Synthesize array descriptors with -fgnat-encodings=minimal
[binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdbsupport/gdb_wait.h"
27 #include <unistd.h>
28 #include <sys/syscall.h>
29 #include "nat/gdb_ptrace.h"
30 #include "linux-nat.h"
31 #include "nat/linux-ptrace.h"
32 #include "nat/linux-procfs.h"
33 #include "nat/linux-personality.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
36 #include "gdbcmd.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "inf-child.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/procfs.h> /* for elf_gregset etc. */
43 #include "elf-bfd.h" /* for elfcore_write_* */
44 #include "gregset.h" /* for gregset */
45 #include "gdbcore.h" /* for get_exec_file */
46 #include <ctype.h> /* for isdigit */
47 #include <sys/stat.h> /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "gdbsupport/event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include <dirent.h>
55 #include "xml-support.h"
56 #include <sys/vfs.h>
57 #include "solib.h"
58 #include "nat/linux-osdata.h"
59 #include "linux-tdep.h"
60 #include "symfile.h"
61 #include "gdbsupport/agent.h"
62 #include "tracepoint.h"
63 #include "gdbsupport/buffer.h"
64 #include "target-descriptions.h"
65 #include "gdbsupport/filestuff.h"
66 #include "objfiles.h"
67 #include "nat/linux-namespaces.h"
68 #include "gdbsupport/fileio.h"
69 #include "gdbsupport/scope-exit.h"
70 #include "gdbsupport/gdb-sigmask.h"
71 #include "gdbsupport/common-debug.h"
72
73 /* This comment documents high-level logic of this file.
74
75 Waiting for events in sync mode
76 ===============================
77
78 When waiting for an event in a specific thread, we just use waitpid,
79 passing the specific pid, and not passing WNOHANG.
80
81 When waiting for an event in all threads, waitpid is not quite good:
82
83 - If the thread group leader exits while other threads in the thread
84 group still exist, waitpid(TGID, ...) hangs. That waitpid won't
85 return an exit status until the other threads in the group are
86 reaped.
87
88 - When a non-leader thread execs, that thread just vanishes without
89 reporting an exit (so we'd hang if we waited for it explicitly in
90 that case). The exec event is instead reported to the TGID pid.
91
92 The solution is to always use -1 and WNOHANG, together with
93 sigsuspend.
94
95 First, we use non-blocking waitpid to check for events. If nothing is
96 found, we use sigsuspend to wait for SIGCHLD. When SIGCHLD arrives,
97 it means something happened to a child process. As soon as we know
98 there's an event, we get back to calling nonblocking waitpid.
99
100 Note that SIGCHLD should be blocked between waitpid and sigsuspend
101 calls, so that we don't miss a signal. If SIGCHLD arrives in between,
102 when it's blocked, the signal becomes pending and sigsuspend
103 immediately notices it and returns.
104
105 Waiting for events in async mode (TARGET_WNOHANG)
106 =================================================
107
108 In async mode, GDB should always be ready to handle both user input
109 and target events, so neither blocking waitpid nor sigsuspend are
110 viable options. Instead, we should asynchronously notify the GDB main
111 event loop whenever there's an unprocessed event from the target. We
112 detect asynchronous target events by handling SIGCHLD signals. To
113 notify the event loop about target events, the self-pipe trick is used
114 --- a pipe is registered as waitable event source in the event loop,
115 the event loop select/poll's on the read end of this pipe (as well on
116 other event sources, e.g., stdin), and the SIGCHLD handler writes a
117 byte to this pipe. This is more portable than relying on
118 pselect/ppoll, since on kernels that lack those syscalls, libc
119 emulates them with select/poll+sigprocmask, and that is racy
120 (a.k.a. plain broken).
121
122 Obviously, if we fail to notify the event loop if there's a target
123 event, it's bad. OTOH, if we notify the event loop when there's no
124 event from the target, linux_nat_wait will detect that there's no real
125 event to report, and return event of type TARGET_WAITKIND_IGNORE.
126 This is mostly harmless, but it will waste time and is better avoided.
127
128 The main design point is that every time GDB is outside linux-nat.c,
129 we have a SIGCHLD handler installed that is called when something
130 happens to the target and notifies the GDB event loop. Whenever GDB
131 core decides to handle the event, and calls into linux-nat.c, we
132 process things as in sync mode, except that the we never block in
133 sigsuspend.
134
135 While processing an event, we may end up momentarily blocked in
136 waitpid calls. Those waitpid calls, while blocking, are guarantied to
137 return quickly. E.g., in all-stop mode, before reporting to the core
138 that an LWP hit a breakpoint, all LWPs are stopped by sending them
139 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
140 Note that this is different from blocking indefinitely waiting for the
141 next event --- here, we're already handling an event.
142
143 Use of signals
144 ==============
145
146 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
147 signal is not entirely significant; we just need for a signal to be delivered,
148 so that we can intercept it. SIGSTOP's advantage is that it can not be
149 blocked. A disadvantage is that it is not a real-time signal, so it can only
150 be queued once; we do not keep track of other sources of SIGSTOP.
151
152 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
153 use them, because they have special behavior when the signal is generated -
154 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
155 kills the entire thread group.
156
157 A delivered SIGSTOP would stop the entire thread group, not just the thread we
158 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
159 cancel it (by PTRACE_CONT without passing SIGSTOP).
160
161 We could use a real-time signal instead. This would solve those problems; we
162 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
163 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
164 generates it, and there are races with trying to find a signal that is not
165 blocked.
166
167 Exec events
168 ===========
169
170 The case of a thread group (process) with 3 or more threads, and a
171 thread other than the leader execs is worth detailing:
172
173 On an exec, the Linux kernel destroys all threads except the execing
174 one in the thread group, and resets the execing thread's tid to the
175 tgid. No exit notification is sent for the execing thread -- from the
176 ptracer's perspective, it appears as though the execing thread just
177 vanishes. Until we reap all other threads except the leader and the
178 execing thread, the leader will be zombie, and the execing thread will
179 be in `D (disc sleep)' state. As soon as all other threads are
180 reaped, the execing thread changes its tid to the tgid, and the
181 previous (zombie) leader vanishes, giving place to the "new"
182 leader. */
183
184 #ifndef O_LARGEFILE
185 #define O_LARGEFILE 0
186 #endif
187
188 struct linux_nat_target *linux_target;
189
190 /* Does the current host support PTRACE_GETREGSET? */
191 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN;
192
193 static unsigned int debug_linux_nat;
194 static void
195 show_debug_linux_nat (struct ui_file *file, int from_tty,
196 struct cmd_list_element *c, const char *value)
197 {
198 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
199 value);
200 }
201
202 /* Print a linux-nat debug statement. */
203
204 #define linux_nat_debug_printf(fmt, ...) \
205 do \
206 { \
207 if (debug_linux_nat) \
208 debug_prefixed_printf ("linux-nat", __func__, fmt, ##__VA_ARGS__); \
209 } \
210 while (0)
211
212 struct simple_pid_list
213 {
214 int pid;
215 int status;
216 struct simple_pid_list *next;
217 };
218 static struct simple_pid_list *stopped_pids;
219
220 /* Whether target_thread_events is in effect. */
221 static int report_thread_events;
222
223 /* Async mode support. */
224
225 /* The read/write ends of the pipe registered as waitable file in the
226 event loop. */
227 static int linux_nat_event_pipe[2] = { -1, -1 };
228
229 /* True if we're currently in async mode. */
230 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
231
232 /* Flush the event pipe. */
233
234 static void
235 async_file_flush (void)
236 {
237 int ret;
238 char buf;
239
240 do
241 {
242 ret = read (linux_nat_event_pipe[0], &buf, 1);
243 }
244 while (ret >= 0 || (ret == -1 && errno == EINTR));
245 }
246
247 /* Put something (anything, doesn't matter what, or how much) in event
248 pipe, so that the select/poll in the event-loop realizes we have
249 something to process. */
250
251 static void
252 async_file_mark (void)
253 {
254 int ret;
255
256 /* It doesn't really matter what the pipe contains, as long we end
257 up with something in it. Might as well flush the previous
258 left-overs. */
259 async_file_flush ();
260
261 do
262 {
263 ret = write (linux_nat_event_pipe[1], "+", 1);
264 }
265 while (ret == -1 && errno == EINTR);
266
267 /* Ignore EAGAIN. If the pipe is full, the event loop will already
268 be awakened anyway. */
269 }
270
271 static int kill_lwp (int lwpid, int signo);
272
273 static int stop_callback (struct lwp_info *lp);
274
275 static void block_child_signals (sigset_t *prev_mask);
276 static void restore_child_signals_mask (sigset_t *prev_mask);
277
278 struct lwp_info;
279 static struct lwp_info *add_lwp (ptid_t ptid);
280 static void purge_lwp_list (int pid);
281 static void delete_lwp (ptid_t ptid);
282 static struct lwp_info *find_lwp_pid (ptid_t ptid);
283
284 static int lwp_status_pending_p (struct lwp_info *lp);
285
286 static void save_stop_reason (struct lwp_info *lp);
287
288 \f
289 /* LWP accessors. */
290
291 /* See nat/linux-nat.h. */
292
293 ptid_t
294 ptid_of_lwp (struct lwp_info *lwp)
295 {
296 return lwp->ptid;
297 }
298
299 /* See nat/linux-nat.h. */
300
301 void
302 lwp_set_arch_private_info (struct lwp_info *lwp,
303 struct arch_lwp_info *info)
304 {
305 lwp->arch_private = info;
306 }
307
308 /* See nat/linux-nat.h. */
309
310 struct arch_lwp_info *
311 lwp_arch_private_info (struct lwp_info *lwp)
312 {
313 return lwp->arch_private;
314 }
315
316 /* See nat/linux-nat.h. */
317
318 int
319 lwp_is_stopped (struct lwp_info *lwp)
320 {
321 return lwp->stopped;
322 }
323
324 /* See nat/linux-nat.h. */
325
326 enum target_stop_reason
327 lwp_stop_reason (struct lwp_info *lwp)
328 {
329 return lwp->stop_reason;
330 }
331
332 /* See nat/linux-nat.h. */
333
334 int
335 lwp_is_stepping (struct lwp_info *lwp)
336 {
337 return lwp->step;
338 }
339
340 \f
341 /* Trivial list manipulation functions to keep track of a list of
342 new stopped processes. */
343 static void
344 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
345 {
346 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
347
348 new_pid->pid = pid;
349 new_pid->status = status;
350 new_pid->next = *listp;
351 *listp = new_pid;
352 }
353
354 static int
355 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
356 {
357 struct simple_pid_list **p;
358
359 for (p = listp; *p != NULL; p = &(*p)->next)
360 if ((*p)->pid == pid)
361 {
362 struct simple_pid_list *next = (*p)->next;
363
364 *statusp = (*p)->status;
365 xfree (*p);
366 *p = next;
367 return 1;
368 }
369 return 0;
370 }
371
372 /* Return the ptrace options that we want to try to enable. */
373
374 static int
375 linux_nat_ptrace_options (int attached)
376 {
377 int options = 0;
378
379 if (!attached)
380 options |= PTRACE_O_EXITKILL;
381
382 options |= (PTRACE_O_TRACESYSGOOD
383 | PTRACE_O_TRACEVFORKDONE
384 | PTRACE_O_TRACEVFORK
385 | PTRACE_O_TRACEFORK
386 | PTRACE_O_TRACEEXEC);
387
388 return options;
389 }
390
391 /* Initialize ptrace and procfs warnings and check for supported
392 ptrace features given PID.
