5a82d2332df40c18a5bcb04e7c2d2a3297f95e77
[binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdb_wait.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "nat/linux-ptrace.h"
34 #include "nat/linux-procfs.h"
35 #include "linux-fork.h"
36 #include "gdbthread.h"
37 #include "gdbcmd.h"
38 #include "regcache.h"
39 #include "regset.h"
40 #include "inf-child.h"
41 #include "inf-ptrace.h"
42 #include "auxv.h"
43 #include <sys/procfs.h> /* for elf_gregset etc. */
44 #include "elf-bfd.h" /* for elfcore_write_* */
45 #include "gregset.h" /* for gregset */
46 #include "gdbcore.h" /* for get_exec_file */
47 #include <ctype.h> /* for isdigit */
48 #include <sys/stat.h> /* for struct stat */
49 #include <fcntl.h> /* for O_RDONLY */
50 #include "inf-loop.h"
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include <pwd.h>
54 #include <sys/types.h>
55 #include <dirent.h>
56 #include "xml-support.h"
57 #include "terminal.h"
58 #include <sys/vfs.h>
59 #include "solib.h"
60 #include "nat/linux-osdata.h"
61 #include "linux-tdep.h"
62 #include "symfile.h"
63 #include "agent.h"
64 #include "tracepoint.h"
65 #include "exceptions.h"
66 #include "buffer.h"
67 #include "target-descriptions.h"
68 #include "filestuff.h"
69 #include "objfiles.h"
70
71 #ifndef SPUFS_MAGIC
72 #define SPUFS_MAGIC 0x23c9b64e
73 #endif
74
75 #ifdef HAVE_PERSONALITY
76 # include <sys/personality.h>
77 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
78 # define ADDR_NO_RANDOMIZE 0x0040000
79 # endif
80 #endif /* HAVE_PERSONALITY */
81
82 /* This comment documents high-level logic of this file.
83
84 Waiting for events in sync mode
85 ===============================
86
87 When waiting for an event in a specific thread, we just use waitpid, passing
88 the specific pid, and not passing WNOHANG.
89
90 When waiting for an event in all threads, waitpid is not quite good. Prior to
91 version 2.4, Linux can either wait for event in main thread, or in secondary
92 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
93 miss an event. The solution is to use non-blocking waitpid, together with
94 sigsuspend. First, we use non-blocking waitpid to get an event in the main
95 process, if any. Second, we use non-blocking waitpid with the __WCLONED
96 flag to check for events in cloned processes. If nothing is found, we use
97 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
98 happened to a child process -- and SIGCHLD will be delivered both for events
99 in main debugged process and in cloned processes. As soon as we know there's
100 an event, we get back to calling nonblocking waitpid with and without
101 __WCLONED.
102
103 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
104 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
105 blocked, the signal becomes pending and sigsuspend immediately
106 notices it and returns.
107
108 Waiting for events in async mode
109 ================================
110
111 In async mode, GDB should always be ready to handle both user input
112 and target events, so neither blocking waitpid nor sigsuspend are
113 viable options. Instead, we should asynchronously notify the GDB main
114 event loop whenever there's an unprocessed event from the target. We
115 detect asynchronous target events by handling SIGCHLD signals. To
116 notify the event loop about target events, the self-pipe trick is used
117 --- a pipe is registered as waitable event source in the event loop,
118 the event loop select/poll's on the read end of this pipe (as well on
119 other event sources, e.g., stdin), and the SIGCHLD handler writes a
120 byte to this pipe. This is more portable than relying on
121 pselect/ppoll, since on kernels that lack those syscalls, libc
122 emulates them with select/poll+sigprocmask, and that is racy
123 (a.k.a. plain broken).
124
125 Obviously, if we fail to notify the event loop if there's a target
126 event, it's bad. OTOH, if we notify the event loop when there's no
127 event from the target, linux_nat_wait will detect that there's no real
128 event to report, and return event of type TARGET_WAITKIND_IGNORE.
129 This is mostly harmless, but it will waste time and is better avoided.
130
131 The main design point is that every time GDB is outside linux-nat.c,
132 we have a SIGCHLD handler installed that is called when something
133 happens to the target and notifies the GDB event loop. Whenever GDB
134 core decides to handle the event, and calls into linux-nat.c, we
135 process things as in sync mode, except that the we never block in
136 sigsuspend.
137
138 While processing an event, we may end up momentarily blocked in
139 waitpid calls. Those waitpid calls, while blocking, are guarantied to
140 return quickly. E.g., in all-stop mode, before reporting to the core
141 that an LWP hit a breakpoint, all LWPs are stopped by sending them
142 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
143 Note that this is different from blocking indefinitely waiting for the
144 next event --- here, we're already handling an event.
145
146 Use of signals
147 ==============
148
149 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
150 signal is not entirely significant; we just need for a signal to be delivered,
151 so that we can intercept it. SIGSTOP's advantage is that it can not be
152 blocked. A disadvantage is that it is not a real-time signal, so it can only
153 be queued once; we do not keep track of other sources of SIGSTOP.
154
155 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
156 use them, because they have special behavior when the signal is generated -
157 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
158 kills the entire thread group.
159
160 A delivered SIGSTOP would stop the entire thread group, not just the thread we
161 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
162 cancel it (by PTRACE_CONT without passing SIGSTOP).
163
164 We could use a real-time signal instead. This would solve those problems; we
165 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
166 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
167 generates it, and there are races with trying to find a signal that is not
168 blocked. */
169
170 #ifndef O_LARGEFILE
171 #define O_LARGEFILE 0
172 #endif
173
174 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
175 the use of the multi-threaded target. */
176 static struct target_ops *linux_ops;
177 static struct target_ops linux_ops_saved;
178
179 /* The method to call, if any, when a new thread is attached. */
180 static void (*linux_nat_new_thread) (struct lwp_info *);
181
182 /* The method to call, if any, when a new fork is attached. */
183 static linux_nat_new_fork_ftype *linux_nat_new_fork;
184
185 /* The method to call, if any, when a process is no longer
186 attached. */
187 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
188
189 /* Hook to call prior to resuming a thread. */
190 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
191
192 /* The method to call, if any, when the siginfo object needs to be
193 converted between the layout returned by ptrace, and the layout in
194 the architecture of the inferior. */
195 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
196 gdb_byte *,
197 int);
198
199 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
200 Called by our to_xfer_partial. */
201 static target_xfer_partial_ftype *super_xfer_partial;
202
203 /* The saved to_close method, inherited from inf-ptrace.c.
204 Called by our to_close. */
205 static void (*super_close) (struct target_ops *);
206
207 static unsigned int debug_linux_nat;
208 static void
209 show_debug_linux_nat (struct ui_file *file, int from_tty,
210 struct cmd_list_element *c, const char *value)
211 {
212 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
213 value);
214 }
215
216 struct simple_pid_list
217 {
218 int pid;
219 int status;
220 struct simple_pid_list *next;
221 };
222 struct simple_pid_list *stopped_pids;
223
224 /* Async mode support. */
225
226 /* The read/write ends of the pipe registered as waitable file in the
227 event loop. */
228 static int linux_nat_event_pipe[2] = { -1, -1 };
229
230 /* Flush the event pipe. */
231
232 static void
233 async_file_flush (void)
234 {
235 int ret;
236 char buf;
237
238 do
239 {
240 ret = read (linux_nat_event_pipe[0], &buf, 1);
241 }
242 while (ret >= 0 || (ret == -1 && errno == EINTR));
243 }
244
245 /* Put something (anything, doesn't matter what, or how much) in event
246 pipe, so that the select/poll in the event-loop realizes we have
247 something to process. */
248
249 static void
250 async_file_mark (void)
251 {
252 int ret;
253
254 /* It doesn't really matter what the pipe contains, as long we end
255 up with something in it. Might as well flush the previous
256 left-overs. */
257 async_file_flush ();
258
259 do
260 {
261 ret = write (linux_nat_event_pipe[1], "+", 1);
262 }
263 while (ret == -1 && errno == EINTR);
264
265 /* Ignore EAGAIN. If the pipe is full, the event loop will already
266 be awakened anyway. */
267 }
268
269 static int kill_lwp (int lwpid, int signo);
270
271 static int stop_callback (struct lwp_info *lp, void *data);
272
273 static void block_child_signals (sigset_t *prev_mask);
274 static void restore_child_signals_mask (sigset_t *prev_mask);
275
276 struct lwp_info;
277 static struct lwp_info *add_lwp (ptid_t ptid);
278 static void purge_lwp_list (int pid);
279 static void delete_lwp (ptid_t ptid);
280 static struct lwp_info *find_lwp_pid (ptid_t ptid);
281
282 \f
283 /* Trivial list manipulation functions to keep track of a list of
284 new stopped processes. */
285 static void
286 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
287 {
288 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
289
290 new_pid->pid = pid;
291 new_pid->status = status;
292 new_pid->next = *listp;
293 *listp = new_pid;
294 }
295
296 static int
297 in_pid_list_p (struct simple_pid_list *list, int pid)
298 {
299 struct simple_pid_list *p;
300
301 for (p = list; p != NULL; p = p->next)
302 if (p->pid == pid)
303 return 1;
304 return 0;
305 }
306
307 static int
308 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
309 {
310 struct simple_pid_list **p;
311
312 for (p = listp; *p != NULL; p = &(*p)->next)
313 if ((*p)->pid == pid)
314 {
315 struct simple_pid_list *next = (*p)->next;
316
317 *statusp = (*p)->status;
318 xfree (*p);
319 *p = next;
320 return 1;
321 }
322 return 0;
323 }
324
325 /* Initialize ptrace warnings and check for supported ptrace
326 features given PID. */
327
328 static void
329 linux_init_ptrace (pid_t pid)
330 {
331 linux_enable_event_reporting (pid);
332 linux_ptrace_init_warnings ();
333 }
334
335 static void
336 linux_child_post_attach (struct target_ops *self, int pid)
337 {
338 linux_init_ptrace (pid);
339 }
340
341 static void
342 linux_child_post_startup_inferior (struct target_ops *self, ptid_t ptid)
343 {
344 linux_init_ptrace (ptid_get_pid (ptid));
345 }
346
347 /* Return the number of known LWPs in the tgid given by PID. */
348
349 static int
350 num_lwps (int pid)
351 {
352 int count = 0;
353 struct lwp_info *lp;
354
355 for (lp = lwp_list; lp; lp = lp->next)
356 if (ptid_get_pid (lp->ptid) == pid)
357 count++;
358
359 return count;
360 }
361
362 /* Call delete_lwp with prototype compatible for make_cleanup. */
363
364 static void
365 delete_lwp_cleanup (void *lp_voidp)
366 {
367 struct lwp_info *lp = lp_voidp;
368
369 delete_lwp (lp->ptid);
370 }
371
372 static int
373 linux_child_follow_fork (struct target_ops *ops, int follow_child,
374 int detach_fork)
375 {
376 int has_vforked;
377 int parent_pid, child_pid;
378
379 has_vforked = (inferior_thread ()->pending_follow.kind
380 == TARGET_WAITKIND_VFORKED);
381 parent_pid = ptid_get_lwp (inferior_ptid);
382 if (parent_pid == 0)
383 parent_pid = ptid_get_pid (inferior_ptid);
384 child_pid
385 = ptid_get_pid (inferior_thread ()->pending_follow.value.related_pid);
386
387 if (has_vforked
388 && !non_stop /* Non-stop always resumes both branches. */
389 && (!target_is_async_p () || sync_execution)
390 && !(follow_child || detach_fork || sched_multi))
391 {
392 /* The parent stays blocked inside the vfork syscall until the
393 child execs or exits. If we don't let the child run, then
394 the parent stays blocked. If we're telling the parent to run
395 in the foreground, the user will not be able to ctrl-c to get
396 back the terminal, effectively hanging the debug session. */
397 fprintf_filtered (gdb_stderr, _("\
398 Can not resume the parent process over vfork in the foreground while\n\
399 holding the child stopped. Try \"set detach-on-fork\" or \
400 \"set schedule-multiple\".\n"));
401 /* FIXME output string > 80 columns. */
402 return 1;
403 }
404
405 if (! follow_child)
406 {
407 struct lwp_info *child_lp = NULL;
408
409 /* We're already attached to the parent, by default. */
410
411 /* Detach new forked process? */
412 if (detach_fork)
413 {
414 struct cleanup *old_chain;
415 int status = W_STOPCODE (0);
416
417 /* Before detaching from the child, remove all breakpoints
418 from it. If we forked, then this has already been taken
419 care of by infrun.c. If we vforked however, any
420 breakpoint inserted in the parent is visible in the
421 child, even those added while stopped in a vfork
422 catchpoint. This will remove the breakpoints from the
423 parent also, but they'll be reinserted below. */
424 if (has_vforked)
425 {
426 /* keep breakpoints list in sync. */
427 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
428 }
429
430 if (info_verbose || debug_linux_nat)
431 {
432 target_terminal_ours ();
433 fprintf_filtered (gdb_stdlog,
434 "Detaching after fork from "
435 "child process %d.\n",
436 child_pid);
437 }
438
439 old_chain = save_inferior_ptid ();
440 inferior_ptid = ptid_build (child_pid, child_pid, 0);
441
442 child_lp = add_lwp (inferior_ptid);
443 child_lp->stopped = 1;
444 child_lp->last_resume_kind = resume_stop;
445 make_cleanup (delete_lwp_cleanup, child_lp);
446
447 if (linux_nat_prepare_to_resume != NULL)
448 linux_nat_prepare_to_resume (child_lp);
449
450 /* When debugging an inferior in an architecture that supports
451 hardware single stepping on a kernel without commit
452 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
453 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
454 set if the parent process had them set.
455 To work around this, single step the child process
456 once before detaching to clear the flags. */
457
458 if (!gdbarch_software_single_step_p (target_thread_architecture
459 (child_lp->ptid)))
460 {
461 linux_disable_event_reporting (child_pid);
462 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
463 perror_with_name (_("Couldn't do single step"));
464 if (my_waitpid (child_pid, &status, 0) < 0)
465 perror_with_name (_("Couldn't wait vfork process"));
466 }
467
468 if (WIFSTOPPED (status))
469 {
470 int signo;
471
472 signo = WSTOPSIG (status);
473 if (signo != 0
474 && !signal_pass_state (gdb_signal_from_host (signo)))
475 signo = 0;
476 ptrace (PTRACE_DETACH, child_pid, 0, signo);
477 }
478
479 do_cleanups (old_chain);
480 }
481 else
482 {
483 struct inferior *parent_inf, *child_inf;
484 struct cleanup *old_chain;
485
486 /* Add process to GDB's tables. */
487 child_inf = add_inferior (child_pid);
488
489 parent_inf = current_inferior ();
490 child_inf->attach_flag = parent_inf->attach_flag;
491 copy_terminal_info (child_inf, parent_inf);
492 child_inf->gdbarch = parent_inf->gdbarch;
493 copy_inferior_target_desc_info (child_inf, parent_inf);
494
495 old_chain = save_inferior_ptid ();
496 save_current_program_space ();
497
498 inferior_ptid = ptid_build (child_pid, child_pid, 0);
499 add_thread (inferior_ptid);
500 child_lp = add_lwp (inferior_ptid);
501 child_lp->stopped = 1;
502 child_lp->last_resume_kind = resume_stop;
503 child_inf->symfile_flags = SYMFILE_NO_READ;
504
505 /* If this is a vfork child, then the address-space is
506 shared with the parent. */
507 if (has_vforked)
508 {
509 child_inf->pspace = parent_inf->pspace;
510 child_inf->aspace = parent_inf->aspace;
511
512 /* The parent will be frozen until the child is done
513 with the shared region. Keep track of the
514 parent. */
515 child_inf->vfork_parent = parent_inf;
516 child_inf->pending_detach = 0;
517 parent_inf->vfork_child = child_inf;
518 parent_inf->pending_detach = 0;
519 }
520 else
521 {
522 child_inf->aspace = new_address_space ();
523 child_inf->pspace = add_program_space (child_inf->aspace);
524 child_inf->removable = 1;
525 set_current_program_space (child_inf->pspace);
526 clone_program_space (child_inf->pspace, parent_inf->pspace);
527
528 /* Let the shared library layer (solib-svr4) learn about
529 this new process, relocate the cloned exec, pull in
530 shared libraries, and install the solib event
531 breakpoint. If a "cloned-VM" event was propagated
532 better throughout the core, this wouldn't be
533 required. */
534 solib_create_inferior_hook (0);
535 }
536
537 /* Let the thread_db layer learn about this new process. */
538 check_for_thread_db ();
539
540 do_cleanups (old_chain);
541 }
542
543 if (has_vforked)
544 {
545 struct lwp_info *parent_lp;
546 struct inferior *parent_inf;
547
548 parent_inf = current_inferior ();
549
550 /* If we detached from the child, then we have to be careful
551 to not insert breakpoints in the parent until the child
552 is done with the shared memory region. However, if we're
553 staying attached to the child, then we can and should
554 insert breakpoints, so that we can debug it. A
555 subsequent child exec or exit is enough to know when does
556 the child stops using the parent's address space. */
557 parent_inf->waiting_for_vfork_done = detach_fork;
558 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
559
560 parent_lp = find_lwp_pid (pid_to_ptid (parent_pid));
561 gdb_assert (linux_supports_tracefork () >= 0);
562
563 if (linux_supports_tracevforkdone ())
564 {
565 if (debug_linux_nat)
566 fprintf_unfiltered (gdb_stdlog,
567 "LCFF: waiting for VFORK_DONE on %d\n",
568 parent_pid);
569 parent_lp->stopped = 1;
570
571 /* We'll handle the VFORK_DONE event like any other
572 event, in target_wait. */
573 }
574 else
575 {
576 /* We can't insert breakpoints until the child has
577 finished with the shared memory region. We need to
578 wait until that happens. Ideal would be to just
579 call:
580 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
581 - waitpid (parent_pid, &status, __WALL);
582 However, most architectures can't handle a syscall
583 being traced on the way out if it wasn't traced on
584 the way in.
585
586 We might also think to loop, continuing the child
587 until it exits or gets a SIGTRAP. One problem is
588 that the child might call ptrace with PTRACE_TRACEME.
589
590 There's no simple and reliable way to figure out when
591 the vforked child will be done with its copy of the
592 shared memory. We could step it out of the syscall,
593 two instructions, let it go, and then single-step the
594 parent once. When we have hardware single-step, this
595 would work; with software single-step it could still
596 be made to work but we'd have to be able to insert
597 single-step breakpoints in the child, and we'd have
598 to insert -just- the single-step breakpoint in the
599 parent. Very awkward.
