* irix5-nat.c, osfsolib.c, solib.c (symbol_add_stub): Handle
[binutils-gdb.git] / gdb / irix5-nat.c
1 /* Native support for the SGI Iris running IRIX version 5, for GDB.
2 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996
3 Free Software Foundation, Inc.
4 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
5 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
6 Implemented for Irix 4.x by Garrett A. Wollman.
7 Modified for Irix 5.x by Ian Lance Taylor.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "target.h"
29
30 #include "gdb_string.h"
31 #include <sys/time.h>
32 #include <sys/procfs.h>
33 #include <setjmp.h> /* For JB_XXX. */
34
35 static void
36 fetch_core_registers PARAMS ((char *, unsigned int, int, CORE_ADDR));
37
38 /* Size of elements in jmpbuf */
39
40 #define JB_ELEMENT_SIZE 4
41
42 /*
43 * See the comment in m68k-tdep.c regarding the utility of these functions.
44 *
45 * These definitions are from the MIPS SVR4 ABI, so they may work for
46 * any MIPS SVR4 target.
47 */
48
49 void
50 supply_gregset (gregsetp)
51 gregset_t *gregsetp;
52 {
53 register int regi;
54 register greg_t *regp = &(*gregsetp)[0];
55 static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0};
56
57 for(regi = 0; regi <= CTX_RA; regi++)
58 supply_register (regi, (char *)(regp + regi));
59
60 supply_register (PC_REGNUM, (char *)(regp + CTX_EPC));
61 supply_register (HI_REGNUM, (char *)(regp + CTX_MDHI));
62 supply_register (LO_REGNUM, (char *)(regp + CTX_MDLO));
63 supply_register (CAUSE_REGNUM, (char *)(regp + CTX_CAUSE));
64
65 /* Fill inaccessible registers with zero. */
66 supply_register (BADVADDR_REGNUM, zerobuf);
67 }
68
69 void
70 fill_gregset (gregsetp, regno)
71 gregset_t *gregsetp;
72 int regno;
73 {
74 int regi;
75 register greg_t *regp = &(*gregsetp)[0];
76
77 for (regi = 0; regi <= CTX_RA; regi++)
78 if ((regno == -1) || (regno == regi))
79 *(regp + regi) = *(greg_t *) &registers[REGISTER_BYTE (regi)];
80
81 if ((regno == -1) || (regno == PC_REGNUM))
82 *(regp + CTX_EPC) = *(greg_t *) &registers[REGISTER_BYTE (PC_REGNUM)];
83
84 if ((regno == -1) || (regno == CAUSE_REGNUM))
85 *(regp + CTX_CAUSE) = *(greg_t *) &registers[REGISTER_BYTE (CAUSE_REGNUM)];
86
87 if ((regno == -1) || (regno == HI_REGNUM))
88 *(regp + CTX_MDHI) = *(greg_t *) &registers[REGISTER_BYTE (HI_REGNUM)];
89
90 if ((regno == -1) || (regno == LO_REGNUM))
91 *(regp + CTX_MDLO) = *(greg_t *) &registers[REGISTER_BYTE (LO_REGNUM)];
92 }
93
94 /*
95 * Now we do the same thing for floating-point registers.
96 * We don't bother to condition on FP0_REGNUM since any
97 * reasonable MIPS configuration has an R3010 in it.
98 *
99 * Again, see the comments in m68k-tdep.c.
100 */
101
102 void
103 supply_fpregset (fpregsetp)
104 fpregset_t *fpregsetp;
105 {
106 register int regi;
107 static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0};
108
109 for (regi = 0; regi < 32; regi++)
110 supply_register (FP0_REGNUM + regi,
111 (char *)&fpregsetp->fp_r.fp_regs[regi]);
112
113 supply_register (FCRCS_REGNUM, (char *)&fpregsetp->fp_csr);
114
115 /* FIXME: how can we supply FCRIR_REGNUM? SGI doesn't tell us. */
116 supply_register (FCRIR_REGNUM, zerobuf);
117 }
118
119 void
120 fill_fpregset (fpregsetp, regno)
121 fpregset_t *fpregsetp;
122 int regno;
123 {
124 int regi;
125 char *from, *to;
126
127 for (regi = FP0_REGNUM; regi < FP0_REGNUM + 32; regi++)
128 {
129 if ((regno == -1) || (regno == regi))
130 {
131 from = (char *) &registers[REGISTER_BYTE (regi)];
132 to = (char *) &(fpregsetp->fp_r.fp_regs[regi - FP0_REGNUM]);
133 memcpy(to, from, REGISTER_RAW_SIZE (regi));
134 }
135 }
136
137 if ((regno == -1) || (regno == FCRCS_REGNUM))
138 fpregsetp->fp_csr = *(unsigned *) &registers[REGISTER_BYTE(FCRCS_REGNUM)];
139 }
140
141
142 /* Figure out where the longjmp will land.