393
394 ATTACHED should be nonzero iff we attached to the inferior. */
395
396 static void
397 linux_init_ptrace_procfs (pid_t pid, int attached)
398 {
399 int options = linux_nat_ptrace_options (attached);
400
401 linux_enable_event_reporting (pid, options);
402 linux_ptrace_init_warnings ();
403 linux_proc_init_warnings ();
404 }
405
406 linux_nat_target::~linux_nat_target ()
407 {}
408
409 void
410 linux_nat_target::post_attach (int pid)
411 {
412 linux_init_ptrace_procfs (pid, 1);
413 }
414
415 void
416 linux_nat_target::post_startup_inferior (ptid_t ptid)
417 {
418 linux_init_ptrace_procfs (ptid.pid (), 0);
419 }
420
421 /* Return the number of known LWPs in the tgid given by PID. */
422
423 static int
424 num_lwps (int pid)
425 {
426 int count = 0;
427 struct lwp_info *lp;
428
429 for (lp = lwp_list; lp; lp = lp->next)
430 if (lp->ptid.pid () == pid)
431 count++;
432
433 return count;
434 }
435
436 /* Deleter for lwp_info unique_ptr specialisation. */
437
438 struct lwp_deleter
439 {
440 void operator() (struct lwp_info *lwp) const
441 {
442 delete_lwp (lwp->ptid);
443 }
444 };
445
446 /* A unique_ptr specialisation for lwp_info. */
447
448 typedef std::unique_ptr<struct lwp_info, lwp_deleter> lwp_info_up;
449
450 /* Target hook for follow_fork. On entry inferior_ptid must be the
451 ptid of the followed inferior. At return, inferior_ptid will be
452 unchanged. */
453
454 bool
455 linux_nat_target::follow_fork (bool follow_child, bool detach_fork)
456 {
457 if (!follow_child)
458 {
459 struct lwp_info *child_lp = NULL;
460 int has_vforked;
461 ptid_t parent_ptid, child_ptid;
462 int parent_pid, child_pid;
463
464 has_vforked = (inferior_thread ()->pending_follow.kind
465 == TARGET_WAITKIND_VFORKED);
466 parent_ptid = inferior_ptid;
467 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
468 parent_pid = parent_ptid.lwp ();
469 child_pid = child_ptid.lwp ();
470
471 /* We're already attached to the parent, by default. */
472 child_lp = add_lwp (child_ptid);
473 child_lp->stopped = 1;
474 child_lp->last_resume_kind = resume_stop;
475
476 /* Detach new forked process? */
477 if (detach_fork)
478 {
479 int child_stop_signal = 0;
480 bool detach_child = true;
481
482 /* Move CHILD_LP into a unique_ptr and clear the source pointer
483 to prevent us doing anything stupid with it. */
484 lwp_info_up child_lp_ptr (child_lp);
485 child_lp = nullptr;
486
487 linux_target->low_prepare_to_resume (child_lp_ptr.get ());
488
489 /* When debugging an inferior in an architecture that supports
490 hardware single stepping on a kernel without commit
491 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
492 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
493 set if the parent process had them set.
494 To work around this, single step the child process
495 once before detaching to clear the flags. */
496
497 /* Note that we consult the parent's architecture instead of
498 the child's because there's no inferior for the child at
499 this point. */
500 if (!gdbarch_software_single_step_p (target_thread_architecture
501 (parent_ptid)))
502 {
503 int status;
504
505 linux_disable_event_reporting (child_pid);
506 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
507 perror_with_name (_("Couldn't do single step"));
508 if (my_waitpid (child_pid, &status, 0) < 0)
509 perror_with_name (_("Couldn't wait vfork process"));
510 else
511 {
512 detach_child = WIFSTOPPED (status);
513 child_stop_signal = WSTOPSIG (status);
514 }
515 }
516
517 if (detach_child)
518 {
519 int signo = child_stop_signal;
520
521 if (signo != 0
522 && !signal_pass_state (gdb_signal_from_host (signo)))
523 signo = 0;
524 ptrace (PTRACE_DETACH, child_pid, 0, signo);
525 }
526 }
527 else
528 {
529 /* Switching inferior_ptid is not enough, because then
530 inferior_thread () would crash by not finding the thread
531 in the current inferior. */
532 scoped_restore_current_thread restore_current_thread;
533 thread_info *child = find_thread_ptid (this, child_ptid);
534 switch_to_thread (child);
535
536 /* Let the thread_db layer learn about this new process. */
537 check_for_thread_db ();
538 }
539
540 if (has_vforked)
541 {
542 struct lwp_info *parent_lp;
543
544 parent_lp = find_lwp_pid (parent_ptid);
545 gdb_assert (linux_supports_tracefork () >= 0);
546
547 if (linux_supports_tracevforkdone ())
548 {
549 linux_nat_debug_printf ("waiting for VFORK_DONE on %d",
550 parent_pid);
551 parent_lp->stopped = 1;
552
553 /* We'll handle the VFORK_DONE event like any other
554 event, in target_wait. */
555 }
556 else
557 {
558 /* We can't insert breakpoints until the child has
559 finished with the shared memory region. We need to
560 wait until that happens. Ideal would be to just
561 call:
562 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
563 - waitpid (parent_pid, &status, __WALL);
564 However, most architectures can't handle a syscall
565 being traced on the way out if it wasn't traced on
566 the way in.
567
568 We might also think to loop, continuing the child
569 until it exits or gets a SIGTRAP. One problem is
570 that the child might call ptrace with PTRACE_TRACEME.
571
572 There's no simple and reliable way to figure out when
573 the vforked child will be done with its copy of the
574 shared memory. We could step it out of the syscall,
575 two instructions, let it go, and then single-step the
576 parent once. When we have hardware single-step, this
577 would work; with software single-step it could still
578 be made to work but we'd have to be able to insert
579 single-step breakpoints in the child, and we'd have
580 to insert -just- the single-step breakpoint in the
581 parent. Very awkward.
582
583 In the end, the best we can do is to make sure it
584 runs for a little while. Hopefully it will be out of
585 range of any breakpoints we reinsert. Usually this
586 is only the single-step breakpoint at vfork's return
587 point. */
588
589 linux_nat_debug_printf ("no VFORK_DONE support, sleeping a bit");
590
591 usleep (10000);
592
593 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
594 and leave it pending. The next linux_nat_resume call
595 will notice a pending event, and bypasses actually
596 resuming the inferior. */
597 parent_lp->status = 0;
598 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
599 parent_lp->stopped = 1;
600
601 /* If we're in async mode, need to tell the event loop
602 there's something here to process. */
603 if (target_is_async_p ())
604 async_file_mark ();
605 }
606 }
607 }
608 else
609 {
610 struct lwp_info *child_lp;
611
612 child_lp = add_lwp (inferior_ptid);
613 child_lp->stopped = 1;
614 child_lp->last_resume_kind = resume_stop;
615
616 /* Let the thread_db layer learn about this new process. */
617 check_for_thread_db ();
618 }
619
620 return false;
621 }
622
623 \f
624 int
625 linux_nat_target::insert_fork_catchpoint (int pid)
626 {
627 return !linux_supports_tracefork ();
628 }
629
630 int
631 linux_nat_target::remove_fork_catchpoint (int pid)
632 {
633 return 0;
634 }
635
636 int
637 linux_nat_target::insert_vfork_catchpoint (int pid)
638 {
639 return !linux_supports_tracefork ();
640 }
641
642 int
643 linux_nat_target::remove_vfork_catchpoint (int pid)
644 {
645 return 0;
646 }
647
648 int
649 linux_nat_target::insert_exec_catchpoint (int pid)
650 {
651 return !linux_supports_tracefork ();
652 }
653
654 int
655 linux_nat_target::remove_exec_catchpoint (int pid)
656 {
657 return 0;
658 }
659
660 int
661 linux_nat_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
662 gdb::array_view<const int> syscall_counts)
663 {
664 if (!linux_supports_tracesysgood ())
665 return 1;
666
667 /* On GNU/Linux, we ignore the arguments. It means that we only
668 enable the syscall catchpoints, but do not disable them.
