sim: cr16/d10v: move storage out of header
[binutils-gdb.git] / gdb / jit.c
1 /* Handle JIT code generation in the inferior for GDB, the GNU Debugger.
2
3 Copyright (C) 2009-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "jit.h"
23 #include "jit-reader.h"
24 #include "block.h"
25 #include "breakpoint.h"
26 #include "command.h"
27 #include "dictionary.h"
28 #include "filenames.h"
29 #include "frame-unwind.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "inferior.h"
33 #include "observable.h"
34 #include "objfiles.h"
35 #include "regcache.h"
36 #include "symfile.h"
37 #include "symtab.h"
38 #include "target.h"
39 #include "gdbsupport/gdb-dlfcn.h"
40 #include <sys/stat.h>
41 #include "gdb_bfd.h"
42 #include "readline/tilde.h"
43 #include "completer.h"
44 #include <forward_list>
45
46 static std::string jit_reader_dir;
47
48 static const char jit_break_name[] = "__jit_debug_register_code";
49
50 static const char jit_descriptor_name[] = "__jit_debug_descriptor";
51
52 static void jit_inferior_created_hook (inferior *inf);
53 static void jit_inferior_exit_hook (struct inferior *inf);
54
55 /* An unwinder is registered for every gdbarch. This key is used to
56 remember if the unwinder has been registered for a particular
57 gdbarch. */
58
59 static struct gdbarch_data *jit_gdbarch_data;
60
61 /* Non-zero if we want to see trace of jit level stuff. */
62
63 static unsigned int jit_debug = 0;
64
65 static void
66 show_jit_debug (struct ui_file *file, int from_tty,
67 struct cmd_list_element *c, const char *value)
68 {
69 fprintf_filtered (file, _("JIT debugging is %s.\n"), value);
70 }
71
72 struct jit_reader
73 {
74 jit_reader (struct gdb_reader_funcs *f, gdb_dlhandle_up &&h)
75 : functions (f), handle (std::move (h))
76 {
77 }
78
79 ~jit_reader ()
80 {
81 functions->destroy (functions);
82 }
83
84 DISABLE_COPY_AND_ASSIGN (jit_reader);
85
86 struct gdb_reader_funcs *functions;
87 gdb_dlhandle_up handle;
88 };
89
90 /* One reader that has been loaded successfully, and can potentially be used to
91 parse debug info. */
92
93 static struct jit_reader *loaded_jit_reader = NULL;
94
95 typedef struct gdb_reader_funcs * (reader_init_fn_type) (void);
96 static const char reader_init_fn_sym[] = "gdb_init_reader";
97
98 /* Try to load FILE_NAME as a JIT debug info reader. */
99
100 static struct jit_reader *
101 jit_reader_load (const char *file_name)
102 {
103 reader_init_fn_type *init_fn;
104 struct gdb_reader_funcs *funcs = NULL;
105
106 if (jit_debug)
107 fprintf_unfiltered (gdb_stdlog, _("Opening shared object %s.\n"),
108 file_name);
109 gdb_dlhandle_up so = gdb_dlopen (file_name);
110
111 init_fn = (reader_init_fn_type *) gdb_dlsym (so, reader_init_fn_sym);
112 if (!init_fn)
113 error (_("Could not locate initialization function: %s."),
114 reader_init_fn_sym);
115
116 if (gdb_dlsym (so, "plugin_is_GPL_compatible") == NULL)
117 error (_("Reader not GPL compatible."));
118
119 funcs = init_fn ();
120 if (funcs->reader_version != GDB_READER_INTERFACE_VERSION)
121 error (_("Reader version does not match GDB version."));
122
123 return new jit_reader (funcs, std::move (so));
124 }
125
126 /* Provides the jit-reader-load command. */
127
128 static void
129 jit_reader_load_command (const char *args, int from_tty)
130 {
131 if (args == NULL)
132 error (_("No reader name provided."));
133 gdb::unique_xmalloc_ptr<char> file (tilde_expand (args));
134
135 if (loaded_jit_reader != NULL)
136 error (_("JIT reader already loaded. Run jit-reader-unload first."));
137
138 if (!IS_ABSOLUTE_PATH (file.get ()))
139 file.reset (xstrprintf ("%s%s%s", jit_reader_dir.c_str (), SLASH_STRING,
140 file.get ()));
141
142 loaded_jit_reader = jit_reader_load (file.get ());
143 reinit_frame_cache ();
144 jit_inferior_created_hook (current_inferior ());
145 }
146
147 /* Provides the jit-reader-unload command. */
148
149 static void
150 jit_reader_unload_command (const char *args, int from_tty)
151 {
152 if (!loaded_jit_reader)
153 error (_("No JIT reader loaded."));
154
155 reinit_frame_cache ();
156 jit_inferior_exit_hook (current_inferior ());
157
158 delete loaded_jit_reader;
159 loaded_jit_reader = NULL;
160 }
161
162 /* Destructor for jiter_objfile_data. */
163
164 jiter_objfile_data::~jiter_objfile_data ()
165 {
166 if (this->jit_breakpoint != nullptr)
167 delete_breakpoint (this->jit_breakpoint);
168 }
169
170 /* Fetch the jiter_objfile_data associated with OBJF. If no data exists
171 yet, make a new structure and attach it. */
172
173 static jiter_objfile_data *
174 get_jiter_objfile_data (objfile *objf)
175 {
176 if (objf->jiter_data == nullptr)
177 objf->jiter_data.reset (new jiter_objfile_data ());
178
179 return objf->jiter_data.get ();
180 }
181
182 /* Remember OBJFILE has been created for struct jit_code_entry located
183 at inferior address ENTRY. */
184
185 static void
186 add_objfile_entry (struct objfile *objfile, CORE_ADDR entry)
187 {
188 gdb_assert (objfile->jited_data == nullptr);
189
190 objfile->jited_data.reset (new jited_objfile_data (entry));
191 }
192
193 /* Helper function for reading the global JIT descriptor from remote
