675 case TARGET_WAITKIND_STOPPED:
3676 if (debug_infrun)
3677 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3678 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3679 break;
3680
3681 case TARGET_WAITKIND_NO_HISTORY:
3682 if (debug_infrun)
3683 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
3684 /* Reverse execution: target ran out of history info. */
3685 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3686 print_no_history_reason ();
3687 stop_stepping (ecs);
3688 return;
3689 }
3690
3691 if (ecs->new_thread_event)
3692 {
3693 if (non_stop)
3694 /* Non-stop assumes that the target handles adding new threads
3695 to the thread list. */
3696 internal_error (__FILE__, __LINE__,
3697 "targets should add new threads to the thread "
3698 "list themselves in non-stop mode.");
3699
3700 /* We may want to consider not doing a resume here in order to
3701 give the user a chance to play with the new thread. It might
3702 be good to make that a user-settable option. */
3703
3704 /* At this point, all threads are stopped (happens automatically
3705 in either the OS or the native code). Therefore we need to
3706 continue all threads in order to make progress. */
3707
3708 if (!ptid_equal (ecs->ptid, inferior_ptid))
3709 context_switch (ecs->ptid);
3710 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3711 prepare_to_wait (ecs);
3712 return;
3713 }
3714
3715 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3716 {
3717 /* Do we need to clean up the state of a thread that has
3718 completed a displaced single-step? (Doing so usually affects
3719 the PC, so do it here, before we set stop_pc.) */
3720 displaced_step_fixup (ecs->ptid,
3721 ecs->event_thread->suspend.stop_signal);
3722
3723 /* If we either finished a single-step or hit a breakpoint, but
3724 the user wanted this thread to be stopped, pretend we got a
3725 SIG0 (generic unsignaled stop). */
3726
3727 if (ecs->event_thread->stop_requested
3728 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3729 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3730 }
3731
3732 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3733
3734 if (debug_infrun)
3735 {
3736 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3737 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3738 struct cleanup *old_chain = save_inferior_ptid ();
3739
3740 inferior_ptid = ecs->ptid;
3741
3742 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3743 paddress (gdbarch, stop_pc));
3744 if (target_stopped_by_watchpoint ())
3745 {
3746 CORE_ADDR addr;
3747
3748 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3749
3750 if (target_stopped_data_address (&current_target, &addr))
3751 fprintf_unfiltered (gdb_stdlog,
3752 "infrun: stopped data address = %s\n",
3753 paddress (gdbarch, addr));
3754 else
3755 fprintf_unfiltered (gdb_stdlog,
3756 "infrun: (no data address available)\n");
3757 }
3758
3759 do_cleanups (old_chain);
3760 }
3761
3762 if (stepping_past_singlestep_breakpoint)
3763 {
3764 gdb_assert (singlestep_breakpoints_inserted_p);
3765 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3766 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3767
3768 stepping_past_singlestep_breakpoint = 0;
3769
3770 /* We've either finished single-stepping past the single-step
3771 breakpoint, or stopped for some other reason. It would be nice if
3772 we could tell, but we can't reliably. */
3773 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3774 {
3775 if (debug_infrun)
3776 fprintf_unfiltered (gdb_stdlog,
3777 "infrun: stepping_past_"
3778 "singlestep_breakpoint\n");
3779 /* Pull the single step breakpoints out of the target. */
3780 remove_single_step_breakpoints ();
3781 singlestep_breakpoints_inserted_p = 0;
3782
3783 ecs->random_signal = 0;
3784 ecs->event_thread->control.trap_expected = 0;
3785
3786 context_switch (saved_singlestep_ptid);
3787 if (deprecated_context_hook)
3788 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3789
3790 resume (1, TARGET_SIGNAL_0);
3791 prepare_to_wait (ecs);
3792 return;
3793 }
3794 }
3795
3796 if (!ptid_equal (deferred_step_ptid, null_ptid))
3797 {
3798 /* In non-stop mode, there's never a deferred_step_ptid set. */
3799 gdb_assert (!non_stop);
3800
3801 /* If we stopped for some other reason than single-stepping, ignore
3802 the fact that we were supposed to switch back. */
3803 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3804 {
3805 if (debug_infrun)
3806 fprintf_unfiltered (gdb_stdlog,
3807 "infrun: handling deferred step\n");
3808
3809 /* Pull the single step breakpoints out of the target. */
3810 if (singlestep_breakpoints_inserted_p)
3811 {
3812 remove_single_step_breakpoints ();
3813 singlestep_breakpoints_inserted_p = 0;
3814 }
3815
3816 ecs->event_thread->control.trap_expected = 0;
3817
3818 /* Note: We do not call context_switch at this point, as the
3819 context is already set up for stepping the original thread. */
3820 switch_to_thread (deferred_step_ptid);
3821 deferred_step_ptid = null_ptid;
3822 /* Suppress spurious "Switching to ..." message. */
3823 previous_inferior_ptid = inferior_ptid;
3824
3825 resume (1, TARGET_SIGNAL_0);
3826 prepare_to_wait (ecs);
3827 return;
3828 }
3829
3830 deferred_step_ptid = null_ptid;
3831 }
3832
3833 /* See if a thread hit a thread-specific breakpoint that was meant for
3834 another thread. If so, then step that thread past the breakpoint,
3835 and continue it. */
3836
3837 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3838 {
3839 int thread_hop_needed = 0;
3840 struct address_space *aspace =
3841 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3842
3843 /* Check if a regular breakpoint has been hit before checking
3844 for a potential single step breakpoint. Otherwise, GDB will
3845 not see this breakpoint hit when stepping onto breakpoints. */
3846 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3847 {
3848 ecs->random_signal = 0;
3849 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3850 thread_hop_needed = 1;
3851 }
3852 else if (singlestep_breakpoints_inserted_p)
3853 {
3854 /* We have not context switched yet, so this should be true
3855 no matter which thread hit the singlestep breakpoint. */
3856 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3857 if (debug_infrun)
3858 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3859 "trap for %s\n",
3860 target_pid_to_str (ecs->ptid));
3861
3862 ecs->random_signal = 0;
3863 /* The call to in_thread_list is necessary because PTIDs sometimes
3864 change when we go from single-threaded to multi-threaded. If
3865 the singlestep_ptid is still in the list, assume that it is
3866 really different from ecs->ptid. */
3867 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3868 && in_thread_list (singlestep_ptid))
3869 {
3870 /* If the PC of the thread we were trying to single-step
3871 has changed, discard this event (which we were going
3872 to ignore anyway), and pretend we saw that thread
3873 trap. This prevents us continuously moving the
3874 single-step breakpoint forward, one instruction at a
3875 time. If the PC has changed, then the thread we were
3876 trying to single-step has trapped or been signalled,
3877 but the event has not been reported to GDB yet.
3878
3879 There might be some cases where this loses signal
3880 information, if a signal has arrived at exactly the
3881 same time that the PC changed, but this is the best
3882 we can do with the information available. Perhaps we
3883 should arrange to report all events for all threads
3884 when they stop, or to re-poll the remote looking for
3885 this particular thread (i.e. temporarily enable
3886 schedlock). */
3887
3888 CORE_ADDR new_singlestep_pc
3889 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3890
3891 if (new_singlestep_pc != singlestep_pc)
3892 {
3893 enum target_signal stop_signal;
3894
3895 if (debug_infrun)
3896 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3897 " but expected thread advanced also\n");
3898
3899 /* The current context still belongs to
3900 singlestep_ptid. Don't swap here, since that's
3901 the context we want to use. Just fudge our
3902 state and continue. */
3903 stop_signal = ecs->event_thread->suspend.stop_signal;
3904 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3905 ecs->ptid = singlestep_ptid;
3906 ecs->event_thread = find_thread_ptid (ecs->ptid);
3907 ecs->event_thread->suspend.stop_signal = stop_signal;
3908 stop_pc = new_singlestep_pc;
3909 }
3910 else
3911 {
3912 if (debug_infrun)
3913 fprintf_unfiltered (gdb_stdlog,
3914 "infrun: unexpected thread\n");
3915
3916 thread_hop_needed = 1;
3917 stepping_past_singlestep_breakpoint = 1;
3918 saved_singlestep_ptid = singlestep_ptid;
3919 }
3920 }
3921 }
3922
3923 if (thread_hop_needed)
3924 {
3925 struct regcache *thread_regcache;
3926 int remove_status = 0;
3927
3928 if (debug_infrun)
3929 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3930
3931 /* Switch context before touching inferior memory, the
3932 previous thread may have exited. */
3933 if (!ptid_equal (inferior_ptid, ecs->ptid))
3934 context_switch (ecs->ptid);
3935
3936 /* Saw a breakpoint, but it was hit by the wrong thread.
3937 Just continue. */
3938
3939 if (singlestep_breakpoints_inserted_p)
3940 {
3941 /* Pull the single step breakpoints out of the target. */
3942 remove_single_step_breakpoints ();
3943 singlestep_breakpoints_inserted_p = 0;
3944 }
3945
3946 /* If the arch can displace step, don't remove the
3947 breakpoints. */
3948 thread_regcache = get_thread_regcache (ecs->ptid);
3949 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3950 remove_status = remove_breakpoints ();
3951
3952 /* Did we fail to remove breakpoints? If so, try
3953 to set the PC past the bp. (There's at least
3954 one situation in which we can fail to remove
3955 the bp's: On HP-UX's that use ttrace, we can't
3956 change the address space of a vforking child
3957 process until the child exits (well, okay, not
3958 then either :-) or execs. */
3959 if (remove_status != 0)
3960 error (_("Cannot step over breakpoint hit in wrong thread"));
3961 else
3962 { /* Single step */
3963 if (!non_stop)
3964 {
3965 /* Only need to require the next event from this
3966 thread in all-stop mode. */
3967 waiton_ptid = ecs->ptid;
3968 infwait_state = infwait_thread_hop_state;
3969 }
3970
3971 ecs->event_thread->stepping_over_breakpoint = 1;
3972 keep_going (ecs);
3973 return;
3974 }
3975 }
3976 else if (singlestep_breakpoints_inserted_p)
3977 {
3978 ecs->random_signal = 0;
3979 }
3980 }
3981 else
3982 ecs->random_signal = 1;
3983
3984 /* See if something interesting happened to the non-current thread. If
3985 so, then switch to that thread. */
3986 if (!ptid_equal (ecs->ptid, inferior_ptid))
3987 {
3988 if (debug_infrun)
3989 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3990
3991 context_switch (ecs->ptid);
3992
3993 if (deprecated_context_hook)
3994 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3995 }
3996
3997 /* At this point, get hold of the now-current thread's frame. */
3998 frame = get_current_frame ();
3999 gdbarch = get_frame_arch (frame);
4000
4001 if (singlestep_breakpoints_inserted_p)
4002 {
4003 /* Pull the single step breakpoints out of the target. */
4004 remove_single_step_breakpoints ();
4005 singlestep_breakpoints_inserted_p = 0;
4006 }
4007
4008 if (stepped_after_stopped_by_watchpoint)
4009 stopped_by_watchpoint = 0;
4010 else
4011 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4012
4013 /* If necessary, step over this watchpoint. We'll be back to display
4014 it in a moment. */
4015 if (stopped_by_watchpoint
4016 && (target_have_steppable_watchpoint
4017 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
4018 {
4019 /* At this point, we are stopped at an instruction which has
4020 attempted to write to a piece of memory under control of
4021 a watchpoint. The instruction hasn't actually executed
4022 yet. If we were to evaluate the watchpoint expression
4023 now, we would get the old value, and therefore no change
4024 would seem to have occurred.
4025
4026 In order to make watchpoints work `right', we really need
4027 to complete the memory write, and then evaluate the
4028 watchpoint expression. We do this by single-stepping the
4029 target.
4030
4031 It may not be necessary to disable the watchpoint to stop over
4032 it. For example, the PA can (with some kernel cooperation)
4033 single step over a watchpoint without disabling the watchpoint.
4034
4035 It is far more common to need to disable a watchpoint to step
4036 the inferior over it. If we have non-steppable watchpoints,
4037 we must disable the current watchpoint; it's simplest to
4038 disable all watchpoints and breakpoints. */
4039 int hw_step = 1;
4040
4041 if (!target_have_steppable_watchpoint)
4042 {
4043 remove_breakpoints ();
4044 /* See comment in resume why we need to stop bypassing signals
4045 while breakpoints have been removed. */
4046 target_pass_signals (0, NULL);
4047 }
4048 /* Single step */
4049 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
4050 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
4051 waiton_ptid = ecs->ptid;
4052 if (target_have_steppable_watchpoint)
4053 infwait_state = infwait_step_watch_state;
4054 else
4055 infwait_state = infwait_nonstep_watch_state;
4056 prepare_to_wait (ecs);
4057 return;
4058 }
4059
4060 clear_stop_func (ecs);
4061 ecs->event_thread->stepping_over_breakpoint = 0;
4062 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4063 ecs->event_thread->control.stop_step = 0;
4064 stop_print_frame = 1;
4065 ecs->random_signal = 0;
4066 stopped_by_random_signal = 0;
4067
4068 /* Hide inlined functions starting here, unless we just performed stepi or
4069 nexti. After stepi and nexti, always show the innermost frame (not any
4070 inline function call sites). */
4071 if (ecs->event_thread->control.step_range_end != 1)
4072 {
4073 struct address_space *aspace =
4074 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4075
4076 /* skip_inline_frames is expensive, so we avoid it if we can
4077 determine that the address is one where functions cannot have
4078 been inlined. This improves performance with inferiors that
4079 load a lot of shared libraries, because the solib event
4080 breakpoint is defined as the address of a function (i.e. not
4081 inline). Note that we have to check the previous PC as well
4082 as the current one to catch cases when we have just
4083 single-stepped off a breakpoint prior to reinstating it.
4084 Note that we're assuming that the code we single-step to is
4085 not inline, but that's not definitive: there's nothing
4086 preventing the event breakpoint function from containing
4087 inlined code, and the single-step ending up there. If the
4088 user had set a breakpoint on that inlined code, the missing
4089 skip_inline_frames call would break things. Fortunately
4090 that's an extremely unlikely scenario. */
4091 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4092 && !(ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4093 && ecs->event_thread->control.trap_expected
4094 && pc_at_non_inline_function (aspace,
4095 ecs->event_thread->prev_pc,
4096 &ecs->ws)))
4097 skip_inline_frames (ecs->ptid);
4098 }
4099
4100 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4101 && ecs->event_thread->control.trap_expected
4102 && gdbarch_single_step_through_delay_p (gdbarch)
4103 && currently_stepping (ecs->event_thread))
4104 {
4105 /* We're trying to step off a breakpoint. Turns out that we're
4106 also on an instruction that needs to be stepped multiple
4107 times before it's been fully executing. E.g., architectures
4108 with a delay slot. It needs to be stepped twice, once for
4109 the instruction and once for the delay slot. */
4110 int step_through_delay
4111 = gdbarch_single_step_through_delay (gdbarch, frame);
4112
4113 if (debug_infrun && step_through_delay)
4114 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4115 if (ecs->event_thread->control.step_range_end == 0
4116 && step_through_delay)
4117 {
4118 /* The user issued a continue when stopped at a breakpoint.
