infrun.c:handle_inferior_event: Move process_event_stop_test goto label.
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2013 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "exceptions.h"
28 #include "breakpoint.h"
29 #include "gdb_wait.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "cli/cli-script.h"
33 #include "target.h"
34 #include "gdbthread.h"
35 #include "annotate.h"
36 #include "symfile.h"
37 #include "top.h"
38 #include <signal.h>
39 #include "inf-loop.h"
40 #include "regcache.h"
41 #include "value.h"
42 #include "observer.h"
43 #include "language.h"
44 #include "solib.h"
45 #include "main.h"
46 #include "dictionary.h"
47 #include "block.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51 #include "record.h"
52 #include "record-full.h"
53 #include "inline-frame.h"
54 #include "jit.h"
55 #include "tracepoint.h"
56 #include "continuations.h"
57 #include "interps.h"
58 #include "skip.h"
59 #include "probe.h"
60 #include "objfiles.h"
61 #include "completer.h"
62 #include "target-descriptions.h"
63
64 /* Prototypes for local functions */
65
66 static void signals_info (char *, int);
67
68 static void handle_command (char *, int);
69
70 static void sig_print_info (enum gdb_signal);
71
72 static void sig_print_header (void);
73
74 static void resume_cleanups (void *);
75
76 static int hook_stop_stub (void *);
77
78 static int restore_selected_frame (void *);
79
80 static int follow_fork (void);
81
82 static void set_schedlock_func (char *args, int from_tty,
83 struct cmd_list_element *c);
84
85 static int currently_stepping (struct thread_info *tp);
86
87 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
88 void *data);
89
90 static void xdb_handle_command (char *args, int from_tty);
91
92 static int prepare_to_proceed (int);
93
94 static void print_exited_reason (int exitstatus);
95
96 static void print_signal_exited_reason (enum gdb_signal siggnal);
97
98 static void print_no_history_reason (void);
99
100 static void print_signal_received_reason (enum gdb_signal siggnal);
101
102 static void print_end_stepping_range_reason (void);
103
104 void _initialize_infrun (void);
105
106 void nullify_last_target_wait_ptid (void);
107
108 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
109
110 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
111
112 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
113
114 /* When set, stop the 'step' command if we enter a function which has
115 no line number information. The normal behavior is that we step
116 over such function. */
117 int step_stop_if_no_debug = 0;
118 static void
119 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121 {
122 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
123 }
124
125 /* In asynchronous mode, but simulating synchronous execution. */
126
127 int sync_execution = 0;
128
129 /* wait_for_inferior and normal_stop use this to notify the user
130 when the inferior stopped in a different thread than it had been
131 running in. */
132
133 static ptid_t previous_inferior_ptid;
134
135 /* If set (default for legacy reasons), when following a fork, GDB
136 will detach from one of the fork branches, child or parent.
137 Exactly which branch is detached depends on 'set follow-fork-mode'
138 setting. */
139
140 static int detach_fork = 1;
141
142 int debug_displaced = 0;
143 static void
144 show_debug_displaced (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146 {
147 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
148 }
149
150 unsigned int debug_infrun = 0;
151 static void
152 show_debug_infrun (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154 {
155 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
156 }
157
158
159 /* Support for disabling address space randomization. */
160
161 int disable_randomization = 1;
162
163 static void
164 show_disable_randomization (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 if (target_supports_disable_randomization ())
168 fprintf_filtered (file,
169 _("Disabling randomization of debuggee's "
170 "virtual address space is %s.\n"),
171 value);
172 else
173 fputs_filtered (_("Disabling randomization of debuggee's "
174 "virtual address space is unsupported on\n"
175 "this platform.\n"), file);
176 }
177
178 static void
179 set_disable_randomization (char *args, int from_tty,
180 struct cmd_list_element *c)
181 {
182 if (!target_supports_disable_randomization ())
183 error (_("Disabling randomization of debuggee's "
184 "virtual address space is unsupported on\n"
185 "this platform."));
186 }
187
188 /* User interface for non-stop mode. */
189
190 int non_stop = 0;
191 static int non_stop_1 = 0;
192
193 static void
194 set_non_stop (char *args, int from_tty,
195 struct cmd_list_element *c)
196 {
197 if (target_has_execution)
198 {
199 non_stop_1 = non_stop;
200 error (_("Cannot change this setting while the inferior is running."));
201 }
202
203 non_stop = non_stop_1;
204 }
205
206 static void
207 show_non_stop (struct ui_file *file, int from_tty,
208 struct cmd_list_element *c, const char *value)
209 {
210 fprintf_filtered (file,
211 _("Controlling the inferior in non-stop mode is %s.\n"),
212 value);
213 }
214
215 /* "Observer mode" is somewhat like a more extreme version of
216 non-stop, in which all GDB operations that might affect the
217 target's execution have been disabled. */
218
219 int observer_mode = 0;
220 static int observer_mode_1 = 0;
221
222 static void
223 set_observer_mode (char *args, int from_tty,
224 struct cmd_list_element *c)
225 {
226 if (target_has_execution)
227 {
228 observer_mode_1 = observer_mode;
229 error (_("Cannot change this setting while the inferior is running."));
230 }
231
232 observer_mode = observer_mode_1;
233
234 may_write_registers = !observer_mode;
235 may_write_memory = !observer_mode;
236 may_insert_breakpoints = !observer_mode;
237 may_insert_tracepoints = !observer_mode;
238 /* We can insert fast tracepoints in or out of observer mode,
239 but enable them if we're going into this mode. */
240 if (observer_mode)
241 may_insert_fast_tracepoints = 1;
242 may_stop = !observer_mode;
243 update_target_permissions ();
244
245 /* Going *into* observer mode we must force non-stop, then
246 going out we leave it that way. */
247 if (observer_mode)
248 {
249 target_async_permitted = 1;
250 pagination_enabled = 0;
251 non_stop = non_stop_1 = 1;
252 }
253
254 if (from_tty)
255 printf_filtered (_("Observer mode is now %s.\n"),
256 (observer_mode ? "on" : "off"));
257 }
258
259 static void
260 show_observer_mode (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262 {
263 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
264 }
265
266 /* This updates the value of observer mode based on changes in
267 permissions. Note that we are deliberately ignoring the values of
268 may-write-registers and may-write-memory, since the user may have
269 reason to enable these during a session, for instance to turn on a
270 debugging-related global. */
271
272 void
273 update_observer_mode (void)
274 {
275 int newval;
276
277 newval = (!may_insert_breakpoints
278 && !may_insert_tracepoints
279 && may_insert_fast_tracepoints
280 && !may_stop
281 && non_stop);
282
283 /* Let the user know if things change. */
284 if (newval != observer_mode)
285 printf_filtered (_("Observer mode is now %s.\n"),
286 (newval ? "on" : "off"));
287
288 observer_mode = observer_mode_1 = newval;
289 }
290
291 /* Tables of how to react to signals; the user sets them. */
292
293 static unsigned char *signal_stop;
294 static unsigned char *signal_print;
295 static unsigned char *signal_program;
296
297 /* Table of signals that are registered with "catch signal". A
298 non-zero entry indicates that the signal is caught by some "catch
299 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
300 signals. */
301 static unsigned char *signal_catch;
302
303 /* Table of signals that the target may silently handle.
304 This is automatically determined from the flags above,
305 and simply cached here. */
306 static unsigned char *signal_pass;
307
308 #define SET_SIGS(nsigs,sigs,flags) \
309 do { \
310 int signum = (nsigs); \
311 while (signum-- > 0) \
312 if ((sigs)[signum]) \
313 (flags)[signum] = 1; \
314 } while (0)
315
316 #define UNSET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 0; \
322 } while (0)
323
324 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
325 this function is to avoid exporting `signal_program'. */
326
327 void
328 update_signals_program_target (void)
329 {
330 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
331 }
332
333 /* Value to pass to target_resume() to cause all threads to resume. */
334
335 #define RESUME_ALL minus_one_ptid
336
337 /* Command list pointer for the "stop" placeholder. */
338
339 static struct cmd_list_element *stop_command;
340
341 /* Function inferior was in as of last step command. */
342
343 static struct symbol *step_start_function;
344
345 /* Nonzero if we want to give control to the user when we're notified
346 of shared library events by the dynamic linker. */
347 int stop_on_solib_events;
348
349 /* Enable or disable optional shared library event breakpoints
350 as appropriate when the above flag is changed. */
351
352 static void
353 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
354 {
355 update_solib_breakpoints ();
356 }
357
358 static void
359 show_stop_on_solib_events (struct ui_file *file, int from_tty,
360 struct cmd_list_element *c, const char *value)
361 {
362 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
363 value);
364 }
365
366 /* Nonzero means expecting a trace trap
367 and should stop the inferior and return silently when it happens. */
368
369 int stop_after_trap;
370
371 /* Save register contents here when executing a "finish" command or are
372 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
373 Thus this contains the return value from the called function (assuming
374 values are returned in a register). */
375
376 struct regcache *stop_registers;
377
378 /* Nonzero after stop if current stack frame should be printed. */
379
380 static int stop_print_frame;
381
382 /* This is a cached copy of the pid/waitstatus of the last event
383 returned by target_wait()/deprecated_target_wait_hook(). This
384 information is returned by get_last_target_status(). */
385 static ptid_t target_last_wait_ptid;
386 static struct target_waitstatus target_last_waitstatus;
387
388 static void context_switch (ptid_t ptid);
389
390 void init_thread_stepping_state (struct thread_info *tss);
391
392 static void init_infwait_state (void);
393
394 static const char follow_fork_mode_child[] = "child";
395 static const char follow_fork_mode_parent[] = "parent";
396
397 static const char *const follow_fork_mode_kind_names[] = {
398 follow_fork_mode_child,
399 follow_fork_mode_parent,
400 NULL
401 };
402
403 static const char *follow_fork_mode_string = follow_fork_mode_parent;
404 static void
405 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
406 struct cmd_list_element *c, const char *value)
407 {
408 fprintf_filtered (file,
409 _("Debugger response to a program "
410 "call of fork or vfork is \"%s\".\n"),
411 value);
412 }
413 \f
414
415 /* Tell the target to follow the fork we're stopped at. Returns true
416 if the inferior should be resumed; false, if the target for some
417 reason decided it's best not to resume. */
418
419 static int
420 follow_fork (void)
421 {
422 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
423 int should_resume = 1;
424 struct thread_info *tp;
425
426 /* Copy user stepping state to the new inferior thread. FIXME: the
427 followed fork child thread should have a copy of most of the
428 parent thread structure's run control related fields, not just these.
429 Initialized to avoid "may be used uninitialized" warnings from gcc. */
430 struct breakpoint *step_resume_breakpoint = NULL;
431 struct breakpoint *exception_resume_breakpoint = NULL;
432 CORE_ADDR step_range_start = 0;
433 CORE_ADDR step_range_end = 0;
434 struct frame_id step_frame_id = { 0 };
435
436 if (!non_stop)
437 {
438 ptid_t wait_ptid;
439 struct target_waitstatus wait_status;
440
441 /* Get the last target status returned by target_wait(). */
442 get_last_target_status (&wait_ptid, &wait_status);
443
444 /* If not stopped at a fork event, then there's nothing else to
445 do. */
446 if (wait_status.kind != TARGET_WAITKIND_FORKED
447 && wait_status.kind != TARGET_WAITKIND_VFORKED)
448 return 1;
449
450 /* Check if we switched over from WAIT_PTID, since the event was
451 reported. */
452 if (!ptid_equal (wait_ptid, minus_one_ptid)
453 && !ptid_equal (inferior_ptid, wait_ptid))
454 {
455 /* We did. Switch back to WAIT_PTID thread, to tell the
456 target to follow it (in either direction). We'll
457 afterwards refuse to resume, and inform the user what
458 happened. */
459 switch_to_thread (wait_ptid);
460 should_resume = 0;
461 }
462 }
463
464 tp = inferior_thread ();
465
466 /* If there were any forks/vforks that were caught and are now to be
467 followed, then do so now. */
468 switch (tp->pending_follow.kind)
469 {
470 case TARGET_WAITKIND_FORKED:
471 case TARGET_WAITKIND_VFORKED:
472 {
473 ptid_t parent, child;
474
475 /* If the user did a next/step, etc, over a fork call,
476 preserve the stepping state in the fork child. */
477 if (follow_child && should_resume)
478 {
479 step_resume_breakpoint = clone_momentary_breakpoint
480 (tp->control.step_resume_breakpoint);
481 step_range_start = tp->control.step_range_start;
482 step_range_end = tp->control.step_range_end;
483 step_frame_id = tp->control.step_frame_id;
484 exception_resume_breakpoint
485 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
486
487 /* For now, delete the parent's sr breakpoint, otherwise,
488 parent/child sr breakpoints are considered duplicates,
489 and the child version will not be installed. Remove
490 this when the breakpoints module becomes aware of
491 inferiors and address spaces. */
492 delete_step_resume_breakpoint (tp);
493 tp->control.step_range_start = 0;
494 tp->control.step_range_end = 0;
495 tp->control.step_frame_id = null_frame_id;
496 delete_exception_resume_breakpoint (tp);
497 }
498
499 parent = inferior_ptid;
500 child = tp->pending_follow.value.related_pid;
501
502 /* Tell the target to do whatever is necessary to follow
503 either parent or child. */
504 if (target_follow_fork (follow_child, detach_fork))
505 {
506 /* Target refused to follow, or there's some other reason
507 we shouldn't resume. */
508 should_resume = 0;
509 }
510 else
511 {
512 /* This pending follow fork event is now handled, one way
513 or another. The previous selected thread may be gone
514 from the lists by now, but if it is still around, need
515 to clear the pending follow request. */
516 tp = find_thread_ptid (parent);
517 if (tp)
518 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
519
520 /* This makes sure we don't try to apply the "Switched
521 over from WAIT_PID" logic above. */
522 nullify_last_target_wait_ptid ();
523
524 /* If we followed the child, switch to it... */
525 if (follow_child)
526 {
527 switch_to_thread (child);
528
529 /* ... and preserve the stepping state, in case the
530 user was stepping over the fork call. */
531 if (should_resume)
532 {
533 tp = inferior_thread ();
534 tp->control.step_resume_breakpoint
535 = step_resume_breakpoint;
536 tp->control.step_range_start = step_range_start;
537 tp->control.step_range_end = step_range_end;
538 tp->control.step_frame_id = step_frame_id;
539 tp->control.exception_resume_breakpoint
540 = exception_resume_breakpoint;
541 }
542 else
543 {
544 /* If we get here, it was because we're trying to
545 resume from a fork catchpoint, but, the user
546 has switched threads away from the thread that
547 forked. In that case, the resume command
548 issued is most likely not applicable to the
549 child, so just warn, and refuse to resume. */
550 warning (_("Not resuming: switched threads "
551 "before following fork child.\n"));
552 }
553
554 /* Reset breakpoints in the child as appropriate. */
555 follow_inferior_reset_breakpoints ();
556 }
557 else
558 switch_to_thread (parent);
559 }
560 }
561 break;
562 case TARGET_WAITKIND_SPURIOUS:
563 /* Nothing to follow. */
564 break;
565 default:
566 internal_error (__FILE__, __LINE__,
567 "Unexpected pending_follow.kind %d\n",
568 tp->pending_follow.kind);
569 break;
570 }
571
572 return should_resume;
573 }
574
575 void
576 follow_inferior_reset_breakpoints (void)
577 {
578 struct thread_info *tp = inferior_thread ();
579
580 /* Was there a step_resume breakpoint? (There was if the user
581 did a "next" at the fork() call.) If so, explicitly reset its
582 thread number.
583
584 step_resumes are a form of bp that are made to be per-thread.
585 Since we created the step_resume bp when the parent process
586 was being debugged, and now are switching to the child process,
587 from the breakpoint package's viewpoint, that's a switch of
588 "threads". We must update the bp's notion of which thread
589 it is for, or it'll be ignored when it triggers. */
590
591 if (tp->control.step_resume_breakpoint)
592 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
593
594 if (tp->control.exception_resume_breakpoint)
595 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
596
597 /* Reinsert all breakpoints in the child. The user may have set
598 breakpoints after catching the fork, in which case those
599 were never set in the child, but only in the parent. This makes
600 sure the inserted breakpoints match the breakpoint list. */
601
602 breakpoint_re_set ();
603 insert_breakpoints ();
604 }
605
606 /* The child has exited or execed: resume threads of the parent the
607 user wanted to be executing. */
608
609 static int
610 proceed_after_vfork_done (struct thread_info *thread,
611 void *arg)
612 {
613 int pid = * (int *) arg;
614
615 if (ptid_get_pid (thread->ptid) == pid
616 && is_running (thread->ptid)
617 && !is_executing (thread->ptid)
618 && !thread->stop_requested
619 && thread->suspend.stop_signal == GDB_SIGNAL_0)
620 {
621 if (debug_infrun)
622 fprintf_unfiltered (gdb_stdlog,
623 "infrun: resuming vfork parent thread %s\n",
624 target_pid_to_str (thread->ptid));
625
626 switch_to_thread (thread->ptid);
627 clear_proceed_status ();
628 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
629 }
630
631 return 0;
632 }
633
634 /* Called whenever we notice an exec or exit event, to handle
635 detaching or resuming a vfork parent. */
636
637 static void
638 handle_vfork_child_exec_or_exit (int exec)
639 {
640 struct inferior *inf = current_inferior ();
641
642 if (inf->vfork_parent)
643 {
644 int resume_parent = -1;
645
646 /* This exec or exit marks the end of the shared memory region
647 between the parent and the child. If the user wanted to
648 detach from the parent, now is the time. */
649
650 if (inf->vfork_parent->pending_detach)
651 {
652 struct thread_info *tp;
653 struct cleanup *old_chain;
654 struct program_space *pspace;
655 struct address_space *aspace;
656
657 /* follow-fork child, detach-on-fork on. */
658
659 inf->vfork_parent->pending_detach = 0;
660
661 if (!exec)
662 {
663 /* If we're handling a child exit, then inferior_ptid
664 points at the inferior's pid, not to a thread. */
665 old_chain = save_inferior_ptid ();
666 save_current_program_space ();
667 save_current_inferior ();
668 }
669 else
670 old_chain = save_current_space_and_thread ();
671
672 /* We're letting loose of the parent. */
673 tp = any_live_thread_of_process (inf->vfork_parent->pid);
674 switch_to_thread (tp->ptid);
675
676 /* We're about to detach from the parent, which implicitly
677 removes breakpoints from its address space. There's a
678 catch here: we want to reuse the spaces for the child,
679 but, parent/child are still sharing the pspace at this
680 point, although the exec in reality makes the kernel give
681 the child a fresh set of new pages. The problem here is
682 that the breakpoints module being unaware of this, would
683 likely chose the child process to write to the parent
684 address space. Swapping the child temporarily away from
685 the spaces has the desired effect. Yes, this is "sort
686 of" a hack. */
687
688 pspace = inf->pspace;
689 aspace = inf->aspace;
690 inf->aspace = NULL;
691 inf->pspace = NULL;
692
693 if (debug_infrun || info_verbose)
694 {
695 target_terminal_ours ();
696
697 if (exec)
698 fprintf_filtered (gdb_stdlog,
699 "Detaching vfork parent process "
700 "%d after child exec.\n",
701 inf->vfork_parent->pid);
702 else
703 fprintf_filtered (gdb_stdlog,
704 "Detaching vfork parent process "
705 "%d after child exit.\n",
706 inf->vfork_parent->pid);
707 }
708
709 target_detach (NULL, 0);
710
711 /* Put it back. */
712 inf->pspace = pspace;
713 inf->aspace = aspace;
714
715 do_cleanups (old_chain);
716 }
717 else if (exec)
718 {
719 /* We're staying attached to the parent, so, really give the
720 child a new address space. */
721 inf->pspace = add_program_space (maybe_new_address_space ());
722 inf->aspace = inf->pspace->aspace;
723 inf->removable = 1;
724 set_current_program_space (inf->pspace);
725
726 resume_parent = inf->vfork_parent->pid;
727
728 /* Break the bonds. */
729 inf->vfork_parent->vfork_child = NULL;
730 }
731 else
732 {
733 struct cleanup *old_chain;
734 struct program_space *pspace;
735
736 /* If this is a vfork child exiting, then the pspace and
737 aspaces were shared with the parent. Since we're
738 reporting the process exit, we'll be mourning all that is
739 found in the address space, and switching to null_ptid,
740 preparing to start a new inferior. But, since we don't
741 want to clobber the parent's address/program spaces, we
742 go ahead and create a new one for this exiting
743 inferior. */
744
745 /* Switch to null_ptid, so that clone_program_space doesn't want
746 to read the selected frame of a dead process. */
747 old_chain = save_inferior_ptid ();
748 inferior_ptid = null_ptid;
749
750 /* This inferior is dead, so avoid giving the breakpoints
751 module the option to write through to it (cloning a
752 program space resets breakpoints). */
753 inf->aspace = NULL;
754 inf->pspace = NULL;
755 pspace = add_program_space (maybe_new_address_space ());
756 set_current_program_space (pspace);
757 inf->removable = 1;
758 inf->symfile_flags = SYMFILE_NO_READ;
759 clone_program_space (pspace, inf->vfork_parent->pspace);
760 inf->pspace = pspace;
761 inf->aspace = pspace->aspace;
762
763 /* Put back inferior_ptid. We'll continue mourning this
764 inferior. */
765 do_cleanups (old_chain);
766
767 resume_parent = inf->vfork_parent->pid;
768 /* Break the bonds. */
769 inf->vfork_parent->vfork_child = NULL;
770 }
771
772 inf->vfork_parent = NULL;
773
774 gdb_assert (current_program_space == inf->pspace);
775
776 if (non_stop && resume_parent != -1)
777 {
778 /* If the user wanted the parent to be running, let it go
779 free now. */
780 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
781
782 if (debug_infrun)
783 fprintf_unfiltered (gdb_stdlog,
784 "infrun: resuming vfork parent process %d\n",
785 resume_parent);
786
787 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
788
789 do_cleanups (old_chain);
790 }
791 }
792 }
793
794 /* Enum strings for "set|show follow-exec-mode". */
795
796 static const char follow_exec_mode_new[] = "new";
797 static const char follow_exec_mode_same[] = "same";
798 static const char *const follow_exec_mode_names[] =
799 {
800 follow_exec_mode_new,
801 follow_exec_mode_same,
802 NULL,
803 };
804
805 static const char *follow_exec_mode_string = follow_exec_mode_same;
806 static void
807 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
808 struct cmd_list_element *c, const char *value)
809 {
810 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
811 }
812
813 /* EXECD_PATHNAME is assumed to be non-NULL. */
814
815 static void
816 follow_exec (ptid_t pid, char *execd_pathname)
817 {
818 struct thread_info *th = inferior_thread ();
819 struct inferior *inf = current_inferior ();
820
821 /* This is an exec event that we actually wish to pay attention to.
822 Refresh our symbol table to the newly exec'd program, remove any
823 momentary bp's, etc.
824
825 If there are breakpoints, they aren't really inserted now,
826 since the exec() transformed our inferior into a fresh set
827 of instructions.
828
829 We want to preserve symbolic breakpoints on the list, since
830 we have hopes that they can be reset after the new a.out's
831 symbol table is read.
832
833 However, any "raw" breakpoints must be removed from the list
834 (e.g., the solib bp's), since their address is probably invalid
835 now.
836
837 And, we DON'T want to call delete_breakpoints() here, since
838 that may write the bp's "shadow contents" (the instruction
839 value that was overwritten witha TRAP instruction). Since
840 we now have a new a.out, those shadow contents aren't valid. */
841
842 mark_breakpoints_out ();
843
844 update_breakpoints_after_exec ();
845
846 /* If there was one, it's gone now. We cannot truly step-to-next
847 statement through an exec(). */
848 th->control.step_resume_breakpoint = NULL;
849 th->control.exception_resume_breakpoint = NULL;
850 th->control.step_range_start = 0;
851 th->control.step_range_end = 0;
852
853 /* The target reports the exec event to the main thread, even if
854 some other thread does the exec, and even if the main thread was
855 already stopped --- if debugging in non-stop mode, it's possible
856 the user had the main thread held stopped in the previous image
857 --- release it now. This is the same behavior as step-over-exec
858 with scheduler-locking on in all-stop mode. */
859 th->stop_requested = 0;
860
861 /* What is this a.out's name? */
862 printf_unfiltered (_("%s is executing new program: %s\n"),
863 target_pid_to_str (inferior_ptid),
864 execd_pathname);
865
866 /* We've followed the inferior through an exec. Therefore, the
867 inferior has essentially been killed & reborn. */
868
869 gdb_flush (gdb_stdout);
870
871 breakpoint_init_inferior (inf_execd);
872
873 if (gdb_sysroot && *gdb_sysroot)
874 {
875 char *name = alloca (strlen (gdb_sysroot)
876 + strlen (execd_pathname)
877 + 1);
878
879 strcpy (name, gdb_sysroot);
880 strcat (name, execd_pathname);
881 execd_pathname = name;
882 }
883
884 /* Reset the shared library package. This ensures that we get a
885 shlib event when the child reaches "_start", at which point the
886 dld will have had a chance to initialize the child. */
887 /* Also, loading a symbol file below may trigger symbol lookups, and
888 we don't want those to be satisfied by the libraries of the
889 previous incarnation of this process. */
890 no_shared_libraries (NULL, 0);
891
892 if (follow_exec_mode_string == follow_exec_mode_new)
893 {
894 struct program_space *pspace;
895
896 /* The user wants to keep the old inferior and program spaces
897 around. Create a new fresh one, and switch to it. */
898
899 inf = add_inferior (current_inferior ()->pid);
900 pspace = add_program_space (maybe_new_address_space ());
901 inf->pspace = pspace;
902 inf->aspace = pspace->aspace;
903
904 exit_inferior_num_silent (current_inferior ()->num);
905
906 set_current_inferior (inf);
907 set_current_program_space (pspace);
908 }
909 else
910 {
911 /* The old description may no longer be fit for the new image.
912 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
913 old description; we'll read a new one below. No need to do
914 this on "follow-exec-mode new", as the old inferior stays
915 around (its description is later cleared/refetched on
916 restart). */
917 target_clear_description ();
918 }
919
920 gdb_assert (current_program_space == inf->pspace);
921
922 /* That a.out is now the one to use. */
923 exec_file_attach (execd_pathname, 0);
924
925 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
926 (Position Independent Executable) main symbol file will get applied by
927 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
928 the breakpoints with the zero displacement. */
929
930 symbol_file_add (execd_pathname,
931 (inf->symfile_flags
932 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
933 NULL, 0);
934
935 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
936 set_initial_language ();
937
938 /* If the target can specify a description, read it. Must do this
939 after flipping to the new executable (because the target supplied
940 description must be compatible with the executable's
941 architecture, and the old executable may e.g., be 32-bit, while
942 the new one 64-bit), and before anything involving memory or
943 registers. */
944 target_find_description ();
945
946 solib_create_inferior_hook (0);
947
948 jit_inferior_created_hook ();
949
950 breakpoint_re_set ();
951
952 /* Reinsert all breakpoints. (Those which were symbolic have
953 been reset to the proper address in the new a.out, thanks
954 to symbol_file_command...). */
955 insert_breakpoints ();
956
957 /* The next resume of this inferior should bring it to the shlib
958 startup breakpoints. (If the user had also set bp's on
959 "main" from the old (parent) process, then they'll auto-
960 matically get reset there in the new process.). */
961 }
962
963 /* Non-zero if we just simulating a single-step. This is needed
964 because we cannot remove the breakpoints in the inferior process
965 until after the `wait' in `wait_for_inferior'. */
966 static int singlestep_breakpoints_inserted_p = 0;
967
968 /* The thread we inserted single-step breakpoints for. */
969 static ptid_t singlestep_ptid;
970
971 /* PC when we started this single-step. */
972 static CORE_ADDR singlestep_pc;
973
974 /* If another thread hit the singlestep breakpoint, we save the original
975 thread here so that we can resume single-stepping it later. */
976 static ptid_t saved_singlestep_ptid;
977 static int stepping_past_singlestep_breakpoint;
978
979 /* If not equal to null_ptid, this means that after stepping over breakpoint
980 is finished, we need to switch to deferred_step_ptid, and step it.
981
982 The use case is when one thread has hit a breakpoint, and then the user
983 has switched to another thread and issued 'step'. We need to step over
984 breakpoint in the thread which hit the breakpoint, but then continue
985 stepping the thread user has selected. */
986 static ptid_t deferred_step_ptid;
987 \f
988 /* Displaced stepping. */
989
990 /* In non-stop debugging mode, we must take special care to manage
991 breakpoints properly; in particular, the traditional strategy for
992 stepping a thread past a breakpoint it has hit is unsuitable.
993 'Displaced stepping' is a tactic for stepping one thread past a
994 breakpoint it has hit while ensuring that other threads running
995 concurrently will hit the breakpoint as they should.
996
997 The traditional way to step a thread T off a breakpoint in a
998 multi-threaded program in all-stop mode is as follows:
999
1000 a0) Initially, all threads are stopped, and breakpoints are not
1001 inserted.
1002 a1) We single-step T, leaving breakpoints uninserted.
1003 a2) We insert breakpoints, and resume all threads.
1004
1005 In non-stop debugging, however, this strategy is unsuitable: we
1006 don't want to have to stop all threads in the system in order to
1007 continue or step T past a breakpoint. Instead, we use displaced
1008 stepping:
1009
1010 n0) Initially, T is stopped, other threads are running, and
1011 breakpoints are inserted.
1012 n1) We copy the instruction "under" the breakpoint to a separate
1013 location, outside the main code stream, making any adjustments
1014 to the instruction, register, and memory state as directed by
1015 T's architecture.
1016 n2) We single-step T over the instruction at its new location.
1017 n3) We adjust the resulting register and memory state as directed
1018 by T's architecture. This includes resetting T's PC to point
1019 back into the main instruction stream.
1020 n4) We resume T.
1021
1022 This approach depends on the following gdbarch methods:
1023
1024 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1025 indicate where to copy the instruction, and how much space must
1026 be reserved there. We use these in step n1.
1027
1028 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1029 address, and makes any necessary adjustments to the instruction,
1030 register contents, and memory. We use this in step n1.