669
670 Also, we do not use the `syscall_counts' information because we do not
671 filter system calls here. We let GDB do the logic for us. */
672 return 0;
673 }
674
675 /* List of known LWPs, keyed by LWP PID. This speeds up the common
676 case of mapping a PID returned from the kernel to our corresponding
677 lwp_info data structure. */
678 static htab_t lwp_lwpid_htab;
679
680 /* Calculate a hash from a lwp_info's LWP PID. */
681
682 static hashval_t
683 lwp_info_hash (const void *ap)
684 {
685 const struct lwp_info *lp = (struct lwp_info *) ap;
686 pid_t pid = lp->ptid.lwp ();
687
688 return iterative_hash_object (pid, 0);
689 }
690
691 /* Equality function for the lwp_info hash table. Compares the LWP's
692 PID. */
693
694 static int
695 lwp_lwpid_htab_eq (const void *a, const void *b)
696 {
697 const struct lwp_info *entry = (const struct lwp_info *) a;
698 const struct lwp_info *element = (const struct lwp_info *) b;
699
700 return entry->ptid.lwp () == element->ptid.lwp ();
701 }
702
703 /* Create the lwp_lwpid_htab hash table. */
704
705 static void
706 lwp_lwpid_htab_create (void)
707 {
708 lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL);
709 }
710
711 /* Add LP to the hash table. */
712
713 static void
714 lwp_lwpid_htab_add_lwp (struct lwp_info *lp)
715 {
716 void **slot;
717
718 slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT);
719 gdb_assert (slot != NULL && *slot == NULL);
720 *slot = lp;
721 }
722
723 /* Head of doubly-linked list of known LWPs. Sorted by reverse
724 creation order. This order is assumed in some cases. E.g.,
725 reaping status after killing alls lwps of a process: the leader LWP
726 must be reaped last. */
727 struct lwp_info *lwp_list;
728
729 /* Add LP to sorted-by-reverse-creation-order doubly-linked list. */
730
731 static void
732 lwp_list_add (struct lwp_info *lp)
733 {
734 lp->next = lwp_list;
735 if (lwp_list != NULL)
736 lwp_list->prev = lp;
737 lwp_list = lp;
738 }
739
740 /* Remove LP from sorted-by-reverse-creation-order doubly-linked
741 list. */
742
743 static void
744 lwp_list_remove (struct lwp_info *lp)
745 {
746 /* Remove from sorted-by-creation-order list. */
747 if (lp->next != NULL)
748 lp->next->prev = lp->prev;
749 if (lp->prev != NULL)
750 lp->prev->next = lp->next;
751 if (lp == lwp_list)
752 lwp_list = lp->next;
753 }
754
755 \f
756
757 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
758 _initialize_linux_nat. */
759 static sigset_t suspend_mask;
760
761 /* Signals to block to make that sigsuspend work. */
762 static sigset_t blocked_mask;
763
764 /* SIGCHLD action. */
765 struct sigaction sigchld_action;
766
767 /* Block child signals (SIGCHLD and linux threads signals), and store
768 the previous mask in PREV_MASK. */
769
770 static void
771 block_child_signals (sigset_t *prev_mask)
772 {
773 /* Make sure SIGCHLD is blocked. */
774 if (!sigismember (&blocked_mask, SIGCHLD))
775 sigaddset (&blocked_mask, SIGCHLD);
776
777 gdb_sigmask (SIG_BLOCK, &blocked_mask, prev_mask);
778 }
779
780 /* Restore child signals mask, previously returned by
781 block_child_signals. */
782
783 static void
784 restore_child_signals_mask (sigset_t *prev_mask)
785 {
786 gdb_sigmask (SIG_SETMASK, prev_mask, NULL);
787 }
788
789 /* Mask of signals to pass directly to the inferior. */
790 static sigset_t pass_mask;
791
792 /* Update signals to pass to the inferior. */
793 void
794 linux_nat_target::pass_signals
795 (gdb::array_view<const unsigned char> pass_signals)
796 {
797 int signo;
798
799 sigemptyset (&pass_mask);
800
801 for (signo = 1; signo < NSIG; signo++)
802 {
803 int target_signo = gdb_signal_from_host (signo);
804 if (target_signo < pass_signals.size () && pass_signals[target_signo])
805 sigaddset (&pass_mask, signo);
806 }
807 }
808
809 \f
810
811 /* Prototypes for local functions. */
812 static int stop_wait_callback (struct lwp_info *lp);
813 static int resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid);
814 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
815
816 \f
817
818 /* Destroy and free LP. */
819
820 static void
821 lwp_free (struct lwp_info *lp)
822 {
823 /* Let the arch specific bits release arch_lwp_info. */
824 linux_target->low_delete_thread (lp->arch_private);
825
826 xfree (lp);
827 }
828
829 /* Traversal function for purge_lwp_list. */
830
831 static int
832 lwp_lwpid_htab_remove_pid (void **slot, void *info)
833 {
834 struct lwp_info *lp = (struct lwp_info *) *slot;
835 int pid = *(int *) info;
836
837 if (lp->ptid.pid () == pid)
838 {
839 htab_clear_slot (lwp_lwpid_htab, slot);
840 lwp_list_remove (lp);
841 lwp_free (lp);
842 }
843
844 return 1;
845 }
846
847 /* Remove all LWPs belong to PID from the lwp list. */
848
849 static void
850 purge_lwp_list (int pid)
851 {
852 htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid);
853 }
854
855 /* Add the LWP specified by PTID to the list. PTID is the first LWP
856 in the process. Return a pointer to the structure describing the
857 new LWP.
858
859 This differs from add_lwp in that we don't let the arch specific
860 bits know about this new thread. Current clients of this callback
861 take the opportunity to install watchpoints in the new thread, and
862 we shouldn't do that for the first thread. If we're spawning a
863 child ("run"), the thread executes the shell wrapper first, and we
864 shouldn't touch it until it execs the program we want to debug.
865 For "attach", it'd be okay to call the callback, but it's not
866 necessary, because watchpoints can't yet have been inserted into
867 the inferior. */
868
869 static struct lwp_info *
870 add_initial_lwp (ptid_t ptid)
871 {
872 struct lwp_info *lp;
873
874 gdb_assert (ptid.lwp_p ());
875
876 lp = XNEW (struct lwp_info);
877
878 memset (lp, 0, sizeof (struct lwp_info));
879
880 lp->last_resume_kind = resume_continue;
881 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
882
883 lp->ptid = ptid;
884 lp->core = -1;
885
886 /* Add to sorted-by-reverse-creation-order list. */
887 lwp_list_add (lp);
888
889 /* Add to keyed-by-pid htab. */
890 lwp_lwpid_htab_add_lwp (lp);
891
892 return lp;
893 }
894
895 /* Add the LWP specified by PID to the list. Return a pointer to the
896 structure describing the new LWP. The LWP should already be
897 stopped. */
898
899 static struct lwp_info *
900 add_lwp (ptid_t ptid)
901 {
902 struct lwp_info *lp;
903
904 lp = add_initial_lwp (ptid);
905
906 /* Let the arch specific bits know about this new thread. Current
907 clients of this callback take the opportunity to install
908 watchpoints in the new thread. We don't do this for the first
909 thread though. See add_initial_lwp. */
910 linux_target->low_new_thread (lp);
911
912 return lp;
913 }
914
915 /* Remove the LWP specified by PID from the list. */
916
917 static void
918 delete_lwp (ptid_t ptid)
919 {
920 struct lwp_info *lp;
921 void **slot;
922 struct lwp_info dummy;
923
924 dummy.ptid = ptid;
925 slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT);
926 if (slot == NULL)
927 return;
928
929 lp = *(struct lwp_info **) slot;
930 gdb_assert (lp != NULL);
931
932 htab_clear_slot (lwp_lwpid_htab, slot);
933
934 /* Remove from sorted-by-creation-order list. */
935 lwp_list_remove (lp);
936
937 /* Release. */
938 lwp_free (lp);
939 }
940
941 /* Return a pointer to the structure describing the LWP corresponding
942 to PID. If no corresponding LWP could be found, return NULL. */
943
944 static struct lwp_info *
945 find_lwp_pid (ptid_t ptid)
946 {
947 struct lwp_info *lp;
948 int lwp;
949 struct lwp_info dummy;
950
951 if (ptid.lwp_p ())
952 lwp = ptid.lwp ();
953 else
954 lwp = ptid.pid ();
955
956 dummy.ptid = ptid_t (0, lwp, 0);
957 lp = (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy);
958 return lp;
959 }
960
961 /* See nat/linux-nat.h. */
962
963 struct lwp_info *
964 iterate_over_lwps (ptid_t filter,
965 gdb::function_view<iterate_over_lwps_ftype> callback)
966 {
967 struct lwp_info *lp, *lpnext;
968
969 for (lp = lwp_list; lp; lp = lpnext)
970 {
971 lpnext = lp->next;
972
973 if (lp->ptid.matches (filter))
974 {
975 if (callback (lp) != 0)
976 return lp;
977 }
978 }
979
980 return NULL;
981 }
982
983 /* Update our internal state when changing from one checkpoint to
984 another indicated by NEW_PTID. We can only switch single-threaded
985 applications, so we only create one new LWP, and the previous list
986 is discarded. */
987
988 void
989 linux_nat_switch_fork (ptid_t new_ptid)
990 {
991 struct lwp_info *lp;
992
993 purge_lwp_list (inferior_ptid.pid ());
994
995 lp = add_lwp (new_ptid);
996 lp->stopped = 1;
997
998 /* This changes the thread's ptid while preserving the gdb thread
999 num. Also changes the inferior pid, while preserving the
1000 inferior num. */
1001 thread_change_ptid (linux_target, inferior_ptid, new_ptid);
1002
1003 /* We've just told GDB core that the thread changed target id, but,
1004 in fact, it really is a different thread, with different register
1005 contents. */
1006 registers_changed ();
1007 }
1008
1009 /* Handle the exit of a single thread LP. */
1010
1011 static void
1012 exit_lwp (struct lwp_info *lp)
1013 {
1014 struct thread_info *th = find_thread_ptid (linux_target, lp->ptid);
1015
1016 if (th)
1017 {
1018 if (print_thread_events)
1019 printf_unfiltered (_("[%s exited]\n"),
1020 target_pid_to_str (lp->ptid).c_str ());
1021
1022 delete_thread (th);
1023 }
1024
1025 delete_lwp (lp->ptid);
1026 }
1027
1028 /* Wait for the LWP specified by LP, which we have just attached to.
1029 Returns a wait status for that LWP, to cache. */
1030
1031 static int
1032 linux_nat_post_attach_wait (ptid_t ptid, int *signalled)
1033 {
1034 pid_t new_pid, pid = ptid.lwp ();
1035 int status;
1036
1037 if (linux_proc_pid_is_stopped (pid))
1038 {
1039 linux_nat_debug_printf ("Attaching to a stopped process");
1040
1041 /* The process is definitely stopped. It is in a job control
1042 stop, unless the kernel predates the TASK_STOPPED /
1043 TASK_TRACED distinction, in which case it might be in a
1044 ptrace stop. Make sure it is in a ptrace stop; from there we
1045 can kill it, signal it, et cetera.