4119 Set up for another trap and get out of here. */
4120 ecs->event_thread->stepping_over_breakpoint = 1;
4121 keep_going (ecs);
4122 return;
4123 }
4124 else if (step_through_delay)
4125 {
4126 /* The user issued a step when stopped at a breakpoint.
4127 Maybe we should stop, maybe we should not - the delay
4128 slot *might* correspond to a line of source. In any
4129 case, don't decide that here, just set
4130 ecs->stepping_over_breakpoint, making sure we
4131 single-step again before breakpoints are re-inserted. */
4132 ecs->event_thread->stepping_over_breakpoint = 1;
4133 }
4134 }
4135
4136 /* Look at the cause of the stop, and decide what to do.
4137 The alternatives are:
4138 1) stop_stepping and return; to really stop and return to the debugger,
4139 2) keep_going and return to start up again
4140 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
4141 3) set ecs->random_signal to 1, and the decision between 1 and 2
4142 will be made according to the signal handling tables. */
4143
4144 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4145 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
4146 || stop_soon == STOP_QUIETLY_REMOTE)
4147 {
4148 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4149 && stop_after_trap)
4150 {
4151 if (debug_infrun)
4152 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4153 stop_print_frame = 0;
4154 stop_stepping (ecs);
4155 return;
4156 }
4157
4158 /* This is originated from start_remote(), start_inferior() and
4159 shared libraries hook functions. */
4160 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4161 {
4162 if (debug_infrun)
4163 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4164 stop_stepping (ecs);
4165 return;
4166 }
4167
4168 /* This originates from attach_command(). We need to overwrite
4169 the stop_signal here, because some kernels don't ignore a
4170 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4171 See more comments in inferior.h. On the other hand, if we
4172 get a non-SIGSTOP, report it to the user - assume the backend
4173 will handle the SIGSTOP if it should show up later.
4174
4175 Also consider that the attach is complete when we see a
4176 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4177 target extended-remote report it instead of a SIGSTOP
4178 (e.g. gdbserver). We already rely on SIGTRAP being our
4179 signal, so this is no exception.
4180
4181 Also consider that the attach is complete when we see a
4182 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4183 the target to stop all threads of the inferior, in case the
4184 low level attach operation doesn't stop them implicitly. If
4185 they weren't stopped implicitly, then the stub will report a
4186 TARGET_SIGNAL_0, meaning: stopped for no particular reason
4187 other than GDB's request. */
4188 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4189 && (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_STOP
4190 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4191 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_0))
4192 {
4193 stop_stepping (ecs);
4194 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
4195 return;
4196 }
4197
4198 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4199 handles this event. */
4200 ecs->event_thread->control.stop_bpstat
4201 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4202 stop_pc, ecs->ptid, &ecs->ws);
4203
4204 /* Following in case break condition called a
4205 function. */
4206 stop_print_frame = 1;
4207
4208 /* This is where we handle "moribund" watchpoints. Unlike
4209 software breakpoints traps, hardware watchpoint traps are
4210 always distinguishable from random traps. If no high-level
4211 watchpoint is associated with the reported stop data address
4212 anymore, then the bpstat does not explain the signal ---
4213 simply make sure to ignore it if `stopped_by_watchpoint' is
4214 set. */
4215
4216 if (debug_infrun
4217 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4218 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4219 && stopped_by_watchpoint)
4220 fprintf_unfiltered (gdb_stdlog,
4221 "infrun: no user watchpoint explains "
4222 "watchpoint SIGTRAP, ignoring\n");
4223
4224 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4225 at one stage in the past included checks for an inferior
4226 function call's call dummy's return breakpoint. The original
4227 comment, that went with the test, read:
4228
4229 ``End of a stack dummy. Some systems (e.g. Sony news) give
4230 another signal besides SIGTRAP, so check here as well as
4231 above.''
4232
4233 If someone ever tries to get call dummys on a
4234 non-executable stack to work (where the target would stop
4235 with something like a SIGSEGV), then those tests might need
4236 to be re-instated. Given, however, that the tests were only
4237 enabled when momentary breakpoints were not being used, I
4238 suspect that it won't be the case.
4239
4240 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4241 be necessary for call dummies on a non-executable stack on
4242 SPARC. */
4243
4244 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
4245 ecs->random_signal
4246 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4247 || stopped_by_watchpoint
4248 || ecs->event_thread->control.trap_expected
4249 || (ecs->event_thread->control.step_range_end
4250 && (ecs->event_thread->control.step_resume_breakpoint
4251 == NULL)));
4252 else
4253 {
4254 ecs->random_signal = !bpstat_explains_signal
4255 (ecs->event_thread->control.stop_bpstat);
4256 if (!ecs->random_signal)
4257 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
4258 }
4259 }
4260
4261 /* When we reach this point, we've pretty much decided
4262 that the reason for stopping must've been a random
4263 (unexpected) signal. */
4264
4265 else
4266 ecs->random_signal = 1;
4267
4268 process_event_stop_test:
4269
4270 /* Re-fetch current thread's frame in case we did a
4271 "goto process_event_stop_test" above. */
4272 frame = get_current_frame ();
4273 gdbarch = get_frame_arch (frame);
4274
4275 /* For the program's own signals, act according to
4276 the signal handling tables. */
4277
4278 if (ecs->random_signal)
4279 {
4280 /* Signal not for debugging purposes. */
4281 int printed = 0;
4282 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4283
4284 if (debug_infrun)
4285 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
4286 ecs->event_thread->suspend.stop_signal);
4287
4288 stopped_by_random_signal = 1;
4289
4290 if (signal_print[ecs->event_thread->suspend.stop_signal])
4291 {
4292 printed = 1;
4293 target_terminal_ours_for_output ();
4294 print_signal_received_reason
4295 (ecs->event_thread->suspend.stop_signal);
4296 }
4297 /* Always stop on signals if we're either just gaining control
4298 of the program, or the user explicitly requested this thread
4299 to remain stopped. */
4300 if (stop_soon != NO_STOP_QUIETLY
4301 || ecs->event_thread->stop_requested
4302 || (!inf->detaching
4303 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4304 {
4305 stop_stepping (ecs);
4306 return;
4307 }
4308 /* If not going to stop, give terminal back
4309 if we took it away. */
4310 else if (printed)
4311 target_terminal_inferior ();
4312
4313 /* Clear the signal if it should not be passed. */
4314 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4315 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
4316
4317 if (ecs->event_thread->prev_pc == stop_pc
4318 && ecs->event_thread->control.trap_expected
4319 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4320 {
4321 /* We were just starting a new sequence, attempting to
4322 single-step off of a breakpoint and expecting a SIGTRAP.
4323 Instead this signal arrives. This signal will take us out
4324 of the stepping range so GDB needs to remember to, when
4325 the signal handler returns, resume stepping off that
4326 breakpoint. */
4327 /* To simplify things, "continue" is forced to use the same
4328 code paths as single-step - set a breakpoint at the
4329 signal return address and then, once hit, step off that
4330 breakpoint. */
4331 if (debug_infrun)
4332 fprintf_unfiltered (gdb_stdlog,
4333 "infrun: signal arrived while stepping over "
4334 "breakpoint\n");
4335
4336 insert_hp_step_resume_breakpoint_at_frame (frame);
4337 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4338 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4339 ecs->event_thread->control.trap_expected = 0;
4340 keep_going (ecs);
4341 return;
4342 }
4343
4344 if (ecs->event_thread->control.step_range_end != 0
4345 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_0
4346 && (ecs->event_thread->control.step_range_start <= stop_pc
4347 && stop_pc < ecs->event_thread->control.step_range_end)
4348 && frame_id_eq (get_stack_frame_id (frame),
4349 ecs->event_thread->control.step_stack_frame_id)
4350 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4351 {
4352 /* The inferior is about to take a signal that will take it
4353 out of the single step range. Set a breakpoint at the
4354 current PC (which is presumably where the signal handler
4355 will eventually return) and then allow the inferior to
4356 run free.
4357
4358 Note that this is only needed for a signal delivered
4359 while in the single-step range. Nested signals aren't a
4360 problem as they eventually all return. */
4361 if (debug_infrun)
4362 fprintf_unfiltered (gdb_stdlog,
4363 "infrun: signal may take us out of "
4364 "single-step range\n");
4365
4366 insert_hp_step_resume_breakpoint_at_frame (frame);
4367 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4368 ecs->event_thread->control.trap_expected = 0;
4369 keep_going (ecs);
4370 return;
4371 }
4372
4373 /* Note: step_resume_breakpoint may be non-NULL. This occures
4374 when either there's a nested signal, or when there's a
4375 pending signal enabled just as the signal handler returns
4376 (leaving the inferior at the step-resume-breakpoint without
4377 actually executing it). Either way continue until the
4378 breakpoint is really hit. */
4379 keep_going (ecs);
4380 return;
4381 }
4382
4383 /* Handle cases caused by hitting a breakpoint. */
4384 {
4385 CORE_ADDR jmp_buf_pc;
4386 struct bpstat_what what;
4387
4388 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4389
4390 if (what.call_dummy)
4391 {
4392 stop_stack_dummy = what.call_dummy;
4393 }
4394
4395 /* If we hit an internal event that triggers symbol changes, the
4396 current frame will be invalidated within bpstat_what (e.g., if
4397 we hit an internal solib event). Re-fetch it. */
4398 frame = get_current_frame ();
4399 gdbarch = get_frame_arch (frame);
4400
4401 switch (what.main_action)
4402 {
4403 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4404 /* If we hit the breakpoint at longjmp while stepping, we
4405 install a momentary breakpoint at the target of the
4406 jmp_buf. */
4407
4408 if (debug_infrun)
4409 fprintf_unfiltered (gdb_stdlog,
4410 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4411
4412 ecs->event_thread->stepping_over_breakpoint = 1;
4413
4414 if (what.is_longjmp)
4415 {
4416 if (!gdbarch_get_longjmp_target_p (gdbarch)
4417 || !gdbarch_get_longjmp_target (gdbarch,
4418 frame, &jmp_buf_pc))
4419 {
4420 if (debug_infrun)
4421 fprintf_unfiltered (gdb_stdlog,
4422 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4423 "(!gdbarch_get_longjmp_target)\n");
4424 keep_going (ecs);
4425 return;
4426 }
4427
4428 /* We're going to replace the current step-resume breakpoint
4429 with a longjmp-resume breakpoint. */
4430 delete_step_resume_breakpoint (ecs->event_thread);
4431
4432 /* Insert a breakpoint at resume address. */
4433 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4434 }
4435 else
4436 {
4437 struct symbol *func = get_frame_function (frame);
4438
4439 if (func)
4440 check_exception_resume (ecs, frame, func);
4441 }
4442 keep_going (ecs);
4443 return;
4444
4445 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4446 if (debug_infrun)
4447 fprintf_unfiltered (gdb_stdlog,
4448 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4449
4450 if (what.is_longjmp)
4451 {
4452 gdb_assert (ecs->event_thread->control.step_resume_breakpoint
4453 != NULL);
4454 delete_step_resume_breakpoint (ecs->event_thread);
4455 }
4456 else
4457 {
4458 /* There are several cases to consider.
4459
4460 1. The initiating frame no longer exists. In this case
4461 we must stop, because the exception has gone too far.
4462
4463 2. The initiating frame exists, and is the same as the
4464 current frame. We stop, because the exception has been
4465 caught.
4466
4467 3. The initiating frame exists and is different from
4468 the current frame. This means the exception has been
4469 caught beneath the initiating frame, so keep going. */
4470 struct frame_info *init_frame
4471 = frame_find_by_id (ecs->event_thread->initiating_frame);
4472
4473 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4474 != NULL);
4475 delete_exception_resume_breakpoint (ecs->event_thread);
4476
4477 if (init_frame)
4478 {
4479 struct frame_id current_id
4480 = get_frame_id (get_current_frame ());
4481 if (frame_id_eq (current_id,
4482 ecs->event_thread->initiating_frame))
4483 {
4484 /* Case 2. Fall through. */
4485 }
4486 else
4487 {
4488 /* Case 3. */
4489 keep_going (ecs);
4490 return;
4491 }
4492 }
4493
4494 /* For Cases 1 and 2, remove the step-resume breakpoint,
4495 if it exists. */
4496 delete_step_resume_breakpoint (ecs->event_thread);
4497 }
4498
4499 ecs->event_thread->control.stop_step = 1;
4500 print_end_stepping_range_reason ();
4501 stop_stepping (ecs);
4502 return;
4503
4504 case BPSTAT_WHAT_SINGLE:
4505 if (debug_infrun)
4506 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4507 ecs->event_thread->stepping_over_breakpoint = 1;
4508 /* Still need to check other stuff, at least the case
4509 where we are stepping and step out of the right range. */
4510 break;
4511
4512 case BPSTAT_WHAT_STEP_RESUME:
4513 if (debug_infrun)
4514 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4515
4516 delete_step_resume_breakpoint (ecs->event_thread);
4517 if (ecs->event_thread->control.proceed_to_finish
4518 && execution_direction == EXEC_REVERSE)
4519 {
4520 struct thread_info *tp = ecs->event_thread;
4521
4522 /* We are finishing a function in reverse, and just hit
4523 the step-resume breakpoint at the start address of the
4524 function, and we're almost there -- just need to back
4525 up by one more single-step, which should take us back
4526 to the function call. */
4527 tp->control.step_range_start = tp->control.step_range_end = 1;
4528 keep_going (ecs);
4529 return;
4530 }
4531 fill_in_stop_func (gdbarch, ecs);
4532 if (stop_pc == ecs->stop_func_start
4533 && execution_direction == EXEC_REVERSE)
4534 {
4535 /* We are stepping over a function call in reverse, and
4536 just hit the step-resume breakpoint at the start
4537 address of the function. Go back to single-stepping,
4538 which should take us back to the function call. */
4539 ecs->event_thread->stepping_over_breakpoint = 1;
4540 keep_going (ecs);
4541 return;
4542 }
4543 break;
4544
4545 case BPSTAT_WHAT_STOP_NOISY:
4546 if (debug_infrun)
4547 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4548 stop_print_frame = 1;
4549
4550 /* We are about to nuke the step_resume_breakpointt via the
4551 cleanup chain, so no need to worry about it here. */
4552
4553 stop_stepping (ecs);
4554 return;
4555
4556 case BPSTAT_WHAT_STOP_SILENT:
4557 if (debug_infrun)
4558 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4559 stop_print_frame = 0;
4560
4561 /* We are about to nuke the step_resume_breakpoin via the
4562 cleanup chain, so no need to worry about it here. */
4563
4564 stop_stepping (ecs);
4565 return;
4566
4567 case BPSTAT_WHAT_HP_STEP_RESUME:
4568 if (debug_infrun)
4569 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4570
4571 delete_step_resume_breakpoint (ecs->event_thread);
4572 if (ecs->event_thread->step_after_step_resume_breakpoint)
4573 {
4574 /* Back when the step-resume breakpoint was inserted, we
4575 were trying to single-step off a breakpoint. Go back
4576 to doing that. */
4577 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4578 ecs->event_thread->stepping_over_breakpoint = 1;
4579 keep_going (ecs);
4580 return;
4581 }
4582 break;
4583
4584 case BPSTAT_WHAT_KEEP_CHECKING:
4585 break;
4586 }
4587 }
4588
4589 /* We come here if we hit a breakpoint but should not
4590 stop for it. Possibly we also were stepping
4591 and should stop for that. So fall through and
4592 test for stepping. But, if not stepping,
4593 do not stop. */
4594
4595 /* In all-stop mode, if we're currently stepping but have stopped in
4596 some other thread, we need to switch back to the stepped thread. */
4597 if (!non_stop)
4598 {
4599 struct thread_info *tp;
4600
4601 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
4602 ecs->event_thread);
4603 if (tp)
4604 {
4605 /* However, if the current thread is blocked on some internal
4606 breakpoint, and we simply need to step over that breakpoint
4607 to get it going again, do that first. */
4608 if ((ecs->event_thread->control.trap_expected
4609 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
4610 || ecs->event_thread->stepping_over_breakpoint)
4611 {
4612 keep_going (ecs);
4613 return;
4614 }
4615
4616 /* If the stepping thread exited, then don't try to switch
4617 back and resume it, which could fail in several different
4618 ways depending on the target. Instead, just keep going.