194 memory. Returns true if all went well, false otherwise. */
195
196 static bool
197 jit_read_descriptor (gdbarch *gdbarch,
198 jit_descriptor *descriptor,
199 objfile *jiter)
200 {
201 int err;
202 struct type *ptr_type;
203 int ptr_size;
204 int desc_size;
205 gdb_byte *desc_buf;
206 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
207
208 gdb_assert (jiter != nullptr);
209 jiter_objfile_data *objf_data = jiter->jiter_data.get ();
210 gdb_assert (objf_data != nullptr);
211
212 CORE_ADDR addr = MSYMBOL_VALUE_ADDRESS (jiter, objf_data->descriptor);
213
214 if (jit_debug)
215 fprintf_unfiltered (gdb_stdlog,
216 "jit_read_descriptor, descriptor_addr = %s\n",
217 paddress (gdbarch, addr));
218
219 /* Figure out how big the descriptor is on the remote and how to read it. */
220 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
221 ptr_size = TYPE_LENGTH (ptr_type);
222 desc_size = 8 + 2 * ptr_size; /* Two 32-bit ints and two pointers. */
223 desc_buf = (gdb_byte *) alloca (desc_size);
224
225 /* Read the descriptor. */
226 err = target_read_memory (addr, desc_buf, desc_size);
227 if (err)
228 {
229 printf_unfiltered (_("Unable to read JIT descriptor from "
230 "remote memory\n"));
231 return false;
232 }
233
234 /* Fix the endianness to match the host. */
235 descriptor->version = extract_unsigned_integer (&desc_buf[0], 4, byte_order);
236 descriptor->action_flag =
237 extract_unsigned_integer (&desc_buf[4], 4, byte_order);
238 descriptor->relevant_entry = extract_typed_address (&desc_buf[8], ptr_type);
239 descriptor->first_entry =
240 extract_typed_address (&desc_buf[8 + ptr_size], ptr_type);
241
242 return true;
243 }
244
245 /* Helper function for reading a JITed code entry from remote memory. */
246
247 static void
248 jit_read_code_entry (struct gdbarch *gdbarch,
249 CORE_ADDR code_addr, struct jit_code_entry *code_entry)
250 {
251 int err, off;
252 struct type *ptr_type;
253 int ptr_size;
254 int entry_size;
255 int align_bytes;
256 gdb_byte *entry_buf;
257 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
258
259 /* Figure out how big the entry is on the remote and how to read it. */
260 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
261 ptr_size = TYPE_LENGTH (ptr_type);
262
263 /* Figure out where the uint64_t value will be. */
264 align_bytes = type_align (builtin_type (gdbarch)->builtin_uint64);
265 off = 3 * ptr_size;
266 off = (off + (align_bytes - 1)) & ~(align_bytes - 1);
267
268 entry_size = off + 8; /* Three pointers and one 64-bit int. */
269 entry_buf = (gdb_byte *) alloca (entry_size);
270
271 /* Read the entry. */
272 err = target_read_memory (code_addr, entry_buf, entry_size);
273 if (err)
274 error (_("Unable to read JIT code entry from remote memory!"));
275
276 /* Fix the endianness to match the host. */
277 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
278 code_entry->next_entry = extract_typed_address (&entry_buf[0], ptr_type);
279 code_entry->prev_entry =
280 extract_typed_address (&entry_buf[ptr_size], ptr_type);
281 code_entry->symfile_addr =
282 extract_typed_address (&entry_buf[2 * ptr_size], ptr_type);
283 code_entry->symfile_size =
284 extract_unsigned_integer (&entry_buf[off], 8, byte_order);
285 }
286
287 /* Proxy object for building a block. */
288
289 struct gdb_block
290 {
291 gdb_block (gdb_block *parent, CORE_ADDR begin, CORE_ADDR end,
292 const char *name)
293 : parent (parent),
294 begin (begin),
295 end (end),
296 name (name != nullptr ? xstrdup (name) : nullptr)
297 {}
298
299 /* The parent of this block. */
300 struct gdb_block *parent;
301
302 /* Points to the "real" block that is being built out of this
303 instance. This block will be added to a blockvector, which will
304 then be added to a symtab. */
305 struct block *real_block = nullptr;
306
307 /* The first and last code address corresponding to this block. */
308 CORE_ADDR begin, end;
309
310 /* The name of this block (if any). If this is non-NULL, the
311 FUNCTION symbol symbol is set to this value. */
312 gdb::unique_xmalloc_ptr<char> name;
313 };
314
315 /* Proxy object for building a symtab. */
316
317 struct gdb_symtab
318 {
319 explicit gdb_symtab (const char *file_name)
320 : file_name (file_name != nullptr ? file_name : "")
321 {}
322
323 /* The list of blocks in this symtab. These will eventually be
324 converted to real blocks.
325
326 This is specifically a linked list, instead of, for example, a vector,
327 because the pointers are returned to the user's debug info reader. So
328 it's important that the objects don't change location during their
329 lifetime (which would happen with a vector of objects getting resized). */
330 std::forward_list<gdb_block> blocks;
331
332 /* The number of blocks inserted. */
333 int nblocks = 0;
334
335 /* A mapping between line numbers to PC. */
336 gdb::unique_xmalloc_ptr<struct linetable> linetable;
337
338 /* The source file for this symtab. */
339 std::string file_name;
340 };
341
342 /* Proxy object for building an object. */
343
344 struct gdb_object
345 {
346 /* Symtabs of this object.
