2011-10-28 Pedro Alves <pedro@codesourcery.com>
[binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "gdb_wait.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-ptrace.h"
34 #include "linux-procfs.h"
35 #include "linux-fork.h"
36 #include "gdbthread.h"
37 #include "gdbcmd.h"
38 #include "regcache.h"
39 #include "regset.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/param.h> /* for MAXPATHLEN */
43 #include <sys/procfs.h> /* for elf_gregset etc. */
44 #include "elf-bfd.h" /* for elfcore_write_* */
45 #include "gregset.h" /* for gregset */
46 #include "gdbcore.h" /* for get_exec_file */
47 #include <ctype.h> /* for isdigit */
48 #include "gdbthread.h" /* for struct thread_info etc. */
49 #include "gdb_stat.h" /* for struct stat */
50 #include <fcntl.h> /* for O_RDONLY */
51 #include "inf-loop.h"
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include <pwd.h>
55 #include <sys/types.h>
56 #include "gdb_dirent.h"
57 #include "xml-support.h"
58 #include "terminal.h"
59 #include <sys/vfs.h>
60 #include "solib.h"
61 #include "linux-osdata.h"
62
63 #ifndef SPUFS_MAGIC
64 #define SPUFS_MAGIC 0x23c9b64e
65 #endif
66
67 #ifdef HAVE_PERSONALITY
68 # include <sys/personality.h>
69 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
70 # define ADDR_NO_RANDOMIZE 0x0040000
71 # endif
72 #endif /* HAVE_PERSONALITY */
73
74 /* This comment documents high-level logic of this file.
75
76 Waiting for events in sync mode
77 ===============================
78
79 When waiting for an event in a specific thread, we just use waitpid, passing
80 the specific pid, and not passing WNOHANG.
81
82 When waiting for an event in all threads, waitpid is not quite good. Prior to
83 version 2.4, Linux can either wait for event in main thread, or in secondary
84 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
85 miss an event. The solution is to use non-blocking waitpid, together with
86 sigsuspend. First, we use non-blocking waitpid to get an event in the main
87 process, if any. Second, we use non-blocking waitpid with the __WCLONED
88 flag to check for events in cloned processes. If nothing is found, we use
89 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
90 happened to a child process -- and SIGCHLD will be delivered both for events
91 in main debugged process and in cloned processes. As soon as we know there's
92 an event, we get back to calling nonblocking waitpid with and without
93 __WCLONED.
94
95 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
96 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
97 blocked, the signal becomes pending and sigsuspend immediately
98 notices it and returns.
99
100 Waiting for events in async mode
101 ================================
102
103 In async mode, GDB should always be ready to handle both user input
104 and target events, so neither blocking waitpid nor sigsuspend are
105 viable options. Instead, we should asynchronously notify the GDB main
106 event loop whenever there's an unprocessed event from the target. We
107 detect asynchronous target events by handling SIGCHLD signals. To
108 notify the event loop about target events, the self-pipe trick is used
109 --- a pipe is registered as waitable event source in the event loop,
110 the event loop select/poll's on the read end of this pipe (as well on
111 other event sources, e.g., stdin), and the SIGCHLD handler writes a
112 byte to this pipe. This is more portable than relying on
113 pselect/ppoll, since on kernels that lack those syscalls, libc
114 emulates them with select/poll+sigprocmask, and that is racy
115 (a.k.a. plain broken).
116
117 Obviously, if we fail to notify the event loop if there's a target
118 event, it's bad. OTOH, if we notify the event loop when there's no
119 event from the target, linux_nat_wait will detect that there's no real
120 event to report, and return event of type TARGET_WAITKIND_IGNORE.
121 This is mostly harmless, but it will waste time and is better avoided.
122
123 The main design point is that every time GDB is outside linux-nat.c,
124 we have a SIGCHLD handler installed that is called when something
125 happens to the target and notifies the GDB event loop. Whenever GDB
126 core decides to handle the event, and calls into linux-nat.c, we
127 process things as in sync mode, except that the we never block in
128 sigsuspend.
129
130 While processing an event, we may end up momentarily blocked in
131 waitpid calls. Those waitpid calls, while blocking, are guarantied to
132 return quickly. E.g., in all-stop mode, before reporting to the core
133 that an LWP hit a breakpoint, all LWPs are stopped by sending them
134 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
135 Note that this is different from blocking indefinitely waiting for the
136 next event --- here, we're already handling an event.
137
138 Use of signals
139 ==============
140
141 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
142 signal is not entirely significant; we just need for a signal to be delivered,
143 so that we can intercept it. SIGSTOP's advantage is that it can not be
144 blocked. A disadvantage is that it is not a real-time signal, so it can only
145 be queued once; we do not keep track of other sources of SIGSTOP.
146
147 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
148 use them, because they have special behavior when the signal is generated -
149 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
150 kills the entire thread group.
151
152 A delivered SIGSTOP would stop the entire thread group, not just the thread we
153 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
154 cancel it (by PTRACE_CONT without passing SIGSTOP).
155
156 We could use a real-time signal instead. This would solve those problems; we
157 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
158 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
159 generates it, and there are races with trying to find a signal that is not
160 blocked. */
161
162 #ifndef O_LARGEFILE
163 #define O_LARGEFILE 0
164 #endif
165
166 /* Unlike other extended result codes, WSTOPSIG (status) on
167 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
168 instead SIGTRAP with bit 7 set. */
169 #define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
170
171 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
172 the use of the multi-threaded target. */
173 static struct target_ops *linux_ops;
174 static struct target_ops linux_ops_saved;
175
176 /* The method to call, if any, when a new thread is attached. */
177 static void (*linux_nat_new_thread) (ptid_t);
178
179 /* The method to call, if any, when the siginfo object needs to be
180 converted between the layout returned by ptrace, and the layout in
181 the architecture of the inferior. */
182 static int (*linux_nat_siginfo_fixup) (struct siginfo *,
183 gdb_byte *,
184 int);
185
186 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
187 Called by our to_xfer_partial. */
188 static LONGEST (*super_xfer_partial) (struct target_ops *,
189 enum target_object,
190 const char *, gdb_byte *,
191 const gdb_byte *,
192 ULONGEST, LONGEST);
193
194 static int debug_linux_nat;
195 static void
196 show_debug_linux_nat (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198 {
199 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
200 value);
201 }
202
203 struct simple_pid_list
204 {
205 int pid;
206 int status;
207 struct simple_pid_list *next;
208 };
209 struct simple_pid_list *stopped_pids;
210
211 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
212 can not be used, 1 if it can. */
213
214 static int linux_supports_tracefork_flag = -1;
215
216 /* This variable is a tri-state flag: -1 for unknown, 0 if
217 PTRACE_O_TRACESYSGOOD can not be used, 1 if it can. */
218
219 static int linux_supports_tracesysgood_flag = -1;
220
221 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
222 PTRACE_O_TRACEVFORKDONE. */
223
224 static int linux_supports_tracevforkdone_flag = -1;
225
226 /* Stores the current used ptrace() options. */
227 static int current_ptrace_options = 0;
228
229 /* Async mode support. */
230
231 /* The read/write ends of the pipe registered as waitable file in the
232 event loop. */
233 static int linux_nat_event_pipe[2] = { -1, -1 };
234
235 /* Flush the event pipe. */
236
237 static void
238 async_file_flush (void)
239 {
240 int ret;
241 char buf;
242
243 do
244 {
245 ret = read (linux_nat_event_pipe[0], &buf, 1);
246 }
247 while (ret >= 0 || (ret == -1 && errno == EINTR));
248 }
249
250 /* Put something (anything, doesn't matter what, or how much) in event
251 pipe, so that the select/poll in the event-loop realizes we have
252 something to process. */
253
254 static void
255 async_file_mark (void)
256 {
257 int ret;
258
259 /* It doesn't really matter what the pipe contains, as long we end
260 up with something in it. Might as well flush the previous
261 left-overs. */
262 async_file_flush ();
263
264 do
265 {
266 ret = write (linux_nat_event_pipe[1], "+", 1);
267 }
268 while (ret == -1 && errno == EINTR);
269
270 /* Ignore EAGAIN. If the pipe is full, the event loop will already
271 be awakened anyway. */
272 }
273
274 static void linux_nat_async (void (*callback)
275 (enum inferior_event_type event_type,
276 void *context),
277 void *context);
278 static int kill_lwp (int lwpid, int signo);
279
280 static int stop_callback (struct lwp_info *lp, void *data);
281
282 static void block_child_signals (sigset_t *prev_mask);
283 static void restore_child_signals_mask (sigset_t *prev_mask);
284
285 struct lwp_info;
286 static struct lwp_info *add_lwp (ptid_t ptid);
287 static void purge_lwp_list (int pid);
288 static struct lwp_info *find_lwp_pid (ptid_t ptid);
289
290 \f
291 /* Trivial list manipulation functions to keep track of a list of
292 new stopped processes. */
293 static void
294 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
295 {
296 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
297
298 new_pid->pid = pid;
299 new_pid->status = status;
300 new_pid->next = *listp;
301 *listp = new_pid;
302 }
303
304 static int
305 in_pid_list_p (struct simple_pid_list *list, int pid)
306 {
307 struct simple_pid_list *p;
308
309 for (p = list; p != NULL; p = p->next)
310 if (p->pid == pid)
311 return 1;
312 return 0;
313 }
314
315 static int
316 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
317 {
318 struct simple_pid_list **p;
319
320 for (p = listp; *p != NULL; p = &(*p)->next)
321 if ((*p)->pid == pid)
322 {
323 struct simple_pid_list *next = (*p)->next;
324
325 *statusp = (*p)->status;
326 xfree (*p);
327 *p = next;
328 return 1;
329 }
330 return 0;
331 }
332
333 \f
334 /* A helper function for linux_test_for_tracefork, called after fork (). */
335
336 static void
337 linux_tracefork_child (void)
338 {
339 ptrace (PTRACE_TRACEME, 0, 0, 0);
340 kill (getpid (), SIGSTOP);
341 fork ();
342 _exit (0);
343 }
344
345 /* Wrapper function for waitpid which handles EINTR. */
346
347 static int
348 my_waitpid (int pid, int *statusp, int flags)
349 {
350 int ret;
351
352 do
353 {
354 ret = waitpid (pid, statusp, flags);
355 }
356 while (ret == -1 && errno == EINTR);
357
358 return ret;
359 }
360
361 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
362
363 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
364 we know that the feature is not available. This may change the tracing
365 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
366
367 However, if it succeeds, we don't know for sure that the feature is
368 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
369 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
370 fork tracing, and let it fork. If the process exits, we assume that we
371 can't use TRACEFORK; if we get the fork notification, and we can extract
372 the new child's PID, then we assume that we can. */
373
374 static void
375 linux_test_for_tracefork (int original_pid)
376 {
377 int child_pid, ret, status;
378 long second_pid;
379 sigset_t prev_mask;
380
381 /* We don't want those ptrace calls to be interrupted. */
382 block_child_signals (&prev_mask);
383
384 linux_supports_tracefork_flag = 0;
385 linux_supports_tracevforkdone_flag = 0;
386
387 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
388 if (ret != 0)
389 {
390 restore_child_signals_mask (&prev_mask);
391 return;
392 }
393
394 child_pid = fork ();
395 if (child_pid == -1)
396 perror_with_name (("fork"));
397
398 if (child_pid == 0)
399 linux_tracefork_child ();
400
401 ret = my_waitpid (child_pid, &status, 0);
402 if (ret == -1)
403 perror_with_name (("waitpid"));
404 else if (ret != child_pid)
405 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
406 if (! WIFSTOPPED (status))
407 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."),
408 status);
409
410 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
411 if (ret != 0)
412 {
413 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
414 if (ret != 0)
415 {
416 warning (_("linux_test_for_tracefork: failed to kill child"));
417 restore_child_signals_mask (&prev_mask);
418 return;
419 }
420
421 ret = my_waitpid (child_pid, &status, 0);
422 if (ret != child_pid)
423 warning (_("linux_test_for_tracefork: failed "
424 "to wait for killed child"));
425 else if (!WIFSIGNALED (status))
426 warning (_("linux_test_for_tracefork: unexpected "
427 "wait status 0x%x from killed child"), status);
428
429 restore_child_signals_mask (&prev_mask);
430 return;
431 }
432
433 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
434 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
435 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
436 linux_supports_tracevforkdone_flag = (ret == 0);
437
438 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
439 if (ret != 0)
440 warning (_("linux_test_for_tracefork: failed to resume child"));
441
442 ret = my_waitpid (child_pid, &status, 0);
443
444 if (ret == child_pid && WIFSTOPPED (status)
445 && status >> 16 == PTRACE_EVENT_FORK)
446 {
447 second_pid = 0;
448 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
449 if (ret == 0 && second_pid != 0)
450 {
451 int second_status;
452
453 linux_supports_tracefork_flag = 1;
454 my_waitpid (second_pid, &second_status, 0);
455 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
456 if (ret != 0)
457 warning (_("linux_test_for_tracefork: "
458 "failed to kill second child"));
459 my_waitpid (second_pid, &status, 0);
460 }
461 }
462 else
463 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
464 "(%d, status 0x%x)"), ret, status);
465
466 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
467 if (ret != 0)
468 warning (_("linux_test_for_tracefork: failed to kill child"));
469 my_waitpid (child_pid, &status, 0);
470
471 restore_child_signals_mask (&prev_mask);
472 }
473
474 /* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
475
476 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
477 we know that the feature is not available. This may change the tracing
478 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
479
480 static void
481 linux_test_for_tracesysgood (int original_pid)
482 {
483 int ret;
484 sigset_t prev_mask;
485
486 /* We don't want those ptrace calls to be interrupted. */
487 block_child_signals (&prev_mask);
488
489 linux_supports_tracesysgood_flag = 0;
490
491 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
492 if (ret != 0)
493 goto out;
494
495 linux_supports_tracesysgood_flag = 1;
496 out:
497 restore_child_signals_mask (&prev_mask);
498 }
499
500 /* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
501 This function also sets linux_supports_tracesysgood_flag. */
502
503 static int
504 linux_supports_tracesysgood (int pid)
505 {
506 if (linux_supports_tracesysgood_flag == -1)
507 linux_test_for_tracesysgood (pid);
508 return linux_supports_tracesysgood_flag;
509 }
510
511 /* Return non-zero iff we have tracefork functionality available.
512 This function also sets linux_supports_tracefork_flag. */
513
514 static int
515 linux_supports_tracefork (int pid)
516 {
517 if (linux_supports_tracefork_flag == -1)
518 linux_test_for_tracefork (pid);
519 return linux_supports_tracefork_flag;
520 }
521
522 static int
523 linux_supports_tracevforkdone (int pid)
524 {
525 if (linux_supports_tracefork_flag == -1)
526 linux_test_for_tracefork (pid);
527 return linux_supports_tracevforkdone_flag;
528 }
529
530 static void
531 linux_enable_tracesysgood (ptid_t ptid)
532 {
533 int pid = ptid_get_lwp (ptid);
534
535 if (pid == 0)
536 pid = ptid_get_pid (ptid);
537
538 if (linux_supports_tracesysgood (pid) == 0)
539 return;
540
541 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
542
543 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
544 }
545
546 \f
547 void
548 linux_enable_event_reporting (ptid_t ptid)
549 {
550 int pid = ptid_get_lwp (ptid);
551
552 if (pid == 0)
553 pid = ptid_get_pid (ptid);
554
555 if (! linux_supports_tracefork (pid))
556 return;
557
558 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
559 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
560
561 if (linux_supports_tracevforkdone (pid))
562 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
563
564 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
565 read-only process state. */
566
567 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
568 }
569
570 static void
571 linux_child_post_attach (int pid)
572 {
573 linux_enable_event_reporting (pid_to_ptid (pid));
574 linux_enable_tracesysgood (pid_to_ptid (pid));
575 }
576
577 static void
578 linux_child_post_startup_inferior (ptid_t ptid)
579 {
580 linux_enable_event_reporting (ptid);
581 linux_enable_tracesysgood (ptid);
582 }
583
584 static int
585 linux_child_follow_fork (struct target_ops *ops, int follow_child)
586 {
587 sigset_t prev_mask;
588 int has_vforked;
589 int parent_pid, child_pid;
590
591 block_child_signals (&prev_mask);
592
593 has_vforked = (inferior_thread ()->pending_follow.kind
594 == TARGET_WAITKIND_VFORKED);
595 parent_pid = ptid_get_lwp (inferior_ptid);
596 if (parent_pid == 0)
597 parent_pid = ptid_get_pid (inferior_ptid);
598 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
599
600 if (!detach_fork)
601 linux_enable_event_reporting (pid_to_ptid (child_pid));
602
603 if (has_vforked
604 && !non_stop /* Non-stop always resumes both branches. */
605 && (!target_is_async_p () || sync_execution)
606 && !(follow_child || detach_fork || sched_multi))
607 {
608 /* The parent stays blocked inside the vfork syscall until the
609 child execs or exits. If we don't let the child run, then
610 the parent stays blocked. If we're telling the parent to run
611 in the foreground, the user will not be able to ctrl-c to get
612 back the terminal, effectively hanging the debug session. */
613 fprintf_filtered (gdb_stderr, _("\
614 Can not resume the parent process over vfork in the foreground while\n\
615 holding the child stopped. Try \"set detach-on-fork\" or \
616 \"set schedule-multiple\".\n"));
617 /* FIXME output string > 80 columns. */
618 return 1;
619 }
620
621 if (! follow_child)
622 {
623 struct lwp_info *child_lp = NULL;
624
625 /* We're already attached to the parent, by default. */
626
627 /* Detach new forked process? */
628 if (detach_fork)
629 {
630 /* Before detaching from the child, remove all breakpoints
631 from it. If we forked, then this has already been taken
632 care of by infrun.c. If we vforked however, any
633 breakpoint inserted in the parent is visible in the
634 child, even those added while stopped in a vfork
635 catchpoint. This will remove the breakpoints from the
636 parent also, but they'll be reinserted below. */
637 if (has_vforked)
638 {
639 /* keep breakpoints list in sync. */
640 remove_breakpoints_pid (GET_PID (inferior_ptid));
641 }
642
643 if (info_verbose || debug_linux_nat)
644 {
645 target_terminal_ours ();
646 fprintf_filtered (gdb_stdlog,
647 "Detaching after fork from "
648 "child process %d.\n",
649 child_pid);
650 }
651
652 ptrace (PTRACE_DETACH, child_pid, 0, 0);
653 }
654 else
655 {
656 struct inferior *parent_inf, *child_inf;
657 struct cleanup *old_chain;
658
659 /* Add process to GDB's tables. */
660 child_inf = add_inferior (child_pid);
661
662 parent_inf = current_inferior ();
663 child_inf->attach_flag = parent_inf->attach_flag;
664 copy_terminal_info (child_inf, parent_inf);
665
666 old_chain = save_inferior_ptid ();
667 save_current_program_space ();
668
669 inferior_ptid = ptid_build (child_pid, child_pid, 0);
670 add_thread (inferior_ptid);
671 child_lp = add_lwp (inferior_ptid);
672 child_lp->stopped = 1;
673 child_lp->last_resume_kind = resume_stop;
674
675 /* If this is a vfork child, then the address-space is
676 shared with the parent. */
677 if (has_vforked)
678 {
679 child_inf->pspace = parent_inf->pspace;
680 child_inf->aspace = parent_inf->aspace;
681
682 /* The parent will be frozen until the child is done
683 with the shared region. Keep track of the
684 parent. */
685 child_inf->vfork_parent = parent_inf;
686 child_inf->pending_detach = 0;
687 parent_inf->vfork_child = child_inf;
688 parent_inf->pending_detach = 0;
689 }
690 else
691 {
692 child_inf->aspace = new_address_space ();
693 child_inf->pspace = add_program_space (child_inf->aspace);
694 child_inf->removable = 1;
695 set_current_program_space (child_inf->pspace);
696 clone_program_space (child_inf->pspace, parent_inf->pspace);
697
698 /* Let the shared library layer (solib-svr4) learn about
699 this new process, relocate the cloned exec, pull in
700 shared libraries, and install the solib event
701 breakpoint. If a "cloned-VM" event was propagated
702 better throughout the core, this wouldn't be
703 required. */
704 solib_create_inferior_hook (0);
705 }
706
707 /* Let the thread_db layer learn about this new process. */
708 check_for_thread_db ();
709
710 do_cleanups (old_chain);
711 }
712
713 if (has_vforked)
714 {
715 struct lwp_info *parent_lp;
716 struct inferior *parent_inf;
717
718 parent_inf = current_inferior ();
719
720 /* If we detached from the child, then we have to be careful
721 to not insert breakpoints in the parent until the child
722 is done with the shared memory region. However, if we're
723 staying attached to the child, then we can and should
724 insert breakpoints, so that we can debug it. A
725 subsequent child exec or exit is enough to know when does
726 the child stops using the parent's address space. */
727 parent_inf->waiting_for_vfork_done = detach_fork;
728 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
729
730 parent_lp = find_lwp_pid (pid_to_ptid (parent_pid));
731 gdb_assert (linux_supports_tracefork_flag >= 0);
732
733 if (linux_supports_tracevforkdone (0))
734 {
735 if (debug_linux_nat)
736 fprintf_unfiltered (gdb_stdlog,
737 "LCFF: waiting for VFORK_DONE on %d\n",
738 parent_pid);
739 parent_lp->stopped = 1;
740
741 /* We'll handle the VFORK_DONE event like any other
742 event, in target_wait. */
743 }
744 else
745 {
746 /* We can't insert breakpoints until the child has
747 finished with the shared memory region. We need to
748 wait until that happens. Ideal would be to just
749 call:
750 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
751 - waitpid (parent_pid, &status, __WALL);
752 However, most architectures can't handle a syscall
753 being traced on the way out if it wasn't traced on
754 the way in.
755
756 We might also think to loop, continuing the child
757 until it exits or gets a SIGTRAP. One problem is
758 that the child might call ptrace with PTRACE_TRACEME.
759
760 There's no simple and reliable way to figure out when
761 the vforked child will be done with its copy of the
762 shared memory. We could step it out of the syscall,
763 two instructions, let it go, and then single-step the
764 parent once. When we have hardware single-step, this
765 would work; with software single-step it could still
766 be made to work but we'd have to be able to insert
767 single-step breakpoints in the child, and we'd have
768 to insert -just- the single-step breakpoint in the
769 parent. Very awkward.