4619
4620 We can find a stepping dead thread in the thread list in
4621 two cases:
4622
4623 - The target supports thread exit events, and when the
4624 target tries to delete the thread from the thread list,
4625 inferior_ptid pointed at the exiting thread. In such
4626 case, calling delete_thread does not really remove the
4627 thread from the list; instead, the thread is left listed,
4628 with 'exited' state.
4629
4630 - The target's debug interface does not support thread
4631 exit events, and so we have no idea whatsoever if the
4632 previously stepping thread is still alive. For that
4633 reason, we need to synchronously query the target
4634 now. */
4635 if (is_exited (tp->ptid)
4636 || !target_thread_alive (tp->ptid))
4637 {
4638 if (debug_infrun)
4639 fprintf_unfiltered (gdb_stdlog,
4640 "infrun: not switching back to "
4641 "stepped thread, it has vanished\n");
4642
4643 delete_thread (tp->ptid);
4644 keep_going (ecs);
4645 return;
4646 }
4647
4648 /* Otherwise, we no longer expect a trap in the current thread.
4649 Clear the trap_expected flag before switching back -- this is
4650 what keep_going would do as well, if we called it. */
4651 ecs->event_thread->control.trap_expected = 0;
4652
4653 if (debug_infrun)
4654 fprintf_unfiltered (gdb_stdlog,
4655 "infrun: switching back to stepped thread\n");
4656
4657 ecs->event_thread = tp;
4658 ecs->ptid = tp->ptid;
4659 context_switch (ecs->ptid);
4660 keep_going (ecs);
4661 return;
4662 }
4663 }
4664
4665 if (ecs->event_thread->control.step_resume_breakpoint)
4666 {
4667 if (debug_infrun)
4668 fprintf_unfiltered (gdb_stdlog,
4669 "infrun: step-resume breakpoint is inserted\n");
4670
4671 /* Having a step-resume breakpoint overrides anything
4672 else having to do with stepping commands until
4673 that breakpoint is reached. */
4674 keep_going (ecs);
4675 return;
4676 }
4677
4678 if (ecs->event_thread->control.step_range_end == 0)
4679 {
4680 if (debug_infrun)
4681 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4682 /* Likewise if we aren't even stepping. */
4683 keep_going (ecs);
4684 return;
4685 }
4686
4687 /* Re-fetch current thread's frame in case the code above caused
4688 the frame cache to be re-initialized, making our FRAME variable
4689 a dangling pointer. */
4690 frame = get_current_frame ();
4691 gdbarch = get_frame_arch (frame);
4692 fill_in_stop_func (gdbarch, ecs);
4693
4694 /* If stepping through a line, keep going if still within it.
4695
4696 Note that step_range_end is the address of the first instruction
4697 beyond the step range, and NOT the address of the last instruction
4698 within it!
4699
4700 Note also that during reverse execution, we may be stepping
4701 through a function epilogue and therefore must detect when
4702 the current-frame changes in the middle of a line. */
4703
4704 if (stop_pc >= ecs->event_thread->control.step_range_start
4705 && stop_pc < ecs->event_thread->control.step_range_end
4706 && (execution_direction != EXEC_REVERSE
4707 || frame_id_eq (get_frame_id (frame),
4708 ecs->event_thread->control.step_frame_id)))
4709 {
4710 if (debug_infrun)
4711 fprintf_unfiltered
4712 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4713 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4714 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4715
4716 /* When stepping backward, stop at beginning of line range
4717 (unless it's the function entry point, in which case
4718 keep going back to the call point). */
4719 if (stop_pc == ecs->event_thread->control.step_range_start
4720 && stop_pc != ecs->stop_func_start
4721 && execution_direction == EXEC_REVERSE)
4722 {
4723 ecs->event_thread->control.stop_step = 1;
4724 print_end_stepping_range_reason ();
4725 stop_stepping (ecs);
4726 }
4727 else
4728 keep_going (ecs);
4729
4730 return;
4731 }
4732
4733 /* We stepped out of the stepping range. */
4734
4735 /* If we are stepping at the source level and entered the runtime
4736 loader dynamic symbol resolution code...
4737
4738 EXEC_FORWARD: we keep on single stepping until we exit the run
4739 time loader code and reach the callee's address.
4740
4741 EXEC_REVERSE: we've already executed the callee (backward), and
4742 the runtime loader code is handled just like any other
4743 undebuggable function call. Now we need only keep stepping
4744 backward through the trampoline code, and that's handled further
4745 down, so there is nothing for us to do here. */
4746
4747 if (execution_direction != EXEC_REVERSE
4748 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4749 && in_solib_dynsym_resolve_code (stop_pc))
4750 {
4751 CORE_ADDR pc_after_resolver =
4752 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4753
4754 if (debug_infrun)
4755 fprintf_unfiltered (gdb_stdlog,
4756 "infrun: stepped into dynsym resolve code\n");
4757
4758 if (pc_after_resolver)
4759 {
4760 /* Set up a step-resume breakpoint at the address
4761 indicated by SKIP_SOLIB_RESOLVER. */
4762 struct symtab_and_line sr_sal;
4763
4764 init_sal (&sr_sal);
4765 sr_sal.pc = pc_after_resolver;
4766 sr_sal.pspace = get_frame_program_space (frame);
4767
4768 insert_step_resume_breakpoint_at_sal (gdbarch,
4769 sr_sal, null_frame_id);
4770 }
4771
4772 keep_going (ecs);
4773 return;
4774 }
4775
4776 if (ecs->event_thread->control.step_range_end != 1
4777 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4778 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4779 && get_frame_type (frame) == SIGTRAMP_FRAME)
4780 {
4781 if (debug_infrun)
4782 fprintf_unfiltered (gdb_stdlog,
4783 "infrun: stepped into signal trampoline\n");
4784 /* The inferior, while doing a "step" or "next", has ended up in
4785 a signal trampoline (either by a signal being delivered or by
4786 the signal handler returning). Just single-step until the
4787 inferior leaves the trampoline (either by calling the handler
4788 or returning). */
4789 keep_going (ecs);
4790 return;
4791 }
4792
4793 /* Check for subroutine calls. The check for the current frame
4794 equalling the step ID is not necessary - the check of the
4795 previous frame's ID is sufficient - but it is a common case and
4796 cheaper than checking the previous frame's ID.
4797
4798 NOTE: frame_id_eq will never report two invalid frame IDs as
4799 being equal, so to get into this block, both the current and
4800 previous frame must have valid frame IDs. */
4801 /* The outer_frame_id check is a heuristic to detect stepping
4802 through startup code. If we step over an instruction which
4803 sets the stack pointer from an invalid value to a valid value,
4804 we may detect that as a subroutine call from the mythical
4805 "outermost" function. This could be fixed by marking
4806 outermost frames as !stack_p,code_p,special_p. Then the
4807 initial outermost frame, before sp was valid, would
4808 have code_addr == &_start. See the comment in frame_id_eq
4809 for more. */
4810 if (!frame_id_eq (get_stack_frame_id (frame),
4811 ecs->event_thread->control.step_stack_frame_id)
4812 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4813 ecs->event_thread->control.step_stack_frame_id)
4814 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4815 outer_frame_id)
4816 || step_start_function != find_pc_function (stop_pc))))
4817 {
4818 CORE_ADDR real_stop_pc;
4819
4820 if (debug_infrun)
4821 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4822
4823 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4824 || ((ecs->event_thread->control.step_range_end == 1)
4825 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4826 ecs->stop_func_start)))
4827 {
4828 /* I presume that step_over_calls is only 0 when we're
4829 supposed to be stepping at the assembly language level
4830 ("stepi"). Just stop. */
4831 /* Also, maybe we just did a "nexti" inside a prolog, so we
4832 thought it was a subroutine call but it was not. Stop as
4833 well. FENN */
4834 /* And this works the same backward as frontward. MVS */
4835 ecs->event_thread->control.stop_step = 1;
4836 print_end_stepping_range_reason ();
4837 stop_stepping (ecs);
4838 return;
4839 }
4840
4841 /* Reverse stepping through solib trampolines. */
4842
4843 if (execution_direction == EXEC_REVERSE
4844 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4845 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4846 || (ecs->stop_func_start == 0
4847 && in_solib_dynsym_resolve_code (stop_pc))))
4848 {
4849 /* Any solib trampoline code can be handled in reverse
4850 by simply continuing to single-step. We have already
4851 executed the solib function (backwards), and a few
4852 steps will take us back through the trampoline to the
4853 caller. */
4854 keep_going (ecs);
4855 return;
4856 }
4857
4858 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4859 {
4860 /* We're doing a "next".
4861
4862 Normal (forward) execution: set a breakpoint at the
4863 callee's return address (the address at which the caller
4864 will resume).
4865
4866 Reverse (backward) execution. set the step-resume
4867 breakpoint at the start of the function that we just
4868 stepped into (backwards), and continue to there. When we
4869 get there, we'll need to single-step back to the caller. */
4870
4871 if (execution_direction == EXEC_REVERSE)
4872 {
4873 struct symtab_and_line sr_sal;
4874
4875 /* Normal function call return (static or dynamic). */
4876 init_sal (&sr_sal);
4877 sr_sal.pc = ecs->stop_func_start;
4878 sr_sal.pspace = get_frame_program_space (frame);
4879 insert_step_resume_breakpoint_at_sal (gdbarch,
4880 sr_sal, null_frame_id);
4881 }
4882 else
4883 insert_step_resume_breakpoint_at_caller (frame);
4884
4885 keep_going (ecs);
4886 return;
4887 }
4888
4889 /* If we are in a function call trampoline (a stub between the
4890 calling routine and the real function), locate the real
4891 function. That's what tells us (a) whether we want to step
4892 into it at all, and (b) what prologue we want to run to the
4893 end of, if we do step into it. */
4894 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4895 if (real_stop_pc == 0)
4896 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4897 if (real_stop_pc != 0)
4898 ecs->stop_func_start = real_stop_pc;
4899
4900 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4901 {
4902 struct symtab_and_line sr_sal;
4903
4904 init_sal (&sr_sal);
4905 sr_sal.pc = ecs->stop_func_start;
4906 sr_sal.pspace = get_frame_program_space (frame);
4907
4908 insert_step_resume_breakpoint_at_sal (gdbarch,
4909 sr_sal, null_frame_id);
4910 keep_going (ecs);
4911 return;
4912 }
4913
4914 /* If we have line number information for the function we are
4915 thinking of stepping into and the function isn't on the skip
4916 list, step into it.
4917
4918 If there are several symtabs at that PC (e.g. with include
4919 files), just want to know whether *any* of them have line
4920 numbers. find_pc_line handles this. */
4921 {
4922 struct symtab_and_line tmp_sal;
4923
4924 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4925 if (tmp_sal.line != 0
4926 && !function_pc_is_marked_for_skip (ecs->stop_func_start))
4927 {
4928 if (execution_direction == EXEC_REVERSE)
4929 handle_step_into_function_backward (gdbarch, ecs);
4930 else
4931 handle_step_into_function (gdbarch, ecs);
4932 return;
4933 }
4934 }
4935
4936 /* If we have no line number and the step-stop-if-no-debug is
4937 set, we stop the step so that the user has a chance to switch
4938 in assembly mode. */
4939 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4940 && step_stop_if_no_debug)
4941 {
4942 ecs->event_thread->control.stop_step = 1;
4943 print_end_stepping_range_reason ();
4944 stop_stepping (ecs);
4945 return;
4946 }
4947
4948 if (execution_direction == EXEC_REVERSE)
4949 {
4950 /* Set a breakpoint at callee's start address.
4951 From there we can step once and be back in the caller. */
4952 struct symtab_and_line sr_sal;
4953
4954 init_sal (&sr_sal);
4955 sr_sal.pc = ecs->stop_func_start;
4956 sr_sal.pspace = get_frame_program_space (frame);
4957 insert_step_resume_breakpoint_at_sal (gdbarch,
4958 sr_sal, null_frame_id);
4959 }
4960 else
4961 /* Set a breakpoint at callee's return address (the address
4962 at which the caller will resume). */
4963 insert_step_resume_breakpoint_at_caller (frame);
4964
4965 keep_going (ecs);
4966 return;
4967 }
4968
4969 /* Reverse stepping through solib trampolines. */
4970
4971 if (execution_direction == EXEC_REVERSE
4972 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4973 {
4974 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4975 || (ecs->stop_func_start == 0
4976 && in_solib_dynsym_resolve_code (stop_pc)))
4977 {
4978 /* Any solib trampoline code can be handled in reverse
4979 by simply continuing to single-step. We have already
4980 executed the solib function (backwards), and a few
4981 steps will take us back through the trampoline to the
4982 caller. */
4983 keep_going (ecs);
4984 return;
4985 }
4986 else if (in_solib_dynsym_resolve_code (stop_pc))
4987 {
4988 /* Stepped backward into the solib dynsym resolver.