347
348 This is specifically a linked list, instead of, for example, a vector,
349 because the pointers are returned to the user's debug info reader. So
350 it's important that the objects don't change location during their
351 lifetime (which would happen with a vector of objects getting resized). */
352 std::forward_list<gdb_symtab> symtabs;
353 };
354
355 /* The type of the `private' data passed around by the callback
356 functions. */
357
358 typedef CORE_ADDR jit_dbg_reader_data;
359
360 /* The reader calls into this function to read data off the targets
361 address space. */
362
363 static enum gdb_status
364 jit_target_read_impl (GDB_CORE_ADDR target_mem, void *gdb_buf, int len)
365 {
366 int result = target_read_memory ((CORE_ADDR) target_mem,
367 (gdb_byte *) gdb_buf, len);
368 if (result == 0)
369 return GDB_SUCCESS;
370 else
371 return GDB_FAIL;
372 }
373
374 /* The reader calls into this function to create a new gdb_object
375 which it can then pass around to the other callbacks. Right now,
376 all that is required is allocating the memory. */
377
378 static struct gdb_object *
379 jit_object_open_impl (struct gdb_symbol_callbacks *cb)
380 {
381 /* CB is not required right now, but sometime in the future we might
382 need a handle to it, and we'd like to do that without breaking
383 the ABI. */
384 return new gdb_object;
385 }
386
387 /* Readers call into this function to open a new gdb_symtab, which,
388 again, is passed around to other callbacks. */
389
390 static struct gdb_symtab *
391 jit_symtab_open_impl (struct gdb_symbol_callbacks *cb,
392 struct gdb_object *object,
393 const char *file_name)
394 {
395 /* CB stays unused. See comment in jit_object_open_impl. */
396
397 object->symtabs.emplace_front (file_name);
398 return &object->symtabs.front ();
399 }
400
401 /* Called by readers to open a new gdb_block. This function also
402 inserts the new gdb_block in the correct place in the corresponding
403 gdb_symtab. */
404
405 static struct gdb_block *
406 jit_block_open_impl (struct gdb_symbol_callbacks *cb,
407 struct gdb_symtab *symtab, struct gdb_block *parent,
408 GDB_CORE_ADDR begin, GDB_CORE_ADDR end, const char *name)
409 {
410 /* Place the block at the beginning of the list, it will be sorted when the
411 symtab is finalized. */
412 symtab->blocks.emplace_front (parent, begin, end, name);
413 symtab->nblocks++;
414
415 return &symtab->blocks.front ();
416 }
417
418 /* Readers call this to add a line mapping (from PC to line number) to
419 a gdb_symtab. */
420
421 static void
422 jit_symtab_line_mapping_add_impl (struct gdb_symbol_callbacks *cb,
423 struct gdb_symtab *stab, int nlines,
424 struct gdb_line_mapping *map)
425 {
426 int i;
427 int alloc_len;
428
429 if (nlines < 1)
430 return;
431
432 alloc_len = sizeof (struct linetable)
433 + (nlines - 1) * sizeof (struct linetable_entry);
434 stab->linetable.reset (XNEWVAR (struct linetable, alloc_len));
435 stab->linetable->nitems = nlines;
436 for (i = 0; i < nlines; i++)
437 {
438 stab->linetable->item[i].pc = (CORE_ADDR) map[i].pc;
439 stab->linetable->item[i].line = map[i].line;
440 stab->linetable->item[i].is_stmt = 1;
441 }
442 }
443
444 /* Called by readers to close a gdb_symtab. Does not need to do
445 anything as of now. */
446
447 static void
448 jit_symtab_close_impl (struct gdb_symbol_callbacks *cb,
449 struct gdb_symtab *stab)
450 {
451 /* Right now nothing needs to be done here. We may need to do some
452 cleanup here in the future (again, without breaking the plugin
453 ABI). */
454 }
455
456 /* Transform STAB to a proper symtab, and add it it OBJFILE. */
457
458 static void
459 finalize_symtab (struct gdb_symtab *stab, struct objfile *objfile)
460 {
461 struct compunit_symtab *cust;
462 size_t blockvector_size;
463 CORE_ADDR begin, end;
464 struct blockvector *bv;
465
466 int actual_nblocks = FIRST_LOCAL_BLOCK + stab->nblocks;
467
468 /* Sort the blocks in the order they should appear in the blockvector. */
469 stab->blocks.sort([] (const gdb_block &a, const gdb_block &b)
470 {
471 if (a.begin != b.begin)
472 return a.begin < b.begin;
473
474 return a.end > b.end;
475 });
476
477 cust = allocate_compunit_symtab (objfile, stab->file_name.c_str ());
478 allocate_symtab (cust, stab->file_name.c_str ());
479 add_compunit_symtab_to_objfile (cust);
480
481 /* JIT compilers compile in memory. */
482 COMPUNIT_DIRNAME (cust) = NULL;
483