143 We expect the first arg to be a pointer to the jmp_buf structure from which
144 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
145 This routine returns true on success. */
146
147 int
148 get_longjmp_target (pc)
149 CORE_ADDR *pc;
150 {
151 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
152 CORE_ADDR jb_addr;
153
154 jb_addr = read_register (A0_REGNUM);
155
156 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
157 TARGET_PTR_BIT / TARGET_CHAR_BIT))
158 return 0;
159
160 *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
161
162 return 1;
163 }
164
165 static void
166 fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
167 char *core_reg_sect;
168 unsigned core_reg_size;
169 int which; /* Unused */
170 CORE_ADDR reg_addr; /* Unused */
171 {
172 if (core_reg_size != REGISTER_BYTES)
173 {
174 warning ("wrong size gregset struct in core file");
175 return;
176 }
177
178 memcpy ((char *)registers, core_reg_sect, core_reg_size);
179 }
180 \f
181 /* Irix 5 uses what appears to be a unique form of shared library
182 support. This is a copy of solib.c modified for Irix 5. */
183
184 #include <sys/types.h>
185 #include <signal.h>
186 #include <sys/param.h>
187 #include <fcntl.h>
188
189 /* <obj.h> includes <sym.h> and <symconst.h>, which causes conflicts
190 with our versions of those files included by tm-mips.h. Prevent
191 <obj.h> from including them with some appropriate defines. */
192 #define __SYM_H__
193 #define __SYMCONST_H__
194 #include <obj.h>
195
196 #include "symtab.h"
197 #include "bfd.h"
198 #include "symfile.h"
199 #include "objfiles.h"
200 #include "command.h"
201 #include "frame.h"
202 #include "gnu-regex.h"
203 #include "inferior.h"
204 #include "language.h"
205 #include "gdbcmd.h"
206
207 /* The symbol which starts off the list of shared libraries. */
208 #define DEBUG_BASE "__rld_obj_head"
209
210 /* How to get the loaded address of a shared library. */
211 #define LM_ADDR(so) ((so)->lm.o_praw)
212
213 char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
214
215 struct so_list {
216 struct so_list *next; /* next structure in linked list */
217 struct obj_list ll;
218 struct obj lm; /* copy of link map from inferior */
219 struct obj_list *lladdr; /* addr in inferior lm was read from */
220 CORE_ADDR lmend; /* upper addr bound of mapped object */
221 char symbols_loaded; /* flag: symbols read in yet? */
222 char from_tty; /* flag: print msgs? */
223 struct objfile *objfile; /* objfile for loaded lib */
224 struct section_table *sections;
225 struct section_table *sections_end;
226 struct section_table *textsection;
227 bfd *abfd;
228 };
229
230 static struct so_list *so_list_head; /* List of known shared objects */
231 static CORE_ADDR debug_base; /* Base of dynamic linker structures */
232 static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
233
234 /* Local function prototypes */
235
236 static void
237 sharedlibrary_command PARAMS ((char *, int));
238
239 static int
240 enable_break PARAMS ((void));
241
242 static int
243 disable_break PARAMS ((void));
244
245 static void
246 info_sharedlibrary_command PARAMS ((char *, int));
247
248 static int
249 symbol_add_stub PARAMS ((char *));
250
251 static struct so_list *
252 find_solib PARAMS ((struct so_list *));
253
254 static struct obj_list *
255 first_link_map_member PARAMS ((void));
256
257 static CORE_ADDR
258 locate_base PARAMS ((void));
259
260 static void
261 solib_map_sections PARAMS ((struct so_list *));
262
263 /*
264
265 LOCAL FUNCTION
266
267 solib_map_sections -- open bfd and build sections for shared lib
268
269 SYNOPSIS
270
271 static void solib_map_sections (struct so_list *so)
272
273 DESCRIPTION
274
275 Given a pointer to one of the shared objects in our list
276 of mapped objects, use the recorded name to open a bfd
277 descriptor for the object, build a section table, and then
278 relocate all the section addresses by the base address at
279 which the shared object was mapped.