4989 Set a breakpoint at its start and continue, then
4990 one more step will take us out. */
4991 struct symtab_and_line sr_sal;
4992
4993 init_sal (&sr_sal);
4994 sr_sal.pc = ecs->stop_func_start;
4995 sr_sal.pspace = get_frame_program_space (frame);
4996 insert_step_resume_breakpoint_at_sal (gdbarch,
4997 sr_sal, null_frame_id);
4998 keep_going (ecs);
4999 return;
5000 }
5001 }
5002
5003 /* If we're in the return path from a shared library trampoline,
5004 we want to proceed through the trampoline when stepping. */
5005 if (gdbarch_in_solib_return_trampoline (gdbarch,
5006 stop_pc, ecs->stop_func_name))
5007 {
5008 /* Determine where this trampoline returns. */
5009 CORE_ADDR real_stop_pc;
5010
5011 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
5012
5013 if (debug_infrun)
5014 fprintf_unfiltered (gdb_stdlog,
5015 "infrun: stepped into solib return tramp\n");
5016
5017 /* Only proceed through if we know where it's going. */
5018 if (real_stop_pc)
5019 {
5020 /* And put the step-breakpoint there and go until there. */
5021 struct symtab_and_line sr_sal;
5022
5023 init_sal (&sr_sal); /* initialize to zeroes */
5024 sr_sal.pc = real_stop_pc;
5025 sr_sal.section = find_pc_overlay (sr_sal.pc);
5026 sr_sal.pspace = get_frame_program_space (frame);
5027
5028 /* Do not specify what the fp should be when we stop since
5029 on some machines the prologue is where the new fp value
5030 is established. */
5031 insert_step_resume_breakpoint_at_sal (gdbarch,
5032 sr_sal, null_frame_id);
5033
5034 /* Restart without fiddling with the step ranges or
5035 other state. */
5036 keep_going (ecs);
5037 return;
5038 }
5039 }
5040
5041 stop_pc_sal = find_pc_line (stop_pc, 0);
5042
5043 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5044 the trampoline processing logic, however, there are some trampolines
5045 that have no names, so we should do trampoline handling first. */
5046 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5047 && ecs->stop_func_name == NULL
5048 && stop_pc_sal.line == 0)
5049 {
5050 if (debug_infrun)
5051 fprintf_unfiltered (gdb_stdlog,
5052 "infrun: stepped into undebuggable function\n");
5053
5054 /* The inferior just stepped into, or returned to, an
5055 undebuggable function (where there is no debugging information
5056 and no line number corresponding to the address where the
5057 inferior stopped). Since we want to skip this kind of code,
5058 we keep going until the inferior returns from this
5059 function - unless the user has asked us not to (via
5060 set step-mode) or we no longer know how to get back
5061 to the call site. */
5062 if (step_stop_if_no_debug
5063 || !frame_id_p (frame_unwind_caller_id (frame)))
5064 {
5065 /* If we have no line number and the step-stop-if-no-debug
5066 is set, we stop the step so that the user has a chance to
5067 switch in assembly mode. */
5068 ecs->event_thread->control.stop_step = 1;
5069 print_end_stepping_range_reason ();
5070 stop_stepping (ecs);
5071 return;
5072 }
5073 else
5074 {
5075 /* Set a breakpoint at callee's return address (the address
5076 at which the caller will resume). */
5077 insert_step_resume_breakpoint_at_caller (frame);
5078 keep_going (ecs);
5079 return;
5080 }
5081 }
5082
5083 if (ecs->event_thread->control.step_range_end == 1)
5084 {
5085 /* It is stepi or nexti. We always want to stop stepping after
5086 one instruction. */
5087 if (debug_infrun)
5088 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5089 ecs->event_thread->control.stop_step = 1;
5090 print_end_stepping_range_reason ();
5091 stop_stepping (ecs);
5092 return;
5093 }
5094
5095 if (stop_pc_sal.line == 0)
5096 {
5097 /* We have no line number information. That means to stop
5098 stepping (does this always happen right after one instruction,
5099 when we do "s" in a function with no line numbers,
5100 or can this happen as a result of a return or longjmp?). */
5101 if (debug_infrun)
5102 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5103 ecs->event_thread->control.stop_step = 1;
5104 print_end_stepping_range_reason ();
5105 stop_stepping (ecs);
5106 return;
5107 }
5108
5109 /* Look for "calls" to inlined functions, part one. If the inline
5110 frame machinery detected some skipped call sites, we have entered
5111 a new inline function. */
5112
5113 if (frame_id_eq (get_frame_id (get_current_frame ()),
5114 ecs->event_thread->control.step_frame_id)
5115 && inline_skipped_frames (ecs->ptid))
5116 {
5117 struct symtab_and_line call_sal;
5118
5119 if (debug_infrun)
5120 fprintf_unfiltered (gdb_stdlog,
5121 "infrun: stepped into inlined function\n");
5122
5123 find_frame_sal (get_current_frame (), &call_sal);
5124
5125 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5126 {
5127 /* For "step", we're going to stop. But if the call site
5128 for this inlined function is on the same source line as
5129 we were previously stepping, go down into the function
5130 first. Otherwise stop at the call site. */
5131
5132 if (call_sal.line == ecs->event_thread->current_line
5133 && call_sal.symtab == ecs->event_thread->current_symtab)
5134 step_into_inline_frame (ecs->ptid);
5135
5136 ecs->event_thread->control.stop_step = 1;
5137 print_end_stepping_range_reason ();
5138 stop_stepping (ecs);
5139 return;
5140 }
5141 else
5142 {
5143 /* For "next", we should stop at the call site if it is on a
5144 different source line. Otherwise continue through the
5145 inlined function. */
5146 if (call_sal.line == ecs->event_thread->current_line
5147 && call_sal.symtab == ecs->event_thread->current_symtab)
5148 keep_going (ecs);
5149 else
5150 {
5151 ecs->event_thread->control.stop_step = 1;
5152 print_end_stepping_range_reason ();
5153 stop_stepping (ecs);
5154 }
5155 return;
5156 }
5157 }
5158
5159 /* Look for "calls" to inlined functions, part two. If we are still
5160 in the same real function we were stepping through, but we have
5161 to go further up to find the exact frame ID, we are stepping
5162 through a more inlined call beyond its call site. */
5163
5164 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5165 && !frame_id_eq (get_frame_id (get_current_frame ()),
5166 ecs->event_thread->control.step_frame_id)
5167 && stepped_in_from (get_current_frame (),
5168 ecs->event_thread->control.step_frame_id))
5169 {
5170 if (debug_infrun)
5171 fprintf_unfiltered (gdb_stdlog,
5172 "infrun: stepping through inlined function\n");
5173
5174 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5175 keep_going (ecs);
5176 else
5177 {
5178 ecs->event_thread->control.stop_step = 1;
5179 print_end_stepping_range_reason ();
5180 stop_stepping (ecs);
5181 }
5182 return;
5183 }
5184
5185 if ((stop_pc == stop_pc_sal.pc)
5186 && (ecs->event_thread->current_line != stop_pc_sal.line
5187 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5188 {
5189 /* We are at the start of a different line. So stop. Note that
5190 we don't stop if we step into the middle of a different line.
5191 That is said to make things like for (;;) statements work
5192 better. */
5193 if (debug_infrun)
5194 fprintf_unfiltered (gdb_stdlog,
5195 "infrun: stepped to a different line\n");
5196 ecs->event_thread->control.stop_step = 1;
5197 print_end_stepping_range_reason ();
5198 stop_stepping (ecs);
5199 return;
5200 }
5201
5202 /* We aren't done stepping.
5203
5204 Optimize by setting the stepping range to the line.
5205 (We might not be in the original line, but if we entered a
5206 new line in mid-statement, we continue stepping. This makes
5207 things like for(;;) statements work better.) */
5208
5209 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5210 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5211 set_step_info (frame, stop_pc_sal);
5212
5213 if (debug_infrun)
5214 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5215 keep_going (ecs);
5216 }
5217
5218 /* Is thread TP in the middle of single-stepping? */
5219
5220 static int
5221 currently_stepping (struct thread_info *tp)
5222 {
5223 return ((tp->control.step_range_end
5224 && tp->control.step_resume_breakpoint == NULL)
5225 || tp->control.trap_expected
5226 || bpstat_should_step ());
5227 }
5228
5229 /* Returns true if any thread *but* the one passed in "data" is in the
5230 middle of stepping or of handling a "next". */
5231
5232 static int
5233 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5234 {
5235 if (tp == data)
5236 return 0;
5237
5238 return (tp->control.step_range_end
5239 || tp->control.trap_expected);
5240 }
5241
5242 /* Inferior has stepped into a subroutine call with source code that
5243 we should not step over. Do step to the first line of code in
5244 it. */
5245
5246 static void
5247 handle_step_into_function (struct gdbarch *gdbarch,
5248 struct execution_control_state *ecs)
5249 {
5250 struct symtab *s;
5251 struct symtab_and_line stop_func_sal, sr_sal;
5252
5253 fill_in_stop_func (gdbarch, ecs);
5254
5255 s = find_pc_symtab (stop_pc);
5256 if (s && s->language != language_asm)
5257 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5258 ecs->stop_func_start);
5259
5260 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5261 /* Use the step_resume_break to step until the end of the prologue,
5262 even if that involves jumps (as it seems to on the vax under
5263 4.2). */
5264 /* If the prologue ends in the middle of a source line, continue to
5265 the end of that source line (if it is still within the function).
5266 Otherwise, just go to end of prologue. */
5267 if (stop_func_sal.end
5268 && stop_func_sal.pc != ecs->stop_func_start
5269 && stop_func_sal.end < ecs->stop_func_end)
5270 ecs->stop_func_start = stop_func_sal.end;
5271
5272 /* Architectures which require breakpoint adjustment might not be able
5273 to place a breakpoint at the computed address. If so, the test
5274 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5275 ecs->stop_func_start to an address at which a breakpoint may be
5276 legitimately placed.
5277
5278 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5279 made, GDB will enter an infinite loop when stepping through
5280 optimized code consisting of VLIW instructions which contain
5281 subinstructions corresponding to different source lines. On
5282 FR-V, it's not permitted to place a breakpoint on any but the
5283 first subinstruction of a VLIW instruction. When a breakpoint is
5284 set, GDB will adjust the breakpoint address to the beginning of
5285 the VLIW instruction. Thus, we need to make the corresponding
5286 adjustment here when computing the stop address. */
5287
5288 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5289 {
5290 ecs->stop_func_start
5291 = gdbarch_adjust_breakpoint_address (gdbarch,
5292 ecs->stop_func_start);
5293 }
5294
5295 if (ecs->stop_func_start == stop_pc)
5296 {
5297 /* We are already there: stop now. */
5298 ecs->event_thread->control.stop_step = 1;
5299 print_end_stepping_range_reason ();
5300 stop_stepping (ecs);
5301 return;
5302 }
5303 else
5304 {
5305 /* Put the step-breakpoint there and go until there. */
5306 init_sal (&sr_sal); /* initialize to zeroes */
5307 sr_sal.pc = ecs->stop_func_start;
5308 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5309 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5310
5311 /* Do not specify what the fp should be when we stop since on
5312 some machines the prologue is where the new fp value is
5313 established. */
5314 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5315
5316 /* And make sure stepping stops right away then. */
5317 ecs->event_thread->control.step_range_end
5318 = ecs->event_thread->control.step_range_start;
5319 }
5320 keep_going (ecs);
5321 }
5322
5323 /* Inferior has stepped backward into a subroutine call with source
5324 code that we should not step over. Do step to the beginning of the
5325 last line of code in it. */
5326
5327 static void
5328 handle_step_into_function_backward (struct gdbarch *gdbarch,
5329 struct execution_control_state *ecs)
5330 {
5331 struct symtab *s;
5332 struct symtab_and_line stop_func_sal;
5333
5334 fill_in_stop_func (gdbarch, ecs);
5335
5336 s = find_pc_symtab (stop_pc);
5337 if (s && s->language != language_asm)
5338 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5339 ecs->stop_func_start);
5340
5341 stop_func_sal = find_pc_line (stop_pc, 0);
5342
5343 /* OK, we're just going to keep stepping here. */
5344 if (stop_func_sal.pc == stop_pc)
5345 {
5346 /* We're there already. Just stop stepping now. */
5347 ecs->event_thread->control.stop_step = 1;
5348 print_end_stepping_range_reason ();
5349 stop_stepping (ecs);
5350 }
5351 else
5352 {
5353 /* Else just reset the step range and keep going.
5354 No step-resume breakpoint, they don't work for
5355 epilogues, which can have multiple entry paths. */
5356 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5357 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5358 keep_going (ecs);
5359 }
5360 return;
5361 }
5362
5363 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5364 This is used to both functions and to skip over code. */
5365
5366 static void
5367 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5368 struct symtab_and_line sr_sal,
5369 struct frame_id sr_id,
5370 enum bptype sr_type)
5371 {
5372 /* There should never be more than one step-resume or longjmp-resume
5373 breakpoint per thread, so we should never be setting a new
5374 step_resume_breakpoint when one is already active. */
5375 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5376 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5377
5378 if (debug_infrun)
5379 fprintf_unfiltered (gdb_stdlog,
5380 "infrun: inserting step-resume breakpoint at %s\n",
5381 paddress (gdbarch, sr_sal.pc));
5382
5383 inferior_thread ()->control.step_resume_breakpoint
5384 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5385 }
5386
5387 void
5388 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5389 struct symtab_and_line sr_sal,
5390 struct frame_id sr_id)
5391 {
5392 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5393 sr_sal, sr_id,
5394 bp_step_resume);
5395 }
5396
5397 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5398 This is used to skip a potential signal handler.
5399
5400 This is called with the interrupted function's frame. The signal
5401 handler, when it returns, will resume the interrupted function at
5402 RETURN_FRAME.pc. */
5403
5404 static void
5405 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5406 {
5407 struct symtab_and_line sr_sal;
5408 struct gdbarch *gdbarch;
5409
5410 gdb_assert (return_frame != NULL);
5411 init_sal (&sr_sal); /* initialize to zeros */
5412
5413 gdbarch = get_frame_arch (return_frame);
5414 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5415 sr_sal.section = find_pc_overlay (sr_sal.pc);
5416 sr_sal.pspace = get_frame_program_space (return_frame);
5417
5418 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5419 get_stack_frame_id (return_frame),
5420 bp_hp_step_resume);
5421 }
5422
5423 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5424 is used to skip a function after stepping into it (for "next" or if
5425 the called function has no debugging information).
5426
5427 The current function has almost always been reached by single
5428 stepping a call or return instruction. NEXT_FRAME belongs to the
5429 current function, and the breakpoint will be set at the caller's
5430 resume address.