484 /* Copy over the linetable entry if one was provided. */
485 if (stab->linetable)
486 {
487 size_t size = ((stab->linetable->nitems - 1)
488 * sizeof (struct linetable_entry)
489 + sizeof (struct linetable));
490 SYMTAB_LINETABLE (COMPUNIT_FILETABS (cust))
491 = (struct linetable *) obstack_alloc (&objfile->objfile_obstack, size);
492 memcpy (SYMTAB_LINETABLE (COMPUNIT_FILETABS (cust)),
493 stab->linetable.get (), size);
494 }
495
496 blockvector_size = (sizeof (struct blockvector)
497 + (actual_nblocks - 1) * sizeof (struct block *));
498 bv = (struct blockvector *) obstack_alloc (&objfile->objfile_obstack,
499 blockvector_size);
500 COMPUNIT_BLOCKVECTOR (cust) = bv;
501
502 /* At the end of this function, (begin, end) will contain the PC range this
503 entire blockvector spans. */
504 BLOCKVECTOR_MAP (bv) = NULL;
505 begin = stab->blocks.front ().begin;
506 end = stab->blocks.front ().end;
507 BLOCKVECTOR_NBLOCKS (bv) = actual_nblocks;
508
509 /* First run over all the gdb_block objects, creating a real block
510 object for each. Simultaneously, keep setting the real_block
511 fields. */
512 int block_idx = FIRST_LOCAL_BLOCK;
513 for (gdb_block &gdb_block_iter : stab->blocks)
514 {
515 struct block *new_block = allocate_block (&objfile->objfile_obstack);
516 struct symbol *block_name = new (&objfile->objfile_obstack) symbol;
517 struct type *block_type = arch_type (objfile->arch (),
518 TYPE_CODE_VOID,
519 TARGET_CHAR_BIT,
520 "void");
521
522 BLOCK_MULTIDICT (new_block)
523 = mdict_create_linear (&objfile->objfile_obstack, NULL);
524 /* The address range. */
525 BLOCK_START (new_block) = (CORE_ADDR) gdb_block_iter.begin;
526 BLOCK_END (new_block) = (CORE_ADDR) gdb_block_iter.end;
527
528 /* The name. */
529 SYMBOL_DOMAIN (block_name) = VAR_DOMAIN;
530 SYMBOL_ACLASS_INDEX (block_name) = LOC_BLOCK;
531 symbol_set_symtab (block_name, COMPUNIT_FILETABS (cust));
532 SYMBOL_TYPE (block_name) = lookup_function_type (block_type);
533 SYMBOL_BLOCK_VALUE (block_name) = new_block;
534
535 block_name->m_name = obstack_strdup (&objfile->objfile_obstack,
536 gdb_block_iter.name.get ());
537
538 BLOCK_FUNCTION (new_block) = block_name;
539
540 BLOCKVECTOR_BLOCK (bv, block_idx) = new_block;
541 if (begin > BLOCK_START (new_block))
542 begin = BLOCK_START (new_block);
543 if (end < BLOCK_END (new_block))
544 end = BLOCK_END (new_block);
545
546 gdb_block_iter.real_block = new_block;
547
548 block_idx++;
549 }
550
551 /* Now add the special blocks. */
552 struct block *block_iter = NULL;
553 for (enum block_enum i : { GLOBAL_BLOCK, STATIC_BLOCK })
554 {
555 struct block *new_block;
556
557 new_block = (i == GLOBAL_BLOCK
558 ? allocate_global_block (&objfile->objfile_obstack)
559 : allocate_block (&objfile->objfile_obstack));
560 BLOCK_MULTIDICT (new_block)
561 = mdict_create_linear (&objfile->objfile_obstack, NULL);
562 BLOCK_SUPERBLOCK (new_block) = block_iter;
563 block_iter = new_block;
564
565 BLOCK_START (new_block) = (CORE_ADDR) begin;
566 BLOCK_END (new_block) = (CORE_ADDR) end;
567
568 BLOCKVECTOR_BLOCK (bv, i) = new_block;
569
570 if (i == GLOBAL_BLOCK)
571 set_block_compunit_symtab (new_block, cust);
572 }
573
574 /* Fill up the superblock fields for the real blocks, using the
575 real_block fields populated earlier. */
576 for (gdb_block &gdb_block_iter : stab->blocks)
577 {
578 if (gdb_block_iter.parent != NULL)
579 {
580 /* If the plugin specifically mentioned a parent block, we
581 use that. */
582 BLOCK_SUPERBLOCK (gdb_block_iter.real_block) =
583 gdb_block_iter.parent->real_block;
584 }
585 else
586 {
587 /* And if not, we set a default parent block. */
588 BLOCK_SUPERBLOCK (gdb_block_iter.real_block) =
589 BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
590 }
591 }
592 }
593
594 /* Called when closing a gdb_objfile. Converts OBJ to a proper
595 objfile. */
596
597 static void
598 jit_object_close_impl (struct gdb_symbol_callbacks *cb,
599 struct gdb_object *obj)
600 {
601 struct objfile *objfile;
602 jit_dbg_reader_data *priv_data;
603
604 priv_data = (jit_dbg_reader_data *) cb->priv_data;
605
606 objfile = objfile::make (nullptr, "<< JIT compiled code >>",
607 OBJF_NOT_FILENAME);
608 objfile->per_bfd->gdbarch = target_gdbarch ();
609
610 for (gdb_symtab &symtab : obj->symtabs)
611 finalize_symtab (&symtab, objfile);
612
613 add_objfile_entry (objfile, *priv_data);
614
615 delete obj;
616 }
617
618 /* Try to read CODE_ENTRY using the loaded jit reader (if any).