1031
1032 - gdbarch_displaced_step_fixup adjusts registers and memory after
1033 we have successfuly single-stepped the instruction, to yield the
1034 same effect the instruction would have had if we had executed it
1035 at its original address. We use this in step n3.
1036
1037 - gdbarch_displaced_step_free_closure provides cleanup.
1038
1039 The gdbarch_displaced_step_copy_insn and
1040 gdbarch_displaced_step_fixup functions must be written so that
1041 copying an instruction with gdbarch_displaced_step_copy_insn,
1042 single-stepping across the copied instruction, and then applying
1043 gdbarch_displaced_insn_fixup should have the same effects on the
1044 thread's memory and registers as stepping the instruction in place
1045 would have. Exactly which responsibilities fall to the copy and
1046 which fall to the fixup is up to the author of those functions.
1047
1048 See the comments in gdbarch.sh for details.
1049
1050 Note that displaced stepping and software single-step cannot
1051 currently be used in combination, although with some care I think
1052 they could be made to. Software single-step works by placing
1053 breakpoints on all possible subsequent instructions; if the
1054 displaced instruction is a PC-relative jump, those breakpoints
1055 could fall in very strange places --- on pages that aren't
1056 executable, or at addresses that are not proper instruction
1057 boundaries. (We do generally let other threads run while we wait
1058 to hit the software single-step breakpoint, and they might
1059 encounter such a corrupted instruction.) One way to work around
1060 this would be to have gdbarch_displaced_step_copy_insn fully
1061 simulate the effect of PC-relative instructions (and return NULL)
1062 on architectures that use software single-stepping.
1063
1064 In non-stop mode, we can have independent and simultaneous step
1065 requests, so more than one thread may need to simultaneously step
1066 over a breakpoint. The current implementation assumes there is
1067 only one scratch space per process. In this case, we have to
1068 serialize access to the scratch space. If thread A wants to step
1069 over a breakpoint, but we are currently waiting for some other
1070 thread to complete a displaced step, we leave thread A stopped and
1071 place it in the displaced_step_request_queue. Whenever a displaced
1072 step finishes, we pick the next thread in the queue and start a new
1073 displaced step operation on it. See displaced_step_prepare and
1074 displaced_step_fixup for details. */
1075
1076 struct displaced_step_request
1077 {
1078 ptid_t ptid;
1079 struct displaced_step_request *next;
1080 };
1081
1082 /* Per-inferior displaced stepping state. */
1083 struct displaced_step_inferior_state
1084 {
1085 /* Pointer to next in linked list. */
1086 struct displaced_step_inferior_state *next;
1087
1088 /* The process this displaced step state refers to. */
1089 int pid;
1090
1091 /* A queue of pending displaced stepping requests. One entry per
1092 thread that needs to do a displaced step. */
1093 struct displaced_step_request *step_request_queue;
1094
1095 /* If this is not null_ptid, this is the thread carrying out a
1096 displaced single-step in process PID. This thread's state will
1097 require fixing up once it has completed its step. */
1098 ptid_t step_ptid;
1099
1100 /* The architecture the thread had when we stepped it. */
1101 struct gdbarch *step_gdbarch;
1102
1103 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1104 for post-step cleanup. */
1105 struct displaced_step_closure *step_closure;
1106
1107 /* The address of the original instruction, and the copy we
1108 made. */
1109 CORE_ADDR step_original, step_copy;
1110
1111 /* Saved contents of copy area. */
1112 gdb_byte *step_saved_copy;
1113 };
1114
1115 /* The list of states of processes involved in displaced stepping
1116 presently. */
1117 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1118
1119 /* Get the displaced stepping state of process PID. */
1120
1121 static struct displaced_step_inferior_state *
1122 get_displaced_stepping_state (int pid)
1123 {
1124 struct displaced_step_inferior_state *state;
1125
1126 for (state = displaced_step_inferior_states;
1127 state != NULL;
1128 state = state->next)
1129 if (state->pid == pid)
1130 return state;
1131
1132 return NULL;
1133 }
1134
1135 /* Add a new displaced stepping state for process PID to the displaced
1136 stepping state list, or return a pointer to an already existing
1137 entry, if it already exists. Never returns NULL. */
1138
1139 static struct displaced_step_inferior_state *
1140 add_displaced_stepping_state (int pid)
1141 {
1142 struct displaced_step_inferior_state *state;
1143
1144 for (state = displaced_step_inferior_states;
1145 state != NULL;
1146 state = state->next)
1147 if (state->pid == pid)
1148 return state;
1149
1150 state = xcalloc (1, sizeof (*state));
1151 state->pid = pid;
1152 state->next = displaced_step_inferior_states;
1153 displaced_step_inferior_states = state;
1154
1155 return state;
1156 }
1157
1158 /* If inferior is in displaced stepping, and ADDR equals to starting address
1159 of copy area, return corresponding displaced_step_closure. Otherwise,
1160 return NULL. */
1161
1162 struct displaced_step_closure*
1163 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1164 {
1165 struct displaced_step_inferior_state *displaced
1166 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1167
1168 /* If checking the mode of displaced instruction in copy area. */
1169 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1170 && (displaced->step_copy == addr))
1171 return displaced->step_closure;
1172
1173 return NULL;
1174 }
1175
1176 /* Remove the displaced stepping state of process PID. */
1177
1178 static void
1179 remove_displaced_stepping_state (int pid)
1180 {
1181 struct displaced_step_inferior_state *it, **prev_next_p;
1182
1183 gdb_assert (pid != 0);
1184
1185 it = displaced_step_inferior_states;
1186 prev_next_p = &displaced_step_inferior_states;
1187 while (it)
1188 {
1189 if (it->pid == pid)
1190 {
1191 *prev_next_p = it->next;
1192 xfree (it);
1193 return;
1194 }
1195
1196 prev_next_p = &it->next;
1197 it = *prev_next_p;
1198 }
1199 }
1200
1201 static void
1202 infrun_inferior_exit (struct inferior *inf)
1203 {
1204 remove_displaced_stepping_state (inf->pid);
1205 }
1206
1207 /* If ON, and the architecture supports it, GDB will use displaced
1208 stepping to step over breakpoints. If OFF, or if the architecture
1209 doesn't support it, GDB will instead use the traditional
1210 hold-and-step approach. If AUTO (which is the default), GDB will
1211 decide which technique to use to step over breakpoints depending on
1212 which of all-stop or non-stop mode is active --- displaced stepping
1213 in non-stop mode; hold-and-step in all-stop mode. */
1214
1215 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1216
1217 static void
1218 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1219 struct cmd_list_element *c,
1220 const char *value)
1221 {
1222 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1223 fprintf_filtered (file,
1224 _("Debugger's willingness to use displaced stepping "
1225 "to step over breakpoints is %s (currently %s).\n"),
1226 value, non_stop ? "on" : "off");
1227 else
1228 fprintf_filtered (file,
1229 _("Debugger's willingness to use displaced stepping "
1230 "to step over breakpoints is %s.\n"), value);
1231 }
1232
1233 /* Return non-zero if displaced stepping can/should be used to step
1234 over breakpoints. */
1235
1236 static int
1237 use_displaced_stepping (struct gdbarch *gdbarch)
1238 {
1239 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1240 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1241 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1242 && !RECORD_IS_USED);
1243 }
1244
1245 /* Clean out any stray displaced stepping state. */
1246 static void
1247 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1248 {
1249 /* Indicate that there is no cleanup pending. */
1250 displaced->step_ptid = null_ptid;
1251
1252 if (displaced->step_closure)
1253 {
1254 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1255 displaced->step_closure);
1256 displaced->step_closure = NULL;
1257 }
1258 }
1259
1260 static void
1261 displaced_step_clear_cleanup (void *arg)
1262 {
1263 struct displaced_step_inferior_state *state = arg;
1264
1265 displaced_step_clear (state);
1266 }
1267
1268 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1269 void
1270 displaced_step_dump_bytes (struct ui_file *file,
1271 const gdb_byte *buf,
1272 size_t len)
1273 {
1274 int i;
1275
1276 for (i = 0; i < len; i++)
1277 fprintf_unfiltered (file, "%02x ", buf[i]);
1278 fputs_unfiltered ("\n", file);
1279 }
1280
1281 /* Prepare to single-step, using displaced stepping.
1282
1283 Note that we cannot use displaced stepping when we have a signal to
1284 deliver. If we have a signal to deliver and an instruction to step
1285 over, then after the step, there will be no indication from the
1286 target whether the thread entered a signal handler or ignored the
1287 signal and stepped over the instruction successfully --- both cases
1288 result in a simple SIGTRAP. In the first case we mustn't do a
1289 fixup, and in the second case we must --- but we can't tell which.
1290 Comments in the code for 'random signals' in handle_inferior_event
1291 explain how we handle this case instead.
1292
1293 Returns 1 if preparing was successful -- this thread is going to be
1294 stepped now; or 0 if displaced stepping this thread got queued. */
1295 static int
1296 displaced_step_prepare (ptid_t ptid)
1297 {
1298 struct cleanup *old_cleanups, *ignore_cleanups;
1299 struct thread_info *tp = find_thread_ptid (ptid);
1300 struct regcache *regcache = get_thread_regcache (ptid);
1301 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1302 CORE_ADDR original, copy;
1303 ULONGEST len;
1304 struct displaced_step_closure *closure;
1305 struct displaced_step_inferior_state *displaced;
1306 int status;
1307
1308 /* We should never reach this function if the architecture does not
1309 support displaced stepping. */
1310 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1311
1312 /* Disable range stepping while executing in the scratch pad. We
1313 want a single-step even if executing the displaced instruction in
1314 the scratch buffer lands within the stepping range (e.g., a
1315 jump/branch). */
1316 tp->control.may_range_step = 0;
1317
1318 /* We have to displaced step one thread at a time, as we only have
1319 access to a single scratch space per inferior. */
1320
1321 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1322
1323 if (!ptid_equal (displaced->step_ptid, null_ptid))
1324 {
1325 /* Already waiting for a displaced step to finish. Defer this
1326 request and place in queue. */
1327 struct displaced_step_request *req, *new_req;
1328
1329 if (debug_displaced)
1330 fprintf_unfiltered (gdb_stdlog,
1331 "displaced: defering step of %s\n",
1332 target_pid_to_str (ptid));
1333
1334 new_req = xmalloc (sizeof (*new_req));
1335 new_req->ptid = ptid;
1336 new_req->next = NULL;
1337
1338 if (displaced->step_request_queue)
1339 {
1340 for (req = displaced->step_request_queue;
1341 req && req->next;
1342 req = req->next)
1343 ;
1344 req->next = new_req;
1345 }
1346 else
1347 displaced->step_request_queue = new_req;
1348
1349 return 0;
1350 }
1351 else
1352 {
1353 if (debug_displaced)
1354 fprintf_unfiltered (gdb_stdlog,
1355 "displaced: stepping %s now\n",
1356 target_pid_to_str (ptid));
1357 }
1358
1359 displaced_step_clear (displaced);
1360
1361 old_cleanups = save_inferior_ptid ();
1362 inferior_ptid = ptid;
1363
1364 original = regcache_read_pc (regcache);
1365
1366 copy = gdbarch_displaced_step_location (gdbarch);
1367 len = gdbarch_max_insn_length (gdbarch);
1368
1369 /* Save the original contents of the copy area. */
1370 displaced->step_saved_copy = xmalloc (len);
1371 ignore_cleanups = make_cleanup (free_current_contents,
1372 &displaced->step_saved_copy);
1373 status = target_read_memory (copy, displaced->step_saved_copy, len);
1374 if (status != 0)
1375 throw_error (MEMORY_ERROR,
1376 _("Error accessing memory address %s (%s) for "
1377 "displaced-stepping scratch space."),
1378 paddress (gdbarch, copy), safe_strerror (status));
1379 if (debug_displaced)
1380 {
1381 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1382 paddress (gdbarch, copy));
1383 displaced_step_dump_bytes (gdb_stdlog,
1384 displaced->step_saved_copy,
1385 len);
1386 };
1387
1388 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1389 original, copy, regcache);
1390
1391 /* We don't support the fully-simulated case at present. */
1392 gdb_assert (closure);
1393
1394 /* Save the information we need to fix things up if the step
1395 succeeds. */
1396 displaced->step_ptid = ptid;
1397 displaced->step_gdbarch = gdbarch;
1398 displaced->step_closure = closure;
1399 displaced->step_original = original;
1400 displaced->step_copy = copy;
1401
1402 make_cleanup (displaced_step_clear_cleanup, displaced);
1403
1404 /* Resume execution at the copy. */
1405 regcache_write_pc (regcache, copy);
1406
1407 discard_cleanups (ignore_cleanups);
1408
1409 do_cleanups (old_cleanups);
1410
1411 if (debug_displaced)
1412 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1413 paddress (gdbarch, copy));
1414
1415 return 1;
1416 }
1417
1418 static void
1419 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1420 const gdb_byte *myaddr, int len)
1421 {
1422 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1423
1424 inferior_ptid = ptid;
1425 write_memory (memaddr, myaddr, len);
1426 do_cleanups (ptid_cleanup);
1427 }
1428
1429 /* Restore the contents of the copy area for thread PTID. */
1430
1431 static void
1432 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1433 ptid_t ptid)
1434 {
1435 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1436
1437 write_memory_ptid (ptid, displaced->step_copy,
1438 displaced->step_saved_copy, len);
1439 if (debug_displaced)
1440 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1441 target_pid_to_str (ptid),
1442 paddress (displaced->step_gdbarch,
1443 displaced->step_copy));
1444 }
1445
1446 static void
1447 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1448 {
1449 struct cleanup *old_cleanups;
1450 struct displaced_step_inferior_state *displaced
1451 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1452
1453 /* Was any thread of this process doing a displaced step? */
1454 if (displaced == NULL)
1455 return;
1456
1457 /* Was this event for the pid we displaced? */
1458 if (ptid_equal (displaced->step_ptid, null_ptid)
1459 || ! ptid_equal (displaced->step_ptid, event_ptid))
1460 return;
1461
1462 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1463
1464 displaced_step_restore (displaced, displaced->step_ptid);
1465
1466 /* Did the instruction complete successfully? */
1467 if (signal == GDB_SIGNAL_TRAP)
1468 {
1469 /* Fix up the resulting state. */
1470 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1471 displaced->step_closure,
1472 displaced->step_original,
1473 displaced->step_copy,
1474 get_thread_regcache (displaced->step_ptid));
1475 }
1476 else
1477 {
1478 /* Since the instruction didn't complete, all we can do is
1479 relocate the PC. */
1480 struct regcache *regcache = get_thread_regcache (event_ptid);
1481 CORE_ADDR pc = regcache_read_pc (regcache);
1482
1483 pc = displaced->step_original + (pc - displaced->step_copy);
1484 regcache_write_pc (regcache, pc);
1485 }
1486
1487 do_cleanups (old_cleanups);
1488
1489 displaced->step_ptid = null_ptid;
1490
1491 /* Are there any pending displaced stepping requests? If so, run
1492 one now. Leave the state object around, since we're likely to
1493 need it again soon. */
1494 while (displaced->step_request_queue)
1495 {
1496 struct displaced_step_request *head;
1497 ptid_t ptid;
1498 struct regcache *regcache;
1499 struct gdbarch *gdbarch;
1500 CORE_ADDR actual_pc;
1501 struct address_space *aspace;
1502
1503 head = displaced->step_request_queue;
1504 ptid = head->ptid;
1505 displaced->step_request_queue = head->next;
1506 xfree (head);
1507
1508 context_switch (ptid);
1509
1510 regcache = get_thread_regcache (ptid);
1511 actual_pc = regcache_read_pc (regcache);
1512 aspace = get_regcache_aspace (regcache);
1513
1514 if (breakpoint_here_p (aspace, actual_pc))
1515 {
1516 if (debug_displaced)
1517 fprintf_unfiltered (gdb_stdlog,
1518 "displaced: stepping queued %s now\n",
1519 target_pid_to_str (ptid));
1520
1521 displaced_step_prepare (ptid);
1522
1523 gdbarch = get_regcache_arch (regcache);
1524
1525 if (debug_displaced)
1526 {
1527 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1528 gdb_byte buf[4];
1529
1530 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1531 paddress (gdbarch, actual_pc));
1532 read_memory (actual_pc, buf, sizeof (buf));
1533 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1534 }
1535
1536 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1537 displaced->step_closure))
1538 target_resume (ptid, 1, GDB_SIGNAL_0);
1539 else
1540 target_resume (ptid, 0, GDB_SIGNAL_0);
1541
1542 /* Done, we're stepping a thread. */
1543 break;
1544 }
1545 else
1546 {
1547 int step;
1548 struct thread_info *tp = inferior_thread ();
1549
1550 /* The breakpoint we were sitting under has since been
1551 removed. */
1552 tp->control.trap_expected = 0;
1553
1554 /* Go back to what we were trying to do. */
1555 step = currently_stepping (tp);
1556
1557 if (debug_displaced)
1558 fprintf_unfiltered (gdb_stdlog,
1559 "displaced: breakpoint is gone: %s, step(%d)\n",
1560 target_pid_to_str (tp->ptid), step);
1561
1562 target_resume (ptid, step, GDB_SIGNAL_0);
1563 tp->suspend.stop_signal = GDB_SIGNAL_0;
1564
1565 /* This request was discarded. See if there's any other
1566 thread waiting for its turn. */
1567 }
1568 }
1569 }
1570
1571 /* Update global variables holding ptids to hold NEW_PTID if they were
1572 holding OLD_PTID. */
1573 static void
1574 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1575 {
1576 struct displaced_step_request *it;
1577 struct displaced_step_inferior_state *displaced;
1578
1579 if (ptid_equal (inferior_ptid, old_ptid))
1580 inferior_ptid = new_ptid;
1581
1582 if (ptid_equal (singlestep_ptid, old_ptid))
1583 singlestep_ptid = new_ptid;
1584
1585 if (ptid_equal (deferred_step_ptid, old_ptid))
1586 deferred_step_ptid = new_ptid;
1587
1588 for (displaced = displaced_step_inferior_states;
1589 displaced;
1590 displaced = displaced->next)
1591 {
1592 if (ptid_equal (displaced->step_ptid, old_ptid))
1593 displaced->step_ptid = new_ptid;
1594
1595 for (it = displaced->step_request_queue; it; it = it->next)
1596 if (ptid_equal (it->ptid, old_ptid))
1597 it->ptid = new_ptid;
1598 }
1599 }
1600
1601 \f
1602 /* Resuming. */
1603
1604 /* Things to clean up if we QUIT out of resume (). */
1605 static void
1606 resume_cleanups (void *ignore)
1607 {
1608 normal_stop ();
1609 }
1610
1611 static const char schedlock_off[] = "off";
1612 static const char schedlock_on[] = "on";
1613 static const char schedlock_step[] = "step";
1614 static const char *const scheduler_enums[] = {
1615 schedlock_off,
1616 schedlock_on,
1617 schedlock_step,
1618 NULL
1619 };
1620 static const char *scheduler_mode = schedlock_off;
1621 static void
1622 show_scheduler_mode (struct ui_file *file, int from_tty,
1623 struct cmd_list_element *c, const char *value)
1624 {
1625 fprintf_filtered (file,
1626 _("Mode for locking scheduler "
1627 "during execution is \"%s\".\n"),
1628 value);
1629 }
1630
1631 static void
1632 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1633 {
1634 if (!target_can_lock_scheduler)
1635 {
1636 scheduler_mode = schedlock_off;
1637 error (_("Target '%s' cannot support this command."), target_shortname);
1638 }
1639 }
1640
1641 /* True if execution commands resume all threads of all processes by
1642 default; otherwise, resume only threads of the current inferior
1643 process. */
1644 int sched_multi = 0;
1645
1646 /* Try to setup for software single stepping over the specified location.
1647 Return 1 if target_resume() should use hardware single step.
1648
1649 GDBARCH the current gdbarch.
1650 PC the location to step over. */
1651
1652 static int
1653 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1654 {
1655 int hw_step = 1;
1656
1657 if (execution_direction == EXEC_FORWARD
1658 && gdbarch_software_single_step_p (gdbarch)
1659 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1660 {
1661 hw_step = 0;
1662 /* Do not pull these breakpoints until after a `wait' in
1663 `wait_for_inferior'. */
1664 singlestep_breakpoints_inserted_p = 1;
1665 singlestep_ptid = inferior_ptid;
1666 singlestep_pc = pc;
1667 }
1668 return hw_step;
1669 }
1670
1671 /* Return a ptid representing the set of threads that we will proceed,
1672 in the perspective of the user/frontend. We may actually resume
1673 fewer threads at first, e.g., if a thread is stopped at a
1674 breakpoint that needs stepping-off, but that should not be visible
1675 to the user/frontend, and neither should the frontend/user be
1676 allowed to proceed any of the threads that happen to be stopped for
1677 internal run control handling, if a previous command wanted them
1678 resumed. */
1679
1680 ptid_t
1681 user_visible_resume_ptid (int step)
1682 {
1683 /* By default, resume all threads of all processes. */
1684 ptid_t resume_ptid = RESUME_ALL;
1685
1686 /* Maybe resume only all threads of the current process. */
1687 if (!sched_multi && target_supports_multi_process ())
1688 {
1689 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1690 }
1691
1692 /* Maybe resume a single thread after all. */
1693 if (non_stop)
1694 {
1695 /* With non-stop mode on, threads are always handled
1696 individually. */
1697 resume_ptid = inferior_ptid;
1698 }
1699 else if ((scheduler_mode == schedlock_on)
1700 || (scheduler_mode == schedlock_step
1701 && (step || singlestep_breakpoints_inserted_p)))
1702 {
1703 /* User-settable 'scheduler' mode requires solo thread resume. */
1704 resume_ptid = inferior_ptid;
1705 }
1706
1707 return resume_ptid;
1708 }
1709
1710 /* Resume the inferior, but allow a QUIT. This is useful if the user
1711 wants to interrupt some lengthy single-stepping operation
1712 (for child processes, the SIGINT goes to the inferior, and so
1713 we get a SIGINT random_signal, but for remote debugging and perhaps
1714 other targets, that's not true).
1715
1716 STEP nonzero if we should step (zero to continue instead).
1717 SIG is the signal to give the inferior (zero for none). */
1718 void
1719 resume (int step, enum gdb_signal sig)
1720 {
1721 int should_resume = 1;
1722 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1723 struct regcache *regcache = get_current_regcache ();
1724 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1725 struct thread_info *tp = inferior_thread ();
1726 CORE_ADDR pc = regcache_read_pc (regcache);
1727 struct address_space *aspace = get_regcache_aspace (regcache);
1728
1729 QUIT;
1730
1731 if (current_inferior ()->waiting_for_vfork_done)
1732 {
1733 /* Don't try to single-step a vfork parent that is waiting for
1734 the child to get out of the shared memory region (by exec'ing
1735 or exiting). This is particularly important on software
1736 single-step archs, as the child process would trip on the
1737 software single step breakpoint inserted for the parent
1738 process. Since the parent will not actually execute any
1739 instruction until the child is out of the shared region (such
1740 are vfork's semantics), it is safe to simply continue it.
1741 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1742 the parent, and tell it to `keep_going', which automatically
1743 re-sets it stepping. */
1744 if (debug_infrun)
1745 fprintf_unfiltered (gdb_stdlog,
1746 "infrun: resume : clear step\n");
1747 step = 0;
1748 }
1749
1750 if (debug_infrun)
1751 fprintf_unfiltered (gdb_stdlog,
1752 "infrun: resume (step=%d, signal=%s), "
1753 "trap_expected=%d, current thread [%s] at %s\n",
1754 step, gdb_signal_to_symbol_string (sig),
1755 tp->control.trap_expected,
1756 target_pid_to_str (inferior_ptid),
1757 paddress (gdbarch, pc));
1758
1759 /* Normally, by the time we reach `resume', the breakpoints are either
1760 removed or inserted, as appropriate. The exception is if we're sitting
1761 at a permanent breakpoint; we need to step over it, but permanent
1762 breakpoints can't be removed. So we have to test for it here. */
1763 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1764 {
1765 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1766 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1767 else
1768 error (_("\
1769 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1770 how to step past a permanent breakpoint on this architecture. Try using\n\
1771 a command like `return' or `jump' to continue execution."));
1772 }
1773
1774 /* If we have a breakpoint to step over, make sure to do a single
1775 step only. Same if we have software watchpoints. */
1776 if (tp->control.trap_expected || bpstat_should_step ())
1777 tp->control.may_range_step = 0;
1778
1779 /* If enabled, step over breakpoints by executing a copy of the
1780 instruction at a different address.
1781
1782 We can't use displaced stepping when we have a signal to deliver;
1783 the comments for displaced_step_prepare explain why. The
1784 comments in the handle_inferior event for dealing with 'random
1785 signals' explain what we do instead.
1786
1787 We can't use displaced stepping when we are waiting for vfork_done
1788 event, displaced stepping breaks the vfork child similarly as single
1789 step software breakpoint. */
1790 if (use_displaced_stepping (gdbarch)
1791 && (tp->control.trap_expected
1792 || (step && gdbarch_software_single_step_p (gdbarch)))
1793 && sig == GDB_SIGNAL_0
1794 && !current_inferior ()->waiting_for_vfork_done)
1795 {
1796 struct displaced_step_inferior_state *displaced;
1797
1798 if (!displaced_step_prepare (inferior_ptid))
1799 {
1800 /* Got placed in displaced stepping queue. Will be resumed
1801 later when all the currently queued displaced stepping
1802 requests finish. The thread is not executing at this point,
1803 and the call to set_executing will be made later. But we
1804 need to call set_running here, since from frontend point of view,
1805 the thread is running. */
1806 set_running (inferior_ptid, 1);
1807 discard_cleanups (old_cleanups);
1808 return;
1809 }
1810
1811 /* Update pc to reflect the new address from which we will execute
1812 instructions due to displaced stepping. */
1813 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1814
1815 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1816 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1817 displaced->step_closure);
1818 }
1819
1820 /* Do we need to do it the hard way, w/temp breakpoints? */
1821 else if (step)
1822 step = maybe_software_singlestep (gdbarch, pc);
1823
1824 /* Currently, our software single-step implementation leads to different
1825 results than hardware single-stepping in one situation: when stepping
1826 into delivering a signal which has an associated signal handler,
1827 hardware single-step will stop at the first instruction of the handler,
1828 while software single-step will simply skip execution of the handler.
1829
1830 For now, this difference in behavior is accepted since there is no
1831 easy way to actually implement single-stepping into a signal handler
1832 without kernel support.
1833
1834 However, there is one scenario where this difference leads to follow-on
1835 problems: if we're stepping off a breakpoint by removing all breakpoints
1836 and then single-stepping. In this case, the software single-step
1837 behavior means that even if there is a *breakpoint* in the signal
1838 handler, GDB still would not stop.
1839
1840 Fortunately, we can at least fix this particular issue. We detect
1841 here the case where we are about to deliver a signal while software
1842 single-stepping with breakpoints removed. In this situation, we
1843 revert the decisions to remove all breakpoints and insert single-
1844 step breakpoints, and instead we install a step-resume breakpoint
1845 at the current address, deliver the signal without stepping, and
1846 once we arrive back at the step-resume breakpoint, actually step
1847 over the breakpoint we originally wanted to step over. */
1848 if (singlestep_breakpoints_inserted_p
1849 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
1850 {
1851 /* If we have nested signals or a pending signal is delivered
1852 immediately after a handler returns, might might already have
1853 a step-resume breakpoint set on the earlier handler. We cannot
1854 set another step-resume breakpoint; just continue on until the
1855 original breakpoint is hit. */
1856 if (tp->control.step_resume_breakpoint == NULL)
1857 {
1858 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1859 tp->step_after_step_resume_breakpoint = 1;
1860 }
1861
1862 remove_single_step_breakpoints ();
1863 singlestep_breakpoints_inserted_p = 0;
1864
1865 insert_breakpoints ();
1866 tp->control.trap_expected = 0;
1867 }
1868
1869 if (should_resume)
1870 {
1871 ptid_t resume_ptid;
1872
1873 /* If STEP is set, it's a request to use hardware stepping
1874 facilities. But in that case, we should never
1875 use singlestep breakpoint. */
1876 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1877
1878 /* Decide the set of threads to ask the target to resume. Start
1879 by assuming everything will be resumed, than narrow the set
1880 by applying increasingly restricting conditions. */
1881 resume_ptid = user_visible_resume_ptid (step);
1882
1883 /* Maybe resume a single thread after all. */
1884 if (singlestep_breakpoints_inserted_p
1885 && stepping_past_singlestep_breakpoint)
1886 {
1887 /* The situation here is as follows. In thread T1 we wanted to
1888 single-step. Lacking hardware single-stepping we've
1889 set breakpoint at the PC of the next instruction -- call it
1890 P. After resuming, we've hit that breakpoint in thread T2.
1891 Now we've removed original breakpoint, inserted breakpoint
1892 at P+1, and try to step to advance T2 past breakpoint.
1893 We need to step only T2, as if T1 is allowed to freely run,
1894 it can run past P, and if other threads are allowed to run,
1895 they can hit breakpoint at P+1, and nested hits of single-step
1896 breakpoints is not something we'd want -- that's complicated
1897 to support, and has no value. */
1898 resume_ptid = inferior_ptid;
1899 }
1900 else if ((step || singlestep_breakpoints_inserted_p)
1901 && tp->control.trap_expected)
1902 {
1903 /* We're allowing a thread to run past a breakpoint it has
1904 hit, by single-stepping the thread with the breakpoint
1905 removed. In which case, we need to single-step only this
1906 thread, and keep others stopped, as they can miss this
1907 breakpoint if allowed to run.