1046
1047 First make sure there is a pending SIGSTOP. Since we are
1048 already attached, the process can not transition from stopped
1049 to running without a PTRACE_CONT; so we know this signal will
1050 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1051 probably already in the queue (unless this kernel is old
1052 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1053 is not an RT signal, it can only be queued once. */
1054 kill_lwp (pid, SIGSTOP);
1055
1056 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1057 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1058 ptrace (PTRACE_CONT, pid, 0, 0);
1059 }
1060
1061 /* Make sure the initial process is stopped. The user-level threads
1062 layer might want to poke around in the inferior, and that won't
1063 work if things haven't stabilized yet. */
1064 new_pid = my_waitpid (pid, &status, __WALL);
1065 gdb_assert (pid == new_pid);
1066
1067 if (!WIFSTOPPED (status))
1068 {
1069 /* The pid we tried to attach has apparently just exited. */
1070 linux_nat_debug_printf ("Failed to stop %d: %s", pid,
1071 status_to_str (status));
1072 return status;
1073 }
1074
1075 if (WSTOPSIG (status) != SIGSTOP)
1076 {
1077 *signalled = 1;
1078 linux_nat_debug_printf ("Received %s after attaching",
1079 status_to_str (status));
1080 }
1081
1082 return status;
1083 }
1084
1085 void
1086 linux_nat_target::create_inferior (const char *exec_file,
1087 const std::string &allargs,
1088 char **env, int from_tty)
1089 {
1090 maybe_disable_address_space_randomization restore_personality
1091 (disable_randomization);
1092
1093 /* The fork_child mechanism is synchronous and calls target_wait, so
1094 we have to mask the async mode. */
1095
1096 /* Make sure we report all signals during startup. */
1097 pass_signals ({});
1098
1099 inf_ptrace_target::create_inferior (exec_file, allargs, env, from_tty);
1100 }
1101
1102 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1103 already attached. Returns true if a new LWP is found, false
1104 otherwise. */
1105
1106 static int
1107 attach_proc_task_lwp_callback (ptid_t ptid)
1108 {
1109 struct lwp_info *lp;
1110
1111 /* Ignore LWPs we're already attached to. */
1112 lp = find_lwp_pid (ptid);
1113 if (lp == NULL)
1114 {
1115 int lwpid = ptid.lwp ();
1116
1117 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1118 {
1119 int err = errno;
1120
1121 /* Be quiet if we simply raced with the thread exiting.
1122 EPERM is returned if the thread's task still exists, and
1123 is marked as exited or zombie, as well as other
1124 conditions, so in that case, confirm the status in
1125 /proc/PID/status. */
1126 if (err == ESRCH
1127 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1128 {
1129 linux_nat_debug_printf
1130 ("Cannot attach to lwp %d: thread is gone (%d: %s)",
1131 lwpid, err, safe_strerror (err));
1132
1133 }
1134 else
1135 {
1136 std::string reason
1137 = linux_ptrace_attach_fail_reason_string (ptid, err);
1138
1139 warning (_("Cannot attach to lwp %d: %s"),
1140 lwpid, reason.c_str ());
1141 }
1142 }
1143 else
1144 {
1145 linux_nat_debug_printf ("PTRACE_ATTACH %s, 0, 0 (OK)",
1146 target_pid_to_str (ptid).c_str ());
1147
1148 lp = add_lwp (ptid);
1149
1150 /* The next time we wait for this LWP we'll see a SIGSTOP as
1151 PTRACE_ATTACH brings it to a halt. */
1152 lp->signalled = 1;
1153
1154 /* We need to wait for a stop before being able to make the
1155 next ptrace call on this LWP. */
1156 lp->must_set_ptrace_flags = 1;
1157
1158 /* So that wait collects the SIGSTOP. */
1159 lp->resumed = 1;
1160
1161 /* Also add the LWP to gdb's thread list, in case a
1162 matching libthread_db is not found (or the process uses
1163 raw clone). */
1164 add_thread (linux_target, lp->ptid);
1165 set_running (linux_target, lp->ptid, true);
1166 set_executing (linux_target, lp->ptid, true);
1167 }
1168
1169 return 1;
1170 }
1171 return 0;
1172 }
1173
1174 void
1175 linux_nat_target::attach (const char *args, int from_tty)
1176 {
1177 struct lwp_info *lp;
1178 int status;
1179 ptid_t ptid;
1180
1181 /* Make sure we report all signals during attach. */
1182 pass_signals ({});
1183
1184 try
1185 {
1186 inf_ptrace_target::attach (args, from_tty);
1187 }
1188 catch (const gdb_exception_error &ex)
1189 {
1190 pid_t pid = parse_pid_to_attach (args);
1191 std::string reason = linux_ptrace_attach_fail_reason (pid);
1192
1193 if (!reason.empty ())
1194 throw_error (ex.error, "warning: %s\n%s", reason.c_str (),
1195 ex.what ());
1196 else
1197 throw_error (ex.error, "%s", ex.what ());
1198 }
1199
1200 /* The ptrace base target adds the main thread with (pid,0,0)
1201 format. Decorate it with lwp info. */
1202 ptid = ptid_t (inferior_ptid.pid (),
1203 inferior_ptid.pid (),
1204 0);
1205 thread_change_ptid (linux_target, inferior_ptid, ptid);
1206
1207 /* Add the initial process as the first LWP to the list. */
1208 lp = add_initial_lwp (ptid);
1209
1210 status = linux_nat_post_attach_wait (lp->ptid, &lp->signalled);
1211 if (!WIFSTOPPED (status))
1212 {
1213 if (WIFEXITED (status))
1214 {
1215 int exit_code = WEXITSTATUS (status);
1216
1217 target_terminal::ours ();
1218 target_mourn_inferior (inferior_ptid);
1219 if (exit_code == 0)
1220 error (_("Unable to attach: program exited normally."));
1221 else
1222 error (_("Unable to attach: program exited with code %d."),
1223 exit_code);
1224 }
1225 else if (WIFSIGNALED (status))
1226 {
1227 enum gdb_signal signo;
1228
1229 target_terminal::ours ();
1230 target_mourn_inferior (inferior_ptid);
1231
1232 signo = gdb_signal_from_host (WTERMSIG (status));
1233 error (_("Unable to attach: program terminated with signal "
1234 "%s, %s."),
1235 gdb_signal_to_name (signo),
1236 gdb_signal_to_string (signo));
1237 }
1238
1239 internal_error (__FILE__, __LINE__,
1240 _("unexpected status %d for PID %ld"),
1241 status, (long) ptid.lwp ());
1242 }
1243
1244 lp->stopped = 1;
1245
1246 /* Save the wait status to report later. */
1247 lp->resumed = 1;
1248 linux_nat_debug_printf ("waitpid %ld, saving status %s",
1249 (long) lp->ptid.pid (), status_to_str (status));
1250
1251 lp->status = status;
1252
1253 /* We must attach to every LWP. If /proc is mounted, use that to
1254 find them now. The inferior may be using raw clone instead of
1255 using pthreads. But even if it is using pthreads, thread_db
1256 walks structures in the inferior's address space to find the list
1257 of threads/LWPs, and those structures may well be corrupted.
1258 Note that once thread_db is loaded, we'll still use it to list
1259 threads and associate pthread info with each LWP. */
1260 linux_proc_attach_tgid_threads (lp->ptid.pid (),
1261 attach_proc_task_lwp_callback);
1262
1263 if (target_can_async_p ())
1264 target_async (1);
1265 }
1266
1267 /* Get pending signal of THREAD as a host signal number, for detaching
1268 purposes. This is the signal the thread last stopped for, which we
1269 need to deliver to the thread when detaching, otherwise, it'd be
1270 suppressed/lost. */
1271
1272 static int
1273 get_detach_signal (struct lwp_info *lp)
1274 {
1275 enum gdb_signal signo = GDB_SIGNAL_0;
1276
1277 /* If we paused threads momentarily, we may have stored pending
1278 events in lp->status or lp->waitstatus (see stop_wait_callback),
1279 and GDB core hasn't seen any signal for those threads.
1280 Otherwise, the last signal reported to the core is found in the
1281 thread object's stop_signal.
1282
1283 There's a corner case that isn't handled here at present. Only
1284 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1285 stop_signal make sense as a real signal to pass to the inferior.
1286 Some catchpoint related events, like
1287 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1288 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1289 those traps are debug API (ptrace in our case) related and
1290 induced; the inferior wouldn't see them if it wasn't being
1291 traced. Hence, we should never pass them to the inferior, even
1292 when set to pass state. Since this corner case isn't handled by
1293 infrun.c when proceeding with a signal, for consistency, neither
1294 do we handle it here (or elsewhere in the file we check for
1295 signal pass state). Normally SIGTRAP isn't set to pass state, so
1296 this is really a corner case. */
1297
1298 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1299 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1300 else if (lp->status)
1301 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1302 else
1303 {
1304 struct thread_info *tp = find_thread_ptid (linux_target, lp->ptid);
1305
1306 if (target_is_non_stop_p () && !tp->executing)
1307 {
1308 if (tp->suspend.waitstatus_pending_p)
1309 signo = tp->suspend.waitstatus.value.sig;
1310 else
1311 signo = tp->suspend.stop_signal;
1312 }
1313 else if (!target_is_non_stop_p ())
1314 {
1315 ptid_t last_ptid;
1316 process_stratum_target *last_target;
1317
1318 get_last_target_status (&last_target, &last_ptid, nullptr);
1319
1320 if (last_target == linux_target
1321 && lp->ptid.lwp () == last_ptid.lwp ())
1322 signo = tp->suspend.stop_signal;
1323 }
1324 }
1325
1326 if (signo == GDB_SIGNAL_0)
1327 {
1328 linux_nat_debug_printf ("lwp %s has no pending signal",
1329 target_pid_to_str (lp->ptid).c_str ());
1330 }
1331 else if (!signal_pass_state (signo))
1332 {
1333 linux_nat_debug_printf
1334 ("lwp %s had signal %s but it is in no pass state",
1335 target_pid_to_str (lp->ptid).c_str (), gdb_signal_to_string (signo));
1336 }
1337 else
1338 {
1339 linux_nat_debug_printf ("lwp %s has pending signal %s",
1340 target_pid_to_str (lp->ptid).c_str (),
1341 gdb_signal_to_string (signo));
1342
1343 return gdb_signal_to_host (signo);
1344 }
1345
1346 return 0;
1347 }
1348
1349 /* Detach from LP. If SIGNO_P is non-NULL, then it points to the
1350 signal number that should be passed to the LWP when detaching.