600
601 In the end, the best we can do is to make sure it
602 runs for a little while. Hopefully it will be out of
603 range of any breakpoints we reinsert. Usually this
604 is only the single-step breakpoint at vfork's return
605 point. */
606
607 if (debug_linux_nat)
608 fprintf_unfiltered (gdb_stdlog,
609 "LCFF: no VFORK_DONE "
610 "support, sleeping a bit\n");
611
612 usleep (10000);
613
614 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
615 and leave it pending. The next linux_nat_resume call
616 will notice a pending event, and bypasses actually
617 resuming the inferior. */
618 parent_lp->status = 0;
619 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
620 parent_lp->stopped = 1;
621
622 /* If we're in async mode, need to tell the event loop
623 there's something here to process. */
624 if (target_can_async_p ())
625 async_file_mark ();
626 }
627 }
628 }
629 else
630 {
631 struct inferior *parent_inf, *child_inf;
632 struct lwp_info *child_lp;
633 struct program_space *parent_pspace;
634
635 if (info_verbose || debug_linux_nat)
636 {
637 target_terminal_ours ();
638 if (has_vforked)
639 fprintf_filtered (gdb_stdlog,
640 _("Attaching after process %d "
641 "vfork to child process %d.\n"),
642 parent_pid, child_pid);
643 else
644 fprintf_filtered (gdb_stdlog,
645 _("Attaching after process %d "
646 "fork to child process %d.\n"),
647 parent_pid, child_pid);
648 }
649
650 /* Add the new inferior first, so that the target_detach below
651 doesn't unpush the target. */
652
653 child_inf = add_inferior (child_pid);
654
655 parent_inf = current_inferior ();
656 child_inf->attach_flag = parent_inf->attach_flag;
657 copy_terminal_info (child_inf, parent_inf);
658 child_inf->gdbarch = parent_inf->gdbarch;
659 copy_inferior_target_desc_info (child_inf, parent_inf);
660
661 parent_pspace = parent_inf->pspace;
662
663 /* If we're vforking, we want to hold on to the parent until the
664 child exits or execs. At child exec or exit time we can
665 remove the old breakpoints from the parent and detach or
666 resume debugging it. Otherwise, detach the parent now; we'll
667 want to reuse it's program/address spaces, but we can't set
668 them to the child before removing breakpoints from the
669 parent, otherwise, the breakpoints module could decide to
670 remove breakpoints from the wrong process (since they'd be
671 assigned to the same address space). */
672
673 if (has_vforked)
674 {
675 gdb_assert (child_inf->vfork_parent == NULL);
676 gdb_assert (parent_inf->vfork_child == NULL);
677 child_inf->vfork_parent = parent_inf;
678 child_inf->pending_detach = 0;
679 parent_inf->vfork_child = child_inf;
680 parent_inf->pending_detach = detach_fork;
681 parent_inf->waiting_for_vfork_done = 0;
682 }
683 else if (detach_fork)
684 target_detach (NULL, 0);
685
686 /* Note that the detach above makes PARENT_INF dangling. */
687
688 /* Add the child thread to the appropriate lists, and switch to
689 this new thread, before cloning the program space, and
690 informing the solib layer about this new process. */
691
692 inferior_ptid = ptid_build (child_pid, child_pid, 0);
693 add_thread (inferior_ptid);
694 child_lp = add_lwp (inferior_ptid);
695 child_lp->stopped = 1;
696 child_lp->last_resume_kind = resume_stop;
697
698 /* If this is a vfork child, then the address-space is shared
699 with the parent. If we detached from the parent, then we can
700 reuse the parent's program/address spaces. */
701 if (has_vforked || detach_fork)
702 {
703 child_inf->pspace = parent_pspace;
704 child_inf->aspace = child_inf->pspace->aspace;
705 }
706 else
707 {
708 child_inf->aspace = new_address_space ();
709 child_inf->pspace = add_program_space (child_inf->aspace);
710 child_inf->removable = 1;
711 child_inf->symfile_flags = SYMFILE_NO_READ;
712 set_current_program_space (child_inf->pspace);
713 clone_program_space (child_inf->pspace, parent_pspace);
714
715 /* Let the shared library layer (solib-svr4) learn about
716 this new process, relocate the cloned exec, pull in
717 shared libraries, and install the solib event breakpoint.
718 If a "cloned-VM" event was propagated better throughout
719 the core, this wouldn't be required. */
720 solib_create_inferior_hook (0);
721 }
722
723 /* Let the thread_db layer learn about this new process. */
724 check_for_thread_db ();
725 }
726
727 return 0;
728 }
729
730 \f
731 static int
732 linux_child_insert_fork_catchpoint (struct target_ops *self, int pid)
733 {
734 return !linux_supports_tracefork ();
735 }
736
737 static int
738 linux_child_remove_fork_catchpoint (struct target_ops *self, int pid)
739 {
740 return 0;
741 }
742
743 static int
744 linux_child_insert_vfork_catchpoint (struct target_ops *self, int pid)
745 {
746 return !linux_supports_tracefork ();
747 }
748
749 static int
750 linux_child_remove_vfork_catchpoint (struct target_ops *self, int pid)
751 {
752 return 0;
753 }
754
755 static int
756 linux_child_insert_exec_catchpoint (struct target_ops *self, int pid)
757 {
758 return !linux_supports_tracefork ();
759 }
760
761 static int
762 linux_child_remove_exec_catchpoint (struct target_ops *self, int pid)
763 {
764 return 0;
765 }
766
767 static int
768 linux_child_set_syscall_catchpoint (struct target_ops *self,
769 int pid, int needed, int any_count,
770 int table_size, int *table)
771 {
772 if (!linux_supports_tracesysgood ())
773 return 1;
774
775 /* On GNU/Linux, we ignore the arguments. It means that we only
776 enable the syscall catchpoints, but do not disable them.
777
778 Also, we do not use the `table' information because we do not
779 filter system calls here. We let GDB do the logic for us. */
780 return 0;
781 }
782
783 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
784 are processes sharing the same VM space. A multi-threaded process
785 is basically a group of such processes. However, such a grouping
786 is almost entirely a user-space issue; the kernel doesn't enforce
787 such a grouping at all (this might change in the future). In
788 general, we'll rely on the threads library (i.e. the GNU/Linux
789 Threads library) to provide such a grouping.
790
791 It is perfectly well possible to write a multi-threaded application
792 without the assistance of a threads library, by using the clone
793 system call directly. This module should be able to give some
794 rudimentary support for debugging such applications if developers
795 specify the CLONE_PTRACE flag in the clone system call, and are
796 using the Linux kernel 2.4 or above.
797
798 Note that there are some peculiarities in GNU/Linux that affect
799 this code:
800
801 - In general one should specify the __WCLONE flag to waitpid in
802 order to make it report events for any of the cloned processes
803 (and leave it out for the initial process). However, if a cloned
804 process has exited the exit status is only reported if the
805 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
806 we cannot use it since GDB must work on older systems too.
807
808 - When a traced, cloned process exits and is waited for by the
809 debugger, the kernel reassigns it to the original parent and
810 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
811 library doesn't notice this, which leads to the "zombie problem":
812 When debugged a multi-threaded process that spawns a lot of
813 threads will run out of processes, even if the threads exit,
814 because the "zombies" stay around. */
815
816 /* List of known LWPs. */
817 struct lwp_info *lwp_list;
818 \f
819
820 /* Original signal mask. */
821 static sigset_t normal_mask;
822
823 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
824 _initialize_linux_nat. */
825 static sigset_t suspend_mask;
826
827 /* Signals to block to make that sigsuspend work. */
828 static sigset_t blocked_mask;
829
830 /* SIGCHLD action. */
831 struct sigaction sigchld_action;
832
833 /* Block child signals (SIGCHLD and linux threads signals), and store
834 the previous mask in PREV_MASK. */
835
836 static void
837 block_child_signals (sigset_t *prev_mask)
838 {
839 /* Make sure SIGCHLD is blocked. */
840 if (!sigismember (&blocked_mask, SIGCHLD))
841 sigaddset (&blocked_mask, SIGCHLD);
842
843 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
844 }
845
846 /* Restore child signals mask, previously returned by
847 block_child_signals. */
848
849 static void
850 restore_child_signals_mask (sigset_t *prev_mask)
851 {
852 sigprocmask (SIG_SETMASK, prev_mask, NULL);
853 }
854
855 /* Mask of signals to pass directly to the inferior. */
856 static sigset_t pass_mask;
857
858 /* Update signals to pass to the inferior. */
859 static void
860 linux_nat_pass_signals (struct target_ops *self,
861 int numsigs, unsigned char *pass_signals)
862 {
863 int signo;
864
865 sigemptyset (&pass_mask);
866
867 for (signo = 1; signo < NSIG; signo++)
868 {
869 int target_signo = gdb_signal_from_host (signo);
870 if (target_signo < numsigs && pass_signals[target_signo])
871 sigaddset (&pass_mask, signo);
872 }
873 }
874
875 \f
876
877 /* Prototypes for local functions. */
878 static int stop_wait_callback (struct lwp_info *lp, void *data);
879 static int linux_thread_alive (ptid_t ptid);
880 static char *linux_child_pid_to_exec_file (struct target_ops *self, int pid);
881
882 \f
883
884 /* Destroy and free LP. */
885
886 static void
887 lwp_free (struct lwp_info *lp)
888 {
889 xfree (lp->arch_private);
890 xfree (lp);
891 }
892
893 /* Remove all LWPs belong to PID from the lwp list. */
894
895 static void
896 purge_lwp_list (int pid)
897 {
898 struct lwp_info *lp, *lpprev, *lpnext;
899
900 lpprev = NULL;
901
902 for (lp = lwp_list; lp; lp = lpnext)
903 {
904 lpnext = lp->next;
905
906 if (ptid_get_pid (lp->ptid) == pid)
907 {
908 if (lp == lwp_list)
909 lwp_list = lp->next;
910 else
911 lpprev->next = lp->next;
912
913 lwp_free (lp);
914 }
915 else
916 lpprev = lp;
917 }
918 }
919
920 /* Add the LWP specified by PTID to the list. PTID is the first LWP
921 in the process. Return a pointer to the structure describing the
922 new LWP.
923
924 This differs from add_lwp in that we don't let the arch specific
925 bits know about this new thread. Current clients of this callback
926 take the opportunity to install watchpoints in the new thread, and
927 we shouldn't do that for the first thread. If we're spawning a
928 child ("run"), the thread executes the shell wrapper first, and we
929 shouldn't touch it until it execs the program we want to debug.
930 For "attach", it'd be okay to call the callback, but it's not
931 necessary, because watchpoints can't yet have been inserted into
932 the inferior. */
933
934 static struct lwp_info *
935 add_initial_lwp (ptid_t ptid)
936 {
937 struct lwp_info *lp;
938
939 gdb_assert (ptid_lwp_p (ptid));
940
941 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
942
943 memset (lp, 0, sizeof (struct lwp_info));
944
945 lp->last_resume_kind = resume_continue;
946 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
947
948 lp->ptid = ptid;
949 lp->core = -1;
950
951 lp->next = lwp_list;
952 lwp_list = lp;
953
954 return lp;
955 }
956
957 /* Add the LWP specified by PID to the list. Return a pointer to the
958 structure describing the new LWP. The LWP should already be
959 stopped. */
960
961 static struct lwp_info *
962 add_lwp (ptid_t ptid)
963 {
964 struct lwp_info *lp;
965
966 lp = add_initial_lwp (ptid);
967
968 /* Let the arch specific bits know about this new thread. Current
969 clients of this callback take the opportunity to install
970 watchpoints in the new thread. We don't do this for the first
971 thread though. See add_initial_lwp. */
972 if (linux_nat_new_thread != NULL)
973 linux_nat_new_thread (lp);
974
975 return lp;
976 }
977
978 /* Remove the LWP specified by PID from the list. */
979
980 static void
981 delete_lwp (ptid_t ptid)
982 {
983 struct lwp_info *lp, *lpprev;
984
985 lpprev = NULL;
986
987 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
988 if (ptid_equal (lp->ptid, ptid))
989 break;
990
991 if (!lp)
992 return;
993
994 if (lpprev)
995 lpprev->next = lp->next;
996 else
997 lwp_list = lp->next;
998
999 lwp_free (lp);
1000 }
1001
1002 /* Return a pointer to the structure describing the LWP corresponding
1003 to PID. If no corresponding LWP could be found, return NULL. */
1004
1005 static struct lwp_info *
1006 find_lwp_pid (ptid_t ptid)
1007 {
1008 struct lwp_info *lp;
1009 int lwp;
1010
1011 if (ptid_lwp_p (ptid))
1012 lwp = ptid_get_lwp (ptid);
1013 else
1014 lwp = ptid_get_pid (ptid);
1015
1016 for (lp = lwp_list; lp; lp = lp->next)
1017 if (lwp == ptid_get_lwp (lp->ptid))
1018 return lp;
1019
1020 return NULL;
1021 }
1022
1023 /* Call CALLBACK with its second argument set to DATA for every LWP in
1024 the list. If CALLBACK returns 1 for a particular LWP, return a
1025 pointer to the structure describing that LWP immediately.
1026 Otherwise return NULL. */
1027
1028 struct lwp_info *
1029 iterate_over_lwps (ptid_t filter,
1030 int (*callback) (struct lwp_info *, void *),
1031 void *data)
1032 {
1033 struct lwp_info *lp, *lpnext;
1034
1035 for (lp = lwp_list; lp; lp = lpnext)
1036 {
1037 lpnext = lp->next;
1038
1039 if (ptid_match (lp->ptid, filter))
1040 {
1041 if ((*callback) (lp, data))
1042 return lp;
1043 }
1044 }
1045
1046 return NULL;
1047 }
1048
1049 /* Update our internal state when changing from one checkpoint to
1050 another indicated by NEW_PTID. We can only switch single-threaded
1051 applications, so we only create one new LWP, and the previous list
1052 is discarded. */
1053
1054 void
1055 linux_nat_switch_fork (ptid_t new_ptid)
1056 {
1057 struct lwp_info *lp;
1058
1059 purge_lwp_list (ptid_get_pid (inferior_ptid));
1060
1061 lp = add_lwp (new_ptid);
1062 lp->stopped = 1;
1063
1064 /* This changes the thread's ptid while preserving the gdb thread
1065 num. Also changes the inferior pid, while preserving the
1066 inferior num. */
1067 thread_change_ptid (inferior_ptid, new_ptid);
1068
1069 /* We've just told GDB core that the thread changed target id, but,
1070 in fact, it really is a different thread, with different register
1071 contents. */
1072 registers_changed ();
1073 }
1074
1075 /* Handle the exit of a single thread LP. */
1076
1077 static void
1078 exit_lwp (struct lwp_info *lp)
1079 {
1080 struct thread_info *th = find_thread_ptid (lp->ptid);
1081
1082 if (th)
1083 {
1084 if (print_thread_events)
1085 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1086
1087 delete_thread (lp->ptid);
1088 }
1089
1090 delete_lwp (lp->ptid);
1091 }
1092
1093 /* Wait for the LWP specified by LP, which we have just attached to.
1094 Returns a wait status for that LWP, to cache. */
1095
1096 static int
1097 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1098 int *signalled)
1099 {
1100 pid_t new_pid, pid = ptid_get_lwp (ptid);
1101 int status;
1102
1103 if (linux_proc_pid_is_stopped (pid))
1104 {
1105 if (debug_linux_nat)
1106 fprintf_unfiltered (gdb_stdlog,
1107 "LNPAW: Attaching to a stopped process\n");
1108
1109 /* The process is definitely stopped. It is in a job control
1110 stop, unless the kernel predates the TASK_STOPPED /
1111 TASK_TRACED distinction, in which case it might be in a
1112 ptrace stop. Make sure it is in a ptrace stop; from there we
1113 can kill it, signal it, et cetera.
1114
1115 First make sure there is a pending SIGSTOP. Since we are
1116 already attached, the process can not transition from stopped
1117 to running without a PTRACE_CONT; so we know this signal will
1118 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1119 probably already in the queue (unless this kernel is old
1120 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1121 is not an RT signal, it can only be queued once. */
1122 kill_lwp (pid, SIGSTOP);
1123
1124 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1125 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1126 ptrace (PTRACE_CONT, pid, 0, 0);
1127 }
1128
1129 /* Make sure the initial process is stopped. The user-level threads
1130 layer might want to poke around in the inferior, and that won't
1131 work if things haven't stabilized yet. */
1132 new_pid = my_waitpid (pid, &status, 0);
1133 if (new_pid == -1 && errno == ECHILD)
1134 {
1135 if (first)
1136 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1137
1138 /* Try again with __WCLONE to check cloned processes. */
1139 new_pid = my_waitpid (pid, &status, __WCLONE);
1140 *cloned = 1;
1141 }
1142
1143 gdb_assert (pid == new_pid);
1144
1145 if (!WIFSTOPPED (status))
1146 {
1147 /* The pid we tried to attach has apparently just exited. */
1148 if (debug_linux_nat)
1149 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1150 pid, status_to_str (status));
1151 return status;
1152 }
1153
1154 if (WSTOPSIG (status) != SIGSTOP)
1155 {
1156 *signalled = 1;
1157 if (debug_linux_nat)
1158 fprintf_unfiltered (gdb_stdlog,
1159 "LNPAW: Received %s after attaching\n",
1160 status_to_str (status));
1161 }
1162
1163 return status;
1164 }
1165
1166 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
1167 the new LWP could not be attached, or 1 if we're already auto
1168 attached to this thread, but haven't processed the
1169 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
1170 its existance, without considering it an error. */
1171
1172 int
1173 lin_lwp_attach_lwp (ptid_t ptid)
1174 {
1175 struct lwp_info *lp;
1176 int lwpid;
1177
1178 gdb_assert (ptid_lwp_p (ptid));
1179
1180 lp = find_lwp_pid (ptid);
1181 lwpid = ptid_get_lwp (ptid);
1182
1183 /* We assume that we're already attached to any LWP that has an id
1184 equal to the overall process id, and to any LWP that is already
1185 in our list of LWPs. If we're not seeing exit events from threads
1186 and we've had PID wraparound since we last tried to stop all threads,
1187 this assumption might be wrong; fortunately, this is very unlikely
1188 to happen. */
1189 if (lwpid != ptid_get_pid (ptid) && lp == NULL)
1190 {
1191 int status, cloned = 0, signalled = 0;
1192
1193 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1194 {
1195 if (linux_supports_tracefork ())
1196 {
1197 /* If we haven't stopped all threads when we get here,
1198 we may have seen a thread listed in thread_db's list,
1199 but not processed the PTRACE_EVENT_CLONE yet. If
1200 that's the case, ignore this new thread, and let
1201 normal event handling discover it later. */
1202 if (in_pid_list_p (stopped_pids, lwpid))
1203 {
1204 /* We've already seen this thread stop, but we
1205 haven't seen the PTRACE_EVENT_CLONE extended
1206 event yet. */
1207 return 0;
1208 }
1209 else
1210 {
1211 int new_pid;
1212 int status;
1213
1214 /* See if we've got a stop for this new child
1215 pending. If so, we're already attached. */
1216 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1217 if (new_pid == -1 && errno == ECHILD)
1218 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1219 if (new_pid != -1)
1220 {
1221 if (WIFSTOPPED (status))
1222 add_to_pid_list (&stopped_pids, lwpid, status);
1223 return 1;
1224 }
1225 }
1226 }
1227
1228 /* If we fail to attach to the thread, issue a warning,
1229 but continue. One way this can happen is if thread
1230 creation is interrupted; as of Linux kernel 2.6.19, a
1231 bug may place threads in the thread list and then fail
1232 to create them. */
1233 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1234 safe_strerror (errno));
1235 return -1;
1236 }
1237
1238 if (debug_linux_nat)
1239 fprintf_unfiltered (gdb_stdlog,
1240 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1241 target_pid_to_str (ptid));
1242
1243 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1244 if (!WIFSTOPPED (status))
1245 return 1;
1246
1247 lp = add_lwp (ptid);
1248 lp->stopped = 1;
1249 lp->cloned = cloned;
1250 lp->signalled = signalled;
1251 if (WSTOPSIG (status) != SIGSTOP)
1252 {
1253 lp->resumed = 1;
1254 lp->status = status;
1255 }
1256
1257 target_post_attach (ptid_get_lwp (lp->ptid));
1258
1259 if (debug_linux_nat)
1260 {
1261 fprintf_unfiltered (gdb_stdlog,
1262 "LLAL: waitpid %s received %s\n",
1263 target_pid_to_str (ptid),
1264 status_to_str (status));
1265 }
1266 }
1267 else
1268 {
1269 /* We assume that the LWP representing the original process is
1270 already stopped. Mark it as stopped in the data structure
1271 that the GNU/linux ptrace layer uses to keep track of
1272 threads. Note that this won't have already been done since
1273 the main thread will have, we assume, been stopped by an
1274 attach from a different layer. */
1275 if (lp == NULL)
1276 lp = add_lwp (ptid);
1277 lp->stopped = 1;
1278 }
1279
1280 lp->last_resume_kind = resume_stop;
1281 return 0;
1282 }
1283
1284 static void
1285 linux_nat_create_inferior (struct target_ops *ops,
1286 char *exec_file, char *allargs, char **env,
1287 int from_tty)
1288 {
1289 #ifdef HAVE_PERSONALITY
1290 int personality_orig = 0, personality_set = 0;
1291 #endif /* HAVE_PERSONALITY */
1292
1293 /* The fork_child mechanism is synchronous and calls target_wait, so
1294 we have to mask the async mode. */
1295
1296 #ifdef HAVE_PERSONALITY
1297 if (disable_randomization)
1298 {
1299 errno = 0;
1300 personality_orig = personality (0xffffffff);
1301 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1302 {
1303 personality_set = 1;
1304 personality (personality_orig | ADDR_NO_RANDOMIZE);
1305 }
1306 if (errno != 0 || (personality_set
1307 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1308 warning (_("Error disabling address space randomization: %s"),
1309 safe_strerror (errno));
1310 }
1311 #endif /* HAVE_PERSONALITY */
1312
1313 /* Make sure we report all signals during startup. */
1314 linux_nat_pass_signals (ops, 0, NULL);
1315
1316 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1317
1318 #ifdef HAVE_PERSONALITY
1319 if (personality_set)
1320 {
1321 errno = 0;
1322 personality (personality_orig);
1323 if (errno != 0)
1324 warning (_("Error restoring address space randomization: %s"),
1325 safe_strerror (errno));
1326 }
1327 #endif /* HAVE_PERSONALITY */
1328 }
1329
1330 static void
1331 linux_nat_attach (struct target_ops *ops, const char *args, int from_tty)
1332 {
1333 struct lwp_info *lp;
1334 int status;
1335 ptid_t ptid;
1336 volatile struct gdb_exception ex;
1337
1338 /* Make sure we report all signals during attach. */
1339 linux_nat_pass_signals (ops, 0, NULL);
1340
1341 TRY_CATCH (ex, RETURN_MASK_ERROR)
1342 {
1343 linux_ops->to_attach (ops, args, from_tty);
1344 }
1345 if (ex.reason < 0)
1346 {
1347 pid_t pid = parse_pid_to_attach (args);
1348 struct buffer buffer;
1349 char *message, *buffer_s;
1350
1351 message = xstrdup (ex.message);
1352 make_cleanup (xfree, message);
1353
1354 buffer_init (&buffer);
1355 linux_ptrace_attach_fail_reason (pid, &buffer);
1356
1357 buffer_grow_str0 (&buffer, "");
1358 buffer_s = buffer_finish (&buffer);
1359 make_cleanup (xfree, buffer_s);
1360
1361 if (*buffer_s != '\0')
1362 throw_error (ex.error, "warning: %s\n%s", buffer_s, message);
1363 else
1364 throw_error (ex.error, "%s", message);
1365 }
1366
1367 /* The ptrace base target adds the main thread with (pid,0,0)
1368 format. Decorate it with lwp info. */
1369 ptid = ptid_build (ptid_get_pid (inferior_ptid),
1370 ptid_get_pid (inferior_ptid),
1371 0);
1372 thread_change_ptid (inferior_ptid, ptid);
1373
1374 /* Add the initial process as the first LWP to the list. */
1375 lp = add_initial_lwp (ptid);
1376
1377 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1378 &lp->signalled);
1379 if (!WIFSTOPPED (status))
1380 {
1381 if (WIFEXITED (status))
1382 {
1383 int exit_code = WEXITSTATUS (status);
1384
1385 target_terminal_ours ();
1386 target_mourn_inferior ();
1387 if (exit_code == 0)
1388 error (_("Unable to attach: program exited normally."));
1389 else
1390 error (_("Unable to attach: program exited with code %d."),
1391 exit_code);
1392 }
1393 else if (WIFSIGNALED (status))
1394 {
1395 enum gdb_signal signo;
1396
1397 target_terminal_ours ();
1398 target_mourn_inferior ();
1399
1400 signo = gdb_signal_from_host (WTERMSIG (status));
1401 error (_("Unable to attach: program terminated with signal "
1402 "%s, %s."),
1403 gdb_signal_to_name (signo),
1404 gdb_signal_to_string (signo));
1405 }
1406
1407 internal_error (__FILE__, __LINE__,
1408 _("unexpected status %d for PID %ld"),
1409 status, (long) ptid_get_lwp (ptid));
1410 }
1411
1412 lp->stopped = 1;
1413
1414 /* Save the wait status to report later. */
1415 lp->resumed = 1;
1416 if (debug_linux_nat)
1417 fprintf_unfiltered (gdb_stdlog,
1418 "LNA: waitpid %ld, saving status %s\n",
1419 (long) ptid_get_pid (lp->ptid), status_to_str (status));
1420
1421 lp->status = status;
1422
1423 if (target_can_async_p ())
1424 target_async (inferior_event_handler, 0);
1425 }
1426
1427 /* Get pending status of LP. */
1428 static int
1429 get_pending_status (struct lwp_info *lp, int *status)
1430 {
1431 enum gdb_signal signo = GDB_SIGNAL_0;
1432
1433 /* If we paused threads momentarily, we may have stored pending
1434 events in lp->status or lp->waitstatus (see stop_wait_callback),
1435 and GDB core hasn't seen any signal for those threads.