619 ENTRY_ADDR is the address of the struct jit_code_entry in the
620 inferior address space. */
621
622 static int
623 jit_reader_try_read_symtab (struct jit_code_entry *code_entry,
624 CORE_ADDR entry_addr)
625 {
626 int status;
627 jit_dbg_reader_data priv_data;
628 struct gdb_reader_funcs *funcs;
629 struct gdb_symbol_callbacks callbacks =
630 {
631 jit_object_open_impl,
632 jit_symtab_open_impl,
633 jit_block_open_impl,
634 jit_symtab_close_impl,
635 jit_object_close_impl,
636
637 jit_symtab_line_mapping_add_impl,
638 jit_target_read_impl,
639
640 &priv_data
641 };
642
643 priv_data = entry_addr;
644
645 if (!loaded_jit_reader)
646 return 0;
647
648 gdb::byte_vector gdb_mem (code_entry->symfile_size);
649
650 status = 1;
651 try
652 {
653 if (target_read_memory (code_entry->symfile_addr, gdb_mem.data (),
654 code_entry->symfile_size))
655 status = 0;
656 }
657 catch (const gdb_exception &e)
658 {
659 status = 0;
660 }
661
662 if (status)
663 {
664 funcs = loaded_jit_reader->functions;
665 if (funcs->read (funcs, &callbacks, gdb_mem.data (),
666 code_entry->symfile_size)
667 != GDB_SUCCESS)
668 status = 0;
669 }
670
671 if (jit_debug && status == 0)
672 fprintf_unfiltered (gdb_stdlog,
673 "Could not read symtab using the loaded JIT reader.\n");
674 return status;
675 }
676
677 /* Try to read CODE_ENTRY using BFD. ENTRY_ADDR is the address of the
678 struct jit_code_entry in the inferior address space. */
679
680 static void
681 jit_bfd_try_read_symtab (struct jit_code_entry *code_entry,
682 CORE_ADDR entry_addr,
683 struct gdbarch *gdbarch)
684 {
685 struct bfd_section *sec;
686 struct objfile *objfile;
687 const struct bfd_arch_info *b;
688
689 if (jit_debug)
690 fprintf_unfiltered (gdb_stdlog,
691 "jit_bfd_try_read_symtab, symfile_addr = %s, "
692 "symfile_size = %s\n",
693 paddress (gdbarch, code_entry->symfile_addr),
694 pulongest (code_entry->symfile_size));
695
696 gdb_bfd_ref_ptr nbfd (gdb_bfd_open_from_target_memory
697 (code_entry->symfile_addr, code_entry->symfile_size, gnutarget));
698 if (nbfd == NULL)
699 {
700 puts_unfiltered (_("Error opening JITed symbol file, ignoring it.\n"));
701 return;
702 }
703
704 /* Check the format. NOTE: This initializes important data that GDB uses!
705 We would segfault later without this line. */
706 if (!bfd_check_format (nbfd.get (), bfd_object))
707 {
708 printf_unfiltered (_("\
709 JITed symbol file is not an object file, ignoring it.\n"));
710 return;
711 }
712
713 /* Check bfd arch. */
714 b = gdbarch_bfd_arch_info (gdbarch);
715 if (b->compatible (b, bfd_get_arch_info (nbfd.get ())) != b)
716 warning (_("JITed object file architecture %s is not compatible "
717 "with target architecture %s."),
718 bfd_get_arch_info (nbfd.get ())->printable_name,
719 b->printable_name);
720
721 /* Read the section address information out of the symbol file. Since the
722 file is generated by the JIT at runtime, it should all of the absolute
723 addresses that we care about. */
724 section_addr_info sai;
725 for (sec = nbfd->sections; sec != NULL; sec = sec->next)
726 if ((bfd_section_flags (sec) & (SEC_ALLOC|SEC_LOAD)) != 0)
727 {
728 /* We assume that these virtual addresses are absolute, and do not
729 treat them as offsets. */
730 sai.emplace_back (bfd_section_vma (sec),
731 bfd_section_name (sec),
732 sec->index);
733 }
734
735 /* This call does not take ownership of SAI. */
736 objfile = symbol_file_add_from_bfd (nbfd.get (),
737 bfd_get_filename (nbfd.get ()), 0,
738 &sai,
739 OBJF_SHARED | OBJF_NOT_FILENAME, NULL);
740
741 add_objfile_entry (objfile, entry_addr);
742 }
743
744 /* This function registers code associated with a JIT code entry. It uses the
745 pointer and size pair in the entry to read the symbol file from the remote
746 and then calls symbol_file_add_from_local_memory to add it as though it were
747 a symbol file added by the user. */
748
749 static void
750 jit_register_code (struct gdbarch *gdbarch,
751 CORE_ADDR entry_addr, struct jit_code_entry *code_entry)
752 {
753 int success;
754
755 if (jit_debug)
756 fprintf_unfiltered (gdb_stdlog,
757 "jit_register_code, symfile_addr = %s, "
758 "symfile_size = %s\n",
759 paddress (gdbarch, code_entry->symfile_addr),
760 pulongest (code_entry->symfile_size));
761
762 success = jit_reader_try_read_symtab (code_entry, entry_addr);
763
764 if (!success)
765 jit_bfd_try_read_symtab (code_entry, entry_addr, gdbarch);
766 }
767
768 /* Look up the objfile with this code entry address. */
769
770 static struct objfile *
771 jit_find_objf_with_entry_addr (CORE_ADDR entry_addr)
772 {
773 for (objfile *objf : current_program_space->objfiles ())
774 {
775 if (objf->jited_data != nullptr && objf->jited_data->addr == entry_addr)
776 return objf;
777 }
778
779 return NULL;
780 }
781
782 /* This is called when a breakpoint is deleted. It updates the
783 inferior's cache, if needed. */
784