280
281 FIXMES
282
283 In most (all?) cases the shared object file name recorded in the
284 dynamic linkage tables will be a fully qualified pathname. For
285 cases where it isn't, do we really mimic the systems search
286 mechanism correctly in the below code (particularly the tilde
287 expansion stuff?).
288 */
289
290 static void
291 solib_map_sections (so)
292 struct so_list *so;
293 {
294 char *filename;
295 char *scratch_pathname;
296 int scratch_chan;
297 struct section_table *p;
298 struct cleanup *old_chain;
299 bfd *abfd;
300 CORE_ADDR offset;
301
302 filename = tilde_expand (so -> lm.o_path);
303 old_chain = make_cleanup (free, filename);
304
305 scratch_chan = openp (getenv ("PATH"), 1, filename, O_RDONLY, 0,
306 &scratch_pathname);
307 if (scratch_chan < 0)
308 {
309 scratch_chan = openp (getenv ("LD_LIBRARY_PATH"), 1, filename,
310 O_RDONLY, 0, &scratch_pathname);
311 }
312 if (scratch_chan < 0)
313 {
314 perror_with_name (filename);
315 }
316 /* Leave scratch_pathname allocated. abfd->name will point to it. */
317
318 abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
319 if (!abfd)
320 {
321 close (scratch_chan);
322 error ("Could not open `%s' as an executable file: %s",
323 scratch_pathname, bfd_errmsg (bfd_get_error ()));
324 }
325 /* Leave bfd open, core_xfer_memory and "info files" need it. */
326 so -> abfd = abfd;
327 abfd -> cacheable = true;
328
329 if (!bfd_check_format (abfd, bfd_object))
330 {
331 error ("\"%s\": not in executable format: %s.",
332 scratch_pathname, bfd_errmsg (bfd_get_error ()));
333 }
334 if (build_section_table (abfd, &so -> sections, &so -> sections_end))
335 {
336 error ("Can't find the file sections in `%s': %s",
337 bfd_get_filename (exec_bfd), bfd_errmsg (bfd_get_error ()));
338 }
339
340 /* Irix 5 shared objects are pre-linked to particular addresses
341 although the dynamic linker may have to relocate them if the
342 address ranges of the libraries used by the main program clash.
343 The offset is the difference between the address where the object
344 is mapped and the binding address of the shared library. */
345 offset = (CORE_ADDR) LM_ADDR (so) - so -> lm.o_base_address;
346
347 for (p = so -> sections; p < so -> sections_end; p++)
348 {
349 /* Relocate the section binding addresses as recorded in the shared
350 object's file by the offset to get the address to which the
351 object was actually mapped. */
352 p -> addr += offset;
353 p -> endaddr += offset;
354 so -> lmend = (CORE_ADDR) max (p -> endaddr, so -> lmend);
355 if (STREQ (p -> the_bfd_section -> name, ".text"))
356 {
357 so -> textsection = p;
358 }
359 }
360
361 /* Free the file names, close the file now. */
362 do_cleanups (old_chain);
363 }
364
365 /*
366
367 LOCAL FUNCTION
368
369 locate_base -- locate the base address of dynamic linker structs
370
371 SYNOPSIS
372
373 CORE_ADDR locate_base (void)
374
375 DESCRIPTION
376
377 For both the SunOS and SVR4 shared library implementations, if the
378 inferior executable has been linked dynamically, there is a single
379 address somewhere in the inferior's data space which is the key to
380 locating all of the dynamic linker's runtime structures. This
381 address is the value of the symbol defined by the macro DEBUG_BASE.
382 The job of this function is to find and return that address, or to
383 return 0 if there is no such address (the executable is statically
384 linked for example).