770
771 In the end, the best we can do is to make sure it
772 runs for a little while. Hopefully it will be out of
773 range of any breakpoints we reinsert. Usually this
774 is only the single-step breakpoint at vfork's return
775 point. */
776
777 if (debug_linux_nat)
778 fprintf_unfiltered (gdb_stdlog,
779 "LCFF: no VFORK_DONE "
780 "support, sleeping a bit\n");
781
782 usleep (10000);
783
784 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
785 and leave it pending. The next linux_nat_resume call
786 will notice a pending event, and bypasses actually
787 resuming the inferior. */
788 parent_lp->status = 0;
789 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
790 parent_lp->stopped = 1;
791
792 /* If we're in async mode, need to tell the event loop
793 there's something here to process. */
794 if (target_can_async_p ())
795 async_file_mark ();
796 }
797 }
798 }
799 else
800 {
801 struct inferior *parent_inf, *child_inf;
802 struct lwp_info *child_lp;
803 struct program_space *parent_pspace;
804
805 if (info_verbose || debug_linux_nat)
806 {
807 target_terminal_ours ();
808 if (has_vforked)
809 fprintf_filtered (gdb_stdlog,
810 _("Attaching after process %d "
811 "vfork to child process %d.\n"),
812 parent_pid, child_pid);
813 else
814 fprintf_filtered (gdb_stdlog,
815 _("Attaching after process %d "
816 "fork to child process %d.\n"),
817 parent_pid, child_pid);
818 }
819
820 /* Add the new inferior first, so that the target_detach below
821 doesn't unpush the target. */
822
823 child_inf = add_inferior (child_pid);
824
825 parent_inf = current_inferior ();
826 child_inf->attach_flag = parent_inf->attach_flag;
827 copy_terminal_info (child_inf, parent_inf);
828
829 parent_pspace = parent_inf->pspace;
830
831 /* If we're vforking, we want to hold on to the parent until the
832 child exits or execs. At child exec or exit time we can
833 remove the old breakpoints from the parent and detach or
834 resume debugging it. Otherwise, detach the parent now; we'll
835 want to reuse it's program/address spaces, but we can't set
836 them to the child before removing breakpoints from the
837 parent, otherwise, the breakpoints module could decide to
838 remove breakpoints from the wrong process (since they'd be
839 assigned to the same address space). */
840
841 if (has_vforked)
842 {
843 gdb_assert (child_inf->vfork_parent == NULL);
844 gdb_assert (parent_inf->vfork_child == NULL);
845 child_inf->vfork_parent = parent_inf;
846 child_inf->pending_detach = 0;
847 parent_inf->vfork_child = child_inf;
848 parent_inf->pending_detach = detach_fork;
849 parent_inf->waiting_for_vfork_done = 0;
850 }
851 else if (detach_fork)
852 target_detach (NULL, 0);
853
854 /* Note that the detach above makes PARENT_INF dangling. */
855
856 /* Add the child thread to the appropriate lists, and switch to
857 this new thread, before cloning the program space, and
858 informing the solib layer about this new process. */
859
860 inferior_ptid = ptid_build (child_pid, child_pid, 0);
861 add_thread (inferior_ptid);
862 child_lp = add_lwp (inferior_ptid);
863 child_lp->stopped = 1;
864 child_lp->last_resume_kind = resume_stop;
865
866 /* If this is a vfork child, then the address-space is shared
867 with the parent. If we detached from the parent, then we can
868 reuse the parent's program/address spaces. */
869 if (has_vforked || detach_fork)
870 {
871 child_inf->pspace = parent_pspace;
872 child_inf->aspace = child_inf->pspace->aspace;
873 }
874 else
875 {
876 child_inf->aspace = new_address_space ();
877 child_inf->pspace = add_program_space (child_inf->aspace);
878 child_inf->removable = 1;
879 set_current_program_space (child_inf->pspace);
880 clone_program_space (child_inf->pspace, parent_pspace);
881
882 /* Let the shared library layer (solib-svr4) learn about
883 this new process, relocate the cloned exec, pull in
884 shared libraries, and install the solib event breakpoint.
885 If a "cloned-VM" event was propagated better throughout
886 the core, this wouldn't be required. */
887 solib_create_inferior_hook (0);
888 }
889
890 /* Let the thread_db layer learn about this new process. */
891 check_for_thread_db ();
892 }
893
894 restore_child_signals_mask (&prev_mask);
895 return 0;
896 }
897
898 \f
899 static int
900 linux_child_insert_fork_catchpoint (int pid)
901 {
902 return !linux_supports_tracefork (pid);
903 }
904
905 static int
906 linux_child_remove_fork_catchpoint (int pid)
907 {
908 return 0;
909 }
910
911 static int
912 linux_child_insert_vfork_catchpoint (int pid)
913 {
914 return !linux_supports_tracefork (pid);
915 }
916
917 static int
918 linux_child_remove_vfork_catchpoint (int pid)
919 {
920 return 0;
921 }
922
923 static int
924 linux_child_insert_exec_catchpoint (int pid)
925 {
926 return !linux_supports_tracefork (pid);
927 }
928
929 static int
930 linux_child_remove_exec_catchpoint (int pid)
931 {
932 return 0;
933 }
934
935 static int
936 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
937 int table_size, int *table)
938 {
939 if (!linux_supports_tracesysgood (pid))
940 return 1;
941
942 /* On GNU/Linux, we ignore the arguments. It means that we only
943 enable the syscall catchpoints, but do not disable them.
944
945 Also, we do not use the `table' information because we do not
946 filter system calls here. We let GDB do the logic for us. */
947 return 0;
948 }
949
950 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
951 are processes sharing the same VM space. A multi-threaded process
952 is basically a group of such processes. However, such a grouping
953 is almost entirely a user-space issue; the kernel doesn't enforce
954 such a grouping at all (this might change in the future). In
955 general, we'll rely on the threads library (i.e. the GNU/Linux
956 Threads library) to provide such a grouping.
957
958 It is perfectly well possible to write a multi-threaded application
959 without the assistance of a threads library, by using the clone
960 system call directly. This module should be able to give some
961 rudimentary support for debugging such applications if developers
962 specify the CLONE_PTRACE flag in the clone system call, and are
963 using the Linux kernel 2.4 or above.
964
965 Note that there are some peculiarities in GNU/Linux that affect
966 this code:
967
968 - In general one should specify the __WCLONE flag to waitpid in
969 order to make it report events for any of the cloned processes
970 (and leave it out for the initial process). However, if a cloned
971 process has exited the exit status is only reported if the
972 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
973 we cannot use it since GDB must work on older systems too.
974
975 - When a traced, cloned process exits and is waited for by the
976 debugger, the kernel reassigns it to the original parent and
977 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
978 library doesn't notice this, which leads to the "zombie problem":
979 When debugged a multi-threaded process that spawns a lot of
980 threads will run out of processes, even if the threads exit,
981 because the "zombies" stay around. */
982
983 /* List of known LWPs. */
984 struct lwp_info *lwp_list;
985 \f
986
987 /* Original signal mask. */
988 static sigset_t normal_mask;
989
990 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
991 _initialize_linux_nat. */
992 static sigset_t suspend_mask;
993
994 /* Signals to block to make that sigsuspend work. */
995 static sigset_t blocked_mask;
996
997 /* SIGCHLD action. */
998 struct sigaction sigchld_action;
999
1000 /* Block child signals (SIGCHLD and linux threads signals), and store
1001 the previous mask in PREV_MASK. */
1002
1003 static void
1004 block_child_signals (sigset_t *prev_mask)
1005 {
1006 /* Make sure SIGCHLD is blocked. */
1007 if (!sigismember (&blocked_mask, SIGCHLD))
1008 sigaddset (&blocked_mask, SIGCHLD);
1009
1010 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
1011 }
1012
1013 /* Restore child signals mask, previously returned by
1014 block_child_signals. */
1015
1016 static void
1017 restore_child_signals_mask (sigset_t *prev_mask)
1018 {
1019 sigprocmask (SIG_SETMASK, prev_mask, NULL);
1020 }
1021
1022 /* Mask of signals to pass directly to the inferior. */
1023 static sigset_t pass_mask;
1024
1025 /* Update signals to pass to the inferior. */
1026 static void
1027 linux_nat_pass_signals (int numsigs, unsigned char *pass_signals)
1028 {
1029 int signo;
1030
1031 sigemptyset (&pass_mask);
1032
1033 for (signo = 1; signo < NSIG; signo++)
1034 {
1035 int target_signo = target_signal_from_host (signo);
1036 if (target_signo < numsigs && pass_signals[target_signo])
1037 sigaddset (&pass_mask, signo);
1038 }
1039 }
1040
1041 \f
1042
1043 /* Prototypes for local functions. */
1044 static int stop_wait_callback (struct lwp_info *lp, void *data);
1045 static int linux_thread_alive (ptid_t ptid);
1046 static char *linux_child_pid_to_exec_file (int pid);
1047
1048 \f
1049 /* Convert wait status STATUS to a string. Used for printing debug
1050 messages only. */
1051
1052 static char *
1053 status_to_str (int status)
1054 {
1055 static char buf[64];
1056
1057 if (WIFSTOPPED (status))
1058 {
1059 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
1060 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
1061 strsignal (SIGTRAP));
1062 else
1063 snprintf (buf, sizeof (buf), "%s (stopped)",
1064 strsignal (WSTOPSIG (status)));
1065 }
1066 else if (WIFSIGNALED (status))
1067 snprintf (buf, sizeof (buf), "%s (terminated)",
1068 strsignal (WTERMSIG (status)));
1069 else
1070 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1071
1072 return buf;
1073 }
1074
1075 /* Remove all LWPs belong to PID from the lwp list. */
1076
1077 static void
1078 purge_lwp_list (int pid)
1079 {
1080 struct lwp_info *lp, *lpprev, *lpnext;
1081
1082 lpprev = NULL;
1083
1084 for (lp = lwp_list; lp; lp = lpnext)
1085 {
1086 lpnext = lp->next;
1087
1088 if (ptid_get_pid (lp->ptid) == pid)
1089 {
1090 if (lp == lwp_list)
1091 lwp_list = lp->next;
1092 else
1093 lpprev->next = lp->next;
1094
1095 xfree (lp);
1096 }
1097 else
1098 lpprev = lp;
1099 }
1100 }
1101
1102 /* Return the number of known LWPs in the tgid given by PID. */
1103
1104 static int
1105 num_lwps (int pid)
1106 {
1107 int count = 0;
1108 struct lwp_info *lp;
1109
1110 for (lp = lwp_list; lp; lp = lp->next)
1111 if (ptid_get_pid (lp->ptid) == pid)
1112 count++;
1113
1114 return count;
1115 }
1116
1117 /* Add the LWP specified by PID to the list. Return a pointer to the
1118 structure describing the new LWP. The LWP should already be stopped
1119 (with an exception for the very first LWP). */
1120
1121 static struct lwp_info *
1122 add_lwp (ptid_t ptid)
1123 {
1124 struct lwp_info *lp;
1125
1126 gdb_assert (is_lwp (ptid));
1127
1128 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1129
1130 memset (lp, 0, sizeof (struct lwp_info));
1131
1132 lp->last_resume_kind = resume_continue;
1133 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1134
1135 lp->ptid = ptid;
1136 lp->core = -1;
1137
1138 lp->next = lwp_list;
1139 lwp_list = lp;
1140
1141 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
1142 linux_nat_new_thread (ptid);
1143
1144 return lp;
1145 }
1146
1147 /* Remove the LWP specified by PID from the list. */
1148
1149 static void
1150 delete_lwp (ptid_t ptid)
1151 {
1152 struct lwp_info *lp, *lpprev;
1153
1154 lpprev = NULL;
1155
1156 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1157 if (ptid_equal (lp->ptid, ptid))
1158 break;
1159
1160 if (!lp)
1161 return;
1162
1163 if (lpprev)
1164 lpprev->next = lp->next;
1165 else
1166 lwp_list = lp->next;
1167
1168 xfree (lp);
1169 }
1170
1171 /* Return a pointer to the structure describing the LWP corresponding
1172 to PID. If no corresponding LWP could be found, return NULL. */
1173
1174 static struct lwp_info *
1175 find_lwp_pid (ptid_t ptid)
1176 {
1177 struct lwp_info *lp;
1178 int lwp;
1179
1180 if (is_lwp (ptid))
1181 lwp = GET_LWP (ptid);
1182 else
1183 lwp = GET_PID (ptid);
1184
1185 for (lp = lwp_list; lp; lp = lp->next)
1186 if (lwp == GET_LWP (lp->ptid))
1187 return lp;
1188
1189 return NULL;
1190 }
1191
1192 /* Call CALLBACK with its second argument set to DATA for every LWP in
1193 the list. If CALLBACK returns 1 for a particular LWP, return a
1194 pointer to the structure describing that LWP immediately.
1195 Otherwise return NULL. */
1196
1197 struct lwp_info *
1198 iterate_over_lwps (ptid_t filter,
1199 int (*callback) (struct lwp_info *, void *),
1200 void *data)
1201 {
1202 struct lwp_info *lp, *lpnext;
1203
1204 for (lp = lwp_list; lp; lp = lpnext)
1205 {
1206 lpnext = lp->next;
1207
1208 if (ptid_match (lp->ptid, filter))
1209 {
1210 if ((*callback) (lp, data))
1211 return lp;
1212 }
1213 }
1214
1215 return NULL;
1216 }
1217
1218 /* Update our internal state when changing from one checkpoint to
1219 another indicated by NEW_PTID. We can only switch single-threaded
1220 applications, so we only create one new LWP, and the previous list
1221 is discarded. */
1222
1223 void
1224 linux_nat_switch_fork (ptid_t new_ptid)
1225 {
1226 struct lwp_info *lp;
1227
1228 purge_lwp_list (GET_PID (inferior_ptid));
1229
1230 lp = add_lwp (new_ptid);
1231 lp->stopped = 1;
1232
1233 /* This changes the thread's ptid while preserving the gdb thread
1234 num. Also changes the inferior pid, while preserving the
1235 inferior num. */
1236 thread_change_ptid (inferior_ptid, new_ptid);
1237
1238 /* We've just told GDB core that the thread changed target id, but,
1239 in fact, it really is a different thread, with different register
1240 contents. */
1241 registers_changed ();
1242 }
1243
1244 /* Handle the exit of a single thread LP. */
1245
1246 static void
1247 exit_lwp (struct lwp_info *lp)
1248 {
1249 struct thread_info *th = find_thread_ptid (lp->ptid);
1250
1251 if (th)
1252 {
1253 if (print_thread_events)
1254 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1255
1256 delete_thread (lp->ptid);
1257 }
1258
1259 delete_lwp (lp->ptid);
1260 }
1261
1262 /* Detect `T (stopped)' in `/proc/PID/status'.
1263 Other states including `T (tracing stop)' are reported as false. */
1264
1265 static int
1266 pid_is_stopped (pid_t pid)
1267 {
1268 FILE *status_file;
1269 char buf[100];
1270 int retval = 0;
1271
1272 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1273 status_file = fopen (buf, "r");
1274 if (status_file != NULL)
1275 {
1276 int have_state = 0;
1277
1278 while (fgets (buf, sizeof (buf), status_file))
1279 {
1280 if (strncmp (buf, "State:", 6) == 0)
1281 {
1282 have_state = 1;
1283 break;
1284 }
1285 }
1286 if (have_state && strstr (buf, "T (stopped)") != NULL)
1287 retval = 1;
1288 fclose (status_file);
1289 }
1290 return retval;
1291 }
1292
1293 /* Wait for the LWP specified by LP, which we have just attached to.
1294 Returns a wait status for that LWP, to cache. */
1295
1296 static int
1297 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1298 int *signalled)
1299 {
1300 pid_t new_pid, pid = GET_LWP (ptid);
1301 int status;
1302
1303 if (pid_is_stopped (pid))
1304 {
1305 if (debug_linux_nat)
1306 fprintf_unfiltered (gdb_stdlog,
1307 "LNPAW: Attaching to a stopped process\n");
1308
1309 /* The process is definitely stopped. It is in a job control
1310 stop, unless the kernel predates the TASK_STOPPED /
1311 TASK_TRACED distinction, in which case it might be in a
1312 ptrace stop. Make sure it is in a ptrace stop; from there we
1313 can kill it, signal it, et cetera.
1314
1315 First make sure there is a pending SIGSTOP. Since we are
1316 already attached, the process can not transition from stopped
1317 to running without a PTRACE_CONT; so we know this signal will
1318 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1319 probably already in the queue (unless this kernel is old
1320 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1321 is not an RT signal, it can only be queued once. */
1322 kill_lwp (pid, SIGSTOP);
1323
1324 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1325 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1326 ptrace (PTRACE_CONT, pid, 0, 0);
1327 }
1328
1329 /* Make sure the initial process is stopped. The user-level threads
1330 layer might want to poke around in the inferior, and that won't
1331 work if things haven't stabilized yet. */
1332 new_pid = my_waitpid (pid, &status, 0);
1333 if (new_pid == -1 && errno == ECHILD)
1334 {
1335 if (first)
1336 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1337
1338 /* Try again with __WCLONE to check cloned processes. */
1339 new_pid = my_waitpid (pid, &status, __WCLONE);
1340 *cloned = 1;
1341 }
1342
1343 gdb_assert (pid == new_pid);
1344
1345 if (!WIFSTOPPED (status))
1346 {
1347 /* The pid we tried to attach has apparently just exited. */
1348 if (debug_linux_nat)
1349 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1350 pid, status_to_str (status));
1351 return status;
1352 }
1353
1354 if (WSTOPSIG (status) != SIGSTOP)
1355 {
1356 *signalled = 1;
1357 if (debug_linux_nat)
1358 fprintf_unfiltered (gdb_stdlog,
1359 "LNPAW: Received %s after attaching\n",
1360 status_to_str (status));
1361 }
1362
1363 return status;
1364 }
1365
1366 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
1367 the new LWP could not be attached, or 1 if we're already auto
1368 attached to this thread, but haven't processed the
1369 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
1370 its existance, without considering it an error. */
1371
1372 int
1373 lin_lwp_attach_lwp (ptid_t ptid)
1374 {
1375 struct lwp_info *lp;
1376 sigset_t prev_mask;
1377 int lwpid;
1378
1379 gdb_assert (is_lwp (ptid));
1380
1381 block_child_signals (&prev_mask);
1382
1383 lp = find_lwp_pid (ptid);
1384 lwpid = GET_LWP (ptid);
1385
1386 /* We assume that we're already attached to any LWP that has an id
1387 equal to the overall process id, and to any LWP that is already
1388 in our list of LWPs. If we're not seeing exit events from threads
1389 and we've had PID wraparound since we last tried to stop all threads,
1390 this assumption might be wrong; fortunately, this is very unlikely
1391 to happen. */
1392 if (lwpid != GET_PID (ptid) && lp == NULL)
1393 {
1394 int status, cloned = 0, signalled = 0;
1395
1396 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1397 {
1398 if (linux_supports_tracefork_flag)
1399 {
1400 /* If we haven't stopped all threads when we get here,
1401 we may have seen a thread listed in thread_db's list,
1402 but not processed the PTRACE_EVENT_CLONE yet. If
1403 that's the case, ignore this new thread, and let
1404 normal event handling discover it later. */
1405 if (in_pid_list_p (stopped_pids, lwpid))
1406 {
1407 /* We've already seen this thread stop, but we
1408 haven't seen the PTRACE_EVENT_CLONE extended
1409 event yet. */
1410 restore_child_signals_mask (&prev_mask);
1411 return 0;
1412 }
1413 else
1414 {
1415 int new_pid;
1416 int status;
1417
1418 /* See if we've got a stop for this new child
1419 pending. If so, we're already attached. */
1420 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1421 if (new_pid == -1 && errno == ECHILD)
1422 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1423 if (new_pid != -1)
1424 {
1425 if (WIFSTOPPED (status))
1426 add_to_pid_list (&stopped_pids, lwpid, status);
1427
1428 restore_child_signals_mask (&prev_mask);
1429 return 1;
1430 }
1431 }
1432 }
1433
1434 /* If we fail to attach to the thread, issue a warning,
1435 but continue. One way this can happen is if thread
1436 creation is interrupted; as of Linux kernel 2.6.19, a
1437 bug may place threads in the thread list and then fail
1438 to create them. */
1439 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1440 safe_strerror (errno));
1441 restore_child_signals_mask (&prev_mask);
1442 return -1;
1443 }
1444
1445 if (debug_linux_nat)
1446 fprintf_unfiltered (gdb_stdlog,
1447 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1448 target_pid_to_str (ptid));
1449
1450 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1451 if (!WIFSTOPPED (status))
1452 {
1453 restore_child_signals_mask (&prev_mask);
1454 return 1;
1455 }
1456
1457 lp = add_lwp (ptid);
1458 lp->stopped = 1;
1459 lp->cloned = cloned;
1460 lp->signalled = signalled;
1461 if (WSTOPSIG (status) != SIGSTOP)
1462 {
1463 lp->resumed = 1;
1464 lp->status = status;
1465 }
1466
1467 target_post_attach (GET_LWP (lp->ptid));
1468
1469 if (debug_linux_nat)
1470 {
1471 fprintf_unfiltered (gdb_stdlog,
1472 "LLAL: waitpid %s received %s\n",
1473 target_pid_to_str (ptid),
1474 status_to_str (status));
1475 }
1476 }
1477 else
1478 {
1479 /* We assume that the LWP representing the original process is
1480 already stopped. Mark it as stopped in the data structure
1481 that the GNU/linux ptrace layer uses to keep track of
1482 threads. Note that this won't have already been done since
1483 the main thread will have, we assume, been stopped by an
1484 attach from a different layer. */
1485 if (lp == NULL)
1486 lp = add_lwp (ptid);
1487 lp->stopped = 1;
1488 }
1489
1490 lp->last_resume_kind = resume_stop;
1491 restore_child_signals_mask (&prev_mask);
1492 return 0;
1493 }
1494
1495 static void
1496 linux_nat_create_inferior (struct target_ops *ops,
1497 char *exec_file, char *allargs, char **env,
1498 int from_tty)
1499 {
1500 #ifdef HAVE_PERSONALITY
1501 int personality_orig = 0, personality_set = 0;
1502 #endif /* HAVE_PERSONALITY */
1503
1504 /* The fork_child mechanism is synchronous and calls target_wait, so
1505 we have to mask the async mode. */
1506
1507 #ifdef HAVE_PERSONALITY
1508 if (disable_randomization)
1509 {
1510 errno = 0;
1511 personality_orig = personality (0xffffffff);
1512 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1513 {
1514 personality_set = 1;
1515 personality (personality_orig | ADDR_NO_RANDOMIZE);
1516 }
1517 if (errno != 0 || (personality_set
1518 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1519 warning (_("Error disabling address space randomization: %s"),
1520 safe_strerror (errno));
1521 }
1522 #endif /* HAVE_PERSONALITY */
1523
1524 /* Make sure we report all signals during startup. */
1525 linux_nat_pass_signals (0, NULL);
1526
1527 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1528
1529 #ifdef HAVE_PERSONALITY
1530 if (personality_set)
1531 {
1532 errno = 0;
1533 personality (personality_orig);
1534 if (errno != 0)
1535 warning (_("Error restoring address space randomization: %s"),
1536 safe_strerror (errno));
1537 }
1538 #endif /* HAVE_PERSONALITY */
1539 }
1540
1541 static void
1542 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1543 {
1544 struct lwp_info *lp;
1545 int status;
1546 ptid_t ptid;
1547
1548 /* Make sure we report all signals during attach. */
1549 linux_nat_pass_signals (0, NULL);
1550
1551 linux_ops->to_attach (ops, args, from_tty);
1552
1553 /* The ptrace base target adds the main thread with (pid,0,0)
1554 format. Decorate it with lwp info. */
1555 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1556 thread_change_ptid (inferior_ptid, ptid);
1557
1558 /* Add the initial process as the first LWP to the list. */
1559 lp = add_lwp (ptid);
1560
1561 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1562 &lp->signalled);
1563 if (!WIFSTOPPED (status))
1564 {
1565 if (WIFEXITED (status))
1566 {
1567 int exit_code = WEXITSTATUS (status);
1568
1569 target_terminal_ours ();
1570 target_mourn_inferior ();
1571 if (exit_code == 0)
1572 error (_("Unable to attach: program exited normally."));
1573 else
1574 error (_("Unable to attach: program exited with code %d."),
1575 exit_code);
1576 }
1577 else if (WIFSIGNALED (status))
1578 {
1579 enum target_signal signo;
1580
1581 target_terminal_ours ();
1582 target_mourn_inferior ();
1583
1584 signo = target_signal_from_host (WTERMSIG (status));
1585 error (_("Unable to attach: program terminated with signal "
1586 "%s, %s."),
1587 target_signal_to_name (signo),
1588 target_signal_to_string (signo));
1589 }
1590
1591 internal_error (__FILE__, __LINE__,
1592 _("unexpected status %d for PID %ld"),
1593 status, (long) GET_LWP (ptid));
1594 }
1595
1596 lp->stopped = 1;
1597
1598 /* Save the wait status to report later. */
1599 lp->resumed = 1;
1600 if (debug_linux_nat)
1601 fprintf_unfiltered (gdb_stdlog,
1602 "LNA: waitpid %ld, saving status %s\n",
1603 (long) GET_PID (lp->ptid), status_to_str (status));
1604
1605 lp->status = status;
1606
1607 if (target_can_async_p ())
1608 target_async (inferior_event_handler, 0);
1609 }
1610
1611 /* Get pending status of LP. */
1612 static int
1613 get_pending_status (struct lwp_info *lp, int *status)
1614 {
1615 enum target_signal signo = TARGET_SIGNAL_0;
1616
1617 /* If we paused threads momentarily, we may have stored pending
1618 events in lp->status or lp->waitstatus (see stop_wait_callback),
1619 and GDB core hasn't seen any signal for those threads.