1908
1909 The current code actually removes all breakpoints when
1910 doing this, not just the one being stepped over, so if we
1911 let other threads run, we can actually miss any
1912 breakpoint, not just the one at PC. */
1913 resume_ptid = inferior_ptid;
1914 }
1915
1916 if (gdbarch_cannot_step_breakpoint (gdbarch))
1917 {
1918 /* Most targets can step a breakpoint instruction, thus
1919 executing it normally. But if this one cannot, just
1920 continue and we will hit it anyway. */
1921 if (step && breakpoint_inserted_here_p (aspace, pc))
1922 step = 0;
1923 }
1924
1925 if (debug_displaced
1926 && use_displaced_stepping (gdbarch)
1927 && tp->control.trap_expected)
1928 {
1929 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1930 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1931 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1932 gdb_byte buf[4];
1933
1934 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1935 paddress (resume_gdbarch, actual_pc));
1936 read_memory (actual_pc, buf, sizeof (buf));
1937 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1938 }
1939
1940 if (tp->control.may_range_step)
1941 {
1942 /* If we're resuming a thread with the PC out of the step
1943 range, then we're doing some nested/finer run control
1944 operation, like stepping the thread out of the dynamic
1945 linker or the displaced stepping scratch pad. We
1946 shouldn't have allowed a range step then. */
1947 gdb_assert (pc_in_thread_step_range (pc, tp));
1948 }
1949
1950 /* Install inferior's terminal modes. */
1951 target_terminal_inferior ();
1952
1953 /* Avoid confusing the next resume, if the next stop/resume
1954 happens to apply to another thread. */
1955 tp->suspend.stop_signal = GDB_SIGNAL_0;
1956
1957 /* Advise target which signals may be handled silently. If we have
1958 removed breakpoints because we are stepping over one (which can
1959 happen only if we are not using displaced stepping), we need to
1960 receive all signals to avoid accidentally skipping a breakpoint
1961 during execution of a signal handler. */
1962 if ((step || singlestep_breakpoints_inserted_p)
1963 && tp->control.trap_expected
1964 && !use_displaced_stepping (gdbarch))
1965 target_pass_signals (0, NULL);
1966 else
1967 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
1968
1969 target_resume (resume_ptid, step, sig);
1970 }
1971
1972 discard_cleanups (old_cleanups);
1973 }
1974 \f
1975 /* Proceeding. */
1976
1977 /* Clear out all variables saying what to do when inferior is continued.
1978 First do this, then set the ones you want, then call `proceed'. */
1979
1980 static void
1981 clear_proceed_status_thread (struct thread_info *tp)
1982 {
1983 if (debug_infrun)
1984 fprintf_unfiltered (gdb_stdlog,
1985 "infrun: clear_proceed_status_thread (%s)\n",
1986 target_pid_to_str (tp->ptid));
1987
1988 tp->control.trap_expected = 0;
1989 tp->control.step_range_start = 0;
1990 tp->control.step_range_end = 0;
1991 tp->control.may_range_step = 0;
1992 tp->control.step_frame_id = null_frame_id;
1993 tp->control.step_stack_frame_id = null_frame_id;
1994 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1995 tp->stop_requested = 0;
1996
1997 tp->control.stop_step = 0;
1998
1999 tp->control.proceed_to_finish = 0;
2000
2001 /* Discard any remaining commands or status from previous stop. */
2002 bpstat_clear (&tp->control.stop_bpstat);
2003 }
2004
2005 static int
2006 clear_proceed_status_callback (struct thread_info *tp, void *data)
2007 {
2008 if (is_exited (tp->ptid))
2009 return 0;
2010
2011 clear_proceed_status_thread (tp);
2012 return 0;
2013 }
2014
2015 void
2016 clear_proceed_status (void)
2017 {
2018 if (!non_stop)
2019 {
2020 /* In all-stop mode, delete the per-thread status of all
2021 threads, even if inferior_ptid is null_ptid, there may be
2022 threads on the list. E.g., we may be launching a new
2023 process, while selecting the executable. */
2024 iterate_over_threads (clear_proceed_status_callback, NULL);
2025 }
2026
2027 if (!ptid_equal (inferior_ptid, null_ptid))
2028 {
2029 struct inferior *inferior;
2030
2031 if (non_stop)
2032 {
2033 /* If in non-stop mode, only delete the per-thread status of
2034 the current thread. */
2035 clear_proceed_status_thread (inferior_thread ());
2036 }
2037
2038 inferior = current_inferior ();
2039 inferior->control.stop_soon = NO_STOP_QUIETLY;
2040 }
2041
2042 stop_after_trap = 0;
2043
2044 observer_notify_about_to_proceed ();
2045
2046 if (stop_registers)
2047 {
2048 regcache_xfree (stop_registers);
2049 stop_registers = NULL;
2050 }
2051 }
2052
2053 /* Check the current thread against the thread that reported the most recent
2054 event. If a step-over is required return TRUE and set the current thread
2055 to the old thread. Otherwise return FALSE.
2056
2057 This should be suitable for any targets that support threads. */
2058
2059 static int
2060 prepare_to_proceed (int step)
2061 {
2062 ptid_t wait_ptid;
2063 struct target_waitstatus wait_status;
2064 int schedlock_enabled;
2065
2066 /* With non-stop mode on, threads are always handled individually. */
2067 gdb_assert (! non_stop);
2068
2069 /* Get the last target status returned by target_wait(). */
2070 get_last_target_status (&wait_ptid, &wait_status);
2071
2072 /* Make sure we were stopped at a breakpoint. */
2073 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2074 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2075 && wait_status.value.sig != GDB_SIGNAL_ILL
2076 && wait_status.value.sig != GDB_SIGNAL_SEGV
2077 && wait_status.value.sig != GDB_SIGNAL_EMT))
2078 {
2079 return 0;
2080 }
2081
2082 schedlock_enabled = (scheduler_mode == schedlock_on
2083 || (scheduler_mode == schedlock_step
2084 && step));
2085
2086 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2087 if (schedlock_enabled)
2088 return 0;
2089
2090 /* Don't switch over if we're about to resume some other process
2091 other than WAIT_PTID's, and schedule-multiple is off. */
2092 if (!sched_multi
2093 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2094 return 0;
2095
2096 /* Switched over from WAIT_PID. */
2097 if (!ptid_equal (wait_ptid, minus_one_ptid)
2098 && !ptid_equal (inferior_ptid, wait_ptid))
2099 {
2100 struct regcache *regcache = get_thread_regcache (wait_ptid);
2101
2102 if (breakpoint_here_p (get_regcache_aspace (regcache),
2103 regcache_read_pc (regcache)))
2104 {
2105 /* If stepping, remember current thread to switch back to. */
2106 if (step)
2107 deferred_step_ptid = inferior_ptid;
2108
2109 /* Switch back to WAIT_PID thread. */
2110 switch_to_thread (wait_ptid);
2111
2112 if (debug_infrun)
2113 fprintf_unfiltered (gdb_stdlog,
2114 "infrun: prepare_to_proceed (step=%d), "
2115 "switched to [%s]\n",
2116 step, target_pid_to_str (inferior_ptid));
2117
2118 /* We return 1 to indicate that there is a breakpoint here,
2119 so we need to step over it before continuing to avoid
2120 hitting it straight away. */
2121 return 1;
2122 }
2123 }
2124
2125 return 0;
2126 }
2127
2128 /* Basic routine for continuing the program in various fashions.
2129
2130 ADDR is the address to resume at, or -1 for resume where stopped.
2131 SIGGNAL is the signal to give it, or 0 for none,
2132 or -1 for act according to how it stopped.
2133 STEP is nonzero if should trap after one instruction.
2134 -1 means return after that and print nothing.
2135 You should probably set various step_... variables
2136 before calling here, if you are stepping.
2137
2138 You should call clear_proceed_status before calling proceed. */
2139
2140 void
2141 proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
2142 {
2143 struct regcache *regcache;
2144 struct gdbarch *gdbarch;
2145 struct thread_info *tp;
2146 CORE_ADDR pc;
2147 struct address_space *aspace;
2148 /* GDB may force the inferior to step due to various reasons. */
2149 int force_step = 0;
2150
2151 /* If we're stopped at a fork/vfork, follow the branch set by the
2152 "set follow-fork-mode" command; otherwise, we'll just proceed
2153 resuming the current thread. */
2154 if (!follow_fork ())
2155 {
2156 /* The target for some reason decided not to resume. */
2157 normal_stop ();
2158 if (target_can_async_p ())
2159 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2160 return;
2161 }
2162
2163 /* We'll update this if & when we switch to a new thread. */
2164 previous_inferior_ptid = inferior_ptid;
2165
2166 regcache = get_current_regcache ();
2167 gdbarch = get_regcache_arch (regcache);
2168 aspace = get_regcache_aspace (regcache);
2169 pc = regcache_read_pc (regcache);
2170
2171 if (step > 0)
2172 step_start_function = find_pc_function (pc);
2173 if (step < 0)
2174 stop_after_trap = 1;
2175
2176 if (addr == (CORE_ADDR) -1)
2177 {
2178 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2179 && execution_direction != EXEC_REVERSE)
2180 /* There is a breakpoint at the address we will resume at,
2181 step one instruction before inserting breakpoints so that
2182 we do not stop right away (and report a second hit at this
2183 breakpoint).
2184
2185 Note, we don't do this in reverse, because we won't
2186 actually be executing the breakpoint insn anyway.
2187 We'll be (un-)executing the previous instruction. */
2188
2189 force_step = 1;
2190 else if (gdbarch_single_step_through_delay_p (gdbarch)
2191 && gdbarch_single_step_through_delay (gdbarch,
2192 get_current_frame ()))
2193 /* We stepped onto an instruction that needs to be stepped
2194 again before re-inserting the breakpoint, do so. */
2195 force_step = 1;
2196 }
2197 else
2198 {
2199 regcache_write_pc (regcache, addr);
2200 }
2201
2202 if (debug_infrun)
2203 fprintf_unfiltered (gdb_stdlog,
2204 "infrun: proceed (addr=%s, signal=%s, step=%d)\n",
2205 paddress (gdbarch, addr),
2206 gdb_signal_to_symbol_string (siggnal), step);
2207
2208 if (non_stop)
2209 /* In non-stop, each thread is handled individually. The context
2210 must already be set to the right thread here. */
2211 ;
2212 else
2213 {
2214 /* In a multi-threaded task we may select another thread and
2215 then continue or step.
2216
2217 But if the old thread was stopped at a breakpoint, it will
2218 immediately cause another breakpoint stop without any
2219 execution (i.e. it will report a breakpoint hit incorrectly).
2220 So we must step over it first.
2221
2222 prepare_to_proceed checks the current thread against the
2223 thread that reported the most recent event. If a step-over
2224 is required it returns TRUE and sets the current thread to
2225 the old thread. */
2226 if (prepare_to_proceed (step))
2227 force_step = 1;
2228 }
2229
2230 /* prepare_to_proceed may change the current thread. */
2231 tp = inferior_thread ();
2232
2233 if (force_step)
2234 {
2235 tp->control.trap_expected = 1;
2236 /* If displaced stepping is enabled, we can step over the
2237 breakpoint without hitting it, so leave all breakpoints
2238 inserted. Otherwise we need to disable all breakpoints, step
2239 one instruction, and then re-add them when that step is
2240 finished. */
2241 if (!use_displaced_stepping (gdbarch))
2242 remove_breakpoints ();
2243 }
2244
2245 /* We can insert breakpoints if we're not trying to step over one,
2246 or if we are stepping over one but we're using displaced stepping
2247 to do so. */
2248 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2249 insert_breakpoints ();
2250
2251 if (!non_stop)
2252 {
2253 /* Pass the last stop signal to the thread we're resuming,
2254 irrespective of whether the current thread is the thread that
2255 got the last event or not. This was historically GDB's
2256 behaviour before keeping a stop_signal per thread. */
2257
2258 struct thread_info *last_thread;
2259 ptid_t last_ptid;
2260 struct target_waitstatus last_status;
2261
2262 get_last_target_status (&last_ptid, &last_status);
2263 if (!ptid_equal (inferior_ptid, last_ptid)
2264 && !ptid_equal (last_ptid, null_ptid)
2265 && !ptid_equal (last_ptid, minus_one_ptid))
2266 {
2267 last_thread = find_thread_ptid (last_ptid);
2268 if (last_thread)
2269 {
2270 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2271 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2272 }
2273 }
2274 }
2275
2276 if (siggnal != GDB_SIGNAL_DEFAULT)
2277 tp->suspend.stop_signal = siggnal;
2278 /* If this signal should not be seen by program,
2279 give it zero. Used for debugging signals. */
2280 else if (!signal_program[tp->suspend.stop_signal])
2281 tp->suspend.stop_signal = GDB_SIGNAL_0;
2282
2283 annotate_starting ();
2284
2285 /* Make sure that output from GDB appears before output from the
2286 inferior. */
2287 gdb_flush (gdb_stdout);
2288
2289 /* Refresh prev_pc value just prior to resuming. This used to be
2290 done in stop_stepping, however, setting prev_pc there did not handle
2291 scenarios such as inferior function calls or returning from
2292 a function via the return command. In those cases, the prev_pc
2293 value was not set properly for subsequent commands. The prev_pc value
2294 is used to initialize the starting line number in the ecs. With an
2295 invalid value, the gdb next command ends up stopping at the position
2296 represented by the next line table entry past our start position.
2297 On platforms that generate one line table entry per line, this
2298 is not a problem. However, on the ia64, the compiler generates
2299 extraneous line table entries that do not increase the line number.
2300 When we issue the gdb next command on the ia64 after an inferior call
2301 or a return command, we often end up a few instructions forward, still
2302 within the original line we started.
2303
2304 An attempt was made to refresh the prev_pc at the same time the
2305 execution_control_state is initialized (for instance, just before
2306 waiting for an inferior event). But this approach did not work
2307 because of platforms that use ptrace, where the pc register cannot
2308 be read unless the inferior is stopped. At that point, we are not
2309 guaranteed the inferior is stopped and so the regcache_read_pc() call
2310 can fail. Setting the prev_pc value here ensures the value is updated
2311 correctly when the inferior is stopped. */
2312 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2313
2314 /* Fill in with reasonable starting values. */
2315 init_thread_stepping_state (tp);
2316
2317 /* Reset to normal state. */
2318 init_infwait_state ();
2319
2320 /* Resume inferior. */
2321 resume (force_step || step || bpstat_should_step (),
2322 tp->suspend.stop_signal);
2323
2324 /* Wait for it to stop (if not standalone)
2325 and in any case decode why it stopped, and act accordingly. */
2326 /* Do this only if we are not using the event loop, or if the target
2327 does not support asynchronous execution. */
2328 if (!target_can_async_p ())
2329 {
2330 wait_for_inferior ();
2331 normal_stop ();
2332 }
2333 }
2334 \f
2335
2336 /* Start remote-debugging of a machine over a serial link. */
2337
2338 void
2339 start_remote (int from_tty)
2340 {
2341 struct inferior *inferior;
2342
2343 inferior = current_inferior ();
2344 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2345
2346 /* Always go on waiting for the target, regardless of the mode. */
2347 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2348 indicate to wait_for_inferior that a target should timeout if
2349 nothing is returned (instead of just blocking). Because of this,
2350 targets expecting an immediate response need to, internally, set
2351 things up so that the target_wait() is forced to eventually
2352 timeout. */
2353 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2354 differentiate to its caller what the state of the target is after
2355 the initial open has been performed. Here we're assuming that
2356 the target has stopped. It should be possible to eventually have
2357 target_open() return to the caller an indication that the target
2358 is currently running and GDB state should be set to the same as
2359 for an async run. */
2360 wait_for_inferior ();
2361
2362 /* Now that the inferior has stopped, do any bookkeeping like
2363 loading shared libraries. We want to do this before normal_stop,
2364 so that the displayed frame is up to date. */
2365 post_create_inferior (&current_target, from_tty);
2366
2367 normal_stop ();
2368 }
2369
2370 /* Initialize static vars when a new inferior begins. */
2371
2372 void
2373 init_wait_for_inferior (void)
2374 {
2375 /* These are meaningless until the first time through wait_for_inferior. */
2376
2377 breakpoint_init_inferior (inf_starting);
2378
2379 clear_proceed_status ();
2380
2381 stepping_past_singlestep_breakpoint = 0;
2382 deferred_step_ptid = null_ptid;
2383
2384 target_last_wait_ptid = minus_one_ptid;
2385
2386 previous_inferior_ptid = inferior_ptid;
2387 init_infwait_state ();
2388
2389 /* Discard any skipped inlined frames. */
2390 clear_inline_frame_state (minus_one_ptid);
2391 }
2392
2393 \f
2394 /* This enum encodes possible reasons for doing a target_wait, so that
2395 wfi can call target_wait in one place. (Ultimately the call will be
2396 moved out of the infinite loop entirely.) */
2397
2398 enum infwait_states
2399 {
2400 infwait_normal_state,
2401 infwait_thread_hop_state,
2402 infwait_step_watch_state,
2403 infwait_nonstep_watch_state
2404 };
2405
2406 /* The PTID we'll do a target_wait on.*/
2407 ptid_t waiton_ptid;
2408
2409 /* Current inferior wait state. */
2410 static enum infwait_states infwait_state;
2411
2412 /* Data to be passed around while handling an event. This data is
2413 discarded between events. */
2414 struct execution_control_state
2415 {
2416 ptid_t ptid;
2417 /* The thread that got the event, if this was a thread event; NULL
2418 otherwise. */
2419 struct thread_info *event_thread;
2420
2421 struct target_waitstatus ws;
2422 int random_signal;
2423 int stop_func_filled_in;
2424 CORE_ADDR stop_func_start;
2425 CORE_ADDR stop_func_end;
2426 const char *stop_func_name;
2427 int wait_some_more;
2428 };
2429
2430 static void handle_inferior_event (struct execution_control_state *ecs);
2431
2432 static void handle_step_into_function (struct gdbarch *gdbarch,
2433 struct execution_control_state *ecs);
2434 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2435 struct execution_control_state *ecs);
2436 static void check_exception_resume (struct execution_control_state *,
2437 struct frame_info *);
2438
2439 static void stop_stepping (struct execution_control_state *ecs);
2440 static void prepare_to_wait (struct execution_control_state *ecs);
2441 static void keep_going (struct execution_control_state *ecs);
2442 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
2443
2444 /* Callback for iterate over threads. If the thread is stopped, but
2445 the user/frontend doesn't know about that yet, go through
2446 normal_stop, as if the thread had just stopped now. ARG points at
2447 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2448 ptid_is_pid(PTID) is true, applies to all threads of the process
2449 pointed at by PTID. Otherwise, apply only to the thread pointed by
2450 PTID. */
2451
2452 static int
2453 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2454 {
2455 ptid_t ptid = * (ptid_t *) arg;
2456
2457 if ((ptid_equal (info->ptid, ptid)
2458 || ptid_equal (minus_one_ptid, ptid)
2459 || (ptid_is_pid (ptid)
2460 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2461 && is_running (info->ptid)
2462 && !is_executing (info->ptid))
2463 {
2464 struct cleanup *old_chain;
2465 struct execution_control_state ecss;
2466 struct execution_control_state *ecs = &ecss;
2467
2468 memset (ecs, 0, sizeof (*ecs));
2469
2470 old_chain = make_cleanup_restore_current_thread ();
2471
2472 /* Go through handle_inferior_event/normal_stop, so we always
2473 have consistent output as if the stop event had been
2474 reported. */
2475 ecs->ptid = info->ptid;
2476 ecs->event_thread = find_thread_ptid (info->ptid);
2477 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2478 ecs->ws.value.sig = GDB_SIGNAL_0;
2479
2480 handle_inferior_event (ecs);
2481
2482 if (!ecs->wait_some_more)
2483 {
2484 struct thread_info *tp;
2485
2486 normal_stop ();
2487
2488 /* Finish off the continuations. */
2489 tp = inferior_thread ();
2490 do_all_intermediate_continuations_thread (tp, 1);
2491 do_all_continuations_thread (tp, 1);
2492 }
2493
2494 do_cleanups (old_chain);
2495 }
2496
2497 return 0;
2498 }
2499
2500 /* This function is attached as a "thread_stop_requested" observer.
2501 Cleanup local state that assumed the PTID was to be resumed, and
2502 report the stop to the frontend. */
2503
2504 static void
2505 infrun_thread_stop_requested (ptid_t ptid)
2506 {
2507 struct displaced_step_inferior_state *displaced;
2508
2509 /* PTID was requested to stop. Remove it from the displaced
2510 stepping queue, so we don't try to resume it automatically. */
2511
2512 for (displaced = displaced_step_inferior_states;
2513 displaced;
2514 displaced = displaced->next)
2515 {
2516 struct displaced_step_request *it, **prev_next_p;
2517
2518 it = displaced->step_request_queue;
2519 prev_next_p = &displaced->step_request_queue;
2520 while (it)
2521 {
2522 if (ptid_match (it->ptid, ptid))
2523 {
2524 *prev_next_p = it->next;
2525 it->next = NULL;
2526 xfree (it);
2527 }
2528 else
2529 {
2530 prev_next_p = &it->next;
2531 }
2532
2533 it = *prev_next_p;
2534 }
2535 }
2536
2537 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2538 }
2539
2540 static void
2541 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2542 {
2543 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2544 nullify_last_target_wait_ptid ();
2545 }
2546
2547 /* Callback for iterate_over_threads. */
2548
2549 static int
2550 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2551 {
2552 if (is_exited (info->ptid))
2553 return 0;
2554
2555 delete_step_resume_breakpoint (info);
2556 delete_exception_resume_breakpoint (info);
2557 return 0;
2558 }
2559
2560 /* In all-stop, delete the step resume breakpoint of any thread that
2561 had one. In non-stop, delete the step resume breakpoint of the
2562 thread that just stopped. */
2563
2564 static void
2565 delete_step_thread_step_resume_breakpoint (void)
2566 {
2567 if (!target_has_execution
2568 || ptid_equal (inferior_ptid, null_ptid))
2569 /* If the inferior has exited, we have already deleted the step
2570 resume breakpoints out of GDB's lists. */
2571 return;
2572
2573 if (non_stop)
2574 {
2575 /* If in non-stop mode, only delete the step-resume or
2576 longjmp-resume breakpoint of the thread that just stopped
2577 stepping. */
2578 struct thread_info *tp = inferior_thread ();
2579
2580 delete_step_resume_breakpoint (tp);
2581 delete_exception_resume_breakpoint (tp);
2582 }
2583 else
2584 /* In all-stop mode, delete all step-resume and longjmp-resume
2585 breakpoints of any thread that had them. */
2586 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2587 }
2588
2589 /* A cleanup wrapper. */
2590
2591 static void
2592 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2593 {
2594 delete_step_thread_step_resume_breakpoint ();
2595 }
2596
2597 /* Pretty print the results of target_wait, for debugging purposes. */
2598
2599 static void
2600 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2601 const struct target_waitstatus *ws)
2602 {
2603 char *status_string = target_waitstatus_to_string (ws);
2604 struct ui_file *tmp_stream = mem_fileopen ();
2605 char *text;
2606
2607 /* The text is split over several lines because it was getting too long.
2608 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2609 output as a unit; we want only one timestamp printed if debug_timestamp
2610 is set. */
2611
2612 fprintf_unfiltered (tmp_stream,
2613 "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
2614 if (ptid_get_pid (waiton_ptid) != -1)
2615 fprintf_unfiltered (tmp_stream,
2616 " [%s]", target_pid_to_str (waiton_ptid));
2617 fprintf_unfiltered (tmp_stream, ", status) =\n");
2618 fprintf_unfiltered (tmp_stream,
2619 "infrun: %d [%s],\n",
2620 ptid_get_pid (result_ptid),
2621 target_pid_to_str (result_ptid));
2622 fprintf_unfiltered (tmp_stream,
2623 "infrun: %s\n",
2624 status_string);
2625
2626 text = ui_file_xstrdup (tmp_stream, NULL);
2627
2628 /* This uses %s in part to handle %'s in the text, but also to avoid
2629 a gcc error: the format attribute requires a string literal. */
2630 fprintf_unfiltered (gdb_stdlog, "%s", text);
2631
2632 xfree (status_string);
2633 xfree (text);
2634 ui_file_delete (tmp_stream);
2635 }
2636
2637 /* Prepare and stabilize the inferior for detaching it. E.g.,
2638 detaching while a thread is displaced stepping is a recipe for
2639 crashing it, as nothing would readjust the PC out of the scratch
2640 pad. */
2641
2642 void
2643 prepare_for_detach (void)
2644 {
2645 struct inferior *inf = current_inferior ();
2646 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2647 struct cleanup *old_chain_1;
2648 struct displaced_step_inferior_state *displaced;
2649
2650 displaced = get_displaced_stepping_state (inf->pid);
2651
2652 /* Is any thread of this process displaced stepping? If not,
2653 there's nothing else to do. */
2654 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2655 return;
2656
2657 if (debug_infrun)
2658 fprintf_unfiltered (gdb_stdlog,
2659 "displaced-stepping in-process while detaching");
2660
2661 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2662 inf->detaching = 1;
2663
2664 while (!ptid_equal (displaced->step_ptid, null_ptid))
2665 {
2666 struct cleanup *old_chain_2;
2667 struct execution_control_state ecss;
2668 struct execution_control_state *ecs;
2669
2670 ecs = &ecss;
2671 memset (ecs, 0, sizeof (*ecs));
2672
2673 overlay_cache_invalid = 1;
2674
2675 if (deprecated_target_wait_hook)
2676 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2677 else
2678 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2679
2680 if (debug_infrun)
2681 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2682
2683 /* If an error happens while handling the event, propagate GDB's
2684 knowledge of the executing state to the frontend/user running
2685 state. */
2686 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2687 &minus_one_ptid);
2688
2689 /* Now figure out what to do with the result of the result. */
2690 handle_inferior_event (ecs);
2691
2692 /* No error, don't finish the state yet. */
2693 discard_cleanups (old_chain_2);
2694
2695 /* Breakpoints and watchpoints are not installed on the target
2696 at this point, and signals are passed directly to the
2697 inferior, so this must mean the process is gone. */
2698 if (!ecs->wait_some_more)
2699 {
2700 discard_cleanups (old_chain_1);
2701 error (_("Program exited while detaching"));
2702 }
2703 }
2704
2705 discard_cleanups (old_chain_1);
2706 }
2707
2708 /* Wait for control to return from inferior to debugger.
2709
2710 If inferior gets a signal, we may decide to start it up again
2711 instead of returning. That is why there is a loop in this function.
2712 When this function actually returns it means the inferior
2713 should be left stopped and GDB should read more commands. */
2714
2715 void
2716 wait_for_inferior (void)
2717 {
2718 struct cleanup *old_cleanups;
2719
2720 if (debug_infrun)
2721 fprintf_unfiltered
2722 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2723
2724 old_cleanups =
2725 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2726
2727 while (1)
2728 {
2729 struct execution_control_state ecss;
2730 struct execution_control_state *ecs = &ecss;
2731 struct cleanup *old_chain;
2732
2733 memset (ecs, 0, sizeof (*ecs));
2734
2735 overlay_cache_invalid = 1;
2736
2737 if (deprecated_target_wait_hook)
2738 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2739 else
2740 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2741
2742 if (debug_infrun)
2743 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2744
2745 /* If an error happens while handling the event, propagate GDB's
2746 knowledge of the executing state to the frontend/user running
2747 state. */
2748 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2749
2750 /* Now figure out what to do with the result of the result. */
2751 handle_inferior_event (ecs);
2752
2753 /* No error, don't finish the state yet. */
2754 discard_cleanups (old_chain);
2755
2756 if (!ecs->wait_some_more)
2757 break;
2758 }
2759
2760 do_cleanups (old_cleanups);
2761 }
2762
2763 /* Asynchronous version of wait_for_inferior. It is called by the
2764 event loop whenever a change of state is detected on the file
2765 descriptor corresponding to the target. It can be called more than
2766 once to complete a single execution command. In such cases we need
2767 to keep the state in a global variable ECSS. If it is the last time
2768 that this function is called for a single execution command, then
2769 report to the user that the inferior has stopped, and do the
2770 necessary cleanups. */
2771
2772 void
2773 fetch_inferior_event (void *client_data)
2774 {
2775 struct execution_control_state ecss;
2776 struct execution_control_state *ecs = &ecss;
2777 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2778 struct cleanup *ts_old_chain;
2779 int was_sync = sync_execution;
2780 int cmd_done = 0;
2781
2782 memset (ecs, 0, sizeof (*ecs));
2783
2784 /* We're handling a live event, so make sure we're doing live
2785 debugging. If we're looking at traceframes while the target is
2786 running, we're going to need to get back to that mode after
2787 handling the event. */
2788 if (non_stop)
2789 {
2790 make_cleanup_restore_current_traceframe ();
2791 set_current_traceframe (-1);
2792 }
2793
2794 if (non_stop)
2795 /* In non-stop mode, the user/frontend should not notice a thread
2796 switch due to internal events. Make sure we reverse to the
2797 user selected thread and frame after handling the event and
2798 running any breakpoint commands. */
2799 make_cleanup_restore_current_thread ();
2800
2801 overlay_cache_invalid = 1;
2802
2803 make_cleanup_restore_integer (&execution_direction);
2804 execution_direction = target_execution_direction ();
2805
2806 if (deprecated_target_wait_hook)
2807 ecs->ptid =
2808 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2809 else
2810 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2811
2812 if (debug_infrun)
2813 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2814
2815 /* If an error happens while handling the event, propagate GDB's
2816 knowledge of the executing state to the frontend/user running
2817 state. */
2818 if (!non_stop)
2819 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2820 else
2821 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2822
2823 /* Get executed before make_cleanup_restore_current_thread above to apply
2824 still for the thread which has thrown the exception. */
2825 make_bpstat_clear_actions_cleanup ();
2826
2827 /* Now figure out what to do with the result of the result. */
2828 handle_inferior_event (ecs);
2829
2830 if (!ecs->wait_some_more)
2831 {
2832 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2833
2834 delete_step_thread_step_resume_breakpoint ();
2835
2836 /* We may not find an inferior if this was a process exit. */
2837 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2838 normal_stop ();
2839
2840 if (target_has_execution
2841 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2842 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2843 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2844 && ecs->event_thread->step_multi
2845 && ecs->event_thread->control.stop_step)
2846 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2847 else
2848 {
2849 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2850 cmd_done = 1;
2851 }
2852 }
2853
2854 /* No error, don't finish the thread states yet. */
2855 discard_cleanups (ts_old_chain);
2856
2857 /* Revert thread and frame. */
2858 do_cleanups (old_chain);
2859
2860 /* If the inferior was in sync execution mode, and now isn't,
2861 restore the prompt (a synchronous execution command has finished,
2862 and we're ready for input). */
2863 if (interpreter_async && was_sync && !sync_execution)
2864 display_gdb_prompt (0);
2865
2866 if (cmd_done
2867 && !was_sync
2868 && exec_done_display_p
2869 && (ptid_equal (inferior_ptid, null_ptid)
2870 || !is_running (inferior_ptid)))
2871 printf_unfiltered (_("completed.\n"));
2872 }
2873
2874 /* Record the frame and location we're currently stepping through. */
2875 void
2876 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2877 {
2878 struct thread_info *tp = inferior_thread ();
2879
2880 tp->control.step_frame_id = get_frame_id (frame);
2881 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2882
2883 tp->current_symtab = sal.symtab;
2884 tp->current_line = sal.line;
2885 }
2886
2887 /* Clear context switchable stepping state. */
2888
2889 void
2890 init_thread_stepping_state (struct thread_info *tss)
2891 {
2892 tss->stepping_over_breakpoint = 0;
2893 tss->step_after_step_resume_breakpoint = 0;
2894 }
2895
2896 /* Return the cached copy of the last pid/waitstatus returned by
2897 target_wait()/deprecated_target_wait_hook(). The data is actually
2898 cached by handle_inferior_event(), which gets called immediately
2899 after target_wait()/deprecated_target_wait_hook(). */
2900
2901 void
2902 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2903 {
2904 *ptidp = target_last_wait_ptid;
2905 *status = target_last_waitstatus;
2906 }
2907
2908 void
2909 nullify_last_target_wait_ptid (void)
2910 {
2911 target_last_wait_ptid = minus_one_ptid;
2912 }
2913
2914 /* Switch thread contexts. */
2915
2916 static void
2917 context_switch (ptid_t ptid)
2918 {
2919 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
2920 {
2921 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2922 target_pid_to_str (inferior_ptid));
2923 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2924 target_pid_to_str (ptid));
2925 }
2926
2927 switch_to_thread (ptid);
2928 }
2929
2930 static void
2931 adjust_pc_after_break (struct execution_control_state *ecs)
2932 {
2933 struct regcache *regcache;
2934 struct gdbarch *gdbarch;
2935 struct address_space *aspace;
2936 CORE_ADDR breakpoint_pc;
2937
2938 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2939 we aren't, just return.