1351 Otherwise pass any pending signal the LWP may have, if any. */
1352
1353 static void
1354 detach_one_lwp (struct lwp_info *lp, int *signo_p)
1355 {
1356 int lwpid = lp->ptid.lwp ();
1357 int signo;
1358
1359 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1360
1361 if (lp->status != 0)
1362 linux_nat_debug_printf ("Pending %s for %s on detach.",
1363 strsignal (WSTOPSIG (lp->status)),
1364 target_pid_to_str (lp->ptid).c_str ());
1365
1366 /* If there is a pending SIGSTOP, get rid of it. */
1367 if (lp->signalled)
1368 {
1369 linux_nat_debug_printf ("Sending SIGCONT to %s",
1370 target_pid_to_str (lp->ptid).c_str ());
1371
1372 kill_lwp (lwpid, SIGCONT);
1373 lp->signalled = 0;
1374 }
1375
1376 if (signo_p == NULL)
1377 {
1378 /* Pass on any pending signal for this LWP. */
1379 signo = get_detach_signal (lp);
1380 }
1381 else
1382 signo = *signo_p;
1383
1384 /* Preparing to resume may try to write registers, and fail if the
1385 lwp is zombie. If that happens, ignore the error. We'll handle
1386 it below, when detach fails with ESRCH. */
1387 try
1388 {
1389 linux_target->low_prepare_to_resume (lp);
1390 }
1391 catch (const gdb_exception_error &ex)
1392 {
1393 if (!check_ptrace_stopped_lwp_gone (lp))
1394 throw;
1395 }
1396
1397 if (ptrace (PTRACE_DETACH, lwpid, 0, signo) < 0)
1398 {
1399 int save_errno = errno;
1400
1401 /* We know the thread exists, so ESRCH must mean the lwp is
1402 zombie. This can happen if one of the already-detached
1403 threads exits the whole thread group. In that case we're
1404 still attached, and must reap the lwp. */
1405 if (save_errno == ESRCH)
1406 {
1407 int ret, status;
1408
1409 ret = my_waitpid (lwpid, &status, __WALL);
1410 if (ret == -1)
1411 {
1412 warning (_("Couldn't reap LWP %d while detaching: %s"),
1413 lwpid, safe_strerror (errno));
1414 }
1415 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1416 {
1417 warning (_("Reaping LWP %d while detaching "
1418 "returned unexpected status 0x%x"),
1419 lwpid, status);
1420 }
1421 }
1422 else
1423 {
1424 error (_("Can't detach %s: %s"),
1425 target_pid_to_str (lp->ptid).c_str (),
1426 safe_strerror (save_errno));
1427 }
1428 }
1429 else
1430 linux_nat_debug_printf ("PTRACE_DETACH (%s, %s, 0) (OK)",
1431 target_pid_to_str (lp->ptid).c_str (),
1432 strsignal (signo));
1433
1434 delete_lwp (lp->ptid);
1435 }
1436
1437 static int
1438 detach_callback (struct lwp_info *lp)
1439 {
1440 /* We don't actually detach from the thread group leader just yet.
1441 If the thread group exits, we must reap the zombie clone lwps
1442 before we're able to reap the leader. */
1443 if (lp->ptid.lwp () != lp->ptid.pid ())
1444 detach_one_lwp (lp, NULL);
1445 return 0;
1446 }
1447
1448 void
1449 linux_nat_target::detach (inferior *inf, int from_tty)
1450 {
1451 struct lwp_info *main_lwp;
1452 int pid = inf->pid;
1453
1454 /* Don't unregister from the event loop, as there may be other
1455 inferiors running. */
1456
1457 /* Stop all threads before detaching. ptrace requires that the
1458 thread is stopped to successfully detach. */
1459 iterate_over_lwps (ptid_t (pid), stop_callback);
1460 /* ... and wait until all of them have reported back that
1461 they're no longer running. */
1462 iterate_over_lwps (ptid_t (pid), stop_wait_callback);
1463
1464 iterate_over_lwps (ptid_t (pid), detach_callback);
1465
1466 /* Only the initial process should be left right now. */
1467 gdb_assert (num_lwps (pid) == 1);
1468
1469 main_lwp = find_lwp_pid (ptid_t (pid));
1470
1471 if (forks_exist_p ())
1472 {
1473 /* Multi-fork case. The current inferior_ptid is being detached
1474 from, but there are other viable forks to debug. Detach from
1475 the current fork, and context-switch to the first
1476 available. */
1477 linux_fork_detach (from_tty);
1478 }
1479 else
1480 {
1481 target_announce_detach (from_tty);
1482
1483 /* Pass on any pending signal for the last LWP. */
1484 int signo = get_detach_signal (main_lwp);
1485
1486 detach_one_lwp (main_lwp, &signo);
1487
1488 detach_success (inf);
1489 }
1490 }
1491
1492 /* Resume execution of the inferior process. If STEP is nonzero,
1493 single-step it. If SIGNAL is nonzero, give it that signal. */
1494
1495 static void
1496 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1497 enum gdb_signal signo)
1498 {
1499 lp->step = step;
1500
1501 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1502 We only presently need that if the LWP is stepped though (to
1503 handle the case of stepping a breakpoint instruction). */
1504 if (step)
1505 {
1506 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
1507
1508 lp->stop_pc = regcache_read_pc (regcache);
1509 }
1510 else
1511 lp->stop_pc = 0;
1512
1513 linux_target->low_prepare_to_resume (lp);
1514 linux_target->low_resume (lp->ptid, step, signo);
1515
1516 /* Successfully resumed. Clear state that no longer makes sense,
1517 and mark the LWP as running. Must not do this before resuming
1518 otherwise if that fails other code will be confused. E.g., we'd
1519 later try to stop the LWP and hang forever waiting for a stop
1520 status. Note that we must not throw after this is cleared,
1521 otherwise handle_zombie_lwp_error would get confused. */
1522 lp->stopped = 0;
1523 lp->core = -1;
1524 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1525 registers_changed_ptid (linux_target, lp->ptid);
1526 }
1527
1528 /* Called when we try to resume a stopped LWP and that errors out. If
1529 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1530 or about to become), discard the error, clear any pending status
1531 the LWP may have, and return true (we'll collect the exit status
1532 soon enough). Otherwise, return false. */
1533
1534 static int
1535 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1536 {
1537 /* If we get an error after resuming the LWP successfully, we'd
1538 confuse !T state for the LWP being gone. */
1539 gdb_assert (lp->stopped);
1540
1541 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1542 because even if ptrace failed with ESRCH, the tracee may be "not
1543 yet fully dead", but already refusing ptrace requests. In that
1544 case the tracee has 'R (Running)' state for a little bit
1545 (observed in Linux 3.18). See also the note on ESRCH in the
1546 ptrace(2) man page. Instead, check whether the LWP has any state
1547 other than ptrace-stopped. */
1548
1549 /* Don't assume anything if /proc/PID/status can't be read. */
1550 if (linux_proc_pid_is_trace_stopped_nowarn (lp->ptid.lwp ()) == 0)
1551 {
1552 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1553 lp->status = 0;
1554 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1555 return 1;
1556 }
1557 return 0;
1558 }
1559
1560 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1561 disappears while we try to resume it. */
1562
1563 static void
1564 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1565 {
1566 try
1567 {
1568 linux_resume_one_lwp_throw (lp, step, signo);
1569 }
1570 catch (const gdb_exception_error &ex)
1571 {
1572 if (!check_ptrace_stopped_lwp_gone (lp))
1573 throw;
1574 }
1575 }
1576
1577 /* Resume LP. */
1578
1579 static void
1580 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1581 {
1582 if (lp->stopped)
1583 {
1584 struct inferior *inf = find_inferior_ptid (linux_target, lp->ptid);
1585
1586 if (inf->vfork_child != NULL)
1587 {
1588 linux_nat_debug_printf ("Not resuming %s (vfork parent)",
1589 target_pid_to_str (lp->ptid).c_str ());
1590 }
1591 else if (!lwp_status_pending_p (lp))
1592 {
1593 linux_nat_debug_printf ("Resuming sibling %s, %s, %s",
1594 target_pid_to_str (lp->ptid).c_str (),
1595 (signo != GDB_SIGNAL_0
1596 ? strsignal (gdb_signal_to_host (signo))
1597 : "0"),
1598 step ? "step" : "resume");
1599
1600 linux_resume_one_lwp (lp, step, signo);
1601 }
1602 else
1603 {
1604 linux_nat_debug_printf ("Not resuming sibling %s (has pending)",
1605 target_pid_to_str (lp->ptid).c_str ());
1606 }
1607 }
1608 else
1609 linux_nat_debug_printf ("Not resuming sibling %s (not stopped)",
1610 target_pid_to_str (lp->ptid).c_str ());
1611 }
1612
1613 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1614 Resume LWP with the last stop signal, if it is in pass state. */
1615
1616 static int
1617 linux_nat_resume_callback (struct lwp_info *lp, struct lwp_info *except)
1618 {
1619 enum gdb_signal signo = GDB_SIGNAL_0;
1620
1621 if (lp == except)
1622 return 0;
1623
1624 if (lp->stopped)
1625 {
1626 struct thread_info *thread;
1627
1628 thread = find_thread_ptid (linux_target, lp->ptid);
1629 if (thread != NULL)
1630 {
1631 signo = thread->suspend.stop_signal;
1632 thread->suspend.stop_signal = GDB_SIGNAL_0;
1633 }
1634 }
1635
1636 resume_lwp (lp, 0, signo);
1637 return 0;
1638 }
1639
1640 static int
1641 resume_clear_callback (struct lwp_info *lp)
1642 {
1643 lp->resumed = 0;
1644 lp->last_resume_kind = resume_stop;
1645 return 0;
1646 }
1647
1648 static int
1649 resume_set_callback (struct lwp_info *lp)
1650 {
1651 lp->resumed = 1;
1652 lp->last_resume_kind = resume_continue;
1653 return 0;
1654 }
1655
1656 void
1657 linux_nat_target::resume (ptid_t ptid, int step, enum gdb_signal signo)
1658 {
1659 struct lwp_info *lp;
1660 int resume_many;
1661
1662 linux_nat_debug_printf ("Preparing to %s %s, %s, inferior_ptid %s",
1663 step ? "step" : "resume",
1664 target_pid_to_str (ptid).c_str (),
1665 (signo != GDB_SIGNAL_0
1666 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1667 target_pid_to_str (inferior_ptid).c_str ());
1668
1669 /* A specific PTID means `step only this process id'. */
1670 resume_many = (minus_one_ptid == ptid
1671 || ptid.is_pid ());
1672
1673 /* Mark the lwps we're resuming as resumed and update their
1674 last_resume_kind to resume_continue. */
1675 iterate_over_lwps (ptid, resume_set_callback);
1676
1677 /* See if it's the current inferior that should be handled
1678 specially. */
1679 if (resume_many)
1680 lp = find_lwp_pid (inferior_ptid);
1681 else
1682 lp = find_lwp_pid (ptid);
1683 gdb_assert (lp != NULL);
1684
1685 /* Remember if we're stepping. */
1686 lp->last_resume_kind = step ? resume_step : resume_continue;
1687
1688 /* If we have a pending wait status for this thread, there is no
1689 point in resuming the process. But first make sure that
1690 linux_nat_wait won't preemptively handle the event - we
1691 should never take this short-circuit if we are going to
1692 leave LP running, since we have skipped resuming all the
1693 other threads. This bit of code needs to be synchronized
1694 with linux_nat_wait. */
1695
1696 if (lp->status && WIFSTOPPED (lp->status))
1697 {
1698 if (!lp->step
1699 && WSTOPSIG (lp->status)
1700 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1701 {
1702 linux_nat_debug_printf
1703 ("Not short circuiting for ignored status 0x%x", lp->status);
1704