1620 Otherwise, the last signal reported to the core is found in the
1621 thread object's stop_signal.
1622
1623 There's a corner case that isn't handled here at present. Only
1624 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1625 stop_signal make sense as a real signal to pass to the inferior.
1626 Some catchpoint related events, like
1627 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1628 to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1629 those traps are debug API (ptrace in our case) related and
1630 induced; the inferior wouldn't see them if it wasn't being
1631 traced. Hence, we should never pass them to the inferior, even
1632 when set to pass state. Since this corner case isn't handled by
1633 infrun.c when proceeding with a signal, for consistency, neither
1634 do we handle it here (or elsewhere in the file we check for
1635 signal pass state). Normally SIGTRAP isn't set to pass state, so
1636 this is really a corner case. */
1637
1638 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1639 signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1640 else if (lp->status)
1641 signo = target_signal_from_host (WSTOPSIG (lp->status));
1642 else if (non_stop && !is_executing (lp->ptid))
1643 {
1644 struct thread_info *tp = find_thread_ptid (lp->ptid);
1645
1646 signo = tp->suspend.stop_signal;
1647 }
1648 else if (!non_stop)
1649 {
1650 struct target_waitstatus last;
1651 ptid_t last_ptid;
1652
1653 get_last_target_status (&last_ptid, &last);
1654
1655 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1656 {
1657 struct thread_info *tp = find_thread_ptid (lp->ptid);
1658
1659 signo = tp->suspend.stop_signal;
1660 }
1661 }
1662
1663 *status = 0;
1664
1665 if (signo == TARGET_SIGNAL_0)
1666 {
1667 if (debug_linux_nat)
1668 fprintf_unfiltered (gdb_stdlog,
1669 "GPT: lwp %s has no pending signal\n",
1670 target_pid_to_str (lp->ptid));
1671 }
1672 else if (!signal_pass_state (signo))
1673 {
1674 if (debug_linux_nat)
1675 fprintf_unfiltered (gdb_stdlog,
1676 "GPT: lwp %s had signal %s, "
1677 "but it is in no pass state\n",
1678 target_pid_to_str (lp->ptid),
1679 target_signal_to_string (signo));
1680 }
1681 else
1682 {
1683 *status = W_STOPCODE (target_signal_to_host (signo));
1684
1685 if (debug_linux_nat)
1686 fprintf_unfiltered (gdb_stdlog,
1687 "GPT: lwp %s has pending signal %s\n",
1688 target_pid_to_str (lp->ptid),
1689 target_signal_to_string (signo));
1690 }
1691
1692 return 0;
1693 }
1694
1695 static int
1696 detach_callback (struct lwp_info *lp, void *data)
1697 {
1698 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1699
1700 if (debug_linux_nat && lp->status)
1701 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1702 strsignal (WSTOPSIG (lp->status)),
1703 target_pid_to_str (lp->ptid));
1704
1705 /* If there is a pending SIGSTOP, get rid of it. */
1706 if (lp->signalled)
1707 {
1708 if (debug_linux_nat)
1709 fprintf_unfiltered (gdb_stdlog,
1710 "DC: Sending SIGCONT to %s\n",
1711 target_pid_to_str (lp->ptid));
1712
1713 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1714 lp->signalled = 0;
1715 }
1716
1717 /* We don't actually detach from the LWP that has an id equal to the
1718 overall process id just yet. */
1719 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1720 {
1721 int status = 0;
1722
1723 /* Pass on any pending signal for this LWP. */
1724 get_pending_status (lp, &status);
1725
1726 errno = 0;
1727 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1728 WSTOPSIG (status)) < 0)
1729 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1730 safe_strerror (errno));
1731
1732 if (debug_linux_nat)
1733 fprintf_unfiltered (gdb_stdlog,
1734 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1735 target_pid_to_str (lp->ptid),
1736 strsignal (WSTOPSIG (status)));
1737
1738 delete_lwp (lp->ptid);
1739 }
1740
1741 return 0;
1742 }
1743
1744 static void
1745 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1746 {
1747 int pid;
1748 int status;
1749 struct lwp_info *main_lwp;
1750
1751 pid = GET_PID (inferior_ptid);
1752
1753 if (target_can_async_p ())
1754 linux_nat_async (NULL, 0);
1755
1756 /* Stop all threads before detaching. ptrace requires that the
1757 thread is stopped to sucessfully detach. */
1758 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1759 /* ... and wait until all of them have reported back that
1760 they're no longer running. */
1761 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1762
1763 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1764
1765 /* Only the initial process should be left right now. */
1766 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1767
1768 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1769
1770 /* Pass on any pending signal for the last LWP. */
1771 if ((args == NULL || *args == '\0')
1772 && get_pending_status (main_lwp, &status) != -1
1773 && WIFSTOPPED (status))
1774 {
1775 /* Put the signal number in ARGS so that inf_ptrace_detach will
1776 pass it along with PTRACE_DETACH. */
1777 args = alloca (8);
1778 sprintf (args, "%d", (int) WSTOPSIG (status));
1779 if (debug_linux_nat)
1780 fprintf_unfiltered (gdb_stdlog,
1781 "LND: Sending signal %s to %s\n",
1782 args,
1783 target_pid_to_str (main_lwp->ptid));
1784 }
1785
1786 delete_lwp (main_lwp->ptid);
1787
1788 if (forks_exist_p ())
1789 {
1790 /* Multi-fork case. The current inferior_ptid is being detached
1791 from, but there are other viable forks to debug. Detach from
1792 the current fork, and context-switch to the first
1793 available. */
1794 linux_fork_detach (args, from_tty);
1795
1796 if (non_stop && target_can_async_p ())
1797 target_async (inferior_event_handler, 0);
1798 }
1799 else
1800 linux_ops->to_detach (ops, args, from_tty);
1801 }
1802
1803 /* Resume LP. */
1804
1805 static void
1806 resume_lwp (struct lwp_info *lp, int step)
1807 {
1808 if (lp->stopped)
1809 {
1810 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1811
1812 if (inf->vfork_child != NULL)
1813 {
1814 if (debug_linux_nat)
1815 fprintf_unfiltered (gdb_stdlog,
1816 "RC: Not resuming %s (vfork parent)\n",
1817 target_pid_to_str (lp->ptid));
1818 }
1819 else if (lp->status == 0
1820 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
1821 {
1822 if (debug_linux_nat)
1823 fprintf_unfiltered (gdb_stdlog,
1824 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1825 target_pid_to_str (lp->ptid));
1826
1827 linux_ops->to_resume (linux_ops,
1828 pid_to_ptid (GET_LWP (lp->ptid)),
1829 step, TARGET_SIGNAL_0);
1830 lp->stopped = 0;
1831 lp->step = step;
1832 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1833 lp->stopped_by_watchpoint = 0;
1834 }
1835 else
1836 {
1837 if (debug_linux_nat)
1838 fprintf_unfiltered (gdb_stdlog,
1839 "RC: Not resuming sibling %s (has pending)\n",
1840 target_pid_to_str (lp->ptid));
1841 }
1842 }
1843 else
1844 {
1845 if (debug_linux_nat)
1846 fprintf_unfiltered (gdb_stdlog,
1847 "RC: Not resuming sibling %s (not stopped)\n",
1848 target_pid_to_str (lp->ptid));
1849 }
1850 }
1851
1852 static int
1853 resume_callback (struct lwp_info *lp, void *data)
1854 {
1855 resume_lwp (lp, 0);
1856 return 0;
1857 }
1858
1859 static int
1860 resume_clear_callback (struct lwp_info *lp, void *data)
1861 {
1862 lp->resumed = 0;
1863 lp->last_resume_kind = resume_stop;
1864 return 0;
1865 }
1866
1867 static int
1868 resume_set_callback (struct lwp_info *lp, void *data)
1869 {
1870 lp->resumed = 1;
1871 lp->last_resume_kind = resume_continue;
1872 return 0;
1873 }
1874
1875 static void
1876 linux_nat_resume (struct target_ops *ops,
1877 ptid_t ptid, int step, enum target_signal signo)
1878 {
1879 sigset_t prev_mask;
1880 struct lwp_info *lp;
1881 int resume_many;
1882
1883 if (debug_linux_nat)
1884 fprintf_unfiltered (gdb_stdlog,
1885 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1886 step ? "step" : "resume",
1887 target_pid_to_str (ptid),
1888 (signo != TARGET_SIGNAL_0
1889 ? strsignal (target_signal_to_host (signo)) : "0"),
1890 target_pid_to_str (inferior_ptid));
1891
1892 block_child_signals (&prev_mask);
1893
1894 /* A specific PTID means `step only this process id'. */
1895 resume_many = (ptid_equal (minus_one_ptid, ptid)
1896 || ptid_is_pid (ptid));
1897
1898 /* Mark the lwps we're resuming as resumed. */
1899 iterate_over_lwps (ptid, resume_set_callback, NULL);
1900
1901 /* See if it's the current inferior that should be handled
1902 specially. */
1903 if (resume_many)
1904 lp = find_lwp_pid (inferior_ptid);
1905 else
1906 lp = find_lwp_pid (ptid);
1907 gdb_assert (lp != NULL);
1908
1909 /* Remember if we're stepping. */
1910 lp->step = step;
1911 lp->last_resume_kind = step ? resume_step : resume_continue;
1912
1913 /* If we have a pending wait status for this thread, there is no
1914 point in resuming the process. But first make sure that
1915 linux_nat_wait won't preemptively handle the event - we
1916 should never take this short-circuit if we are going to
1917 leave LP running, since we have skipped resuming all the
1918 other threads. This bit of code needs to be synchronized
1919 with linux_nat_wait. */
1920
1921 if (lp->status && WIFSTOPPED (lp->status))
1922 {
1923 if (!lp->step
1924 && WSTOPSIG (lp->status)
1925 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1926 {
1927 if (debug_linux_nat)
1928 fprintf_unfiltered (gdb_stdlog,
1929 "LLR: Not short circuiting for ignored "
1930 "status 0x%x\n", lp->status);
1931
1932 /* FIXME: What should we do if we are supposed to continue
1933 this thread with a signal? */
1934 gdb_assert (signo == TARGET_SIGNAL_0);
1935 signo = target_signal_from_host (WSTOPSIG (lp->status));
1936 lp->status = 0;
1937 }
1938 }
1939
1940 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1941 {
1942 /* FIXME: What should we do if we are supposed to continue
1943 this thread with a signal? */
1944 gdb_assert (signo == TARGET_SIGNAL_0);
1945
1946 if (debug_linux_nat)
1947 fprintf_unfiltered (gdb_stdlog,
1948 "LLR: Short circuiting for status 0x%x\n",
1949 lp->status);
1950
1951 restore_child_signals_mask (&prev_mask);
1952 if (target_can_async_p ())
1953 {
1954 target_async (inferior_event_handler, 0);
1955 /* Tell the event loop we have something to process. */
1956 async_file_mark ();
1957 }
1958 return;
1959 }
1960
1961 /* Mark LWP as not stopped to prevent it from being continued by
1962 resume_callback. */
1963 lp->stopped = 0;
1964
1965 if (resume_many)
1966 iterate_over_lwps (ptid, resume_callback, NULL);
1967
1968 /* Convert to something the lower layer understands. */
1969 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1970
1971 linux_ops->to_resume (linux_ops, ptid, step, signo);
1972 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1973 lp->stopped_by_watchpoint = 0;
1974
1975 if (debug_linux_nat)
1976 fprintf_unfiltered (gdb_stdlog,
1977 "LLR: %s %s, %s (resume event thread)\n",
1978 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1979 target_pid_to_str (ptid),
1980 (signo != TARGET_SIGNAL_0
1981 ? strsignal (target_signal_to_host (signo)) : "0"));
1982
1983 restore_child_signals_mask (&prev_mask);
1984 if (target_can_async_p ())
1985 target_async (inferior_event_handler, 0);
1986 }
1987
1988 /* Send a signal to an LWP. */
1989
1990 static int
1991 kill_lwp (int lwpid, int signo)
1992 {
1993 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1994 fails, then we are not using nptl threads and we should be using kill. */
1995
1996 #ifdef HAVE_TKILL_SYSCALL
1997 {
1998 static int tkill_failed;
1999
2000 if (!tkill_failed)
2001 {
2002 int ret;
2003
2004 errno = 0;
2005 ret = syscall (__NR_tkill, lwpid, signo);
2006 if (errno != ENOSYS)
2007 return ret;
2008 tkill_failed = 1;
2009 }
2010 }
2011 #endif
2012
2013 return kill (lwpid, signo);
2014 }
2015
2016 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
2017 event, check if the core is interested in it: if not, ignore the
2018 event, and keep waiting; otherwise, we need to toggle the LWP's
2019 syscall entry/exit status, since the ptrace event itself doesn't
2020 indicate it, and report the trap to higher layers. */
2021
2022 static int
2023 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
2024 {
2025 struct target_waitstatus *ourstatus = &lp->waitstatus;
2026 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
2027 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2028
2029 if (stopping)
2030 {
2031 /* If we're stopping threads, there's a SIGSTOP pending, which
2032 makes it so that the LWP reports an immediate syscall return,
2033 followed by the SIGSTOP. Skip seeing that "return" using
2034 PTRACE_CONT directly, and let stop_wait_callback collect the
2035 SIGSTOP. Later when the thread is resumed, a new syscall
2036 entry event. If we didn't do this (and returned 0), we'd
2037 leave a syscall entry pending, and our caller, by using
2038 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
2039 itself. Later, when the user re-resumes this LWP, we'd see
2040 another syscall entry event and we'd mistake it for a return.
2041
2042 If stop_wait_callback didn't force the SIGSTOP out of the LWP
2043 (leaving immediately with LWP->signalled set, without issuing
2044 a PTRACE_CONT), it would still be problematic to leave this
2045 syscall enter pending, as later when the thread is resumed,
2046 it would then see the same syscall exit mentioned above,
2047 followed by the delayed SIGSTOP, while the syscall didn't
2048 actually get to execute. It seems it would be even more
2049 confusing to the user. */
2050
2051 if (debug_linux_nat)
2052 fprintf_unfiltered (gdb_stdlog,
2053 "LHST: ignoring syscall %d "
2054 "for LWP %ld (stopping threads), "
2055 "resuming with PTRACE_CONT for SIGSTOP\n",
2056 syscall_number,
2057 GET_LWP (lp->ptid));
2058
2059 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2060 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2061 return 1;
2062 }
2063
2064 if (catch_syscall_enabled ())
2065 {
2066 /* Always update the entry/return state, even if this particular
2067 syscall isn't interesting to the core now. In async mode,
2068 the user could install a new catchpoint for this syscall
2069 between syscall enter/return, and we'll need to know to
2070 report a syscall return if that happens. */
2071 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2072 ? TARGET_WAITKIND_SYSCALL_RETURN
2073 : TARGET_WAITKIND_SYSCALL_ENTRY);
2074
2075 if (catching_syscall_number (syscall_number))
2076 {
2077 /* Alright, an event to report. */
2078 ourstatus->kind = lp->syscall_state;
2079 ourstatus->value.syscall_number = syscall_number;
2080
2081 if (debug_linux_nat)
2082 fprintf_unfiltered (gdb_stdlog,
2083 "LHST: stopping for %s of syscall %d"
2084 " for LWP %ld\n",
2085 lp->syscall_state
2086 == TARGET_WAITKIND_SYSCALL_ENTRY
2087 ? "entry" : "return",
2088 syscall_number,
2089 GET_LWP (lp->ptid));
2090 return 0;
2091 }
2092
2093 if (debug_linux_nat)
2094 fprintf_unfiltered (gdb_stdlog,
2095 "LHST: ignoring %s of syscall %d "
2096 "for LWP %ld\n",
2097 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2098 ? "entry" : "return",
2099 syscall_number,
2100 GET_LWP (lp->ptid));
2101 }
2102 else
2103 {
2104 /* If we had been syscall tracing, and hence used PT_SYSCALL
2105 before on this LWP, it could happen that the user removes all
2106 syscall catchpoints before we get to process this event.
2107 There are two noteworthy issues here:
2108
2109 - When stopped at a syscall entry event, resuming with
2110 PT_STEP still resumes executing the syscall and reports a
2111 syscall return.
2112
2113 - Only PT_SYSCALL catches syscall enters. If we last
2114 single-stepped this thread, then this event can't be a
2115 syscall enter. If we last single-stepped this thread, this
2116 has to be a syscall exit.
2117
2118 The points above mean that the next resume, be it PT_STEP or
2119 PT_CONTINUE, can not trigger a syscall trace event. */
2120 if (debug_linux_nat)
2121 fprintf_unfiltered (gdb_stdlog,
2122 "LHST: caught syscall event "
2123 "with no syscall catchpoints."
2124 " %d for LWP %ld, ignoring\n",
2125 syscall_number,
2126 GET_LWP (lp->ptid));
2127 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2128 }
2129
2130 /* The core isn't interested in this event. For efficiency, avoid
2131 stopping all threads only to have the core resume them all again.
2132 Since we're not stopping threads, if we're still syscall tracing
2133 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2134 subsequent syscall. Simply resume using the inf-ptrace layer,
2135 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2136
2137 /* Note that gdbarch_get_syscall_number may access registers, hence
2138 fill a regcache. */
2139 registers_changed ();
2140 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2141 lp->step, TARGET_SIGNAL_0);
2142 return 1;
2143 }
2144
2145 /* Handle a GNU/Linux extended wait response. If we see a clone
2146 event, we need to add the new LWP to our list (and not report the
2147 trap to higher layers). This function returns non-zero if the
2148 event should be ignored and we should wait again. If STOPPING is
2149 true, the new LWP remains stopped, otherwise it is continued. */
2150
2151 static int
2152 linux_handle_extended_wait (struct lwp_info *lp, int status,
2153 int stopping)
2154 {
2155 int pid = GET_LWP (lp->ptid);
2156 struct target_waitstatus *ourstatus = &lp->waitstatus;
2157 int event = status >> 16;
2158
2159 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2160 || event == PTRACE_EVENT_CLONE)
2161 {
2162 unsigned long new_pid;
2163 int ret;
2164
2165 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2166
2167 /* If we haven't already seen the new PID stop, wait for it now. */
2168 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2169 {
2170 /* The new child has a pending SIGSTOP. We can't affect it until it
2171 hits the SIGSTOP, but we're already attached. */
2172 ret = my_waitpid (new_pid, &status,
2173 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2174 if (ret == -1)
2175 perror_with_name (_("waiting for new child"));
2176 else if (ret != new_pid)
2177 internal_error (__FILE__, __LINE__,
2178 _("wait returned unexpected PID %d"), ret);
2179 else if (!WIFSTOPPED (status))
2180 internal_error (__FILE__, __LINE__,
2181 _("wait returned unexpected status 0x%x"), status);
2182 }
2183
2184 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2185
2186 if (event == PTRACE_EVENT_FORK
2187 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2188 {
2189 /* Handle checkpointing by linux-fork.c here as a special
2190 case. We don't want the follow-fork-mode or 'catch fork'
2191 to interfere with this. */
2192
2193 /* This won't actually modify the breakpoint list, but will
2194 physically remove the breakpoints from the child. */
2195 detach_breakpoints (new_pid);
2196
2197 /* Retain child fork in ptrace (stopped) state. */
2198 if (!find_fork_pid (new_pid))
2199 add_fork (new_pid);
2200
2201 /* Report as spurious, so that infrun doesn't want to follow
2202 this fork. We're actually doing an infcall in
2203 linux-fork.c. */
2204 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2205 linux_enable_event_reporting (pid_to_ptid (new_pid));
2206
2207 /* Report the stop to the core. */
2208 return 0;
2209 }
2210
2211 if (event == PTRACE_EVENT_FORK)
2212 ourstatus->kind = TARGET_WAITKIND_FORKED;
2213 else if (event == PTRACE_EVENT_VFORK)
2214 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2215 else
2216 {
2217 struct lwp_info *new_lp;
2218
2219 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2220
2221 if (debug_linux_nat)
2222 fprintf_unfiltered (gdb_stdlog,
2223 "LHEW: Got clone event "
2224 "from LWP %d, new child is LWP %ld\n",
2225 pid, new_pid);
2226
2227 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2228 new_lp->cloned = 1;
2229 new_lp->stopped = 1;
2230
2231 if (WSTOPSIG (status) != SIGSTOP)
2232 {
2233 /* This can happen if someone starts sending signals to
2234 the new thread before it gets a chance to run, which
2235 have a lower number than SIGSTOP (e.g. SIGUSR1).