785 static void
786 jit_breakpoint_deleted (struct breakpoint *b)
787 {
788 if (b->type != bp_jit_event)
789 return;
790
791 for (bp_location *iter = b->loc; iter != nullptr; iter = iter->next)
792 {
793 for (objfile *objf : iter->pspace->objfiles ())
794 {
795 jiter_objfile_data *jiter_data = objf->jiter_data.get ();
796
797 if (jiter_data != nullptr
798 && jiter_data->jit_breakpoint == iter->owner)
799 {
800 jiter_data->cached_code_address = 0;
801 jiter_data->jit_breakpoint = nullptr;
802 }
803 }
804 }
805 }
806
807 /* (Re-)Initialize the jit breakpoints for JIT-producing objfiles in
808 PSPACE. */
809
810 static void
811 jit_breakpoint_re_set_internal (struct gdbarch *gdbarch, program_space *pspace)
812 {
813 for (objfile *the_objfile : pspace->objfiles ())
814 {
815 if (the_objfile->skip_jit_symbol_lookup)
816 continue;
817
818 /* Lookup the registration symbol. If it is missing, then we
819 assume we are not attached to a JIT. */
820 bound_minimal_symbol reg_symbol
821 = lookup_minimal_symbol (jit_break_name, nullptr, the_objfile);
822 if (reg_symbol.minsym == NULL
823 || BMSYMBOL_VALUE_ADDRESS (reg_symbol) == 0)
824 {
825 /* No need to repeat the lookup the next time. */
826 the_objfile->skip_jit_symbol_lookup = true;
827 continue;
828 }
829
830 bound_minimal_symbol desc_symbol
831 = lookup_minimal_symbol (jit_descriptor_name, NULL, the_objfile);
832 if (desc_symbol.minsym == NULL
833 || BMSYMBOL_VALUE_ADDRESS (desc_symbol) == 0)
834 {
835 /* No need to repeat the lookup the next time. */
836 the_objfile->skip_jit_symbol_lookup = true;
837 continue;
838 }
839
840 jiter_objfile_data *objf_data
841 = get_jiter_objfile_data (reg_symbol.objfile);
842 objf_data->register_code = reg_symbol.minsym;
843 objf_data->descriptor = desc_symbol.minsym;
844
845 CORE_ADDR addr = MSYMBOL_VALUE_ADDRESS (the_objfile,
846 objf_data->register_code);
847
848 if (jit_debug)
849 fprintf_unfiltered (gdb_stdlog,
850 "jit_breakpoint_re_set_internal, "
851 "breakpoint_addr = %s\n",
852 paddress (gdbarch, addr));
853
854 /* Check if we need to re-create the breakpoint. */
855 if (objf_data->cached_code_address == addr)
856 continue;
857
858 /* Delete the old breakpoint. */
859 if (objf_data->jit_breakpoint != nullptr)
860 delete_breakpoint (objf_data->jit_breakpoint);
861
862 /* Put a breakpoint in the registration symbol. */
863 objf_data->cached_code_address = addr;
864 objf_data->jit_breakpoint = create_jit_event_breakpoint (gdbarch, addr);
865 }
866 }
867
868 /* The private data passed around in the frame unwind callback
869 functions. */
870
871 struct jit_unwind_private
872 {
873 /* Cached register values. See jit_frame_sniffer to see how this
874 works. */
875 detached_regcache *regcache;
876
877 /* The frame being unwound. */
878 struct frame_info *this_frame;
879 };
880
881 /* Sets the value of a particular register in this frame. */
882
883 static void
884 jit_unwind_reg_set_impl (struct gdb_unwind_callbacks *cb, int dwarf_regnum,
885 struct gdb_reg_value *value)
886 {
887 struct jit_unwind_private *priv;
888 int gdb_reg;
889
890 priv = (struct jit_unwind_private *) cb->priv_data;
891
892 gdb_reg = gdbarch_dwarf2_reg_to_regnum (get_frame_arch (priv->this_frame),
893 dwarf_regnum);
894 if (gdb_reg == -1)
895 {
896 if (jit_debug)
897 fprintf_unfiltered (gdb_stdlog,
898 _("Could not recognize DWARF regnum %d"),
899 dwarf_regnum);
900 value->free (value);
901 return;
902 }
903
904 priv->regcache->raw_supply (gdb_reg, value->value);
905 value->free (value);
906 }
907
908 static void
909 reg_value_free_impl (struct gdb_reg_value *value)
910 {
911 xfree (value);
912 }
913
914 /* Get the value of register REGNUM in the previous frame. */
915
916 static struct gdb_reg_value *
917 jit_unwind_reg_get_impl (struct gdb_unwind_callbacks *cb, int regnum)
918 {
919 struct jit_unwind_private *priv;
920 struct gdb_reg_value *value;
921 int gdb_reg, size;
922 struct gdbarch *frame_arch;
923
924 priv = (struct jit_unwind_private *) cb->priv_data;
925 frame_arch = get_frame_arch (priv->this_frame);
926
927 gdb_reg = gdbarch_dwarf2_reg_to_regnum (frame_arch, regnum);
928 size = register_size (frame_arch, gdb_reg);
929 value = ((struct gdb_reg_value *)
930 xmalloc (sizeof (struct gdb_reg_value) + size - 1));
931 value->defined = deprecated_frame_register_read (priv->this_frame, gdb_reg,
932 value->value);
933 value->size = size;
934 value->free = reg_value_free_impl;
935 return value;
936 }
937
938 /* gdb_reg_value has a free function, which must be called on each
939 saved register value. */
940
941 static void
942 jit_dealloc_cache (struct frame_info *this_frame, void *cache)
943 {
944 struct jit_unwind_private *priv_data = (struct jit_unwind_private *) cache;
945
946 gdb_assert (priv_data->regcache != NULL);
947 delete priv_data->regcache;
948 xfree (priv_data);
949 }
950
951 /* The frame sniffer for the pseudo unwinder.