1705 /* FIXME: What should we do if we are supposed to continue
1706 this thread with a signal? */
1707 gdb_assert (signo == GDB_SIGNAL_0);
1708 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1709 lp->status = 0;
1710 }
1711 }
1712
1713 if (lwp_status_pending_p (lp))
1714 {
1715 /* FIXME: What should we do if we are supposed to continue
1716 this thread with a signal? */
1717 gdb_assert (signo == GDB_SIGNAL_0);
1718
1719 linux_nat_debug_printf ("Short circuiting for status 0x%x",
1720 lp->status);
1721
1722 if (target_can_async_p ())
1723 {
1724 target_async (1);
1725 /* Tell the event loop we have something to process. */
1726 async_file_mark ();
1727 }
1728 return;
1729 }
1730
1731 if (resume_many)
1732 iterate_over_lwps (ptid, [=] (struct lwp_info *info)
1733 {
1734 return linux_nat_resume_callback (info, lp);
1735 });
1736
1737 linux_nat_debug_printf ("%s %s, %s (resume event thread)",
1738 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1739 target_pid_to_str (lp->ptid).c_str (),
1740 (signo != GDB_SIGNAL_0
1741 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1742
1743 linux_resume_one_lwp (lp, step, signo);
1744
1745 if (target_can_async_p ())
1746 target_async (1);
1747 }
1748
1749 /* Send a signal to an LWP. */
1750
1751 static int
1752 kill_lwp (int lwpid, int signo)
1753 {
1754 int ret;
1755
1756 errno = 0;
1757 ret = syscall (__NR_tkill, lwpid, signo);
1758 if (errno == ENOSYS)
1759 {
1760 /* If tkill fails, then we are not using nptl threads, a
1761 configuration we no longer support. */
1762 perror_with_name (("tkill"));
1763 }
1764 return ret;
1765 }
1766
1767 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1768 event, check if the core is interested in it: if not, ignore the
1769 event, and keep waiting; otherwise, we need to toggle the LWP's
1770 syscall entry/exit status, since the ptrace event itself doesn't
1771 indicate it, and report the trap to higher layers. */
1772
1773 static int
1774 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1775 {
1776 struct target_waitstatus *ourstatus = &lp->waitstatus;
1777 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1778 thread_info *thread = find_thread_ptid (linux_target, lp->ptid);
1779 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, thread);
1780
1781 if (stopping)
1782 {
1783 /* If we're stopping threads, there's a SIGSTOP pending, which
1784 makes it so that the LWP reports an immediate syscall return,
1785 followed by the SIGSTOP. Skip seeing that "return" using
1786 PTRACE_CONT directly, and let stop_wait_callback collect the
1787 SIGSTOP. Later when the thread is resumed, a new syscall
1788 entry event. If we didn't do this (and returned 0), we'd
1789 leave a syscall entry pending, and our caller, by using
1790 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1791 itself. Later, when the user re-resumes this LWP, we'd see
1792 another syscall entry event and we'd mistake it for a return.
1793
1794 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1795 (leaving immediately with LWP->signalled set, without issuing
1796 a PTRACE_CONT), it would still be problematic to leave this
1797 syscall enter pending, as later when the thread is resumed,
1798 it would then see the same syscall exit mentioned above,
1799 followed by the delayed SIGSTOP, while the syscall didn't
1800 actually get to execute. It seems it would be even more
1801 confusing to the user. */
1802
1803 linux_nat_debug_printf
1804 ("ignoring syscall %d for LWP %ld (stopping threads), resuming with "
1805 "PTRACE_CONT for SIGSTOP", syscall_number, lp->ptid.lwp ());
1806
1807 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1808 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
1809 lp->stopped = 0;
1810 return 1;
1811 }
1812
1813 /* Always update the entry/return state, even if this particular
1814 syscall isn't interesting to the core now. In async mode,
1815 the user could install a new catchpoint for this syscall
1816 between syscall enter/return, and we'll need to know to
1817 report a syscall return if that happens. */
1818 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1819 ? TARGET_WAITKIND_SYSCALL_RETURN
1820 : TARGET_WAITKIND_SYSCALL_ENTRY);
1821
1822 if (catch_syscall_enabled ())
1823 {
1824 if (catching_syscall_number (syscall_number))
1825 {
1826 /* Alright, an event to report. */
1827 ourstatus->kind = lp->syscall_state;
1828 ourstatus->value.syscall_number = syscall_number;
1829
1830 linux_nat_debug_printf
1831 ("stopping for %s of syscall %d for LWP %ld",
1832 (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1833 ? "entry" : "return"), syscall_number, lp->ptid.lwp ());
1834
1835 return 0;
1836 }
1837
1838 linux_nat_debug_printf
1839 ("ignoring %s of syscall %d for LWP %ld",
1840 (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1841 ? "entry" : "return"), syscall_number, lp->ptid.lwp ());
1842 }
1843 else
1844 {
1845 /* If we had been syscall tracing, and hence used PT_SYSCALL
1846 before on this LWP, it could happen that the user removes all
1847 syscall catchpoints before we get to process this event.
1848 There are two noteworthy issues here:
1849
1850 - When stopped at a syscall entry event, resuming with
1851 PT_STEP still resumes executing the syscall and reports a
1852 syscall return.
1853
1854 - Only PT_SYSCALL catches syscall enters. If we last
1855 single-stepped this thread, then this event can't be a
1856 syscall enter. If we last single-stepped this thread, this
1857 has to be a syscall exit.
1858
1859 The points above mean that the next resume, be it PT_STEP or
1860 PT_CONTINUE, can not trigger a syscall trace event. */
1861 linux_nat_debug_printf
1862 ("caught syscall event with no syscall catchpoints. %d for LWP %ld, "
1863 "ignoring", syscall_number, lp->ptid.lwp ());
1864 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1865 }
1866
1867 /* The core isn't interested in this event. For efficiency, avoid
1868 stopping all threads only to have the core resume them all again.
1869 Since we're not stopping threads, if we're still syscall tracing
1870 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1871 subsequent syscall. Simply resume using the inf-ptrace layer,
1872 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1873
1874 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1875 return 1;
1876 }
1877
1878 /* Handle a GNU/Linux extended wait response. If we see a clone
1879 event, we need to add the new LWP to our list (and not report the
1880 trap to higher layers). This function returns non-zero if the
1881 event should be ignored and we should wait again. If STOPPING is
1882 true, the new LWP remains stopped, otherwise it is continued. */
1883
1884 static int
1885 linux_handle_extended_wait (struct lwp_info *lp, int status)
1886 {
1887 int pid = lp->ptid.lwp ();
1888 struct target_waitstatus *ourstatus = &lp->waitstatus;
1889 int event = linux_ptrace_get_extended_event (status);
1890
1891 /* All extended events we currently use are mid-syscall. Only
1892 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
1893 you have to be using PTRACE_SEIZE to get that. */
1894 lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
1895
1896 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1897 || event == PTRACE_EVENT_CLONE)
1898 {
1899 unsigned long new_pid;
1900 int ret;
1901
1902 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1903
1904 /* If we haven't already seen the new PID stop, wait for it now. */
1905 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1906 {
1907 /* The new child has a pending SIGSTOP. We can't affect it until it
1908 hits the SIGSTOP, but we're already attached. */
1909 ret = my_waitpid (new_pid, &status, __WALL);
1910 if (ret == -1)
1911 perror_with_name (_("waiting for new child"));
1912 else if (ret != new_pid)
1913 internal_error (__FILE__, __LINE__,
1914 _("wait returned unexpected PID %d"), ret);
1915 else if (!WIFSTOPPED (status))
1916 internal_error (__FILE__, __LINE__,
1917 _("wait returned unexpected status 0x%x"), status);
1918 }
1919
1920 ourstatus->value.related_pid = ptid_t (new_pid, new_pid, 0);
1921
1922 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
1923 {
1924 /* The arch-specific native code may need to know about new
1925 forks even if those end up never mapped to an
1926 inferior. */
1927 linux_target->low_new_fork (lp, new_pid);
1928 }
1929 else if (event == PTRACE_EVENT_CLONE)
1930 {
1931 linux_target->low_new_clone (lp, new_pid);
1932 }
1933
1934 if (event == PTRACE_EVENT_FORK
1935 && linux_fork_checkpointing_p (lp->ptid.pid ()))
1936 {
1937 /* Handle checkpointing by linux-fork.c here as a special
1938 case. We don't want the follow-fork-mode or 'catch fork'
1939 to interfere with this. */
1940
1941 /* This won't actually modify the breakpoint list, but will
1942 physically remove the breakpoints from the child. */
1943 detach_breakpoints (ptid_t (new_pid, new_pid, 0));
1944
1945 /* Retain child fork in ptrace (stopped) state. */
1946 if (!find_fork_pid (new_pid))
1947 add_fork (new_pid);
1948
1949 /* Report as spurious, so that infrun doesn't want to follow
1950 this fork. We're actually doing an infcall in
1951 linux-fork.c. */
1952 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
1953
1954 /* Report the stop to the core. */
1955 return 0;
1956 }
1957
1958 if (event == PTRACE_EVENT_FORK)
1959 ourstatus->kind = TARGET_WAITKIND_FORKED;
1960 else if (event == PTRACE_EVENT_VFORK)
1961 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1962 else if (event == PTRACE_EVENT_CLONE)
1963 {
1964 struct lwp_info *new_lp;
1965
1966 ourstatus->kind = TARGET_WAITKIND_IGNORE;
1967
1968 linux_nat_debug_printf
1969 ("Got clone event from LWP %d, new child is LWP %ld", pid, new_pid);
1970
1971 new_lp = add_lwp (ptid_t (lp->ptid.pid (), new_pid, 0));
1972 new_lp->stopped = 1;
1973 new_lp->resumed = 1;
1974
1975 /* If the thread_db layer is active, let it record the user
1976 level thread id and status, and add the thread to GDB's
1977 list. */
1978 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
1979 {
1980 /* The process is not using thread_db. Add the LWP to
1981 GDB's list. */
1982 target_post_attach (new_lp->ptid.lwp ());
1983 add_thread (linux_target, new_lp->ptid);
1984 }
1985
1986 /* Even if we're stopping the thread for some reason
1987 internal to this module, from the perspective of infrun
1988 and the user/frontend, this new thread is running until
1989 it next reports a stop. */
1990 set_running (linux_target, new_lp->ptid, true);
1991 set_executing (linux_target, new_lp->ptid, true);
1992
1993 if (WSTOPSIG (status) != SIGSTOP)
1994 {
1995 /* This can happen if someone starts sending signals to
1996 the new thread before it gets a chance to run, which
1997 have a lower number than SIGSTOP (e.g. SIGUSR1).