2940
2941 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2942 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2943 implemented by software breakpoints should be handled through the normal
2944 breakpoint layer.
2945
2946 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2947 different signals (SIGILL or SIGEMT for instance), but it is less
2948 clear where the PC is pointing afterwards. It may not match
2949 gdbarch_decr_pc_after_break. I don't know any specific target that
2950 generates these signals at breakpoints (the code has been in GDB since at
2951 least 1992) so I can not guess how to handle them here.
2952
2953 In earlier versions of GDB, a target with
2954 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2955 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2956 target with both of these set in GDB history, and it seems unlikely to be
2957 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2958
2959 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2960 return;
2961
2962 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
2963 return;
2964
2965 /* In reverse execution, when a breakpoint is hit, the instruction
2966 under it has already been de-executed. The reported PC always
2967 points at the breakpoint address, so adjusting it further would
2968 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2969 architecture:
2970
2971 B1 0x08000000 : INSN1
2972 B2 0x08000001 : INSN2
2973 0x08000002 : INSN3
2974 PC -> 0x08000003 : INSN4
2975
2976 Say you're stopped at 0x08000003 as above. Reverse continuing
2977 from that point should hit B2 as below. Reading the PC when the
2978 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2979 been de-executed already.
2980
2981 B1 0x08000000 : INSN1
2982 B2 PC -> 0x08000001 : INSN2
2983 0x08000002 : INSN3
2984 0x08000003 : INSN4
2985
2986 We can't apply the same logic as for forward execution, because
2987 we would wrongly adjust the PC to 0x08000000, since there's a
2988 breakpoint at PC - 1. We'd then report a hit on B1, although
2989 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2990 behaviour. */
2991 if (execution_direction == EXEC_REVERSE)
2992 return;
2993
2994 /* If this target does not decrement the PC after breakpoints, then
2995 we have nothing to do. */
2996 regcache = get_thread_regcache (ecs->ptid);
2997 gdbarch = get_regcache_arch (regcache);
2998 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2999 return;
3000
3001 aspace = get_regcache_aspace (regcache);
3002
3003 /* Find the location where (if we've hit a breakpoint) the
3004 breakpoint would be. */
3005 breakpoint_pc = regcache_read_pc (regcache)
3006 - gdbarch_decr_pc_after_break (gdbarch);
3007
3008 /* Check whether there actually is a software breakpoint inserted at
3009 that location.
3010
3011 If in non-stop mode, a race condition is possible where we've
3012 removed a breakpoint, but stop events for that breakpoint were
3013 already queued and arrive later. To suppress those spurious
3014 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3015 and retire them after a number of stop events are reported. */
3016 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3017 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
3018 {
3019 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
3020
3021 if (RECORD_IS_USED)
3022 record_full_gdb_operation_disable_set ();
3023
3024 /* When using hardware single-step, a SIGTRAP is reported for both
3025 a completed single-step and a software breakpoint. Need to
3026 differentiate between the two, as the latter needs adjusting
3027 but the former does not.
3028
3029 The SIGTRAP can be due to a completed hardware single-step only if
3030 - we didn't insert software single-step breakpoints
3031 - the thread to be examined is still the current thread
3032 - this thread is currently being stepped
3033
3034 If any of these events did not occur, we must have stopped due
3035 to hitting a software breakpoint, and have to back up to the
3036 breakpoint address.
3037
3038 As a special case, we could have hardware single-stepped a
3039 software breakpoint. In this case (prev_pc == breakpoint_pc),
3040 we also need to back up to the breakpoint address. */
3041
3042 if (singlestep_breakpoints_inserted_p
3043 || !ptid_equal (ecs->ptid, inferior_ptid)
3044 || !currently_stepping (ecs->event_thread)
3045 || ecs->event_thread->prev_pc == breakpoint_pc)
3046 regcache_write_pc (regcache, breakpoint_pc);
3047
3048 do_cleanups (old_cleanups);
3049 }
3050 }
3051
3052 static void
3053 init_infwait_state (void)
3054 {
3055 waiton_ptid = pid_to_ptid (-1);
3056 infwait_state = infwait_normal_state;
3057 }
3058
3059 static int
3060 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3061 {
3062 for (frame = get_prev_frame (frame);
3063 frame != NULL;
3064 frame = get_prev_frame (frame))
3065 {
3066 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3067 return 1;
3068 if (get_frame_type (frame) != INLINE_FRAME)
3069 break;
3070 }
3071
3072 return 0;
3073 }
3074
3075 /* Auxiliary function that handles syscall entry/return events.
3076 It returns 1 if the inferior should keep going (and GDB
3077 should ignore the event), or 0 if the event deserves to be
3078 processed. */
3079
3080 static int
3081 handle_syscall_event (struct execution_control_state *ecs)
3082 {
3083 struct regcache *regcache;
3084 int syscall_number;
3085
3086 if (!ptid_equal (ecs->ptid, inferior_ptid))
3087 context_switch (ecs->ptid);
3088
3089 regcache = get_thread_regcache (ecs->ptid);
3090 syscall_number = ecs->ws.value.syscall_number;
3091 stop_pc = regcache_read_pc (regcache);
3092
3093 if (catch_syscall_enabled () > 0
3094 && catching_syscall_number (syscall_number) > 0)
3095 {
3096 enum bpstat_signal_value sval;
3097
3098 if (debug_infrun)
3099 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3100 syscall_number);
3101
3102 ecs->event_thread->control.stop_bpstat
3103 = bpstat_stop_status (get_regcache_aspace (regcache),
3104 stop_pc, ecs->ptid, &ecs->ws);
3105
3106 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3107 GDB_SIGNAL_TRAP);
3108 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
3109
3110 if (!ecs->random_signal)
3111 {
3112 /* Catchpoint hit. */
3113 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3114 return 0;
3115 }
3116 }
3117
3118 /* If no catchpoint triggered for this, then keep going. */
3119 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3120 keep_going (ecs);
3121 return 1;
3122 }
3123
3124 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3125
3126 static void
3127 fill_in_stop_func (struct gdbarch *gdbarch,
3128 struct execution_control_state *ecs)
3129 {
3130 if (!ecs->stop_func_filled_in)
3131 {
3132 /* Don't care about return value; stop_func_start and stop_func_name
3133 will both be 0 if it doesn't work. */
3134 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3135 &ecs->stop_func_start, &ecs->stop_func_end);
3136 ecs->stop_func_start
3137 += gdbarch_deprecated_function_start_offset (gdbarch);
3138
3139 ecs->stop_func_filled_in = 1;
3140 }
3141 }
3142
3143 /* Given an execution control state that has been freshly filled in
3144 by an event from the inferior, figure out what it means and take
3145 appropriate action. */
3146
3147 static void
3148 handle_inferior_event (struct execution_control_state *ecs)
3149 {
3150 struct frame_info *frame;
3151 struct gdbarch *gdbarch;
3152 int stopped_by_watchpoint;
3153 int stepped_after_stopped_by_watchpoint = 0;
3154 struct symtab_and_line stop_pc_sal;
3155 enum stop_kind stop_soon;
3156
3157 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3158 {
3159 /* We had an event in the inferior, but we are not interested in
3160 handling it at this level. The lower layers have already
3161 done what needs to be done, if anything.
3162
3163 One of the possible circumstances for this is when the
3164 inferior produces output for the console. The inferior has
3165 not stopped, and we are ignoring the event. Another possible
3166 circumstance is any event which the lower level knows will be
3167 reported multiple times without an intervening resume. */
3168 if (debug_infrun)
3169 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3170 prepare_to_wait (ecs);
3171 return;
3172 }
3173
3174 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3175 && target_can_async_p () && !sync_execution)
3176 {
3177 /* There were no unwaited-for children left in the target, but,
3178 we're not synchronously waiting for events either. Just
3179 ignore. Otherwise, if we were running a synchronous
3180 execution command, we need to cancel it and give the user
3181 back the terminal. */
3182 if (debug_infrun)
3183 fprintf_unfiltered (gdb_stdlog,
3184 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3185 prepare_to_wait (ecs);
3186 return;
3187 }
3188
3189 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3190 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3191 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3192 {
3193 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3194
3195 gdb_assert (inf);
3196 stop_soon = inf->control.stop_soon;
3197 }
3198 else
3199 stop_soon = NO_STOP_QUIETLY;
3200
3201 /* Cache the last pid/waitstatus. */
3202 target_last_wait_ptid = ecs->ptid;
3203 target_last_waitstatus = ecs->ws;
3204
3205 /* Always clear state belonging to the previous time we stopped. */
3206 stop_stack_dummy = STOP_NONE;
3207
3208 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3209 {
3210 /* No unwaited-for children left. IOW, all resumed children
3211 have exited. */
3212 if (debug_infrun)
3213 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3214
3215 stop_print_frame = 0;
3216 stop_stepping (ecs);
3217 return;
3218 }
3219
3220 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3221 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3222 {
3223 ecs->event_thread = find_thread_ptid (ecs->ptid);
3224 /* If it's a new thread, add it to the thread database. */
3225 if (ecs->event_thread == NULL)
3226 ecs->event_thread = add_thread (ecs->ptid);
3227
3228 /* Disable range stepping. If the next step request could use a
3229 range, this will be end up re-enabled then. */
3230 ecs->event_thread->control.may_range_step = 0;
3231 }
3232
3233 /* Dependent on valid ECS->EVENT_THREAD. */
3234 adjust_pc_after_break (ecs);
3235
3236 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3237 reinit_frame_cache ();
3238
3239 breakpoint_retire_moribund ();
3240
3241 /* First, distinguish signals caused by the debugger from signals
3242 that have to do with the program's own actions. Note that
3243 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3244 on the operating system version. Here we detect when a SIGILL or
3245 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3246 something similar for SIGSEGV, since a SIGSEGV will be generated
3247 when we're trying to execute a breakpoint instruction on a
3248 non-executable stack. This happens for call dummy breakpoints
3249 for architectures like SPARC that place call dummies on the
3250 stack. */
3251 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3252 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3253 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3254 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
3255 {
3256 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3257
3258 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3259 regcache_read_pc (regcache)))
3260 {
3261 if (debug_infrun)
3262 fprintf_unfiltered (gdb_stdlog,
3263 "infrun: Treating signal as SIGTRAP\n");
3264 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
3265 }
3266 }
3267
3268 /* Mark the non-executing threads accordingly. In all-stop, all
3269 threads of all processes are stopped when we get any event
3270 reported. In non-stop mode, only the event thread stops. If
3271 we're handling a process exit in non-stop mode, there's nothing
3272 to do, as threads of the dead process are gone, and threads of
3273 any other process were left running. */
3274 if (!non_stop)
3275 set_executing (minus_one_ptid, 0);
3276 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3277 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3278 set_executing (ecs->ptid, 0);
3279
3280 switch (infwait_state)
3281 {
3282 case infwait_thread_hop_state:
3283 if (debug_infrun)
3284 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3285 break;
3286
3287 case infwait_normal_state:
3288 if (debug_infrun)
3289 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3290 break;
3291
3292 case infwait_step_watch_state:
3293 if (debug_infrun)
3294 fprintf_unfiltered (gdb_stdlog,
3295 "infrun: infwait_step_watch_state\n");
3296
3297 stepped_after_stopped_by_watchpoint = 1;
3298 break;
3299
3300 case infwait_nonstep_watch_state:
3301 if (debug_infrun)
3302 fprintf_unfiltered (gdb_stdlog,
3303 "infrun: infwait_nonstep_watch_state\n");
3304 insert_breakpoints ();
3305
3306 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3307 handle things like signals arriving and other things happening
3308 in combination correctly? */
3309 stepped_after_stopped_by_watchpoint = 1;
3310 break;
3311
3312 default:
3313 internal_error (__FILE__, __LINE__, _("bad switch"));
3314 }
3315
3316 infwait_state = infwait_normal_state;
3317 waiton_ptid = pid_to_ptid (-1);
3318
3319 switch (ecs->ws.kind)
3320 {
3321 case TARGET_WAITKIND_LOADED:
3322 if (debug_infrun)
3323 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3324 /* Ignore gracefully during startup of the inferior, as it might
3325 be the shell which has just loaded some objects, otherwise
3326 add the symbols for the newly loaded objects. Also ignore at
3327 the beginning of an attach or remote session; we will query
3328 the full list of libraries once the connection is
3329 established. */
3330 if (stop_soon == NO_STOP_QUIETLY)
3331 {
3332 struct regcache *regcache;
3333 enum bpstat_signal_value sval;
3334
3335 if (!ptid_equal (ecs->ptid, inferior_ptid))
3336 context_switch (ecs->ptid);
3337 regcache = get_thread_regcache (ecs->ptid);
3338
3339 handle_solib_event ();
3340
3341 ecs->event_thread->control.stop_bpstat
3342 = bpstat_stop_status (get_regcache_aspace (regcache),
3343 stop_pc, ecs->ptid, &ecs->ws);
3344
3345 sval
3346 = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3347 GDB_SIGNAL_TRAP);
3348 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
3349
3350 if (!ecs->random_signal)
3351 {
3352 /* A catchpoint triggered. */
3353 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3354 goto process_event_stop_test;
3355 }
3356
3357 /* If requested, stop when the dynamic linker notifies
3358 gdb of events. This allows the user to get control
3359 and place breakpoints in initializer routines for
3360 dynamically loaded objects (among other things). */
3361 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3362 if (stop_on_solib_events)
3363 {
3364 /* Make sure we print "Stopped due to solib-event" in
3365 normal_stop. */
3366 stop_print_frame = 1;
3367
3368 stop_stepping (ecs);
3369 return;
3370 }
3371 }
3372
3373 /* If we are skipping through a shell, or through shared library
3374 loading that we aren't interested in, resume the program. If
3375 we're running the program normally, also resume. But stop if
3376 we're attaching or setting up a remote connection. */
3377 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3378 {
3379 if (!ptid_equal (ecs->ptid, inferior_ptid))
3380 context_switch (ecs->ptid);
3381
3382 /* Loading of shared libraries might have changed breakpoint
3383 addresses. Make sure new breakpoints are inserted. */
3384 if (stop_soon == NO_STOP_QUIETLY
3385 && !breakpoints_always_inserted_mode ())
3386 insert_breakpoints ();
3387 resume (0, GDB_SIGNAL_0);
3388 prepare_to_wait (ecs);
3389 return;
3390 }
3391
3392 break;
3393
3394 case TARGET_WAITKIND_SPURIOUS:
3395 if (debug_infrun)
3396 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3397 if (!ptid_equal (ecs->ptid, inferior_ptid))
3398 context_switch (ecs->ptid);
3399 resume (0, GDB_SIGNAL_0);
3400 prepare_to_wait (ecs);
3401 return;
3402
3403 case TARGET_WAITKIND_EXITED:
3404 case TARGET_WAITKIND_SIGNALLED:
3405 if (debug_infrun)
3406 {
3407 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3408 fprintf_unfiltered (gdb_stdlog,
3409 "infrun: TARGET_WAITKIND_EXITED\n");
3410 else
3411 fprintf_unfiltered (gdb_stdlog,
3412 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3413 }
3414
3415 inferior_ptid = ecs->ptid;
3416 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3417 set_current_program_space (current_inferior ()->pspace);
3418 handle_vfork_child_exec_or_exit (0);
3419 target_terminal_ours (); /* Must do this before mourn anyway. */
3420
3421 /* Clearing any previous state of convenience variables. */
3422 clear_exit_convenience_vars ();
3423
3424 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3425 {
3426 /* Record the exit code in the convenience variable $_exitcode, so
3427 that the user can inspect this again later. */
3428 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3429 (LONGEST) ecs->ws.value.integer);
3430
3431 /* Also record this in the inferior itself. */
3432 current_inferior ()->has_exit_code = 1;
3433 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3434
3435 print_exited_reason (ecs->ws.value.integer);
3436 }
3437 else
3438 {
3439 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3440 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3441
3442 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3443 {
3444 /* Set the value of the internal variable $_exitsignal,
3445 which holds the signal uncaught by the inferior. */
3446 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3447 gdbarch_gdb_signal_to_target (gdbarch,
3448 ecs->ws.value.sig));
3449 }
3450 else
3451 {
3452 /* We don't have access to the target's method used for
3453 converting between signal numbers (GDB's internal
3454 representation <-> target's representation).
3455 Therefore, we cannot do a good job at displaying this
3456 information to the user. It's better to just warn
3457 her about it (if infrun debugging is enabled), and
3458 give up. */
3459 if (debug_infrun)
3460 fprintf_filtered (gdb_stdlog, _("\
3461 Cannot fill $_exitsignal with the correct signal number.\n"));
3462 }
3463
3464 print_signal_exited_reason (ecs->ws.value.sig);
3465 }
3466
3467 gdb_flush (gdb_stdout);
3468 target_mourn_inferior ();
3469 singlestep_breakpoints_inserted_p = 0;
3470 cancel_single_step_breakpoints ();
3471 stop_print_frame = 0;
3472 stop_stepping (ecs);
3473 return;
3474
3475 /* The following are the only cases in which we keep going;
3476 the above cases end in a continue or goto. */
3477 case TARGET_WAITKIND_FORKED:
3478 case TARGET_WAITKIND_VFORKED:
3479 if (debug_infrun)
3480 {
3481 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3482 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3483 else
3484 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3485 }
3486
3487 /* Check whether the inferior is displaced stepping. */
3488 {
3489 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3490 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3491 struct displaced_step_inferior_state *displaced
3492 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3493
3494 /* If checking displaced stepping is supported, and thread
3495 ecs->ptid is displaced stepping. */
3496 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3497 {
3498 struct inferior *parent_inf
3499 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3500 struct regcache *child_regcache;
3501 CORE_ADDR parent_pc;
3502
3503 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3504 indicating that the displaced stepping of syscall instruction
3505 has been done. Perform cleanup for parent process here. Note
3506 that this operation also cleans up the child process for vfork,
3507 because their pages are shared. */
3508 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
3509
3510 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3511 {
3512 /* Restore scratch pad for child process. */
3513 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3514 }
3515
3516 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3517 the child's PC is also within the scratchpad. Set the child's PC
3518 to the parent's PC value, which has already been fixed up.
3519 FIXME: we use the parent's aspace here, although we're touching
3520 the child, because the child hasn't been added to the inferior
3521 list yet at this point. */
3522
3523 child_regcache
3524 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3525 gdbarch,
3526 parent_inf->aspace);
3527 /* Read PC value of parent process. */
3528 parent_pc = regcache_read_pc (regcache);
3529
3530 if (debug_displaced)
3531 fprintf_unfiltered (gdb_stdlog,
3532 "displaced: write child pc from %s to %s\n",
3533 paddress (gdbarch,
3534 regcache_read_pc (child_regcache)),
3535 paddress (gdbarch, parent_pc));
3536
3537 regcache_write_pc (child_regcache, parent_pc);
3538 }
3539 }
3540
3541 if (!ptid_equal (ecs->ptid, inferior_ptid))
3542 context_switch (ecs->ptid);
3543
3544 /* Immediately detach breakpoints from the child before there's
3545 any chance of letting the user delete breakpoints from the
3546 breakpoint lists. If we don't do this early, it's easy to
3547 leave left over traps in the child, vis: "break foo; catch
3548 fork; c; <fork>; del; c; <child calls foo>". We only follow
3549 the fork on the last `continue', and by that time the
3550 breakpoint at "foo" is long gone from the breakpoint table.
3551 If we vforked, then we don't need to unpatch here, since both
3552 parent and child are sharing the same memory pages; we'll
3553 need to unpatch at follow/detach time instead to be certain
3554 that new breakpoints added between catchpoint hit time and
3555 vfork follow are detached. */
3556 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3557 {
3558 /* This won't actually modify the breakpoint list, but will
3559 physically remove the breakpoints from the child. */
3560 detach_breakpoints (ecs->ws.value.related_pid);
3561 }
3562
3563 if (singlestep_breakpoints_inserted_p)
3564 {
3565 /* Pull the single step breakpoints out of the target. */
3566 remove_single_step_breakpoints ();
3567 singlestep_breakpoints_inserted_p = 0;
3568 }
3569
3570 /* In case the event is caught by a catchpoint, remember that
3571 the event is to be followed at the next resume of the thread,
3572 and not immediately. */
3573 ecs->event_thread->pending_follow = ecs->ws;
3574
3575 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3576
3577 ecs->event_thread->control.stop_bpstat
3578 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3579 stop_pc, ecs->ptid, &ecs->ws);
3580
3581 /* Note that we're interested in knowing the bpstat actually
3582 causes a stop, not just if it may explain the signal.
3583 Software watchpoints, for example, always appear in the
3584 bpstat. */
3585 ecs->random_signal
3586 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
3587
3588 /* If no catchpoint triggered for this, then keep going. */
3589 if (ecs->random_signal)
3590 {
3591 ptid_t parent;
3592 ptid_t child;
3593 int should_resume;
3594 int follow_child
3595 = (follow_fork_mode_string == follow_fork_mode_child);
3596
3597 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3598
3599 should_resume = follow_fork ();
3600
3601 parent = ecs->ptid;
3602 child = ecs->ws.value.related_pid;
3603
3604 /* In non-stop mode, also resume the other branch. */
3605 if (non_stop && !detach_fork)
3606 {
3607 if (follow_child)
3608 switch_to_thread (parent);
3609 else
3610 switch_to_thread (child);
3611
3612 ecs->event_thread = inferior_thread ();
3613 ecs->ptid = inferior_ptid;
3614 keep_going (ecs);
3615 }
3616
3617 if (follow_child)
3618 switch_to_thread (child);
3619 else
3620 switch_to_thread (parent);
3621
3622 ecs->event_thread = inferior_thread ();
3623 ecs->ptid = inferior_ptid;
3624
3625 if (should_resume)
3626 keep_going (ecs);
3627 else
3628 stop_stepping (ecs);
3629 return;
3630 }
3631 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3632 goto process_event_stop_test;
3633
3634 case TARGET_WAITKIND_VFORK_DONE:
3635 /* Done with the shared memory region. Re-insert breakpoints in
3636 the parent, and keep going. */
3637
3638 if (debug_infrun)
3639 fprintf_unfiltered (gdb_stdlog,
3640 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3641
3642 if (!ptid_equal (ecs->ptid, inferior_ptid))
3643 context_switch (ecs->ptid);
3644
3645 current_inferior ()->waiting_for_vfork_done = 0;
3646 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3647 /* This also takes care of reinserting breakpoints in the
3648 previously locked inferior. */
3649 keep_going (ecs);
3650 return;
3651
3652 case TARGET_WAITKIND_EXECD:
3653 if (debug_infrun)
3654 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3655
3656 if (!ptid_equal (ecs->ptid, inferior_ptid))
3657 context_switch (ecs->ptid);
3658
3659 singlestep_breakpoints_inserted_p = 0;
3660 cancel_single_step_breakpoints ();
3661
3662 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3663
3664 /* Do whatever is necessary to the parent branch of the vfork. */
3665 handle_vfork_child_exec_or_exit (1);
3666
3667 /* This causes the eventpoints and symbol table to be reset.
3668 Must do this now, before trying to determine whether to
3669 stop. */
3670 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3671
3672 ecs->event_thread->control.stop_bpstat
3673 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3674 stop_pc, ecs->ptid, &ecs->ws);
3675 ecs->random_signal
3676 = (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3677 GDB_SIGNAL_TRAP)
3678 == BPSTAT_SIGNAL_NO);
3679
3680 /* Note that this may be referenced from inside
3681 bpstat_stop_status above, through inferior_has_execd. */
3682 xfree (ecs->ws.value.execd_pathname);
3683 ecs->ws.value.execd_pathname = NULL;
3684
3685 /* If no catchpoint triggered for this, then keep going. */
3686 if (ecs->random_signal)
3687 {
3688 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3689 keep_going (ecs);
3690 return;
3691 }
3692 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3693 goto process_event_stop_test;
3694
3695 /* Be careful not to try to gather much state about a thread
3696 that's in a syscall. It's frequently a losing proposition. */
3697 case TARGET_WAITKIND_SYSCALL_ENTRY:
3698 if (debug_infrun)
3699 fprintf_unfiltered (gdb_stdlog,
3700 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3701 /* Getting the current syscall number. */
3702 if (handle_syscall_event (ecs) != 0)
3703 return;
3704 goto process_event_stop_test;
3705
3706 /* Before examining the threads further, step this thread to
3707 get it entirely out of the syscall. (We get notice of the
3708 event when the thread is just on the verge of exiting a
3709 syscall. Stepping one instruction seems to get it back
3710 into user code.) */
3711 case TARGET_WAITKIND_SYSCALL_RETURN:
3712 if (debug_infrun)
3713 fprintf_unfiltered (gdb_stdlog,
3714 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3715 if (handle_syscall_event (ecs) != 0)
3716 return;
3717 goto process_event_stop_test;
3718
3719 case TARGET_WAITKIND_STOPPED:
3720 if (debug_infrun)
3721 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3722 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3723 break;
3724
3725 case TARGET_WAITKIND_NO_HISTORY:
3726 if (debug_infrun)
3727 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
3728 /* Reverse execution: target ran out of history info. */
3729
3730 /* Pull the single step breakpoints out of the target. */
3731 if (singlestep_breakpoints_inserted_p)
3732 {
3733 if (!ptid_equal (ecs->ptid, inferior_ptid))
3734 context_switch (ecs->ptid);
3735 remove_single_step_breakpoints ();
3736 singlestep_breakpoints_inserted_p = 0;
3737 }
3738 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3739 print_no_history_reason ();
3740 stop_stepping (ecs);
3741 return;
3742 }
3743
3744 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3745 {
3746 /* Do we need to clean up the state of a thread that has
3747 completed a displaced single-step? (Doing so usually affects
3748 the PC, so do it here, before we set stop_pc.) */
3749 displaced_step_fixup (ecs->ptid,
3750 ecs->event_thread->suspend.stop_signal);
3751
3752 /* If we either finished a single-step or hit a breakpoint, but
3753 the user wanted this thread to be stopped, pretend we got a
3754 SIG0 (generic unsignaled stop). */
3755
3756 if (ecs->event_thread->stop_requested
3757 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3758 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3759 }
3760
3761 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3762
3763 if (debug_infrun)
3764 {
3765 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3766 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3767 struct cleanup *old_chain = save_inferior_ptid ();
3768
3769 inferior_ptid = ecs->ptid;
3770
3771 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3772 paddress (gdbarch, stop_pc));
3773 if (target_stopped_by_watchpoint ())
3774 {
3775 CORE_ADDR addr;
3776
3777 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3778
3779 if (target_stopped_data_address (&current_target, &addr))
3780 fprintf_unfiltered (gdb_stdlog,
3781 "infrun: stopped data address = %s\n",
3782 paddress (gdbarch, addr));
3783 else
3784 fprintf_unfiltered (gdb_stdlog,
3785 "infrun: (no data address available)\n");
3786 }
3787
3788 do_cleanups (old_chain);
3789 }
3790
3791 if (stepping_past_singlestep_breakpoint)
3792 {
3793 gdb_assert (singlestep_breakpoints_inserted_p);
3794 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3795 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3796
3797 stepping_past_singlestep_breakpoint = 0;
3798
3799 /* We've either finished single-stepping past the single-step
3800 breakpoint, or stopped for some other reason. It would be nice if
3801 we could tell, but we can't reliably. */
3802 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3803 {
3804 if (debug_infrun)
3805 fprintf_unfiltered (gdb_stdlog,
3806 "infrun: stepping_past_"
3807 "singlestep_breakpoint\n");
3808 /* Pull the single step breakpoints out of the target. */
3809 if (!ptid_equal (ecs->ptid, inferior_ptid))
3810 context_switch (ecs->ptid);
3811 remove_single_step_breakpoints ();
3812 singlestep_breakpoints_inserted_p = 0;
3813
3814 ecs->event_thread->control.trap_expected = 0;
3815
3816 context_switch (saved_singlestep_ptid);
3817 if (deprecated_context_hook)
3818 deprecated_context_hook (pid_to_thread_id (saved_singlestep_ptid));
3819
3820 resume (1, GDB_SIGNAL_0);
3821 prepare_to_wait (ecs);
3822 return;
3823 }
3824 }
3825
3826 if (!ptid_equal (deferred_step_ptid, null_ptid))
3827 {
3828 /* In non-stop mode, there's never a deferred_step_ptid set. */
3829 gdb_assert (!non_stop);
3830
3831 /* If we stopped for some other reason than single-stepping, ignore
3832 the fact that we were supposed to switch back. */
3833 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3834 {
3835 if (debug_infrun)
3836 fprintf_unfiltered (gdb_stdlog,
3837 "infrun: handling deferred step\n");
3838
3839 /* Pull the single step breakpoints out of the target. */
3840 if (singlestep_breakpoints_inserted_p)
3841 {
3842 if (!ptid_equal (ecs->ptid, inferior_ptid))
3843 context_switch (ecs->ptid);
3844 remove_single_step_breakpoints ();
3845 singlestep_breakpoints_inserted_p = 0;
3846 }
3847
3848 ecs->event_thread->control.trap_expected = 0;
3849
3850 context_switch (deferred_step_ptid);
3851 deferred_step_ptid = null_ptid;
3852 /* Suppress spurious "Switching to ..." message. */
3853 previous_inferior_ptid = inferior_ptid;
3854
3855 resume (1, GDB_SIGNAL_0);
3856 prepare_to_wait (ecs);
3857 return;
3858 }
3859
3860 deferred_step_ptid = null_ptid;
3861 }
3862
3863 /* See if a thread hit a thread-specific breakpoint that was meant for
3864 another thread. If so, then step that thread past the breakpoint,
3865 and continue it. */
3866
3867 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3868 {
3869 int thread_hop_needed = 0;
3870 struct address_space *aspace =
3871 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3872
3873 /* Check if a regular breakpoint has been hit before checking
3874 for a potential single step breakpoint. Otherwise, GDB will
3875 not see this breakpoint hit when stepping onto breakpoints. */
3876 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3877 {
3878 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3879 thread_hop_needed = 1;
3880 }
3881 else if (singlestep_breakpoints_inserted_p)
3882 {
3883 /* We have not context switched yet, so this should be true
3884 no matter which thread hit the singlestep breakpoint. */
3885 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3886 if (debug_infrun)
3887 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3888 "trap for %s\n",
3889 target_pid_to_str (ecs->ptid));
3890
3891 /* The call to in_thread_list is necessary because PTIDs sometimes
3892 change when we go from single-threaded to multi-threaded. If
3893 the singlestep_ptid is still in the list, assume that it is
3894 really different from ecs->ptid. */
3895 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3896 && in_thread_list (singlestep_ptid))
3897 {
3898 /* If the PC of the thread we were trying to single-step
3899 has changed, discard this event (which we were going
3900 to ignore anyway), and pretend we saw that thread
3901 trap. This prevents us continuously moving the
3902 single-step breakpoint forward, one instruction at a
3903 time. If the PC has changed, then the thread we were
3904 trying to single-step has trapped or been signalled,
3905 but the event has not been reported to GDB yet.