385
386 For SunOS, the job is almost trivial, since the dynamic linker and
387 all of it's structures are statically linked to the executable at
388 link time. Thus the symbol for the address we are looking for has
389 already been added to the minimal symbol table for the executable's
390 objfile at the time the symbol file's symbols were read, and all we
391 have to do is look it up there. Note that we explicitly do NOT want
392 to find the copies in the shared library.
393
394 The SVR4 version is much more complicated because the dynamic linker
395 and it's structures are located in the shared C library, which gets
396 run as the executable's "interpreter" by the kernel. We have to go
397 to a lot more work to discover the address of DEBUG_BASE. Because
398 of this complexity, we cache the value we find and return that value
399 on subsequent invocations. Note there is no copy in the executable
400 symbol tables.
401
402 Irix 5 is basically like SunOS.
403
404 Note that we can assume nothing about the process state at the time
405 we need to find this address. We may be stopped on the first instruc-
406 tion of the interpreter (C shared library), the first instruction of
407 the executable itself, or somewhere else entirely (if we attached
408 to the process for example).
409
410 */
411
412 static CORE_ADDR
413 locate_base ()
414 {
415 struct minimal_symbol *msymbol;
416 CORE_ADDR address = 0;
417
418 msymbol = lookup_minimal_symbol (DEBUG_BASE, NULL, symfile_objfile);
419 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
420 {
421 address = SYMBOL_VALUE_ADDRESS (msymbol);
422 }
423 return (address);
424 }
425
426 /*
427
428 LOCAL FUNCTION
429
430 first_link_map_member -- locate first member in dynamic linker's map
431
432 SYNOPSIS
433
434 static struct link_map *first_link_map_member (void)
435
436 DESCRIPTION
437
438 Read in a copy of the first member in the inferior's dynamic
439 link map from the inferior's dynamic linker structures, and return
440 a pointer to the copy in our address space.
441 */
442
443 static struct obj_list *
444 first_link_map_member ()
445 {
446 struct obj_list *lm;
447 struct obj_list s;
448
449 read_memory (debug_base, (char *) &lm, sizeof (struct obj_list *));
450
451 if (lm == NULL)
452 return NULL;
453
454 /* The first entry in the list is the object file we are debugging,
455 so skip it. */
456 read_memory ((CORE_ADDR) lm, (char *) &s, sizeof (struct obj_list));
457
458 return s.next;
459 }
460
461 /*
462
463 LOCAL FUNCTION
464
465 find_solib -- step through list of shared objects
466
467 SYNOPSIS
468
469 struct so_list *find_solib (struct so_list *so_list_ptr)
470
471 DESCRIPTION
472
473 This module contains the routine which finds the names of any
474 loaded "images" in the current process. The argument in must be
475 NULL on the first call, and then the returned value must be passed
476 in on subsequent calls. This provides the capability to "step" down
477 the list of loaded objects. On the last object, a NULL value is
478 returned.
479 */
480
481 static struct so_list *
482 find_solib (so_list_ptr)
483 struct so_list *so_list_ptr; /* Last lm or NULL for first one */
484 {
485 struct so_list *so_list_next = NULL;
486 struct obj_list *lm = NULL;
487 struct so_list *new;
488
489 if (so_list_ptr == NULL)
490 {
491 /* We are setting up for a new scan through the loaded images. */
492 if ((so_list_next = so_list_head) == NULL)
493 {
494 /* We have not already read in the dynamic linking structures
495 from the inferior, lookup the address of the base structure. */
496 debug_base = locate_base ();
497 if (debug_base != 0)
498 {
499 /* Read the base structure in and find the address of the first
500 link map list member. */
501 lm = first_link_map_member ();
502 }
503 }
504 }
505 else
506 {
507 /* We have been called before, and are in the process of walking