1998 This is an unlikely case, and harder to handle for
1999 fork / vfork than for clone, so we do not try - but
2000 we handle it for clone events here. */
2001
2002 new_lp->signalled = 1;
2003
2004 /* We created NEW_LP so it cannot yet contain STATUS. */
2005 gdb_assert (new_lp->status == 0);
2006
2007 /* Save the wait status to report later. */
2008 linux_nat_debug_printf
2009 ("waitpid of new LWP %ld, saving status %s",
2010 (long) new_lp->ptid.lwp (), status_to_str (status));
2011 new_lp->status = status;
2012 }
2013 else if (report_thread_events)
2014 {
2015 new_lp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
2016 new_lp->status = status;
2017 }
2018
2019 return 1;
2020 }
2021
2022 return 0;
2023 }
2024
2025 if (event == PTRACE_EVENT_EXEC)
2026 {
2027 linux_nat_debug_printf ("Got exec event from LWP %ld", lp->ptid.lwp ());
2028
2029 ourstatus->kind = TARGET_WAITKIND_EXECD;
2030 ourstatus->value.execd_pathname
2031 = xstrdup (linux_proc_pid_to_exec_file (pid));
2032
2033 /* The thread that execed must have been resumed, but, when a
2034 thread execs, it changes its tid to the tgid, and the old
2035 tgid thread might have not been resumed. */
2036 lp->resumed = 1;
2037 return 0;
2038 }
2039
2040 if (event == PTRACE_EVENT_VFORK_DONE)
2041 {
2042 if (current_inferior ()->waiting_for_vfork_done)
2043 {
2044 linux_nat_debug_printf
2045 ("Got expected PTRACE_EVENT_VFORK_DONE from LWP %ld: stopping",
2046 lp->ptid.lwp ());
2047
2048 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2049 return 0;
2050 }
2051
2052 linux_nat_debug_printf
2053 ("Got PTRACE_EVENT_VFORK_DONE from LWP %ld: ignoring", lp->ptid.lwp ());
2054
2055 return 1;
2056 }
2057
2058 internal_error (__FILE__, __LINE__,
2059 _("unknown ptrace event %d"), event);
2060 }
2061
2062 /* Suspend waiting for a signal. We're mostly interested in
2063 SIGCHLD/SIGINT. */
2064
2065 static void
2066 wait_for_signal ()
2067 {
2068 linux_nat_debug_printf ("about to sigsuspend");
2069 sigsuspend (&suspend_mask);
2070
2071 /* If the quit flag is set, it means that the user pressed Ctrl-C
2072 and we're debugging a process that is running on a separate
2073 terminal, so we must forward the Ctrl-C to the inferior. (If the
2074 inferior is sharing GDB's terminal, then the Ctrl-C reaches the
2075 inferior directly.) We must do this here because functions that
2076 need to block waiting for a signal loop forever until there's an
2077 event to report before returning back to the event loop. */
2078 if (!target_terminal::is_ours ())
2079 {
2080 if (check_quit_flag ())
2081 target_pass_ctrlc ();
2082 }
2083 }
2084
2085 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2086 exited. */
2087
2088 static int
2089 wait_lwp (struct lwp_info *lp)
2090 {
2091 pid_t pid;
2092 int status = 0;
2093 int thread_dead = 0;
2094 sigset_t prev_mask;
2095
2096 gdb_assert (!lp->stopped);
2097 gdb_assert (lp->status == 0);
2098
2099 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2100 block_child_signals (&prev_mask);
2101
2102 for (;;)
2103 {
2104 pid = my_waitpid (lp->ptid.lwp (), &status, __WALL | WNOHANG);
2105 if (pid == -1 && errno == ECHILD)
2106 {
2107 /* The thread has previously exited. We need to delete it
2108 now because if this was a non-leader thread execing, we
2109 won't get an exit event. See comments on exec events at
2110 the top of the file. */
2111 thread_dead = 1;
2112 linux_nat_debug_printf ("%s vanished.",
2113 target_pid_to_str (lp->ptid).c_str ());
2114 }
2115 if (pid != 0)
2116 break;
2117
2118 /* Bugs 10970, 12702.
2119 Thread group leader may have exited in which case we'll lock up in
2120 waitpid if there are other threads, even if they are all zombies too.
2121 Basically, we're not supposed to use waitpid this way.
2122 tkill(pid,0) cannot be used here as it gets ESRCH for both
2123 for zombie and running processes.
2124
2125 As a workaround, check if we're waiting for the thread group leader and
2126 if it's a zombie, and avoid calling waitpid if it is.
2127
2128 This is racy, what if the tgl becomes a zombie right after we check?
2129 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2130 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2131
2132 if (lp->ptid.pid () == lp->ptid.lwp ()
2133 && linux_proc_pid_is_zombie (lp->ptid.lwp ()))
2134 {
2135 thread_dead = 1;
2136 linux_nat_debug_printf ("Thread group leader %s vanished.",
2137 target_pid_to_str (lp->ptid).c_str ());
2138 break;
2139 }
2140
2141 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2142 get invoked despite our caller had them intentionally blocked by
2143 block_child_signals. This is sensitive only to the loop of
2144 linux_nat_wait_1 and there if we get called my_waitpid gets called
2145 again before it gets to sigsuspend so we can safely let the handlers
2146 get executed here. */
2147 wait_for_signal ();
2148 }
2149
2150 restore_child_signals_mask (&prev_mask);
2151
2152 if (!thread_dead)
2153 {
2154 gdb_assert (pid == lp->ptid.lwp ());
2155
2156 linux_nat_debug_printf ("waitpid %s received %s",
2157 target_pid_to_str (lp->ptid).c_str (),
2158 status_to_str (status));
2159
2160 /* Check if the thread has exited. */
2161 if (WIFEXITED (status) || WIFSIGNALED (status))
2162 {
2163 if (report_thread_events
2164 || lp->ptid.pid () == lp->ptid.lwp ())
2165 {
2166 linux_nat_debug_printf ("LWP %d exited.", lp->ptid.pid ());
2167
2168 /* If this is the leader exiting, it means the whole
2169 process is gone. Store the status to report to the
2170 core. Store it in lp->waitstatus, because lp->status
2171 would be ambiguous (W_EXITCODE(0,0) == 0). */
2172 store_waitstatus (&lp->waitstatus, status);
2173 return 0;
2174 }
2175
2176 thread_dead = 1;
2177 linux_nat_debug_printf ("%s exited.",
2178 target_pid_to_str (lp->ptid).c_str ());
2179 }
2180 }
2181
2182 if (thread_dead)
2183 {
2184 exit_lwp (lp);
2185 return 0;
2186 }
2187
2188 gdb_assert (WIFSTOPPED (status));
2189 lp->stopped = 1;
2190
2191 if (lp->must_set_ptrace_flags)
2192 {
2193 inferior *inf = find_inferior_pid (linux_target, lp->ptid.pid ());
2194 int options = linux_nat_ptrace_options (inf->attach_flag);
2195
2196 linux_enable_event_reporting (lp->ptid.lwp (), options);
2197 lp->must_set_ptrace_flags = 0;
2198 }
2199
2200 /* Handle GNU/Linux's syscall SIGTRAPs. */
2201 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2202 {
2203 /* No longer need the sysgood bit. The ptrace event ends up
2204 recorded in lp->waitstatus if we care for it. We can carry
2205 on handling the event like a regular SIGTRAP from here
2206 on. */
2207 status = W_STOPCODE (SIGTRAP);
2208 if (linux_handle_syscall_trap (lp, 1))
2209 return wait_lwp (lp);
2210 }
2211 else
2212 {
2213 /* Almost all other ptrace-stops are known to be outside of system
2214 calls, with further exceptions in linux_handle_extended_wait. */
2215 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2216 }
2217
2218 /* Handle GNU/Linux's extended waitstatus for trace events. */
2219 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2220 && linux_is_extended_waitstatus (status))
2221 {
2222 linux_nat_debug_printf ("Handling extended status 0x%06x", status);
2223 linux_handle_extended_wait (lp, status);
2224 return 0;
2225 }
2226
2227 return status;
2228 }
2229
2230 /* Send a SIGSTOP to LP. */
2231
2232 static int
2233 stop_callback (struct lwp_info *lp)
2234 {
2235 if (!lp->stopped && !lp->signalled)
2236 {
2237 int ret;
2238
2239 linux_nat_debug_printf ("kill %s **<SIGSTOP>**",
2240 target_pid_to_str (lp->ptid).c_str ());
2241
2242 errno = 0;
2243 ret = kill_lwp (lp->ptid.lwp (), SIGSTOP);
2244 linux_nat_debug_printf ("lwp kill %d %s", ret,
2245 errno ? safe_strerror (errno) : "ERRNO-OK");
2246
2247 lp->signalled = 1;
2248 gdb_assert (lp->status == 0);
2249 }
2250
2251 return 0;
2252 }
2253
2254 /* Request a stop on LWP. */
2255
2256 void
2257 linux_stop_lwp (struct lwp_info *lwp)
2258 {
2259 stop_callback (lwp);
2260 }
2261
2262 /* See linux-nat.h */
2263
2264 void
2265 linux_stop_and_wait_all_lwps (void)
2266 {
2267 /* Stop all LWP's ... */
2268 iterate_over_lwps (minus_one_ptid, stop_callback);
2269
2270 /* ... and wait until all of them have reported back that
2271 they're no longer running. */
2272 iterate_over_lwps (minus_one_ptid, stop_wait_callback);
2273 }
2274
2275 /* See linux-nat.h */
2276
2277 void
2278 linux_unstop_all_lwps (void)
2279 {
2280 iterate_over_lwps (minus_one_ptid,
2281 [] (struct lwp_info *info)
2282 {
2283 return resume_stopped_resumed_lwps (info, minus_one_ptid);
2284 });
2285 }
2286
2287 /* Return non-zero if LWP PID has a pending SIGINT. */
2288
2289 static int
2290 linux_nat_has_pending_sigint (int pid)
2291 {
2292 sigset_t pending, blocked, ignored;
2293
2294 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2295
2296 if (sigismember (&pending, SIGINT)
2297 && !sigismember (&ignored, SIGINT))
2298 return 1;
2299
2300 return 0;
2301 }
2302
2303 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2304
2305 static int
2306 set_ignore_sigint (struct lwp_info *lp)
2307 {
2308 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2309 flag to consume the next one. */
2310 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2311 && WSTOPSIG (lp->status) == SIGINT)
2312 lp->status = 0;
2313 else
2314 lp->ignore_sigint = 1;
2315
2316 return 0;
2317 }
2318
2319 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2320 This function is called after we know the LWP has stopped; if the LWP
2321 stopped before the expected SIGINT was delivered, then it will never have
2322 arrived. Also, if the signal was delivered to a shared queue and consumed
2323 by a different thread, it will never be delivered to this LWP. */
2324
2325 static void
2326 maybe_clear_ignore_sigint (struct lwp_info *lp)
2327 {
2328 if (!lp->ignore_sigint)
2329 return;
2330
2331 if (!linux_nat_has_pending_sigint (lp->ptid.lwp ()))
2332 {
2333 linux_nat_debug_printf ("Clearing bogus flag for %s",
2334 target_pid_to_str (lp->ptid).c_str ());
2335 lp->ignore_sigint = 0;