1436 Otherwise, the last signal reported to the core is found in the
1437 thread object's stop_signal.
1438
1439 There's a corner case that isn't handled here at present. Only
1440 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1441 stop_signal make sense as a real signal to pass to the inferior.
1442 Some catchpoint related events, like
1443 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1444 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1445 those traps are debug API (ptrace in our case) related and
1446 induced; the inferior wouldn't see them if it wasn't being
1447 traced. Hence, we should never pass them to the inferior, even
1448 when set to pass state. Since this corner case isn't handled by
1449 infrun.c when proceeding with a signal, for consistency, neither
1450 do we handle it here (or elsewhere in the file we check for
1451 signal pass state). Normally SIGTRAP isn't set to pass state, so
1452 this is really a corner case. */
1453
1454 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1455 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1456 else if (lp->status)
1457 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1458 else if (non_stop && !is_executing (lp->ptid))
1459 {
1460 struct thread_info *tp = find_thread_ptid (lp->ptid);
1461
1462 signo = tp->suspend.stop_signal;
1463 }
1464 else if (!non_stop)
1465 {
1466 struct target_waitstatus last;
1467 ptid_t last_ptid;
1468
1469 get_last_target_status (&last_ptid, &last);
1470
1471 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1472 {
1473 struct thread_info *tp = find_thread_ptid (lp->ptid);
1474
1475 signo = tp->suspend.stop_signal;
1476 }
1477 }
1478
1479 *status = 0;
1480
1481 if (signo == GDB_SIGNAL_0)
1482 {
1483 if (debug_linux_nat)
1484 fprintf_unfiltered (gdb_stdlog,
1485 "GPT: lwp %s has no pending signal\n",
1486 target_pid_to_str (lp->ptid));
1487 }
1488 else if (!signal_pass_state (signo))
1489 {
1490 if (debug_linux_nat)
1491 fprintf_unfiltered (gdb_stdlog,
1492 "GPT: lwp %s had signal %s, "
1493 "but it is in no pass state\n",
1494 target_pid_to_str (lp->ptid),
1495 gdb_signal_to_string (signo));
1496 }
1497 else
1498 {
1499 *status = W_STOPCODE (gdb_signal_to_host (signo));
1500
1501 if (debug_linux_nat)
1502 fprintf_unfiltered (gdb_stdlog,
1503 "GPT: lwp %s has pending signal %s\n",
1504 target_pid_to_str (lp->ptid),
1505 gdb_signal_to_string (signo));
1506 }
1507
1508 return 0;
1509 }
1510
1511 static int
1512 detach_callback (struct lwp_info *lp, void *data)
1513 {
1514 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1515
1516 if (debug_linux_nat && lp->status)
1517 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1518 strsignal (WSTOPSIG (lp->status)),
1519 target_pid_to_str (lp->ptid));
1520
1521 /* If there is a pending SIGSTOP, get rid of it. */
1522 if (lp->signalled)
1523 {
1524 if (debug_linux_nat)
1525 fprintf_unfiltered (gdb_stdlog,
1526 "DC: Sending SIGCONT to %s\n",
1527 target_pid_to_str (lp->ptid));
1528
1529 kill_lwp (ptid_get_lwp (lp->ptid), SIGCONT);
1530 lp->signalled = 0;
1531 }
1532
1533 /* We don't actually detach from the LWP that has an id equal to the
1534 overall process id just yet. */
1535 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1536 {
1537 int status = 0;
1538
1539 /* Pass on any pending signal for this LWP. */
1540 get_pending_status (lp, &status);
1541
1542 if (linux_nat_prepare_to_resume != NULL)
1543 linux_nat_prepare_to_resume (lp);
1544 errno = 0;
1545 if (ptrace (PTRACE_DETACH, ptid_get_lwp (lp->ptid), 0,
1546 WSTOPSIG (status)) < 0)
1547 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1548 safe_strerror (errno));
1549
1550 if (debug_linux_nat)
1551 fprintf_unfiltered (gdb_stdlog,
1552 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1553 target_pid_to_str (lp->ptid),
1554 strsignal (WSTOPSIG (status)));
1555
1556 delete_lwp (lp->ptid);
1557 }
1558
1559 return 0;
1560 }
1561
1562 static void
1563 linux_nat_detach (struct target_ops *ops, const char *args, int from_tty)
1564 {
1565 int pid;
1566 int status;
1567 struct lwp_info *main_lwp;
1568
1569 pid = ptid_get_pid (inferior_ptid);
1570
1571 /* Don't unregister from the event loop, as there may be other
1572 inferiors running. */
1573
1574 /* Stop all threads before detaching. ptrace requires that the
1575 thread is stopped to sucessfully detach. */
1576 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1577 /* ... and wait until all of them have reported back that
1578 they're no longer running. */
1579 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1580
1581 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1582
1583 /* Only the initial process should be left right now. */
1584 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1);
1585
1586 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1587
1588 /* Pass on any pending signal for the last LWP. */
1589 if ((args == NULL || *args == '\0')
1590 && get_pending_status (main_lwp, &status) != -1
1591 && WIFSTOPPED (status))
1592 {
1593 char *tem;
1594
1595 /* Put the signal number in ARGS so that inf_ptrace_detach will
1596 pass it along with PTRACE_DETACH. */
1597 tem = alloca (8);
1598 xsnprintf (tem, 8, "%d", (int) WSTOPSIG (status));
1599 args = tem;
1600 if (debug_linux_nat)
1601 fprintf_unfiltered (gdb_stdlog,
1602 "LND: Sending signal %s to %s\n",
1603 args,
1604 target_pid_to_str (main_lwp->ptid));
1605 }
1606
1607 if (linux_nat_prepare_to_resume != NULL)
1608 linux_nat_prepare_to_resume (main_lwp);
1609 delete_lwp (main_lwp->ptid);
1610
1611 if (forks_exist_p ())
1612 {
1613 /* Multi-fork case. The current inferior_ptid is being detached
1614 from, but there are other viable forks to debug. Detach from
1615 the current fork, and context-switch to the first
1616 available. */
1617 linux_fork_detach (args, from_tty);
1618 }
1619 else
1620 linux_ops->to_detach (ops, args, from_tty);
1621 }
1622
1623 /* Resume LP. */
1624
1625 static void
1626 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1627 {
1628 if (lp->stopped)
1629 {
1630 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
1631
1632 if (inf->vfork_child != NULL)
1633 {
1634 if (debug_linux_nat)
1635 fprintf_unfiltered (gdb_stdlog,
1636 "RC: Not resuming %s (vfork parent)\n",
1637 target_pid_to_str (lp->ptid));
1638 }
1639 else if (lp->status == 0
1640 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
1641 {
1642 if (debug_linux_nat)
1643 fprintf_unfiltered (gdb_stdlog,
1644 "RC: Resuming sibling %s, %s, %s\n",
1645 target_pid_to_str (lp->ptid),
1646 (signo != GDB_SIGNAL_0
1647 ? strsignal (gdb_signal_to_host (signo))
1648 : "0"),
1649 step ? "step" : "resume");
1650
1651 if (linux_nat_prepare_to_resume != NULL)
1652 linux_nat_prepare_to_resume (lp);
1653 linux_ops->to_resume (linux_ops,
1654 pid_to_ptid (ptid_get_lwp (lp->ptid)),
1655 step, signo);
1656 lp->stopped = 0;
1657 lp->step = step;
1658 lp->stopped_by_watchpoint = 0;
1659 }
1660 else
1661 {
1662 if (debug_linux_nat)
1663 fprintf_unfiltered (gdb_stdlog,
1664 "RC: Not resuming sibling %s (has pending)\n",
1665 target_pid_to_str (lp->ptid));
1666 }
1667 }
1668 else
1669 {
1670 if (debug_linux_nat)
1671 fprintf_unfiltered (gdb_stdlog,
1672 "RC: Not resuming sibling %s (not stopped)\n",
1673 target_pid_to_str (lp->ptid));
1674 }
1675 }
1676
1677 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1678 Resume LWP with the last stop signal, if it is in pass state. */
1679
1680 static int
1681 linux_nat_resume_callback (struct lwp_info *lp, void *except)
1682 {
1683 enum gdb_signal signo = GDB_SIGNAL_0;
1684
1685 if (lp == except)
1686 return 0;
1687
1688 if (lp->stopped)
1689 {
1690 struct thread_info *thread;
1691
1692 thread = find_thread_ptid (lp->ptid);
1693 if (thread != NULL)
1694 {
1695 signo = thread->suspend.stop_signal;
1696 thread->suspend.stop_signal = GDB_SIGNAL_0;
1697 }
1698 }
1699
1700 resume_lwp (lp, 0, signo);
1701 return 0;
1702 }
1703
1704 static int
1705 resume_clear_callback (struct lwp_info *lp, void *data)
1706 {
1707 lp->resumed = 0;
1708 lp->last_resume_kind = resume_stop;
1709 return 0;
1710 }
1711
1712 static int
1713 resume_set_callback (struct lwp_info *lp, void *data)
1714 {
1715 lp->resumed = 1;
1716 lp->last_resume_kind = resume_continue;
1717 return 0;
1718 }
1719
1720 static void
1721 linux_nat_resume (struct target_ops *ops,
1722 ptid_t ptid, int step, enum gdb_signal signo)
1723 {
1724 struct lwp_info *lp;
1725 int resume_many;
1726
1727 if (debug_linux_nat)
1728 fprintf_unfiltered (gdb_stdlog,
1729 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1730 step ? "step" : "resume",
1731 target_pid_to_str (ptid),
1732 (signo != GDB_SIGNAL_0
1733 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1734 target_pid_to_str (inferior_ptid));
1735
1736 /* A specific PTID means `step only this process id'. */
1737 resume_many = (ptid_equal (minus_one_ptid, ptid)
1738 || ptid_is_pid (ptid));
1739
1740 /* Mark the lwps we're resuming as resumed. */
1741 iterate_over_lwps (ptid, resume_set_callback, NULL);
1742
1743 /* See if it's the current inferior that should be handled
1744 specially. */
1745 if (resume_many)
1746 lp = find_lwp_pid (inferior_ptid);
1747 else
1748 lp = find_lwp_pid (ptid);
1749 gdb_assert (lp != NULL);
1750
1751 /* Remember if we're stepping. */
1752 lp->step = step;
1753 lp->last_resume_kind = step ? resume_step : resume_continue;
1754
1755 /* If we have a pending wait status for this thread, there is no
1756 point in resuming the process. But first make sure that
1757 linux_nat_wait won't preemptively handle the event - we
1758 should never take this short-circuit if we are going to
1759 leave LP running, since we have skipped resuming all the
1760 other threads. This bit of code needs to be synchronized
1761 with linux_nat_wait. */
1762
1763 if (lp->status && WIFSTOPPED (lp->status))
1764 {
1765 if (!lp->step
1766 && WSTOPSIG (lp->status)
1767 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1768 {
1769 if (debug_linux_nat)
1770 fprintf_unfiltered (gdb_stdlog,
1771 "LLR: Not short circuiting for ignored "
1772 "status 0x%x\n", lp->status);
1773
1774 /* FIXME: What should we do if we are supposed to continue
1775 this thread with a signal? */
1776 gdb_assert (signo == GDB_SIGNAL_0);
1777 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1778 lp->status = 0;
1779 }
1780 }
1781
1782 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1783 {
1784 /* FIXME: What should we do if we are supposed to continue
1785 this thread with a signal? */
1786 gdb_assert (signo == GDB_SIGNAL_0);
1787
1788 if (debug_linux_nat)
1789 fprintf_unfiltered (gdb_stdlog,
1790 "LLR: Short circuiting for status 0x%x\n",
1791 lp->status);
1792
1793 if (target_can_async_p ())
1794 {
1795 target_async (inferior_event_handler, 0);
1796 /* Tell the event loop we have something to process. */
1797 async_file_mark ();
1798 }
1799 return;
1800 }
1801
1802 if (resume_many)
1803 iterate_over_lwps (ptid, linux_nat_resume_callback, lp);
1804
1805 /* Convert to something the lower layer understands. */
1806 ptid = pid_to_ptid (ptid_get_lwp (lp->ptid));
1807
1808 if (linux_nat_prepare_to_resume != NULL)
1809 linux_nat_prepare_to_resume (lp);
1810 linux_ops->to_resume (linux_ops, ptid, step, signo);
1811 lp->stopped_by_watchpoint = 0;
1812 lp->stopped = 0;
1813
1814 if (debug_linux_nat)
1815 fprintf_unfiltered (gdb_stdlog,
1816 "LLR: %s %s, %s (resume event thread)\n",
1817 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1818 target_pid_to_str (ptid),
1819 (signo != GDB_SIGNAL_0
1820 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1821
1822 if (target_can_async_p ())
1823 target_async (inferior_event_handler, 0);
1824 }
1825
1826 /* Send a signal to an LWP. */
1827
1828 static int
1829 kill_lwp (int lwpid, int signo)
1830 {
1831 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1832 fails, then we are not using nptl threads and we should be using kill. */
1833
1834 #ifdef HAVE_TKILL_SYSCALL
1835 {
1836 static int tkill_failed;
1837
1838 if (!tkill_failed)
1839 {
1840 int ret;
1841
1842 errno = 0;
1843 ret = syscall (__NR_tkill, lwpid, signo);
1844 if (errno != ENOSYS)
1845 return ret;
1846 tkill_failed = 1;
1847 }
1848 }
1849 #endif
1850
1851 return kill (lwpid, signo);
1852 }
1853
1854 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1855 event, check if the core is interested in it: if not, ignore the
1856 event, and keep waiting; otherwise, we need to toggle the LWP's
1857 syscall entry/exit status, since the ptrace event itself doesn't
1858 indicate it, and report the trap to higher layers. */
1859
1860 static int
1861 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1862 {
1863 struct target_waitstatus *ourstatus = &lp->waitstatus;
1864 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1865 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1866
1867 if (stopping)
1868 {
1869 /* If we're stopping threads, there's a SIGSTOP pending, which
1870 makes it so that the LWP reports an immediate syscall return,
1871 followed by the SIGSTOP. Skip seeing that "return" using
1872 PTRACE_CONT directly, and let stop_wait_callback collect the
1873 SIGSTOP. Later when the thread is resumed, a new syscall
1874 entry event. If we didn't do this (and returned 0), we'd
1875 leave a syscall entry pending, and our caller, by using
1876 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1877 itself. Later, when the user re-resumes this LWP, we'd see
1878 another syscall entry event and we'd mistake it for a return.
1879
1880 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1881 (leaving immediately with LWP->signalled set, without issuing
1882 a PTRACE_CONT), it would still be problematic to leave this
1883 syscall enter pending, as later when the thread is resumed,
1884 it would then see the same syscall exit mentioned above,
1885 followed by the delayed SIGSTOP, while the syscall didn't
1886 actually get to execute. It seems it would be even more
1887 confusing to the user. */
1888
1889 if (debug_linux_nat)
1890 fprintf_unfiltered (gdb_stdlog,
1891 "LHST: ignoring syscall %d "
1892 "for LWP %ld (stopping threads), "
1893 "resuming with PTRACE_CONT for SIGSTOP\n",
1894 syscall_number,
1895 ptid_get_lwp (lp->ptid));
1896
1897 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1898 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1899 lp->stopped = 0;
1900 return 1;
1901 }
1902
1903 if (catch_syscall_enabled ())
1904 {
1905 /* Always update the entry/return state, even if this particular
1906 syscall isn't interesting to the core now. In async mode,
1907 the user could install a new catchpoint for this syscall
1908 between syscall enter/return, and we'll need to know to
1909 report a syscall return if that happens. */
1910 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1911 ? TARGET_WAITKIND_SYSCALL_RETURN
1912 : TARGET_WAITKIND_SYSCALL_ENTRY);
1913
1914 if (catching_syscall_number (syscall_number))
1915 {
1916 /* Alright, an event to report. */
1917 ourstatus->kind = lp->syscall_state;
1918 ourstatus->value.syscall_number = syscall_number;
1919
1920 if (debug_linux_nat)
1921 fprintf_unfiltered (gdb_stdlog,
1922 "LHST: stopping for %s of syscall %d"
1923 " for LWP %ld\n",
1924 lp->syscall_state
1925 == TARGET_WAITKIND_SYSCALL_ENTRY
1926 ? "entry" : "return",
1927 syscall_number,
1928 ptid_get_lwp (lp->ptid));
1929 return 0;
1930 }
1931
1932 if (debug_linux_nat)
1933 fprintf_unfiltered (gdb_stdlog,
1934 "LHST: ignoring %s of syscall %d "
1935 "for LWP %ld\n",
1936 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1937 ? "entry" : "return",
1938 syscall_number,
1939 ptid_get_lwp (lp->ptid));
1940 }
1941 else
1942 {
1943 /* If we had been syscall tracing, and hence used PT_SYSCALL
1944 before on this LWP, it could happen that the user removes all
1945 syscall catchpoints before we get to process this event.