508 the shared library list. Advance to the next shared object. */
509 if ((lm = so_list_ptr->ll.next) == NULL)
510 {
511 /* We have hit the end of the list, so check to see if any were
512 added, but be quiet if we can't read from the target any more. */
513 int status = target_read_memory ((CORE_ADDR) so_list_ptr -> lladdr,
514 (char *) &(so_list_ptr -> ll),
515 sizeof (struct obj_list));
516 if (status == 0)
517 {
518 lm = so_list_ptr->ll.next;
519 }
520 else
521 {
522 lm = NULL;
523 }
524 }
525 so_list_next = so_list_ptr -> next;
526 }
527 if ((so_list_next == NULL) && (lm != NULL))
528 {
529 int errcode;
530 char *buffer;
531
532 /* Get next link map structure from inferior image and build a local
533 abbreviated load_map structure */
534 new = (struct so_list *) xmalloc (sizeof (struct so_list));
535 memset ((char *) new, 0, sizeof (struct so_list));
536 new -> lladdr = lm;
537 /* Add the new node as the next node in the list, or as the root
538 node if this is the first one. */
539 if (so_list_ptr != NULL)
540 {
541 so_list_ptr -> next = new;
542 }
543 else
544 {
545 so_list_head = new;
546 }
547 so_list_next = new;
548 read_memory ((CORE_ADDR) lm, (char *) &(new -> ll),
549 sizeof (struct obj_list));
550 read_memory ((CORE_ADDR) new->ll.data, (char *) &(new -> lm),
551 sizeof (struct obj));
552 target_read_string ((CORE_ADDR)new->lm.o_path, &buffer,
553 INT_MAX, &errcode);
554 if (errcode != 0)
555 memory_error (errcode, (CORE_ADDR)new->lm.o_path);
556 new->lm.o_path = buffer;
557 solib_map_sections (new);
558 }
559 return (so_list_next);
560 }
561
562 /* A small stub to get us past the arg-passing pinhole of catch_errors. */
563
564 static int
565 symbol_add_stub (arg)
566 char *arg;
567 {
568 register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
569 CORE_ADDR text_addr = 0;
570
571 if (so -> textsection)
572 text_addr = so -> textsection -> addr;
573 else
574 {
575 asection *lowest_sect;
576
577 /* If we didn't find a mapped non zero sized .text section, set up
578 text_addr so that the relocation in symbol_file_add does no harm. */
579
580 lowest_sect = bfd_get_section_by_name (so -> abfd, ".text");
581 if (lowest_sect == NULL)
582 bfd_map_over_sections (so -> abfd, find_lowest_section,
583 (PTR) &lowest_sect);
584 if (lowest_sect)
585 text_addr = bfd_section_vma (so -> abfd, lowest_sect)
586 + (CORE_ADDR) LM_ADDR (so) - so -> lm.o_base_address;
587 }
588
589 so -> objfile = symbol_file_add (so -> lm.o_path, so -> from_tty,
590 text_addr,
591 0, 0, 0);
592 return (1);
593 }
594
595 /*
596
597 GLOBAL FUNCTION
598
599 solib_add -- add a shared library file to the symtab and section list
600
601 SYNOPSIS
602
603 void solib_add (char *arg_string, int from_tty,
604 struct target_ops *target)
605
606 DESCRIPTION
607
608 */
609
610 void
611 solib_add (arg_string, from_tty, target)
612 char *arg_string;
613 int from_tty;
614 struct target_ops *target;
615 {
616 register struct so_list *so = NULL; /* link map state variable */
617
618 /* Last shared library that we read. */
619 struct so_list *so_last = NULL;
620
621 char *re_err;
622 int count;
623 int old;
624
625 if ((re_err = re_comp (arg_string ? arg_string : ".")) != NULL)
626 {
627 error ("Invalid regexp: %s", re_err);
628 }
629
630 /* Add the shared library sections to the section table of the
631 specified target, if any. */
632 if (target)
633 {
634 /* Count how many new section_table entries there are. */
635 so = NULL;
636 count = 0;
637 while ((so = find_solib (so)) != NULL)
638 {
639 if (so -> lm.o_path[0])
640 {
641 count += so -> sections_end - so -> sections;
642 }
643 }
644
645 if (count)
646 {
647 int update_coreops;
648
649 /* We must update the to_sections field in the core_ops structure
650 here, otherwise we dereference a potential dangling pointer
651 for each call to target_read/write_memory within this routine. */