3906
3907 There might be some cases where this loses signal
3908 information, if a signal has arrived at exactly the
3909 same time that the PC changed, but this is the best
3910 we can do with the information available. Perhaps we
3911 should arrange to report all events for all threads
3912 when they stop, or to re-poll the remote looking for
3913 this particular thread (i.e. temporarily enable
3914 schedlock). */
3915
3916 CORE_ADDR new_singlestep_pc
3917 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3918
3919 if (new_singlestep_pc != singlestep_pc)
3920 {
3921 enum gdb_signal stop_signal;
3922
3923 if (debug_infrun)
3924 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3925 " but expected thread advanced also\n");
3926
3927 /* The current context still belongs to
3928 singlestep_ptid. Don't swap here, since that's
3929 the context we want to use. Just fudge our
3930 state and continue. */
3931 stop_signal = ecs->event_thread->suspend.stop_signal;
3932 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3933 ecs->ptid = singlestep_ptid;
3934 ecs->event_thread = find_thread_ptid (ecs->ptid);
3935 ecs->event_thread->suspend.stop_signal = stop_signal;
3936 stop_pc = new_singlestep_pc;
3937 }
3938 else
3939 {
3940 if (debug_infrun)
3941 fprintf_unfiltered (gdb_stdlog,
3942 "infrun: unexpected thread\n");
3943
3944 thread_hop_needed = 1;
3945 stepping_past_singlestep_breakpoint = 1;
3946 saved_singlestep_ptid = singlestep_ptid;
3947 }
3948 }
3949 }
3950
3951 if (thread_hop_needed)
3952 {
3953 struct regcache *thread_regcache;
3954 int remove_status = 0;
3955
3956 if (debug_infrun)
3957 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3958
3959 /* Switch context before touching inferior memory, the
3960 previous thread may have exited. */
3961 if (!ptid_equal (inferior_ptid, ecs->ptid))
3962 context_switch (ecs->ptid);
3963
3964 /* Saw a breakpoint, but it was hit by the wrong thread.
3965 Just continue. */
3966
3967 if (singlestep_breakpoints_inserted_p)
3968 {
3969 /* Pull the single step breakpoints out of the target. */
3970 remove_single_step_breakpoints ();
3971 singlestep_breakpoints_inserted_p = 0;
3972 }
3973
3974 /* If the arch can displace step, don't remove the
3975 breakpoints. */
3976 thread_regcache = get_thread_regcache (ecs->ptid);
3977 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3978 remove_status = remove_breakpoints ();
3979
3980 /* Did we fail to remove breakpoints? If so, try
3981 to set the PC past the bp. (There's at least
3982 one situation in which we can fail to remove
3983 the bp's: On HP-UX's that use ttrace, we can't
3984 change the address space of a vforking child
3985 process until the child exits (well, okay, not
3986 then either :-) or execs. */
3987 if (remove_status != 0)
3988 error (_("Cannot step over breakpoint hit in wrong thread"));
3989 else
3990 { /* Single step */
3991 if (!non_stop)
3992 {
3993 /* Only need to require the next event from this
3994 thread in all-stop mode. */
3995 waiton_ptid = ecs->ptid;
3996 infwait_state = infwait_thread_hop_state;
3997 }
3998
3999 ecs->event_thread->stepping_over_breakpoint = 1;
4000 keep_going (ecs);
4001 return;
4002 }
4003 }
4004 }
4005
4006 /* See if something interesting happened to the non-current thread. If
4007 so, then switch to that thread. */
4008 if (!ptid_equal (ecs->ptid, inferior_ptid))
4009 {
4010 if (debug_infrun)
4011 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
4012
4013 context_switch (ecs->ptid);
4014
4015 if (deprecated_context_hook)
4016 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
4017 }
4018
4019 /* At this point, get hold of the now-current thread's frame. */
4020 frame = get_current_frame ();
4021 gdbarch = get_frame_arch (frame);
4022
4023 if (singlestep_breakpoints_inserted_p)
4024 {
4025 /* Pull the single step breakpoints out of the target. */
4026 remove_single_step_breakpoints ();
4027 singlestep_breakpoints_inserted_p = 0;
4028 }
4029
4030 if (stepped_after_stopped_by_watchpoint)
4031 stopped_by_watchpoint = 0;
4032 else
4033 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4034
4035 /* If necessary, step over this watchpoint. We'll be back to display
4036 it in a moment. */
4037 if (stopped_by_watchpoint
4038 && (target_have_steppable_watchpoint
4039 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
4040 {
4041 /* At this point, we are stopped at an instruction which has
4042 attempted to write to a piece of memory under control of
4043 a watchpoint. The instruction hasn't actually executed
4044 yet. If we were to evaluate the watchpoint expression
4045 now, we would get the old value, and therefore no change
4046 would seem to have occurred.
4047
4048 In order to make watchpoints work `right', we really need
4049 to complete the memory write, and then evaluate the
4050 watchpoint expression. We do this by single-stepping the
4051 target.
4052
4053 It may not be necessary to disable the watchpoint to stop over
4054 it. For example, the PA can (with some kernel cooperation)
4055 single step over a watchpoint without disabling the watchpoint.
4056
4057 It is far more common to need to disable a watchpoint to step
4058 the inferior over it. If we have non-steppable watchpoints,
4059 we must disable the current watchpoint; it's simplest to
4060 disable all watchpoints and breakpoints. */
4061 int hw_step = 1;
4062
4063 if (!target_have_steppable_watchpoint)
4064 {
4065 remove_breakpoints ();
4066 /* See comment in resume why we need to stop bypassing signals
4067 while breakpoints have been removed. */
4068 target_pass_signals (0, NULL);
4069 }
4070 /* Single step */
4071 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
4072 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
4073 waiton_ptid = ecs->ptid;
4074 if (target_have_steppable_watchpoint)
4075 infwait_state = infwait_step_watch_state;
4076 else
4077 infwait_state = infwait_nonstep_watch_state;
4078 prepare_to_wait (ecs);
4079 return;
4080 }
4081
4082 ecs->event_thread->stepping_over_breakpoint = 0;
4083 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4084 ecs->event_thread->control.stop_step = 0;
4085 stop_print_frame = 1;
4086 stopped_by_random_signal = 0;
4087
4088 /* Hide inlined functions starting here, unless we just performed stepi or
4089 nexti. After stepi and nexti, always show the innermost frame (not any
4090 inline function call sites). */
4091 if (ecs->event_thread->control.step_range_end != 1)
4092 {
4093 struct address_space *aspace =
4094 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4095
4096 /* skip_inline_frames is expensive, so we avoid it if we can
4097 determine that the address is one where functions cannot have
4098 been inlined. This improves performance with inferiors that
4099 load a lot of shared libraries, because the solib event
4100 breakpoint is defined as the address of a function (i.e. not
4101 inline). Note that we have to check the previous PC as well
4102 as the current one to catch cases when we have just
4103 single-stepped off a breakpoint prior to reinstating it.
4104 Note that we're assuming that the code we single-step to is
4105 not inline, but that's not definitive: there's nothing
4106 preventing the event breakpoint function from containing
4107 inlined code, and the single-step ending up there. If the
4108 user had set a breakpoint on that inlined code, the missing
4109 skip_inline_frames call would break things. Fortunately
4110 that's an extremely unlikely scenario. */
4111 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4112 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4113 && ecs->event_thread->control.trap_expected
4114 && pc_at_non_inline_function (aspace,
4115 ecs->event_thread->prev_pc,
4116 &ecs->ws)))
4117 {
4118 skip_inline_frames (ecs->ptid);
4119
4120 /* Re-fetch current thread's frame in case that invalidated
4121 the frame cache. */
4122 frame = get_current_frame ();
4123 gdbarch = get_frame_arch (frame);
4124 }
4125 }
4126
4127 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4128 && ecs->event_thread->control.trap_expected
4129 && gdbarch_single_step_through_delay_p (gdbarch)
4130 && currently_stepping (ecs->event_thread))
4131 {
4132 /* We're trying to step off a breakpoint. Turns out that we're
4133 also on an instruction that needs to be stepped multiple
4134 times before it's been fully executing. E.g., architectures
4135 with a delay slot. It needs to be stepped twice, once for
4136 the instruction and once for the delay slot. */
4137 int step_through_delay
4138 = gdbarch_single_step_through_delay (gdbarch, frame);
4139
4140 if (debug_infrun && step_through_delay)
4141 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4142 if (ecs->event_thread->control.step_range_end == 0
4143 && step_through_delay)
4144 {
4145 /* The user issued a continue when stopped at a breakpoint.
4146 Set up for another trap and get out of here. */
4147 ecs->event_thread->stepping_over_breakpoint = 1;
4148 keep_going (ecs);
4149 return;
4150 }
4151 else if (step_through_delay)
4152 {
4153 /* The user issued a step when stopped at a breakpoint.
4154 Maybe we should stop, maybe we should not - the delay
4155 slot *might* correspond to a line of source. In any
4156 case, don't decide that here, just set
4157 ecs->stepping_over_breakpoint, making sure we
4158 single-step again before breakpoints are re-inserted. */
4159 ecs->event_thread->stepping_over_breakpoint = 1;
4160 }
4161 }
4162
4163 /* Look at the cause of the stop, and decide what to do.
4164 The alternatives are:
4165 1) stop_stepping and return; to really stop and return to the debugger,
4166 2) keep_going and return to start up again
4167 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
4168 3) set ecs->random_signal to 1, and the decision between 1 and 2
4169 will be made according to the signal handling tables. */
4170
4171 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4172 && stop_after_trap)
4173 {
4174 if (debug_infrun)
4175 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4176 stop_print_frame = 0;
4177 stop_stepping (ecs);
4178 return;
4179 }
4180
4181 /* This is originated from start_remote(), start_inferior() and
4182 shared libraries hook functions. */
4183 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4184 {
4185 if (debug_infrun)
4186 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4187 stop_stepping (ecs);
4188 return;
4189 }
4190
4191 /* This originates from attach_command(). We need to overwrite
4192 the stop_signal here, because some kernels don't ignore a
4193 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4194 See more comments in inferior.h. On the other hand, if we
4195 get a non-SIGSTOP, report it to the user - assume the backend
4196 will handle the SIGSTOP if it should show up later.
4197
4198 Also consider that the attach is complete when we see a
4199 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4200 target extended-remote report it instead of a SIGSTOP
4201 (e.g. gdbserver). We already rely on SIGTRAP being our
4202 signal, so this is no exception.
4203
4204 Also consider that the attach is complete when we see a
4205 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4206 the target to stop all threads of the inferior, in case the
4207 low level attach operation doesn't stop them implicitly. If
4208 they weren't stopped implicitly, then the stub will report a
4209 GDB_SIGNAL_0, meaning: stopped for no particular reason
4210 other than GDB's request. */
4211 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4212 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4213 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4214 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4215 {
4216 stop_stepping (ecs);
4217 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4218 return;
4219 }
4220
4221 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4222 handles this event. */
4223 ecs->event_thread->control.stop_bpstat
4224 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4225 stop_pc, ecs->ptid, &ecs->ws);
4226
4227 /* Following in case break condition called a
4228 function. */
4229 stop_print_frame = 1;
4230
4231 /* This is where we handle "moribund" watchpoints. Unlike
4232 software breakpoints traps, hardware watchpoint traps are
4233 always distinguishable from random traps. If no high-level
4234 watchpoint is associated with the reported stop data address
4235 anymore, then the bpstat does not explain the signal ---
4236 simply make sure to ignore it if `stopped_by_watchpoint' is
4237 set. */
4238
4239 if (debug_infrun
4240 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4241 && (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4242 GDB_SIGNAL_TRAP)
4243 == BPSTAT_SIGNAL_NO)
4244 && stopped_by_watchpoint)
4245 fprintf_unfiltered (gdb_stdlog,
4246 "infrun: no user watchpoint explains "
4247 "watchpoint SIGTRAP, ignoring\n");
4248
4249 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4250 at one stage in the past included checks for an inferior
4251 function call's call dummy's return breakpoint. The original
4252 comment, that went with the test, read:
4253
4254 ``End of a stack dummy. Some systems (e.g. Sony news) give
4255 another signal besides SIGTRAP, so check here as well as
4256 above.''
4257
4258 If someone ever tries to get call dummys on a
4259 non-executable stack to work (where the target would stop
4260 with something like a SIGSEGV), then those tests might need
4261 to be re-instated. Given, however, that the tests were only
4262 enabled when momentary breakpoints were not being used, I
4263 suspect that it won't be the case.
4264
4265 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4266 be necessary for call dummies on a non-executable stack on
4267 SPARC. */
4268
4269 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4270 ecs->random_signal
4271 = !((bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4272 GDB_SIGNAL_TRAP)
4273 != BPSTAT_SIGNAL_NO)
4274 || stopped_by_watchpoint
4275 || ecs->event_thread->control.trap_expected
4276 || (ecs->event_thread->control.step_range_end
4277 && (ecs->event_thread->control.step_resume_breakpoint
4278 == NULL)));
4279 else
4280 {
4281 enum bpstat_signal_value sval;
4282
4283 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4284 ecs->event_thread->suspend.stop_signal);
4285 ecs->random_signal = (sval == BPSTAT_SIGNAL_NO);
4286
4287 if (sval == BPSTAT_SIGNAL_HIDE)
4288 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
4289 }
4290
4291 /* For the program's own signals, act according to
4292 the signal handling tables. */
4293
4294 if (ecs->random_signal)
4295 {
4296 /* Signal not for debugging purposes. */
4297 int printed = 0;
4298 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4299 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
4300
4301 if (debug_infrun)
4302 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4303 gdb_signal_to_symbol_string (stop_signal));
4304
4305 stopped_by_random_signal = 1;
4306
4307 if (signal_print[ecs->event_thread->suspend.stop_signal])
4308 {
4309 printed = 1;
4310 target_terminal_ours_for_output ();
4311 print_signal_received_reason
4312 (ecs->event_thread->suspend.stop_signal);
4313 }
4314 /* Always stop on signals if we're either just gaining control
4315 of the program, or the user explicitly requested this thread
4316 to remain stopped. */
4317 if (stop_soon != NO_STOP_QUIETLY
4318 || ecs->event_thread->stop_requested
4319 || (!inf->detaching
4320 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4321 {
4322 stop_stepping (ecs);
4323 return;
4324 }
4325 /* If not going to stop, give terminal back
4326 if we took it away. */
4327 else if (printed)
4328 target_terminal_inferior ();
4329
4330 /* Clear the signal if it should not be passed. */
4331 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4332 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4333
4334 if (ecs->event_thread->prev_pc == stop_pc
4335 && ecs->event_thread->control.trap_expected
4336 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4337 {
4338 /* We were just starting a new sequence, attempting to
4339 single-step off of a breakpoint and expecting a SIGTRAP.
4340 Instead this signal arrives. This signal will take us out
4341 of the stepping range so GDB needs to remember to, when
4342 the signal handler returns, resume stepping off that
4343 breakpoint. */
4344 /* To simplify things, "continue" is forced to use the same
4345 code paths as single-step - set a breakpoint at the
4346 signal return address and then, once hit, step off that
4347 breakpoint. */
4348 if (debug_infrun)
4349 fprintf_unfiltered (gdb_stdlog,
4350 "infrun: signal arrived while stepping over "
4351 "breakpoint\n");
4352
4353 insert_hp_step_resume_breakpoint_at_frame (frame);
4354 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4355 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4356 ecs->event_thread->control.trap_expected = 0;
4357 keep_going (ecs);
4358 return;
4359 }
4360
4361 if (ecs->event_thread->control.step_range_end != 0
4362 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4363 && pc_in_thread_step_range (stop_pc, ecs->event_thread)
4364 && frame_id_eq (get_stack_frame_id (frame),
4365 ecs->event_thread->control.step_stack_frame_id)
4366 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4367 {
4368 /* The inferior is about to take a signal that will take it
4369 out of the single step range. Set a breakpoint at the
4370 current PC (which is presumably where the signal handler
4371 will eventually return) and then allow the inferior to
4372 run free.
4373
4374 Note that this is only needed for a signal delivered
4375 while in the single-step range. Nested signals aren't a
4376 problem as they eventually all return. */
4377 if (debug_infrun)
4378 fprintf_unfiltered (gdb_stdlog,
4379 "infrun: signal may take us out of "
4380 "single-step range\n");
4381
4382 insert_hp_step_resume_breakpoint_at_frame (frame);
4383 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4384 ecs->event_thread->control.trap_expected = 0;
4385 keep_going (ecs);
4386 return;
4387 }
4388
4389 /* Note: step_resume_breakpoint may be non-NULL. This occures
4390 when either there's a nested signal, or when there's a
4391 pending signal enabled just as the signal handler returns
4392 (leaving the inferior at the step-resume-breakpoint without
4393 actually executing it). Either way continue until the
4394 breakpoint is really hit. */
4395
4396 if (!switch_back_to_stepped_thread (ecs))
4397 {
4398 if (debug_infrun)
4399 fprintf_unfiltered (gdb_stdlog,
4400 "infrun: random signal, keep going\n");
4401
4402 keep_going (ecs);
4403 }
4404 return;
4405 }
4406 else
4407 {
4408 /* Handle cases caused by hitting a breakpoint. */
4409
4410 CORE_ADDR jmp_buf_pc;
4411 struct bpstat_what what;
4412
4413 process_event_stop_test:
4414
4415 /* Re-fetch current thread's frame in case we did a
4416 "goto process_event_stop_test" above. */
4417 frame = get_current_frame ();
4418 gdbarch = get_frame_arch (frame);
4419
4420 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4421
4422 if (what.call_dummy)
4423 {
4424 stop_stack_dummy = what.call_dummy;
4425 }
4426
4427 /* If we hit an internal event that triggers symbol changes, the
4428 current frame will be invalidated within bpstat_what (e.g.,
4429 if we hit an internal solib event). Re-fetch it. */
4430 frame = get_current_frame ();
4431 gdbarch = get_frame_arch (frame);
4432
4433 switch (what.main_action)
4434 {
4435 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4436 /* If we hit the breakpoint at longjmp while stepping, we
4437 install a momentary breakpoint at the target of the
4438 jmp_buf. */
4439
4440 if (debug_infrun)
4441 fprintf_unfiltered (gdb_stdlog,
4442 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4443
4444 ecs->event_thread->stepping_over_breakpoint = 1;
4445
4446 if (what.is_longjmp)
4447 {
4448 struct value *arg_value;
4449
4450 /* If we set the longjmp breakpoint via a SystemTap
4451 probe, then use it to extract the arguments. The
4452 destination PC is the third argument to the
4453 probe. */
4454 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4455 if (arg_value)
4456 jmp_buf_pc = value_as_address (arg_value);
4457 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4458 || !gdbarch_get_longjmp_target (gdbarch,
4459 frame, &jmp_buf_pc))
4460 {
4461 if (debug_infrun)
4462 fprintf_unfiltered (gdb_stdlog,
4463 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4464 "(!gdbarch_get_longjmp_target)\n");
4465 keep_going (ecs);
4466 return;
4467 }
4468
4469 /* Insert a breakpoint at resume address. */
4470 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4471 }
4472 else
4473 check_exception_resume (ecs, frame);
4474 keep_going (ecs);
4475 return;
4476
4477 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4478 {
4479 struct frame_info *init_frame;
4480
4481 /* There are several cases to consider.
4482
4483 1. The initiating frame no longer exists. In this case
4484 we must stop, because the exception or longjmp has gone
4485 too far.
4486
4487 2. The initiating frame exists, and is the same as the
4488 current frame. We stop, because the exception or
4489 longjmp has been caught.
4490
4491 3. The initiating frame exists and is different from
4492 the current frame. This means the exception or longjmp
4493 has been caught beneath the initiating frame, so keep
4494 going.
4495
4496 4. longjmp breakpoint has been placed just to protect
4497 against stale dummy frames and user is not interested
4498 in stopping around longjmps. */
4499
4500 if (debug_infrun)
4501 fprintf_unfiltered (gdb_stdlog,
4502 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4503
4504 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4505 != NULL);
4506 delete_exception_resume_breakpoint (ecs->event_thread);
4507
4508 if (what.is_longjmp)
4509 {
4510 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
4511
4512 if (!frame_id_p (ecs->event_thread->initiating_frame))
4513 {
4514 /* Case 4. */
4515 keep_going (ecs);
4516 return;
4517 }
4518 }
4519
4520 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
4521
4522 if (init_frame)
4523 {
4524 struct frame_id current_id
4525 = get_frame_id (get_current_frame ());
4526 if (frame_id_eq (current_id,
4527 ecs->event_thread->initiating_frame))
4528 {
4529 /* Case 2. Fall through. */
4530 }
4531 else
4532 {
4533 /* Case 3. */
4534 keep_going (ecs);
4535 return;
4536 }
4537 }
4538
4539 /* For Cases 1 and 2, remove the step-resume breakpoint,
4540 if it exists. */
4541 delete_step_resume_breakpoint (ecs->event_thread);
4542
4543 ecs->event_thread->control.stop_step = 1;
4544 print_end_stepping_range_reason ();
4545 stop_stepping (ecs);
4546 }
4547 return;
4548
4549 case BPSTAT_WHAT_SINGLE:
4550 if (debug_infrun)
4551 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4552 ecs->event_thread->stepping_over_breakpoint = 1;
4553 /* Still need to check other stuff, at least the case where
4554 we are stepping and step out of the right range. */
4555 break;
4556
4557 case BPSTAT_WHAT_STEP_RESUME:
4558 if (debug_infrun)
4559 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4560
4561 delete_step_resume_breakpoint (ecs->event_thread);
4562 if (ecs->event_thread->control.proceed_to_finish
4563 && execution_direction == EXEC_REVERSE)
4564 {
4565 struct thread_info *tp = ecs->event_thread;
4566
4567 /* We are finishing a function in reverse, and just hit
4568 the step-resume breakpoint at the start address of
4569 the function, and we're almost there -- just need to
4570 back up by one more single-step, which should take us
4571 back to the function call. */
4572 tp->control.step_range_start = tp->control.step_range_end = 1;
4573 keep_going (ecs);
4574 return;
4575 }
4576 fill_in_stop_func (gdbarch, ecs);
4577 if (stop_pc == ecs->stop_func_start
4578 && execution_direction == EXEC_REVERSE)
4579 {
4580 /* We are stepping over a function call in reverse, and
4581 just hit the step-resume breakpoint at the start
4582 address of the function. Go back to single-stepping,
4583 which should take us back to the function call. */
4584 ecs->event_thread->stepping_over_breakpoint = 1;
4585 keep_going (ecs);
4586 return;
4587 }
4588 break;
4589
4590 case BPSTAT_WHAT_STOP_NOISY:
4591 if (debug_infrun)
4592 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4593 stop_print_frame = 1;
4594
4595 /* We are about to nuke the step_resume_breakpointt via the
4596 cleanup chain, so no need to worry about it here. */
4597
4598 stop_stepping (ecs);
4599 return;
4600
4601 case BPSTAT_WHAT_STOP_SILENT:
4602 if (debug_infrun)
4603 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4604 stop_print_frame = 0;
4605
4606 /* We are about to nuke the step_resume_breakpoin via the
4607 cleanup chain, so no need to worry about it here. */
4608
4609 stop_stepping (ecs);
4610 return;
4611
4612 case BPSTAT_WHAT_HP_STEP_RESUME:
4613 if (debug_infrun)
4614 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4615
4616 delete_step_resume_breakpoint (ecs->event_thread);
4617 if (ecs->event_thread->step_after_step_resume_breakpoint)
4618 {
4619 /* Back when the step-resume breakpoint was inserted, we
4620 were trying to single-step off a breakpoint. Go back
4621 to doing that. */
4622 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4623 ecs->event_thread->stepping_over_breakpoint = 1;
4624 keep_going (ecs);
4625 return;
4626 }
4627 break;
4628
4629 case BPSTAT_WHAT_KEEP_CHECKING:
4630 break;
4631 }
4632 }
4633
4634 /* We come here if we hit a breakpoint but should not
4635 stop for it. Possibly we also were stepping
4636 and should stop for that. So fall through and
4637 test for stepping. But, if not stepping,
4638 do not stop. */
4639
4640 /* In all-stop mode, if we're currently stepping but have stopped in
4641 some other thread, we need to switch back to the stepped thread. */
4642 if (switch_back_to_stepped_thread (ecs))
4643 return;
4644
4645 if (ecs->event_thread->control.step_resume_breakpoint)
4646 {
4647 if (debug_infrun)
4648 fprintf_unfiltered (gdb_stdlog,
4649 "infrun: step-resume breakpoint is inserted\n");
4650
4651 /* Having a step-resume breakpoint overrides anything
4652 else having to do with stepping commands until
4653 that breakpoint is reached. */
4654 keep_going (ecs);
4655 return;
4656 }
4657
4658 if (ecs->event_thread->control.step_range_end == 0)
4659 {
4660 if (debug_infrun)
4661 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4662 /* Likewise if we aren't even stepping. */
4663 keep_going (ecs);
4664 return;
4665 }
4666
4667 /* Re-fetch current thread's frame in case the code above caused
4668 the frame cache to be re-initialized, making our FRAME variable
4669 a dangling pointer. */
4670 frame = get_current_frame ();
4671 gdbarch = get_frame_arch (frame);
4672 fill_in_stop_func (gdbarch, ecs);
4673
4674 /* If stepping through a line, keep going if still within it.
4675
4676 Note that step_range_end is the address of the first instruction
4677 beyond the step range, and NOT the address of the last instruction
4678 within it!
4679
4680 Note also that during reverse execution, we may be stepping
4681 through a function epilogue and therefore must detect when
4682 the current-frame changes in the middle of a line. */
4683
4684 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4685 && (execution_direction != EXEC_REVERSE
4686 || frame_id_eq (get_frame_id (frame),
4687 ecs->event_thread->control.step_frame_id)))
4688 {
4689 if (debug_infrun)
4690 fprintf_unfiltered
4691 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4692 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4693 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4694
4695 /* Tentatively re-enable range stepping; `resume' disables it if
4696 necessary (e.g., if we're stepping over a breakpoint or we
4697 have software watchpoints). */
4698 ecs->event_thread->control.may_range_step = 1;
4699
4700 /* When stepping backward, stop at beginning of line range
4701 (unless it's the function entry point, in which case
4702 keep going back to the call point). */
4703 if (stop_pc == ecs->event_thread->control.step_range_start
4704 && stop_pc != ecs->stop_func_start
4705 && execution_direction == EXEC_REVERSE)
4706 {
4707 ecs->event_thread->control.stop_step = 1;
4708 print_end_stepping_range_reason ();
4709 stop_stepping (ecs);
4710 }
4711 else
4712 keep_going (ecs);
4713
4714 return;
4715 }
4716
4717 /* We stepped out of the stepping range. */
4718
4719 /* If we are stepping at the source level and entered the runtime
4720 loader dynamic symbol resolution code...
4721
4722 EXEC_FORWARD: we keep on single stepping until we exit the run
4723 time loader code and reach the callee's address.