2236 This is an unlikely case, and harder to handle for
2237 fork / vfork than for clone, so we do not try - but
2238 we handle it for clone events here. We'll send
2239 the other signal on to the thread below. */
2240
2241 new_lp->signalled = 1;
2242 }
2243 else
2244 {
2245 struct thread_info *tp;
2246
2247 /* When we stop for an event in some other thread, and
2248 pull the thread list just as this thread has cloned,
2249 we'll have seen the new thread in the thread_db list
2250 before handling the CLONE event (glibc's
2251 pthread_create adds the new thread to the thread list
2252 before clone'ing, and has the kernel fill in the
2253 thread's tid on the clone call with
2254 CLONE_PARENT_SETTID). If that happened, and the core
2255 had requested the new thread to stop, we'll have
2256 killed it with SIGSTOP. But since SIGSTOP is not an
2257 RT signal, it can only be queued once. We need to be
2258 careful to not resume the LWP if we wanted it to
2259 stop. In that case, we'll leave the SIGSTOP pending.
2260 It will later be reported as TARGET_SIGNAL_0. */
2261 tp = find_thread_ptid (new_lp->ptid);
2262 if (tp != NULL && tp->stop_requested)
2263 new_lp->last_resume_kind = resume_stop;
2264 else
2265 status = 0;
2266 }
2267
2268 if (non_stop)
2269 {
2270 /* Add the new thread to GDB's lists as soon as possible
2271 so that:
2272
2273 1) the frontend doesn't have to wait for a stop to
2274 display them, and,
2275
2276 2) we tag it with the correct running state. */
2277
2278 /* If the thread_db layer is active, let it know about
2279 this new thread, and add it to GDB's list. */
2280 if (!thread_db_attach_lwp (new_lp->ptid))
2281 {
2282 /* We're not using thread_db. Add it to GDB's
2283 list. */
2284 target_post_attach (GET_LWP (new_lp->ptid));
2285 add_thread (new_lp->ptid);
2286 }
2287
2288 if (!stopping)
2289 {
2290 set_running (new_lp->ptid, 1);
2291 set_executing (new_lp->ptid, 1);
2292 /* thread_db_attach_lwp -> lin_lwp_attach_lwp forced
2293 resume_stop. */
2294 new_lp->last_resume_kind = resume_continue;
2295 }
2296 }
2297
2298 if (status != 0)
2299 {
2300 /* We created NEW_LP so it cannot yet contain STATUS. */
2301 gdb_assert (new_lp->status == 0);
2302
2303 /* Save the wait status to report later. */
2304 if (debug_linux_nat)
2305 fprintf_unfiltered (gdb_stdlog,
2306 "LHEW: waitpid of new LWP %ld, "
2307 "saving status %s\n",
2308 (long) GET_LWP (new_lp->ptid),
2309 status_to_str (status));
2310 new_lp->status = status;
2311 }
2312
2313 /* Note the need to use the low target ops to resume, to
2314 handle resuming with PT_SYSCALL if we have syscall
2315 catchpoints. */
2316 if (!stopping)
2317 {
2318 new_lp->resumed = 1;
2319
2320 if (status == 0)
2321 {
2322 gdb_assert (new_lp->last_resume_kind == resume_continue);
2323 if (debug_linux_nat)
2324 fprintf_unfiltered (gdb_stdlog,
2325 "LHEW: resuming new LWP %ld\n",
2326 GET_LWP (new_lp->ptid));
2327 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2328 0, TARGET_SIGNAL_0);
2329 new_lp->stopped = 0;
2330 }
2331 }
2332
2333 if (debug_linux_nat)
2334 fprintf_unfiltered (gdb_stdlog,
2335 "LHEW: resuming parent LWP %d\n", pid);
2336 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2337 0, TARGET_SIGNAL_0);
2338
2339 return 1;
2340 }
2341
2342 return 0;
2343 }
2344
2345 if (event == PTRACE_EVENT_EXEC)
2346 {
2347 if (debug_linux_nat)
2348 fprintf_unfiltered (gdb_stdlog,
2349 "LHEW: Got exec event from LWP %ld\n",
2350 GET_LWP (lp->ptid));
2351
2352 ourstatus->kind = TARGET_WAITKIND_EXECD;
2353 ourstatus->value.execd_pathname
2354 = xstrdup (linux_child_pid_to_exec_file (pid));
2355
2356 return 0;
2357 }
2358
2359 if (event == PTRACE_EVENT_VFORK_DONE)
2360 {
2361 if (current_inferior ()->waiting_for_vfork_done)
2362 {
2363 if (debug_linux_nat)
2364 fprintf_unfiltered (gdb_stdlog,
2365 "LHEW: Got expected PTRACE_EVENT_"
2366 "VFORK_DONE from LWP %ld: stopping\n",
2367 GET_LWP (lp->ptid));
2368
2369 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2370 return 0;
2371 }
2372
2373 if (debug_linux_nat)
2374 fprintf_unfiltered (gdb_stdlog,
2375 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2376 "from LWP %ld: resuming\n",
2377 GET_LWP (lp->ptid));
2378 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2379 return 1;
2380 }
2381
2382 internal_error (__FILE__, __LINE__,
2383 _("unknown ptrace event %d"), event);
2384 }
2385
2386 /* Return non-zero if LWP is a zombie. */
2387
2388 static int
2389 linux_lwp_is_zombie (long lwp)
2390 {
2391 char buffer[MAXPATHLEN];
2392 FILE *procfile;
2393 int retval;
2394 int have_state;
2395
2396 xsnprintf (buffer, sizeof (buffer), "/proc/%ld/status", lwp);
2397 procfile = fopen (buffer, "r");
2398 if (procfile == NULL)
2399 {
2400 warning (_("unable to open /proc file '%s'"), buffer);
2401 return 0;
2402 }
2403
2404 have_state = 0;
2405 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
2406 if (strncmp (buffer, "State:", 6) == 0)
2407 {
2408 have_state = 1;
2409 break;
2410 }
2411 retval = (have_state
2412 && strcmp (buffer, "State:\tZ (zombie)\n") == 0);
2413 fclose (procfile);
2414 return retval;
2415 }
2416
2417 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2418 exited. */
2419
2420 static int
2421 wait_lwp (struct lwp_info *lp)
2422 {
2423 pid_t pid;
2424 int status = 0;
2425 int thread_dead = 0;
2426 sigset_t prev_mask;
2427
2428 gdb_assert (!lp->stopped);
2429 gdb_assert (lp->status == 0);
2430
2431 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2432 block_child_signals (&prev_mask);
2433
2434 for (;;)
2435 {
2436 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2437 was right and we should just call sigsuspend. */
2438
2439 pid = my_waitpid (GET_LWP (lp->ptid), &status, WNOHANG);
2440 if (pid == -1 && errno == ECHILD)
2441 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE | WNOHANG);
2442 if (pid == -1 && errno == ECHILD)
2443 {
2444 /* The thread has previously exited. We need to delete it
2445 now because, for some vendor 2.4 kernels with NPTL
2446 support backported, there won't be an exit event unless
2447 it is the main thread. 2.6 kernels will report an exit
2448 event for each thread that exits, as expected. */
2449 thread_dead = 1;
2450 if (debug_linux_nat)
2451 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2452 target_pid_to_str (lp->ptid));
2453 }
2454 if (pid != 0)
2455 break;
2456
2457 /* Bugs 10970, 12702.
2458 Thread group leader may have exited in which case we'll lock up in
2459 waitpid if there are other threads, even if they are all zombies too.
2460 Basically, we're not supposed to use waitpid this way.
2461 __WCLONE is not applicable for the leader so we can't use that.
2462 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2463 process; it gets ESRCH both for the zombie and for running processes.
2464
2465 As a workaround, check if we're waiting for the thread group leader and
2466 if it's a zombie, and avoid calling waitpid if it is.
2467
2468 This is racy, what if the tgl becomes a zombie right after we check?
2469 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2470 waiting waitpid but the linux_lwp_is_zombie is safe this way. */
2471
2472 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid)
2473 && linux_lwp_is_zombie (GET_LWP (lp->ptid)))
2474 {
2475 thread_dead = 1;
2476 if (debug_linux_nat)
2477 fprintf_unfiltered (gdb_stdlog,
2478 "WL: Thread group leader %s vanished.\n",
2479 target_pid_to_str (lp->ptid));
2480 break;
2481 }
2482
2483 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2484 get invoked despite our caller had them intentionally blocked by
2485 block_child_signals. This is sensitive only to the loop of
2486 linux_nat_wait_1 and there if we get called my_waitpid gets called
2487 again before it gets to sigsuspend so we can safely let the handlers
2488 get executed here. */
2489
2490 sigsuspend (&suspend_mask);
2491 }
2492
2493 restore_child_signals_mask (&prev_mask);
2494
2495 if (!thread_dead)
2496 {
2497 gdb_assert (pid == GET_LWP (lp->ptid));
2498
2499 if (debug_linux_nat)
2500 {
2501 fprintf_unfiltered (gdb_stdlog,
2502 "WL: waitpid %s received %s\n",
2503 target_pid_to_str (lp->ptid),
2504 status_to_str (status));
2505 }
2506
2507 /* Check if the thread has exited. */
2508 if (WIFEXITED (status) || WIFSIGNALED (status))
2509 {
2510 thread_dead = 1;
2511 if (debug_linux_nat)
2512 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2513 target_pid_to_str (lp->ptid));
2514 }
2515 }
2516
2517 if (thread_dead)
2518 {
2519 exit_lwp (lp);
2520 return 0;
2521 }
2522
2523 gdb_assert (WIFSTOPPED (status));
2524
2525 /* Handle GNU/Linux's syscall SIGTRAPs. */
2526 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2527 {
2528 /* No longer need the sysgood bit. The ptrace event ends up
2529 recorded in lp->waitstatus if we care for it. We can carry
2530 on handling the event like a regular SIGTRAP from here
2531 on. */
2532 status = W_STOPCODE (SIGTRAP);
2533 if (linux_handle_syscall_trap (lp, 1))
2534 return wait_lwp (lp);
2535 }
2536
2537 /* Handle GNU/Linux's extended waitstatus for trace events. */
2538 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2539 {
2540 if (debug_linux_nat)
2541 fprintf_unfiltered (gdb_stdlog,
2542 "WL: Handling extended status 0x%06x\n",
2543 status);
2544 if (linux_handle_extended_wait (lp, status, 1))
2545 return wait_lwp (lp);
2546 }
2547
2548 return status;
2549 }
2550
2551 /* Save the most recent siginfo for LP. This is currently only called
2552 for SIGTRAP; some ports use the si_addr field for
2553 target_stopped_data_address. In the future, it may also be used to
2554 restore the siginfo of requeued signals. */
2555
2556 static void
2557 save_siginfo (struct lwp_info *lp)
2558 {
2559 errno = 0;
2560 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2561 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2562
2563 if (errno != 0)
2564 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2565 }
2566
2567 /* Send a SIGSTOP to LP. */
2568
2569 static int
2570 stop_callback (struct lwp_info *lp, void *data)
2571 {
2572 if (!lp->stopped && !lp->signalled)
2573 {
2574 int ret;
2575
2576 if (debug_linux_nat)
2577 {
2578 fprintf_unfiltered (gdb_stdlog,
2579 "SC: kill %s **<SIGSTOP>**\n",
2580 target_pid_to_str (lp->ptid));
2581 }
2582 errno = 0;
2583 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2584 if (debug_linux_nat)
2585 {
2586 fprintf_unfiltered (gdb_stdlog,
2587 "SC: lwp kill %d %s\n",
2588 ret,
2589 errno ? safe_strerror (errno) : "ERRNO-OK");
2590 }
2591
2592 lp->signalled = 1;
2593 gdb_assert (lp->status == 0);
2594 }
2595
2596 return 0;
2597 }
2598
2599 /* Return non-zero if LWP PID has a pending SIGINT. */
2600
2601 static int
2602 linux_nat_has_pending_sigint (int pid)
2603 {
2604 sigset_t pending, blocked, ignored;
2605
2606 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2607
2608 if (sigismember (&pending, SIGINT)
2609 && !sigismember (&ignored, SIGINT))
2610 return 1;
2611
2612 return 0;
2613 }
2614
2615 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2616
2617 static int
2618 set_ignore_sigint (struct lwp_info *lp, void *data)
2619 {
2620 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2621 flag to consume the next one. */
2622 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2623 && WSTOPSIG (lp->status) == SIGINT)
2624 lp->status = 0;
2625 else
2626 lp->ignore_sigint = 1;
2627
2628 return 0;
2629 }
2630
2631 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2632 This function is called after we know the LWP has stopped; if the LWP
2633 stopped before the expected SIGINT was delivered, then it will never have
2634 arrived. Also, if the signal was delivered to a shared queue and consumed
2635 by a different thread, it will never be delivered to this LWP. */
2636
2637 static void
2638 maybe_clear_ignore_sigint (struct lwp_info *lp)
2639 {
2640 if (!lp->ignore_sigint)
2641 return;
2642
2643 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2644 {
2645 if (debug_linux_nat)
2646 fprintf_unfiltered (gdb_stdlog,
2647 "MCIS: Clearing bogus flag for %s\n",
2648 target_pid_to_str (lp->ptid));
2649 lp->ignore_sigint = 0;
2650 }
2651 }
2652
2653 /* Fetch the possible triggered data watchpoint info and store it in
2654 LP.
2655
2656 On some archs, like x86, that use debug registers to set
2657 watchpoints, it's possible that the way to know which watched
2658 address trapped, is to check the register that is used to select
2659 which address to watch. Problem is, between setting the watchpoint
2660 and reading back which data address trapped, the user may change
2661 the set of watchpoints, and, as a consequence, GDB changes the
2662 debug registers in the inferior. To avoid reading back a stale
2663 stopped-data-address when that happens, we cache in LP the fact
2664 that a watchpoint trapped, and the corresponding data address, as
2665 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2666 registers meanwhile, we have the cached data we can rely on. */
2667
2668 static void
2669 save_sigtrap (struct lwp_info *lp)
2670 {
2671 struct cleanup *old_chain;
2672
2673 if (linux_ops->to_stopped_by_watchpoint == NULL)
2674 {
2675 lp->stopped_by_watchpoint = 0;
2676 return;
2677 }
2678
2679 old_chain = save_inferior_ptid ();
2680 inferior_ptid = lp->ptid;
2681
2682 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2683
2684 if (lp->stopped_by_watchpoint)
2685 {
2686 if (linux_ops->to_stopped_data_address != NULL)
2687 lp->stopped_data_address_p =
2688 linux_ops->to_stopped_data_address (&current_target,
2689 &lp->stopped_data_address);
2690 else
2691 lp->stopped_data_address_p = 0;
2692 }
2693
2694 do_cleanups (old_chain);
2695 }
2696
2697 /* See save_sigtrap. */
2698
2699 static int
2700 linux_nat_stopped_by_watchpoint (void)
2701 {
2702 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2703
2704 gdb_assert (lp != NULL);
2705
2706 return lp->stopped_by_watchpoint;
2707 }
2708
2709 static int
2710 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2711 {
2712 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2713
2714 gdb_assert (lp != NULL);
2715
2716 *addr_p = lp->stopped_data_address;
2717
2718 return lp->stopped_data_address_p;
2719 }
2720
2721 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2722
2723 static int
2724 sigtrap_is_event (int status)
2725 {
2726 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2727 }
2728
2729 /* SIGTRAP-like events recognizer. */
2730
2731 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
2732
2733 /* Check for SIGTRAP-like events in LP. */
2734
2735 static int
2736 linux_nat_lp_status_is_event (struct lwp_info *lp)
2737 {
2738 /* We check for lp->waitstatus in addition to lp->status, because we can
2739 have pending process exits recorded in lp->status
2740 and W_EXITCODE(0,0) == 0. We should probably have an additional
2741 lp->status_p flag. */
2742
2743 return (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2744 && linux_nat_status_is_event (lp->status));
2745 }
2746
2747 /* Set alternative SIGTRAP-like events recognizer. If
2748 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2749 applied. */
2750
2751 void
2752 linux_nat_set_status_is_event (struct target_ops *t,
2753 int (*status_is_event) (int status))
2754 {
2755 linux_nat_status_is_event = status_is_event;
2756 }
2757
2758 /* Wait until LP is stopped. */
2759
2760 static int
2761 stop_wait_callback (struct lwp_info *lp, void *data)
2762 {
2763 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2764
2765 /* If this is a vfork parent, bail out, it is not going to report
2766 any SIGSTOP until the vfork is done with. */
2767 if (inf->vfork_child != NULL)
2768 return 0;
2769
2770 if (!lp->stopped)
2771 {
2772 int status;
2773
2774 status = wait_lwp (lp);
2775 if (status == 0)
2776 return 0;
2777
2778 if (lp->ignore_sigint && WIFSTOPPED (status)
2779 && WSTOPSIG (status) == SIGINT)
2780 {
2781 lp->ignore_sigint = 0;
2782
2783 errno = 0;
2784 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2785 if (debug_linux_nat)
2786 fprintf_unfiltered (gdb_stdlog,
2787 "PTRACE_CONT %s, 0, 0 (%s) "
2788 "(discarding SIGINT)\n",
2789 target_pid_to_str (lp->ptid),
2790 errno ? safe_strerror (errno) : "OK");
2791
2792 return stop_wait_callback (lp, NULL);
2793 }
2794
2795 maybe_clear_ignore_sigint (lp);
2796
2797 if (WSTOPSIG (status) != SIGSTOP)
2798 {
2799 if (linux_nat_status_is_event (status))
2800 {
2801 /* If a LWP other than the LWP that we're reporting an
2802 event for has hit a GDB breakpoint (as opposed to
2803 some random trap signal), then just arrange for it to
2804 hit it again later. We don't keep the SIGTRAP status
2805 and don't forward the SIGTRAP signal to the LWP. We
2806 will handle the current event, eventually we will
2807 resume all LWPs, and this one will get its breakpoint
2808 trap again.
2809
2810 If we do not do this, then we run the risk that the
2811 user will delete or disable the breakpoint, but the
2812 thread will have already tripped on it. */
2813
2814 /* Save the trap's siginfo in case we need it later. */
2815 save_siginfo (lp);
2816
2817 save_sigtrap (lp);
2818
2819 /* Now resume this LWP and get the SIGSTOP event. */
2820 errno = 0;
2821 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2822 if (debug_linux_nat)
2823 {
2824 fprintf_unfiltered (gdb_stdlog,
2825 "PTRACE_CONT %s, 0, 0 (%s)\n",
2826 target_pid_to_str (lp->ptid),
2827 errno ? safe_strerror (errno) : "OK");
2828
2829 fprintf_unfiltered (gdb_stdlog,
2830 "SWC: Candidate SIGTRAP event in %s\n",
2831 target_pid_to_str (lp->ptid));
2832 }
2833 /* Hold this event/waitstatus while we check to see if
2834 there are any more (we still want to get that SIGSTOP). */
2835 stop_wait_callback (lp, NULL);
2836
2837 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2838 there's another event, throw it back into the
2839 queue. */
2840 if (lp->status)
2841 {
2842 if (debug_linux_nat)
2843 fprintf_unfiltered (gdb_stdlog,
2844 "SWC: kill %s, %s\n",
2845 target_pid_to_str (lp->ptid),
2846 status_to_str ((int) status));
2847 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2848 }
2849
2850 /* Save the sigtrap event. */
2851 lp->status = status;
2852 return 0;
2853 }
2854 else
2855 {
2856 /* The thread was stopped with a signal other than
2857 SIGSTOP, and didn't accidentally trip a breakpoint. */
2858
2859 if (debug_linux_nat)
2860 {
2861 fprintf_unfiltered (gdb_stdlog,
2862 "SWC: Pending event %s in %s\n",
2863 status_to_str ((int) status),
2864 target_pid_to_str (lp->ptid));
2865 }
2866 /* Now resume this LWP and get the SIGSTOP event. */
2867 errno = 0;
2868 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2869 if (debug_linux_nat)
2870 fprintf_unfiltered (gdb_stdlog,
2871 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2872 target_pid_to_str (lp->ptid),
2873 errno ? safe_strerror (errno) : "OK");
2874
2875 /* Hold this event/waitstatus while we check to see if
2876 there are any more (we still want to get that SIGSTOP). */
2877 stop_wait_callback (lp, NULL);
2878
2879 /* If the lp->status field is still empty, use it to
2880 hold this event. If not, then this event must be
2881 returned to the event queue of the LWP. */
2882 if (lp->status)
2883 {
2884 if (debug_linux_nat)
2885 {
2886 fprintf_unfiltered (gdb_stdlog,
2887 "SWC: kill %s, %s\n",
2888 target_pid_to_str (lp->ptid),
2889 status_to_str ((int) status));
2890 }
2891 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2892 }
2893 else
2894 lp->status = status;
2895 return 0;
2896 }
2897 }
2898 else
2899 {
2900 /* We caught the SIGSTOP that we intended to catch, so
2901 there's no SIGSTOP pending. */
2902 lp->stopped = 1;
2903 lp->signalled = 0;
2904 }
2905 }
2906
2907 return 0;
2908 }
2909
2910 /* Return non-zero if LP has a wait status pending. */
2911
2912 static int
2913 status_callback (struct lwp_info *lp, void *data)
2914 {
2915 /* Only report a pending wait status if we pretend that this has
2916 indeed been resumed. */
2917 if (!lp->resumed)
2918 return 0;
2919
2920 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2921 {
2922 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2923 or a pending process exit. Note that `W_EXITCODE(0,0) ==
2924 0', so a clean process exit can not be stored pending in
2925 lp->status, it is indistinguishable from
2926 no-pending-status. */
2927 return 1;
2928 }
2929
2930 if (lp->status != 0)
2931 return 1;
2932
2933 return 0;
2934 }
2935
2936 /* Return non-zero if LP isn't stopped. */
2937
2938 static int
2939 running_callback (struct lwp_info *lp, void *data)
2940 {
2941 return (!lp->stopped
2942 || ((lp->status != 0
2943 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2944 && lp->resumed));
2945 }
2946
2947 /* Count the LWP's that have had events. */
2948
2949 static int
2950 count_events_callback (struct lwp_info *lp, void *data)
2951 {
2952 int *count = data;
2953
2954 gdb_assert (count != NULL);
2955
2956 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2957 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2958 (*count)++;
2959
2960 return 0;
2961 }
2962
2963 /* Select the LWP (if any) that is currently being single-stepped. */
2964
2965 static int
2966 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2967 {
2968 if (lp->last_resume_kind == resume_step
2969 && lp->status != 0)
2970 return 1;
2971 else
2972 return 0;
2973 }
2974
2975 /* Select the Nth LWP that has had a SIGTRAP event. */
2976
2977 static int
2978 select_event_lwp_callback (struct lwp_info *lp, void *data)
2979 {
2980 int *selector = data;
2981
2982 gdb_assert (selector != NULL);
2983
2984 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2985 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2986 if ((*selector)-- == 0)
2987 return 1;
2988
2989 return 0;
2990 }
2991
2992 static int
2993 cancel_breakpoint (struct lwp_info *lp)
2994 {
2995 /* Arrange for a breakpoint to be hit again later. We don't keep
2996 the SIGTRAP status and don't forward the SIGTRAP signal to the
2997 LWP. We will handle the current event, eventually we will resume
2998 this LWP, and this breakpoint will trap again.