1946 There are two noteworthy issues here:
1947
1948 - When stopped at a syscall entry event, resuming with
1949 PT_STEP still resumes executing the syscall and reports a
1950 syscall return.
1951
1952 - Only PT_SYSCALL catches syscall enters. If we last
1953 single-stepped this thread, then this event can't be a
1954 syscall enter. If we last single-stepped this thread, this
1955 has to be a syscall exit.
1956
1957 The points above mean that the next resume, be it PT_STEP or
1958 PT_CONTINUE, can not trigger a syscall trace event. */
1959 if (debug_linux_nat)
1960 fprintf_unfiltered (gdb_stdlog,
1961 "LHST: caught syscall event "
1962 "with no syscall catchpoints."
1963 " %d for LWP %ld, ignoring\n",
1964 syscall_number,
1965 ptid_get_lwp (lp->ptid));
1966 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1967 }
1968
1969 /* The core isn't interested in this event. For efficiency, avoid
1970 stopping all threads only to have the core resume them all again.
1971 Since we're not stopping threads, if we're still syscall tracing
1972 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1973 subsequent syscall. Simply resume using the inf-ptrace layer,
1974 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1975
1976 /* Note that gdbarch_get_syscall_number may access registers, hence
1977 fill a regcache. */
1978 registers_changed ();
1979 if (linux_nat_prepare_to_resume != NULL)
1980 linux_nat_prepare_to_resume (lp);
1981 linux_ops->to_resume (linux_ops, pid_to_ptid (ptid_get_lwp (lp->ptid)),
1982 lp->step, GDB_SIGNAL_0);
1983 lp->stopped = 0;
1984 return 1;
1985 }
1986
1987 /* Handle a GNU/Linux extended wait response. If we see a clone
1988 event, we need to add the new LWP to our list (and not report the
1989 trap to higher layers). This function returns non-zero if the
1990 event should be ignored and we should wait again. If STOPPING is
1991 true, the new LWP remains stopped, otherwise it is continued. */
1992
1993 static int
1994 linux_handle_extended_wait (struct lwp_info *lp, int status,
1995 int stopping)
1996 {
1997 int pid = ptid_get_lwp (lp->ptid);
1998 struct target_waitstatus *ourstatus = &lp->waitstatus;
1999 int event = status >> 16;
2000
2001 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2002 || event == PTRACE_EVENT_CLONE)
2003 {
2004 unsigned long new_pid;
2005 int ret;
2006
2007 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2008
2009 /* If we haven't already seen the new PID stop, wait for it now. */
2010 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2011 {
2012 /* The new child has a pending SIGSTOP. We can't affect it until it
2013 hits the SIGSTOP, but we're already attached. */
2014 ret = my_waitpid (new_pid, &status,
2015 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2016 if (ret == -1)
2017 perror_with_name (_("waiting for new child"));
2018 else if (ret != new_pid)
2019 internal_error (__FILE__, __LINE__,
2020 _("wait returned unexpected PID %d"), ret);
2021 else if (!WIFSTOPPED (status))
2022 internal_error (__FILE__, __LINE__,
2023 _("wait returned unexpected status 0x%x"), status);
2024 }
2025
2026 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2027
2028 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
2029 {
2030 /* The arch-specific native code may need to know about new
2031 forks even if those end up never mapped to an
2032 inferior. */
2033 if (linux_nat_new_fork != NULL)
2034 linux_nat_new_fork (lp, new_pid);
2035 }
2036
2037 if (event == PTRACE_EVENT_FORK
2038 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
2039 {
2040 /* Handle checkpointing by linux-fork.c here as a special
2041 case. We don't want the follow-fork-mode or 'catch fork'
2042 to interfere with this. */
2043
2044 /* This won't actually modify the breakpoint list, but will
2045 physically remove the breakpoints from the child. */
2046 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
2047
2048 /* Retain child fork in ptrace (stopped) state. */
2049 if (!find_fork_pid (new_pid))
2050 add_fork (new_pid);
2051
2052 /* Report as spurious, so that infrun doesn't want to follow
2053 this fork. We're actually doing an infcall in
2054 linux-fork.c. */
2055 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2056
2057 /* Report the stop to the core. */
2058 return 0;
2059 }
2060
2061 if (event == PTRACE_EVENT_FORK)
2062 ourstatus->kind = TARGET_WAITKIND_FORKED;
2063 else if (event == PTRACE_EVENT_VFORK)
2064 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2065 else
2066 {
2067 struct lwp_info *new_lp;
2068
2069 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2070
2071 if (debug_linux_nat)
2072 fprintf_unfiltered (gdb_stdlog,
2073 "LHEW: Got clone event "
2074 "from LWP %d, new child is LWP %ld\n",
2075 pid, new_pid);
2076
2077 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
2078 new_lp->cloned = 1;
2079 new_lp->stopped = 1;
2080
2081 if (WSTOPSIG (status) != SIGSTOP)
2082 {
2083 /* This can happen if someone starts sending signals to
2084 the new thread before it gets a chance to run, which
2085 have a lower number than SIGSTOP (e.g. SIGUSR1).
2086 This is an unlikely case, and harder to handle for
2087 fork / vfork than for clone, so we do not try - but
2088 we handle it for clone events here. We'll send
2089 the other signal on to the thread below. */
2090
2091 new_lp->signalled = 1;
2092 }
2093 else
2094 {
2095 struct thread_info *tp;
2096
2097 /* When we stop for an event in some other thread, and
2098 pull the thread list just as this thread has cloned,
2099 we'll have seen the new thread in the thread_db list
2100 before handling the CLONE event (glibc's
2101 pthread_create adds the new thread to the thread list
2102 before clone'ing, and has the kernel fill in the
2103 thread's tid on the clone call with
2104 CLONE_PARENT_SETTID). If that happened, and the core
2105 had requested the new thread to stop, we'll have
2106 killed it with SIGSTOP. But since SIGSTOP is not an
2107 RT signal, it can only be queued once. We need to be
2108 careful to not resume the LWP if we wanted it to
2109 stop. In that case, we'll leave the SIGSTOP pending.
2110 It will later be reported as GDB_SIGNAL_0. */
2111 tp = find_thread_ptid (new_lp->ptid);
2112 if (tp != NULL && tp->stop_requested)
2113 new_lp->last_resume_kind = resume_stop;
2114 else
2115 status = 0;
2116 }
2117
2118 if (non_stop)
2119 {
2120 /* Add the new thread to GDB's lists as soon as possible
2121 so that:
2122
2123 1) the frontend doesn't have to wait for a stop to
2124 display them, and,
2125
2126 2) we tag it with the correct running state. */
2127
2128 /* If the thread_db layer is active, let it know about
2129 this new thread, and add it to GDB's list. */
2130 if (!thread_db_attach_lwp (new_lp->ptid))
2131 {
2132 /* We're not using thread_db. Add it to GDB's
2133 list. */
2134 target_post_attach (ptid_get_lwp (new_lp->ptid));
2135 add_thread (new_lp->ptid);
2136 }
2137
2138 if (!stopping)
2139 {
2140 set_running (new_lp->ptid, 1);
2141 set_executing (new_lp->ptid, 1);
2142 /* thread_db_attach_lwp -> lin_lwp_attach_lwp forced
2143 resume_stop. */
2144 new_lp->last_resume_kind = resume_continue;
2145 }
2146 }
2147
2148 if (status != 0)
2149 {
2150 /* We created NEW_LP so it cannot yet contain STATUS. */
2151 gdb_assert (new_lp->status == 0);
2152
2153 /* Save the wait status to report later. */
2154 if (debug_linux_nat)
2155 fprintf_unfiltered (gdb_stdlog,
2156 "LHEW: waitpid of new LWP %ld, "
2157 "saving status %s\n",
2158 (long) ptid_get_lwp (new_lp->ptid),
2159 status_to_str (status));
2160 new_lp->status = status;
2161 }
2162
2163 /* Note the need to use the low target ops to resume, to
2164 handle resuming with PT_SYSCALL if we have syscall
2165 catchpoints. */
2166 if (!stopping)
2167 {
2168 new_lp->resumed = 1;
2169
2170 if (status == 0)
2171 {
2172 gdb_assert (new_lp->last_resume_kind == resume_continue);
2173 if (debug_linux_nat)
2174 fprintf_unfiltered (gdb_stdlog,
2175 "LHEW: resuming new LWP %ld\n",
2176 ptid_get_lwp (new_lp->ptid));
2177 if (linux_nat_prepare_to_resume != NULL)
2178 linux_nat_prepare_to_resume (new_lp);
2179 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2180 0, GDB_SIGNAL_0);
2181 new_lp->stopped = 0;
2182 }
2183 }
2184
2185 if (debug_linux_nat)
2186 fprintf_unfiltered (gdb_stdlog,
2187 "LHEW: resuming parent LWP %d\n", pid);
2188 if (linux_nat_prepare_to_resume != NULL)
2189 linux_nat_prepare_to_resume (lp);
2190 linux_ops->to_resume (linux_ops,
2191 pid_to_ptid (ptid_get_lwp (lp->ptid)),
2192 0, GDB_SIGNAL_0);
2193 lp->stopped = 0;
2194 return 1;
2195 }
2196
2197 return 0;
2198 }
2199
2200 if (event == PTRACE_EVENT_EXEC)
2201 {
2202 if (debug_linux_nat)
2203 fprintf_unfiltered (gdb_stdlog,
2204 "LHEW: Got exec event from LWP %ld\n",
2205 ptid_get_lwp (lp->ptid));
2206
2207 ourstatus->kind = TARGET_WAITKIND_EXECD;
2208 ourstatus->value.execd_pathname
2209 = xstrdup (linux_child_pid_to_exec_file (NULL, pid));
2210
2211 return 0;
2212 }
2213
2214 if (event == PTRACE_EVENT_VFORK_DONE)
2215 {
2216 if (current_inferior ()->waiting_for_vfork_done)
2217 {
2218 if (debug_linux_nat)
2219 fprintf_unfiltered (gdb_stdlog,
2220 "LHEW: Got expected PTRACE_EVENT_"
2221 "VFORK_DONE from LWP %ld: stopping\n",
2222 ptid_get_lwp (lp->ptid));
2223
2224 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2225 return 0;
2226 }
2227
2228 if (debug_linux_nat)
2229 fprintf_unfiltered (gdb_stdlog,
2230 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2231 "from LWP %ld: resuming\n",
2232 ptid_get_lwp (lp->ptid));
2233 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2234 return 1;
2235 }
2236
2237 internal_error (__FILE__, __LINE__,
2238 _("unknown ptrace event %d"), event);
2239 }
2240
2241 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2242 exited. */
2243
2244 static int
2245 wait_lwp (struct lwp_info *lp)
2246 {
2247 pid_t pid;
2248 int status = 0;
2249 int thread_dead = 0;
2250 sigset_t prev_mask;
2251
2252 gdb_assert (!lp->stopped);
2253 gdb_assert (lp->status == 0);
2254
2255 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2256 block_child_signals (&prev_mask);
2257
2258 for (;;)
2259 {
2260 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2261 was right and we should just call sigsuspend. */
2262
2263 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, WNOHANG);
2264 if (pid == -1 && errno == ECHILD)
2265 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WCLONE | WNOHANG);
2266 if (pid == -1 && errno == ECHILD)
2267 {
2268 /* The thread has previously exited. We need to delete it
2269 now because, for some vendor 2.4 kernels with NPTL
2270 support backported, there won't be an exit event unless
2271 it is the main thread. 2.6 kernels will report an exit
2272 event for each thread that exits, as expected. */
2273 thread_dead = 1;
2274 if (debug_linux_nat)
2275 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2276 target_pid_to_str (lp->ptid));
2277 }
2278 if (pid != 0)
2279 break;
2280
2281 /* Bugs 10970, 12702.
2282 Thread group leader may have exited in which case we'll lock up in
2283 waitpid if there are other threads, even if they are all zombies too.
2284 Basically, we're not supposed to use waitpid this way.
2285 __WCLONE is not applicable for the leader so we can't use that.
2286 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2287 process; it gets ESRCH both for the zombie and for running processes.
2288
2289 As a workaround, check if we're waiting for the thread group leader and
2290 if it's a zombie, and avoid calling waitpid if it is.
2291
2292 This is racy, what if the tgl becomes a zombie right after we check?
2293 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2294 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2295
2296 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2297 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2298 {
2299 thread_dead = 1;
2300 if (debug_linux_nat)
2301 fprintf_unfiltered (gdb_stdlog,
2302 "WL: Thread group leader %s vanished.\n",
2303 target_pid_to_str (lp->ptid));
2304 break;
2305 }
2306
2307 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2308 get invoked despite our caller had them intentionally blocked by
2309 block_child_signals. This is sensitive only to the loop of
2310 linux_nat_wait_1 and there if we get called my_waitpid gets called
2311 again before it gets to sigsuspend so we can safely let the handlers
2312 get executed here. */
2313
2314 if (debug_linux_nat)
2315 fprintf_unfiltered (gdb_stdlog, "WL: about to sigsuspend\n");
2316 sigsuspend (&suspend_mask);
2317 }
2318
2319 restore_child_signals_mask (&prev_mask);
2320
2321 if (!thread_dead)
2322 {
2323 gdb_assert (pid == ptid_get_lwp (lp->ptid));
2324
2325 if (debug_linux_nat)
2326 {
2327 fprintf_unfiltered (gdb_stdlog,
2328 "WL: waitpid %s received %s\n",
2329 target_pid_to_str (lp->ptid),
2330 status_to_str (status));
2331 }
2332
2333 /* Check if the thread has exited. */
2334 if (WIFEXITED (status) || WIFSIGNALED (status))
2335 {
2336 thread_dead = 1;
2337 if (debug_linux_nat)
2338 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2339 target_pid_to_str (lp->ptid));
2340 }
2341 }
2342
2343 if (thread_dead)
2344 {
2345 exit_lwp (lp);
2346 return 0;
2347 }
2348
2349 gdb_assert (WIFSTOPPED (status));
2350 lp->stopped = 1;
2351
2352 /* Handle GNU/Linux's syscall SIGTRAPs. */
2353 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2354 {
2355 /* No longer need the sysgood bit. The ptrace event ends up
2356 recorded in lp->waitstatus if we care for it. We can carry
2357 on handling the event like a regular SIGTRAP from here
2358 on. */
2359 status = W_STOPCODE (SIGTRAP);
2360 if (linux_handle_syscall_trap (lp, 1))
2361 return wait_lwp (lp);
2362 }
2363
2364 /* Handle GNU/Linux's extended waitstatus for trace events. */
2365 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2366 {
2367 if (debug_linux_nat)
2368 fprintf_unfiltered (gdb_stdlog,
2369 "WL: Handling extended status 0x%06x\n",
2370 status);
2371 if (linux_handle_extended_wait (lp, status, 1))
2372 return wait_lwp (lp);
2373 }
2374
2375 return status;
2376 }
2377
2378 /* Send a SIGSTOP to LP. */
2379
2380 static int
2381 stop_callback (struct lwp_info *lp, void *data)
2382 {
2383 if (!lp->stopped && !lp->signalled)
2384 {
2385 int ret;
2386
2387 if (debug_linux_nat)
2388 {
2389 fprintf_unfiltered (gdb_stdlog,
2390 "SC: kill %s **<SIGSTOP>**\n",
2391 target_pid_to_str (lp->ptid));
2392 }
2393 errno = 0;
2394 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2395 if (debug_linux_nat)
2396 {
2397 fprintf_unfiltered (gdb_stdlog,
2398 "SC: lwp kill %d %s\n",
2399 ret,
2400 errno ? safe_strerror (errno) : "ERRNO-OK");
2401 }
2402
2403 lp->signalled = 1;
2404 gdb_assert (lp->status == 0);
2405 }
2406
2407 return 0;
2408 }
2409
2410 /* Request a stop on LWP. */
2411
2412 void
2413 linux_stop_lwp (struct lwp_info *lwp)
2414 {
2415 stop_callback (lwp, NULL);
2416 }
2417
2418 /* Return non-zero if LWP PID has a pending SIGINT. */
2419
2420 static int
2421 linux_nat_has_pending_sigint (int pid)
2422 {
2423 sigset_t pending, blocked, ignored;
2424
2425 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2426
2427 if (sigismember (&pending, SIGINT)
2428 && !sigismember (&ignored, SIGINT))
2429 return 1;
2430
2431 return 0;
2432 }
2433
2434 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2435
2436 static int
2437 set_ignore_sigint (struct lwp_info *lp, void *data)
2438 {
2439 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2440 flag to consume the next one. */
2441 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2442 && WSTOPSIG (lp->status) == SIGINT)
2443 lp->status = 0;
2444 else
2445 lp->ignore_sigint = 1;
2446
2447 return 0;
2448 }
2449
2450 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2451 This function is called after we know the LWP has stopped; if the LWP
2452 stopped before the expected SIGINT was delivered, then it will never have
2453 arrived. Also, if the signal was delivered to a shared queue and consumed
2454 by a different thread, it will never be delivered to this LWP. */
2455
2456 static void
2457 maybe_clear_ignore_sigint (struct lwp_info *lp)
2458 {
2459 if (!lp->ignore_sigint)
2460 return;
2461
2462 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2463 {
2464 if (debug_linux_nat)
2465 fprintf_unfiltered (gdb_stdlog,
2466 "MCIS: Clearing bogus flag for %s\n",
2467 target_pid_to_str (lp->ptid));
2468 lp->ignore_sigint = 0;