5431
5432 This is a separate function rather than reusing
5433 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5434 get_prev_frame, which may stop prematurely (see the implementation
5435 of frame_unwind_caller_id for an example). */
5436
5437 static void
5438 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5439 {
5440 struct symtab_and_line sr_sal;
5441 struct gdbarch *gdbarch;
5442
5443 /* We shouldn't have gotten here if we don't know where the call site
5444 is. */
5445 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5446
5447 init_sal (&sr_sal); /* initialize to zeros */
5448
5449 gdbarch = frame_unwind_caller_arch (next_frame);
5450 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5451 frame_unwind_caller_pc (next_frame));
5452 sr_sal.section = find_pc_overlay (sr_sal.pc);
5453 sr_sal.pspace = frame_unwind_program_space (next_frame);
5454
5455 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5456 frame_unwind_caller_id (next_frame));
5457 }
5458
5459 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5460 new breakpoint at the target of a jmp_buf. The handling of
5461 longjmp-resume uses the same mechanisms used for handling
5462 "step-resume" breakpoints. */
5463
5464 static void
5465 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5466 {
5467 /* There should never be more than one step-resume or longjmp-resume
5468 breakpoint per thread, so we should never be setting a new
5469 longjmp_resume_breakpoint when one is already active. */
5470 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5471
5472 if (debug_infrun)
5473 fprintf_unfiltered (gdb_stdlog,
5474 "infrun: inserting longjmp-resume breakpoint at %s\n",
5475 paddress (gdbarch, pc));
5476
5477 inferior_thread ()->control.step_resume_breakpoint =
5478 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5479 }
5480
5481 /* Insert an exception resume breakpoint. TP is the thread throwing
5482 the exception. The block B is the block of the unwinder debug hook
5483 function. FRAME is the frame corresponding to the call to this
5484 function. SYM is the symbol of the function argument holding the
5485 target PC of the exception. */
5486
5487 static void
5488 insert_exception_resume_breakpoint (struct thread_info *tp,
5489 struct block *b,
5490 struct frame_info *frame,
5491 struct symbol *sym)
5492 {
5493 volatile struct gdb_exception e;
5494
5495 /* We want to ignore errors here. */
5496 TRY_CATCH (e, RETURN_MASK_ERROR)
5497 {
5498 struct symbol *vsym;
5499 struct value *value;
5500 CORE_ADDR handler;
5501 struct breakpoint *bp;
5502
5503 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5504 value = read_var_value (vsym, frame);
5505 /* If the value was optimized out, revert to the old behavior. */
5506 if (! value_optimized_out (value))
5507 {
5508 handler = value_as_address (value);
5509
5510 if (debug_infrun)
5511 fprintf_unfiltered (gdb_stdlog,
5512 "infrun: exception resume at %lx\n",
5513 (unsigned long) handler);
5514
5515 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5516 handler, bp_exception_resume);
5517 bp->thread = tp->num;
5518 inferior_thread ()->control.exception_resume_breakpoint = bp;
5519 }
5520 }
5521 }
5522
5523 /* This is called when an exception has been intercepted. Check to
5524 see whether the exception's destination is of interest, and if so,
5525 set an exception resume breakpoint there. */
5526
5527 static void
5528 check_exception_resume (struct execution_control_state *ecs,
5529 struct frame_info *frame, struct symbol *func)
5530 {
5531 volatile struct gdb_exception e;
5532
5533 TRY_CATCH (e, RETURN_MASK_ERROR)
5534 {
5535 struct block *b;
5536 struct dict_iterator iter;
5537 struct symbol *sym;
5538 int argno = 0;
5539
5540 /* The exception breakpoint is a thread-specific breakpoint on
5541 the unwinder's debug hook, declared as:
5542
5543 void _Unwind_DebugHook (void *cfa, void *handler);
5544
5545 The CFA argument indicates the frame to which control is
5546 about to be transferred. HANDLER is the destination PC.
5547
5548 We ignore the CFA and set a temporary breakpoint at HANDLER.
5549 This is not extremely efficient but it avoids issues in gdb
5550 with computing the DWARF CFA, and it also works even in weird
5551 cases such as throwing an exception from inside a signal
5552 handler. */
5553
5554 b = SYMBOL_BLOCK_VALUE (func);
5555 ALL_BLOCK_SYMBOLS (b, iter, sym)
5556 {
5557 if (!SYMBOL_IS_ARGUMENT (sym))
5558 continue;
5559
5560 if (argno == 0)
5561 ++argno;
5562 else
5563 {
5564 insert_exception_resume_breakpoint (ecs->event_thread,
5565 b, frame, sym);
5566 break;
5567 }
5568 }
5569 }
5570 }
5571
5572 static void
5573 stop_stepping (struct execution_control_state *ecs)
5574 {
5575 if (debug_infrun)
5576 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5577
5578 /* Let callers know we don't want to wait for the inferior anymore. */
5579 ecs->wait_some_more = 0;
5580 }
5581
5582 /* This function handles various cases where we need to continue
5583 waiting for the inferior. */
5584 /* (Used to be the keep_going: label in the old wait_for_inferior). */
5585
5586 static void
5587 keep_going (struct execution_control_state *ecs)
5588 {
5589 /* Make sure normal_stop is called if we get a QUIT handled before
5590 reaching resume. */
5591 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5592
5593 /* Save the pc before execution, to compare with pc after stop. */
5594 ecs->event_thread->prev_pc
5595 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5596
5597 /* If we did not do break;, it means we should keep running the
5598 inferior and not return to debugger. */
5599
5600 if (ecs->event_thread->control.trap_expected
5601 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
5602 {
5603 /* We took a signal (which we are supposed to pass through to
5604 the inferior, else we'd not get here) and we haven't yet
5605 gotten our trap. Simply continue. */
5606
5607 discard_cleanups (old_cleanups);
5608 resume (currently_stepping (ecs->event_thread),
5609 ecs->event_thread->suspend.stop_signal);
5610 }
5611 else
5612 {
5613 /* Either the trap was not expected, but we are continuing
5614 anyway (the user asked that this signal be passed to the
5615 child)
5616 -- or --
5617 The signal was SIGTRAP, e.g. it was our signal, but we
5618 decided we should resume from it.
5619
5620 We're going to run this baby now!
5621
5622 Note that insert_breakpoints won't try to re-insert
5623 already inserted breakpoints. Therefore, we don't
5624 care if breakpoints were already inserted, or not. */
5625
5626 if (ecs->event_thread->stepping_over_breakpoint)
5627 {
5628 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5629
5630 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5631 /* Since we can't do a displaced step, we have to remove
5632 the breakpoint while we step it. To keep things
5633 simple, we remove them all. */
5634 remove_breakpoints ();
5635 }
5636 else
5637 {
5638 volatile struct gdb_exception e;
5639
5640 /* Stop stepping when inserting breakpoints
5641 has failed. */
5642 TRY_CATCH (e, RETURN_MASK_ERROR)
5643 {
5644 insert_breakpoints ();
5645 }
5646 if (e.reason < 0)
5647 {
5648 exception_print (gdb_stderr, e);
5649 stop_stepping (ecs);
5650 return;
5651 }
5652 }
5653
5654 ecs->event_thread->control.trap_expected
5655 = ecs->event_thread->stepping_over_breakpoint;
5656
5657 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
5658 specifies that such a signal should be delivered to the
5659 target program).
5660
5661 Typically, this would occure when a user is debugging a
5662 target monitor on a simulator: the target monitor sets a
5663 breakpoint; the simulator encounters this break-point and
5664 halts the simulation handing control to GDB; GDB, noteing
5665 that the break-point isn't valid, returns control back to the
5666 simulator; the simulator then delivers the hardware
5667 equivalent of a SIGNAL_TRAP to the program being debugged. */
5668
5669 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
5670 && !signal_program[ecs->event_thread->suspend.stop_signal])
5671 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
5672
5673 discard_cleanups (old_cleanups);
5674 resume (currently_stepping (ecs->event_thread),
5675 ecs->event_thread->suspend.stop_signal);
5676 }
5677
5678 prepare_to_wait (ecs);
5679 }
5680
5681 /* This function normally comes after a resume, before
5682 handle_inferior_event exits. It takes care of any last bits of
5683 housekeeping, and sets the all-important wait_some_more flag. */
5684
5685 static void
5686 prepare_to_wait (struct execution_control_state *ecs)
5687 {
5688 if (debug_infrun)
5689 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5690
5691 /* This is the old end of the while loop. Let everybody know we
5692 want to wait for the inferior some more and get called again
5693 soon. */
5694 ecs->wait_some_more = 1;
5695 }
5696
5697 /* Several print_*_reason functions to print why the inferior has stopped.
5698 We always print something when the inferior exits, or receives a signal.
5699 The rest of the cases are dealt with later on in normal_stop and
5700 print_it_typical. Ideally there should be a call to one of these
5701 print_*_reason functions functions from handle_inferior_event each time
5702 stop_stepping is called. */
5703
5704 /* Print why the inferior has stopped.
5705 We are done with a step/next/si/ni command, print why the inferior has
5706 stopped. For now print nothing. Print a message only if not in the middle
5707 of doing a "step n" operation for n > 1. */
5708
5709 static void
5710 print_end_stepping_range_reason (void)
5711 {
5712 if ((!inferior_thread ()->step_multi
5713 || !inferior_thread ()->control.stop_step)
5714 && ui_out_is_mi_like_p (current_uiout))
5715 ui_out_field_string (current_uiout, "reason",
5716 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5717 }
5718
5719 /* The inferior was terminated by a signal, print why it stopped. */
5720
5721 static void
5722 print_signal_exited_reason (enum target_signal siggnal)
5723 {
5724 struct ui_out *uiout = current_uiout;
5725
5726 annotate_signalled ();
5727 if (ui_out_is_mi_like_p (uiout))
5728 ui_out_field_string
5729 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5730 ui_out_text (uiout, "\nProgram terminated with signal ");
5731 annotate_signal_name ();
5732 ui_out_field_string (uiout, "signal-name",
5733 target_signal_to_name (siggnal));
5734 annotate_signal_name_end ();
5735 ui_out_text (uiout, ", ");
5736 annotate_signal_string ();
5737 ui_out_field_string (uiout, "signal-meaning",
5738 target_signal_to_string (siggnal));
5739 annotate_signal_string_end ();
5740 ui_out_text (uiout, ".\n");
5741 ui_out_text (uiout, "The program no longer exists.\n");
5742 }
5743
5744 /* The inferior program is finished, print why it stopped. */
5745
5746 static void
5747 print_exited_reason (int exitstatus)
5748 {
5749 struct inferior *inf = current_inferior ();
5750 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5751 struct ui_out *uiout = current_uiout;
5752
5753 annotate_exited (exitstatus);
5754 if (exitstatus)
5755 {
5756 if (ui_out_is_mi_like_p (uiout))
5757 ui_out_field_string (uiout, "reason",
5758 async_reason_lookup (EXEC_ASYNC_EXITED));
5759 ui_out_text (uiout, "[Inferior ");
5760 ui_out_text (uiout, plongest (inf->num));
5761 ui_out_text (uiout, " (");
5762 ui_out_text (uiout, pidstr);
5763 ui_out_text (uiout, ") exited with code ");
5764 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5765 ui_out_text (uiout, "]\n");
5766 }
5767 else
5768 {
5769 if (ui_out_is_mi_like_p (uiout))
5770 ui_out_field_string
5771 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5772 ui_out_text (uiout, "[Inferior ");
5773 ui_out_text (uiout, plongest (inf->num));
5774 ui_out_text (uiout, " (");
5775 ui_out_text (uiout, pidstr);
5776 ui_out_text (uiout, ") exited normally]\n");
5777 }
5778 /* Support the --return-child-result option. */
5779 return_child_result_value = exitstatus;
5780 }
5781
5782 /* Signal received, print why the inferior has stopped. The signal table
5783 tells us to print about it. */
5784
5785 static void
5786 print_signal_received_reason (enum target_signal siggnal)
5787 {
5788 struct ui_out *uiout = current_uiout;
5789
5790 annotate_signal ();
5791
5792 if (siggnal == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5793 {
5794 struct thread_info *t = inferior_thread ();
5795
5796 ui_out_text (uiout, "\n[");
5797 ui_out_field_string (uiout, "thread-name",
5798 target_pid_to_str (t->ptid));
5799 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5800 ui_out_text (uiout, " stopped");
5801 }
5802 else
5803 {
5804 ui_out_text (uiout, "\nProgram received signal ");
5805 annotate_signal_name ();
5806 if (ui_out_is_mi_like_p (uiout))
5807 ui_out_field_string
5808 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5809 ui_out_field_string (uiout, "signal-name",
5810 target_signal_to_name (siggnal));
5811 annotate_signal_name_end ();
5812 ui_out_text (uiout, ", ");
5813 annotate_signal_string ();
5814 ui_out_field_string (uiout, "signal-meaning",
5815 target_signal_to_string (siggnal));
5816 annotate_signal_string_end ();
5817 }
5818 ui_out_text (uiout, ".\n");
5819 }
5820
5821 /* Reverse execution: target ran out of history info, print why the inferior
5822 has stopped. */
5823
5824 static void
5825 print_no_history_reason (void)
5826 {
5827 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
5828 }
5829
5830 /* Here to return control to GDB when the inferior stops for real.
5831 Print appropriate messages, remove breakpoints, give terminal our modes.
5832
5833 STOP_PRINT_FRAME nonzero means print the executing frame
5834 (pc, function, args, file, line number and line text).
5835 BREAKPOINTS_FAILED nonzero means stop was due to error
5836 attempting to insert breakpoints. */
5837
5838 void
5839 normal_stop (void)
5840 {
5841 struct target_waitstatus last;
5842 ptid_t last_ptid;
5843 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5844
5845 get_last_target_status (&last_ptid, &last);
5846
5847 /* If an exception is thrown from this point on, make sure to
5848 propagate GDB's knowledge of the executing state to the
5849 frontend/user running state. A QUIT is an easy exception to see
5850 here, so do this before any filtered output. */
5851 if (!non_stop)
5852 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5853 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5854 && last.kind != TARGET_WAITKIND_EXITED
5855 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5856 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5857
5858 /* In non-stop mode, we don't want GDB to switch threads behind the
5859 user's back, to avoid races where the user is typing a command to
5860 apply to thread x, but GDB switches to thread y before the user
5861 finishes entering the command. */
5862
5863 /* As with the notification of thread events, we want to delay
5864 notifying the user that we've switched thread context until
5865 the inferior actually stops.
5866
5867 There's no point in saying anything if the inferior has exited.
5868 Note that SIGNALLED here means "exited with a signal", not
5869 "received a signal". */
5870 if (!non_stop
5871 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5872 && target_has_execution
5873 && last.kind != TARGET_WAITKIND_SIGNALLED
5874 && last.kind != TARGET_WAITKIND_EXITED
5875 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5876 {
5877 target_terminal_ours_for_output ();
5878 printf_filtered (_("[Switching to %s]\n"),
5879 target_pid_to_str (inferior_ptid));
5880 annotate_thread_changed ();
5881 previous_inferior_ptid = inferior_ptid;
5882 }
5883
5884 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
5885 {
5886 gdb_assert (sync_execution || !target_can_async_p ());
5887
5888 target_terminal_ours_for_output ();
5889 printf_filtered (_("No unwaited-for children left.\n"));
5890 }
5891
5892 if (!breakpoints_always_inserted_mode () && target_has_execution)
5893 {
5894 if (remove_breakpoints ())
5895 {
5896 target_terminal_ours_for_output ();
5897 printf_filtered (_("Cannot remove breakpoints because "
5898 "program is no longer writable.\nFurther "
5899 "execution is probably impossible.\n"));
5900 }
5901 }
5902
5903 /* If an auto-display called a function and that got a signal,
5904 delete that auto-display to avoid an infinite recursion. */
5905
5906 if (stopped_by_random_signal)
5907 disable_current_display ();
5908
5909 /* Don't print a message if in the middle of doing a "step n"
5910 operation for n > 1 */
5911 if (target_has_execution
5912 && last.kind != TARGET_WAITKIND_SIGNALLED
5913 && last.kind != TARGET_WAITKIND_EXITED
5914 && inferior_thread ()->step_multi
5915 && inferior_thread ()->control.stop_step)
5916 goto done;
5917
5918 target_terminal_ours ();
5919 async_enable_stdin ();
5920
5921 /* Set the current source location. This will also happen if we
5922 display the frame below, but the current SAL will be incorrect
5923 during a user hook-stop function. */
5924 if (has_stack_frames () && !stop_stack_dummy)
5925 set_current_sal_from_frame (get_current_frame (), 1);
5926
5927 /* Let the user/frontend see the threads as stopped. */
5928 do_cleanups (old_chain);
5929
5930 /* Look up the hook_stop and run it (CLI internally handles problem
5931 of stop_command's pre-hook not existing). */
5932 if (stop_command)
5933 catch_errors (hook_stop_stub, stop_command,
5934 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5935
5936 if (!has_stack_frames ())
5937 goto done;
5938
5939 if (last.kind == TARGET_WAITKIND_SIGNALLED
5940 || last.kind == TARGET_WAITKIND_EXITED)
5941 goto done;
5942
5943 /* Select innermost stack frame - i.e., current frame is frame 0,
5944 and current location is based on that.