2999
3000 If we do not do this, then we run the risk that the user will
3001 delete or disable the breakpoint, but the LWP will have already
3002 tripped on it. */
3003
3004 struct regcache *regcache = get_thread_regcache (lp->ptid);
3005 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3006 CORE_ADDR pc;
3007
3008 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
3009 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3010 {
3011 if (debug_linux_nat)
3012 fprintf_unfiltered (gdb_stdlog,
3013 "CB: Push back breakpoint for %s\n",
3014 target_pid_to_str (lp->ptid));
3015
3016 /* Back up the PC if necessary. */
3017 if (gdbarch_decr_pc_after_break (gdbarch))
3018 regcache_write_pc (regcache, pc);
3019
3020 return 1;
3021 }
3022 return 0;
3023 }
3024
3025 static int
3026 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
3027 {
3028 struct lwp_info *event_lp = data;
3029
3030 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
3031 if (lp == event_lp)
3032 return 0;
3033
3034 /* If a LWP other than the LWP that we're reporting an event for has
3035 hit a GDB breakpoint (as opposed to some random trap signal),
3036 then just arrange for it to hit it again later. We don't keep
3037 the SIGTRAP status and don't forward the SIGTRAP signal to the
3038 LWP. We will handle the current event, eventually we will resume
3039 all LWPs, and this one will get its breakpoint trap again.
3040
3041 If we do not do this, then we run the risk that the user will
3042 delete or disable the breakpoint, but the LWP will have already
3043 tripped on it. */
3044
3045 if (linux_nat_lp_status_is_event (lp)
3046 && cancel_breakpoint (lp))
3047 /* Throw away the SIGTRAP. */
3048 lp->status = 0;
3049
3050 return 0;
3051 }
3052
3053 /* Select one LWP out of those that have events pending. */
3054
3055 static void
3056 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
3057 {
3058 int num_events = 0;
3059 int random_selector;
3060 struct lwp_info *event_lp;
3061
3062 /* Record the wait status for the original LWP. */
3063 (*orig_lp)->status = *status;
3064
3065 /* Give preference to any LWP that is being single-stepped. */
3066 event_lp = iterate_over_lwps (filter,
3067 select_singlestep_lwp_callback, NULL);
3068 if (event_lp != NULL)
3069 {
3070 if (debug_linux_nat)
3071 fprintf_unfiltered (gdb_stdlog,
3072 "SEL: Select single-step %s\n",
3073 target_pid_to_str (event_lp->ptid));
3074 }
3075 else
3076 {
3077 /* No single-stepping LWP. Select one at random, out of those
3078 which have had SIGTRAP events. */
3079
3080 /* First see how many SIGTRAP events we have. */
3081 iterate_over_lwps (filter, count_events_callback, &num_events);
3082
3083 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
3084 random_selector = (int)
3085 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3086
3087 if (debug_linux_nat && num_events > 1)
3088 fprintf_unfiltered (gdb_stdlog,
3089 "SEL: Found %d SIGTRAP events, selecting #%d\n",
3090 num_events, random_selector);
3091
3092 event_lp = iterate_over_lwps (filter,
3093 select_event_lwp_callback,
3094 &random_selector);
3095 }
3096
3097 if (event_lp != NULL)
3098 {
3099 /* Switch the event LWP. */
3100 *orig_lp = event_lp;
3101 *status = event_lp->status;
3102 }
3103
3104 /* Flush the wait status for the event LWP. */
3105 (*orig_lp)->status = 0;
3106 }
3107
3108 /* Return non-zero if LP has been resumed. */
3109
3110 static int
3111 resumed_callback (struct lwp_info *lp, void *data)
3112 {
3113 return lp->resumed;
3114 }
3115
3116 /* Stop an active thread, verify it still exists, then resume it. If
3117 the thread ends up with a pending status, then it is not resumed,
3118 and *DATA (really a pointer to int), is set. */
3119
3120 static int
3121 stop_and_resume_callback (struct lwp_info *lp, void *data)
3122 {
3123 int *new_pending_p = data;
3124
3125 if (!lp->stopped)
3126 {
3127 ptid_t ptid = lp->ptid;
3128
3129 stop_callback (lp, NULL);
3130 stop_wait_callback (lp, NULL);
3131
3132 /* Resume if the lwp still exists, and the core wanted it
3133 running. */
3134 lp = find_lwp_pid (ptid);
3135 if (lp != NULL)
3136 {
3137 if (lp->last_resume_kind == resume_stop
3138 && lp->status == 0)
3139 {
3140 /* The core wanted the LWP to stop. Even if it stopped
3141 cleanly (with SIGSTOP), leave the event pending. */
3142 if (debug_linux_nat)
3143 fprintf_unfiltered (gdb_stdlog,
3144 "SARC: core wanted LWP %ld stopped "
3145 "(leaving SIGSTOP pending)\n",
3146 GET_LWP (lp->ptid));
3147 lp->status = W_STOPCODE (SIGSTOP);
3148 }
3149
3150 if (lp->status == 0)
3151 {
3152 if (debug_linux_nat)
3153 fprintf_unfiltered (gdb_stdlog,
3154 "SARC: re-resuming LWP %ld\n",
3155 GET_LWP (lp->ptid));
3156 resume_lwp (lp, lp->step);
3157 }
3158 else
3159 {
3160 if (debug_linux_nat)
3161 fprintf_unfiltered (gdb_stdlog,
3162 "SARC: not re-resuming LWP %ld "
3163 "(has pending)\n",
3164 GET_LWP (lp->ptid));
3165 if (new_pending_p)
3166 *new_pending_p = 1;
3167 }
3168 }
3169 }
3170 return 0;
3171 }
3172
3173 /* Check if we should go on and pass this event to common code.
3174 Return the affected lwp if we are, or NULL otherwise. If we stop
3175 all lwps temporarily, we may end up with new pending events in some
3176 other lwp. In that case set *NEW_PENDING_P to true. */
3177
3178 static struct lwp_info *
3179 linux_nat_filter_event (int lwpid, int status, int *new_pending_p)
3180 {
3181 struct lwp_info *lp;
3182
3183 *new_pending_p = 0;
3184
3185 lp = find_lwp_pid (pid_to_ptid (lwpid));
3186
3187 /* Check for stop events reported by a process we didn't already
3188 know about - anything not already in our LWP list.
3189
3190 If we're expecting to receive stopped processes after
3191 fork, vfork, and clone events, then we'll just add the
3192 new one to our list and go back to waiting for the event
3193 to be reported - the stopped process might be returned
3194 from waitpid before or after the event is.
3195
3196 But note the case of a non-leader thread exec'ing after the
3197 leader having exited, and gone from our lists. The non-leader
3198 thread changes its tid to the tgid. */
3199
3200 if (WIFSTOPPED (status) && lp == NULL
3201 && (WSTOPSIG (status) == SIGTRAP && status >> 16 == PTRACE_EVENT_EXEC))
3202 {
3203 /* A multi-thread exec after we had seen the leader exiting. */
3204 if (debug_linux_nat)
3205 fprintf_unfiltered (gdb_stdlog,
3206 "LLW: Re-adding thread group leader LWP %d.\n",
3207 lwpid);
3208
3209 lp = add_lwp (BUILD_LWP (lwpid, lwpid));
3210 lp->stopped = 1;
3211 lp->resumed = 1;
3212 add_thread (lp->ptid);
3213 }
3214
3215 if (WIFSTOPPED (status) && !lp)
3216 {
3217 add_to_pid_list (&stopped_pids, lwpid, status);
3218 return NULL;
3219 }
3220
3221 /* Make sure we don't report an event for the exit of an LWP not in
3222 our list, i.e. not part of the current process. This can happen
3223 if we detach from a program we originally forked and then it
3224 exits. */
3225 if (!WIFSTOPPED (status) && !lp)
3226 return NULL;
3227
3228 /* Handle GNU/Linux's syscall SIGTRAPs. */
3229 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3230 {
3231 /* No longer need the sysgood bit. The ptrace event ends up
3232 recorded in lp->waitstatus if we care for it. We can carry
3233 on handling the event like a regular SIGTRAP from here
3234 on. */
3235 status = W_STOPCODE (SIGTRAP);
3236 if (linux_handle_syscall_trap (lp, 0))
3237 return NULL;
3238 }
3239
3240 /* Handle GNU/Linux's extended waitstatus for trace events. */
3241 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
3242 {
3243 if (debug_linux_nat)
3244 fprintf_unfiltered (gdb_stdlog,
3245 "LLW: Handling extended status 0x%06x\n",
3246 status);
3247 if (linux_handle_extended_wait (lp, status, 0))
3248 return NULL;
3249 }
3250
3251 if (linux_nat_status_is_event (status))
3252 {
3253 /* Save the trap's siginfo in case we need it later. */
3254 save_siginfo (lp);
3255
3256 save_sigtrap (lp);
3257 }
3258
3259 /* Check if the thread has exited. */
3260 if ((WIFEXITED (status) || WIFSIGNALED (status))
3261 && num_lwps (GET_PID (lp->ptid)) > 1)
3262 {
3263 /* If this is the main thread, we must stop all threads and verify
3264 if they are still alive. This is because in the nptl thread model
3265 on Linux 2.4, there is no signal issued for exiting LWPs
3266 other than the main thread. We only get the main thread exit
3267 signal once all child threads have already exited. If we
3268 stop all the threads and use the stop_wait_callback to check
3269 if they have exited we can determine whether this signal
3270 should be ignored or whether it means the end of the debugged
3271 application, regardless of which threading model is being
3272 used. */
3273 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3274 {
3275 lp->stopped = 1;
3276 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3277 stop_and_resume_callback, new_pending_p);
3278 }
3279
3280 if (debug_linux_nat)
3281 fprintf_unfiltered (gdb_stdlog,
3282 "LLW: %s exited.\n",
3283 target_pid_to_str (lp->ptid));
3284
3285 if (num_lwps (GET_PID (lp->ptid)) > 1)
3286 {
3287 /* If there is at least one more LWP, then the exit signal
3288 was not the end of the debugged application and should be
3289 ignored. */
3290 exit_lwp (lp);
3291 return NULL;
3292 }
3293 }
3294
3295 /* Check if the current LWP has previously exited. In the nptl
3296 thread model, LWPs other than the main thread do not issue
3297 signals when they exit so we must check whenever the thread has
3298 stopped. A similar check is made in stop_wait_callback(). */
3299 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3300 {
3301 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3302
3303 if (debug_linux_nat)
3304 fprintf_unfiltered (gdb_stdlog,
3305 "LLW: %s exited.\n",
3306 target_pid_to_str (lp->ptid));
3307
3308 exit_lwp (lp);
3309
3310 /* Make sure there is at least one thread running. */
3311 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3312
3313 /* Discard the event. */
3314 return NULL;
3315 }
3316
3317 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3318 an attempt to stop an LWP. */
3319 if (lp->signalled
3320 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3321 {
3322 if (debug_linux_nat)
3323 fprintf_unfiltered (gdb_stdlog,
3324 "LLW: Delayed SIGSTOP caught for %s.\n",
3325 target_pid_to_str (lp->ptid));
3326
3327 lp->signalled = 0;
3328
3329 if (lp->last_resume_kind != resume_stop)
3330 {
3331 /* This is a delayed SIGSTOP. */
3332
3333 registers_changed ();
3334
3335 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3336 lp->step, TARGET_SIGNAL_0);
3337 if (debug_linux_nat)
3338 fprintf_unfiltered (gdb_stdlog,
3339 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3340 lp->step ?
3341 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3342 target_pid_to_str (lp->ptid));
3343
3344 lp->stopped = 0;
3345 gdb_assert (lp->resumed);
3346
3347 /* Discard the event. */
3348 return NULL;
3349 }
3350 }
3351
3352 /* Make sure we don't report a SIGINT that we have already displayed
3353 for another thread. */
3354 if (lp->ignore_sigint
3355 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3356 {
3357 if (debug_linux_nat)
3358 fprintf_unfiltered (gdb_stdlog,
3359 "LLW: Delayed SIGINT caught for %s.\n",
3360 target_pid_to_str (lp->ptid));
3361
3362 /* This is a delayed SIGINT. */
3363 lp->ignore_sigint = 0;
3364
3365 registers_changed ();
3366 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3367 lp->step, TARGET_SIGNAL_0);
3368 if (debug_linux_nat)
3369 fprintf_unfiltered (gdb_stdlog,
3370 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3371 lp->step ?
3372 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3373 target_pid_to_str (lp->ptid));
3374
3375 lp->stopped = 0;
3376 gdb_assert (lp->resumed);
3377
3378 /* Discard the event. */
3379 return NULL;
3380 }
3381
3382 /* An interesting event. */
3383 gdb_assert (lp);
3384 lp->status = status;
3385 return lp;
3386 }
3387
3388 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3389 their exits until all other threads in the group have exited. */
3390
3391 static void
3392 check_zombie_leaders (void)
3393 {
3394 struct inferior *inf;
3395
3396 ALL_INFERIORS (inf)
3397 {
3398 struct lwp_info *leader_lp;
3399
3400 if (inf->pid == 0)
3401 continue;
3402
3403 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3404 if (leader_lp != NULL
3405 /* Check if there are other threads in the group, as we may
3406 have raced with the inferior simply exiting. */
3407 && num_lwps (inf->pid) > 1
3408 && linux_lwp_is_zombie (inf->pid))
3409 {
3410 if (debug_linux_nat)
3411 fprintf_unfiltered (gdb_stdlog,
3412 "CZL: Thread group leader %d zombie "
3413 "(it exited, or another thread execd).\n",
3414 inf->pid);
3415
3416 /* A leader zombie can mean one of two things:
3417
3418 - It exited, and there's an exit status pending
3419 available, or only the leader exited (not the whole
3420 program). In the latter case, we can't waitpid the
3421 leader's exit status until all other threads are gone.
3422
3423 - There are 3 or more threads in the group, and a thread
3424 other than the leader exec'd. On an exec, the Linux
3425 kernel destroys all other threads (except the execing
3426 one) in the thread group, and resets the execing thread's
3427 tid to the tgid. No exit notification is sent for the
3428 execing thread -- from the ptracer's perspective, it
3429 appears as though the execing thread just vanishes.
3430 Until we reap all other threads except the leader and the
3431 execing thread, the leader will be zombie, and the
3432 execing thread will be in `D (disc sleep)'. As soon as
3433 all other threads are reaped, the execing thread changes
3434 it's tid to the tgid, and the previous (zombie) leader
3435 vanishes, giving place to the "new" leader. We could try
3436 distinguishing the exit and exec cases, by waiting once
3437 more, and seeing if something comes out, but it doesn't
3438 sound useful. The previous leader _does_ go away, and
3439 we'll re-add the new one once we see the exec event
3440 (which is just the same as what would happen if the
3441 previous leader did exit voluntarily before some other
3442 thread execs). */
3443
3444 if (debug_linux_nat)
3445 fprintf_unfiltered (gdb_stdlog,
3446 "CZL: Thread group leader %d vanished.\n",
3447 inf->pid);
3448 exit_lwp (leader_lp);
3449 }
3450 }
3451 }
3452
3453 static ptid_t
3454 linux_nat_wait_1 (struct target_ops *ops,
3455 ptid_t ptid, struct target_waitstatus *ourstatus,
3456 int target_options)
3457 {
3458 static sigset_t prev_mask;
3459 enum resume_kind last_resume_kind;
3460 struct lwp_info *lp;
3461 int status;
3462
3463 if (debug_linux_nat)
3464 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3465
3466 /* The first time we get here after starting a new inferior, we may
3467 not have added it to the LWP list yet - this is the earliest
3468 moment at which we know its PID. */
3469 if (ptid_is_pid (inferior_ptid))
3470 {
3471 /* Upgrade the main thread's ptid. */
3472 thread_change_ptid (inferior_ptid,
3473 BUILD_LWP (GET_PID (inferior_ptid),
3474 GET_PID (inferior_ptid)));
3475
3476 lp = add_lwp (inferior_ptid);
3477 lp->resumed = 1;
3478 }
3479
3480 /* Make sure SIGCHLD is blocked. */
3481 block_child_signals (&prev_mask);
3482
3483 retry:
3484 lp = NULL;
3485 status = 0;
3486
3487 /* First check if there is a LWP with a wait status pending. */
3488 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3489 {
3490 /* Any LWP in the PTID group that's been resumed will do. */
3491 lp = iterate_over_lwps (ptid, status_callback, NULL);
3492 if (lp)
3493 {
3494 if (debug_linux_nat && lp->status)
3495 fprintf_unfiltered (gdb_stdlog,
3496 "LLW: Using pending wait status %s for %s.\n",
3497 status_to_str (lp->status),
3498 target_pid_to_str (lp->ptid));
3499 }
3500 }
3501 else if (is_lwp (ptid))
3502 {
3503 if (debug_linux_nat)
3504 fprintf_unfiltered (gdb_stdlog,
3505 "LLW: Waiting for specific LWP %s.\n",
3506 target_pid_to_str (ptid));
3507
3508 /* We have a specific LWP to check. */
3509 lp = find_lwp_pid (ptid);
3510 gdb_assert (lp);
3511
3512 if (debug_linux_nat && lp->status)
3513 fprintf_unfiltered (gdb_stdlog,
3514 "LLW: Using pending wait status %s for %s.\n",
3515 status_to_str (lp->status),
3516 target_pid_to_str (lp->ptid));
3517
3518 /* We check for lp->waitstatus in addition to lp->status,
3519 because we can have pending process exits recorded in
3520 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3521 an additional lp->status_p flag. */
3522 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3523 lp = NULL;
3524 }
3525
3526 if (lp && lp->signalled && lp->last_resume_kind != resume_stop)
3527 {
3528 /* A pending SIGSTOP may interfere with the normal stream of
3529 events. In a typical case where interference is a problem,
3530 we have a SIGSTOP signal pending for LWP A while
3531 single-stepping it, encounter an event in LWP B, and take the
3532 pending SIGSTOP while trying to stop LWP A. After processing
3533 the event in LWP B, LWP A is continued, and we'll never see
3534 the SIGTRAP associated with the last time we were
3535 single-stepping LWP A. */
3536
3537 /* Resume the thread. It should halt immediately returning the
3538 pending SIGSTOP. */
3539 registers_changed ();
3540 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3541 lp->step, TARGET_SIGNAL_0);
3542 if (debug_linux_nat)
3543 fprintf_unfiltered (gdb_stdlog,
3544 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
3545 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3546 target_pid_to_str (lp->ptid));
3547 lp->stopped = 0;
3548 gdb_assert (lp->resumed);
3549
3550 /* Catch the pending SIGSTOP. */
3551 status = lp->status;
3552 lp->status = 0;
3553
3554 stop_wait_callback (lp, NULL);
3555
3556 /* If the lp->status field isn't empty, we caught another signal
3557 while flushing the SIGSTOP. Return it back to the event
3558 queue of the LWP, as we already have an event to handle. */
3559 if (lp->status)
3560 {
3561 if (debug_linux_nat)
3562 fprintf_unfiltered (gdb_stdlog,
3563 "LLW: kill %s, %s\n",
3564 target_pid_to_str (lp->ptid),
3565 status_to_str (lp->status));
3566 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
3567 }
3568
3569 lp->status = status;
3570 }
3571
3572 if (!target_can_async_p ())
3573 {
3574 /* Causes SIGINT to be passed on to the attached process. */
3575 set_sigint_trap ();
3576 }
3577
3578 /* But if we don't find a pending event, we'll have to wait. */
3579
3580 while (lp == NULL)
3581 {
3582 pid_t lwpid;
3583
3584 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3585 quirks:
3586
3587 - If the thread group leader exits while other threads in the
3588 thread group still exist, waitpid(TGID, ...) hangs. That
3589 waitpid won't return an exit status until the other threads
3590 in the group are reapped.