652 update_coreops = core_ops.to_sections == target->to_sections;
653
654 /* Reallocate the target's section table including the new size. */
655 if (target -> to_sections)
656 {
657 old = target -> to_sections_end - target -> to_sections;
658 target -> to_sections = (struct section_table *)
659 xrealloc ((char *)target -> to_sections,
660 (sizeof (struct section_table)) * (count + old));
661 }
662 else
663 {
664 old = 0;
665 target -> to_sections = (struct section_table *)
666 xmalloc ((sizeof (struct section_table)) * count);
667 }
668 target -> to_sections_end = target -> to_sections + (count + old);
669
670 /* Update the to_sections field in the core_ops structure
671 if needed. */
672 if (update_coreops)
673 {
674 core_ops.to_sections = target->to_sections;
675 core_ops.to_sections_end = target->to_sections_end;
676 }
677
678 /* Add these section table entries to the target's table. */
679 while ((so = find_solib (so)) != NULL)
680 {
681 if (so -> lm.o_path[0])
682 {
683 count = so -> sections_end - so -> sections;
684 memcpy ((char *) (target -> to_sections + old),
685 so -> sections,
686 (sizeof (struct section_table)) * count);
687 old += count;
688 }
689 }
690 }
691 }
692
693 /* Now add the symbol files. */
694 while ((so = find_solib (so)) != NULL)
695 {
696 if (so -> lm.o_path[0] && re_exec (so -> lm.o_path))
697 {
698 so -> from_tty = from_tty;
699 if (so -> symbols_loaded)
700 {
701 if (from_tty)
702 {
703 printf_unfiltered ("Symbols already loaded for %s\n", so -> lm.o_path);
704 }
705 }
706 else if (catch_errors
707 (symbol_add_stub, (char *) so,
708 "Error while reading shared library symbols:\n",
709 RETURN_MASK_ALL))
710 {
711 so_last = so;
712 so -> symbols_loaded = 1;
713 }
714 }
715 }
716
717 /* Getting new symbols may change our opinion about what is
718 frameless. */
719 if (so_last)
720 reinit_frame_cache ();
721 }
722
723 /*
724
725 LOCAL FUNCTION
726
727 info_sharedlibrary_command -- code for "info sharedlibrary"
728
729 SYNOPSIS
730
731 static void info_sharedlibrary_command ()
732
733 DESCRIPTION
734
735 Walk through the shared library list and print information
736 about each attached library.
737 */
738
739 static void
740 info_sharedlibrary_command (ignore, from_tty)
741 char *ignore;
742 int from_tty;
743 {
744 register struct so_list *so = NULL; /* link map state variable */
745 int header_done = 0;
746
747 if (exec_bfd == NULL)
748 {
749 printf_unfiltered ("No exec file.\n");
750 return;
751 }
752 while ((so = find_solib (so)) != NULL)
753 {
754 if (so -> lm.o_path[0])
755 {
756 if (!header_done)
757 {
758 printf_unfiltered("%-12s%-12s%-12s%s\n", "From", "To", "Syms Read",
759 "Shared Object Library");
760 header_done++;
761 }
762 printf_unfiltered ("%-12s",
763 local_hex_string_custom ((unsigned long) LM_ADDR (so),
764 "08l"));
765 printf_unfiltered ("%-12s",
766 local_hex_string_custom ((unsigned long) so -> lmend,
767 "08l"));
768 printf_unfiltered ("%-12s", so -> symbols_loaded ? "Yes" : "No");
769 printf_unfiltered ("%s\n", so -> lm.o_path);
770 }
771 }
772 if (so_list_head == NULL)
773 {
774 printf_unfiltered ("No shared libraries loaded at this time.\n");
775 }
776 }
777
778 /*
779
780 GLOBAL FUNCTION
781
782 solib_address -- check to see if an address is in a shared lib
783
784 SYNOPSIS
785
786 char *solib_address (CORE_ADDR address)
787
788 DESCRIPTION
789
790 Provides a hook for other gdb routines to discover whether or
791 not a particular address is within the mapped address space of
792 a shared library. Any address between the base mapping address
793 and the first address beyond the end of the last mapping, is
794 considered to be within the shared library address space, for
795 our purposes.
796
797 For example, this routine is called at one point to disable
798 breakpoints which are in shared libraries that are not currently
799 mapped in.