4724
4725 EXEC_REVERSE: we've already executed the callee (backward), and
4726 the runtime loader code is handled just like any other
4727 undebuggable function call. Now we need only keep stepping
4728 backward through the trampoline code, and that's handled further
4729 down, so there is nothing for us to do here. */
4730
4731 if (execution_direction != EXEC_REVERSE
4732 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4733 && in_solib_dynsym_resolve_code (stop_pc))
4734 {
4735 CORE_ADDR pc_after_resolver =
4736 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4737
4738 if (debug_infrun)
4739 fprintf_unfiltered (gdb_stdlog,
4740 "infrun: stepped into dynsym resolve code\n");
4741
4742 if (pc_after_resolver)
4743 {
4744 /* Set up a step-resume breakpoint at the address
4745 indicated by SKIP_SOLIB_RESOLVER. */
4746 struct symtab_and_line sr_sal;
4747
4748 init_sal (&sr_sal);
4749 sr_sal.pc = pc_after_resolver;
4750 sr_sal.pspace = get_frame_program_space (frame);
4751
4752 insert_step_resume_breakpoint_at_sal (gdbarch,
4753 sr_sal, null_frame_id);
4754 }
4755
4756 keep_going (ecs);
4757 return;
4758 }
4759
4760 if (ecs->event_thread->control.step_range_end != 1
4761 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4762 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4763 && get_frame_type (frame) == SIGTRAMP_FRAME)
4764 {
4765 if (debug_infrun)
4766 fprintf_unfiltered (gdb_stdlog,
4767 "infrun: stepped into signal trampoline\n");
4768 /* The inferior, while doing a "step" or "next", has ended up in
4769 a signal trampoline (either by a signal being delivered or by
4770 the signal handler returning). Just single-step until the
4771 inferior leaves the trampoline (either by calling the handler
4772 or returning). */
4773 keep_going (ecs);
4774 return;
4775 }
4776
4777 /* If we're in the return path from a shared library trampoline,
4778 we want to proceed through the trampoline when stepping. */
4779 /* macro/2012-04-25: This needs to come before the subroutine
4780 call check below as on some targets return trampolines look
4781 like subroutine calls (MIPS16 return thunks). */
4782 if (gdbarch_in_solib_return_trampoline (gdbarch,
4783 stop_pc, ecs->stop_func_name)
4784 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4785 {
4786 /* Determine where this trampoline returns. */
4787 CORE_ADDR real_stop_pc;
4788
4789 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4790
4791 if (debug_infrun)
4792 fprintf_unfiltered (gdb_stdlog,
4793 "infrun: stepped into solib return tramp\n");
4794
4795 /* Only proceed through if we know where it's going. */
4796 if (real_stop_pc)
4797 {
4798 /* And put the step-breakpoint there and go until there. */
4799 struct symtab_and_line sr_sal;
4800
4801 init_sal (&sr_sal); /* initialize to zeroes */
4802 sr_sal.pc = real_stop_pc;
4803 sr_sal.section = find_pc_overlay (sr_sal.pc);
4804 sr_sal.pspace = get_frame_program_space (frame);
4805
4806 /* Do not specify what the fp should be when we stop since
4807 on some machines the prologue is where the new fp value
4808 is established. */
4809 insert_step_resume_breakpoint_at_sal (gdbarch,
4810 sr_sal, null_frame_id);
4811
4812 /* Restart without fiddling with the step ranges or
4813 other state. */
4814 keep_going (ecs);
4815 return;
4816 }
4817 }
4818
4819 /* Check for subroutine calls. The check for the current frame
4820 equalling the step ID is not necessary - the check of the
4821 previous frame's ID is sufficient - but it is a common case and
4822 cheaper than checking the previous frame's ID.
4823
4824 NOTE: frame_id_eq will never report two invalid frame IDs as
4825 being equal, so to get into this block, both the current and
4826 previous frame must have valid frame IDs. */
4827 /* The outer_frame_id check is a heuristic to detect stepping
4828 through startup code. If we step over an instruction which
4829 sets the stack pointer from an invalid value to a valid value,
4830 we may detect that as a subroutine call from the mythical
4831 "outermost" function. This could be fixed by marking
4832 outermost frames as !stack_p,code_p,special_p. Then the
4833 initial outermost frame, before sp was valid, would
4834 have code_addr == &_start. See the comment in frame_id_eq
4835 for more. */
4836 if (!frame_id_eq (get_stack_frame_id (frame),
4837 ecs->event_thread->control.step_stack_frame_id)
4838 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4839 ecs->event_thread->control.step_stack_frame_id)
4840 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4841 outer_frame_id)
4842 || step_start_function != find_pc_function (stop_pc))))
4843 {
4844 CORE_ADDR real_stop_pc;
4845
4846 if (debug_infrun)
4847 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4848
4849 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4850 || ((ecs->event_thread->control.step_range_end == 1)
4851 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4852 ecs->stop_func_start)))
4853 {
4854 /* I presume that step_over_calls is only 0 when we're
4855 supposed to be stepping at the assembly language level
4856 ("stepi"). Just stop. */
4857 /* Also, maybe we just did a "nexti" inside a prolog, so we
4858 thought it was a subroutine call but it was not. Stop as
4859 well. FENN */
4860 /* And this works the same backward as frontward. MVS */
4861 ecs->event_thread->control.stop_step = 1;
4862 print_end_stepping_range_reason ();
4863 stop_stepping (ecs);
4864 return;
4865 }
4866
4867 /* Reverse stepping through solib trampolines. */
4868
4869 if (execution_direction == EXEC_REVERSE
4870 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4871 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4872 || (ecs->stop_func_start == 0
4873 && in_solib_dynsym_resolve_code (stop_pc))))
4874 {
4875 /* Any solib trampoline code can be handled in reverse
4876 by simply continuing to single-step. We have already
4877 executed the solib function (backwards), and a few
4878 steps will take us back through the trampoline to the
4879 caller. */
4880 keep_going (ecs);
4881 return;
4882 }
4883
4884 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4885 {
4886 /* We're doing a "next".
4887
4888 Normal (forward) execution: set a breakpoint at the
4889 callee's return address (the address at which the caller
4890 will resume).
4891
4892 Reverse (backward) execution. set the step-resume
4893 breakpoint at the start of the function that we just
4894 stepped into (backwards), and continue to there. When we
4895 get there, we'll need to single-step back to the caller. */
4896
4897 if (execution_direction == EXEC_REVERSE)
4898 {
4899 /* If we're already at the start of the function, we've either
4900 just stepped backward into a single instruction function,
4901 or stepped back out of a signal handler to the first instruction
4902 of the function. Just keep going, which will single-step back
4903 to the caller. */
4904 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
4905 {
4906 struct symtab_and_line sr_sal;
4907
4908 /* Normal function call return (static or dynamic). */
4909 init_sal (&sr_sal);
4910 sr_sal.pc = ecs->stop_func_start;
4911 sr_sal.pspace = get_frame_program_space (frame);
4912 insert_step_resume_breakpoint_at_sal (gdbarch,
4913 sr_sal, null_frame_id);
4914 }
4915 }
4916 else
4917 insert_step_resume_breakpoint_at_caller (frame);
4918
4919 keep_going (ecs);
4920 return;
4921 }
4922
4923 /* If we are in a function call trampoline (a stub between the
4924 calling routine and the real function), locate the real
4925 function. That's what tells us (a) whether we want to step
4926 into it at all, and (b) what prologue we want to run to the
4927 end of, if we do step into it. */
4928 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4929 if (real_stop_pc == 0)
4930 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4931 if (real_stop_pc != 0)
4932 ecs->stop_func_start = real_stop_pc;
4933
4934 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4935 {
4936 struct symtab_and_line sr_sal;
4937
4938 init_sal (&sr_sal);
4939 sr_sal.pc = ecs->stop_func_start;
4940 sr_sal.pspace = get_frame_program_space (frame);
4941
4942 insert_step_resume_breakpoint_at_sal (gdbarch,
4943 sr_sal, null_frame_id);
4944 keep_going (ecs);
4945 return;
4946 }
4947
4948 /* If we have line number information for the function we are
4949 thinking of stepping into and the function isn't on the skip
4950 list, step into it.
4951
4952 If there are several symtabs at that PC (e.g. with include
4953 files), just want to know whether *any* of them have line
4954 numbers. find_pc_line handles this. */
4955 {
4956 struct symtab_and_line tmp_sal;
4957
4958 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4959 if (tmp_sal.line != 0
4960 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4961 &tmp_sal))
4962 {
4963 if (execution_direction == EXEC_REVERSE)
4964 handle_step_into_function_backward (gdbarch, ecs);
4965 else
4966 handle_step_into_function (gdbarch, ecs);
4967 return;
4968 }
4969 }
4970
4971 /* If we have no line number and the step-stop-if-no-debug is
4972 set, we stop the step so that the user has a chance to switch
4973 in assembly mode. */
4974 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4975 && step_stop_if_no_debug)
4976 {
4977 ecs->event_thread->control.stop_step = 1;
4978 print_end_stepping_range_reason ();
4979 stop_stepping (ecs);
4980 return;
4981 }
4982
4983 if (execution_direction == EXEC_REVERSE)
4984 {
4985 /* If we're already at the start of the function, we've either just
4986 stepped backward into a single instruction function without line
4987 number info, or stepped back out of a signal handler to the first
4988 instruction of the function without line number info. Just keep
4989 going, which will single-step back to the caller. */
4990 if (ecs->stop_func_start != stop_pc)
4991 {
4992 /* Set a breakpoint at callee's start address.
4993 From there we can step once and be back in the caller. */
4994 struct symtab_and_line sr_sal;
4995
4996 init_sal (&sr_sal);
4997 sr_sal.pc = ecs->stop_func_start;
4998 sr_sal.pspace = get_frame_program_space (frame);
4999 insert_step_resume_breakpoint_at_sal (gdbarch,
5000 sr_sal, null_frame_id);
5001 }
5002 }
5003 else
5004 /* Set a breakpoint at callee's return address (the address
5005 at which the caller will resume). */
5006 insert_step_resume_breakpoint_at_caller (frame);
5007
5008 keep_going (ecs);
5009 return;
5010 }
5011
5012 /* Reverse stepping through solib trampolines. */
5013
5014 if (execution_direction == EXEC_REVERSE
5015 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5016 {
5017 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5018 || (ecs->stop_func_start == 0
5019 && in_solib_dynsym_resolve_code (stop_pc)))
5020 {
5021 /* Any solib trampoline code can be handled in reverse
5022 by simply continuing to single-step. We have already
5023 executed the solib function (backwards), and a few
5024 steps will take us back through the trampoline to the
5025 caller. */
5026 keep_going (ecs);
5027 return;
5028 }
5029 else if (in_solib_dynsym_resolve_code (stop_pc))
5030 {
5031 /* Stepped backward into the solib dynsym resolver.
5032 Set a breakpoint at its start and continue, then
5033 one more step will take us out. */
5034 struct symtab_and_line sr_sal;
5035
5036 init_sal (&sr_sal);
5037 sr_sal.pc = ecs->stop_func_start;
5038 sr_sal.pspace = get_frame_program_space (frame);
5039 insert_step_resume_breakpoint_at_sal (gdbarch,
5040 sr_sal, null_frame_id);
5041 keep_going (ecs);
5042 return;
5043 }
5044 }
5045
5046 stop_pc_sal = find_pc_line (stop_pc, 0);
5047
5048 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5049 the trampoline processing logic, however, there are some trampolines
5050 that have no names, so we should do trampoline handling first. */
5051 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5052 && ecs->stop_func_name == NULL
5053 && stop_pc_sal.line == 0)
5054 {
5055 if (debug_infrun)
5056 fprintf_unfiltered (gdb_stdlog,
5057 "infrun: stepped into undebuggable function\n");
5058
5059 /* The inferior just stepped into, or returned to, an
5060 undebuggable function (where there is no debugging information
5061 and no line number corresponding to the address where the
5062 inferior stopped). Since we want to skip this kind of code,
5063 we keep going until the inferior returns from this
5064 function - unless the user has asked us not to (via
5065 set step-mode) or we no longer know how to get back
5066 to the call site. */
5067 if (step_stop_if_no_debug
5068 || !frame_id_p (frame_unwind_caller_id (frame)))
5069 {
5070 /* If we have no line number and the step-stop-if-no-debug
5071 is set, we stop the step so that the user has a chance to
5072 switch in assembly mode. */
5073 ecs->event_thread->control.stop_step = 1;
5074 print_end_stepping_range_reason ();
5075 stop_stepping (ecs);
5076 return;
5077 }
5078 else
5079 {
5080 /* Set a breakpoint at callee's return address (the address
5081 at which the caller will resume). */
5082 insert_step_resume_breakpoint_at_caller (frame);
5083 keep_going (ecs);
5084 return;
5085 }
5086 }
5087
5088 if (ecs->event_thread->control.step_range_end == 1)
5089 {
5090 /* It is stepi or nexti. We always want to stop stepping after
5091 one instruction. */
5092 if (debug_infrun)
5093 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5094 ecs->event_thread->control.stop_step = 1;
5095 print_end_stepping_range_reason ();
5096 stop_stepping (ecs);
5097 return;
5098 }
5099
5100 if (stop_pc_sal.line == 0)
5101 {
5102 /* We have no line number information. That means to stop
5103 stepping (does this always happen right after one instruction,
5104 when we do "s" in a function with no line numbers,
5105 or can this happen as a result of a return or longjmp?). */
5106 if (debug_infrun)
5107 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5108 ecs->event_thread->control.stop_step = 1;
5109 print_end_stepping_range_reason ();
5110 stop_stepping (ecs);
5111 return;
5112 }
5113
5114 /* Look for "calls" to inlined functions, part one. If the inline
5115 frame machinery detected some skipped call sites, we have entered
5116 a new inline function. */
5117
5118 if (frame_id_eq (get_frame_id (get_current_frame ()),
5119 ecs->event_thread->control.step_frame_id)
5120 && inline_skipped_frames (ecs->ptid))
5121 {
5122 struct symtab_and_line call_sal;
5123
5124 if (debug_infrun)
5125 fprintf_unfiltered (gdb_stdlog,
5126 "infrun: stepped into inlined function\n");
5127
5128 find_frame_sal (get_current_frame (), &call_sal);
5129
5130 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5131 {
5132 /* For "step", we're going to stop. But if the call site
5133 for this inlined function is on the same source line as
5134 we were previously stepping, go down into the function
5135 first. Otherwise stop at the call site. */
5136
5137 if (call_sal.line == ecs->event_thread->current_line
5138 && call_sal.symtab == ecs->event_thread->current_symtab)
5139 step_into_inline_frame (ecs->ptid);
5140
5141 ecs->event_thread->control.stop_step = 1;
5142 print_end_stepping_range_reason ();
5143 stop_stepping (ecs);
5144 return;
5145 }
5146 else
5147 {
5148 /* For "next", we should stop at the call site if it is on a
5149 different source line. Otherwise continue through the
5150 inlined function. */
5151 if (call_sal.line == ecs->event_thread->current_line
5152 && call_sal.symtab == ecs->event_thread->current_symtab)
5153 keep_going (ecs);
5154 else
5155 {
5156 ecs->event_thread->control.stop_step = 1;
5157 print_end_stepping_range_reason ();
5158 stop_stepping (ecs);
5159 }
5160 return;
5161 }
5162 }
5163
5164 /* Look for "calls" to inlined functions, part two. If we are still
5165 in the same real function we were stepping through, but we have
5166 to go further up to find the exact frame ID, we are stepping
5167 through a more inlined call beyond its call site. */
5168
5169 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5170 && !frame_id_eq (get_frame_id (get_current_frame ()),
5171 ecs->event_thread->control.step_frame_id)
5172 && stepped_in_from (get_current_frame (),
5173 ecs->event_thread->control.step_frame_id))
5174 {
5175 if (debug_infrun)
5176 fprintf_unfiltered (gdb_stdlog,
5177 "infrun: stepping through inlined function\n");
5178
5179 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5180 keep_going (ecs);
5181 else
5182 {
5183 ecs->event_thread->control.stop_step = 1;
5184 print_end_stepping_range_reason ();
5185 stop_stepping (ecs);
5186 }
5187 return;
5188 }
5189
5190 if ((stop_pc == stop_pc_sal.pc)
5191 && (ecs->event_thread->current_line != stop_pc_sal.line
5192 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5193 {
5194 /* We are at the start of a different line. So stop. Note that
5195 we don't stop if we step into the middle of a different line.
5196 That is said to make things like for (;;) statements work
5197 better. */
5198 if (debug_infrun)
5199 fprintf_unfiltered (gdb_stdlog,
5200 "infrun: stepped to a different line\n");
5201 ecs->event_thread->control.stop_step = 1;
5202 print_end_stepping_range_reason ();
5203 stop_stepping (ecs);
5204 return;
5205 }
5206
5207 /* We aren't done stepping.
5208
5209 Optimize by setting the stepping range to the line.
5210 (We might not be in the original line, but if we entered a
5211 new line in mid-statement, we continue stepping. This makes
5212 things like for(;;) statements work better.) */
5213
5214 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5215 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5216 ecs->event_thread->control.may_range_step = 1;
5217 set_step_info (frame, stop_pc_sal);
5218
5219 if (debug_infrun)
5220 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5221 keep_going (ecs);
5222 }
5223
5224 /* In all-stop mode, if we're currently stepping but have stopped in
5225 some other thread, we may need to switch back to the stepped
5226 thread. Returns true we set the inferior running, false if we left
5227 it stopped (and the event needs further processing). */
5228
5229 static int
5230 switch_back_to_stepped_thread (struct execution_control_state *ecs)
5231 {
5232 if (!non_stop)
5233 {
5234 struct thread_info *tp;
5235
5236 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
5237 ecs->event_thread);
5238 if (tp)
5239 {
5240 /* However, if the current thread is blocked on some internal
5241 breakpoint, and we simply need to step over that breakpoint
5242 to get it going again, do that first. */
5243 if ((ecs->event_thread->control.trap_expected
5244 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5245 || ecs->event_thread->stepping_over_breakpoint)
5246 {
5247 keep_going (ecs);
5248 return 1;
5249 }
5250
5251 /* If the stepping thread exited, then don't try to switch
5252 back and resume it, which could fail in several different
5253 ways depending on the target. Instead, just keep going.
5254
5255 We can find a stepping dead thread in the thread list in
5256 two cases:
5257
5258 - The target supports thread exit events, and when the
5259 target tries to delete the thread from the thread list,
5260 inferior_ptid pointed at the exiting thread. In such
5261 case, calling delete_thread does not really remove the
5262 thread from the list; instead, the thread is left listed,
5263 with 'exited' state.
5264
5265 - The target's debug interface does not support thread
5266 exit events, and so we have no idea whatsoever if the
5267 previously stepping thread is still alive. For that
5268 reason, we need to synchronously query the target
5269 now. */
5270 if (is_exited (tp->ptid)
5271 || !target_thread_alive (tp->ptid))
5272 {
5273 if (debug_infrun)
5274 fprintf_unfiltered (gdb_stdlog,
5275 "infrun: not switching back to "
5276 "stepped thread, it has vanished\n");
5277
5278 delete_thread (tp->ptid);
5279 keep_going (ecs);
5280 return 1;
5281 }
5282
5283 /* Otherwise, we no longer expect a trap in the current thread.
5284 Clear the trap_expected flag before switching back -- this is
5285 what keep_going would do as well, if we called it. */
5286 ecs->event_thread->control.trap_expected = 0;
5287
5288 if (debug_infrun)
5289 fprintf_unfiltered (gdb_stdlog,
5290 "infrun: switching back to stepped thread\n");
5291
5292 ecs->event_thread = tp;
5293 ecs->ptid = tp->ptid;
5294 context_switch (ecs->ptid);
5295 keep_going (ecs);
5296 return 1;
5297 }
5298 }
5299 return 0;
5300 }
5301
5302 /* Is thread TP in the middle of single-stepping? */
5303
5304 static int
5305 currently_stepping (struct thread_info *tp)
5306 {
5307 return ((tp->control.step_range_end
5308 && tp->control.step_resume_breakpoint == NULL)
5309 || tp->control.trap_expected
5310 || bpstat_should_step ());
5311 }
5312
5313 /* Returns true if any thread *but* the one passed in "data" is in the
5314 middle of stepping or of handling a "next". */
5315
5316 static int
5317 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5318 {
5319 if (tp == data)
5320 return 0;
5321
5322 return (tp->control.step_range_end
5323 || tp->control.trap_expected);
5324 }
5325
5326 /* Inferior has stepped into a subroutine call with source code that
5327 we should not step over. Do step to the first line of code in
5328 it. */
5329
5330 static void
5331 handle_step_into_function (struct gdbarch *gdbarch,
5332 struct execution_control_state *ecs)
5333 {
5334 struct symtab *s;
5335 struct symtab_and_line stop_func_sal, sr_sal;
5336
5337 fill_in_stop_func (gdbarch, ecs);
5338
5339 s = find_pc_symtab (stop_pc);
5340 if (s && s->language != language_asm)
5341 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5342 ecs->stop_func_start);
5343
5344 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5345 /* Use the step_resume_break to step until the end of the prologue,
5346 even if that involves jumps (as it seems to on the vax under
5347 4.2). */
5348 /* If the prologue ends in the middle of a source line, continue to
5349 the end of that source line (if it is still within the function).
5350 Otherwise, just go to end of prologue. */
5351 if (stop_func_sal.end
5352 && stop_func_sal.pc != ecs->stop_func_start
5353 && stop_func_sal.end < ecs->stop_func_end)
5354 ecs->stop_func_start = stop_func_sal.end;
5355
5356 /* Architectures which require breakpoint adjustment might not be able
5357 to place a breakpoint at the computed address. If so, the test
5358 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5359 ecs->stop_func_start to an address at which a breakpoint may be
5360 legitimately placed.
5361
5362 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5363 made, GDB will enter an infinite loop when stepping through
5364 optimized code consisting of VLIW instructions which contain
5365 subinstructions corresponding to different source lines. On
5366 FR-V, it's not permitted to place a breakpoint on any but the
5367 first subinstruction of a VLIW instruction. When a breakpoint is
5368 set, GDB will adjust the breakpoint address to the beginning of
5369 the VLIW instruction. Thus, we need to make the corresponding
5370 adjustment here when computing the stop address. */
5371
5372 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5373 {
5374 ecs->stop_func_start
5375 = gdbarch_adjust_breakpoint_address (gdbarch,
5376 ecs->stop_func_start);
5377 }
5378
5379 if (ecs->stop_func_start == stop_pc)
5380 {
5381 /* We are already there: stop now. */
5382 ecs->event_thread->control.stop_step = 1;
5383 print_end_stepping_range_reason ();
5384 stop_stepping (ecs);
5385 return;
5386 }
5387 else
5388 {
5389 /* Put the step-breakpoint there and go until there. */
5390 init_sal (&sr_sal); /* initialize to zeroes */
5391 sr_sal.pc = ecs->stop_func_start;
5392 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5393 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5394
5395 /* Do not specify what the fp should be when we stop since on
5396 some machines the prologue is where the new fp value is
5397 established. */
5398 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5399
5400 /* And make sure stepping stops right away then. */
5401 ecs->event_thread->control.step_range_end
5402 = ecs->event_thread->control.step_range_start;
5403 }
5404 keep_going (ecs);
5405 }
5406
5407 /* Inferior has stepped backward into a subroutine call with source
5408 code that we should not step over. Do step to the beginning of the
5409 last line of code in it. */
5410
5411 static void
5412 handle_step_into_function_backward (struct gdbarch *gdbarch,
5413 struct execution_control_state *ecs)
5414 {
5415 struct symtab *s;
5416 struct symtab_and_line stop_func_sal;
5417
5418 fill_in_stop_func (gdbarch, ecs);
5419
5420 s = find_pc_symtab (stop_pc);
5421 if (s && s->language != language_asm)
5422 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5423 ecs->stop_func_start);
5424
5425 stop_func_sal = find_pc_line (stop_pc, 0);
5426
5427 /* OK, we're just going to keep stepping here. */
5428 if (stop_func_sal.pc == stop_pc)
5429 {
5430 /* We're there already. Just stop stepping now. */
5431 ecs->event_thread->control.stop_step = 1;
5432 print_end_stepping_range_reason ();
5433 stop_stepping (ecs);
5434 }
5435 else
5436 {
5437 /* Else just reset the step range and keep going.
5438 No step-resume breakpoint, they don't work for
5439 epilogues, which can have multiple entry paths. */
5440 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5441 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5442 keep_going (ecs);
5443 }
5444 return;
5445 }
5446
5447 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5448 This is used to both functions and to skip over code. */
5449
5450 static void
5451 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5452 struct symtab_and_line sr_sal,
5453 struct frame_id sr_id,
5454 enum bptype sr_type)
5455 {
5456 /* There should never be more than one step-resume or longjmp-resume
5457 breakpoint per thread, so we should never be setting a new
5458 step_resume_breakpoint when one is already active. */
5459 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5460 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5461
5462 if (debug_infrun)
5463 fprintf_unfiltered (gdb_stdlog,
5464 "infrun: inserting step-resume breakpoint at %s\n",
5465 paddress (gdbarch, sr_sal.pc));
5466
5467 inferior_thread ()->control.step_resume_breakpoint
5468 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5469 }
5470
5471 void
5472 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5473 struct symtab_and_line sr_sal,
5474 struct frame_id sr_id)
5475 {
5476 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5477 sr_sal, sr_id,
5478 bp_step_resume);
5479 }
5480
5481 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5482 This is used to skip a potential signal handler.
5483
5484 This is called with the interrupted function's frame. The signal
5485 handler, when it returns, will resume the interrupted function at
5486 RETURN_FRAME.pc. */
5487
5488 static void
5489 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5490 {
5491 struct symtab_and_line sr_sal;
5492 struct gdbarch *gdbarch;
5493
5494 gdb_assert (return_frame != NULL);
5495 init_sal (&sr_sal); /* initialize to zeros */
5496
5497 gdbarch = get_frame_arch (return_frame);
5498 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5499 sr_sal.section = find_pc_overlay (sr_sal.pc);
5500 sr_sal.pspace = get_frame_program_space (return_frame);
5501
5502 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5503 get_stack_frame_id (return_frame),
5504 bp_hp_step_resume);
5505 }
5506
5507 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5508 is used to skip a function after stepping into it (for "next" or if
5509 the called function has no debugging information).
5510
5511 The current function has almost always been reached by single
5512 stepping a call or return instruction. NEXT_FRAME belongs to the
5513 current function, and the breakpoint will be set at the caller's
5514 resume address.
5515
5516 This is a separate function rather than reusing
5517 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5518 get_prev_frame, which may stop prematurely (see the implementation
5519 of frame_unwind_caller_id for an example). */
5520
5521 static void
5522 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5523 {
5524 struct symtab_and_line sr_sal;
5525 struct gdbarch *gdbarch;
5526
5527 /* We shouldn't have gotten here if we don't know where the call site
5528 is. */
5529 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5530
5531 init_sal (&sr_sal); /* initialize to zeros */
5532
5533 gdbarch = frame_unwind_caller_arch (next_frame);
5534 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5535 frame_unwind_caller_pc (next_frame));
5536 sr_sal.section = find_pc_overlay (sr_sal.pc);
5537 sr_sal.pspace = frame_unwind_program_space (next_frame);
5538
5539 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5540 frame_unwind_caller_id (next_frame));
5541 }
5542
5543 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5544 new breakpoint at the target of a jmp_buf. The handling of
5545 longjmp-resume uses the same mechanisms used for handling
5546 "step-resume" breakpoints. */
5547
5548 static void
5549 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5550 {
5551 /* There should never be more than one longjmp-resume breakpoint per
5552 thread, so we should never be setting a new
5553 longjmp_resume_breakpoint when one is already active. */
5554 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
5555
5556 if (debug_infrun)
5557 fprintf_unfiltered (gdb_stdlog,
5558 "infrun: inserting longjmp-resume breakpoint at %s\n",
5559 paddress (gdbarch, pc));
5560
5561 inferior_thread ()->control.exception_resume_breakpoint =
5562 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5563 }
5564
5565 /* Insert an exception resume breakpoint. TP is the thread throwing
5566 the exception. The block B is the block of the unwinder debug hook
5567 function. FRAME is the frame corresponding to the call to this
5568 function. SYM is the symbol of the function argument holding the
5569 target PC of the exception. */
5570
5571 static void
5572 insert_exception_resume_breakpoint (struct thread_info *tp,
5573 struct block *b,
5574 struct frame_info *frame,
5575 struct symbol *sym)
5576 {
5577 volatile struct gdb_exception e;
5578
5579 /* We want to ignore errors here. */
5580 TRY_CATCH (e, RETURN_MASK_ERROR)
5581 {
5582 struct symbol *vsym;
5583 struct value *value;
5584 CORE_ADDR handler;
5585 struct breakpoint *bp;
5586
5587 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5588 value = read_var_value (vsym, frame);
5589 /* If the value was optimized out, revert to the old behavior. */
5590 if (! value_optimized_out (value))
5591 {
5592 handler = value_as_address (value);
5593
5594 if (debug_infrun)
5595 fprintf_unfiltered (gdb_stdlog,
5596 "infrun: exception resume at %lx\n",
5597 (unsigned long) handler);
5598
5599 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5600 handler, bp_exception_resume);
5601
5602 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5603 frame = NULL;
5604
5605 bp->thread = tp->num;
5606 inferior_thread ()->control.exception_resume_breakpoint = bp;
5607 }
5608 }
5609 }
5610
5611 /* A helper for check_exception_resume that sets an
5612 exception-breakpoint based on a SystemTap probe. */
5613
5614 static void
5615 insert_exception_resume_from_probe (struct thread_info *tp,
5616 const struct probe *probe,
5617 struct frame_info *frame)
5618 {
5619 struct value *arg_value;
5620 CORE_ADDR handler;
5621 struct breakpoint *bp;
5622
5623 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5624 if (!arg_value)
5625 return;
5626
5627 handler = value_as_address (arg_value);
5628
5629 if (debug_infrun)
5630 fprintf_unfiltered (gdb_stdlog,
5631 "infrun: exception resume at %s\n",
5632 paddress (get_objfile_arch (probe->objfile),
5633 handler));
5634
5635 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5636 handler, bp_exception_resume);
5637 bp->thread = tp->num;
5638 inferior_thread ()->control.exception_resume_breakpoint = bp;
5639 }
5640
5641 /* This is called when an exception has been intercepted. Check to
5642 see whether the exception's destination is of interest, and if so,
5643 set an exception resume breakpoint there. */
5644
5645 static void
5646 check_exception_resume (struct execution_control_state *ecs,
5647 struct frame_info *frame)
5648 {
5649 volatile struct gdb_exception e;
5650 const struct probe *probe;
5651 struct symbol *func;
5652
5653 /* First see if this exception unwinding breakpoint was set via a
5654 SystemTap probe point. If so, the probe has two arguments: the
5655 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5656 set a breakpoint there. */
5657 probe = find_probe_by_pc (get_frame_pc (frame));
5658 if (probe)
5659 {
5660 insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
5661 return;
5662 }
5663
5664 func = get_frame_function (frame);
5665 if (!func)
5666 return;
5667
5668 TRY_CATCH (e, RETURN_MASK_ERROR)
5669 {
5670 struct block *b;
5671 struct block_iterator iter;
5672 struct symbol *sym;
5673 int argno = 0;
5674
5675 /* The exception breakpoint is a thread-specific breakpoint on
5676 the unwinder's debug hook, declared as:
5677
5678 void _Unwind_DebugHook (void *cfa, void *handler);
5679
5680 The CFA argument indicates the frame to which control is
5681 about to be transferred. HANDLER is the destination PC.