952
953 While this is nominally a frame sniffer, in the case where the JIT
954 reader actually recognizes the frame, it does a lot more work -- it
955 unwinds the frame and saves the corresponding register values in
956 the cache. jit_frame_prev_register simply returns the saved
957 register values. */
958
959 static int
960 jit_frame_sniffer (const struct frame_unwind *self,
961 struct frame_info *this_frame, void **cache)
962 {
963 struct jit_unwind_private *priv_data;
964 struct gdb_unwind_callbacks callbacks;
965 struct gdb_reader_funcs *funcs;
966
967 callbacks.reg_get = jit_unwind_reg_get_impl;
968 callbacks.reg_set = jit_unwind_reg_set_impl;
969 callbacks.target_read = jit_target_read_impl;
970
971 if (loaded_jit_reader == NULL)
972 return 0;
973
974 funcs = loaded_jit_reader->functions;
975
976 gdb_assert (!*cache);
977
978 *cache = XCNEW (struct jit_unwind_private);
979 priv_data = (struct jit_unwind_private *) *cache;
980 /* Take a snapshot of current regcache. */
981 priv_data->regcache = new detached_regcache (get_frame_arch (this_frame),
982 true);
983 priv_data->this_frame = this_frame;
984
985 callbacks.priv_data = priv_data;
986
987 /* Try to coax the provided unwinder to unwind the stack */
988 if (funcs->unwind (funcs, &callbacks) == GDB_SUCCESS)
989 {
990 if (jit_debug)
991 fprintf_unfiltered (gdb_stdlog, _("Successfully unwound frame using "
992 "JIT reader.\n"));
993 return 1;
994 }
995 if (jit_debug)
996 fprintf_unfiltered (gdb_stdlog, _("Could not unwind frame using "
997 "JIT reader.\n"));
998
999 jit_dealloc_cache (this_frame, *cache);
1000 *cache = NULL;
1001
1002 return 0;
1003 }
1004
1005
1006 /* The frame_id function for the pseudo unwinder. Relays the call to
1007 the loaded plugin. */
1008
1009 static void
1010 jit_frame_this_id (struct frame_info *this_frame, void **cache,
1011 struct frame_id *this_id)
1012 {
1013 struct jit_unwind_private priv;
1014 struct gdb_frame_id frame_id;
1015 struct gdb_reader_funcs *funcs;
1016 struct gdb_unwind_callbacks callbacks;
1017
1018 priv.regcache = NULL;
1019 priv.this_frame = this_frame;
1020
1021 /* We don't expect the frame_id function to set any registers, so we
1022 set reg_set to NULL. */
1023 callbacks.reg_get = jit_unwind_reg_get_impl;
1024 callbacks.reg_set = NULL;
1025 callbacks.target_read = jit_target_read_impl;
1026 callbacks.priv_data = &priv;
1027
1028 gdb_assert (loaded_jit_reader);
1029 funcs = loaded_jit_reader->functions;
1030
1031 frame_id = funcs->get_frame_id (funcs, &callbacks);
1032 *this_id = frame_id_build (frame_id.stack_address, frame_id.code_address);
1033 }
1034
1035 /* Pseudo unwinder function. Reads the previously fetched value for
1036 the register from the cache. */
1037
1038 static struct value *
1039 jit_frame_prev_register (struct frame_info *this_frame, void **cache, int reg)
1040 {
1041 struct jit_unwind_private *priv = (struct jit_unwind_private *) *cache;
1042 struct gdbarch *gdbarch;
1043
1044 if (priv == NULL)
1045 return frame_unwind_got_optimized (this_frame, reg);
1046
1047 gdbarch = priv->regcache->arch ();
1048 gdb_byte *buf = (gdb_byte *) alloca (register_size (gdbarch, reg));
1049 enum register_status status = priv->regcache->cooked_read (reg, buf);
1050
1051 if (status == REG_VALID)
1052 return frame_unwind_got_bytes (this_frame, reg, buf);
1053 else
1054 return frame_unwind_got_optimized (this_frame, reg);
1055 }
1056
1057 /* Relay everything back to the unwinder registered by the JIT debug
1058 info reader.*/
1059
1060 static const struct frame_unwind jit_frame_unwind =
1061 {
1062 NORMAL_FRAME,
1063 default_frame_unwind_stop_reason,
1064 jit_frame_this_id,
1065 jit_frame_prev_register,
1066 NULL,
1067 jit_frame_sniffer,
1068 jit_dealloc_cache
1069 };
1070
1071
1072 /* This is the information that is stored at jit_gdbarch_data for each
1073 architecture. */
1074
1075 struct jit_gdbarch_data_type
1076 {
1077 /* Has the (pseudo) unwinder been prepended? */
1078 int unwinder_registered;
1079 };
1080
1081 /* Check GDBARCH and prepend the pseudo JIT unwinder if needed. */
1082
1083 static void
1084 jit_prepend_unwinder (struct gdbarch *gdbarch)
1085 {
1086 struct jit_gdbarch_data_type *data;
1087
1088 data
1089 = (struct jit_gdbarch_data_type *) gdbarch_data (gdbarch, jit_gdbarch_data);
1090 if (!data->unwinder_registered)
1091 {
1092 frame_unwind_prepend_unwinder (gdbarch, &jit_frame_unwind);
1093 data->unwinder_registered = 1;
1094 }
1095 }
1096
1097 /* Register any already created translations. */
1098
1099 static void
1100 jit_inferior_init (inferior *inf)
1101 {
1102 struct jit_descriptor descriptor;
1103 struct jit_code_entry cur_entry;
1104 CORE_ADDR cur_entry_addr;
1105 struct gdbarch *gdbarch = inf->gdbarch;
1106 program_space *pspace = inf->pspace;
1107
1108 if (jit_debug)
1109 fprintf_unfiltered (gdb_stdlog, "jit_inferior_init\n");
1110
1111 jit_prepend_unwinder (gdbarch);
1112
1113 jit_breakpoint_re_set_internal (gdbarch, pspace);
1114
1115 for (objfile *jiter : pspace->objfiles ())
1116 {
1117 if (jiter->jiter_data == nullptr)
1118 continue;
1119
1120 /* Read the descriptor so we can check the version number and load
1121 any already JITed functions. */
1122 if (!jit_read_descriptor (gdbarch, &descriptor, jiter))