800 */
801
802 char *
803 solib_address (address)
804 CORE_ADDR address;
805 {
806 register struct so_list *so = 0; /* link map state variable */
807
808 while ((so = find_solib (so)) != NULL)
809 {
810 if (so -> lm.o_path[0])
811 {
812 if ((address >= (CORE_ADDR) LM_ADDR (so)) &&
813 (address < (CORE_ADDR) so -> lmend))
814 return (so->lm.o_path);
815 }
816 }
817 return (0);
818 }
819
820 /* Called by free_all_symtabs */
821
822 void
823 clear_solib()
824 {
825 struct so_list *next;
826 char *bfd_filename;
827
828 while (so_list_head)
829 {
830 if (so_list_head -> sections)
831 {
832 free ((PTR)so_list_head -> sections);
833 }
834 if (so_list_head -> abfd)
835 {
836 bfd_filename = bfd_get_filename (so_list_head -> abfd);
837 if (!bfd_close (so_list_head -> abfd))
838 warning ("cannot close \"%s\": %s",
839 bfd_filename, bfd_errmsg (bfd_get_error ()));
840 }
841 else
842 /* This happens for the executable on SVR4. */
843 bfd_filename = NULL;
844
845 next = so_list_head -> next;
846 if (bfd_filename)
847 free ((PTR)bfd_filename);
848 free (so_list_head->lm.o_path);
849 free ((PTR)so_list_head);
850 so_list_head = next;
851 }
852 debug_base = 0;
853 }
854
855 /*
856
857 LOCAL FUNCTION
858
859 disable_break -- remove the "mapping changed" breakpoint
860
861 SYNOPSIS
862
863 static int disable_break ()
864
865 DESCRIPTION
866
867 Removes the breakpoint that gets hit when the dynamic linker
868 completes a mapping change.
869
870 */
871
872 static int
873 disable_break ()
874 {
875 int status = 1;
876
877
878 /* Note that breakpoint address and original contents are in our address
879 space, so we just need to write the original contents back. */
880
881 if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
882 {
883 status = 0;
884 }
885
886 /* For the SVR4 version, we always know the breakpoint address. For the
887 SunOS version we don't know it until the above code is executed.
888 Grumble if we are stopped anywhere besides the breakpoint address. */
889
890 if (stop_pc != breakpoint_addr)
891 {
892 warning ("stopped at unknown breakpoint while handling shared libraries");
893 }
894
895 return (status);
896 }
897
898 /*
899
900 LOCAL FUNCTION
901
902 enable_break -- arrange for dynamic linker to hit breakpoint
903
904 SYNOPSIS
905
906 int enable_break (void)
907
908 DESCRIPTION
909
910 This functions inserts a breakpoint at the entry point of the
911 main executable, where all shared libraries are mapped in.
912 */
913
914 static int
915 enable_break ()
916 {
917 if (symfile_objfile != NULL
918 && target_insert_breakpoint (symfile_objfile->ei.entry_point,
919 shadow_contents) == 0)
920 {
921 breakpoint_addr = symfile_objfile->ei.entry_point;
922 return 1;
923 }
924
925 return 0;
926 }
927
928 /*
929
930 GLOBAL FUNCTION
931
932 solib_create_inferior_hook -- shared library startup support
933
934 SYNOPSIS
935
936 void solib_create_inferior_hook()
937
938 DESCRIPTION
939
940 When gdb starts up the inferior, it nurses it along (through the
941 shell) until it is ready to execute it's first instruction. At this
942 point, this function gets called via expansion of the macro
943 SOLIB_CREATE_INFERIOR_HOOK.
944
945 For SunOS executables, this first instruction is typically the
946 one at "_start", or a similar text label, regardless of whether
947 the executable is statically or dynamically linked. The runtime
948 startup code takes care of dynamically linking in any shared
949 libraries, once gdb allows the inferior to continue.
950
951 For SVR4 executables, this first instruction is either the first
952 instruction in the dynamic linker (for dynamically linked
953 executables) or the instruction at "start" for statically linked
954 executables. For dynamically linked executables, the system
955 first exec's /lib/libc.so.N, which contains the dynamic linker,
956 and starts it running. The dynamic linker maps in any needed
957 shared libraries, maps in the actual user executable, and then
958 jumps to "start" in the user executable.
959
960 For both SunOS shared libraries, and SVR4 shared libraries, we
961 can arrange to cooperate with the dynamic linker to discover the
962 names of shared libraries that are dynamically linked, and the
963 base addresses to which they are linked.