3591
3592 - When a non-leader thread execs, that thread just vanishes
3593 without reporting an exit (so we'd hang if we waited for it
3594 explicitly in that case). The exec event is reported to
3595 the TGID pid. */
3596
3597 errno = 0;
3598 lwpid = my_waitpid (-1, &status, __WCLONE | WNOHANG);
3599 if (lwpid == 0 || (lwpid == -1 && errno == ECHILD))
3600 lwpid = my_waitpid (-1, &status, WNOHANG);
3601
3602 if (debug_linux_nat)
3603 fprintf_unfiltered (gdb_stdlog,
3604 "LNW: waitpid(-1, ...) returned %d, %s\n",
3605 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3606
3607 if (lwpid > 0)
3608 {
3609 /* If this is true, then we paused LWPs momentarily, and may
3610 now have pending events to handle. */
3611 int new_pending;
3612
3613 if (debug_linux_nat)
3614 {
3615 fprintf_unfiltered (gdb_stdlog,
3616 "LLW: waitpid %ld received %s\n",
3617 (long) lwpid, status_to_str (status));
3618 }
3619
3620 lp = linux_nat_filter_event (lwpid, status, &new_pending);
3621
3622 /* STATUS is now no longer valid, use LP->STATUS instead. */
3623 status = 0;
3624
3625 if (lp && !ptid_match (lp->ptid, ptid))
3626 {
3627 gdb_assert (lp->resumed);
3628
3629 if (debug_linux_nat)
3630 fprintf (stderr,
3631 "LWP %ld got an event %06x, leaving pending.\n",
3632 ptid_get_lwp (lp->ptid), lp->status);
3633
3634 if (WIFSTOPPED (lp->status))
3635 {
3636 if (WSTOPSIG (lp->status) != SIGSTOP)
3637 {
3638 /* Cancel breakpoint hits. The breakpoint may
3639 be removed before we fetch events from this
3640 process to report to the core. It is best
3641 not to assume the moribund breakpoints
3642 heuristic always handles these cases --- it
3643 could be too many events go through to the
3644 core before this one is handled. All-stop
3645 always cancels breakpoint hits in all
3646 threads. */
3647 if (non_stop
3648 && linux_nat_lp_status_is_event (lp)
3649 && cancel_breakpoint (lp))
3650 {
3651 /* Throw away the SIGTRAP. */
3652 lp->status = 0;
3653
3654 if (debug_linux_nat)
3655 fprintf (stderr,
3656 "LLW: LWP %ld hit a breakpoint while"
3657 " waiting for another process;"
3658 " cancelled it\n",
3659 ptid_get_lwp (lp->ptid));
3660 }
3661 lp->stopped = 1;
3662 }
3663 else
3664 {
3665 lp->stopped = 1;
3666 lp->signalled = 0;
3667 }
3668 }
3669 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3670 {
3671 if (debug_linux_nat)
3672 fprintf (stderr,
3673 "Process %ld exited while stopping LWPs\n",
3674 ptid_get_lwp (lp->ptid));
3675
3676 /* This was the last lwp in the process. Since
3677 events are serialized to GDB core, and we can't
3678 report this one right now, but GDB core and the
3679 other target layers will want to be notified
3680 about the exit code/signal, leave the status
3681 pending for the next time we're able to report
3682 it. */
3683
3684 /* Prevent trying to stop this thread again. We'll
3685 never try to resume it because it has a pending
3686 status. */
3687 lp->stopped = 1;
3688
3689 /* Dead LWP's aren't expected to reported a pending
3690 sigstop. */
3691 lp->signalled = 0;
3692
3693 /* Store the pending event in the waitstatus as
3694 well, because W_EXITCODE(0,0) == 0. */
3695 store_waitstatus (&lp->waitstatus, lp->status);
3696 }
3697
3698 /* Keep looking. */
3699 lp = NULL;
3700 }
3701
3702 if (new_pending)
3703 {
3704 /* Some LWP now has a pending event. Go all the way
3705 back to check it. */
3706 goto retry;
3707 }
3708
3709 if (lp)
3710 {
3711 /* We got an event to report to the core. */
3712 break;
3713 }
3714
3715 /* Retry until nothing comes out of waitpid. A single
3716 SIGCHLD can indicate more than one child stopped. */
3717 continue;
3718 }
3719
3720 /* Check for zombie thread group leaders. Those can't be reaped
3721 until all other threads in the thread group are. */
3722 check_zombie_leaders ();
3723
3724 /* If there are no resumed children left, bail. We'd be stuck
3725 forever in the sigsuspend call below otherwise. */
3726 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3727 {
3728 if (debug_linux_nat)
3729 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3730
3731 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3732
3733 if (!target_can_async_p ())
3734 clear_sigint_trap ();
3735
3736 restore_child_signals_mask (&prev_mask);
3737 return minus_one_ptid;
3738 }
3739
3740 /* No interesting event to report to the core. */
3741
3742 if (target_options & TARGET_WNOHANG)
3743 {
3744 if (debug_linux_nat)
3745 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3746
3747 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3748 restore_child_signals_mask (&prev_mask);
3749 return minus_one_ptid;
3750 }
3751
3752 /* We shouldn't end up here unless we want to try again. */
3753 gdb_assert (lp == NULL);
3754
3755 /* Block until we get an event reported with SIGCHLD. */
3756 sigsuspend (&suspend_mask);
3757 }
3758
3759 if (!target_can_async_p ())
3760 clear_sigint_trap ();
3761
3762 gdb_assert (lp);
3763
3764 status = lp->status;
3765 lp->status = 0;
3766
3767 /* Don't report signals that GDB isn't interested in, such as
3768 signals that are neither printed nor stopped upon. Stopping all
3769 threads can be a bit time-consuming so if we want decent
3770 performance with heavily multi-threaded programs, especially when
3771 they're using a high frequency timer, we'd better avoid it if we
3772 can. */
3773
3774 if (WIFSTOPPED (status))
3775 {
3776 enum target_signal signo = target_signal_from_host (WSTOPSIG (status));
3777
3778 /* When using hardware single-step, we need to report every signal.
3779 Otherwise, signals in pass_mask may be short-circuited. */
3780 if (!lp->step
3781 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)))
3782 {
3783 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3784 here? It is not clear we should. GDB may not expect
3785 other threads to run. On the other hand, not resuming
3786 newly attached threads may cause an unwanted delay in
3787 getting them running. */
3788 registers_changed ();
3789 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3790 lp->step, signo);
3791 if (debug_linux_nat)
3792 fprintf_unfiltered (gdb_stdlog,
3793 "LLW: %s %s, %s (preempt 'handle')\n",
3794 lp->step ?
3795 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3796 target_pid_to_str (lp->ptid),
3797 (signo != TARGET_SIGNAL_0
3798 ? strsignal (target_signal_to_host (signo))
3799 : "0"));
3800 lp->stopped = 0;
3801 goto retry;
3802 }
3803
3804 if (!non_stop)
3805 {
3806 /* Only do the below in all-stop, as we currently use SIGINT
3807 to implement target_stop (see linux_nat_stop) in
3808 non-stop. */
3809 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3810 {
3811 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3812 forwarded to the entire process group, that is, all LWPs
3813 will receive it - unless they're using CLONE_THREAD to
3814 share signals. Since we only want to report it once, we
3815 mark it as ignored for all LWPs except this one. */
3816 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3817 set_ignore_sigint, NULL);
3818 lp->ignore_sigint = 0;
3819 }
3820 else
3821 maybe_clear_ignore_sigint (lp);
3822 }
3823 }
3824
3825 /* This LWP is stopped now. */
3826 lp->stopped = 1;
3827
3828 if (debug_linux_nat)
3829 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3830 status_to_str (status), target_pid_to_str (lp->ptid));
3831
3832 if (!non_stop)
3833 {
3834 /* Now stop all other LWP's ... */
3835 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3836
3837 /* ... and wait until all of them have reported back that
3838 they're no longer running. */
3839 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3840
3841 /* If we're not waiting for a specific LWP, choose an event LWP
3842 from among those that have had events. Giving equal priority
3843 to all LWPs that have had events helps prevent
3844 starvation. */
3845 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3846 select_event_lwp (ptid, &lp, &status);
3847
3848 /* Now that we've selected our final event LWP, cancel any
3849 breakpoints in other LWPs that have hit a GDB breakpoint.
3850 See the comment in cancel_breakpoints_callback to find out
3851 why. */
3852 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3853
3854 /* We'll need this to determine whether to report a SIGSTOP as
3855 TARGET_WAITKIND_0. Need to take a copy because
3856 resume_clear_callback clears it. */
3857 last_resume_kind = lp->last_resume_kind;
3858
3859 /* In all-stop, from the core's perspective, all LWPs are now
3860 stopped until a new resume action is sent over. */
3861 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3862 }
3863 else
3864 {
3865 /* See above. */
3866 last_resume_kind = lp->last_resume_kind;
3867 resume_clear_callback (lp, NULL);
3868 }
3869
3870 if (linux_nat_status_is_event (status))
3871 {
3872 if (debug_linux_nat)
3873 fprintf_unfiltered (gdb_stdlog,
3874 "LLW: trap ptid is %s.\n",
3875 target_pid_to_str (lp->ptid));
3876 }
3877
3878 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3879 {
3880 *ourstatus = lp->waitstatus;
3881 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3882 }
3883 else
3884 store_waitstatus (ourstatus, status);
3885
3886 if (debug_linux_nat)
3887 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3888
3889 restore_child_signals_mask (&prev_mask);
3890
3891 if (last_resume_kind == resume_stop
3892 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3893 && WSTOPSIG (status) == SIGSTOP)
3894 {
3895 /* A thread that has been requested to stop by GDB with
3896 target_stop, and it stopped cleanly, so report as SIG0. The
3897 use of SIGSTOP is an implementation detail. */
3898 ourstatus->value.sig = TARGET_SIGNAL_0;
3899 }
3900
3901 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3902 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3903 lp->core = -1;
3904 else
3905 lp->core = linux_nat_core_of_thread_1 (lp->ptid);
3906
3907 return lp->ptid;
3908 }
3909
3910 /* Resume LWPs that are currently stopped without any pending status
3911 to report, but are resumed from the core's perspective. */
3912
3913 static int
3914 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3915 {
3916 ptid_t *wait_ptid_p = data;
3917
3918 if (lp->stopped
3919 && lp->resumed
3920 && lp->status == 0
3921 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3922 {
3923 gdb_assert (is_executing (lp->ptid));
3924
3925 /* Don't bother if there's a breakpoint at PC that we'd hit
3926 immediately, and we're not waiting for this LWP. */
3927 if (!ptid_match (lp->ptid, *wait_ptid_p))
3928 {
3929 struct regcache *regcache = get_thread_regcache (lp->ptid);
3930 CORE_ADDR pc = regcache_read_pc (regcache);
3931
3932 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3933 return 0;
3934 }
3935
3936 if (debug_linux_nat)
3937 fprintf_unfiltered (gdb_stdlog,
3938 "RSRL: resuming stopped-resumed LWP %s\n",
3939 target_pid_to_str (lp->ptid));
3940
3941 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3942 lp->step, TARGET_SIGNAL_0);
3943 lp->stopped = 0;
3944 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
3945 lp->stopped_by_watchpoint = 0;
3946 }
3947
3948 return 0;
3949 }
3950
3951 static ptid_t
3952 linux_nat_wait (struct target_ops *ops,
3953 ptid_t ptid, struct target_waitstatus *ourstatus,
3954 int target_options)
3955 {
3956 ptid_t event_ptid;
3957
3958 if (debug_linux_nat)
3959 fprintf_unfiltered (gdb_stdlog,
3960 "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3961
3962 /* Flush the async file first. */
3963 if (target_can_async_p ())
3964 async_file_flush ();
3965
3966 /* Resume LWPs that are currently stopped without any pending status
3967 to report, but are resumed from the core's perspective. LWPs get
3968 in this state if we find them stopping at a time we're not
3969 interested in reporting the event (target_wait on a
3970 specific_process, for example, see linux_nat_wait_1), and
3971 meanwhile the event became uninteresting. Don't bother resuming
3972 LWPs we're not going to wait for if they'd stop immediately. */
3973 if (non_stop)
3974 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3975
3976 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3977
3978 /* If we requested any event, and something came out, assume there
3979 may be more. If we requested a specific lwp or process, also
3980 assume there may be more. */
3981 if (target_can_async_p ()
3982 && (ourstatus->kind != TARGET_WAITKIND_IGNORE
3983 || !ptid_equal (ptid, minus_one_ptid)))
3984 async_file_mark ();
3985
3986 /* Get ready for the next event. */
3987 if (target_can_async_p ())
3988 target_async (inferior_event_handler, 0);
3989
3990 return event_ptid;
3991 }
3992
3993 static int
3994 kill_callback (struct lwp_info *lp, void *data)
3995 {
3996 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3997
3998 errno = 0;
3999 kill (GET_LWP (lp->ptid), SIGKILL);
4000 if (debug_linux_nat)
4001 fprintf_unfiltered (gdb_stdlog,
4002 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
4003 target_pid_to_str (lp->ptid),
4004 errno ? safe_strerror (errno) : "OK");
4005
4006 /* Some kernels ignore even SIGKILL for processes under ptrace. */
4007
4008 errno = 0;
4009 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
4010 if (debug_linux_nat)
4011 fprintf_unfiltered (gdb_stdlog,
4012 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
4013 target_pid_to_str (lp->ptid),
4014 errno ? safe_strerror (errno) : "OK");
4015
4016 return 0;
4017 }
4018
4019 static int
4020 kill_wait_callback (struct lwp_info *lp, void *data)
4021 {
4022 pid_t pid;
4023
4024 /* We must make sure that there are no pending events (delayed
4025 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
4026 program doesn't interfere with any following debugging session. */
4027
4028 /* For cloned processes we must check both with __WCLONE and
4029 without, since the exit status of a cloned process isn't reported
4030 with __WCLONE. */
4031 if (lp->cloned)
4032 {
4033 do
4034 {
4035 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
4036 if (pid != (pid_t) -1)
4037 {
4038 if (debug_linux_nat)
4039 fprintf_unfiltered (gdb_stdlog,
4040 "KWC: wait %s received unknown.\n",
4041 target_pid_to_str (lp->ptid));
4042 /* The Linux kernel sometimes fails to kill a thread
4043 completely after PTRACE_KILL; that goes from the stop
4044 point in do_fork out to the one in
4045 get_signal_to_deliever and waits again. So kill it
4046 again. */
4047 kill_callback (lp, NULL);
4048 }
4049 }
4050 while (pid == GET_LWP (lp->ptid));
4051
4052 gdb_assert (pid == -1 && errno == ECHILD);
4053 }
4054
4055 do
4056 {
4057 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
4058 if (pid != (pid_t) -1)
4059 {
4060 if (debug_linux_nat)
4061 fprintf_unfiltered (gdb_stdlog,
4062 "KWC: wait %s received unk.\n",
4063 target_pid_to_str (lp->ptid));
4064 /* See the call to kill_callback above. */
4065 kill_callback (lp, NULL);
4066 }
4067 }
4068 while (pid == GET_LWP (lp->ptid));
4069
4070 gdb_assert (pid == -1 && errno == ECHILD);
4071 return 0;
4072 }
4073
4074 static void
4075 linux_nat_kill (struct target_ops *ops)
4076 {
4077 struct target_waitstatus last;
4078 ptid_t last_ptid;
4079 int status;
4080
4081 /* If we're stopped while forking and we haven't followed yet,
4082 kill the other task. We need to do this first because the
4083 parent will be sleeping if this is a vfork. */
4084
4085 get_last_target_status (&last_ptid, &last);
4086
4087 if (last.kind == TARGET_WAITKIND_FORKED
4088 || last.kind == TARGET_WAITKIND_VFORKED)
4089 {
4090 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
4091 wait (&status);
4092 }
4093
4094 if (forks_exist_p ())
4095 linux_fork_killall ();
4096 else
4097 {
4098 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
4099
4100 /* Stop all threads before killing them, since ptrace requires
4101 that the thread is stopped to sucessfully PTRACE_KILL. */
4102 iterate_over_lwps (ptid, stop_callback, NULL);
4103 /* ... and wait until all of them have reported back that
4104 they're no longer running. */
4105 iterate_over_lwps (ptid, stop_wait_callback, NULL);
4106
4107 /* Kill all LWP's ... */
4108 iterate_over_lwps (ptid, kill_callback, NULL);
4109
4110 /* ... and wait until we've flushed all events. */
4111 iterate_over_lwps (ptid, kill_wait_callback, NULL);
4112 }
4113
4114 target_mourn_inferior ();
4115 }
4116
4117 static void
4118 linux_nat_mourn_inferior (struct target_ops *ops)
4119 {
4120 purge_lwp_list (ptid_get_pid (inferior_ptid));
4121
4122 if (! forks_exist_p ())
4123 /* Normal case, no other forks available. */
4124 linux_ops->to_mourn_inferior (ops);
4125 else
4126 /* Multi-fork case. The current inferior_ptid has exited, but
4127 there are other viable forks to debug. Delete the exiting
4128 one and context-switch to the first available. */
4129 linux_fork_mourn_inferior ();
4130 }
4131
4132 /* Convert a native/host siginfo object, into/from the siginfo in the
4133 layout of the inferiors' architecture. */
4134
4135 static void
4136 siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
4137 {
4138 int done = 0;
4139
4140 if (linux_nat_siginfo_fixup != NULL)
4141 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
4142
4143 /* If there was no callback, or the callback didn't do anything,
4144 then just do a straight memcpy. */
4145 if (!done)
4146 {
4147 if (direction == 1)
4148 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
4149 else
4150 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
4151 }
4152 }
4153
4154 static LONGEST
4155 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
4156 const char *annex, gdb_byte *readbuf,
4157 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4158 {
4159 int pid;
4160 struct siginfo siginfo;
4161 gdb_byte inf_siginfo[sizeof (struct siginfo)];
4162
4163 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
4164 gdb_assert (readbuf || writebuf);
4165
4166 pid = GET_LWP (inferior_ptid);
4167 if (pid == 0)
4168 pid = GET_PID (inferior_ptid);
4169
4170 if (offset > sizeof (siginfo))
4171 return -1;
4172
4173 errno = 0;
4174 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
4175 if (errno != 0)
4176 return -1;
4177
4178 /* When GDB is built as a 64-bit application, ptrace writes into
4179 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
4180 inferior with a 64-bit GDB should look the same as debugging it
4181 with a 32-bit GDB, we need to convert it. GDB core always sees
4182 the converted layout, so any read/write will have to be done
4183 post-conversion. */
4184 siginfo_fixup (&siginfo, inf_siginfo, 0);
4185
4186 if (offset + len > sizeof (siginfo))
4187 len = sizeof (siginfo) - offset;
4188
4189 if (readbuf != NULL)
4190 memcpy (readbuf, inf_siginfo + offset, len);
4191 else
4192 {
4193 memcpy (inf_siginfo + offset, writebuf, len);
4194
4195 /* Convert back to ptrace layout before flushing it out. */
4196 siginfo_fixup (&siginfo, inf_siginfo, 1);
4197
4198 errno = 0;
4199 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
4200 if (errno != 0)
4201 return -1;
4202 }
4203
4204 return len;
4205 }
4206
4207 static LONGEST
4208 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
4209 const char *annex, gdb_byte *readbuf,
4210 const gdb_byte *writebuf,
4211 ULONGEST offset, LONGEST len)
4212 {
4213 struct cleanup *old_chain;
4214 LONGEST xfer;
4215
4216 if (object == TARGET_OBJECT_SIGNAL_INFO)
4217 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
4218 offset, len);
4219
4220 /* The target is connected but no live inferior is selected. Pass
4221 this request down to a lower stratum (e.g., the executable
4222 file). */
4223 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
4224 return 0;
4225
4226 old_chain = save_inferior_ptid ();
4227
4228 if (is_lwp (inferior_ptid))
4229 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
4230
4231 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
4232 offset, len);
4233
4234 do_cleanups (old_chain);
4235 return xfer;
4236 }
4237
4238 static int
4239 linux_thread_alive (ptid_t ptid)
4240 {
4241 int err, tmp_errno;
4242
4243 gdb_assert (is_lwp (ptid));
4244
4245 /* Send signal 0 instead of anything ptrace, because ptracing a
4246 running thread errors out claiming that the thread doesn't
4247 exist. */
4248 err = kill_lwp (GET_LWP (ptid), 0);
4249 tmp_errno = errno;
4250 if (debug_linux_nat)
4251 fprintf_unfiltered (gdb_stdlog,
4252 "LLTA: KILL(SIG0) %s (%s)\n",
4253 target_pid_to_str (ptid),
4254 err ? safe_strerror (tmp_errno) : "OK");
4255
4256 if (err != 0)
4257 return 0;
4258
4259 return 1;
4260 }
4261
4262 static int
4263 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
4264 {
4265 return linux_thread_alive (ptid);
4266 }
4267
4268 static char *
4269 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
4270 {
4271 static char buf[64];
4272
4273 if (is_lwp (ptid)
4274 && (GET_PID (ptid) != GET_LWP (ptid)
4275 || num_lwps (GET_PID (ptid)) > 1))
4276 {
4277 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
4278 return buf;
4279 }
4280
4281 return normal_pid_to_str (ptid);
4282 }
4283
4284 static char *
4285 linux_nat_thread_name (struct thread_info *thr)
4286 {
4287 int pid = ptid_get_pid (thr->ptid);
4288 long lwp = ptid_get_lwp (thr->ptid);
4289 #define FORMAT "/proc/%d/task/%ld/comm"
4290 char buf[sizeof (FORMAT) + 30];
4291 FILE *comm_file;
4292 char *result = NULL;
4293
4294 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
4295 comm_file = fopen (buf, "r");
4296 if (comm_file)
4297 {
4298 /* Not exported by the kernel, so we define it here. */
4299 #define COMM_LEN 16
4300 static char line[COMM_LEN + 1];
4301
4302 if (fgets (line, sizeof (line), comm_file))
4303 {
4304 char *nl = strchr (line, '\n');
4305
4306 if (nl)
4307 *nl = '\0';
4308 if (*line != '\0')
4309 result = line;
4310 }
4311
4312 fclose (comm_file);
4313 }
4314
4315 #undef COMM_LEN
4316 #undef FORMAT
4317
4318 return result;
4319 }
4320
4321 /* Accepts an integer PID; Returns a string representing a file that
4322 can be opened to get the symbols for the child process. */
4323
4324 static char *
4325 linux_child_pid_to_exec_file (int pid)
4326 {
4327 char *name1, *name2;
4328
4329 name1 = xmalloc (MAXPATHLEN);
4330 name2 = xmalloc (MAXPATHLEN);
4331 make_cleanup (xfree, name1);
4332 make_cleanup (xfree, name2);
4333 memset (name2, 0, MAXPATHLEN);
4334
4335 sprintf (name1, "/proc/%d/exe", pid);
4336 if (readlink (name1, name2, MAXPATHLEN) > 0)
4337 return name2;
4338 else
4339 return name1;
4340 }
4341
4342 /* Service function for corefiles and info proc. */
4343
4344 static int
4345 read_mapping (FILE *mapfile,
4346 long long *addr,
4347 long long *endaddr,
4348 char *permissions,
4349 long long *offset,
4350 char *device, long long *inode, char *filename)
4351 {
4352 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
4353 addr, endaddr, permissions, offset, device, inode);
4354
4355 filename[0] = '\0';
4356 if (ret > 0 && ret != EOF)
4357 {
4358 /* Eat everything up to EOL for the filename. This will prevent
4359 weird filenames (such as one with embedded whitespace) from
4360 confusing this code. It also makes this code more robust in
4361 respect to annotations the kernel may add after the filename.