5945 Don't do this on return from a stack dummy routine,
5946 or if the program has exited. */
5947
5948 if (!stop_stack_dummy)
5949 {
5950 select_frame (get_current_frame ());
5951
5952 /* Print current location without a level number, if
5953 we have changed functions or hit a breakpoint.
5954 Print source line if we have one.
5955 bpstat_print() contains the logic deciding in detail
5956 what to print, based on the event(s) that just occurred. */
5957
5958 /* If --batch-silent is enabled then there's no need to print the current
5959 source location, and to try risks causing an error message about
5960 missing source files. */
5961 if (stop_print_frame && !batch_silent)
5962 {
5963 int bpstat_ret;
5964 int source_flag;
5965 int do_frame_printing = 1;
5966 struct thread_info *tp = inferior_thread ();
5967
5968 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
5969 switch (bpstat_ret)
5970 {
5971 case PRINT_UNKNOWN:
5972 /* FIXME: cagney/2002-12-01: Given that a frame ID does
5973 (or should) carry around the function and does (or
5974 should) use that when doing a frame comparison. */
5975 if (tp->control.stop_step
5976 && frame_id_eq (tp->control.step_frame_id,
5977 get_frame_id (get_current_frame ()))
5978 && step_start_function == find_pc_function (stop_pc))
5979 source_flag = SRC_LINE; /* Finished step, just
5980 print source line. */
5981 else
5982 source_flag = SRC_AND_LOC; /* Print location and
5983 source line. */
5984 break;
5985 case PRINT_SRC_AND_LOC:
5986 source_flag = SRC_AND_LOC; /* Print location and
5987 source line. */
5988 break;
5989 case PRINT_SRC_ONLY:
5990 source_flag = SRC_LINE;
5991 break;
5992 case PRINT_NOTHING:
5993 source_flag = SRC_LINE; /* something bogus */
5994 do_frame_printing = 0;
5995 break;
5996 default:
5997 internal_error (__FILE__, __LINE__, _("Unknown value."));
5998 }
5999
6000 /* The behavior of this routine with respect to the source
6001 flag is:
6002 SRC_LINE: Print only source line
6003 LOCATION: Print only location
6004 SRC_AND_LOC: Print location and source line. */
6005 if (do_frame_printing)
6006 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
6007
6008 /* Display the auto-display expressions. */
6009 do_displays ();
6010 }
6011 }
6012
6013 /* Save the function value return registers, if we care.
6014 We might be about to restore their previous contents. */
6015 if (inferior_thread ()->control.proceed_to_finish
6016 && execution_direction != EXEC_REVERSE)
6017 {
6018 /* This should not be necessary. */
6019 if (stop_registers)
6020 regcache_xfree (stop_registers);
6021
6022 /* NB: The copy goes through to the target picking up the value of
6023 all the registers. */
6024 stop_registers = regcache_dup (get_current_regcache ());
6025 }
6026
6027 if (stop_stack_dummy == STOP_STACK_DUMMY)
6028 {
6029 /* Pop the empty frame that contains the stack dummy.
6030 This also restores inferior state prior to the call
6031 (struct infcall_suspend_state). */
6032 struct frame_info *frame = get_current_frame ();
6033
6034 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6035 frame_pop (frame);
6036 /* frame_pop() calls reinit_frame_cache as the last thing it
6037 does which means there's currently no selected frame. We
6038 don't need to re-establish a selected frame if the dummy call
6039 returns normally, that will be done by
6040 restore_infcall_control_state. However, we do have to handle
6041 the case where the dummy call is returning after being
6042 stopped (e.g. the dummy call previously hit a breakpoint).
6043 We can't know which case we have so just always re-establish
6044 a selected frame here. */
6045 select_frame (get_current_frame ());
6046 }
6047
6048 done:
6049 annotate_stopped ();
6050
6051 /* Suppress the stop observer if we're in the middle of:
6052
6053 - a step n (n > 1), as there still more steps to be done.
6054
6055 - a "finish" command, as the observer will be called in
6056 finish_command_continuation, so it can include the inferior
6057 function's return value.
6058
6059 - calling an inferior function, as we pretend we inferior didn't
6060 run at all. The return value of the call is handled by the
6061 expression evaluator, through call_function_by_hand. */
6062
6063 if (!target_has_execution
6064 || last.kind == TARGET_WAITKIND_SIGNALLED
6065 || last.kind == TARGET_WAITKIND_EXITED
6066 || last.kind == TARGET_WAITKIND_NO_RESUMED
6067 || (!(inferior_thread ()->step_multi
6068 && inferior_thread ()->control.stop_step)
6069 && !(inferior_thread ()->control.stop_bpstat
6070 && inferior_thread ()->control.proceed_to_finish)
6071 && !inferior_thread ()->control.in_infcall))
6072 {
6073 if (!ptid_equal (inferior_ptid, null_ptid))
6074 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6075 stop_print_frame);
6076 else
6077 observer_notify_normal_stop (NULL, stop_print_frame);
6078 }
6079
6080 if (target_has_execution)
6081 {
6082 if (last.kind != TARGET_WAITKIND_SIGNALLED
6083 && last.kind != TARGET_WAITKIND_EXITED)
6084 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6085 Delete any breakpoint that is to be deleted at the next stop. */
6086 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6087 }
6088
6089 /* Try to get rid of automatically added inferiors that are no
6090 longer needed. Keeping those around slows down things linearly.
6091 Note that this never removes the current inferior. */
6092 prune_inferiors ();
6093 }
6094
6095 static int
6096 hook_stop_stub (void *cmd)
6097 {
6098 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6099 return (0);
6100 }
6101 \f
6102 int
6103 signal_stop_state (int signo)
6104 {
6105 return signal_stop[signo];
6106 }
6107
6108 int
6109 signal_print_state (int signo)
6110 {
6111 return signal_print[signo];
6112 }
6113
6114 int
6115 signal_pass_state (int signo)
6116 {
6117 return signal_program[signo];
6118 }
6119
6120 static void
6121 signal_cache_update (int signo)
6122 {
6123 if (signo == -1)
6124 {
6125 for (signo = 0; signo < (int) TARGET_SIGNAL_LAST; signo++)
6126 signal_cache_update (signo);
6127
6128 return;
6129 }
6130
6131 signal_pass[signo] = (signal_stop[signo] == 0
6132 && signal_print[signo] == 0
6133 && signal_program[signo] == 1);
6134 }
6135
6136 int
6137 signal_stop_update (int signo, int state)
6138 {
6139 int ret = signal_stop[signo];
6140
6141 signal_stop[signo] = state;
6142 signal_cache_update (signo);
6143 return ret;
6144 }
6145
6146 int
6147 signal_print_update (int signo, int state)
6148 {
6149 int ret = signal_print[signo];
6150
6151 signal_print[signo] = state;
6152 signal_cache_update (signo);
6153 return ret;
6154 }
6155
6156 int
6157 signal_pass_update (int signo, int state)
6158 {
6159 int ret = signal_program[signo];
6160
6161 signal_program[signo] = state;
6162 signal_cache_update (signo);
6163 return ret;
6164 }
6165
6166 static void
6167 sig_print_header (void)
6168 {
6169 printf_filtered (_("Signal Stop\tPrint\tPass "
6170 "to program\tDescription\n"));
6171 }
6172
6173 static void
6174 sig_print_info (enum target_signal oursig)
6175 {
6176 const char *name = target_signal_to_name (oursig);
6177 int name_padding = 13 - strlen (name);
6178
6179 if (name_padding <= 0)
6180 name_padding = 0;
6181
6182 printf_filtered ("%s", name);
6183 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6184 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6185 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6186 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6187 printf_filtered ("%s\n", target_signal_to_string (oursig));
6188 }
6189
6190 /* Specify how various signals in the inferior should be handled. */
6191
6192 static void
6193 handle_command (char *args, int from_tty)
6194 {
6195 char **argv;
6196 int digits, wordlen;
6197 int sigfirst, signum, siglast;
6198 enum target_signal oursig;
6199 int allsigs;
6200 int nsigs;
6201 unsigned char *sigs;
6202 struct cleanup *old_chain;
6203
6204 if (args == NULL)
6205 {
6206 error_no_arg (_("signal to handle"));
6207 }
6208
6209 /* Allocate and zero an array of flags for which signals to handle. */
6210
6211 nsigs = (int) TARGET_SIGNAL_LAST;
6212 sigs = (unsigned char *) alloca (nsigs);
6213 memset (sigs, 0, nsigs);
6214
6215 /* Break the command line up into args. */
6216
6217 argv = gdb_buildargv (args);
6218 old_chain = make_cleanup_freeargv (argv);
6219
6220 /* Walk through the args, looking for signal oursigs, signal names, and
6221 actions. Signal numbers and signal names may be interspersed with
6222 actions, with the actions being performed for all signals cumulatively
6223 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6224
6225 while (*argv != NULL)
6226 {
6227 wordlen = strlen (*argv);
6228 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6229 {;
6230 }
6231 allsigs = 0;
6232 sigfirst = siglast = -1;
6233
6234 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6235 {
6236 /* Apply action to all signals except those used by the
6237 debugger. Silently skip those. */
6238 allsigs = 1;
6239 sigfirst = 0;
6240 siglast = nsigs - 1;
6241 }
6242 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6243 {
6244 SET_SIGS (nsigs, sigs, signal_stop);
6245 SET_SIGS (nsigs, sigs, signal_print);
6246 }
6247 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6248 {
6249 UNSET_SIGS (nsigs, sigs, signal_program);
6250 }
6251 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6252 {
6253 SET_SIGS (nsigs, sigs, signal_print);
6254 }
6255 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6256 {
6257 SET_SIGS (nsigs, sigs, signal_program);
6258 }
6259 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6260 {
6261 UNSET_SIGS (nsigs, sigs, signal_stop);
6262 }
6263 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6264 {
6265 SET_SIGS (nsigs, sigs, signal_program);
6266 }
6267 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6268 {
6269 UNSET_SIGS (nsigs, sigs, signal_print);
6270 UNSET_SIGS (nsigs, sigs, signal_stop);
6271 }
6272 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6273 {
6274 UNSET_SIGS (nsigs, sigs, signal_program);
6275 }
6276 else if (digits > 0)
6277 {
6278 /* It is numeric. The numeric signal refers to our own
6279 internal signal numbering from target.h, not to host/target
6280 signal number. This is a feature; users really should be
6281 using symbolic names anyway, and the common ones like
6282 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6283
6284 sigfirst = siglast = (int)
6285 target_signal_from_command (atoi (*argv));
6286 if ((*argv)[digits] == '-')
6287 {
6288 siglast = (int)
6289 target_signal_from_command (atoi ((*argv) + digits + 1));
6290 }
6291 if (sigfirst > siglast)
6292 {
6293 /* Bet he didn't figure we'd think of this case... */
6294 signum = sigfirst;
6295 sigfirst = siglast;
6296 siglast = signum;
6297 }
6298 }
6299 else
6300 {
6301 oursig = target_signal_from_name (*argv);
6302 if (oursig != TARGET_SIGNAL_UNKNOWN)
6303 {
6304 sigfirst = siglast = (int) oursig;
6305 }
6306 else
6307 {
6308 /* Not a number and not a recognized flag word => complain. */
6309 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6310 }
6311 }
6312
6313 /* If any signal numbers or symbol names were found, set flags for
6314 which signals to apply actions to. */
6315
6316 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6317 {
6318 switch ((enum target_signal) signum)
6319 {
6320 case TARGET_SIGNAL_TRAP:
6321 case TARGET_SIGNAL_INT:
6322 if (!allsigs && !sigs[signum])
6323 {
6324 if (query (_("%s is used by the debugger.\n\
6325 Are you sure you want to change it? "),
6326 target_signal_to_name ((enum target_signal) signum)))
6327 {
6328 sigs[signum] = 1;
6329 }
6330 else
6331 {
6332 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6333 gdb_flush (gdb_stdout);
6334 }
6335 }
6336 break;
6337 case TARGET_SIGNAL_0:
6338 case TARGET_SIGNAL_DEFAULT:
6339 case TARGET_SIGNAL_UNKNOWN:
6340 /* Make sure that "all" doesn't print these. */
6341 break;
6342 default:
6343 sigs[signum] = 1;
6344 break;
6345 }
6346 }
6347
6348 argv++;
6349 }
6350
6351 for (signum = 0; signum < nsigs; signum++)
6352 if (sigs[signum])
6353 {
6354 signal_cache_update (-1);
6355 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
6356
6357 if (from_tty)
6358 {
6359 /* Show the results. */
6360 sig_print_header ();
6361 for (; signum < nsigs; signum++)
6362 if (sigs[signum])
6363 sig_print_info (signum);
6364 }
6365
6366 break;
6367 }
6368
6369 do_cleanups (old_chain);
6370 }
6371
6372 static void
6373 xdb_handle_command (char *args, int from_tty)
6374 {
6375 char **argv;
6376 struct cleanup *old_chain;
6377
6378 if (args == NULL)
6379 error_no_arg (_("xdb command"));
6380
6381 /* Break the command line up into args. */
6382
6383 argv = gdb_buildargv (args);
6384 old_chain = make_cleanup_freeargv (argv);
6385 if (argv[1] != (char *) NULL)
6386 {
6387 char *argBuf;
6388 int bufLen;
6389
6390 bufLen = strlen (argv[0]) + 20;
6391 argBuf = (char *) xmalloc (bufLen);
6392 if (argBuf)
6393 {
6394 int validFlag = 1;
6395 enum target_signal oursig;
6396
6397 oursig = target_signal_from_name (argv[0]);
6398 memset (argBuf, 0, bufLen);
6399 if (strcmp (argv[1], "Q") == 0)
6400 sprintf (argBuf, "%s %s", argv[0], "noprint");
6401 else
6402 {
6403 if (strcmp (argv[1], "s") == 0)
6404 {
6405 if (!signal_stop[oursig])
6406 sprintf (argBuf, "%s %s", argv[0], "stop");
6407 else
6408 sprintf (argBuf, "%s %s", argv[0], "nostop");
6409 }
6410 else if (strcmp (argv[1], "i") == 0)
6411 {
6412 if (!signal_program[oursig])
6413 sprintf (argBuf, "%s %s", argv[0], "pass");
6414 else
6415 sprintf (argBuf, "%s %s", argv[0], "nopass");
6416 }
6417 else if (strcmp (argv[1], "r") == 0)
6418 {
6419 if (!signal_print[oursig])
6420 sprintf (argBuf, "%s %s", argv[0], "print");
6421 else
6422 sprintf (argBuf, "%s %s", argv[0], "noprint");
6423 }
6424 else
6425 validFlag = 0;
6426 }
6427 if (validFlag)
6428 handle_command (argBuf, from_tty);
6429 else
6430 printf_filtered (_("Invalid signal handling flag.\n"));
6431 if (argBuf)
6432 xfree (argBuf);
6433 }
6434 }
6435 do_cleanups (old_chain);
6436 }
6437
6438 /* Print current contents of the tables set by the handle command.