1123 continue;
1124
1125 /* Check that the version number agrees with that we support. */
1126 if (descriptor.version != 1)
1127 {
1128 printf_unfiltered (_("Unsupported JIT protocol version %ld "
1129 "in descriptor (expected 1)\n"),
1130 (long) descriptor.version);
1131 continue;
1132 }
1133
1134 /* If we've attached to a running program, we need to check the
1135 descriptor to register any functions that were already
1136 generated. */
1137 for (cur_entry_addr = descriptor.first_entry;
1138 cur_entry_addr != 0;
1139 cur_entry_addr = cur_entry.next_entry)
1140 {
1141 jit_read_code_entry (gdbarch, cur_entry_addr, &cur_entry);
1142
1143 /* This hook may be called many times during setup, so make sure
1144 we don't add the same symbol file twice. */
1145 if (jit_find_objf_with_entry_addr (cur_entry_addr) != NULL)
1146 continue;
1147
1148 jit_register_code (gdbarch, cur_entry_addr, &cur_entry);
1149 }
1150 }
1151 }
1152
1153 /* Looks for the descriptor and registration symbols and breakpoints
1154 the registration function. If it finds both, it registers all the
1155 already JITed code. If it has already found the symbols, then it
1156 doesn't try again. */
1157
1158 static void
1159 jit_inferior_created_hook (inferior *inf)
1160 {
1161 jit_inferior_init (inf);
1162 }
1163
1164 /* Exported routine to call to re-set the jit breakpoints,
1165 e.g. when a program is rerun. */
1166
1167 void
1168 jit_breakpoint_re_set (void)
1169 {
1170 jit_breakpoint_re_set_internal (target_gdbarch (), current_program_space);
1171 }
1172
1173 /* This function cleans up any code entries left over when the
1174 inferior exits. We get left over code when the inferior exits
1175 without unregistering its code, for example when it crashes. */
1176
1177 static void
1178 jit_inferior_exit_hook (struct inferior *inf)
1179 {
1180 for (objfile *objf : current_program_space->objfiles_safe ())
1181 {
1182 if (objf->jited_data != nullptr && objf->jited_data->addr != 0)
1183 objf->unlink ();
1184 }
1185 }
1186
1187 void
1188 jit_event_handler (gdbarch *gdbarch, objfile *jiter)
1189 {
1190 struct jit_descriptor descriptor;
1191
1192 /* If we get a JIT breakpoint event for this objfile, it is necessarily a
1193 JITer. */
1194 gdb_assert (jiter->jiter_data != nullptr);
1195
1196 /* Read the descriptor from remote memory. */
1197 if (!jit_read_descriptor (gdbarch, &descriptor, jiter))
1198 return;
1199 CORE_ADDR entry_addr = descriptor.relevant_entry;
1200
1201 /* Do the corresponding action. */
1202 switch (descriptor.action_flag)
1203 {
1204 case JIT_NOACTION:
1205 break;
1206
1207 case JIT_REGISTER:
1208 {
1209 jit_code_entry code_entry;
1210 jit_read_code_entry (gdbarch, entry_addr, &code_entry);
1211 jit_register_code (gdbarch, entry_addr, &code_entry);
1212 break;
1213 }
1214
1215 case JIT_UNREGISTER:
1216 {
1217 objfile *jited = jit_find_objf_with_entry_addr (entry_addr);
1218 if (jited == nullptr)
1219 printf_unfiltered (_("Unable to find JITed code "
1220 "entry at address: %s\n"),
1221 paddress (gdbarch, entry_addr));
1222 else
1223 jited->unlink ();
1224
1225 break;
1226 }
1227
1228 default:
1229 error (_("Unknown action_flag value in JIT descriptor!"));
1230 break;
1231 }
1232 }
1233
1234 /* Initialize the jit_gdbarch_data slot with an instance of struct
1235 jit_gdbarch_data_type */
1236
1237 static void *
1238 jit_gdbarch_data_init (struct obstack *obstack)
1239 {
1240 struct jit_gdbarch_data_type *data =
1241 XOBNEW (obstack, struct jit_gdbarch_data_type);
1242
1243 data->unwinder_registered = 0;
1244
1245 return data;
1246 }
1247
1248 void _initialize_jit ();
1249 void
1250 _initialize_jit ()
1251 {
1252 jit_reader_dir = relocate_gdb_directory (JIT_READER_DIR,
1253 JIT_READER_DIR_RELOCATABLE);
1254 add_setshow_zuinteger_cmd ("jit", class_maintenance, &jit_debug,
1255 _("Set JIT debugging."),
1256 _("Show JIT debugging."),
1257 _("When non-zero, JIT debugging is enabled."),
1258 NULL,
1259 show_jit_debug,
1260 &setdebuglist, &showdebuglist);
1261
1262 gdb::observers::inferior_created.attach (jit_inferior_created_hook);
1263 gdb::observers::inferior_execd.attach (jit_inferior_created_hook);
1264 gdb::observers::inferior_exit.attach (jit_inferior_exit_hook);
1265 gdb::observers::breakpoint_deleted.attach (jit_breakpoint_deleted);
1266
1267 jit_gdbarch_data = gdbarch_data_register_pre_init (jit_gdbarch_data_init);
1268 if (is_dl_available ())
1269 {
1270 struct cmd_list_element *c;
1271
1272 c = add_com ("jit-reader-load", no_class, jit_reader_load_command, _("\
1273 Load FILE as debug info reader and unwinder for JIT compiled code.\n\
1274 Usage: jit-reader-load FILE\n\
1275 Try to load file FILE as a debug info reader (and unwinder) for\n\
1276 JIT compiled code. The file is loaded from " JIT_READER_DIR ",\n\
1277 relocated relative to the GDB executable if required."));
1278 set_cmd_completer (c, filename_completer);
1279
1280 c = add_com ("jit-reader-unload", no_class,
1281 jit_reader_unload_command, _("\
1282 Unload the currently loaded JIT debug info reader.\n\
1283 Usage: jit-reader-unload\n\n\
1284 Do \"help jit-reader-load\" for info on loading debug info readers."));
1285 set_cmd_completer (c, noop_completer);
1286 }
1287 }