2469 }
2470 }
2471
2472 /* Fetch the possible triggered data watchpoint info and store it in
2473 LP.
2474
2475 On some archs, like x86, that use debug registers to set
2476 watchpoints, it's possible that the way to know which watched
2477 address trapped, is to check the register that is used to select
2478 which address to watch. Problem is, between setting the watchpoint
2479 and reading back which data address trapped, the user may change
2480 the set of watchpoints, and, as a consequence, GDB changes the
2481 debug registers in the inferior. To avoid reading back a stale
2482 stopped-data-address when that happens, we cache in LP the fact
2483 that a watchpoint trapped, and the corresponding data address, as
2484 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2485 registers meanwhile, we have the cached data we can rely on. */
2486
2487 static void
2488 save_sigtrap (struct lwp_info *lp)
2489 {
2490 struct cleanup *old_chain;
2491
2492 if (linux_ops->to_stopped_by_watchpoint == NULL)
2493 {
2494 lp->stopped_by_watchpoint = 0;
2495 return;
2496 }
2497
2498 old_chain = save_inferior_ptid ();
2499 inferior_ptid = lp->ptid;
2500
2501 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint (linux_ops);
2502
2503 if (lp->stopped_by_watchpoint)
2504 {
2505 if (linux_ops->to_stopped_data_address != NULL)
2506 lp->stopped_data_address_p =
2507 linux_ops->to_stopped_data_address (&current_target,
2508 &lp->stopped_data_address);
2509 else
2510 lp->stopped_data_address_p = 0;
2511 }
2512
2513 do_cleanups (old_chain);
2514 }
2515
2516 /* See save_sigtrap. */
2517
2518 static int
2519 linux_nat_stopped_by_watchpoint (struct target_ops *ops)
2520 {
2521 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2522
2523 gdb_assert (lp != NULL);
2524
2525 return lp->stopped_by_watchpoint;
2526 }
2527
2528 static int
2529 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2530 {
2531 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2532
2533 gdb_assert (lp != NULL);
2534
2535 *addr_p = lp->stopped_data_address;
2536
2537 return lp->stopped_data_address_p;
2538 }
2539
2540 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2541
2542 static int
2543 sigtrap_is_event (int status)
2544 {
2545 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2546 }
2547
2548 /* SIGTRAP-like events recognizer. */
2549
2550 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
2551
2552 /* Check for SIGTRAP-like events in LP. */
2553
2554 static int
2555 linux_nat_lp_status_is_event (struct lwp_info *lp)
2556 {
2557 /* We check for lp->waitstatus in addition to lp->status, because we can
2558 have pending process exits recorded in lp->status
2559 and W_EXITCODE(0,0) == 0. We should probably have an additional
2560 lp->status_p flag. */
2561
2562 return (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2563 && linux_nat_status_is_event (lp->status));
2564 }
2565
2566 /* Set alternative SIGTRAP-like events recognizer. If
2567 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2568 applied. */
2569
2570 void
2571 linux_nat_set_status_is_event (struct target_ops *t,
2572 int (*status_is_event) (int status))
2573 {
2574 linux_nat_status_is_event = status_is_event;
2575 }
2576
2577 /* Wait until LP is stopped. */
2578
2579 static int
2580 stop_wait_callback (struct lwp_info *lp, void *data)
2581 {
2582 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2583
2584 /* If this is a vfork parent, bail out, it is not going to report
2585 any SIGSTOP until the vfork is done with. */
2586 if (inf->vfork_child != NULL)
2587 return 0;
2588
2589 if (!lp->stopped)
2590 {
2591 int status;
2592
2593 status = wait_lwp (lp);
2594 if (status == 0)
2595 return 0;
2596
2597 if (lp->ignore_sigint && WIFSTOPPED (status)
2598 && WSTOPSIG (status) == SIGINT)
2599 {
2600 lp->ignore_sigint = 0;
2601
2602 errno = 0;
2603 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2604 lp->stopped = 0;
2605 if (debug_linux_nat)
2606 fprintf_unfiltered (gdb_stdlog,
2607 "PTRACE_CONT %s, 0, 0 (%s) "
2608 "(discarding SIGINT)\n",
2609 target_pid_to_str (lp->ptid),
2610 errno ? safe_strerror (errno) : "OK");
2611
2612 return stop_wait_callback (lp, NULL);
2613 }
2614
2615 maybe_clear_ignore_sigint (lp);
2616
2617 if (WSTOPSIG (status) != SIGSTOP)
2618 {
2619 /* The thread was stopped with a signal other than SIGSTOP. */
2620
2621 save_sigtrap (lp);
2622
2623 if (debug_linux_nat)
2624 fprintf_unfiltered (gdb_stdlog,
2625 "SWC: Pending event %s in %s\n",
2626 status_to_str ((int) status),
2627 target_pid_to_str (lp->ptid));
2628
2629 /* Save the sigtrap event. */
2630 lp->status = status;
2631 gdb_assert (lp->signalled);
2632 }
2633 else
2634 {
2635 /* We caught the SIGSTOP that we intended to catch, so
2636 there's no SIGSTOP pending. */
2637
2638 if (debug_linux_nat)
2639 fprintf_unfiltered (gdb_stdlog,
2640 "SWC: Delayed SIGSTOP caught for %s.\n",
2641 target_pid_to_str (lp->ptid));
2642
2643 /* Reset SIGNALLED only after the stop_wait_callback call
2644 above as it does gdb_assert on SIGNALLED. */
2645 lp->signalled = 0;
2646 }
2647 }
2648
2649 return 0;
2650 }
2651
2652 /* Return non-zero if LP has a wait status pending. */
2653
2654 static int
2655 status_callback (struct lwp_info *lp, void *data)
2656 {
2657 /* Only report a pending wait status if we pretend that this has
2658 indeed been resumed. */
2659 if (!lp->resumed)
2660 return 0;
2661
2662 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2663 {
2664 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2665 or a pending process exit. Note that `W_EXITCODE(0,0) ==
2666 0', so a clean process exit can not be stored pending in
2667 lp->status, it is indistinguishable from
2668 no-pending-status. */
2669 return 1;
2670 }
2671
2672 if (lp->status != 0)
2673 return 1;
2674
2675 return 0;
2676 }
2677
2678 /* Return non-zero if LP isn't stopped. */
2679
2680 static int
2681 running_callback (struct lwp_info *lp, void *data)
2682 {
2683 return (!lp->stopped
2684 || ((lp->status != 0
2685 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2686 && lp->resumed));
2687 }
2688
2689 /* Count the LWP's that have had events. */
2690
2691 static int
2692 count_events_callback (struct lwp_info *lp, void *data)
2693 {
2694 int *count = data;
2695
2696 gdb_assert (count != NULL);
2697
2698 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2699 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2700 (*count)++;
2701
2702 return 0;
2703 }
2704
2705 /* Select the LWP (if any) that is currently being single-stepped. */
2706
2707 static int
2708 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2709 {
2710 if (lp->last_resume_kind == resume_step
2711 && lp->status != 0)
2712 return 1;
2713 else
2714 return 0;
2715 }
2716
2717 /* Select the Nth LWP that has had a SIGTRAP event. */
2718
2719 static int
2720 select_event_lwp_callback (struct lwp_info *lp, void *data)
2721 {
2722 int *selector = data;
2723
2724 gdb_assert (selector != NULL);
2725
2726 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2727 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2728 if ((*selector)-- == 0)
2729 return 1;
2730
2731 return 0;
2732 }
2733
2734 static int
2735 cancel_breakpoint (struct lwp_info *lp)
2736 {
2737 /* Arrange for a breakpoint to be hit again later. We don't keep
2738 the SIGTRAP status and don't forward the SIGTRAP signal to the
2739 LWP. We will handle the current event, eventually we will resume
2740 this LWP, and this breakpoint will trap again.
2741
2742 If we do not do this, then we run the risk that the user will
2743 delete or disable the breakpoint, but the LWP will have already
2744 tripped on it. */
2745
2746 struct regcache *regcache = get_thread_regcache (lp->ptid);
2747 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2748 CORE_ADDR pc;
2749
2750 pc = regcache_read_pc (regcache) - target_decr_pc_after_break (gdbarch);
2751 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2752 {
2753 if (debug_linux_nat)
2754 fprintf_unfiltered (gdb_stdlog,
2755 "CB: Push back breakpoint for %s\n",
2756 target_pid_to_str (lp->ptid));
2757
2758 /* Back up the PC if necessary. */
2759 if (target_decr_pc_after_break (gdbarch))
2760 regcache_write_pc (regcache, pc);
2761
2762 return 1;
2763 }
2764 return 0;
2765 }
2766
2767 static int
2768 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2769 {
2770 struct lwp_info *event_lp = data;
2771
2772 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2773 if (lp == event_lp)
2774 return 0;
2775
2776 /* If a LWP other than the LWP that we're reporting an event for has
2777 hit a GDB breakpoint (as opposed to some random trap signal),
2778 then just arrange for it to hit it again later. We don't keep
2779 the SIGTRAP status and don't forward the SIGTRAP signal to the
2780 LWP. We will handle the current event, eventually we will resume
2781 all LWPs, and this one will get its breakpoint trap again.
2782
2783 If we do not do this, then we run the risk that the user will
2784 delete or disable the breakpoint, but the LWP will have already
2785 tripped on it. */
2786
2787 if (linux_nat_lp_status_is_event (lp)
2788 && cancel_breakpoint (lp))
2789 /* Throw away the SIGTRAP. */
2790 lp->status = 0;
2791
2792 return 0;
2793 }
2794
2795 /* Select one LWP out of those that have events pending. */
2796
2797 static void
2798 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2799 {
2800 int num_events = 0;
2801 int random_selector;
2802 struct lwp_info *event_lp;
2803
2804 /* Record the wait status for the original LWP. */
2805 (*orig_lp)->status = *status;
2806
2807 /* Give preference to any LWP that is being single-stepped. */
2808 event_lp = iterate_over_lwps (filter,
2809 select_singlestep_lwp_callback, NULL);
2810 if (event_lp != NULL)
2811 {
2812 if (debug_linux_nat)
2813 fprintf_unfiltered (gdb_stdlog,
2814 "SEL: Select single-step %s\n",
2815 target_pid_to_str (event_lp->ptid));
2816 }
2817 else
2818 {
2819 /* No single-stepping LWP. Select one at random, out of those
2820 which have had SIGTRAP events. */
2821
2822 /* First see how many SIGTRAP events we have. */
2823 iterate_over_lwps (filter, count_events_callback, &num_events);
2824
2825 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2826 random_selector = (int)
2827 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2828
2829 if (debug_linux_nat && num_events > 1)
2830 fprintf_unfiltered (gdb_stdlog,
2831 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2832 num_events, random_selector);
2833
2834 event_lp = iterate_over_lwps (filter,
2835 select_event_lwp_callback,
2836 &random_selector);
2837 }
2838
2839 if (event_lp != NULL)
2840 {
2841 /* Switch the event LWP. */
2842 *orig_lp = event_lp;
2843 *status = event_lp->status;
2844 }
2845
2846 /* Flush the wait status for the event LWP. */
2847 (*orig_lp)->status = 0;
2848 }
2849
2850 /* Return non-zero if LP has been resumed. */
2851
2852 static int
2853 resumed_callback (struct lwp_info *lp, void *data)
2854 {
2855 return lp->resumed;
2856 }
2857
2858 /* Stop an active thread, verify it still exists, then resume it. If
2859 the thread ends up with a pending status, then it is not resumed,
2860 and *DATA (really a pointer to int), is set. */
2861
2862 static int
2863 stop_and_resume_callback (struct lwp_info *lp, void *data)
2864 {
2865 int *new_pending_p = data;
2866
2867 if (!lp->stopped)
2868 {
2869 ptid_t ptid = lp->ptid;
2870
2871 stop_callback (lp, NULL);
2872 stop_wait_callback (lp, NULL);
2873
2874 /* Resume if the lwp still exists, and the core wanted it
2875 running. */
2876 lp = find_lwp_pid (ptid);
2877 if (lp != NULL)
2878 {
2879 if (lp->last_resume_kind == resume_stop
2880 && lp->status == 0)
2881 {
2882 /* The core wanted the LWP to stop. Even if it stopped
2883 cleanly (with SIGSTOP), leave the event pending. */
2884 if (debug_linux_nat)
2885 fprintf_unfiltered (gdb_stdlog,
2886 "SARC: core wanted LWP %ld stopped "
2887 "(leaving SIGSTOP pending)\n",
2888 ptid_get_lwp (lp->ptid));
2889 lp->status = W_STOPCODE (SIGSTOP);
2890 }
2891
2892 if (lp->status == 0)
2893 {
2894 if (debug_linux_nat)
2895 fprintf_unfiltered (gdb_stdlog,
2896 "SARC: re-resuming LWP %ld\n",
2897 ptid_get_lwp (lp->ptid));
2898 resume_lwp (lp, lp->step, GDB_SIGNAL_0);
2899 }
2900 else
2901 {
2902 if (debug_linux_nat)
2903 fprintf_unfiltered (gdb_stdlog,
2904 "SARC: not re-resuming LWP %ld "
2905 "(has pending)\n",
2906 ptid_get_lwp (lp->ptid));
2907 if (new_pending_p)
2908 *new_pending_p = 1;
2909 }
2910 }
2911 }
2912 return 0;
2913 }
2914
2915 /* Check if we should go on and pass this event to common code.
2916 Return the affected lwp if we are, or NULL otherwise. If we stop
2917 all lwps temporarily, we may end up with new pending events in some
2918 other lwp. In that case set *NEW_PENDING_P to true. */
2919
2920 static struct lwp_info *
2921 linux_nat_filter_event (int lwpid, int status, int *new_pending_p)
2922 {
2923 struct lwp_info *lp;
2924
2925 *new_pending_p = 0;
2926
2927 lp = find_lwp_pid (pid_to_ptid (lwpid));
2928
2929 /* Check for stop events reported by a process we didn't already
2930 know about - anything not already in our LWP list.
2931
2932 If we're expecting to receive stopped processes after
2933 fork, vfork, and clone events, then we'll just add the
2934 new one to our list and go back to waiting for the event
2935 to be reported - the stopped process might be returned
2936 from waitpid before or after the event is.
2937
2938 But note the case of a non-leader thread exec'ing after the
2939 leader having exited, and gone from our lists. The non-leader
2940 thread changes its tid to the tgid. */
2941
2942 if (WIFSTOPPED (status) && lp == NULL
2943 && (WSTOPSIG (status) == SIGTRAP && status >> 16 == PTRACE_EVENT_EXEC))
2944 {
2945 /* A multi-thread exec after we had seen the leader exiting. */
2946 if (debug_linux_nat)
2947 fprintf_unfiltered (gdb_stdlog,
2948 "LLW: Re-adding thread group leader LWP %d.\n",
2949 lwpid);
2950
2951 lp = add_lwp (ptid_build (lwpid, lwpid, 0));
2952 lp->stopped = 1;
2953 lp->resumed = 1;
2954 add_thread (lp->ptid);
2955 }
2956
2957 if (WIFSTOPPED (status) && !lp)
2958 {
2959 add_to_pid_list (&stopped_pids, lwpid, status);
2960 return NULL;
2961 }
2962
2963 /* Make sure we don't report an event for the exit of an LWP not in
2964 our list, i.e. not part of the current process. This can happen
2965 if we detach from a program we originally forked and then it
2966 exits. */
2967 if (!WIFSTOPPED (status) && !lp)
2968 return NULL;
2969
2970 /* This LWP is stopped now. (And if dead, this prevents it from
2971 ever being continued.) */
2972 lp->stopped = 1;
2973
2974 /* Handle GNU/Linux's syscall SIGTRAPs. */
2975 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2976 {
2977 /* No longer need the sysgood bit. The ptrace event ends up
2978 recorded in lp->waitstatus if we care for it. We can carry
2979 on handling the event like a regular SIGTRAP from here
2980 on. */
2981 status = W_STOPCODE (SIGTRAP);
2982 if (linux_handle_syscall_trap (lp, 0))
2983 return NULL;
2984 }
2985
2986 /* Handle GNU/Linux's extended waitstatus for trace events. */
2987 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2988 {
2989 if (debug_linux_nat)
2990 fprintf_unfiltered (gdb_stdlog,
2991 "LLW: Handling extended status 0x%06x\n",
2992 status);
2993 if (linux_handle_extended_wait (lp, status, 0))
2994 return NULL;
2995 }
2996
2997 if (linux_nat_status_is_event (status))
2998 save_sigtrap (lp);
2999
3000 /* Check if the thread has exited. */
3001 if ((WIFEXITED (status) || WIFSIGNALED (status))
3002 && num_lwps (ptid_get_pid (lp->ptid)) > 1)
3003 {
3004 /* If this is the main thread, we must stop all threads and verify
3005 if they are still alive. This is because in the nptl thread model
3006 on Linux 2.4, there is no signal issued for exiting LWPs
3007 other than the main thread. We only get the main thread exit
3008 signal once all child threads have already exited. If we
3009 stop all the threads and use the stop_wait_callback to check
3010 if they have exited we can determine whether this signal
3011 should be ignored or whether it means the end of the debugged
3012 application, regardless of which threading model is being
3013 used. */
3014 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
3015 {
3016 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3017 stop_and_resume_callback, new_pending_p);
3018 }
3019
3020 if (debug_linux_nat)
3021 fprintf_unfiltered (gdb_stdlog,
3022 "LLW: %s exited.\n",
3023 target_pid_to_str (lp->ptid));
3024
3025 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
3026 {
3027 /* If there is at least one more LWP, then the exit signal
3028 was not the end of the debugged application and should be
3029 ignored. */
3030 exit_lwp (lp);
3031 return NULL;
3032 }
3033 }
3034
3035 /* Check if the current LWP has previously exited. In the nptl
3036 thread model, LWPs other than the main thread do not issue
3037 signals when they exit so we must check whenever the thread has
3038 stopped. A similar check is made in stop_wait_callback(). */
3039 if (num_lwps (ptid_get_pid (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3040 {
3041 ptid_t ptid = pid_to_ptid (ptid_get_pid (lp->ptid));
3042
3043 if (debug_linux_nat)
3044 fprintf_unfiltered (gdb_stdlog,
3045 "LLW: %s exited.\n",
3046 target_pid_to_str (lp->ptid));
3047
3048 exit_lwp (lp);
3049
3050 /* Make sure there is at least one thread running. */
3051 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3052
3053 /* Discard the event. */
3054 return NULL;
3055 }
3056
3057 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3058 an attempt to stop an LWP. */
3059 if (lp->signalled
3060 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3061 {
3062 if (debug_linux_nat)
3063 fprintf_unfiltered (gdb_stdlog,
3064 "LLW: Delayed SIGSTOP caught for %s.\n",
3065 target_pid_to_str (lp->ptid));
3066
3067 lp->signalled = 0;
3068
3069 if (lp->last_resume_kind != resume_stop)
3070 {
3071 /* This is a delayed SIGSTOP. */
3072
3073 registers_changed ();
3074
3075 if (linux_nat_prepare_to_resume != NULL)
3076 linux_nat_prepare_to_resume (lp);
3077 linux_ops->to_resume (linux_ops,
3078 pid_to_ptid (ptid_get_lwp (lp->ptid)),
3079 lp->step, GDB_SIGNAL_0);
3080 if (debug_linux_nat)
3081 fprintf_unfiltered (gdb_stdlog,
3082 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3083 lp->step ?
3084 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3085 target_pid_to_str (lp->ptid));
3086
3087 lp->stopped = 0;
3088 gdb_assert (lp->resumed);
3089
3090 /* Discard the event. */
3091 return NULL;
3092 }
3093 }
3094
3095 /* Make sure we don't report a SIGINT that we have already displayed
3096 for another thread. */
3097 if (lp->ignore_sigint
3098 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3099 {
3100 if (debug_linux_nat)
3101 fprintf_unfiltered (gdb_stdlog,
3102 "LLW: Delayed SIGINT caught for %s.\n",
3103 target_pid_to_str (lp->ptid));
3104
3105 /* This is a delayed SIGINT. */
3106 lp->ignore_sigint = 0;
3107
3108 registers_changed ();
3109 if (linux_nat_prepare_to_resume != NULL)
3110 linux_nat_prepare_to_resume (lp);
3111 linux_ops->to_resume (linux_ops, pid_to_ptid (ptid_get_lwp (lp->ptid)),
3112 lp->step, GDB_SIGNAL_0);
3113 if (debug_linux_nat)
3114 fprintf_unfiltered (gdb_stdlog,
3115 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3116 lp->step ?
3117 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3118 target_pid_to_str (lp->ptid));
3119
3120 lp->stopped = 0;
3121 gdb_assert (lp->resumed);
3122
3123 /* Discard the event. */
3124 return NULL;
3125 }
3126
3127 /* An interesting event. */
3128 gdb_assert (lp);
3129 lp->status = status;
3130 return lp;
3131 }
3132
3133 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3134 their exits until all other threads in the group have exited. */
3135
3136 static void
3137 check_zombie_leaders (void)
3138 {
3139 struct inferior *inf;
3140
3141 ALL_INFERIORS (inf)
3142 {
3143 struct lwp_info *leader_lp;
3144
3145 if (inf->pid == 0)
3146 continue;
3147
3148 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3149 if (leader_lp != NULL
3150 /* Check if there are other threads in the group, as we may
3151 have raced with the inferior simply exiting. */
3152 && num_lwps (inf->pid) > 1
3153 && linux_proc_pid_is_zombie (inf->pid))
3154 {
3155 if (debug_linux_nat)
3156 fprintf_unfiltered (gdb_stdlog,
3157 "CZL: Thread group leader %d zombie "
3158 "(it exited, or another thread execd).\n",
3159 inf->pid);
3160
3161 /* A leader zombie can mean one of two things:
3162
3163 - It exited, and there's an exit status pending
3164 available, or only the leader exited (not the whole
3165 program). In the latter case, we can't waitpid the
3166 leader's exit status until all other threads are gone.