5682
5683 We ignore the CFA and set a temporary breakpoint at HANDLER.
5684 This is not extremely efficient but it avoids issues in gdb
5685 with computing the DWARF CFA, and it also works even in weird
5686 cases such as throwing an exception from inside a signal
5687 handler. */
5688
5689 b = SYMBOL_BLOCK_VALUE (func);
5690 ALL_BLOCK_SYMBOLS (b, iter, sym)
5691 {
5692 if (!SYMBOL_IS_ARGUMENT (sym))
5693 continue;
5694
5695 if (argno == 0)
5696 ++argno;
5697 else
5698 {
5699 insert_exception_resume_breakpoint (ecs->event_thread,
5700 b, frame, sym);
5701 break;
5702 }
5703 }
5704 }
5705 }
5706
5707 static void
5708 stop_stepping (struct execution_control_state *ecs)
5709 {
5710 if (debug_infrun)
5711 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5712
5713 /* Let callers know we don't want to wait for the inferior anymore. */
5714 ecs->wait_some_more = 0;
5715 }
5716
5717 /* Called when we should continue running the inferior, because the
5718 current event doesn't cause a user visible stop. This does the
5719 resuming part; waiting for the next event is done elsewhere. */
5720
5721 static void
5722 keep_going (struct execution_control_state *ecs)
5723 {
5724 /* Make sure normal_stop is called if we get a QUIT handled before
5725 reaching resume. */
5726 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5727
5728 /* Save the pc before execution, to compare with pc after stop. */
5729 ecs->event_thread->prev_pc
5730 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5731
5732 if (ecs->event_thread->control.trap_expected
5733 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5734 {
5735 /* We haven't yet gotten our trap, and either: intercepted a
5736 non-signal event (e.g., a fork); or took a signal which we
5737 are supposed to pass through to the inferior. Simply
5738 continue. */
5739 discard_cleanups (old_cleanups);
5740 resume (currently_stepping (ecs->event_thread),
5741 ecs->event_thread->suspend.stop_signal);
5742 }
5743 else
5744 {
5745 /* Either the trap was not expected, but we are continuing
5746 anyway (if we got a signal, the user asked it be passed to
5747 the child)
5748 -- or --
5749 We got our expected trap, but decided we should resume from
5750 it.
5751
5752 We're going to run this baby now!
5753
5754 Note that insert_breakpoints won't try to re-insert
5755 already inserted breakpoints. Therefore, we don't
5756 care if breakpoints were already inserted, or not. */
5757
5758 if (ecs->event_thread->stepping_over_breakpoint)
5759 {
5760 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5761
5762 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5763 {
5764 /* Since we can't do a displaced step, we have to remove
5765 the breakpoint while we step it. To keep things
5766 simple, we remove them all. */
5767 remove_breakpoints ();
5768 }
5769 }
5770 else
5771 {
5772 volatile struct gdb_exception e;
5773
5774 /* Stop stepping if inserting breakpoints fails. */
5775 TRY_CATCH (e, RETURN_MASK_ERROR)
5776 {
5777 insert_breakpoints ();
5778 }
5779 if (e.reason < 0)
5780 {
5781 exception_print (gdb_stderr, e);
5782 stop_stepping (ecs);
5783 return;
5784 }
5785 }
5786
5787 ecs->event_thread->control.trap_expected
5788 = ecs->event_thread->stepping_over_breakpoint;
5789
5790 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
5791 explicitly specifies that such a signal should be delivered
5792 to the target program). Typically, that would occur when a
5793 user is debugging a target monitor on a simulator: the target
5794 monitor sets a breakpoint; the simulator encounters this
5795 breakpoint and halts the simulation handing control to GDB;
5796 GDB, noting that the stop address doesn't map to any known
5797 breakpoint, returns control back to the simulator; the
5798 simulator then delivers the hardware equivalent of a
5799 GDB_SIGNAL_TRAP to the program being debugged. */
5800 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5801 && !signal_program[ecs->event_thread->suspend.stop_signal])
5802 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5803
5804 discard_cleanups (old_cleanups);
5805 resume (currently_stepping (ecs->event_thread),
5806 ecs->event_thread->suspend.stop_signal);
5807 }
5808
5809 prepare_to_wait (ecs);
5810 }
5811
5812 /* This function normally comes after a resume, before
5813 handle_inferior_event exits. It takes care of any last bits of
5814 housekeeping, and sets the all-important wait_some_more flag. */
5815
5816 static void
5817 prepare_to_wait (struct execution_control_state *ecs)
5818 {
5819 if (debug_infrun)
5820 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5821
5822 /* This is the old end of the while loop. Let everybody know we
5823 want to wait for the inferior some more and get called again
5824 soon. */
5825 ecs->wait_some_more = 1;
5826 }
5827
5828 /* Several print_*_reason functions to print why the inferior has stopped.
5829 We always print something when the inferior exits, or receives a signal.
5830 The rest of the cases are dealt with later on in normal_stop and
5831 print_it_typical. Ideally there should be a call to one of these
5832 print_*_reason functions functions from handle_inferior_event each time
5833 stop_stepping is called. */
5834
5835 /* Print why the inferior has stopped.
5836 We are done with a step/next/si/ni command, print why the inferior has
5837 stopped. For now print nothing. Print a message only if not in the middle
5838 of doing a "step n" operation for n > 1. */
5839
5840 static void
5841 print_end_stepping_range_reason (void)
5842 {
5843 if ((!inferior_thread ()->step_multi
5844 || !inferior_thread ()->control.stop_step)
5845 && ui_out_is_mi_like_p (current_uiout))
5846 ui_out_field_string (current_uiout, "reason",
5847 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5848 }
5849
5850 /* The inferior was terminated by a signal, print why it stopped. */
5851
5852 static void
5853 print_signal_exited_reason (enum gdb_signal siggnal)
5854 {
5855 struct ui_out *uiout = current_uiout;
5856
5857 annotate_signalled ();
5858 if (ui_out_is_mi_like_p (uiout))
5859 ui_out_field_string
5860 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5861 ui_out_text (uiout, "\nProgram terminated with signal ");
5862 annotate_signal_name ();
5863 ui_out_field_string (uiout, "signal-name",
5864 gdb_signal_to_name (siggnal));
5865 annotate_signal_name_end ();
5866 ui_out_text (uiout, ", ");
5867 annotate_signal_string ();
5868 ui_out_field_string (uiout, "signal-meaning",
5869 gdb_signal_to_string (siggnal));
5870 annotate_signal_string_end ();
5871 ui_out_text (uiout, ".\n");
5872 ui_out_text (uiout, "The program no longer exists.\n");
5873 }
5874
5875 /* The inferior program is finished, print why it stopped. */
5876
5877 static void
5878 print_exited_reason (int exitstatus)
5879 {
5880 struct inferior *inf = current_inferior ();
5881 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5882 struct ui_out *uiout = current_uiout;
5883
5884 annotate_exited (exitstatus);
5885 if (exitstatus)
5886 {
5887 if (ui_out_is_mi_like_p (uiout))
5888 ui_out_field_string (uiout, "reason",
5889 async_reason_lookup (EXEC_ASYNC_EXITED));
5890 ui_out_text (uiout, "[Inferior ");
5891 ui_out_text (uiout, plongest (inf->num));
5892 ui_out_text (uiout, " (");
5893 ui_out_text (uiout, pidstr);
5894 ui_out_text (uiout, ") exited with code ");
5895 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5896 ui_out_text (uiout, "]\n");
5897 }
5898 else
5899 {
5900 if (ui_out_is_mi_like_p (uiout))
5901 ui_out_field_string
5902 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5903 ui_out_text (uiout, "[Inferior ");
5904 ui_out_text (uiout, plongest (inf->num));
5905 ui_out_text (uiout, " (");
5906 ui_out_text (uiout, pidstr);
5907 ui_out_text (uiout, ") exited normally]\n");
5908 }
5909 /* Support the --return-child-result option. */
5910 return_child_result_value = exitstatus;
5911 }
5912
5913 /* Signal received, print why the inferior has stopped. The signal table
5914 tells us to print about it. */
5915
5916 static void
5917 print_signal_received_reason (enum gdb_signal siggnal)
5918 {
5919 struct ui_out *uiout = current_uiout;
5920
5921 annotate_signal ();
5922
5923 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5924 {
5925 struct thread_info *t = inferior_thread ();
5926
5927 ui_out_text (uiout, "\n[");
5928 ui_out_field_string (uiout, "thread-name",
5929 target_pid_to_str (t->ptid));
5930 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5931 ui_out_text (uiout, " stopped");
5932 }
5933 else
5934 {
5935 ui_out_text (uiout, "\nProgram received signal ");
5936 annotate_signal_name ();
5937 if (ui_out_is_mi_like_p (uiout))
5938 ui_out_field_string
5939 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5940 ui_out_field_string (uiout, "signal-name",
5941 gdb_signal_to_name (siggnal));
5942 annotate_signal_name_end ();
5943 ui_out_text (uiout, ", ");
5944 annotate_signal_string ();
5945 ui_out_field_string (uiout, "signal-meaning",
5946 gdb_signal_to_string (siggnal));
5947 annotate_signal_string_end ();
5948 }
5949 ui_out_text (uiout, ".\n");
5950 }
5951
5952 /* Reverse execution: target ran out of history info, print why the inferior
5953 has stopped. */
5954
5955 static void
5956 print_no_history_reason (void)
5957 {
5958 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
5959 }
5960
5961 /* Here to return control to GDB when the inferior stops for real.
5962 Print appropriate messages, remove breakpoints, give terminal our modes.
5963
5964 STOP_PRINT_FRAME nonzero means print the executing frame
5965 (pc, function, args, file, line number and line text).
5966 BREAKPOINTS_FAILED nonzero means stop was due to error
5967 attempting to insert breakpoints. */
5968
5969 void
5970 normal_stop (void)
5971 {
5972 struct target_waitstatus last;
5973 ptid_t last_ptid;
5974 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5975
5976 get_last_target_status (&last_ptid, &last);
5977
5978 /* If an exception is thrown from this point on, make sure to
5979 propagate GDB's knowledge of the executing state to the
5980 frontend/user running state. A QUIT is an easy exception to see
5981 here, so do this before any filtered output. */
5982 if (!non_stop)
5983 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5984 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5985 && last.kind != TARGET_WAITKIND_EXITED
5986 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5987 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5988
5989 /* In non-stop mode, we don't want GDB to switch threads behind the
5990 user's back, to avoid races where the user is typing a command to
5991 apply to thread x, but GDB switches to thread y before the user
5992 finishes entering the command. */
5993
5994 /* As with the notification of thread events, we want to delay
5995 notifying the user that we've switched thread context until
5996 the inferior actually stops.
5997
5998 There's no point in saying anything if the inferior has exited.
5999 Note that SIGNALLED here means "exited with a signal", not
6000 "received a signal". */
6001 if (!non_stop
6002 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
6003 && target_has_execution
6004 && last.kind != TARGET_WAITKIND_SIGNALLED
6005 && last.kind != TARGET_WAITKIND_EXITED
6006 && last.kind != TARGET_WAITKIND_NO_RESUMED)
6007 {
6008 target_terminal_ours_for_output ();
6009 printf_filtered (_("[Switching to %s]\n"),
6010 target_pid_to_str (inferior_ptid));
6011 annotate_thread_changed ();
6012 previous_inferior_ptid = inferior_ptid;
6013 }
6014
6015 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6016 {
6017 gdb_assert (sync_execution || !target_can_async_p ());
6018
6019 target_terminal_ours_for_output ();
6020 printf_filtered (_("No unwaited-for children left.\n"));
6021 }
6022
6023 if (!breakpoints_always_inserted_mode () && target_has_execution)
6024 {
6025 if (remove_breakpoints ())
6026 {
6027 target_terminal_ours_for_output ();
6028 printf_filtered (_("Cannot remove breakpoints because "
6029 "program is no longer writable.\nFurther "
6030 "execution is probably impossible.\n"));
6031 }
6032 }
6033
6034 /* If an auto-display called a function and that got a signal,
6035 delete that auto-display to avoid an infinite recursion. */
6036
6037 if (stopped_by_random_signal)
6038 disable_current_display ();
6039
6040 /* Don't print a message if in the middle of doing a "step n"
6041 operation for n > 1 */
6042 if (target_has_execution
6043 && last.kind != TARGET_WAITKIND_SIGNALLED
6044 && last.kind != TARGET_WAITKIND_EXITED
6045 && inferior_thread ()->step_multi
6046 && inferior_thread ()->control.stop_step)
6047 goto done;
6048
6049 target_terminal_ours ();
6050 async_enable_stdin ();
6051
6052 /* Set the current source location. This will also happen if we
6053 display the frame below, but the current SAL will be incorrect
6054 during a user hook-stop function. */
6055 if (has_stack_frames () && !stop_stack_dummy)
6056 set_current_sal_from_frame (get_current_frame (), 1);
6057
6058 /* Let the user/frontend see the threads as stopped. */
6059 do_cleanups (old_chain);
6060
6061 /* Look up the hook_stop and run it (CLI internally handles problem
6062 of stop_command's pre-hook not existing). */
6063 if (stop_command)
6064 catch_errors (hook_stop_stub, stop_command,
6065 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6066
6067 if (!has_stack_frames ())
6068 goto done;
6069
6070 if (last.kind == TARGET_WAITKIND_SIGNALLED
6071 || last.kind == TARGET_WAITKIND_EXITED)
6072 goto done;
6073
6074 /* Select innermost stack frame - i.e., current frame is frame 0,
6075 and current location is based on that.
6076 Don't do this on return from a stack dummy routine,
6077 or if the program has exited. */
6078
6079 if (!stop_stack_dummy)
6080 {
6081 select_frame (get_current_frame ());
6082
6083 /* Print current location without a level number, if
6084 we have changed functions or hit a breakpoint.
6085 Print source line if we have one.
6086 bpstat_print() contains the logic deciding in detail
6087 what to print, based on the event(s) that just occurred. */
6088
6089 /* If --batch-silent is enabled then there's no need to print the current
6090 source location, and to try risks causing an error message about
6091 missing source files. */
6092 if (stop_print_frame && !batch_silent)
6093 {
6094 int bpstat_ret;
6095 int source_flag;
6096 int do_frame_printing = 1;
6097 struct thread_info *tp = inferior_thread ();
6098
6099 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
6100 switch (bpstat_ret)
6101 {
6102 case PRINT_UNKNOWN:
6103 /* FIXME: cagney/2002-12-01: Given that a frame ID does
6104 (or should) carry around the function and does (or
6105 should) use that when doing a frame comparison. */
6106 if (tp->control.stop_step
6107 && frame_id_eq (tp->control.step_frame_id,
6108 get_frame_id (get_current_frame ()))
6109 && step_start_function == find_pc_function (stop_pc))
6110 source_flag = SRC_LINE; /* Finished step, just
6111 print source line. */
6112 else
6113 source_flag = SRC_AND_LOC; /* Print location and
6114 source line. */
6115 break;
6116 case PRINT_SRC_AND_LOC:
6117 source_flag = SRC_AND_LOC; /* Print location and
6118 source line. */
6119 break;
6120 case PRINT_SRC_ONLY:
6121 source_flag = SRC_LINE;
6122 break;
6123 case PRINT_NOTHING:
6124 source_flag = SRC_LINE; /* something bogus */
6125 do_frame_printing = 0;
6126 break;
6127 default:
6128 internal_error (__FILE__, __LINE__, _("Unknown value."));
6129 }
6130
6131 /* The behavior of this routine with respect to the source
6132 flag is:
6133 SRC_LINE: Print only source line
6134 LOCATION: Print only location
6135 SRC_AND_LOC: Print location and source line. */
6136 if (do_frame_printing)
6137 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
6138
6139 /* Display the auto-display expressions. */
6140 do_displays ();
6141 }
6142 }
6143
6144 /* Save the function value return registers, if we care.
6145 We might be about to restore their previous contents. */
6146 if (inferior_thread ()->control.proceed_to_finish
6147 && execution_direction != EXEC_REVERSE)
6148 {
6149 /* This should not be necessary. */
6150 if (stop_registers)
6151 regcache_xfree (stop_registers);
6152
6153 /* NB: The copy goes through to the target picking up the value of
6154 all the registers. */
6155 stop_registers = regcache_dup (get_current_regcache ());
6156 }
6157
6158 if (stop_stack_dummy == STOP_STACK_DUMMY)
6159 {
6160 /* Pop the empty frame that contains the stack dummy.
6161 This also restores inferior state prior to the call
6162 (struct infcall_suspend_state). */
6163 struct frame_info *frame = get_current_frame ();
6164
6165 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6166 frame_pop (frame);
6167 /* frame_pop() calls reinit_frame_cache as the last thing it
6168 does which means there's currently no selected frame. We
6169 don't need to re-establish a selected frame if the dummy call
6170 returns normally, that will be done by
6171 restore_infcall_control_state. However, we do have to handle
6172 the case where the dummy call is returning after being
6173 stopped (e.g. the dummy call previously hit a breakpoint).
6174 We can't know which case we have so just always re-establish
6175 a selected frame here. */
6176 select_frame (get_current_frame ());
6177 }
6178
6179 done:
6180 annotate_stopped ();
6181
6182 /* Suppress the stop observer if we're in the middle of:
6183
6184 - a step n (n > 1), as there still more steps to be done.
6185
6186 - a "finish" command, as the observer will be called in
6187 finish_command_continuation, so it can include the inferior
6188 function's return value.
6189
6190 - calling an inferior function, as we pretend we inferior didn't
6191 run at all. The return value of the call is handled by the
6192 expression evaluator, through call_function_by_hand. */
6193
6194 if (!target_has_execution
6195 || last.kind == TARGET_WAITKIND_SIGNALLED
6196 || last.kind == TARGET_WAITKIND_EXITED
6197 || last.kind == TARGET_WAITKIND_NO_RESUMED
6198 || (!(inferior_thread ()->step_multi
6199 && inferior_thread ()->control.stop_step)
6200 && !(inferior_thread ()->control.stop_bpstat
6201 && inferior_thread ()->control.proceed_to_finish)
6202 && !inferior_thread ()->control.in_infcall))
6203 {
6204 if (!ptid_equal (inferior_ptid, null_ptid))
6205 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6206 stop_print_frame);
6207 else
6208 observer_notify_normal_stop (NULL, stop_print_frame);
6209 }
6210
6211 if (target_has_execution)
6212 {
6213 if (last.kind != TARGET_WAITKIND_SIGNALLED
6214 && last.kind != TARGET_WAITKIND_EXITED)
6215 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6216 Delete any breakpoint that is to be deleted at the next stop. */
6217 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6218 }
6219
6220 /* Try to get rid of automatically added inferiors that are no
6221 longer needed. Keeping those around slows down things linearly.
6222 Note that this never removes the current inferior. */
6223 prune_inferiors ();
6224 }
6225
6226 static int
6227 hook_stop_stub (void *cmd)
6228 {
6229 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6230 return (0);
6231 }
6232 \f
6233 int
6234 signal_stop_state (int signo)
6235 {
6236 return signal_stop[signo];
6237 }
6238
6239 int
6240 signal_print_state (int signo)
6241 {
6242 return signal_print[signo];
6243 }
6244
6245 int
6246 signal_pass_state (int signo)
6247 {
6248 return signal_program[signo];
6249 }
6250
6251 static void
6252 signal_cache_update (int signo)
6253 {
6254 if (signo == -1)
6255 {
6256 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
6257 signal_cache_update (signo);
6258
6259 return;
6260 }
6261
6262 signal_pass[signo] = (signal_stop[signo] == 0
6263 && signal_print[signo] == 0
6264 && signal_program[signo] == 1
6265 && signal_catch[signo] == 0);
6266 }
6267
6268 int
6269 signal_stop_update (int signo, int state)
6270 {
6271 int ret = signal_stop[signo];
6272
6273 signal_stop[signo] = state;
6274 signal_cache_update (signo);
6275 return ret;
6276 }
6277
6278 int
6279 signal_print_update (int signo, int state)
6280 {
6281 int ret = signal_print[signo];
6282
6283 signal_print[signo] = state;
6284 signal_cache_update (signo);
6285 return ret;
6286 }
6287
6288 int
6289 signal_pass_update (int signo, int state)
6290 {
6291 int ret = signal_program[signo];
6292
6293 signal_program[signo] = state;
6294 signal_cache_update (signo);
6295 return ret;
6296 }
6297
6298 /* Update the global 'signal_catch' from INFO and notify the
6299 target. */
6300
6301 void
6302 signal_catch_update (const unsigned int *info)
6303 {
6304 int i;
6305
6306 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6307 signal_catch[i] = info[i] > 0;
6308 signal_cache_update (-1);
6309 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6310 }
6311
6312 static void
6313 sig_print_header (void)
6314 {
6315 printf_filtered (_("Signal Stop\tPrint\tPass "
6316 "to program\tDescription\n"));
6317 }
6318
6319 static void
6320 sig_print_info (enum gdb_signal oursig)
6321 {
6322 const char *name = gdb_signal_to_name (oursig);
6323 int name_padding = 13 - strlen (name);
6324
6325 if (name_padding <= 0)
6326 name_padding = 0;
6327
6328 printf_filtered ("%s", name);
6329 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6330 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6331 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6332 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6333 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
6334 }
6335
6336 /* Specify how various signals in the inferior should be handled. */
6337
6338 static void
6339 handle_command (char *args, int from_tty)
6340 {
6341 char **argv;
6342 int digits, wordlen;
6343 int sigfirst, signum, siglast;
6344 enum gdb_signal oursig;
6345 int allsigs;
6346 int nsigs;
6347 unsigned char *sigs;
6348 struct cleanup *old_chain;
6349
6350 if (args == NULL)
6351 {
6352 error_no_arg (_("signal to handle"));
6353 }
6354
6355 /* Allocate and zero an array of flags for which signals to handle. */
6356
6357 nsigs = (int) GDB_SIGNAL_LAST;
6358 sigs = (unsigned char *) alloca (nsigs);
6359 memset (sigs, 0, nsigs);
6360
6361 /* Break the command line up into args. */
6362
6363 argv = gdb_buildargv (args);
6364 old_chain = make_cleanup_freeargv (argv);
6365
6366 /* Walk through the args, looking for signal oursigs, signal names, and
6367 actions. Signal numbers and signal names may be interspersed with
6368 actions, with the actions being performed for all signals cumulatively
6369 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6370
6371 while (*argv != NULL)
6372 {
6373 wordlen = strlen (*argv);
6374 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6375 {;
6376 }
6377 allsigs = 0;
6378 sigfirst = siglast = -1;
6379
6380 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6381 {
6382 /* Apply action to all signals except those used by the
6383 debugger. Silently skip those. */
6384 allsigs = 1;
6385 sigfirst = 0;
6386 siglast = nsigs - 1;
6387 }
6388 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6389 {
6390 SET_SIGS (nsigs, sigs, signal_stop);
6391 SET_SIGS (nsigs, sigs, signal_print);
6392 }
6393 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6394 {
6395 UNSET_SIGS (nsigs, sigs, signal_program);
6396 }
6397 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6398 {
6399 SET_SIGS (nsigs, sigs, signal_print);
6400 }
6401 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6402 {
6403 SET_SIGS (nsigs, sigs, signal_program);
6404 }
6405 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6406 {
6407 UNSET_SIGS (nsigs, sigs, signal_stop);
6408 }
6409 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6410 {
6411 SET_SIGS (nsigs, sigs, signal_program);
6412 }
6413 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6414 {
6415 UNSET_SIGS (nsigs, sigs, signal_print);
6416 UNSET_SIGS (nsigs, sigs, signal_stop);
6417 }
6418 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6419 {
6420 UNSET_SIGS (nsigs, sigs, signal_program);
6421 }
6422 else if (digits > 0)
6423 {
6424 /* It is numeric. The numeric signal refers to our own
6425 internal signal numbering from target.h, not to host/target
6426 signal number. This is a feature; users really should be
6427 using symbolic names anyway, and the common ones like
6428 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6429
6430 sigfirst = siglast = (int)
6431 gdb_signal_from_command (atoi (*argv));
6432 if ((*argv)[digits] == '-')
6433 {
6434 siglast = (int)
6435 gdb_signal_from_command (atoi ((*argv) + digits + 1));
6436 }
6437 if (sigfirst > siglast)
6438 {
6439 /* Bet he didn't figure we'd think of this case... */
6440 signum = sigfirst;
6441 sigfirst = siglast;
6442 siglast = signum;
6443 }
6444 }
6445 else
6446 {
6447 oursig = gdb_signal_from_name (*argv);
6448 if (oursig != GDB_SIGNAL_UNKNOWN)
6449 {
6450 sigfirst = siglast = (int) oursig;
6451 }
6452 else
6453 {
6454 /* Not a number and not a recognized flag word => complain. */
6455 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6456 }
6457 }
6458
6459 /* If any signal numbers or symbol names were found, set flags for
6460 which signals to apply actions to. */
6461
6462 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6463 {
6464 switch ((enum gdb_signal) signum)
6465 {
6466 case GDB_SIGNAL_TRAP:
6467 case GDB_SIGNAL_INT:
6468 if (!allsigs && !sigs[signum])
6469 {
6470 if (query (_("%s is used by the debugger.\n\
6471 Are you sure you want to change it? "),
6472 gdb_signal_to_name ((enum gdb_signal) signum)))
6473 {
6474 sigs[signum] = 1;
6475 }
6476 else
6477 {
6478 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6479 gdb_flush (gdb_stdout);
6480 }
6481 }
6482 break;
6483 case GDB_SIGNAL_0:
6484 case GDB_SIGNAL_DEFAULT:
6485 case GDB_SIGNAL_UNKNOWN:
6486 /* Make sure that "all" doesn't print these. */
6487 break;
6488 default:
6489 sigs[signum] = 1;
6490 break;
6491 }
6492 }
6493
6494 argv++;
6495 }
6496
6497 for (signum = 0; signum < nsigs; signum++)
6498 if (sigs[signum])
6499 {
6500 signal_cache_update (-1);
6501 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6502 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
6503
6504 if (from_tty)
6505 {
6506 /* Show the results. */
6507 sig_print_header ();
6508 for (; signum < nsigs; signum++)
6509 if (sigs[signum])
6510 sig_print_info (signum);
6511 }
6512
6513 break;
6514 }
6515
6516 do_cleanups (old_chain);
6517 }
6518
6519 /* Complete the "handle" command. */
6520
6521 static VEC (char_ptr) *
6522 handle_completer (struct cmd_list_element *ignore,
6523 const char *text, const char *word)
6524 {
6525 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6526 static const char * const keywords[] =
6527 {
6528 "all",
6529 "stop",
6530 "ignore",
6531 "print",
6532 "pass",
6533 "nostop",
6534 "noignore",
6535 "noprint",
6536 "nopass",
6537 NULL,
6538 };
6539
6540 vec_signals = signal_completer (ignore, text, word);
6541 vec_keywords = complete_on_enum (keywords, word, word);
6542
6543 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6544 VEC_free (char_ptr, vec_signals);
6545 VEC_free (char_ptr, vec_keywords);
6546 return return_val;
6547 }
6548
6549 static void
6550 xdb_handle_command (char *args, int from_tty)
6551 {
6552 char **argv;
6553 struct cleanup *old_chain;
6554
6555 if (args == NULL)
6556 error_no_arg (_("xdb command"));
6557
6558 /* Break the command line up into args. */
6559
6560 argv = gdb_buildargv (args);
6561 old_chain = make_cleanup_freeargv (argv);
6562 if (argv[1] != (char *) NULL)
6563 {
6564 char *argBuf;
6565 int bufLen;
6566
6567 bufLen = strlen (argv[0]) + 20;
6568 argBuf = (char *) xmalloc (bufLen);
6569 if (argBuf)
6570 {
6571 int validFlag = 1;
6572 enum gdb_signal oursig;
6573
6574 oursig = gdb_signal_from_name (argv[0]);
6575 memset (argBuf, 0, bufLen);
6576 if (strcmp (argv[1], "Q") == 0)
6577 sprintf (argBuf, "%s %s", argv[0], "noprint");
6578 else
6579 {
6580 if (strcmp (argv[1], "s") == 0)
6581 {
6582 if (!signal_stop[oursig])
6583 sprintf (argBuf, "%s %s", argv[0], "stop");
6584 else
6585 sprintf (argBuf, "%s %s", argv[0], "nostop");
6586 }
6587 else if (strcmp (argv[1], "i") == 0)
6588 {
6589 if (!signal_program[oursig])
6590 sprintf (argBuf, "%s %s", argv[0], "pass");
6591 else
6592 sprintf (argBuf, "%s %s", argv[0], "nopass");
6593 }
6594 else if (strcmp (argv[1], "r") == 0)
6595 {
6596 if (!signal_print[oursig])
6597 sprintf (argBuf, "%s %s", argv[0], "print");
6598 else
6599 sprintf (argBuf, "%s %s", argv[0], "noprint");
6600 }
6601 else
6602 validFlag = 0;
6603 }
6604 if (validFlag)
6605 handle_command (argBuf, from_tty);
6606 else
6607 printf_filtered (_("Invalid signal handling flag.\n"));
6608 if (argBuf)
6609 xfree (argBuf);
6610 }
6611 }
6612 do_cleanups (old_chain);
6613 }
6614
6615 enum gdb_signal
6616 gdb_signal_from_command (int num)
6617 {
6618 if (num >= 1 && num <= 15)
6619 return (enum gdb_signal) num;
6620 error (_("Only signals 1-15 are valid as numeric signals.\n\
6621 Use \"info signals\" for a list of symbolic signals."));
6622 }
6623
6624 /* Print current contents of the tables set by the handle command.