6439 It is possible we should just be printing signals actually used
6440 by the current target (but for things to work right when switching
6441 targets, all signals should be in the signal tables). */
6442
6443 static void
6444 signals_info (char *signum_exp, int from_tty)
6445 {
6446 enum target_signal oursig;
6447
6448 sig_print_header ();
6449
6450 if (signum_exp)
6451 {
6452 /* First see if this is a symbol name. */
6453 oursig = target_signal_from_name (signum_exp);
6454 if (oursig == TARGET_SIGNAL_UNKNOWN)
6455 {
6456 /* No, try numeric. */
6457 oursig =
6458 target_signal_from_command (parse_and_eval_long (signum_exp));
6459 }
6460 sig_print_info (oursig);
6461 return;
6462 }
6463
6464 printf_filtered ("\n");
6465 /* These ugly casts brought to you by the native VAX compiler. */
6466 for (oursig = TARGET_SIGNAL_FIRST;
6467 (int) oursig < (int) TARGET_SIGNAL_LAST;
6468 oursig = (enum target_signal) ((int) oursig + 1))
6469 {
6470 QUIT;
6471
6472 if (oursig != TARGET_SIGNAL_UNKNOWN
6473 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
6474 sig_print_info (oursig);
6475 }
6476
6477 printf_filtered (_("\nUse the \"handle\" command "
6478 "to change these tables.\n"));
6479 }
6480
6481 /* Check if it makes sense to read $_siginfo from the current thread
6482 at this point. If not, throw an error. */
6483
6484 static void
6485 validate_siginfo_access (void)
6486 {
6487 /* No current inferior, no siginfo. */
6488 if (ptid_equal (inferior_ptid, null_ptid))
6489 error (_("No thread selected."));
6490
6491 /* Don't try to read from a dead thread. */
6492 if (is_exited (inferior_ptid))
6493 error (_("The current thread has terminated"));
6494
6495 /* ... or from a spinning thread. */
6496 if (is_running (inferior_ptid))
6497 error (_("Selected thread is running."));
6498 }
6499
6500 /* The $_siginfo convenience variable is a bit special. We don't know
6501 for sure the type of the value until we actually have a chance to
6502 fetch the data. The type can change depending on gdbarch, so it is
6503 also dependent on which thread you have selected.
6504
6505 1. making $_siginfo be an internalvar that creates a new value on
6506 access.
6507
6508 2. making the value of $_siginfo be an lval_computed value. */
6509
6510 /* This function implements the lval_computed support for reading a
6511 $_siginfo value. */
6512
6513 static void
6514 siginfo_value_read (struct value *v)
6515 {
6516 LONGEST transferred;
6517
6518 validate_siginfo_access ();
6519
6520 transferred =
6521 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6522 NULL,
6523 value_contents_all_raw (v),
6524 value_offset (v),
6525 TYPE_LENGTH (value_type (v)));
6526
6527 if (transferred != TYPE_LENGTH (value_type (v)))
6528 error (_("Unable to read siginfo"));
6529 }
6530
6531 /* This function implements the lval_computed support for writing a
6532 $_siginfo value. */
6533
6534 static void
6535 siginfo_value_write (struct value *v, struct value *fromval)
6536 {
6537 LONGEST transferred;
6538
6539 validate_siginfo_access ();
6540
6541 transferred = target_write (&current_target,
6542 TARGET_OBJECT_SIGNAL_INFO,
6543 NULL,
6544 value_contents_all_raw (fromval),
6545 value_offset (v),
6546 TYPE_LENGTH (value_type (fromval)));
6547
6548 if (transferred != TYPE_LENGTH (value_type (fromval)))
6549 error (_("Unable to write siginfo"));
6550 }
6551
6552 static const struct lval_funcs siginfo_value_funcs =
6553 {
6554 siginfo_value_read,
6555 siginfo_value_write
6556 };
6557
6558 /* Return a new value with the correct type for the siginfo object of
6559 the current thread using architecture GDBARCH. Return a void value
6560 if there's no object available. */
6561
6562 static struct value *
6563 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
6564 {
6565 if (target_has_stack
6566 && !ptid_equal (inferior_ptid, null_ptid)
6567 && gdbarch_get_siginfo_type_p (gdbarch))
6568 {
6569 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6570
6571 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6572 }
6573
6574 return allocate_value (builtin_type (gdbarch)->builtin_void);
6575 }
6576
6577 \f
6578 /* infcall_suspend_state contains state about the program itself like its
6579 registers and any signal it received when it last stopped.
6580 This state must be restored regardless of how the inferior function call
6581 ends (either successfully, or after it hits a breakpoint or signal)
6582 if the program is to properly continue where it left off. */
6583
6584 struct infcall_suspend_state
6585 {
6586 struct thread_suspend_state thread_suspend;
6587 struct inferior_suspend_state inferior_suspend;
6588
6589 /* Other fields: */
6590 CORE_ADDR stop_pc;
6591 struct regcache *registers;
6592
6593 /* Format of SIGINFO_DATA or NULL if it is not present. */
6594 struct gdbarch *siginfo_gdbarch;
6595
6596 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6597 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6598 content would be invalid. */
6599 gdb_byte *siginfo_data;
6600 };
6601
6602 struct infcall_suspend_state *
6603 save_infcall_suspend_state (void)
6604 {
6605 struct infcall_suspend_state *inf_state;
6606 struct thread_info *tp = inferior_thread ();
6607 struct inferior *inf = current_inferior ();
6608 struct regcache *regcache = get_current_regcache ();
6609 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6610 gdb_byte *siginfo_data = NULL;
6611
6612 if (gdbarch_get_siginfo_type_p (gdbarch))
6613 {
6614 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6615 size_t len = TYPE_LENGTH (type);
6616 struct cleanup *back_to;
6617
6618 siginfo_data = xmalloc (len);
6619 back_to = make_cleanup (xfree, siginfo_data);
6620
6621 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6622 siginfo_data, 0, len) == len)
6623 discard_cleanups (back_to);
6624 else
6625 {
6626 /* Errors ignored. */
6627 do_cleanups (back_to);
6628 siginfo_data = NULL;
6629 }
6630 }
6631
6632 inf_state = XZALLOC (struct infcall_suspend_state);
6633
6634 if (siginfo_data)
6635 {
6636 inf_state->siginfo_gdbarch = gdbarch;
6637 inf_state->siginfo_data = siginfo_data;
6638 }
6639
6640 inf_state->thread_suspend = tp->suspend;
6641 inf_state->inferior_suspend = inf->suspend;
6642
6643 /* run_inferior_call will not use the signal due to its `proceed' call with
6644 TARGET_SIGNAL_0 anyway. */
6645 tp->suspend.stop_signal = TARGET_SIGNAL_0;
6646
6647 inf_state->stop_pc = stop_pc;
6648
6649 inf_state->registers = regcache_dup (regcache);
6650
6651 return inf_state;
6652 }
6653
6654 /* Restore inferior session state to INF_STATE. */
6655
6656 void
6657 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6658 {
6659 struct thread_info *tp = inferior_thread ();
6660 struct inferior *inf = current_inferior ();
6661 struct regcache *regcache = get_current_regcache ();
6662 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6663
6664 tp->suspend = inf_state->thread_suspend;
6665 inf->suspend = inf_state->inferior_suspend;
6666
6667 stop_pc = inf_state->stop_pc;
6668
6669 if (inf_state->siginfo_gdbarch == gdbarch)
6670 {
6671 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6672 size_t len = TYPE_LENGTH (type);
6673
6674 /* Errors ignored. */
6675 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6676 inf_state->siginfo_data, 0, len);
6677 }
6678
6679 /* The inferior can be gone if the user types "print exit(0)"
6680 (and perhaps other times). */
6681 if (target_has_execution)
6682 /* NB: The register write goes through to the target. */
6683 regcache_cpy (regcache, inf_state->registers);
6684
6685 discard_infcall_suspend_state (inf_state);
6686 }
6687
6688 static void
6689 do_restore_infcall_suspend_state_cleanup (void *state)
6690 {
6691 restore_infcall_suspend_state (state);
6692 }
6693
6694 struct cleanup *
6695 make_cleanup_restore_infcall_suspend_state
6696 (struct infcall_suspend_state *inf_state)
6697 {
6698 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6699 }
6700
6701 void
6702 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6703 {
6704 regcache_xfree (inf_state->registers);
6705 xfree (inf_state->siginfo_data);
6706 xfree (inf_state);
6707 }
6708
6709 struct regcache *
6710 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6711 {
6712 return inf_state->registers;
6713 }
6714
6715 /* infcall_control_state contains state regarding gdb's control of the
6716 inferior itself like stepping control. It also contains session state like
6717 the user's currently selected frame. */
6718
6719 struct infcall_control_state
6720 {
6721 struct thread_control_state thread_control;
6722 struct inferior_control_state inferior_control;
6723
6724 /* Other fields: */
6725 enum stop_stack_kind stop_stack_dummy;
6726 int stopped_by_random_signal;
6727 int stop_after_trap;
6728
6729 /* ID if the selected frame when the inferior function call was made. */
6730 struct frame_id selected_frame_id;
6731 };
6732
6733 /* Save all of the information associated with the inferior<==>gdb
6734 connection. */
6735
6736 struct infcall_control_state *
6737 save_infcall_control_state (void)
6738 {
6739 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6740 struct thread_info *tp = inferior_thread ();
6741 struct inferior *inf = current_inferior ();
6742
6743 inf_status->thread_control = tp->control;
6744 inf_status->inferior_control = inf->control;
6745
6746 tp->control.step_resume_breakpoint = NULL;
6747 tp->control.exception_resume_breakpoint = NULL;
6748
6749 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6750 chain. If caller's caller is walking the chain, they'll be happier if we
6751 hand them back the original chain when restore_infcall_control_state is
6752 called. */
6753 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6754
6755 /* Other fields: */
6756 inf_status->stop_stack_dummy = stop_stack_dummy;
6757 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6758 inf_status->stop_after_trap = stop_after_trap;
6759
6760 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6761
6762 return inf_status;
6763 }
6764
6765 static int
6766 restore_selected_frame (void *args)
6767 {
6768 struct frame_id *fid = (struct frame_id *) args;
6769 struct frame_info *frame;
6770
6771 frame = frame_find_by_id (*fid);
6772
6773 /* If inf_status->selected_frame_id is NULL, there was no previously
6774 selected frame. */
6775 if (frame == NULL)
6776 {
6777 warning (_("Unable to restore previously selected frame."));
6778 return 0;
6779 }
6780
6781 select_frame (frame);
6782
6783 return (1);
6784 }
6785
6786 /* Restore inferior session state to INF_STATUS. */
6787
6788 void
6789 restore_infcall_control_state (struct infcall_control_state *inf_status)
6790 {
6791 struct thread_info *tp = inferior_thread ();
6792 struct inferior *inf = current_inferior ();
6793
6794 if (tp->control.step_resume_breakpoint)
6795 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6796
6797 if (tp->control.exception_resume_breakpoint)
6798 tp->control.exception_resume_breakpoint->disposition
6799 = disp_del_at_next_stop;
6800
6801 /* Handle the bpstat_copy of the chain. */
6802 bpstat_clear (&tp->control.stop_bpstat);
6803
6804 tp->control = inf_status->thread_control;
6805 inf->control = inf_status->inferior_control;
6806
6807 /* Other fields: */
6808 stop_stack_dummy = inf_status->stop_stack_dummy;
6809 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6810 stop_after_trap = inf_status->stop_after_trap;
6811
6812 if (target_has_stack)
6813 {
6814 /* The point of catch_errors is that if the stack is clobbered,
6815 walking the stack might encounter a garbage pointer and
6816 error() trying to dereference it. */
6817 if (catch_errors
6818 (restore_selected_frame, &inf_status->selected_frame_id,
6819 "Unable to restore previously selected frame:\n",
6820 RETURN_MASK_ERROR) == 0)
6821 /* Error in restoring the selected frame. Select the innermost
6822 frame. */
6823 select_frame (get_current_frame ());
6824 }
6825
6826 xfree (inf_status);
6827 }
6828
6829 static void
6830 do_restore_infcall_control_state_cleanup (void *sts)
6831 {
6832 restore_infcall_control_state (sts);
6833 }
6834
6835 struct cleanup *
6836 make_cleanup_restore_infcall_control_state
6837 (struct infcall_control_state *inf_status)
6838 {
6839 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
6840 }
6841
6842 void
6843 discard_infcall_control_state (struct infcall_control_state *inf_status)
6844 {
6845 if (inf_status->thread_control.step_resume_breakpoint)
6846 inf_status->thread_control.step_resume_breakpoint->disposition
6847 = disp_del_at_next_stop;
6848
6849 if (inf_status->thread_control.exception_resume_breakpoint)
6850 inf_status->thread_control.exception_resume_breakpoint->disposition
6851 = disp_del_at_next_stop;
6852
6853 /* See save_infcall_control_state for info on stop_bpstat. */
6854 bpstat_clear (&inf_status->thread_control.stop_bpstat);
6855
6856 xfree (inf_status);
6857 }
6858 \f
6859 int
6860 ptid_match (ptid_t ptid, ptid_t filter)
6861 {
6862 if (ptid_equal (filter, minus_one_ptid))
6863 return 1;
6864 if (ptid_is_pid (filter)
6865 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6866 return 1;
6867 else if (ptid_equal (ptid, filter))
6868 return 1;
6869
6870 return 0;
6871 }
6872
6873 /* restore_inferior_ptid() will be used by the cleanup machinery
6874 to restore the inferior_ptid value saved in a call to
6875 save_inferior_ptid(). */
6876
6877 static void
6878 restore_inferior_ptid (void *arg)
6879 {
6880 ptid_t *saved_ptid_ptr = arg;
6881
6882 inferior_ptid = *saved_ptid_ptr;
6883 xfree (arg);
6884 }
6885
6886 /* Save the value of inferior_ptid so that it may be restored by a
6887 later call to do_cleanups(). Returns the struct cleanup pointer
6888 needed for later doing the cleanup. */
6889
6890 struct cleanup *
6891 save_inferior_ptid (void)
6892 {
6893 ptid_t *saved_ptid_ptr;
6894
6895 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6896 *saved_ptid_ptr = inferior_ptid;
6897 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6898 }
6899 \f
6900
6901 /* User interface for reverse debugging:
6902 Set exec-direction / show exec-direction commands
6903 (returns error unless target implements to_set_exec_direction method). */
6904
6905 int execution_direction = EXEC_FORWARD;
6906 static const char exec_forward[] = "forward";
6907 static const char exec_reverse[] = "reverse";
6908 static const char *exec_direction = exec_forward;
6909 static const char *exec_direction_names[] = {
6910 exec_forward,
6911 exec_reverse,
6912 NULL
6913 };
6914
6915 static void
6916 set_exec_direction_func (char *args, int from_tty,
6917 struct cmd_list_element *cmd)
6918 {
6919 if (target_can_execute_reverse)
6920 {
6921 if (!strcmp (exec_direction, exec_forward))
6922 execution_direction = EXEC_FORWARD;
6923 else if (!strcmp (exec_direction, exec_reverse))
6924 execution_direction = EXEC_REVERSE;
6925 }
6926 else
6927 {
6928 exec_direction = exec_forward;
6929 error (_("Target does not support this operation."));
6930 }
6931 }
6932
6933 static void
6934 show_exec_direction_func (struct ui_file *out, int from_tty,