3167
3168 - There are 3 or more threads in the group, and a thread
3169 other than the leader exec'd. On an exec, the Linux
3170 kernel destroys all other threads (except the execing
3171 one) in the thread group, and resets the execing thread's
3172 tid to the tgid. No exit notification is sent for the
3173 execing thread -- from the ptracer's perspective, it
3174 appears as though the execing thread just vanishes.
3175 Until we reap all other threads except the leader and the
3176 execing thread, the leader will be zombie, and the
3177 execing thread will be in `D (disc sleep)'. As soon as
3178 all other threads are reaped, the execing thread changes
3179 it's tid to the tgid, and the previous (zombie) leader
3180 vanishes, giving place to the "new" leader. We could try
3181 distinguishing the exit and exec cases, by waiting once
3182 more, and seeing if something comes out, but it doesn't
3183 sound useful. The previous leader _does_ go away, and
3184 we'll re-add the new one once we see the exec event
3185 (which is just the same as what would happen if the
3186 previous leader did exit voluntarily before some other
3187 thread execs). */
3188
3189 if (debug_linux_nat)
3190 fprintf_unfiltered (gdb_stdlog,
3191 "CZL: Thread group leader %d vanished.\n",
3192 inf->pid);
3193 exit_lwp (leader_lp);
3194 }
3195 }
3196 }
3197
3198 static ptid_t
3199 linux_nat_wait_1 (struct target_ops *ops,
3200 ptid_t ptid, struct target_waitstatus *ourstatus,
3201 int target_options)
3202 {
3203 static sigset_t prev_mask;
3204 enum resume_kind last_resume_kind;
3205 struct lwp_info *lp;
3206 int status;
3207
3208 if (debug_linux_nat)
3209 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3210
3211 /* The first time we get here after starting a new inferior, we may
3212 not have added it to the LWP list yet - this is the earliest
3213 moment at which we know its PID. */
3214 if (ptid_is_pid (inferior_ptid))
3215 {
3216 /* Upgrade the main thread's ptid. */
3217 thread_change_ptid (inferior_ptid,
3218 ptid_build (ptid_get_pid (inferior_ptid),
3219 ptid_get_pid (inferior_ptid), 0));
3220
3221 lp = add_initial_lwp (inferior_ptid);
3222 lp->resumed = 1;
3223 }
3224
3225 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3226 block_child_signals (&prev_mask);
3227
3228 retry:
3229 lp = NULL;
3230 status = 0;
3231
3232 /* First check if there is a LWP with a wait status pending. */
3233 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3234 {
3235 /* Any LWP in the PTID group that's been resumed will do. */
3236 lp = iterate_over_lwps (ptid, status_callback, NULL);
3237 if (lp)
3238 {
3239 if (debug_linux_nat && lp->status)
3240 fprintf_unfiltered (gdb_stdlog,
3241 "LLW: Using pending wait status %s for %s.\n",
3242 status_to_str (lp->status),
3243 target_pid_to_str (lp->ptid));
3244 }
3245 }
3246 else if (ptid_lwp_p (ptid))
3247 {
3248 if (debug_linux_nat)
3249 fprintf_unfiltered (gdb_stdlog,
3250 "LLW: Waiting for specific LWP %s.\n",
3251 target_pid_to_str (ptid));
3252
3253 /* We have a specific LWP to check. */
3254 lp = find_lwp_pid (ptid);
3255 gdb_assert (lp);
3256
3257 if (debug_linux_nat && lp->status)
3258 fprintf_unfiltered (gdb_stdlog,
3259 "LLW: Using pending wait status %s for %s.\n",
3260 status_to_str (lp->status),
3261 target_pid_to_str (lp->ptid));
3262
3263 /* We check for lp->waitstatus in addition to lp->status,
3264 because we can have pending process exits recorded in
3265 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3266 an additional lp->status_p flag. */
3267 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3268 lp = NULL;
3269 }
3270
3271 if (!target_can_async_p ())
3272 {
3273 /* Causes SIGINT to be passed on to the attached process. */
3274 set_sigint_trap ();
3275 }
3276
3277 /* But if we don't find a pending event, we'll have to wait. */
3278
3279 while (lp == NULL)
3280 {
3281 pid_t lwpid;
3282
3283 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3284 quirks:
3285
3286 - If the thread group leader exits while other threads in the
3287 thread group still exist, waitpid(TGID, ...) hangs. That
3288 waitpid won't return an exit status until the other threads
3289 in the group are reapped.
3290
3291 - When a non-leader thread execs, that thread just vanishes
3292 without reporting an exit (so we'd hang if we waited for it
3293 explicitly in that case). The exec event is reported to
3294 the TGID pid. */
3295
3296 errno = 0;
3297 lwpid = my_waitpid (-1, &status, __WCLONE | WNOHANG);
3298 if (lwpid == 0 || (lwpid == -1 && errno == ECHILD))
3299 lwpid = my_waitpid (-1, &status, WNOHANG);
3300
3301 if (debug_linux_nat)
3302 fprintf_unfiltered (gdb_stdlog,
3303 "LNW: waitpid(-1, ...) returned %d, %s\n",
3304 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3305
3306 if (lwpid > 0)
3307 {
3308 /* If this is true, then we paused LWPs momentarily, and may
3309 now have pending events to handle. */
3310 int new_pending;
3311
3312 if (debug_linux_nat)
3313 {
3314 fprintf_unfiltered (gdb_stdlog,
3315 "LLW: waitpid %ld received %s\n",
3316 (long) lwpid, status_to_str (status));
3317 }
3318
3319 lp = linux_nat_filter_event (lwpid, status, &new_pending);
3320
3321 /* STATUS is now no longer valid, use LP->STATUS instead. */
3322 status = 0;
3323
3324 if (lp && !ptid_match (lp->ptid, ptid))
3325 {
3326 gdb_assert (lp->resumed);
3327
3328 if (debug_linux_nat)
3329 fprintf_unfiltered (gdb_stdlog,
3330 "LWP %ld got an event %06x, "
3331 "leaving pending.\n",
3332 ptid_get_lwp (lp->ptid), lp->status);
3333
3334 if (WIFSTOPPED (lp->status))
3335 {
3336 if (WSTOPSIG (lp->status) != SIGSTOP)
3337 {
3338 /* Cancel breakpoint hits. The breakpoint may
3339 be removed before we fetch events from this
3340 process to report to the core. It is best
3341 not to assume the moribund breakpoints
3342 heuristic always handles these cases --- it
3343 could be too many events go through to the
3344 core before this one is handled. All-stop
3345 always cancels breakpoint hits in all
3346 threads. */
3347 if (non_stop
3348 && linux_nat_lp_status_is_event (lp)
3349 && cancel_breakpoint (lp))
3350 {
3351 /* Throw away the SIGTRAP. */
3352 lp->status = 0;
3353
3354 if (debug_linux_nat)
3355 fprintf_unfiltered (gdb_stdlog,
3356 "LLW: LWP %ld hit a "
3357 "breakpoint while "
3358 "waiting for another "
3359 "process; "
3360 "cancelled it\n",
3361 ptid_get_lwp (lp->ptid));
3362 }
3363 }
3364 else
3365 lp->signalled = 0;
3366 }
3367 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3368 {
3369 if (debug_linux_nat)
3370 fprintf_unfiltered (gdb_stdlog,
3371 "Process %ld exited while stopping "
3372 "LWPs\n",
3373 ptid_get_lwp (lp->ptid));
3374
3375 /* This was the last lwp in the process. Since
3376 events are serialized to GDB core, and we can't
3377 report this one right now, but GDB core and the
3378 other target layers will want to be notified
3379 about the exit code/signal, leave the status
3380 pending for the next time we're able to report
3381 it. */
3382
3383 /* Dead LWP's aren't expected to reported a pending
3384 sigstop. */
3385 lp->signalled = 0;
3386
3387 /* Store the pending event in the waitstatus as
3388 well, because W_EXITCODE(0,0) == 0. */
3389 store_waitstatus (&lp->waitstatus, lp->status);
3390 }
3391
3392 /* Keep looking. */
3393 lp = NULL;
3394 }
3395
3396 if (new_pending)
3397 {
3398 /* Some LWP now has a pending event. Go all the way
3399 back to check it. */
3400 goto retry;
3401 }
3402
3403 if (lp)
3404 {
3405 /* We got an event to report to the core. */
3406 break;
3407 }
3408
3409 /* Retry until nothing comes out of waitpid. A single
3410 SIGCHLD can indicate more than one child stopped. */
3411 continue;
3412 }
3413
3414 /* Check for zombie thread group leaders. Those can't be reaped
3415 until all other threads in the thread group are. */
3416 check_zombie_leaders ();
3417
3418 /* If there are no resumed children left, bail. We'd be stuck
3419 forever in the sigsuspend call below otherwise. */
3420 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3421 {
3422 if (debug_linux_nat)
3423 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3424
3425 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3426
3427 if (!target_can_async_p ())
3428 clear_sigint_trap ();
3429
3430 restore_child_signals_mask (&prev_mask);
3431 return minus_one_ptid;
3432 }
3433
3434 /* No interesting event to report to the core. */
3435
3436 if (target_options & TARGET_WNOHANG)
3437 {
3438 if (debug_linux_nat)
3439 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3440
3441 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3442 restore_child_signals_mask (&prev_mask);
3443 return minus_one_ptid;
3444 }
3445
3446 /* We shouldn't end up here unless we want to try again. */
3447 gdb_assert (lp == NULL);
3448
3449 /* Block until we get an event reported with SIGCHLD. */
3450 if (debug_linux_nat)
3451 fprintf_unfiltered (gdb_stdlog, "LNW: about to sigsuspend\n");
3452 sigsuspend (&suspend_mask);
3453 }
3454
3455 if (!target_can_async_p ())
3456 clear_sigint_trap ();
3457
3458 gdb_assert (lp);
3459
3460 status = lp->status;
3461 lp->status = 0;
3462
3463 /* Don't report signals that GDB isn't interested in, such as
3464 signals that are neither printed nor stopped upon. Stopping all
3465 threads can be a bit time-consuming so if we want decent
3466 performance with heavily multi-threaded programs, especially when
3467 they're using a high frequency timer, we'd better avoid it if we
3468 can. */
3469
3470 if (WIFSTOPPED (status))
3471 {
3472 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3473
3474 /* When using hardware single-step, we need to report every signal.
3475 Otherwise, signals in pass_mask may be short-circuited. */
3476 if (!lp->step
3477 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)))
3478 {
3479 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3480 here? It is not clear we should. GDB may not expect
3481 other threads to run. On the other hand, not resuming
3482 newly attached threads may cause an unwanted delay in
3483 getting them running. */
3484 registers_changed ();
3485 if (linux_nat_prepare_to_resume != NULL)
3486 linux_nat_prepare_to_resume (lp);
3487 linux_ops->to_resume (linux_ops,
3488 pid_to_ptid (ptid_get_lwp (lp->ptid)),
3489 lp->step, signo);
3490 if (debug_linux_nat)
3491 fprintf_unfiltered (gdb_stdlog,
3492 "LLW: %s %s, %s (preempt 'handle')\n",
3493 lp->step ?
3494 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3495 target_pid_to_str (lp->ptid),
3496 (signo != GDB_SIGNAL_0
3497 ? strsignal (gdb_signal_to_host (signo))
3498 : "0"));
3499 lp->stopped = 0;
3500 goto retry;
3501 }
3502
3503 if (!non_stop)
3504 {
3505 /* Only do the below in all-stop, as we currently use SIGINT
3506 to implement target_stop (see linux_nat_stop) in
3507 non-stop. */
3508 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3509 {
3510 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3511 forwarded to the entire process group, that is, all LWPs
3512 will receive it - unless they're using CLONE_THREAD to
3513 share signals. Since we only want to report it once, we
3514 mark it as ignored for all LWPs except this one. */
3515 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3516 set_ignore_sigint, NULL);
3517 lp->ignore_sigint = 0;
3518 }
3519 else
3520 maybe_clear_ignore_sigint (lp);
3521 }
3522 }
3523
3524 /* This LWP is stopped now. */
3525 lp->stopped = 1;
3526
3527 if (debug_linux_nat)
3528 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3529 status_to_str (status), target_pid_to_str (lp->ptid));
3530
3531 if (!non_stop)
3532 {
3533 /* Now stop all other LWP's ... */
3534 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3535
3536 /* ... and wait until all of them have reported back that
3537 they're no longer running. */
3538 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3539
3540 /* If we're not waiting for a specific LWP, choose an event LWP
3541 from among those that have had events. Giving equal priority
3542 to all LWPs that have had events helps prevent
3543 starvation. */
3544 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3545 select_event_lwp (ptid, &lp, &status);
3546
3547 /* Now that we've selected our final event LWP, cancel any
3548 breakpoints in other LWPs that have hit a GDB breakpoint.
3549 See the comment in cancel_breakpoints_callback to find out
3550 why. */
3551 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3552
3553 /* We'll need this to determine whether to report a SIGSTOP as
3554 TARGET_WAITKIND_0. Need to take a copy because
3555 resume_clear_callback clears it. */
3556 last_resume_kind = lp->last_resume_kind;
3557
3558 /* In all-stop, from the core's perspective, all LWPs are now
3559 stopped until a new resume action is sent over. */
3560 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3561 }
3562 else
3563 {
3564 /* See above. */
3565 last_resume_kind = lp->last_resume_kind;
3566 resume_clear_callback (lp, NULL);
3567 }
3568
3569 if (linux_nat_status_is_event (status))
3570 {
3571 if (debug_linux_nat)
3572 fprintf_unfiltered (gdb_stdlog,
3573 "LLW: trap ptid is %s.\n",
3574 target_pid_to_str (lp->ptid));
3575 }
3576
3577 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3578 {
3579 *ourstatus = lp->waitstatus;
3580 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3581 }
3582 else
3583 store_waitstatus (ourstatus, status);
3584
3585 if (debug_linux_nat)
3586 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3587
3588 restore_child_signals_mask (&prev_mask);
3589
3590 if (last_resume_kind == resume_stop
3591 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3592 && WSTOPSIG (status) == SIGSTOP)
3593 {
3594 /* A thread that has been requested to stop by GDB with
3595 target_stop, and it stopped cleanly, so report as SIG0. The
3596 use of SIGSTOP is an implementation detail. */
3597 ourstatus->value.sig = GDB_SIGNAL_0;
3598 }
3599
3600 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3601 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3602 lp->core = -1;
3603 else
3604 lp->core = linux_common_core_of_thread (lp->ptid);
3605
3606 return lp->ptid;
3607 }
3608
3609 /* Resume LWPs that are currently stopped without any pending status
3610 to report, but are resumed from the core's perspective. */
3611
3612 static int
3613 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3614 {
3615 ptid_t *wait_ptid_p = data;
3616
3617 if (lp->stopped
3618 && lp->resumed
3619 && lp->status == 0
3620 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3621 {
3622 struct regcache *regcache = get_thread_regcache (lp->ptid);
3623 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3624 CORE_ADDR pc = regcache_read_pc (regcache);
3625
3626 gdb_assert (is_executing (lp->ptid));
3627
3628 /* Don't bother if there's a breakpoint at PC that we'd hit
3629 immediately, and we're not waiting for this LWP. */
3630 if (!ptid_match (lp->ptid, *wait_ptid_p))
3631 {
3632 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3633 return 0;
3634 }
3635
3636 if (debug_linux_nat)
3637 fprintf_unfiltered (gdb_stdlog,
3638 "RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
3639 target_pid_to_str (lp->ptid),
3640 paddress (gdbarch, pc),
3641 lp->step);
3642
3643 registers_changed ();
3644 if (linux_nat_prepare_to_resume != NULL)
3645 linux_nat_prepare_to_resume (lp);
3646 linux_ops->to_resume (linux_ops, pid_to_ptid (ptid_get_lwp (lp->ptid)),
3647 lp->step, GDB_SIGNAL_0);
3648 lp->stopped = 0;
3649 lp->stopped_by_watchpoint = 0;
3650 }
3651
3652 return 0;
3653 }
3654
3655 static ptid_t
3656 linux_nat_wait (struct target_ops *ops,
3657 ptid_t ptid, struct target_waitstatus *ourstatus,
3658 int target_options)
3659 {
3660 ptid_t event_ptid;
3661
3662 if (debug_linux_nat)
3663 {
3664 char *options_string;
3665
3666 options_string = target_options_to_string (target_options);
3667 fprintf_unfiltered (gdb_stdlog,
3668 "linux_nat_wait: [%s], [%s]\n",
3669 target_pid_to_str (ptid),
3670 options_string);
3671 xfree (options_string);
3672 }
3673
3674 /* Flush the async file first. */
3675 if (target_can_async_p ())
3676 async_file_flush ();
3677
3678 /* Resume LWPs that are currently stopped without any pending status
3679 to report, but are resumed from the core's perspective. LWPs get
3680 in this state if we find them stopping at a time we're not
3681 interested in reporting the event (target_wait on a
3682 specific_process, for example, see linux_nat_wait_1), and
3683 meanwhile the event became uninteresting. Don't bother resuming
3684 LWPs we're not going to wait for if they'd stop immediately. */
3685 if (non_stop)
3686 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3687
3688 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3689
3690 /* If we requested any event, and something came out, assume there
3691 may be more. If we requested a specific lwp or process, also
3692 assume there may be more. */
3693 if (target_can_async_p ()
3694 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3695 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3696 || !ptid_equal (ptid, minus_one_ptid)))
3697 async_file_mark ();
3698
3699 /* Get ready for the next event. */
3700 if (target_can_async_p ())
3701 target_async (inferior_event_handler, 0);
3702
3703 return event_ptid;
3704 }
3705
3706 static int
3707 kill_callback (struct lwp_info *lp, void *data)
3708 {
3709 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3710
3711 errno = 0;
3712 kill_lwp (ptid_get_lwp (lp->ptid), SIGKILL);
3713 if (debug_linux_nat)
3714 {
3715 int save_errno = errno;
3716
3717 fprintf_unfiltered (gdb_stdlog,
3718 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3719 target_pid_to_str (lp->ptid),
3720 save_errno ? safe_strerror (save_errno) : "OK");
3721 }
3722
3723 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3724
3725 errno = 0;
3726 ptrace (PTRACE_KILL, ptid_get_lwp (lp->ptid), 0, 0);
3727 if (debug_linux_nat)
3728 {
3729 int save_errno = errno;
3730
3731 fprintf_unfiltered (gdb_stdlog,
3732 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3733 target_pid_to_str (lp->ptid),
3734 save_errno ? safe_strerror (save_errno) : "OK");
3735 }
3736
3737 return 0;
3738 }
3739
3740 static int
3741 kill_wait_callback (struct lwp_info *lp, void *data)
3742 {
3743 pid_t pid;
3744
3745 /* We must make sure that there are no pending events (delayed
3746 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3747 program doesn't interfere with any following debugging session. */
3748
3749 /* For cloned processes we must check both with __WCLONE and
3750 without, since the exit status of a cloned process isn't reported
3751 with __WCLONE. */
3752 if (lp->cloned)
3753 {
3754 do
3755 {
3756 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, __WCLONE);