964
965 This function is responsible for discovering those names and
966 addresses, and saving sufficient information about them to allow
967 their symbols to be read at a later time.
968
969 FIXME
970
971 Between enable_break() and disable_break(), this code does not
972 properly handle hitting breakpoints which the user might have
973 set in the startup code or in the dynamic linker itself. Proper
974 handling will probably have to wait until the implementation is
975 changed to use the "breakpoint handler function" method.
976
977 Also, what if child has exit()ed? Must exit loop somehow.
978 */
979
980 void
981 solib_create_inferior_hook()
982 {
983 if (!enable_break ())
984 {
985 warning ("shared library handler failed to enable breakpoint");
986 return;
987 }
988
989 /* Now run the target. It will eventually hit the breakpoint, at
990 which point all of the libraries will have been mapped in and we
991 can go groveling around in the dynamic linker structures to find
992 out what we need to know about them. */
993
994 clear_proceed_status ();
995 stop_soon_quietly = 1;
996 stop_signal = 0;
997 do
998 {
999 target_resume (-1, 0, stop_signal);
1000 wait_for_inferior ();
1001 }
1002 while (stop_signal != SIGTRAP);
1003
1004 /* We are now either at the "mapping complete" breakpoint (or somewhere
1005 else, a condition we aren't prepared to deal with anyway), so adjust
1006 the PC as necessary after a breakpoint, disable the breakpoint, and
1007 add any shared libraries that were mapped in. */
1008
1009 if (DECR_PC_AFTER_BREAK)
1010 {
1011 stop_pc -= DECR_PC_AFTER_BREAK;
1012 write_register (PC_REGNUM, stop_pc);
1013 }
1014
1015 if (!disable_break ())
1016 {
1017 warning ("shared library handler failed to disable breakpoint");
1018 }
1019
1020 /* solib_add will call reinit_frame_cache.
1021 But we are stopped in the startup code and we might not have symbols
1022 for the startup code, so heuristic_proc_start could be called
1023 and will put out an annoying warning.
1024 Delaying the resetting of stop_soon_quietly until after symbol loading
1025 suppresses the warning. */
1026 if (auto_solib_add)
1027 solib_add ((char *) 0, 0, (struct target_ops *) 0);
1028 stop_soon_quietly = 0;
1029 }
1030
1031 /*
1032
1033 LOCAL FUNCTION
1034
1035 sharedlibrary_command -- handle command to explicitly add library
1036
1037 SYNOPSIS
1038
1039 static void sharedlibrary_command (char *args, int from_tty)
1040
1041 DESCRIPTION
1042
1043 */
1044
1045 static void
1046 sharedlibrary_command (args, from_tty)
1047 char *args;
1048 int from_tty;
1049 {
1050 dont_repeat ();
1051 solib_add (args, from_tty, (struct target_ops *) 0);
1052 }
1053
1054 void
1055 _initialize_solib()
1056 {
1057 add_com ("sharedlibrary", class_files, sharedlibrary_command,
1058 "Load shared object library symbols for files matching REGEXP.");
1059 add_info ("sharedlibrary", info_sharedlibrary_command,
1060 "Status of loaded shared object libraries.");
1061
1062 add_show_from_set
1063 (add_set_cmd ("auto-solib-add", class_support, var_zinteger,
1064 (char *) &auto_solib_add,
1065 "Set autoloading of shared library symbols.\n\
1066 If nonzero, symbols from all shared object libraries will be loaded\n\
1067 automatically when the inferior begins execution or when the dynamic linker\n\
1068 informs gdb that a new library has been loaded. Otherwise, symbols\n\
1069 must be loaded manually, using `sharedlibrary'.",
1070 &setlist),
1071 &showlist);
1072 }
1073
1074 \f
1075 /* Register that we are able to handle irix5 core file formats.
1076 This really is bfd_target_unknown_flavour */
1077
1078 static struct core_fns irix5_core_fns =
1079 {
1080 bfd_target_unknown_flavour,
1081 fetch_core_registers,
1082 NULL
1083 };
1084
1085 void
1086 _initialize_core_irix5 ()
1087 {
1088 add_core_fns (&irix5_core_fns);
1089 }