4362
4363 Note the filename is used for informational purposes
4364 only. */
4365 ret += fscanf (mapfile, "%[^\n]\n", filename);
4366 }
4367
4368 return (ret != 0 && ret != EOF);
4369 }
4370
4371 /* Fills the "to_find_memory_regions" target vector. Lists the memory
4372 regions in the inferior for a corefile. */
4373
4374 static int
4375 linux_nat_find_memory_regions (find_memory_region_ftype func, void *obfd)
4376 {
4377 int pid = PIDGET (inferior_ptid);
4378 char mapsfilename[MAXPATHLEN];
4379 FILE *mapsfile;
4380 long long addr, endaddr, size, offset, inode;
4381 char permissions[8], device[8], filename[MAXPATHLEN];
4382 int read, write, exec;
4383 struct cleanup *cleanup;
4384
4385 /* Compose the filename for the /proc memory map, and open it. */
4386 sprintf (mapsfilename, "/proc/%d/maps", pid);
4387 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
4388 error (_("Could not open %s."), mapsfilename);
4389 cleanup = make_cleanup_fclose (mapsfile);
4390
4391 if (info_verbose)
4392 fprintf_filtered (gdb_stdout,
4393 "Reading memory regions from %s\n", mapsfilename);
4394
4395 /* Now iterate until end-of-file. */
4396 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
4397 &offset, &device[0], &inode, &filename[0]))
4398 {
4399 size = endaddr - addr;
4400
4401 /* Get the segment's permissions. */
4402 read = (strchr (permissions, 'r') != 0);
4403 write = (strchr (permissions, 'w') != 0);
4404 exec = (strchr (permissions, 'x') != 0);
4405
4406 if (info_verbose)
4407 {
4408 fprintf_filtered (gdb_stdout,
4409 "Save segment, %s bytes at %s (%c%c%c)",
4410 plongest (size), paddress (target_gdbarch, addr),
4411 read ? 'r' : ' ',
4412 write ? 'w' : ' ', exec ? 'x' : ' ');
4413 if (filename[0])
4414 fprintf_filtered (gdb_stdout, " for %s", filename);
4415 fprintf_filtered (gdb_stdout, "\n");
4416 }
4417
4418 /* Invoke the callback function to create the corefile
4419 segment. */
4420 func (addr, size, read, write, exec, obfd);
4421 }
4422 do_cleanups (cleanup);
4423 return 0;
4424 }
4425
4426 static int
4427 find_signalled_thread (struct thread_info *info, void *data)
4428 {
4429 if (info->suspend.stop_signal != TARGET_SIGNAL_0
4430 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
4431 return 1;
4432
4433 return 0;
4434 }
4435
4436 static enum target_signal
4437 find_stop_signal (void)
4438 {
4439 struct thread_info *info =
4440 iterate_over_threads (find_signalled_thread, NULL);
4441
4442 if (info)
4443 return info->suspend.stop_signal;
4444 else
4445 return TARGET_SIGNAL_0;
4446 }
4447
4448 /* Records the thread's register state for the corefile note
4449 section. */
4450
4451 static char *
4452 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
4453 char *note_data, int *note_size,
4454 enum target_signal stop_signal)
4455 {
4456 unsigned long lwp = ptid_get_lwp (ptid);
4457 struct gdbarch *gdbarch = target_gdbarch;
4458 struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
4459 const struct regset *regset;
4460 int core_regset_p;
4461 struct cleanup *old_chain;
4462 struct core_regset_section *sect_list;
4463 char *gdb_regset;
4464
4465 old_chain = save_inferior_ptid ();
4466 inferior_ptid = ptid;
4467 target_fetch_registers (regcache, -1);
4468 do_cleanups (old_chain);
4469
4470 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4471 sect_list = gdbarch_core_regset_sections (gdbarch);
4472
4473 /* The loop below uses the new struct core_regset_section, which stores
4474 the supported section names and sizes for the core file. Note that
4475 note PRSTATUS needs to be treated specially. But the other notes are
4476 structurally the same, so they can benefit from the new struct. */
4477 if (core_regset_p && sect_list != NULL)
4478 while (sect_list->sect_name != NULL)
4479 {
4480 regset = gdbarch_regset_from_core_section (gdbarch,
4481 sect_list->sect_name,
4482 sect_list->size);
4483 gdb_assert (regset && regset->collect_regset);
4484 gdb_regset = xmalloc (sect_list->size);
4485 regset->collect_regset (regset, regcache, -1,
4486 gdb_regset, sect_list->size);
4487
4488 if (strcmp (sect_list->sect_name, ".reg") == 0)
4489 note_data = (char *) elfcore_write_prstatus
4490 (obfd, note_data, note_size,
4491 lwp, target_signal_to_host (stop_signal),
4492 gdb_regset);
4493 else
4494 note_data = (char *) elfcore_write_register_note
4495 (obfd, note_data, note_size,
4496 sect_list->sect_name, gdb_regset,
4497 sect_list->size);
4498 xfree (gdb_regset);
4499 sect_list++;
4500 }
4501
4502 /* For architectures that does not have the struct core_regset_section
4503 implemented, we use the old method. When all the architectures have
4504 the new support, the code below should be deleted. */
4505 else
4506 {
4507 gdb_gregset_t gregs;
4508 gdb_fpregset_t fpregs;
4509
4510 if (core_regset_p
4511 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4512 sizeof (gregs)))
4513 != NULL && regset->collect_regset != NULL)
4514 regset->collect_regset (regset, regcache, -1,
4515 &gregs, sizeof (gregs));
4516 else
4517 fill_gregset (regcache, &gregs, -1);
4518
4519 note_data = (char *) elfcore_write_prstatus
4520 (obfd, note_data, note_size, lwp, target_signal_to_host (stop_signal),
4521 &gregs);
4522
4523 if (core_regset_p
4524 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4525 sizeof (fpregs)))
4526 != NULL && regset->collect_regset != NULL)
4527 regset->collect_regset (regset, regcache, -1,
4528 &fpregs, sizeof (fpregs));
4529 else
4530 fill_fpregset (regcache, &fpregs, -1);
4531
4532 note_data = (char *) elfcore_write_prfpreg (obfd,
4533 note_data,
4534 note_size,
4535 &fpregs, sizeof (fpregs));
4536 }
4537
4538 return note_data;
4539 }
4540
4541 struct linux_nat_corefile_thread_data
4542 {
4543 bfd *obfd;
4544 char *note_data;
4545 int *note_size;
4546 int num_notes;
4547 enum target_signal stop_signal;
4548 };
4549
4550 /* Called by gdbthread.c once per thread. Records the thread's
4551 register state for the corefile note section. */
4552
4553 static int
4554 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
4555 {
4556 struct linux_nat_corefile_thread_data *args = data;
4557
4558 args->note_data = linux_nat_do_thread_registers (args->obfd,
4559 ti->ptid,
4560 args->note_data,
4561 args->note_size,
4562 args->stop_signal);
4563 args->num_notes++;
4564
4565 return 0;
4566 }
4567
4568 /* Enumerate spufs IDs for process PID. */
4569
4570 static void
4571 iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
4572 {
4573 char path[128];
4574 DIR *dir;
4575 struct dirent *entry;
4576
4577 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4578 dir = opendir (path);
4579 if (!dir)
4580 return;
4581
4582 rewinddir (dir);
4583 while ((entry = readdir (dir)) != NULL)
4584 {
4585 struct stat st;
4586 struct statfs stfs;
4587 int fd;
4588
4589 fd = atoi (entry->d_name);
4590 if (!fd)
4591 continue;
4592
4593 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4594 if (stat (path, &st) != 0)
4595 continue;
4596 if (!S_ISDIR (st.st_mode))
4597 continue;
4598
4599 if (statfs (path, &stfs) != 0)
4600 continue;
4601 if (stfs.f_type != SPUFS_MAGIC)
4602 continue;
4603
4604 callback (data, fd);
4605 }
4606
4607 closedir (dir);
4608 }
4609
4610 /* Generate corefile notes for SPU contexts. */
4611
4612 struct linux_spu_corefile_data
4613 {
4614 bfd *obfd;
4615 char *note_data;
4616 int *note_size;
4617 };
4618
4619 static void
4620 linux_spu_corefile_callback (void *data, int fd)
4621 {
4622 struct linux_spu_corefile_data *args = data;
4623 int i;
4624
4625 static const char *spu_files[] =
4626 {
4627 "object-id",
4628 "mem",
4629 "regs",
4630 "fpcr",
4631 "lslr",
4632 "decr",
4633 "decr_status",
4634 "signal1",
4635 "signal1_type",
4636 "signal2",
4637 "signal2_type",
4638 "event_mask",
4639 "event_status",
4640 "mbox_info",
4641 "ibox_info",
4642 "wbox_info",
4643 "dma_info",
4644 "proxydma_info",
4645 };
4646
4647 for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
4648 {
4649 char annex[32], note_name[32];
4650 gdb_byte *spu_data;
4651 LONGEST spu_len;
4652
4653 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
4654 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
4655 annex, &spu_data);
4656 if (spu_len > 0)
4657 {
4658 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
4659 args->note_data = elfcore_write_note (args->obfd, args->note_data,
4660 args->note_size, note_name,
4661 NT_SPU, spu_data, spu_len);
4662 xfree (spu_data);
4663 }
4664 }
4665 }
4666
4667 static char *
4668 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
4669 {
4670 struct linux_spu_corefile_data args;
4671
4672 args.obfd = obfd;
4673 args.note_data = note_data;
4674 args.note_size = note_size;
4675
4676 iterate_over_spus (PIDGET (inferior_ptid),
4677 linux_spu_corefile_callback, &args);
4678
4679 return args.note_data;
4680 }
4681
4682 /* Fills the "to_make_corefile_note" target vector. Builds the note
4683 section for a corefile, and returns it in a malloc buffer. */
4684
4685 static char *
4686 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4687 {
4688 struct linux_nat_corefile_thread_data thread_args;
4689 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
4690 char fname[16] = { '\0' };
4691 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
4692 char psargs[80] = { '\0' };
4693 char *note_data = NULL;
4694 ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
4695 gdb_byte *auxv;
4696 int auxv_len;
4697
4698 if (get_exec_file (0))
4699 {
4700 strncpy (fname, lbasename (get_exec_file (0)), sizeof (fname));
4701 strncpy (psargs, get_exec_file (0), sizeof (psargs));
4702 if (get_inferior_args ())
4703 {
4704 char *string_end;
4705 char *psargs_end = psargs + sizeof (psargs);
4706
4707 /* linux_elfcore_write_prpsinfo () handles zero unterminated
4708 strings fine. */
4709 string_end = memchr (psargs, 0, sizeof (psargs));
4710 if (string_end != NULL)
4711 {
4712 *string_end++ = ' ';
4713 strncpy (string_end, get_inferior_args (),
4714 psargs_end - string_end);
4715 }
4716 }
4717 note_data = (char *) elfcore_write_prpsinfo (obfd,
4718 note_data,
4719 note_size, fname, psargs);
4720 }
4721
4722 /* Dump information for threads. */
4723 thread_args.obfd = obfd;
4724 thread_args.note_data = note_data;
4725 thread_args.note_size = note_size;
4726 thread_args.num_notes = 0;
4727 thread_args.stop_signal = find_stop_signal ();
4728 iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
4729 gdb_assert (thread_args.num_notes != 0);
4730 note_data = thread_args.note_data;
4731
4732 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
4733 NULL, &auxv);
4734 if (auxv_len > 0)
4735 {
4736 note_data = elfcore_write_note (obfd, note_data, note_size,
4737 "CORE", NT_AUXV, auxv, auxv_len);
4738 xfree (auxv);
4739 }
4740
4741 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
4742
4743 make_cleanup (xfree, note_data);
4744 return note_data;
4745 }
4746
4747 /* Implement the "info proc" command. */
4748
4749 static void
4750 linux_nat_info_proc_cmd (char *args, int from_tty)
4751 {
4752 /* A long is used for pid instead of an int to avoid a loss of precision
4753 compiler warning from the output of strtoul. */
4754 long pid = PIDGET (inferior_ptid);
4755 FILE *procfile;
4756 char **argv = NULL;
4757 char buffer[MAXPATHLEN];
4758 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
4759 int cmdline_f = 1;
4760 int cwd_f = 1;
4761 int exe_f = 1;
4762 int mappings_f = 0;
4763 int status_f = 0;
4764 int stat_f = 0;
4765 int all = 0;
4766 struct stat dummy;
4767
4768 if (args)
4769 {
4770 /* Break up 'args' into an argv array. */
4771 argv = gdb_buildargv (args);
4772 make_cleanup_freeargv (argv);
4773 }
4774 while (argv != NULL && *argv != NULL)
4775 {
4776 if (isdigit (argv[0][0]))
4777 {
4778 pid = strtoul (argv[0], NULL, 10);
4779 }
4780 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
4781 {
4782 mappings_f = 1;
4783 }
4784 else if (strcmp (argv[0], "status") == 0)
4785 {
4786 status_f = 1;
4787 }
4788 else if (strcmp (argv[0], "stat") == 0)
4789 {
4790 stat_f = 1;
4791 }
4792 else if (strcmp (argv[0], "cmd") == 0)
4793 {
4794 cmdline_f = 1;
4795 }
4796 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
4797 {
4798 exe_f = 1;
4799 }
4800 else if (strcmp (argv[0], "cwd") == 0)
4801 {
4802 cwd_f = 1;
4803 }
4804 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
4805 {
4806 all = 1;
4807 }
4808 else
4809 {
4810 /* [...] (future options here). */
4811 }
4812 argv++;
4813 }
4814 if (pid == 0)
4815 error (_("No current process: you must name one."));
4816
4817 sprintf (fname1, "/proc/%ld", pid);
4818 if (stat (fname1, &dummy) != 0)
4819 error (_("No /proc directory: '%s'"), fname1);
4820
4821 printf_filtered (_("process %ld\n"), pid);
4822 if (cmdline_f || all)
4823 {
4824 sprintf (fname1, "/proc/%ld/cmdline", pid);
4825 if ((procfile = fopen (fname1, "r")) != NULL)
4826 {
4827 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4828
4829 if (fgets (buffer, sizeof (buffer), procfile))
4830 printf_filtered ("cmdline = '%s'\n", buffer);
4831 else
4832 warning (_("unable to read '%s'"), fname1);
4833 do_cleanups (cleanup);
4834 }
4835 else
4836 warning (_("unable to open /proc file '%s'"), fname1);
4837 }
4838 if (cwd_f || all)
4839 {
4840 sprintf (fname1, "/proc/%ld/cwd", pid);
4841 memset (fname2, 0, sizeof (fname2));
4842 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4843 printf_filtered ("cwd = '%s'\n", fname2);
4844 else
4845 warning (_("unable to read link '%s'"), fname1);
4846 }
4847 if (exe_f || all)
4848 {
4849 sprintf (fname1, "/proc/%ld/exe", pid);
4850 memset (fname2, 0, sizeof (fname2));
4851 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4852 printf_filtered ("exe = '%s'\n", fname2);
4853 else
4854 warning (_("unable to read link '%s'"), fname1);
4855 }
4856 if (mappings_f || all)
4857 {
4858 sprintf (fname1, "/proc/%ld/maps", pid);
4859 if ((procfile = fopen (fname1, "r")) != NULL)
4860 {
4861 long long addr, endaddr, size, offset, inode;
4862 char permissions[8], device[8], filename[MAXPATHLEN];
4863 struct cleanup *cleanup;
4864
4865 cleanup = make_cleanup_fclose (procfile);
4866 printf_filtered (_("Mapped address spaces:\n\n"));
4867 if (gdbarch_addr_bit (target_gdbarch) == 32)
4868 {
4869 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
4870 "Start Addr",
4871 " End Addr",
4872 " Size", " Offset", "objfile");
4873 }
4874 else
4875 {
4876 printf_filtered (" %18s %18s %10s %10s %7s\n",
4877 "Start Addr",
4878 " End Addr",
4879 " Size", " Offset", "objfile");
4880 }
4881
4882 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
4883 &offset, &device[0], &inode, &filename[0]))
4884 {
4885 size = endaddr - addr;
4886
4887 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
4888 calls here (and possibly above) should be abstracted
4889 out into their own functions? Andrew suggests using
4890 a generic local_address_string instead to print out
4891 the addresses; that makes sense to me, too. */
4892
4893 if (gdbarch_addr_bit (target_gdbarch) == 32)
4894 {
4895 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
4896 (unsigned long) addr, /* FIXME: pr_addr */
4897 (unsigned long) endaddr,
4898 (int) size,
4899 (unsigned int) offset,
4900 filename[0] ? filename : "");
4901 }
4902 else
4903 {
4904 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
4905 (unsigned long) addr, /* FIXME: pr_addr */
4906 (unsigned long) endaddr,
4907 (int) size,
4908 (unsigned int) offset,
4909 filename[0] ? filename : "");
4910 }
4911 }
4912
4913 do_cleanups (cleanup);
4914 }
4915 else
4916 warning (_("unable to open /proc file '%s'"), fname1);
4917 }
4918 if (status_f || all)
4919 {
4920 sprintf (fname1, "/proc/%ld/status", pid);
4921 if ((procfile = fopen (fname1, "r")) != NULL)
4922 {
4923 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4924
4925 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
4926 puts_filtered (buffer);
4927 do_cleanups (cleanup);
4928 }
4929 else
4930 warning (_("unable to open /proc file '%s'"), fname1);
4931 }
4932 if (stat_f || all)
4933 {
4934 sprintf (fname1, "/proc/%ld/stat", pid);
4935 if ((procfile = fopen (fname1, "r")) != NULL)
4936 {
4937 int itmp;
4938 char ctmp;
4939 long ltmp;
4940 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4941
4942 if (fscanf (procfile, "%d ", &itmp) > 0)
4943 printf_filtered (_("Process: %d\n"), itmp);
4944 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
4945 printf_filtered (_("Exec file: %s\n"), buffer);
4946 if (fscanf (procfile, "%c ", &ctmp) > 0)
4947 printf_filtered (_("State: %c\n"), ctmp);
4948 if (fscanf (procfile, "%d ", &itmp) > 0)
4949 printf_filtered (_("Parent process: %d\n"), itmp);
4950 if (fscanf (procfile, "%d ", &itmp) > 0)
4951 printf_filtered (_("Process group: %d\n"), itmp);
4952 if (fscanf (procfile, "%d ", &itmp) > 0)
4953 printf_filtered (_("Session id: %d\n"), itmp);
4954 if (fscanf (procfile, "%d ", &itmp) > 0)
4955 printf_filtered (_("TTY: %d\n"), itmp);
4956 if (fscanf (procfile, "%d ", &itmp) > 0)
4957 printf_filtered (_("TTY owner process group: %d\n"), itmp);
4958 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4959 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
4960 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4961 printf_filtered (_("Minor faults (no memory page): %lu\n"),
4962 (unsigned long) ltmp);
4963 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4964 printf_filtered (_("Minor faults, children: %lu\n"),
4965 (unsigned long) ltmp);
4966 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4967 printf_filtered (_("Major faults (memory page faults): %lu\n"),
4968 (unsigned long) ltmp);
4969 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4970 printf_filtered (_("Major faults, children: %lu\n"),
4971 (unsigned long) ltmp);
4972 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4973 printf_filtered (_("utime: %ld\n"), ltmp);
4974 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4975 printf_filtered (_("stime: %ld\n"), ltmp);
4976 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4977 printf_filtered (_("utime, children: %ld\n"), ltmp);
4978 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4979 printf_filtered (_("stime, children: %ld\n"), ltmp);
4980 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4981 printf_filtered (_("jiffies remaining in current "
4982 "time slice: %ld\n"), ltmp);
4983 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4984 printf_filtered (_("'nice' value: %ld\n"), ltmp);
4985 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4986 printf_filtered (_("jiffies until next timeout: %lu\n"),
4987 (unsigned long) ltmp);
4988 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4989 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
4990 (unsigned long) ltmp);
4991 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4992 printf_filtered (_("start time (jiffies since "
4993 "system boot): %ld\n"), ltmp);
4994 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4995 printf_filtered (_("Virtual memory size: %lu\n"),
4996 (unsigned long) ltmp);
4997 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4998 printf_filtered (_("Resident set size: %lu\n"),
4999 (unsigned long) ltmp);
5000 if (fscanf (procfile, "%lu ", &ltmp) > 0)
5001 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
5002 if (fscanf (procfile, "%lu ", &ltmp) > 0)
5003 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
5004 if (fscanf (procfile, "%lu ", &ltmp) > 0)
5005 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
5006 if (fscanf (procfile, "%lu ", &ltmp) > 0)
5007 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
5008 #if 0 /* Don't know how architecture-dependent the rest is...
5009 Anyway the signal bitmap info is available from "status". */
5010 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
5011 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
5012 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
5013 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
5014 if (fscanf (procfile, "%ld ", &ltmp) > 0)
5015 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
5016 if (fscanf (procfile, "%ld ", &ltmp) > 0)
5017 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
5018 if (fscanf (procfile, "%ld ", &ltmp) > 0)
5019 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
5020 if (fscanf (procfile, "%ld ", &ltmp) > 0)
5021 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
5022 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
5023 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
5024 #endif
5025 do_cleanups (cleanup);
5026 }
5027 else
5028 warning (_("unable to open /proc file '%s'"), fname1);
5029 }
5030 }
5031
5032 /* Implement the to_xfer_partial interface for memory reads using the /proc
5033 filesystem. Because we can use a single read() call for /proc, this
5034 can be much more efficient than banging away at PTRACE_PEEKTEXT,
5035 but it doesn't support writes. */
5036
5037 static LONGEST
5038 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
5039 const char *annex, gdb_byte *readbuf,
5040 const gdb_byte *writebuf,
5041 ULONGEST offset, LONGEST len)
5042 {
5043 LONGEST ret;
5044 int fd;
5045 char filename[64];
5046
5047 if (object != TARGET_OBJECT_MEMORY || !readbuf)
5048 return 0;
5049
5050 /* Don't bother for one word. */
5051 if (len < 3 * sizeof (long))
5052 return 0;
5053
5054 /* We could keep this file open and cache it - possibly one per
5055 thread. That requires some juggling, but is even faster. */
5056 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
5057 fd = open (filename, O_RDONLY | O_LARGEFILE);
5058 if (fd == -1)
5059 return 0;
5060
5061 /* If pread64 is available, use it. It's faster if the kernel
5062 supports it (only one syscall), and it's 64-bit safe even on
5063 32-bit platforms (for instance, SPARC debugging a SPARC64
5064 application). */
5065 #ifdef HAVE_PREAD64
5066 if (pread64 (fd, readbuf, len, offset) != len)
5067 #else
5068 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
5069 #endif
5070 ret = 0;
5071 else
5072 ret = len;
5073
5074 close (fd);
5075 return ret;
5076 }
5077
5078
5079 /* Enumerate spufs IDs for process PID. */
5080 static LONGEST
5081 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
5082 {
5083 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
5084 LONGEST pos = 0;
5085 LONGEST written = 0;
5086 char path[128];
5087 DIR *dir;
5088 struct dirent *entry;
5089
5090 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
5091 dir = opendir (path);
5092 if (!dir)
5093 return -1;
5094
5095 rewinddir (dir);
5096 while ((entry = readdir (dir)) != NULL)
5097 {
5098 struct stat st;
5099 struct statfs stfs;
5100 int fd;
5101
5102 fd = atoi (entry->d_name);
5103 if (!fd)
5104 continue;
5105
5106 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
5107 if (stat (path, &st) != 0)
5108 continue;
5109 if (!S_ISDIR (st.st_mode))
5110 continue;
5111
5112 if (statfs (path, &stfs) != 0)
5113 continue;
5114 if (stfs.f_type != SPUFS_MAGIC)
5115 continue;
5116
5117 if (pos >= offset && pos + 4 <= offset + len)
5118 {
5119 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
5120 written += 4;
5121 }
5122 pos += 4;
5123 }
5124
5125 closedir (dir);
5126 return written;
5127 }
5128
5129 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
5130 object type, using the /proc file system. */
5131 static LONGEST
5132 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
5133 const char *annex, gdb_byte *readbuf,
5134 const gdb_byte *writebuf,
5135 ULONGEST offset, LONGEST len)
5136 {
5137 char buf[128];
5138 int fd = 0;
5139 int ret = -1;
5140 int pid = PIDGET (inferior_ptid);
5141
5142 if (!annex)
5143 {
5144 if (!readbuf)
5145 return -1;
5146 else
5147 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
5148 }
5149
5150 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
5151 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
5152 if (fd <= 0)
5153 return -1;
5154
5155 if (offset != 0
5156 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5157 {
5158 close (fd);
5159 return 0;
5160 }
5161
5162 if (writebuf)
5163 ret = write (fd, writebuf, (size_t) len);
5164 else if (readbuf)
5165 ret = read (fd, readbuf, (size_t) len);
5166
5167 close (fd);
5168 return ret;
5169 }
5170
5171
5172 /* Parse LINE as a signal set and add its set bits to SIGS. */
5173
5174 static void
5175 add_line_to_sigset (const char *line, sigset_t *sigs)
5176 {
5177 int len = strlen (line) - 1;
5178 const char *p;
5179 int signum;
5180
5181 if (line[len] != '\n')
5182 error (_("Could not parse signal set: %s"), line);
5183
5184 p = line;
5185 signum = len * 4;
5186 while (len-- > 0)
5187 {
5188 int digit;
5189
5190 if (*p >= '0' && *p <= '9')
5191 digit = *p - '0';
5192 else if (*p >= 'a' && *p <= 'f')
5193 digit = *p - 'a' + 10;
5194 else
5195 error (_("Could not parse signal set: %s"), line);
5196
5197 signum -= 4;
5198
5199 if (digit & 1)
5200 sigaddset (sigs, signum + 1);
5201 if (digit & 2)
5202 sigaddset (sigs, signum + 2);
5203 if (digit & 4)
5204 sigaddset (sigs, signum + 3);
5205 if (digit & 8)
5206 sigaddset (sigs, signum + 4);
5207
5208 p++;
5209 }
5210 }
5211
5212 /* Find process PID's pending signals from /proc/pid/status and set
5213 SIGS to match. */
5214
5215 void
5216 linux_proc_pending_signals (int pid, sigset_t *pending,
5217 sigset_t *blocked, sigset_t *ignored)
5218 {
5219 FILE *procfile;
5220 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
5221 struct cleanup *cleanup;
5222
5223 sigemptyset (pending);
5224 sigemptyset (blocked);
5225 sigemptyset (ignored);
5226 sprintf (fname, "/proc/%d/status", pid);
5227 procfile = fopen (fname, "r");
5228 if (procfile == NULL)
5229 error (_("Could not open %s"), fname);
5230 cleanup = make_cleanup_fclose (procfile);
5231
5232 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
5233 {
5234 /* Normal queued signals are on the SigPnd line in the status
5235 file. However, 2.6 kernels also have a "shared" pending
5236 queue for delivering signals to a thread group, so check for
5237 a ShdPnd line also.