3757 if (pid != (pid_t) -1)
3758 {
3759 if (debug_linux_nat)
3760 fprintf_unfiltered (gdb_stdlog,
3761 "KWC: wait %s received unknown.\n",
3762 target_pid_to_str (lp->ptid));
3763 /* The Linux kernel sometimes fails to kill a thread
3764 completely after PTRACE_KILL; that goes from the stop
3765 point in do_fork out to the one in
3766 get_signal_to_deliever and waits again. So kill it
3767 again. */
3768 kill_callback (lp, NULL);
3769 }
3770 }
3771 while (pid == ptid_get_lwp (lp->ptid));
3772
3773 gdb_assert (pid == -1 && errno == ECHILD);
3774 }
3775
3776 do
3777 {
3778 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, 0);
3779 if (pid != (pid_t) -1)
3780 {
3781 if (debug_linux_nat)
3782 fprintf_unfiltered (gdb_stdlog,
3783 "KWC: wait %s received unk.\n",
3784 target_pid_to_str (lp->ptid));
3785 /* See the call to kill_callback above. */
3786 kill_callback (lp, NULL);
3787 }
3788 }
3789 while (pid == ptid_get_lwp (lp->ptid));
3790
3791 gdb_assert (pid == -1 && errno == ECHILD);
3792 return 0;
3793 }
3794
3795 static void
3796 linux_nat_kill (struct target_ops *ops)
3797 {
3798 struct target_waitstatus last;
3799 ptid_t last_ptid;
3800 int status;
3801
3802 /* If we're stopped while forking and we haven't followed yet,
3803 kill the other task. We need to do this first because the
3804 parent will be sleeping if this is a vfork. */
3805
3806 get_last_target_status (&last_ptid, &last);
3807
3808 if (last.kind == TARGET_WAITKIND_FORKED
3809 || last.kind == TARGET_WAITKIND_VFORKED)
3810 {
3811 ptrace (PT_KILL, ptid_get_pid (last.value.related_pid), 0, 0);
3812 wait (&status);
3813
3814 /* Let the arch-specific native code know this process is
3815 gone. */
3816 linux_nat_forget_process (ptid_get_pid (last.value.related_pid));
3817 }
3818
3819 if (forks_exist_p ())
3820 linux_fork_killall ();
3821 else
3822 {
3823 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3824
3825 /* Stop all threads before killing them, since ptrace requires
3826 that the thread is stopped to sucessfully PTRACE_KILL. */
3827 iterate_over_lwps (ptid, stop_callback, NULL);
3828 /* ... and wait until all of them have reported back that
3829 they're no longer running. */
3830 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3831
3832 /* Kill all LWP's ... */
3833 iterate_over_lwps (ptid, kill_callback, NULL);
3834
3835 /* ... and wait until we've flushed all events. */
3836 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3837 }
3838
3839 target_mourn_inferior ();
3840 }
3841
3842 static void
3843 linux_nat_mourn_inferior (struct target_ops *ops)
3844 {
3845 int pid = ptid_get_pid (inferior_ptid);
3846
3847 purge_lwp_list (pid);
3848
3849 if (! forks_exist_p ())
3850 /* Normal case, no other forks available. */
3851 linux_ops->to_mourn_inferior (ops);
3852 else
3853 /* Multi-fork case. The current inferior_ptid has exited, but
3854 there are other viable forks to debug. Delete the exiting
3855 one and context-switch to the first available. */
3856 linux_fork_mourn_inferior ();
3857
3858 /* Let the arch-specific native code know this process is gone. */
3859 linux_nat_forget_process (pid);
3860 }
3861
3862 /* Convert a native/host siginfo object, into/from the siginfo in the
3863 layout of the inferiors' architecture. */
3864
3865 static void
3866 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3867 {
3868 int done = 0;
3869
3870 if (linux_nat_siginfo_fixup != NULL)
3871 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3872
3873 /* If there was no callback, or the callback didn't do anything,
3874 then just do a straight memcpy. */
3875 if (!done)
3876 {
3877 if (direction == 1)
3878 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3879 else
3880 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3881 }
3882 }
3883
3884 static enum target_xfer_status
3885 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3886 const char *annex, gdb_byte *readbuf,
3887 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3888 ULONGEST *xfered_len)
3889 {
3890 int pid;
3891 siginfo_t siginfo;
3892 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3893
3894 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3895 gdb_assert (readbuf || writebuf);
3896
3897 pid = ptid_get_lwp (inferior_ptid);
3898 if (pid == 0)
3899 pid = ptid_get_pid (inferior_ptid);
3900
3901 if (offset > sizeof (siginfo))
3902 return TARGET_XFER_E_IO;
3903
3904 errno = 0;
3905 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3906 if (errno != 0)
3907 return TARGET_XFER_E_IO;
3908
3909 /* When GDB is built as a 64-bit application, ptrace writes into
3910 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3911 inferior with a 64-bit GDB should look the same as debugging it
3912 with a 32-bit GDB, we need to convert it. GDB core always sees
3913 the converted layout, so any read/write will have to be done
3914 post-conversion. */
3915 siginfo_fixup (&siginfo, inf_siginfo, 0);
3916
3917 if (offset + len > sizeof (siginfo))
3918 len = sizeof (siginfo) - offset;
3919
3920 if (readbuf != NULL)
3921 memcpy (readbuf, inf_siginfo + offset, len);
3922 else
3923 {
3924 memcpy (inf_siginfo + offset, writebuf, len);
3925
3926 /* Convert back to ptrace layout before flushing it out. */
3927 siginfo_fixup (&siginfo, inf_siginfo, 1);
3928
3929 errno = 0;
3930 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3931 if (errno != 0)
3932 return TARGET_XFER_E_IO;
3933 }
3934
3935 *xfered_len = len;
3936 return TARGET_XFER_OK;
3937 }
3938
3939 static enum target_xfer_status
3940 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3941 const char *annex, gdb_byte *readbuf,
3942 const gdb_byte *writebuf,
3943 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3944 {
3945 struct cleanup *old_chain;
3946 enum target_xfer_status xfer;
3947
3948 if (object == TARGET_OBJECT_SIGNAL_INFO)
3949 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3950 offset, len, xfered_len);
3951
3952 /* The target is connected but no live inferior is selected. Pass
3953 this request down to a lower stratum (e.g., the executable
3954 file). */
3955 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3956 return TARGET_XFER_EOF;
3957
3958 old_chain = save_inferior_ptid ();
3959
3960 if (ptid_lwp_p (inferior_ptid))
3961 inferior_ptid = pid_to_ptid (ptid_get_lwp (inferior_ptid));
3962
3963 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3964 offset, len, xfered_len);
3965
3966 do_cleanups (old_chain);
3967 return xfer;
3968 }
3969
3970 static int
3971 linux_thread_alive (ptid_t ptid)
3972 {
3973 int err, tmp_errno;
3974
3975 gdb_assert (ptid_lwp_p (ptid));
3976
3977 /* Send signal 0 instead of anything ptrace, because ptracing a
3978 running thread errors out claiming that the thread doesn't
3979 exist. */
3980 err = kill_lwp (ptid_get_lwp (ptid), 0);
3981 tmp_errno = errno;
3982 if (debug_linux_nat)
3983 fprintf_unfiltered (gdb_stdlog,
3984 "LLTA: KILL(SIG0) %s (%s)\n",
3985 target_pid_to_str (ptid),
3986 err ? safe_strerror (tmp_errno) : "OK");
3987
3988 if (err != 0)
3989 return 0;
3990
3991 return 1;
3992 }
3993
3994 static int
3995 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3996 {
3997 return linux_thread_alive (ptid);
3998 }
3999
4000 static char *
4001 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
4002 {
4003 static char buf[64];
4004
4005 if (ptid_lwp_p (ptid)
4006 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
4007 || num_lwps (ptid_get_pid (ptid)) > 1))
4008 {
4009 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
4010 return buf;
4011 }
4012
4013 return normal_pid_to_str (ptid);
4014 }
4015
4016 static char *
4017 linux_nat_thread_name (struct target_ops *self, struct thread_info *thr)
4018 {
4019 int pid = ptid_get_pid (thr->ptid);
4020 long lwp = ptid_get_lwp (thr->ptid);
4021 #define FORMAT "/proc/%d/task/%ld/comm"
4022 char buf[sizeof (FORMAT) + 30];
4023 FILE *comm_file;
4024 char *result = NULL;
4025
4026 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
4027 comm_file = gdb_fopen_cloexec (buf, "r");
4028 if (comm_file)
4029 {
4030 /* Not exported by the kernel, so we define it here. */
4031 #define COMM_LEN 16
4032 static char line[COMM_LEN + 1];
4033
4034 if (fgets (line, sizeof (line), comm_file))
4035 {
4036 char *nl = strchr (line, '\n');
4037
4038 if (nl)
4039 *nl = '\0';
4040 if (*line != '\0')
4041 result = line;
4042 }
4043
4044 fclose (comm_file);
4045 }
4046
4047 #undef COMM_LEN
4048 #undef FORMAT
4049
4050 return result;
4051 }
4052
4053 /* Accepts an integer PID; Returns a string representing a file that
4054 can be opened to get the symbols for the child process. */
4055
4056 static char *
4057 linux_child_pid_to_exec_file (struct target_ops *self, int pid)
4058 {
4059 static char buf[PATH_MAX];
4060 char name[PATH_MAX];
4061
4062 xsnprintf (name, PATH_MAX, "/proc/%d/exe", pid);
4063 memset (buf, 0, PATH_MAX);
4064 if (readlink (name, buf, PATH_MAX - 1) <= 0)
4065 strcpy (buf, name);
4066
4067 return buf;
4068 }
4069
4070 /* Records the thread's register state for the corefile note
4071 section. */
4072
4073 static char *
4074 linux_nat_collect_thread_registers (const struct regcache *regcache,
4075 ptid_t ptid, bfd *obfd,
4076 char *note_data, int *note_size,
4077 enum gdb_signal stop_signal)
4078 {
4079 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4080 const struct regset *regset;
4081 int core_regset_p;
4082 gdb_gregset_t gregs;
4083 gdb_fpregset_t fpregs;
4084
4085 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4086
4087 if (core_regset_p
4088 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4089 sizeof (gregs)))
4090 != NULL && regset->collect_regset != NULL)
4091 regset->collect_regset (regset, regcache, -1, &gregs, sizeof (gregs));
4092 else
4093 fill_gregset (regcache, &gregs, -1);
4094
4095 note_data = (char *) elfcore_write_prstatus
4096 (obfd, note_data, note_size, ptid_get_lwp (ptid),
4097 gdb_signal_to_host (stop_signal), &gregs);
4098
4099 if (core_regset_p
4100 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4101 sizeof (fpregs)))
4102 != NULL && regset->collect_regset != NULL)
4103 regset->collect_regset (regset, regcache, -1, &fpregs, sizeof (fpregs));
4104 else
4105 fill_fpregset (regcache, &fpregs, -1);
4106
4107 note_data = (char *) elfcore_write_prfpreg (obfd, note_data, note_size,
4108 &fpregs, sizeof (fpregs));
4109
4110 return note_data;
4111 }
4112
4113 /* Fills the "to_make_corefile_note" target vector. Builds the note
4114 section for a corefile, and returns it in a malloc buffer. */
4115
4116 static char *
4117 linux_nat_make_corefile_notes (struct target_ops *self,
4118 bfd *obfd, int *note_size)
4119 {
4120 /* FIXME: uweigand/2011-10-06: Once all GNU/Linux architectures have been
4121 converted to gdbarch_core_regset_sections, this function can go away. */
4122 return linux_make_corefile_notes (target_gdbarch (), obfd, note_size,
4123 linux_nat_collect_thread_registers);
4124 }
4125
4126 /* Implement the to_xfer_partial interface for memory reads using the /proc
4127 filesystem. Because we can use a single read() call for /proc, this
4128 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4129 but it doesn't support writes. */
4130
4131 static enum target_xfer_status
4132 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4133 const char *annex, gdb_byte *readbuf,
4134 const gdb_byte *writebuf,
4135 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
4136 {
4137 LONGEST ret;
4138 int fd;
4139 char filename[64];
4140
4141 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4142 return 0;
4143
4144 /* Don't bother for one word. */
4145 if (len < 3 * sizeof (long))
4146 return TARGET_XFER_EOF;
4147
4148 /* We could keep this file open and cache it - possibly one per
4149 thread. That requires some juggling, but is even faster. */
4150 xsnprintf (filename, sizeof filename, "/proc/%d/mem",
4151 ptid_get_pid (inferior_ptid));
4152 fd = gdb_open_cloexec (filename, O_RDONLY | O_LARGEFILE, 0);
4153 if (fd == -1)
4154 return TARGET_XFER_EOF;
4155
4156 /* If pread64 is available, use it. It's faster if the kernel
4157 supports it (only one syscall), and it's 64-bit safe even on
4158 32-bit platforms (for instance, SPARC debugging a SPARC64
4159 application). */
4160 #ifdef HAVE_PREAD64
4161 if (pread64 (fd, readbuf, len, offset) != len)
4162 #else
4163 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4164 #endif
4165 ret = 0;
4166 else
4167 ret = len;
4168
4169 close (fd);
4170
4171 if (ret == 0)
4172 return TARGET_XFER_EOF;
4173 else
4174 {
4175 *xfered_len = ret;
4176 return TARGET_XFER_OK;
4177 }
4178 }
4179
4180
4181 /* Enumerate spufs IDs for process PID. */
4182 static LONGEST
4183 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
4184 {
4185 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4186 LONGEST pos = 0;
4187 LONGEST written = 0;
4188 char path[128];
4189 DIR *dir;
4190 struct dirent *entry;
4191
4192 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4193 dir = opendir (path);
4194 if (!dir)
4195 return -1;
4196
4197 rewinddir (dir);
4198 while ((entry = readdir (dir)) != NULL)
4199 {
4200 struct stat st;
4201 struct statfs stfs;
4202 int fd;
4203
4204 fd = atoi (entry->d_name);
4205 if (!fd)
4206 continue;
4207
4208 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4209 if (stat (path, &st) != 0)
4210 continue;
4211 if (!S_ISDIR (st.st_mode))
4212 continue;
4213
4214 if (statfs (path, &stfs) != 0)
4215 continue;
4216 if (stfs.f_type != SPUFS_MAGIC)
4217 continue;
4218
4219 if (pos >= offset && pos + 4 <= offset + len)
4220 {
4221 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4222 written += 4;
4223 }
4224 pos += 4;
4225 }
4226
4227 closedir (dir);
4228 return written;
4229 }
4230
4231 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4232 object type, using the /proc file system. */
4233
4234 static enum target_xfer_status
4235 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4236 const char *annex, gdb_byte *readbuf,
4237 const gdb_byte *writebuf,
4238 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4239 {
4240 char buf[128];
4241 int fd = 0;
4242 int ret = -1;
4243 int pid = ptid_get_pid (inferior_ptid);
4244
4245 if (!annex)
4246 {
4247 if (!readbuf)
4248 return TARGET_XFER_E_IO;
4249 else
4250 {
4251 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4252
4253 if (l < 0)
4254 return TARGET_XFER_E_IO;
4255 else if (l == 0)
4256 return TARGET_XFER_EOF;
4257 else
4258 {
4259 *xfered_len = (ULONGEST) l;
4260 return TARGET_XFER_OK;
4261 }
4262 }
4263 }
4264
4265 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4266 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4267 if (fd <= 0)
4268 return TARGET_XFER_E_IO;
4269
4270 if (offset != 0
4271 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4272 {
4273 close (fd);
4274 return TARGET_XFER_EOF;
4275 }
4276
4277 if (writebuf)
4278 ret = write (fd, writebuf, (size_t) len);
4279 else if (readbuf)
4280 ret = read (fd, readbuf, (size_t) len);
4281
4282 close (fd);
4283
4284 if (ret < 0)
4285 return TARGET_XFER_E_IO;
4286 else if (ret == 0)
4287 return TARGET_XFER_EOF;
4288 else
4289 {
4290 *xfered_len = (ULONGEST) ret;
4291 return TARGET_XFER_OK;
4292 }
4293 }
4294
4295
4296 /* Parse LINE as a signal set and add its set bits to SIGS. */
4297
4298 static void
4299 add_line_to_sigset (const char *line, sigset_t *sigs)
4300 {
4301 int len = strlen (line) - 1;
4302 const char *p;
4303 int signum;
4304
4305 if (line[len] != '\n')
4306 error (_("Could not parse signal set: %s"), line);
4307
4308 p = line;
4309 signum = len * 4;
4310 while (len-- > 0)
4311 {
4312 int digit;
4313
4314 if (*p >= '0' && *p <= '9')
4315 digit = *p - '0';
4316 else if (*p >= 'a' && *p <= 'f')
4317 digit = *p - 'a' + 10;
4318 else
4319 error (_("Could not parse signal set: %s"), line);
4320
4321 signum -= 4;
4322
4323 if (digit & 1)
4324 sigaddset (sigs, signum + 1);
4325 if (digit & 2)
4326 sigaddset (sigs, signum + 2);
4327 if (digit & 4)
4328 sigaddset (sigs, signum + 3);
4329 if (digit & 8)
4330 sigaddset (sigs, signum + 4);
4331
4332 p++;
4333 }
4334 }
4335
4336 /* Find process PID's pending signals from /proc/pid/status and set
4337 SIGS to match. */
4338
4339 void
4340 linux_proc_pending_signals (int pid, sigset_t *pending,
4341 sigset_t *blocked, sigset_t *ignored)
4342 {
4343 FILE *procfile;
4344 char buffer[PATH_MAX], fname[PATH_MAX];
4345 struct cleanup *cleanup;
4346
4347 sigemptyset (pending);
4348 sigemptyset (blocked);
4349 sigemptyset (ignored);
4350 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4351 procfile = gdb_fopen_cloexec (fname, "r");
4352 if (procfile == NULL)
4353 error (_("Could not open %s"), fname);
4354 cleanup = make_cleanup_fclose (procfile);
4355
4356 while (fgets (buffer, PATH_MAX, procfile) != NULL)
4357 {
4358 /* Normal queued signals are on the SigPnd line in the status
4359 file. However, 2.6 kernels also have a "shared" pending
4360 queue for delivering signals to a thread group, so check for
4361 a ShdPnd line also.
4362
4363 Unfortunately some Red Hat kernels include the shared pending
4364 queue but not the ShdPnd status field. */
4365
4366 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4367 add_line_to_sigset (buffer + 8, pending);
4368 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4369 add_line_to_sigset (buffer + 8, pending);
4370 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4371 add_line_to_sigset (buffer + 8, blocked);
4372 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4373 add_line_to_sigset (buffer + 8, ignored);
4374 }
4375
4376 do_cleanups (cleanup);
4377 }
4378
4379 static enum target_xfer_status
4380 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4381 const char *annex, gdb_byte *readbuf,
4382 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4383 ULONGEST *xfered_len)
4384 {
4385 gdb_assert (object == TARGET_OBJECT_OSDATA);
4386
4387 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4388 if (*xfered_len == 0)
4389 return TARGET_XFER_EOF;
4390 else
4391 return TARGET_XFER_OK;
4392 }
4393
4394 static enum target_xfer_status
4395 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4396 const char *annex, gdb_byte *readbuf,
4397 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4398 ULONGEST *xfered_len)
4399 {
4400 enum target_xfer_status xfer;
4401
4402 if (object == TARGET_OBJECT_AUXV)
4403 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4404 offset, len, xfered_len);
4405
4406 if (object == TARGET_OBJECT_OSDATA)
4407 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4408 offset, len, xfered_len);
4409
4410 if (object == TARGET_OBJECT_SPU)
4411 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4412 offset, len, xfered_len);
4413
4414 /* GDB calculates all the addresses in possibly larget width of the address.