6935 struct cmd_list_element *cmd, const char *value)
6936 {
6937 switch (execution_direction) {
6938 case EXEC_FORWARD:
6939 fprintf_filtered (out, _("Forward.\n"));
6940 break;
6941 case EXEC_REVERSE:
6942 fprintf_filtered (out, _("Reverse.\n"));
6943 break;
6944 default:
6945 internal_error (__FILE__, __LINE__,
6946 _("bogus execution_direction value: %d"),
6947 (int) execution_direction);
6948 }
6949 }
6950
6951 /* User interface for non-stop mode. */
6952
6953 int non_stop = 0;
6954
6955 static void
6956 set_non_stop (char *args, int from_tty,
6957 struct cmd_list_element *c)
6958 {
6959 if (target_has_execution)
6960 {
6961 non_stop_1 = non_stop;
6962 error (_("Cannot change this setting while the inferior is running."));
6963 }
6964
6965 non_stop = non_stop_1;
6966 }
6967
6968 static void
6969 show_non_stop (struct ui_file *file, int from_tty,
6970 struct cmd_list_element *c, const char *value)
6971 {
6972 fprintf_filtered (file,
6973 _("Controlling the inferior in non-stop mode is %s.\n"),
6974 value);
6975 }
6976
6977 static void
6978 show_schedule_multiple (struct ui_file *file, int from_tty,
6979 struct cmd_list_element *c, const char *value)
6980 {
6981 fprintf_filtered (file, _("Resuming the execution of threads "
6982 "of all processes is %s.\n"), value);
6983 }
6984
6985 void
6986 _initialize_infrun (void)
6987 {
6988 int i;
6989 int numsigs;
6990
6991 add_info ("signals", signals_info, _("\
6992 What debugger does when program gets various signals.\n\
6993 Specify a signal as argument to print info on that signal only."));
6994 add_info_alias ("handle", "signals", 0);
6995
6996 add_com ("handle", class_run, handle_command, _("\
6997 Specify how to handle a signal.\n\
6998 Args are signals and actions to apply to those signals.\n\
6999 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7000 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7001 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7002 The special arg \"all\" is recognized to mean all signals except those\n\
7003 used by the debugger, typically SIGTRAP and SIGINT.\n\
7004 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7005 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7006 Stop means reenter debugger if this signal happens (implies print).\n\
7007 Print means print a message if this signal happens.\n\
7008 Pass means let program see this signal; otherwise program doesn't know.\n\
7009 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7010 Pass and Stop may be combined."));
7011 if (xdb_commands)
7012 {
7013 add_com ("lz", class_info, signals_info, _("\
7014 What debugger does when program gets various signals.\n\
7015 Specify a signal as argument to print info on that signal only."));
7016 add_com ("z", class_run, xdb_handle_command, _("\
7017 Specify how to handle a signal.\n\
7018 Args are signals and actions to apply to those signals.\n\
7019 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7020 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7021 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7022 The special arg \"all\" is recognized to mean all signals except those\n\
7023 used by the debugger, typically SIGTRAP and SIGINT.\n\
7024 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7025 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7026 nopass), \"Q\" (noprint)\n\
7027 Stop means reenter debugger if this signal happens (implies print).\n\
7028 Print means print a message if this signal happens.\n\
7029 Pass means let program see this signal; otherwise program doesn't know.\n\
7030 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7031 Pass and Stop may be combined."));
7032 }
7033
7034 if (!dbx_commands)
7035 stop_command = add_cmd ("stop", class_obscure,
7036 not_just_help_class_command, _("\
7037 There is no `stop' command, but you can set a hook on `stop'.\n\
7038 This allows you to set a list of commands to be run each time execution\n\
7039 of the program stops."), &cmdlist);
7040
7041 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7042 Set inferior debugging."), _("\
7043 Show inferior debugging."), _("\
7044 When non-zero, inferior specific debugging is enabled."),
7045 NULL,
7046 show_debug_infrun,
7047 &setdebuglist, &showdebuglist);
7048
7049 add_setshow_boolean_cmd ("displaced", class_maintenance,
7050 &debug_displaced, _("\
7051 Set displaced stepping debugging."), _("\
7052 Show displaced stepping debugging."), _("\
7053 When non-zero, displaced stepping specific debugging is enabled."),
7054 NULL,
7055 show_debug_displaced,
7056 &setdebuglist, &showdebuglist);
7057
7058 add_setshow_boolean_cmd ("non-stop", no_class,
7059 &non_stop_1, _("\
7060 Set whether gdb controls the inferior in non-stop mode."), _("\
7061 Show whether gdb controls the inferior in non-stop mode."), _("\
7062 When debugging a multi-threaded program and this setting is\n\
7063 off (the default, also called all-stop mode), when one thread stops\n\
7064 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7065 all other threads in the program while you interact with the thread of\n\
7066 interest. When you continue or step a thread, you can allow the other\n\
7067 threads to run, or have them remain stopped, but while you inspect any\n\
7068 thread's state, all threads stop.\n\
7069 \n\
7070 In non-stop mode, when one thread stops, other threads can continue\n\
7071 to run freely. You'll be able to step each thread independently,\n\
7072 leave it stopped or free to run as needed."),
7073 set_non_stop,
7074 show_non_stop,
7075 &setlist,
7076 &showlist);
7077
7078 numsigs = (int) TARGET_SIGNAL_LAST;
7079 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7080 signal_print = (unsigned char *)
7081 xmalloc (sizeof (signal_print[0]) * numsigs);
7082 signal_program = (unsigned char *)
7083 xmalloc (sizeof (signal_program[0]) * numsigs);
7084 signal_pass = (unsigned char *)
7085 xmalloc (sizeof (signal_program[0]) * numsigs);
7086 for (i = 0; i < numsigs; i++)
7087 {
7088 signal_stop[i] = 1;
7089 signal_print[i] = 1;
7090 signal_program[i] = 1;
7091 }
7092
7093 /* Signals caused by debugger's own actions
7094 should not be given to the program afterwards. */
7095 signal_program[TARGET_SIGNAL_TRAP] = 0;
7096 signal_program[TARGET_SIGNAL_INT] = 0;
7097
7098 /* Signals that are not errors should not normally enter the debugger. */
7099 signal_stop[TARGET_SIGNAL_ALRM] = 0;
7100 signal_print[TARGET_SIGNAL_ALRM] = 0;
7101 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
7102 signal_print[TARGET_SIGNAL_VTALRM] = 0;
7103 signal_stop[TARGET_SIGNAL_PROF] = 0;
7104 signal_print[TARGET_SIGNAL_PROF] = 0;
7105 signal_stop[TARGET_SIGNAL_CHLD] = 0;
7106 signal_print[TARGET_SIGNAL_CHLD] = 0;
7107 signal_stop[TARGET_SIGNAL_IO] = 0;
7108 signal_print[TARGET_SIGNAL_IO] = 0;
7109 signal_stop[TARGET_SIGNAL_POLL] = 0;
7110 signal_print[TARGET_SIGNAL_POLL] = 0;
7111 signal_stop[TARGET_SIGNAL_URG] = 0;
7112 signal_print[TARGET_SIGNAL_URG] = 0;
7113 signal_stop[TARGET_SIGNAL_WINCH] = 0;
7114 signal_print[TARGET_SIGNAL_WINCH] = 0;
7115 signal_stop[TARGET_SIGNAL_PRIO] = 0;
7116 signal_print[TARGET_SIGNAL_PRIO] = 0;
7117
7118 /* These signals are used internally by user-level thread
7119 implementations. (See signal(5) on Solaris.) Like the above
7120 signals, a healthy program receives and handles them as part of
7121 its normal operation. */
7122 signal_stop[TARGET_SIGNAL_LWP] = 0;
7123 signal_print[TARGET_SIGNAL_LWP] = 0;
7124 signal_stop[TARGET_SIGNAL_WAITING] = 0;
7125 signal_print[TARGET_SIGNAL_WAITING] = 0;
7126 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
7127 signal_print[TARGET_SIGNAL_CANCEL] = 0;
7128
7129 /* Update cached state. */
7130 signal_cache_update (-1);
7131
7132 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7133 &stop_on_solib_events, _("\
7134 Set stopping for shared library events."), _("\
7135 Show stopping for shared library events."), _("\
7136 If nonzero, gdb will give control to the user when the dynamic linker\n\
7137 notifies gdb of shared library events. The most common event of interest\n\
7138 to the user would be loading/unloading of a new library."),
7139 NULL,
7140 show_stop_on_solib_events,
7141 &setlist, &showlist);
7142
7143 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7144 follow_fork_mode_kind_names,
7145 &follow_fork_mode_string, _("\
7146 Set debugger response to a program call of fork or vfork."), _("\
7147 Show debugger response to a program call of fork or vfork."), _("\
7148 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7149 parent - the original process is debugged after a fork\n\
7150 child - the new process is debugged after a fork\n\
7151 The unfollowed process will continue to run.\n\
7152 By default, the debugger will follow the parent process."),
7153 NULL,
7154 show_follow_fork_mode_string,
7155 &setlist, &showlist);
7156
7157 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7158 follow_exec_mode_names,
7159 &follow_exec_mode_string, _("\
7160 Set debugger response to a program call of exec."), _("\
7161 Show debugger response to a program call of exec."), _("\
7162 An exec call replaces the program image of a process.\n\
7163 \n\
7164 follow-exec-mode can be:\n\
7165 \n\
7166 new - the debugger creates a new inferior and rebinds the process\n\
7167 to this new inferior. The program the process was running before\n\
7168 the exec call can be restarted afterwards by restarting the original\n\
7169 inferior.\n\
7170 \n\
7171 same - the debugger keeps the process bound to the same inferior.\n\
7172 The new executable image replaces the previous executable loaded in\n\
7173 the inferior. Restarting the inferior after the exec call restarts\n\
7174 the executable the process was running after the exec call.\n\
7175 \n\
7176 By default, the debugger will use the same inferior."),
7177 NULL,
7178 show_follow_exec_mode_string,
7179 &setlist, &showlist);
7180
7181 add_setshow_enum_cmd ("scheduler-locking", class_run,
7182 scheduler_enums, &scheduler_mode, _("\
7183 Set mode for locking scheduler during execution."), _("\
7184 Show mode for locking scheduler during execution."), _("\
7185 off == no locking (threads may preempt at any time)\n\
7186 on == full locking (no thread except the current thread may run)\n\
7187 step == scheduler locked during every single-step operation.\n\
7188 In this mode, no other thread may run during a step command.\n\
7189 Other threads may run while stepping over a function call ('next')."),
7190 set_schedlock_func, /* traps on target vector */
7191 show_scheduler_mode,
7192 &setlist, &showlist);
7193
7194 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7195 Set mode for resuming threads of all processes."), _("\
7196 Show mode for resuming threads of all processes."), _("\
7197 When on, execution commands (such as 'continue' or 'next') resume all\n\
7198 threads of all processes. When off (which is the default), execution\n\
7199 commands only resume the threads of the current process. The set of\n\
7200 threads that are resumed is further refined by the scheduler-locking\n\
7201 mode (see help set scheduler-locking)."),
7202 NULL,
7203 show_schedule_multiple,
7204 &setlist, &showlist);
7205
7206 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7207 Set mode of the step operation."), _("\
7208 Show mode of the step operation."), _("\
7209 When set, doing a step over a function without debug line information\n\
7210 will stop at the first instruction of that function. Otherwise, the\n\
7211 function is skipped and the step command stops at a different source line."),
7212 NULL,
7213 show_step_stop_if_no_debug,
7214 &setlist, &showlist);
7215
7216 add_setshow_enum_cmd ("displaced-stepping", class_run,
7217 can_use_displaced_stepping_enum,
7218 &can_use_displaced_stepping, _("\
7219 Set debugger's willingness to use displaced stepping."), _("\
7220 Show debugger's willingness to use displaced stepping."), _("\
7221 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7222 supported by the target architecture. If off, gdb will not use displaced\n\
7223 stepping to step over breakpoints, even if such is supported by the target\n\
7224 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7225 if the target architecture supports it and non-stop mode is active, but will not\n\
7226 use it in all-stop mode (see help set non-stop)."),
7227 NULL,
7228 show_can_use_displaced_stepping,
7229 &setlist, &showlist);
7230
7231 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7232 &exec_direction, _("Set direction of execution.\n\
7233 Options are 'forward' or 'reverse'."),
7234 _("Show direction of execution (forward/reverse)."),
7235 _("Tells gdb whether to execute forward or backward."),
7236 set_exec_direction_func, show_exec_direction_func,
7237 &setlist, &showlist);
7238
7239 /* Set/show detach-on-fork: user-settable mode. */
7240
7241 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7242 Set whether gdb will detach the child of a fork."), _("\
7243 Show whether gdb will detach the child of a fork."), _("\
7244 Tells gdb whether to detach the child of a fork."),
7245 NULL, NULL, &setlist, &showlist);
7246
7247 /* Set/show disable address space randomization mode. */
7248
7249 add_setshow_boolean_cmd ("disable-randomization", class_support,
7250 &disable_randomization, _("\
7251 Set disabling of debuggee's virtual address space randomization."), _("\
7252 Show disabling of debuggee's virtual address space randomization."), _("\
7253 When this mode is on (which is the default), randomization of the virtual\n\
7254 address space is disabled. Standalone programs run with the randomization\n\
7255 enabled by default on some platforms."),
7256 &set_disable_randomization,
7257 &show_disable_randomization,
7258 &setlist, &showlist);
7259
7260 /* ptid initializations */
7261 inferior_ptid = null_ptid;
7262 target_last_wait_ptid = minus_one_ptid;
7263
7264 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7265 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7266 observer_attach_thread_exit (infrun_thread_thread_exit);
7267 observer_attach_inferior_exit (infrun_inferior_exit);
7268
7269 /* Explicitly create without lookup, since that tries to create a
7270 value with a void typed value, and when we get here, gdbarch
7271 isn't initialized yet. At this point, we're quite sure there
7272 isn't another convenience variable of the same name. */
7273 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
7274
7275 add_setshow_boolean_cmd ("observer", no_class,
7276 &observer_mode_1, _("\
7277 Set whether gdb controls the inferior in observer mode."), _("\
7278 Show whether gdb controls the inferior in observer mode."), _("\
7279 In observer mode, GDB can get data from the inferior, but not\n\
7280 affect its execution. Registers and memory may not be changed,\n\
7281 breakpoints may not be set, and the program cannot be interrupted\n\
7282 or signalled."),
7283 set_observer_mode,
7284 show_observer_mode,
7285 &setlist,
7286 &showlist);
7287 }