5238
5239 Unfortunately some Red Hat kernels include the shared pending
5240 queue but not the ShdPnd status field. */
5241
5242 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
5243 add_line_to_sigset (buffer + 8, pending);
5244 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
5245 add_line_to_sigset (buffer + 8, pending);
5246 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
5247 add_line_to_sigset (buffer + 8, blocked);
5248 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
5249 add_line_to_sigset (buffer + 8, ignored);
5250 }
5251
5252 do_cleanups (cleanup);
5253 }
5254
5255 static LONGEST
5256 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
5257 const char *annex, gdb_byte *readbuf,
5258 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5259 {
5260 gdb_assert (object == TARGET_OBJECT_OSDATA);
5261
5262 return linux_common_xfer_osdata (annex, readbuf, offset, len);
5263 }
5264
5265 static LONGEST
5266 linux_xfer_partial (struct target_ops *ops, enum target_object object,
5267 const char *annex, gdb_byte *readbuf,
5268 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5269 {
5270 LONGEST xfer;
5271
5272 if (object == TARGET_OBJECT_AUXV)
5273 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
5274 offset, len);
5275
5276 if (object == TARGET_OBJECT_OSDATA)
5277 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
5278 offset, len);
5279
5280 if (object == TARGET_OBJECT_SPU)
5281 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
5282 offset, len);
5283
5284 /* GDB calculates all the addresses in possibly larget width of the address.
5285 Address width needs to be masked before its final use - either by
5286 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
5287
5288 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
5289
5290 if (object == TARGET_OBJECT_MEMORY)
5291 {
5292 int addr_bit = gdbarch_addr_bit (target_gdbarch);
5293
5294 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
5295 offset &= ((ULONGEST) 1 << addr_bit) - 1;
5296 }
5297
5298 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
5299 offset, len);
5300 if (xfer != 0)
5301 return xfer;
5302
5303 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
5304 offset, len);
5305 }
5306
5307 /* Create a prototype generic GNU/Linux target. The client can override
5308 it with local methods. */
5309
5310 static void
5311 linux_target_install_ops (struct target_ops *t)
5312 {
5313 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
5314 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
5315 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
5316 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
5317 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
5318 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
5319 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
5320 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
5321 t->to_post_startup_inferior = linux_child_post_startup_inferior;
5322 t->to_post_attach = linux_child_post_attach;
5323 t->to_follow_fork = linux_child_follow_fork;
5324 t->to_find_memory_regions = linux_nat_find_memory_regions;
5325 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
5326
5327 super_xfer_partial = t->to_xfer_partial;
5328 t->to_xfer_partial = linux_xfer_partial;
5329 }
5330
5331 struct target_ops *
5332 linux_target (void)
5333 {
5334 struct target_ops *t;
5335
5336 t = inf_ptrace_target ();
5337 linux_target_install_ops (t);
5338
5339 return t;
5340 }
5341
5342 struct target_ops *
5343 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
5344 {
5345 struct target_ops *t;
5346
5347 t = inf_ptrace_trad_target (register_u_offset);
5348 linux_target_install_ops (t);
5349
5350 return t;
5351 }
5352
5353 /* target_is_async_p implementation. */
5354
5355 static int
5356 linux_nat_is_async_p (void)
5357 {
5358 /* NOTE: palves 2008-03-21: We're only async when the user requests
5359 it explicitly with the "set target-async" command.
5360 Someday, linux will always be async. */
5361 return target_async_permitted;
5362 }
5363
5364 /* target_can_async_p implementation. */
5365
5366 static int
5367 linux_nat_can_async_p (void)
5368 {
5369 /* NOTE: palves 2008-03-21: We're only async when the user requests
5370 it explicitly with the "set target-async" command.
5371 Someday, linux will always be async. */
5372 return target_async_permitted;
5373 }
5374
5375 static int
5376 linux_nat_supports_non_stop (void)
5377 {
5378 return 1;
5379 }
5380
5381 /* True if we want to support multi-process. To be removed when GDB
5382 supports multi-exec. */
5383
5384 int linux_multi_process = 1;
5385
5386 static int
5387 linux_nat_supports_multi_process (void)
5388 {
5389 return linux_multi_process;
5390 }
5391
5392 static int
5393 linux_nat_supports_disable_randomization (void)
5394 {
5395 #ifdef HAVE_PERSONALITY
5396 return 1;
5397 #else
5398 return 0;
5399 #endif
5400 }
5401
5402 static int async_terminal_is_ours = 1;
5403
5404 /* target_terminal_inferior implementation. */
5405
5406 static void
5407 linux_nat_terminal_inferior (void)
5408 {
5409 if (!target_is_async_p ())
5410 {
5411 /* Async mode is disabled. */
5412 terminal_inferior ();
5413 return;
5414 }
5415
5416 terminal_inferior ();
5417
5418 /* Calls to target_terminal_*() are meant to be idempotent. */
5419 if (!async_terminal_is_ours)
5420 return;
5421
5422 delete_file_handler (input_fd);
5423 async_terminal_is_ours = 0;
5424 set_sigint_trap ();
5425 }
5426
5427 /* target_terminal_ours implementation. */
5428
5429 static void
5430 linux_nat_terminal_ours (void)
5431 {
5432 if (!target_is_async_p ())
5433 {
5434 /* Async mode is disabled. */
5435 terminal_ours ();
5436 return;
5437 }
5438
5439 /* GDB should never give the terminal to the inferior if the
5440 inferior is running in the background (run&, continue&, etc.),
5441 but claiming it sure should. */
5442 terminal_ours ();
5443
5444 if (async_terminal_is_ours)
5445 return;
5446
5447 clear_sigint_trap ();
5448 add_file_handler (input_fd, stdin_event_handler, 0);
5449 async_terminal_is_ours = 1;
5450 }
5451
5452 static void (*async_client_callback) (enum inferior_event_type event_type,
5453 void *context);
5454 static void *async_client_context;
5455
5456 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5457 so we notice when any child changes state, and notify the
5458 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
5459 above to wait for the arrival of a SIGCHLD. */
5460
5461 static void
5462 sigchld_handler (int signo)
5463 {
5464 int old_errno = errno;
5465
5466 if (debug_linux_nat)
5467 ui_file_write_async_safe (gdb_stdlog,
5468 "sigchld\n", sizeof ("sigchld\n") - 1);
5469
5470 if (signo == SIGCHLD
5471 && linux_nat_event_pipe[0] != -1)
5472 async_file_mark (); /* Let the event loop know that there are
5473 events to handle. */
5474
5475 errno = old_errno;
5476 }
5477
5478 /* Callback registered with the target events file descriptor. */
5479
5480 static void
5481 handle_target_event (int error, gdb_client_data client_data)
5482 {
5483 (*async_client_callback) (INF_REG_EVENT, async_client_context);
5484 }
5485
5486 /* Create/destroy the target events pipe. Returns previous state. */
5487
5488 static int
5489 linux_async_pipe (int enable)
5490 {
5491 int previous = (linux_nat_event_pipe[0] != -1);
5492
5493 if (previous != enable)
5494 {
5495 sigset_t prev_mask;
5496
5497 block_child_signals (&prev_mask);
5498
5499 if (enable)
5500 {
5501 if (pipe (linux_nat_event_pipe) == -1)
5502 internal_error (__FILE__, __LINE__,
5503 "creating event pipe failed.");
5504
5505 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
5506 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
5507 }
5508 else
5509 {
5510 close (linux_nat_event_pipe[0]);
5511 close (linux_nat_event_pipe[1]);
5512 linux_nat_event_pipe[0] = -1;
5513 linux_nat_event_pipe[1] = -1;
5514 }
5515
5516 restore_child_signals_mask (&prev_mask);
5517 }
5518
5519 return previous;
5520 }
5521
5522 /* target_async implementation. */
5523
5524 static void
5525 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
5526 void *context), void *context)
5527 {
5528 if (callback != NULL)
5529 {
5530 async_client_callback = callback;
5531 async_client_context = context;
5532 if (!linux_async_pipe (1))
5533 {
5534 add_file_handler (linux_nat_event_pipe[0],
5535 handle_target_event, NULL);
5536 /* There may be pending events to handle. Tell the event loop
5537 to poll them. */
5538 async_file_mark ();
5539 }
5540 }
5541 else
5542 {
5543 async_client_callback = callback;
5544 async_client_context = context;
5545 delete_file_handler (linux_nat_event_pipe[0]);
5546 linux_async_pipe (0);
5547 }
5548 return;
5549 }
5550
5551 /* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
5552 event came out. */
5553
5554 static int
5555 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
5556 {
5557 if (!lwp->stopped)
5558 {
5559 ptid_t ptid = lwp->ptid;
5560
5561 if (debug_linux_nat)
5562 fprintf_unfiltered (gdb_stdlog,
5563 "LNSL: running -> suspending %s\n",
5564 target_pid_to_str (lwp->ptid));
5565
5566
5567 if (lwp->last_resume_kind == resume_stop)
5568 {
5569 if (debug_linux_nat)
5570 fprintf_unfiltered (gdb_stdlog,
5571 "linux-nat: already stopping LWP %ld at "
5572 "GDB's request\n",
5573 ptid_get_lwp (lwp->ptid));
5574 return 0;
5575 }
5576
5577 stop_callback (lwp, NULL);
5578 lwp->last_resume_kind = resume_stop;
5579 }
5580 else
5581 {
5582 /* Already known to be stopped; do nothing. */
5583
5584 if (debug_linux_nat)
5585 {
5586 if (find_thread_ptid (lwp->ptid)->stop_requested)
5587 fprintf_unfiltered (gdb_stdlog,
5588 "LNSL: already stopped/stop_requested %s\n",
5589 target_pid_to_str (lwp->ptid));
5590 else
5591 fprintf_unfiltered (gdb_stdlog,
5592 "LNSL: already stopped/no "
5593 "stop_requested yet %s\n",
5594 target_pid_to_str (lwp->ptid));
5595 }
5596 }
5597 return 0;
5598 }
5599
5600 static void
5601 linux_nat_stop (ptid_t ptid)
5602 {
5603 if (non_stop)
5604 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
5605 else
5606 linux_ops->to_stop (ptid);
5607 }
5608
5609 static void
5610 linux_nat_close (int quitting)
5611 {
5612 /* Unregister from the event loop. */
5613 if (target_is_async_p ())
5614 target_async (NULL, 0);
5615
5616 if (linux_ops->to_close)
5617 linux_ops->to_close (quitting);
5618 }
5619
5620 /* When requests are passed down from the linux-nat layer to the
5621 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
5622 used. The address space pointer is stored in the inferior object,
5623 but the common code that is passed such ptid can't tell whether
5624 lwpid is a "main" process id or not (it assumes so). We reverse
5625 look up the "main" process id from the lwp here. */
5626
5627 struct address_space *
5628 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
5629 {
5630 struct lwp_info *lwp;
5631 struct inferior *inf;
5632 int pid;
5633
5634 pid = GET_LWP (ptid);
5635 if (GET_LWP (ptid) == 0)
5636 {
5637 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
5638 tgid. */
5639 lwp = find_lwp_pid (ptid);
5640 pid = GET_PID (lwp->ptid);
5641 }
5642 else
5643 {
5644 /* A (pid,lwpid,0) ptid. */
5645 pid = GET_PID (ptid);
5646 }
5647
5648 inf = find_inferior_pid (pid);
5649 gdb_assert (inf != NULL);
5650 return inf->aspace;
5651 }
5652
5653 int
5654 linux_nat_core_of_thread_1 (ptid_t ptid)
5655 {
5656 struct cleanup *back_to;
5657 char *filename;
5658 FILE *f;
5659 char *content = NULL;
5660 char *p;
5661 char *ts = 0;
5662 int content_read = 0;
5663 int i;
5664 int core;
5665
5666 filename = xstrprintf ("/proc/%d/task/%ld/stat",
5667 GET_PID (ptid), GET_LWP (ptid));
5668 back_to = make_cleanup (xfree, filename);
5669
5670 f = fopen (filename, "r");
5671 if (!f)
5672 {
5673 do_cleanups (back_to);
5674 return -1;
5675 }
5676
5677 make_cleanup_fclose (f);
5678
5679 for (;;)
5680 {
5681 int n;
5682
5683 content = xrealloc (content, content_read + 1024);
5684 n = fread (content + content_read, 1, 1024, f);
5685 content_read += n;
5686 if (n < 1024)
5687 {
5688 content[content_read] = '\0';
5689 break;
5690 }
5691 }
5692
5693 make_cleanup (xfree, content);
5694
5695 p = strchr (content, '(');
5696
5697 /* Skip ")". */
5698 if (p != NULL)
5699 p = strchr (p, ')');
5700 if (p != NULL)
5701 p++;
5702
5703 /* If the first field after program name has index 0, then core number is
5704 the field with index 36. There's no constant for that anywhere. */
5705 if (p != NULL)
5706 p = strtok_r (p, " ", &ts);
5707 for (i = 0; p != NULL && i != 36; ++i)
5708 p = strtok_r (NULL, " ", &ts);
5709
5710 if (p == NULL || sscanf (p, "%d", &core) == 0)
5711 core = -1;
5712
5713 do_cleanups (back_to);
5714
5715 return core;
5716 }
5717
5718 /* Return the cached value of the processor core for thread PTID. */
5719
5720 int
5721 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
5722 {
5723 struct lwp_info *info = find_lwp_pid (ptid);
5724
5725 if (info)
5726 return info->core;
5727 return -1;
5728 }
5729
5730 void
5731 linux_nat_add_target (struct target_ops *t)
5732 {
5733 /* Save the provided single-threaded target. We save this in a separate
5734 variable because another target we've inherited from (e.g. inf-ptrace)
5735 may have saved a pointer to T; we want to use it for the final
5736 process stratum target. */
5737 linux_ops_saved = *t;
5738 linux_ops = &linux_ops_saved;
5739
5740 /* Override some methods for multithreading. */
5741 t->to_create_inferior = linux_nat_create_inferior;
5742 t->to_attach = linux_nat_attach;
5743 t->to_detach = linux_nat_detach;
5744 t->to_resume = linux_nat_resume;
5745 t->to_wait = linux_nat_wait;
5746 t->to_pass_signals = linux_nat_pass_signals;
5747 t->to_xfer_partial = linux_nat_xfer_partial;
5748 t->to_kill = linux_nat_kill;
5749 t->to_mourn_inferior = linux_nat_mourn_inferior;
5750 t->to_thread_alive = linux_nat_thread_alive;
5751 t->to_pid_to_str = linux_nat_pid_to_str;
5752 t->to_thread_name = linux_nat_thread_name;
5753 t->to_has_thread_control = tc_schedlock;
5754 t->to_thread_address_space = linux_nat_thread_address_space;
5755 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5756 t->to_stopped_data_address = linux_nat_stopped_data_address;
5757
5758 t->to_can_async_p = linux_nat_can_async_p;
5759 t->to_is_async_p = linux_nat_is_async_p;
5760 t->to_supports_non_stop = linux_nat_supports_non_stop;
5761 t->to_async = linux_nat_async;
5762 t->to_terminal_inferior = linux_nat_terminal_inferior;
5763 t->to_terminal_ours = linux_nat_terminal_ours;
5764 t->to_close = linux_nat_close;
5765
5766 /* Methods for non-stop support. */
5767 t->to_stop = linux_nat_stop;
5768
5769 t->to_supports_multi_process = linux_nat_supports_multi_process;
5770
5771 t->to_supports_disable_randomization
5772 = linux_nat_supports_disable_randomization;
5773
5774 t->to_core_of_thread = linux_nat_core_of_thread;
5775
5776 /* We don't change the stratum; this target will sit at
5777 process_stratum and thread_db will set at thread_stratum. This
5778 is a little strange, since this is a multi-threaded-capable
5779 target, but we want to be on the stack below thread_db, and we
5780 also want to be used for single-threaded processes. */
5781
5782 add_target (t);
5783 }
5784
5785 /* Register a method to call whenever a new thread is attached. */
5786 void
5787 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
5788 {
5789 /* Save the pointer. We only support a single registered instance
5790 of the GNU/Linux native target, so we do not need to map this to
5791 T. */
5792 linux_nat_new_thread = new_thread;
5793 }
5794
5795 /* Register a method that converts a siginfo object between the layout
5796 that ptrace returns, and the layout in the architecture of the
5797 inferior. */
5798 void
5799 linux_nat_set_siginfo_fixup (struct target_ops *t,
5800 int (*siginfo_fixup) (struct siginfo *,
5801 gdb_byte *,
5802 int))
5803 {
5804 /* Save the pointer. */
5805 linux_nat_siginfo_fixup = siginfo_fixup;
5806 }
5807
5808 /* Return the saved siginfo associated with PTID. */
5809 struct siginfo *
5810 linux_nat_get_siginfo (ptid_t ptid)
5811 {
5812 struct lwp_info *lp = find_lwp_pid (ptid);
5813
5814 gdb_assert (lp != NULL);
5815
5816 return &lp->siginfo;
5817 }
5818
5819 /* Provide a prototype to silence -Wmissing-prototypes. */
5820 extern initialize_file_ftype _initialize_linux_nat;
5821
5822 void
5823 _initialize_linux_nat (void)
5824 {
5825 add_info ("proc", linux_nat_info_proc_cmd, _("\
5826 Show /proc process information about any running process.\n\
5827 Specify any process id, or use the program being debugged by default.\n\
5828 Specify any of the following keywords for detailed info:\n\
5829 mappings -- list of mapped memory regions.\n\
5830 stat -- list a bunch of random process info.\n\
5831 status -- list a different bunch of random process info.\n\
5832 all -- list all available /proc info."));
5833
5834 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5835 &debug_linux_nat, _("\
5836 Set debugging of GNU/Linux lwp module."), _("\
5837 Show debugging of GNU/Linux lwp module."), _("\
5838 Enables printf debugging output."),
5839 NULL,
5840 show_debug_linux_nat,
5841 &setdebuglist, &showdebuglist);
5842
5843 /* Save this mask as the default. */
5844 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5845
5846 /* Install a SIGCHLD handler. */
5847 sigchld_action.sa_handler = sigchld_handler;
5848 sigemptyset (&sigchld_action.sa_mask);
5849 sigchld_action.sa_flags = SA_RESTART;
5850
5851 /* Make it the default. */
5852 sigaction (SIGCHLD, &sigchld_action, NULL);
5853
5854 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5855 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5856 sigdelset (&suspend_mask, SIGCHLD);
5857
5858 sigemptyset (&blocked_mask);
5859 }
5860 \f
5861
5862 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5863 the GNU/Linux Threads library and therefore doesn't really belong
5864 here. */
5865
5866 /* Read variable NAME in the target and return its value if found.
5867 Otherwise return zero. It is assumed that the type of the variable
5868 is `int'. */
5869
5870 static int
5871 get_signo (const char *name)
5872 {
5873 struct minimal_symbol *ms;
5874 int signo;
5875
5876 ms = lookup_minimal_symbol (name, NULL, NULL);
5877 if (ms == NULL)
5878 return 0;
5879
5880 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5881 sizeof (signo)) != 0)
5882 return 0;
5883
5884 return signo;
5885 }
5886
5887 /* Return the set of signals used by the threads library in *SET. */
5888
5889 void
5890 lin_thread_get_thread_signals (sigset_t *set)
5891 {
5892 struct sigaction action;
5893 int restart, cancel;
5894
5895 sigemptyset (&blocked_mask);
5896 sigemptyset (set);
5897
5898 restart = get_signo ("__pthread_sig_restart");
5899 cancel = get_signo ("__pthread_sig_cancel");
5900
5901 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5902 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5903 not provide any way for the debugger to query the signal numbers -
5904 fortunately they don't change! */
5905
5906 if (restart == 0)
5907 restart = __SIGRTMIN;
5908
5909 if (cancel == 0)
5910 cancel = __SIGRTMIN + 1;
5911
5912 sigaddset (set, restart);
5913 sigaddset (set, cancel);
5914
5915 /* The GNU/Linux Threads library makes terminating threads send a
5916 special "cancel" signal instead of SIGCHLD. Make sure we catch
5917 those (to prevent them from terminating GDB itself, which is
5918 likely to be their default action) and treat them the same way as
5919 SIGCHLD. */
5920
5921 action.sa_handler = sigchld_handler;
5922 sigemptyset (&action.sa_mask);
5923 action.sa_flags = SA_RESTART;
5924 sigaction (cancel, &action, NULL);
5925
5926 /* We block the "cancel" signal throughout this code ... */
5927 sigaddset (&blocked_mask, cancel);
5928 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5929
5930 /* ... except during a sigsuspend. */
5931 sigdelset (&suspend_mask, cancel);
5932 }