4415 Address width needs to be masked before its final use - either by
4416 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4417
4418 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4419
4420 if (object == TARGET_OBJECT_MEMORY)
4421 {
4422 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4423
4424 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4425 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4426 }
4427
4428 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4429 offset, len, xfered_len);
4430 if (xfer != TARGET_XFER_EOF)
4431 return xfer;
4432
4433 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4434 offset, len, xfered_len);
4435 }
4436
4437 static void
4438 cleanup_target_stop (void *arg)
4439 {
4440 ptid_t *ptid = (ptid_t *) arg;
4441
4442 gdb_assert (arg != NULL);
4443
4444 /* Unpause all */
4445 target_resume (*ptid, 0, GDB_SIGNAL_0);
4446 }
4447
4448 static VEC(static_tracepoint_marker_p) *
4449 linux_child_static_tracepoint_markers_by_strid (struct target_ops *self,
4450 const char *strid)
4451 {
4452 char s[IPA_CMD_BUF_SIZE];
4453 struct cleanup *old_chain;
4454 int pid = ptid_get_pid (inferior_ptid);
4455 VEC(static_tracepoint_marker_p) *markers = NULL;
4456 struct static_tracepoint_marker *marker = NULL;
4457 char *p = s;
4458 ptid_t ptid = ptid_build (pid, 0, 0);
4459
4460 /* Pause all */
4461 target_stop (ptid);
4462
4463 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4464 s[sizeof ("qTfSTM")] = 0;
4465
4466 agent_run_command (pid, s, strlen (s) + 1);
4467
4468 old_chain = make_cleanup (free_current_marker, &marker);
4469 make_cleanup (cleanup_target_stop, &ptid);
4470
4471 while (*p++ == 'm')
4472 {
4473 if (marker == NULL)
4474 marker = XCNEW (struct static_tracepoint_marker);
4475
4476 do
4477 {
4478 parse_static_tracepoint_marker_definition (p, &p, marker);
4479
4480 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4481 {
4482 VEC_safe_push (static_tracepoint_marker_p,
4483 markers, marker);
4484 marker = NULL;
4485 }
4486 else
4487 {
4488 release_static_tracepoint_marker (marker);
4489 memset (marker, 0, sizeof (*marker));
4490 }
4491 }
4492 while (*p++ == ','); /* comma-separated list */
4493
4494 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4495 s[sizeof ("qTsSTM")] = 0;
4496 agent_run_command (pid, s, strlen (s) + 1);
4497 p = s;
4498 }
4499
4500 do_cleanups (old_chain);
4501
4502 return markers;
4503 }
4504
4505 /* Create a prototype generic GNU/Linux target. The client can override
4506 it with local methods. */
4507
4508 static void
4509 linux_target_install_ops (struct target_ops *t)
4510 {
4511 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4512 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4513 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4514 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4515 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4516 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4517 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4518 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4519 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4520 t->to_post_attach = linux_child_post_attach;
4521 t->to_follow_fork = linux_child_follow_fork;
4522 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
4523
4524 super_xfer_partial = t->to_xfer_partial;
4525 t->to_xfer_partial = linux_xfer_partial;
4526
4527 t->to_static_tracepoint_markers_by_strid
4528 = linux_child_static_tracepoint_markers_by_strid;
4529 }
4530
4531 struct target_ops *
4532 linux_target (void)
4533 {
4534 struct target_ops *t;
4535
4536 t = inf_ptrace_target ();
4537 linux_target_install_ops (t);
4538
4539 return t;
4540 }
4541
4542 struct target_ops *
4543 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4544 {
4545 struct target_ops *t;
4546
4547 t = inf_ptrace_trad_target (register_u_offset);
4548 linux_target_install_ops (t);
4549
4550 return t;
4551 }
4552
4553 /* target_is_async_p implementation. */
4554
4555 static int
4556 linux_nat_is_async_p (struct target_ops *ops)
4557 {
4558 /* NOTE: palves 2008-03-21: We're only async when the user requests
4559 it explicitly with the "set target-async" command.
4560 Someday, linux will always be async. */
4561 return target_async_permitted;
4562 }
4563
4564 /* target_can_async_p implementation. */
4565
4566 static int
4567 linux_nat_can_async_p (struct target_ops *ops)
4568 {
4569 /* NOTE: palves 2008-03-21: We're only async when the user requests
4570 it explicitly with the "set target-async" command.
4571 Someday, linux will always be async. */
4572 return target_async_permitted;
4573 }
4574
4575 static int
4576 linux_nat_supports_non_stop (struct target_ops *self)
4577 {
4578 return 1;
4579 }
4580
4581 /* True if we want to support multi-process. To be removed when GDB
4582 supports multi-exec. */
4583
4584 int linux_multi_process = 1;
4585
4586 static int
4587 linux_nat_supports_multi_process (struct target_ops *self)
4588 {
4589 return linux_multi_process;
4590 }
4591
4592 static int
4593 linux_nat_supports_disable_randomization (struct target_ops *self)
4594 {
4595 #ifdef HAVE_PERSONALITY
4596 return 1;
4597 #else
4598 return 0;
4599 #endif
4600 }
4601
4602 static int async_terminal_is_ours = 1;
4603
4604 /* target_terminal_inferior implementation.
4605
4606 This is a wrapper around child_terminal_inferior to add async support. */
4607
4608 static void
4609 linux_nat_terminal_inferior (struct target_ops *self)
4610 {
4611 if (!target_is_async_p ())
4612 {
4613 /* Async mode is disabled. */
4614 child_terminal_inferior (self);
4615 return;
4616 }
4617
4618 child_terminal_inferior (self);
4619
4620 /* Calls to target_terminal_*() are meant to be idempotent. */
4621 if (!async_terminal_is_ours)
4622 return;
4623
4624 delete_file_handler (input_fd);
4625 async_terminal_is_ours = 0;
4626 set_sigint_trap ();
4627 }
4628
4629 /* target_terminal_ours implementation.
4630
4631 This is a wrapper around child_terminal_ours to add async support (and
4632 implement the target_terminal_ours vs target_terminal_ours_for_output
4633 distinction). child_terminal_ours is currently no different than
4634 child_terminal_ours_for_output.
4635 We leave target_terminal_ours_for_output alone, leaving it to
4636 child_terminal_ours_for_output. */
4637
4638 static void
4639 linux_nat_terminal_ours (struct target_ops *self)
4640 {
4641 if (!target_is_async_p ())
4642 {
4643 /* Async mode is disabled. */
4644 child_terminal_ours (self);
4645 return;
4646 }
4647
4648 /* GDB should never give the terminal to the inferior if the
4649 inferior is running in the background (run&, continue&, etc.),
4650 but claiming it sure should. */
4651 child_terminal_ours (self);
4652
4653 if (async_terminal_is_ours)
4654 return;
4655
4656 clear_sigint_trap ();
4657 add_file_handler (input_fd, stdin_event_handler, 0);
4658 async_terminal_is_ours = 1;
4659 }
4660
4661 static void (*async_client_callback) (enum inferior_event_type event_type,
4662 void *context);
4663 static void *async_client_context;
4664
4665 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4666 so we notice when any child changes state, and notify the
4667 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4668 above to wait for the arrival of a SIGCHLD. */
4669
4670 static void
4671 sigchld_handler (int signo)
4672 {
4673 int old_errno = errno;
4674
4675 if (debug_linux_nat)
4676 ui_file_write_async_safe (gdb_stdlog,
4677 "sigchld\n", sizeof ("sigchld\n") - 1);
4678
4679 if (signo == SIGCHLD
4680 && linux_nat_event_pipe[0] != -1)
4681 async_file_mark (); /* Let the event loop know that there are
4682 events to handle. */
4683
4684 errno = old_errno;
4685 }
4686
4687 /* Callback registered with the target events file descriptor. */
4688
4689 static void
4690 handle_target_event (int error, gdb_client_data client_data)
4691 {
4692 (*async_client_callback) (INF_REG_EVENT, async_client_context);
4693 }
4694
4695 /* Create/destroy the target events pipe. Returns previous state. */
4696
4697 static int
4698 linux_async_pipe (int enable)
4699 {
4700 int previous = (linux_nat_event_pipe[0] != -1);
4701
4702 if (previous != enable)
4703 {
4704 sigset_t prev_mask;
4705
4706 /* Block child signals while we create/destroy the pipe, as
4707 their handler writes to it. */
4708 block_child_signals (&prev_mask);
4709
4710 if (enable)
4711 {
4712 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4713 internal_error (__FILE__, __LINE__,
4714 "creating event pipe failed.");
4715
4716 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4717 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4718 }
4719 else
4720 {
4721 close (linux_nat_event_pipe[0]);
4722 close (linux_nat_event_pipe[1]);
4723 linux_nat_event_pipe[0] = -1;
4724 linux_nat_event_pipe[1] = -1;
4725 }
4726
4727 restore_child_signals_mask (&prev_mask);
4728 }
4729
4730 return previous;
4731 }
4732
4733 /* target_async implementation. */
4734
4735 static void
4736 linux_nat_async (struct target_ops *ops,
4737 void (*callback) (enum inferior_event_type event_type,
4738 void *context),
4739 void *context)
4740 {
4741 if (callback != NULL)
4742 {
4743 async_client_callback = callback;
4744 async_client_context = context;
4745 if (!linux_async_pipe (1))
4746 {
4747 add_file_handler (linux_nat_event_pipe[0],
4748 handle_target_event, NULL);
4749 /* There may be pending events to handle. Tell the event loop
4750 to poll them. */
4751 async_file_mark ();
4752 }
4753 }
4754 else
4755 {
4756 async_client_callback = callback;
4757 async_client_context = context;
4758 delete_file_handler (linux_nat_event_pipe[0]);
4759 linux_async_pipe (0);
4760 }
4761 return;
4762 }
4763
4764 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4765 event came out. */
4766
4767 static int
4768 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4769 {
4770 if (!lwp->stopped)
4771 {
4772 if (debug_linux_nat)
4773 fprintf_unfiltered (gdb_stdlog,
4774 "LNSL: running -> suspending %s\n",
4775 target_pid_to_str (lwp->ptid));
4776
4777
4778 if (lwp->last_resume_kind == resume_stop)
4779 {
4780 if (debug_linux_nat)
4781 fprintf_unfiltered (gdb_stdlog,
4782 "linux-nat: already stopping LWP %ld at "
4783 "GDB's request\n",
4784 ptid_get_lwp (lwp->ptid));
4785 return 0;
4786 }
4787
4788 stop_callback (lwp, NULL);
4789 lwp->last_resume_kind = resume_stop;
4790 }
4791 else
4792 {
4793 /* Already known to be stopped; do nothing. */
4794
4795 if (debug_linux_nat)
4796 {
4797 if (find_thread_ptid (lwp->ptid)->stop_requested)
4798 fprintf_unfiltered (gdb_stdlog,
4799 "LNSL: already stopped/stop_requested %s\n",
4800 target_pid_to_str (lwp->ptid));
4801 else
4802 fprintf_unfiltered (gdb_stdlog,
4803 "LNSL: already stopped/no "
4804 "stop_requested yet %s\n",
4805 target_pid_to_str (lwp->ptid));
4806 }
4807 }
4808 return 0;
4809 }
4810
4811 static void
4812 linux_nat_stop (struct target_ops *self, ptid_t ptid)
4813 {
4814 if (non_stop)
4815 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4816 else
4817 linux_ops->to_stop (linux_ops, ptid);
4818 }
4819
4820 static void
4821 linux_nat_close (struct target_ops *self)
4822 {
4823 /* Unregister from the event loop. */
4824 if (linux_nat_is_async_p (self))
4825 linux_nat_async (self, NULL, NULL);
4826
4827 if (linux_ops->to_close)
4828 linux_ops->to_close (linux_ops);
4829
4830 super_close (self);
4831 }
4832
4833 /* When requests are passed down from the linux-nat layer to the
4834 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4835 used. The address space pointer is stored in the inferior object,
4836 but the common code that is passed such ptid can't tell whether
4837 lwpid is a "main" process id or not (it assumes so). We reverse
4838 look up the "main" process id from the lwp here. */
4839
4840 static struct address_space *
4841 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4842 {
4843 struct lwp_info *lwp;
4844 struct inferior *inf;
4845 int pid;
4846
4847 if (ptid_get_lwp (ptid) == 0)
4848 {
4849 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4850 tgid. */
4851 lwp = find_lwp_pid (ptid);
4852 pid = ptid_get_pid (lwp->ptid);
4853 }
4854 else
4855 {
4856 /* A (pid,lwpid,0) ptid. */
4857 pid = ptid_get_pid (ptid);
4858 }
4859
4860 inf = find_inferior_pid (pid);
4861 gdb_assert (inf != NULL);
4862 return inf->aspace;
4863 }
4864
4865 /* Return the cached value of the processor core for thread PTID. */
4866
4867 static int
4868 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4869 {
4870 struct lwp_info *info = find_lwp_pid (ptid);
4871
4872 if (info)
4873 return info->core;
4874 return -1;
4875 }
4876
4877 void
4878 linux_nat_add_target (struct target_ops *t)
4879 {
4880 /* Save the provided single-threaded target. We save this in a separate
4881 variable because another target we've inherited from (e.g. inf-ptrace)
4882 may have saved a pointer to T; we want to use it for the final
4883 process stratum target. */
4884 linux_ops_saved = *t;
4885 linux_ops = &linux_ops_saved;
4886
4887 /* Override some methods for multithreading. */
4888 t->to_create_inferior = linux_nat_create_inferior;
4889 t->to_attach = linux_nat_attach;
4890 t->to_detach = linux_nat_detach;
4891 t->to_resume = linux_nat_resume;
4892 t->to_wait = linux_nat_wait;
4893 t->to_pass_signals = linux_nat_pass_signals;
4894 t->to_xfer_partial = linux_nat_xfer_partial;
4895 t->to_kill = linux_nat_kill;
4896 t->to_mourn_inferior = linux_nat_mourn_inferior;
4897 t->to_thread_alive = linux_nat_thread_alive;
4898 t->to_pid_to_str = linux_nat_pid_to_str;
4899 t->to_thread_name = linux_nat_thread_name;
4900 t->to_has_thread_control = tc_schedlock;
4901 t->to_thread_address_space = linux_nat_thread_address_space;
4902 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
4903 t->to_stopped_data_address = linux_nat_stopped_data_address;
4904
4905 t->to_can_async_p = linux_nat_can_async_p;
4906 t->to_is_async_p = linux_nat_is_async_p;
4907 t->to_supports_non_stop = linux_nat_supports_non_stop;
4908 t->to_async = linux_nat_async;
4909 t->to_terminal_inferior = linux_nat_terminal_inferior;
4910 t->to_terminal_ours = linux_nat_terminal_ours;
4911
4912 super_close = t->to_close;
4913 t->to_close = linux_nat_close;
4914
4915 /* Methods for non-stop support. */
4916 t->to_stop = linux_nat_stop;
4917
4918 t->to_supports_multi_process = linux_nat_supports_multi_process;
4919
4920 t->to_supports_disable_randomization
4921 = linux_nat_supports_disable_randomization;
4922
4923 t->to_core_of_thread = linux_nat_core_of_thread;
4924
4925 /* We don't change the stratum; this target will sit at
4926 process_stratum and thread_db will set at thread_stratum. This
4927 is a little strange, since this is a multi-threaded-capable
4928 target, but we want to be on the stack below thread_db, and we
4929 also want to be used for single-threaded processes. */
4930
4931 add_target (t);
4932 }
4933
4934 /* Register a method to call whenever a new thread is attached. */
4935 void
4936 linux_nat_set_new_thread (struct target_ops *t,
4937 void (*new_thread) (struct lwp_info *))
4938 {
4939 /* Save the pointer. We only support a single registered instance
4940 of the GNU/Linux native target, so we do not need to map this to
4941 T. */
4942 linux_nat_new_thread = new_thread;
4943 }
4944
4945 /* See declaration in linux-nat.h. */
4946
4947 void
4948 linux_nat_set_new_fork (struct target_ops *t,
4949 linux_nat_new_fork_ftype *new_fork)
4950 {
4951 /* Save the pointer. */
4952 linux_nat_new_fork = new_fork;
4953 }
4954
4955 /* See declaration in linux-nat.h. */
4956
4957 void
4958 linux_nat_set_forget_process (struct target_ops *t,
4959 linux_nat_forget_process_ftype *fn)
4960 {
4961 /* Save the pointer. */
4962 linux_nat_forget_process_hook = fn;
4963 }
4964
4965 /* See declaration in linux-nat.h. */
4966
4967 void
4968 linux_nat_forget_process (pid_t pid)
4969 {
4970 if (linux_nat_forget_process_hook != NULL)
4971 linux_nat_forget_process_hook (pid);
4972 }
4973
4974 /* Register a method that converts a siginfo object between the layout
4975 that ptrace returns, and the layout in the architecture of the
4976 inferior. */
4977 void
4978 linux_nat_set_siginfo_fixup (struct target_ops *t,
4979 int (*siginfo_fixup) (siginfo_t *,
4980 gdb_byte *,
4981 int))
4982 {
4983 /* Save the pointer. */
4984 linux_nat_siginfo_fixup = siginfo_fixup;
4985 }
4986
4987 /* Register a method to call prior to resuming a thread. */
4988
4989 void
4990 linux_nat_set_prepare_to_resume (struct target_ops *t,
4991 void (*prepare_to_resume) (struct lwp_info *))
4992 {
4993 /* Save the pointer. */
4994 linux_nat_prepare_to_resume = prepare_to_resume;
4995 }
4996
4997 /* See linux-nat.h. */
4998
4999 int
5000 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
5001 {
5002 int pid;
5003
5004 pid = ptid_get_lwp (ptid);
5005 if (pid == 0)
5006 pid = ptid_get_pid (ptid);
5007
5008 errno = 0;
5009 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
5010 if (errno != 0)
5011 {
5012 memset (siginfo, 0, sizeof (*siginfo));
5013 return 0;
5014 }
5015 return 1;
5016 }
5017
5018 /* Provide a prototype to silence -Wmissing-prototypes. */
5019 extern initialize_file_ftype _initialize_linux_nat;
5020
5021 void
5022 _initialize_linux_nat (void)
5023 {
5024 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
5025 &debug_linux_nat, _("\
5026 Set debugging of GNU/Linux lwp module."), _("\
5027 Show debugging of GNU/Linux lwp module."), _("\
5028 Enables printf debugging output."),
5029 NULL,
5030 show_debug_linux_nat,
5031 &setdebuglist, &showdebuglist);
5032
5033 /* Save this mask as the default. */
5034 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5035
5036 /* Install a SIGCHLD handler. */
5037 sigchld_action.sa_handler = sigchld_handler;
5038 sigemptyset (&sigchld_action.sa_mask);
5039 sigchld_action.sa_flags = SA_RESTART;
5040
5041 /* Make it the default. */
5042 sigaction (SIGCHLD, &sigchld_action, NULL);
5043
5044 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5045 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5046 sigdelset (&suspend_mask, SIGCHLD);
5047
5048 sigemptyset (&blocked_mask);
5049
5050 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to
5051 support read-only process state. */
5052 linux_ptrace_set_additional_flags (PTRACE_O_TRACESYSGOOD
5053 | PTRACE_O_TRACEVFORKDONE
5054 | PTRACE_O_TRACEVFORK
5055 | PTRACE_O_TRACEFORK
5056 | PTRACE_O_TRACEEXEC);
5057 }
5058 \f
5059
5060 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5061 the GNU/Linux Threads library and therefore doesn't really belong
5062 here. */
5063
5064 /* Read variable NAME in the target and return its value if found.
5065 Otherwise return zero. It is assumed that the type of the variable
5066 is `int'. */
5067
5068 static int
5069 get_signo (const char *name)
5070 {
5071 struct bound_minimal_symbol ms;
5072 int signo;
5073
5074 ms = lookup_minimal_symbol (name, NULL, NULL);
5075 if (ms.minsym == NULL)
5076 return 0;
5077
5078 if (target_read_memory (BMSYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5079 sizeof (signo)) != 0)
5080 return 0;
5081
5082 return signo;
5083 }
5084
5085 /* Return the set of signals used by the threads library in *SET. */
5086
5087 void
5088 lin_thread_get_thread_signals (sigset_t *set)
5089 {
5090 struct sigaction action;
5091 int restart, cancel;
5092
5093 sigemptyset (&blocked_mask);
5094 sigemptyset (set);
5095
5096 restart = get_signo ("__pthread_sig_restart");
5097 cancel = get_signo ("__pthread_sig_cancel");
5098
5099 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5100 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5101 not provide any way for the debugger to query the signal numbers -
5102 fortunately they don't change! */
5103
5104 if (restart == 0)
5105 restart = __SIGRTMIN;
5106
5107 if (cancel == 0)
5108 cancel = __SIGRTMIN + 1;
5109
5110 sigaddset (set, restart);
5111 sigaddset (set, cancel);
5112
5113 /* The GNU/Linux Threads library makes terminating threads send a
5114 special "cancel" signal instead of SIGCHLD. Make sure we catch
5115 those (to prevent them from terminating GDB itself, which is
5116 likely to be their default action) and treat them the same way as
5117 SIGCHLD. */
5118
5119 action.sa_handler = sigchld_handler;
5120 sigemptyset (&action.sa_mask);
5121 action.sa_flags = SA_RESTART;
5122 sigaction (cancel, &action, NULL);
5123
5124 /* We block the "cancel" signal throughout this code ... */
5125 sigaddset (&blocked_mask, cancel);
5126 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5127
5128 /* ... except during a sigsuspend. */
5129 sigdelset (&suspend_mask, cancel);
5130 }