6625 It is possible we should just be printing signals actually used
6626 by the current target (but for things to work right when switching
6627 targets, all signals should be in the signal tables). */
6628
6629 static void
6630 signals_info (char *signum_exp, int from_tty)
6631 {
6632 enum gdb_signal oursig;
6633
6634 sig_print_header ();
6635
6636 if (signum_exp)
6637 {
6638 /* First see if this is a symbol name. */
6639 oursig = gdb_signal_from_name (signum_exp);
6640 if (oursig == GDB_SIGNAL_UNKNOWN)
6641 {
6642 /* No, try numeric. */
6643 oursig =
6644 gdb_signal_from_command (parse_and_eval_long (signum_exp));
6645 }
6646 sig_print_info (oursig);
6647 return;
6648 }
6649
6650 printf_filtered ("\n");
6651 /* These ugly casts brought to you by the native VAX compiler. */
6652 for (oursig = GDB_SIGNAL_FIRST;
6653 (int) oursig < (int) GDB_SIGNAL_LAST;
6654 oursig = (enum gdb_signal) ((int) oursig + 1))
6655 {
6656 QUIT;
6657
6658 if (oursig != GDB_SIGNAL_UNKNOWN
6659 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
6660 sig_print_info (oursig);
6661 }
6662
6663 printf_filtered (_("\nUse the \"handle\" command "
6664 "to change these tables.\n"));
6665 }
6666
6667 /* Check if it makes sense to read $_siginfo from the current thread
6668 at this point. If not, throw an error. */
6669
6670 static void
6671 validate_siginfo_access (void)
6672 {
6673 /* No current inferior, no siginfo. */
6674 if (ptid_equal (inferior_ptid, null_ptid))
6675 error (_("No thread selected."));
6676
6677 /* Don't try to read from a dead thread. */
6678 if (is_exited (inferior_ptid))
6679 error (_("The current thread has terminated"));
6680
6681 /* ... or from a spinning thread. */
6682 if (is_running (inferior_ptid))
6683 error (_("Selected thread is running."));
6684 }
6685
6686 /* The $_siginfo convenience variable is a bit special. We don't know
6687 for sure the type of the value until we actually have a chance to
6688 fetch the data. The type can change depending on gdbarch, so it is
6689 also dependent on which thread you have selected.
6690
6691 1. making $_siginfo be an internalvar that creates a new value on
6692 access.
6693
6694 2. making the value of $_siginfo be an lval_computed value. */
6695
6696 /* This function implements the lval_computed support for reading a
6697 $_siginfo value. */
6698
6699 static void
6700 siginfo_value_read (struct value *v)
6701 {
6702 LONGEST transferred;
6703
6704 validate_siginfo_access ();
6705
6706 transferred =
6707 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6708 NULL,
6709 value_contents_all_raw (v),
6710 value_offset (v),
6711 TYPE_LENGTH (value_type (v)));
6712
6713 if (transferred != TYPE_LENGTH (value_type (v)))
6714 error (_("Unable to read siginfo"));
6715 }
6716
6717 /* This function implements the lval_computed support for writing a
6718 $_siginfo value. */
6719
6720 static void
6721 siginfo_value_write (struct value *v, struct value *fromval)
6722 {
6723 LONGEST transferred;
6724
6725 validate_siginfo_access ();
6726
6727 transferred = target_write (&current_target,
6728 TARGET_OBJECT_SIGNAL_INFO,
6729 NULL,
6730 value_contents_all_raw (fromval),
6731 value_offset (v),
6732 TYPE_LENGTH (value_type (fromval)));
6733
6734 if (transferred != TYPE_LENGTH (value_type (fromval)))
6735 error (_("Unable to write siginfo"));
6736 }
6737
6738 static const struct lval_funcs siginfo_value_funcs =
6739 {
6740 siginfo_value_read,
6741 siginfo_value_write
6742 };
6743
6744 /* Return a new value with the correct type for the siginfo object of
6745 the current thread using architecture GDBARCH. Return a void value
6746 if there's no object available. */
6747
6748 static struct value *
6749 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6750 void *ignore)
6751 {
6752 if (target_has_stack
6753 && !ptid_equal (inferior_ptid, null_ptid)
6754 && gdbarch_get_siginfo_type_p (gdbarch))
6755 {
6756 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6757
6758 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6759 }
6760
6761 return allocate_value (builtin_type (gdbarch)->builtin_void);
6762 }
6763
6764 \f
6765 /* infcall_suspend_state contains state about the program itself like its
6766 registers and any signal it received when it last stopped.
6767 This state must be restored regardless of how the inferior function call
6768 ends (either successfully, or after it hits a breakpoint or signal)
6769 if the program is to properly continue where it left off. */
6770
6771 struct infcall_suspend_state
6772 {
6773 struct thread_suspend_state thread_suspend;
6774 #if 0 /* Currently unused and empty structures are not valid C. */
6775 struct inferior_suspend_state inferior_suspend;
6776 #endif
6777
6778 /* Other fields: */
6779 CORE_ADDR stop_pc;
6780 struct regcache *registers;
6781
6782 /* Format of SIGINFO_DATA or NULL if it is not present. */
6783 struct gdbarch *siginfo_gdbarch;
6784
6785 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6786 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6787 content would be invalid. */
6788 gdb_byte *siginfo_data;
6789 };
6790
6791 struct infcall_suspend_state *
6792 save_infcall_suspend_state (void)
6793 {
6794 struct infcall_suspend_state *inf_state;
6795 struct thread_info *tp = inferior_thread ();
6796 #if 0
6797 struct inferior *inf = current_inferior ();
6798 #endif
6799 struct regcache *regcache = get_current_regcache ();
6800 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6801 gdb_byte *siginfo_data = NULL;
6802
6803 if (gdbarch_get_siginfo_type_p (gdbarch))
6804 {
6805 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6806 size_t len = TYPE_LENGTH (type);
6807 struct cleanup *back_to;
6808
6809 siginfo_data = xmalloc (len);
6810 back_to = make_cleanup (xfree, siginfo_data);
6811
6812 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6813 siginfo_data, 0, len) == len)
6814 discard_cleanups (back_to);
6815 else
6816 {
6817 /* Errors ignored. */
6818 do_cleanups (back_to);
6819 siginfo_data = NULL;
6820 }
6821 }
6822
6823 inf_state = XZALLOC (struct infcall_suspend_state);
6824
6825 if (siginfo_data)
6826 {
6827 inf_state->siginfo_gdbarch = gdbarch;
6828 inf_state->siginfo_data = siginfo_data;
6829 }
6830
6831 inf_state->thread_suspend = tp->suspend;
6832 #if 0 /* Currently unused and empty structures are not valid C. */
6833 inf_state->inferior_suspend = inf->suspend;
6834 #endif
6835
6836 /* run_inferior_call will not use the signal due to its `proceed' call with
6837 GDB_SIGNAL_0 anyway. */
6838 tp->suspend.stop_signal = GDB_SIGNAL_0;
6839
6840 inf_state->stop_pc = stop_pc;
6841
6842 inf_state->registers = regcache_dup (regcache);
6843
6844 return inf_state;
6845 }
6846
6847 /* Restore inferior session state to INF_STATE. */
6848
6849 void
6850 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6851 {
6852 struct thread_info *tp = inferior_thread ();
6853 #if 0
6854 struct inferior *inf = current_inferior ();
6855 #endif
6856 struct regcache *regcache = get_current_regcache ();
6857 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6858
6859 tp->suspend = inf_state->thread_suspend;
6860 #if 0 /* Currently unused and empty structures are not valid C. */
6861 inf->suspend = inf_state->inferior_suspend;
6862 #endif
6863
6864 stop_pc = inf_state->stop_pc;
6865
6866 if (inf_state->siginfo_gdbarch == gdbarch)
6867 {
6868 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6869
6870 /* Errors ignored. */
6871 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6872 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
6873 }
6874
6875 /* The inferior can be gone if the user types "print exit(0)"
6876 (and perhaps other times). */
6877 if (target_has_execution)
6878 /* NB: The register write goes through to the target. */
6879 regcache_cpy (regcache, inf_state->registers);
6880
6881 discard_infcall_suspend_state (inf_state);
6882 }
6883
6884 static void
6885 do_restore_infcall_suspend_state_cleanup (void *state)
6886 {
6887 restore_infcall_suspend_state (state);
6888 }
6889
6890 struct cleanup *
6891 make_cleanup_restore_infcall_suspend_state
6892 (struct infcall_suspend_state *inf_state)
6893 {
6894 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6895 }
6896
6897 void
6898 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6899 {
6900 regcache_xfree (inf_state->registers);
6901 xfree (inf_state->siginfo_data);
6902 xfree (inf_state);
6903 }
6904
6905 struct regcache *
6906 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6907 {
6908 return inf_state->registers;
6909 }
6910
6911 /* infcall_control_state contains state regarding gdb's control of the
6912 inferior itself like stepping control. It also contains session state like
6913 the user's currently selected frame. */
6914
6915 struct infcall_control_state
6916 {
6917 struct thread_control_state thread_control;
6918 struct inferior_control_state inferior_control;
6919
6920 /* Other fields: */
6921 enum stop_stack_kind stop_stack_dummy;
6922 int stopped_by_random_signal;
6923 int stop_after_trap;
6924
6925 /* ID if the selected frame when the inferior function call was made. */
6926 struct frame_id selected_frame_id;
6927 };
6928
6929 /* Save all of the information associated with the inferior<==>gdb
6930 connection. */
6931
6932 struct infcall_control_state *
6933 save_infcall_control_state (void)
6934 {
6935 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6936 struct thread_info *tp = inferior_thread ();
6937 struct inferior *inf = current_inferior ();
6938
6939 inf_status->thread_control = tp->control;
6940 inf_status->inferior_control = inf->control;
6941
6942 tp->control.step_resume_breakpoint = NULL;
6943 tp->control.exception_resume_breakpoint = NULL;
6944
6945 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6946 chain. If caller's caller is walking the chain, they'll be happier if we
6947 hand them back the original chain when restore_infcall_control_state is
6948 called. */
6949 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6950
6951 /* Other fields: */
6952 inf_status->stop_stack_dummy = stop_stack_dummy;
6953 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6954 inf_status->stop_after_trap = stop_after_trap;
6955
6956 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6957
6958 return inf_status;
6959 }
6960
6961 static int
6962 restore_selected_frame (void *args)
6963 {
6964 struct frame_id *fid = (struct frame_id *) args;
6965 struct frame_info *frame;
6966
6967 frame = frame_find_by_id (*fid);
6968
6969 /* If inf_status->selected_frame_id is NULL, there was no previously
6970 selected frame. */
6971 if (frame == NULL)
6972 {
6973 warning (_("Unable to restore previously selected frame."));
6974 return 0;
6975 }
6976
6977 select_frame (frame);
6978
6979 return (1);
6980 }
6981
6982 /* Restore inferior session state to INF_STATUS. */
6983
6984 void
6985 restore_infcall_control_state (struct infcall_control_state *inf_status)
6986 {
6987 struct thread_info *tp = inferior_thread ();
6988 struct inferior *inf = current_inferior ();
6989
6990 if (tp->control.step_resume_breakpoint)
6991 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6992
6993 if (tp->control.exception_resume_breakpoint)
6994 tp->control.exception_resume_breakpoint->disposition
6995 = disp_del_at_next_stop;
6996
6997 /* Handle the bpstat_copy of the chain. */
6998 bpstat_clear (&tp->control.stop_bpstat);
6999
7000 tp->control = inf_status->thread_control;
7001 inf->control = inf_status->inferior_control;
7002
7003 /* Other fields: */
7004 stop_stack_dummy = inf_status->stop_stack_dummy;
7005 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7006 stop_after_trap = inf_status->stop_after_trap;
7007
7008 if (target_has_stack)
7009 {
7010 /* The point of catch_errors is that if the stack is clobbered,
7011 walking the stack might encounter a garbage pointer and
7012 error() trying to dereference it. */
7013 if (catch_errors
7014 (restore_selected_frame, &inf_status->selected_frame_id,
7015 "Unable to restore previously selected frame:\n",
7016 RETURN_MASK_ERROR) == 0)
7017 /* Error in restoring the selected frame. Select the innermost
7018 frame. */
7019 select_frame (get_current_frame ());
7020 }
7021
7022 xfree (inf_status);
7023 }
7024
7025 static void
7026 do_restore_infcall_control_state_cleanup (void *sts)
7027 {
7028 restore_infcall_control_state (sts);
7029 }
7030
7031 struct cleanup *
7032 make_cleanup_restore_infcall_control_state
7033 (struct infcall_control_state *inf_status)
7034 {
7035 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
7036 }
7037
7038 void
7039 discard_infcall_control_state (struct infcall_control_state *inf_status)
7040 {
7041 if (inf_status->thread_control.step_resume_breakpoint)
7042 inf_status->thread_control.step_resume_breakpoint->disposition
7043 = disp_del_at_next_stop;
7044
7045 if (inf_status->thread_control.exception_resume_breakpoint)
7046 inf_status->thread_control.exception_resume_breakpoint->disposition
7047 = disp_del_at_next_stop;
7048
7049 /* See save_infcall_control_state for info on stop_bpstat. */
7050 bpstat_clear (&inf_status->thread_control.stop_bpstat);
7051
7052 xfree (inf_status);
7053 }
7054 \f
7055 int
7056 ptid_match (ptid_t ptid, ptid_t filter)
7057 {
7058 if (ptid_equal (filter, minus_one_ptid))
7059 return 1;
7060 if (ptid_is_pid (filter)
7061 && ptid_get_pid (ptid) == ptid_get_pid (filter))
7062 return 1;
7063 else if (ptid_equal (ptid, filter))
7064 return 1;
7065
7066 return 0;
7067 }
7068
7069 /* restore_inferior_ptid() will be used by the cleanup machinery
7070 to restore the inferior_ptid value saved in a call to
7071 save_inferior_ptid(). */
7072
7073 static void
7074 restore_inferior_ptid (void *arg)
7075 {
7076 ptid_t *saved_ptid_ptr = arg;
7077
7078 inferior_ptid = *saved_ptid_ptr;
7079 xfree (arg);
7080 }
7081
7082 /* Save the value of inferior_ptid so that it may be restored by a
7083 later call to do_cleanups(). Returns the struct cleanup pointer
7084 needed for later doing the cleanup. */
7085
7086 struct cleanup *
7087 save_inferior_ptid (void)
7088 {
7089 ptid_t *saved_ptid_ptr;
7090
7091 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7092 *saved_ptid_ptr = inferior_ptid;
7093 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7094 }
7095
7096 /* See inferior.h. */
7097
7098 void
7099 clear_exit_convenience_vars (void)
7100 {
7101 clear_internalvar (lookup_internalvar ("_exitsignal"));
7102 clear_internalvar (lookup_internalvar ("_exitcode"));
7103 }
7104 \f
7105
7106 /* User interface for reverse debugging:
7107 Set exec-direction / show exec-direction commands
7108 (returns error unless target implements to_set_exec_direction method). */
7109
7110 int execution_direction = EXEC_FORWARD;
7111 static const char exec_forward[] = "forward";
7112 static const char exec_reverse[] = "reverse";
7113 static const char *exec_direction = exec_forward;
7114 static const char *const exec_direction_names[] = {
7115 exec_forward,
7116 exec_reverse,
7117 NULL
7118 };
7119
7120 static void
7121 set_exec_direction_func (char *args, int from_tty,
7122 struct cmd_list_element *cmd)
7123 {
7124 if (target_can_execute_reverse)
7125 {
7126 if (!strcmp (exec_direction, exec_forward))
7127 execution_direction = EXEC_FORWARD;
7128 else if (!strcmp (exec_direction, exec_reverse))
7129 execution_direction = EXEC_REVERSE;
7130 }
7131 else
7132 {
7133 exec_direction = exec_forward;
7134 error (_("Target does not support this operation."));
7135 }
7136 }
7137
7138 static void
7139 show_exec_direction_func (struct ui_file *out, int from_tty,
7140 struct cmd_list_element *cmd, const char *value)
7141 {
7142 switch (execution_direction) {
7143 case EXEC_FORWARD:
7144 fprintf_filtered (out, _("Forward.\n"));
7145 break;
7146 case EXEC_REVERSE:
7147 fprintf_filtered (out, _("Reverse.\n"));
7148 break;
7149 default:
7150 internal_error (__FILE__, __LINE__,
7151 _("bogus execution_direction value: %d"),
7152 (int) execution_direction);
7153 }
7154 }
7155
7156 static void
7157 show_schedule_multiple (struct ui_file *file, int from_tty,
7158 struct cmd_list_element *c, const char *value)
7159 {
7160 fprintf_filtered (file, _("Resuming the execution of threads "
7161 "of all processes is %s.\n"), value);
7162 }
7163
7164 /* Implementation of `siginfo' variable. */
7165
7166 static const struct internalvar_funcs siginfo_funcs =
7167 {
7168 siginfo_make_value,
7169 NULL,
7170 NULL
7171 };
7172
7173 void
7174 _initialize_infrun (void)
7175 {
7176 int i;
7177 int numsigs;
7178 struct cmd_list_element *c;
7179
7180 add_info ("signals", signals_info, _("\
7181 What debugger does when program gets various signals.\n\
7182 Specify a signal as argument to print info on that signal only."));
7183 add_info_alias ("handle", "signals", 0);
7184
7185 c = add_com ("handle", class_run, handle_command, _("\
7186 Specify how to handle signals.\n\
7187 Usage: handle SIGNAL [ACTIONS]\n\
7188 Args are signals and actions to apply to those signals.\n\
7189 If no actions are specified, the current settings for the specified signals\n\
7190 will be displayed instead.\n\
7191 \n\
7192 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7193 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7194 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7195 The special arg \"all\" is recognized to mean all signals except those\n\
7196 used by the debugger, typically SIGTRAP and SIGINT.\n\
7197 \n\
7198 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7199 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7200 Stop means reenter debugger if this signal happens (implies print).\n\
7201 Print means print a message if this signal happens.\n\
7202 Pass means let program see this signal; otherwise program doesn't know.\n\
7203 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7204 Pass and Stop may be combined.\n\
7205 \n\
7206 Multiple signals may be specified. Signal numbers and signal names\n\
7207 may be interspersed with actions, with the actions being performed for\n\
7208 all signals cumulatively specified."));
7209 set_cmd_completer (c, handle_completer);
7210
7211 if (xdb_commands)
7212 {
7213 add_com ("lz", class_info, signals_info, _("\
7214 What debugger does when program gets various signals.\n\
7215 Specify a signal as argument to print info on that signal only."));
7216 add_com ("z", class_run, xdb_handle_command, _("\
7217 Specify how to handle a signal.\n\
7218 Args are signals and actions to apply to those signals.\n\
7219 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7220 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7221 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7222 The special arg \"all\" is recognized to mean all signals except those\n\
7223 used by the debugger, typically SIGTRAP and SIGINT.\n\
7224 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7225 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7226 nopass), \"Q\" (noprint)\n\
7227 Stop means reenter debugger if this signal happens (implies print).\n\
7228 Print means print a message if this signal happens.\n\
7229 Pass means let program see this signal; otherwise program doesn't know.\n\
7230 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7231 Pass and Stop may be combined."));
7232 }
7233
7234 if (!dbx_commands)
7235 stop_command = add_cmd ("stop", class_obscure,
7236 not_just_help_class_command, _("\
7237 There is no `stop' command, but you can set a hook on `stop'.\n\
7238 This allows you to set a list of commands to be run each time execution\n\
7239 of the program stops."), &cmdlist);
7240
7241 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7242 Set inferior debugging."), _("\
7243 Show inferior debugging."), _("\
7244 When non-zero, inferior specific debugging is enabled."),
7245 NULL,
7246 show_debug_infrun,
7247 &setdebuglist, &showdebuglist);
7248
7249 add_setshow_boolean_cmd ("displaced", class_maintenance,
7250 &debug_displaced, _("\
7251 Set displaced stepping debugging."), _("\
7252 Show displaced stepping debugging."), _("\
7253 When non-zero, displaced stepping specific debugging is enabled."),
7254 NULL,
7255 show_debug_displaced,
7256 &setdebuglist, &showdebuglist);
7257
7258 add_setshow_boolean_cmd ("non-stop", no_class,
7259 &non_stop_1, _("\
7260 Set whether gdb controls the inferior in non-stop mode."), _("\
7261 Show whether gdb controls the inferior in non-stop mode."), _("\
7262 When debugging a multi-threaded program and this setting is\n\
7263 off (the default, also called all-stop mode), when one thread stops\n\
7264 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7265 all other threads in the program while you interact with the thread of\n\
7266 interest. When you continue or step a thread, you can allow the other\n\
7267 threads to run, or have them remain stopped, but while you inspect any\n\
7268 thread's state, all threads stop.\n\
7269 \n\
7270 In non-stop mode, when one thread stops, other threads can continue\n\
7271 to run freely. You'll be able to step each thread independently,\n\
7272 leave it stopped or free to run as needed."),
7273 set_non_stop,
7274 show_non_stop,
7275 &setlist,
7276 &showlist);
7277
7278 numsigs = (int) GDB_SIGNAL_LAST;
7279 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7280 signal_print = (unsigned char *)
7281 xmalloc (sizeof (signal_print[0]) * numsigs);
7282 signal_program = (unsigned char *)
7283 xmalloc (sizeof (signal_program[0]) * numsigs);
7284 signal_catch = (unsigned char *)
7285 xmalloc (sizeof (signal_catch[0]) * numsigs);
7286 signal_pass = (unsigned char *)
7287 xmalloc (sizeof (signal_program[0]) * numsigs);
7288 for (i = 0; i < numsigs; i++)
7289 {
7290 signal_stop[i] = 1;
7291 signal_print[i] = 1;
7292 signal_program[i] = 1;
7293 signal_catch[i] = 0;
7294 }
7295
7296 /* Signals caused by debugger's own actions
7297 should not be given to the program afterwards. */
7298 signal_program[GDB_SIGNAL_TRAP] = 0;
7299 signal_program[GDB_SIGNAL_INT] = 0;
7300
7301 /* Signals that are not errors should not normally enter the debugger. */
7302 signal_stop[GDB_SIGNAL_ALRM] = 0;
7303 signal_print[GDB_SIGNAL_ALRM] = 0;
7304 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7305 signal_print[GDB_SIGNAL_VTALRM] = 0;
7306 signal_stop[GDB_SIGNAL_PROF] = 0;
7307 signal_print[GDB_SIGNAL_PROF] = 0;
7308 signal_stop[GDB_SIGNAL_CHLD] = 0;
7309 signal_print[GDB_SIGNAL_CHLD] = 0;
7310 signal_stop[GDB_SIGNAL_IO] = 0;
7311 signal_print[GDB_SIGNAL_IO] = 0;
7312 signal_stop[GDB_SIGNAL_POLL] = 0;
7313 signal_print[GDB_SIGNAL_POLL] = 0;
7314 signal_stop[GDB_SIGNAL_URG] = 0;
7315 signal_print[GDB_SIGNAL_URG] = 0;
7316 signal_stop[GDB_SIGNAL_WINCH] = 0;
7317 signal_print[GDB_SIGNAL_WINCH] = 0;
7318 signal_stop[GDB_SIGNAL_PRIO] = 0;
7319 signal_print[GDB_SIGNAL_PRIO] = 0;
7320
7321 /* These signals are used internally by user-level thread
7322 implementations. (See signal(5) on Solaris.) Like the above
7323 signals, a healthy program receives and handles them as part of
7324 its normal operation. */
7325 signal_stop[GDB_SIGNAL_LWP] = 0;
7326 signal_print[GDB_SIGNAL_LWP] = 0;
7327 signal_stop[GDB_SIGNAL_WAITING] = 0;
7328 signal_print[GDB_SIGNAL_WAITING] = 0;
7329 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7330 signal_print[GDB_SIGNAL_CANCEL] = 0;
7331
7332 /* Update cached state. */
7333 signal_cache_update (-1);
7334
7335 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7336 &stop_on_solib_events, _("\
7337 Set stopping for shared library events."), _("\
7338 Show stopping for shared library events."), _("\
7339 If nonzero, gdb will give control to the user when the dynamic linker\n\
7340 notifies gdb of shared library events. The most common event of interest\n\
7341 to the user would be loading/unloading of a new library."),
7342 set_stop_on_solib_events,
7343 show_stop_on_solib_events,
7344 &setlist, &showlist);
7345
7346 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7347 follow_fork_mode_kind_names,
7348 &follow_fork_mode_string, _("\
7349 Set debugger response to a program call of fork or vfork."), _("\
7350 Show debugger response to a program call of fork or vfork."), _("\
7351 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7352 parent - the original process is debugged after a fork\n\
7353 child - the new process is debugged after a fork\n\
7354 The unfollowed process will continue to run.\n\
7355 By default, the debugger will follow the parent process."),
7356 NULL,
7357 show_follow_fork_mode_string,
7358 &setlist, &showlist);
7359
7360 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7361 follow_exec_mode_names,
7362 &follow_exec_mode_string, _("\
7363 Set debugger response to a program call of exec."), _("\
7364 Show debugger response to a program call of exec."), _("\
7365 An exec call replaces the program image of a process.\n\
7366 \n\
7367 follow-exec-mode can be:\n\
7368 \n\
7369 new - the debugger creates a new inferior and rebinds the process\n\
7370 to this new inferior. The program the process was running before\n\
7371 the exec call can be restarted afterwards by restarting the original\n\
7372 inferior.\n\
7373 \n\
7374 same - the debugger keeps the process bound to the same inferior.\n\
7375 The new executable image replaces the previous executable loaded in\n\
7376 the inferior. Restarting the inferior after the exec call restarts\n\
7377 the executable the process was running after the exec call.\n\
7378 \n\
7379 By default, the debugger will use the same inferior."),
7380 NULL,
7381 show_follow_exec_mode_string,
7382 &setlist, &showlist);
7383
7384 add_setshow_enum_cmd ("scheduler-locking", class_run,
7385 scheduler_enums, &scheduler_mode, _("\
7386 Set mode for locking scheduler during execution."), _("\
7387 Show mode for locking scheduler during execution."), _("\
7388 off == no locking (threads may preempt at any time)\n\
7389 on == full locking (no thread except the current thread may run)\n\
7390 step == scheduler locked during every single-step operation.\n\
7391 In this mode, no other thread may run during a step command.\n\
7392 Other threads may run while stepping over a function call ('next')."),
7393 set_schedlock_func, /* traps on target vector */
7394 show_scheduler_mode,
7395 &setlist, &showlist);
7396
7397 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7398 Set mode for resuming threads of all processes."), _("\
7399 Show mode for resuming threads of all processes."), _("\
7400 When on, execution commands (such as 'continue' or 'next') resume all\n\
7401 threads of all processes. When off (which is the default), execution\n\
7402 commands only resume the threads of the current process. The set of\n\
7403 threads that are resumed is further refined by the scheduler-locking\n\
7404 mode (see help set scheduler-locking)."),
7405 NULL,
7406 show_schedule_multiple,
7407 &setlist, &showlist);
7408
7409 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7410 Set mode of the step operation."), _("\
7411 Show mode of the step operation."), _("\
7412 When set, doing a step over a function without debug line information\n\
7413 will stop at the first instruction of that function. Otherwise, the\n\
7414 function is skipped and the step command stops at a different source line."),
7415 NULL,
7416 show_step_stop_if_no_debug,
7417 &setlist, &showlist);
7418
7419 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7420 &can_use_displaced_stepping, _("\
7421 Set debugger's willingness to use displaced stepping."), _("\
7422 Show debugger's willingness to use displaced stepping."), _("\
7423 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7424 supported by the target architecture. If off, gdb will not use displaced\n\
7425 stepping to step over breakpoints, even if such is supported by the target\n\
7426 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7427 if the target architecture supports it and non-stop mode is active, but will not\n\
7428 use it in all-stop mode (see help set non-stop)."),
7429 NULL,
7430 show_can_use_displaced_stepping,
7431 &setlist, &showlist);
7432
7433 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7434 &exec_direction, _("Set direction of execution.\n\
7435 Options are 'forward' or 'reverse'."),
7436 _("Show direction of execution (forward/reverse)."),
7437 _("Tells gdb whether to execute forward or backward."),
7438 set_exec_direction_func, show_exec_direction_func,
7439 &setlist, &showlist);
7440
7441 /* Set/show detach-on-fork: user-settable mode. */
7442
7443 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7444 Set whether gdb will detach the child of a fork."), _("\
7445 Show whether gdb will detach the child of a fork."), _("\
7446 Tells gdb whether to detach the child of a fork."),
7447 NULL, NULL, &setlist, &showlist);
7448
7449 /* Set/show disable address space randomization mode. */
7450
7451 add_setshow_boolean_cmd ("disable-randomization", class_support,
7452 &disable_randomization, _("\
7453 Set disabling of debuggee's virtual address space randomization."), _("\
7454 Show disabling of debuggee's virtual address space randomization."), _("\
7455 When this mode is on (which is the default), randomization of the virtual\n\
7456 address space is disabled. Standalone programs run with the randomization\n\
7457 enabled by default on some platforms."),
7458 &set_disable_randomization,
7459 &show_disable_randomization,
7460 &setlist, &showlist);
7461
7462 /* ptid initializations */
7463 inferior_ptid = null_ptid;
7464 target_last_wait_ptid = minus_one_ptid;
7465
7466 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7467 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7468 observer_attach_thread_exit (infrun_thread_thread_exit);
7469 observer_attach_inferior_exit (infrun_inferior_exit);
7470
7471 /* Explicitly create without lookup, since that tries to create a
7472 value with a void typed value, and when we get here, gdbarch
7473 isn't initialized yet. At this point, we're quite sure there
7474 isn't another convenience variable of the same name. */
7475 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
7476
7477 add_setshow_boolean_cmd ("observer", no_class,
7478 &observer_mode_1, _("\
7479 Set whether gdb controls the inferior in observer mode."), _("\
7480 Show whether gdb controls the inferior in observer mode."), _("\
7481 In observer mode, GDB can get data from the inferior, but not\n\
7482 affect its execution. Registers and memory may not be changed,\n\
7483 breakpoints may not be set, and the program cannot be interrupted\n\
7484 or signalled."),
7485 set_observer_mode,
7486 show_observer_mode,
7487 &setlist,
7488 &showlist);
7489 }