2336 }
2337 }
2338
2339 /* Fetch the possible triggered data watchpoint info and store it in
2340 LP.
2341
2342 On some archs, like x86, that use debug registers to set
2343 watchpoints, it's possible that the way to know which watched
2344 address trapped, is to check the register that is used to select
2345 which address to watch. Problem is, between setting the watchpoint
2346 and reading back which data address trapped, the user may change
2347 the set of watchpoints, and, as a consequence, GDB changes the
2348 debug registers in the inferior. To avoid reading back a stale
2349 stopped-data-address when that happens, we cache in LP the fact
2350 that a watchpoint trapped, and the corresponding data address, as
2351 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2352 registers meanwhile, we have the cached data we can rely on. */
2353
2354 static int
2355 check_stopped_by_watchpoint (struct lwp_info *lp)
2356 {
2357 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
2358 inferior_ptid = lp->ptid;
2359
2360 if (linux_target->low_stopped_by_watchpoint ())
2361 {
2362 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2363 lp->stopped_data_address_p
2364 = linux_target->low_stopped_data_address (&lp->stopped_data_address);
2365 }
2366
2367 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2368 }
2369
2370 /* Returns true if the LWP had stopped for a watchpoint. */
2371
2372 bool
2373 linux_nat_target::stopped_by_watchpoint ()
2374 {
2375 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2376
2377 gdb_assert (lp != NULL);
2378
2379 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2380 }
2381
2382 bool
2383 linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
2384 {
2385 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2386
2387 gdb_assert (lp != NULL);
2388
2389 *addr_p = lp->stopped_data_address;
2390
2391 return lp->stopped_data_address_p;
2392 }
2393
2394 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2395
2396 bool
2397 linux_nat_target::low_status_is_event (int status)
2398 {
2399 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2400 }
2401
2402 /* Wait until LP is stopped. */
2403
2404 static int
2405 stop_wait_callback (struct lwp_info *lp)
2406 {
2407 inferior *inf = find_inferior_ptid (linux_target, lp->ptid);
2408
2409 /* If this is a vfork parent, bail out, it is not going to report
2410 any SIGSTOP until the vfork is done with. */
2411 if (inf->vfork_child != NULL)
2412 return 0;
2413
2414 if (!lp->stopped)
2415 {
2416 int status;
2417
2418 status = wait_lwp (lp);
2419 if (status == 0)
2420 return 0;
2421
2422 if (lp->ignore_sigint && WIFSTOPPED (status)
2423 && WSTOPSIG (status) == SIGINT)
2424 {
2425 lp->ignore_sigint = 0;
2426
2427 errno = 0;
2428 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
2429 lp->stopped = 0;
2430 linux_nat_debug_printf
2431 ("PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)",
2432 target_pid_to_str (lp->ptid).c_str (),
2433 errno ? safe_strerror (errno) : "OK");
2434
2435 return stop_wait_callback (lp);
2436 }
2437
2438 maybe_clear_ignore_sigint (lp);
2439
2440 if (WSTOPSIG (status) != SIGSTOP)
2441 {
2442 /* The thread was stopped with a signal other than SIGSTOP. */
2443
2444 linux_nat_debug_printf ("Pending event %s in %s",
2445 status_to_str ((int) status),
2446 target_pid_to_str (lp->ptid).c_str ());
2447
2448 /* Save the sigtrap event. */
2449 lp->status = status;
2450 gdb_assert (lp->signalled);
2451 save_stop_reason (lp);
2452 }
2453 else
2454 {
2455 /* We caught the SIGSTOP that we intended to catch. */
2456
2457 linux_nat_debug_printf ("Expected SIGSTOP caught for %s.",
2458 target_pid_to_str (lp->ptid).c_str ());
2459
2460 lp->signalled = 0;
2461
2462 /* If we are waiting for this stop so we can report the thread
2463 stopped then we need to record this status. Otherwise, we can
2464 now discard this stop event. */
2465 if (lp->last_resume_kind == resume_stop)
2466 {
2467 lp->status = status;
2468 save_stop_reason (lp);
2469 }
2470 }
2471 }
2472
2473 return 0;
2474 }
2475
2476 /* Return non-zero if LP has a wait status pending. Discard the
2477 pending event and resume the LWP if the event that originally
2478 caused the stop became uninteresting. */
2479
2480 static int
2481 status_callback (struct lwp_info *lp)
2482 {
2483 /* Only report a pending wait status if we pretend that this has
2484 indeed been resumed. */
2485 if (!lp->resumed)
2486 return 0;
2487
2488 if (!lwp_status_pending_p (lp))
2489 return 0;
2490
2491 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2492 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2493 {
2494 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
2495 CORE_ADDR pc;
2496 int discard = 0;
2497
2498 pc = regcache_read_pc (regcache);
2499
2500 if (pc != lp->stop_pc)
2501 {
2502 linux_nat_debug_printf ("PC of %s changed. was=%s, now=%s",
2503 target_pid_to_str (lp->ptid).c_str (),
2504 paddress (target_gdbarch (), lp->stop_pc),
2505 paddress (target_gdbarch (), pc));
2506 discard = 1;
2507 }
2508
2509 #if !USE_SIGTRAP_SIGINFO
2510 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
2511 {
2512 linux_nat_debug_printf ("previous breakpoint of %s, at %s gone",
2513 target_pid_to_str (lp->ptid).c_str (),
2514 paddress (target_gdbarch (), lp->stop_pc));
2515
2516 discard = 1;
2517 }
2518 #endif
2519
2520 if (discard)
2521 {
2522 linux_nat_debug_printf ("pending event of %s cancelled.",
2523 target_pid_to_str (lp->ptid).c_str ());
2524
2525 lp->status = 0;
2526 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2527 return 0;
2528 }
2529 }
2530
2531 return 1;
2532 }
2533
2534 /* Count the LWP's that have had events. */
2535
2536 static int
2537 count_events_callback (struct lwp_info *lp, int *count)
2538 {
2539 gdb_assert (count != NULL);
2540
2541 /* Select only resumed LWPs that have an event pending. */
2542 if (lp->resumed && lwp_status_pending_p (lp))
2543 (*count)++;
2544
2545 return 0;
2546 }
2547
2548 /* Select the LWP (if any) that is currently being single-stepped. */
2549
2550 static int
2551 select_singlestep_lwp_callback (struct lwp_info *lp)
2552 {
2553 if (lp->last_resume_kind == resume_step
2554 && lp->status != 0)
2555 return 1;
2556 else
2557 return 0;
2558 }
2559
2560 /* Returns true if LP has a status pending. */
2561
2562 static int
2563 lwp_status_pending_p (struct lwp_info *lp)
2564 {
2565 /* We check for lp->waitstatus in addition to lp->status, because we
2566 can have pending process exits recorded in lp->status and
2567 W_EXITCODE(0,0) happens to be 0. */
2568 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2569 }
2570
2571 /* Select the Nth LWP that has had an event. */
2572
2573 static int
2574 select_event_lwp_callback (struct lwp_info *lp, int *selector)
2575 {
2576 gdb_assert (selector != NULL);
2577
2578 /* Select only resumed LWPs that have an event pending. */
2579 if (lp->resumed && lwp_status_pending_p (lp))
2580 if ((*selector)-- == 0)
2581 return 1;
2582
2583 return 0;
2584 }
2585
2586 /* Called when the LWP stopped for a signal/trap. If it stopped for a
2587 trap check what caused it (breakpoint, watchpoint, trace, etc.),
2588 and save the result in the LWP's stop_reason field. If it stopped
2589 for a breakpoint, decrement the PC if necessary on the lwp's
2590 architecture. */
2591
2592 static void
2593 save_stop_reason (struct lwp_info *lp)
2594 {
2595 struct regcache *regcache;
2596 struct gdbarch *gdbarch;
2597 CORE_ADDR pc;
2598 CORE_ADDR sw_bp_pc;
2599 #if USE_SIGTRAP_SIGINFO
2600 siginfo_t siginfo;
2601 #endif
2602
2603 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2604 gdb_assert (lp->status != 0);
2605
2606 if (!linux_target->low_status_is_event (lp->status))
2607 return;
2608
2609 regcache = get_thread_regcache (linux_target, lp->ptid);
2610 gdbarch = regcache->arch ();
2611
2612 pc = regcache_read_pc (regcache);
2613 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2614
2615 #if USE_SIGTRAP_SIGINFO
2616 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2617 {
2618 if (siginfo.si_signo == SIGTRAP)
2619 {
2620 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
2621 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2622 {
2623 /* The si_code is ambiguous on this arch -- check debug
2624 registers. */
2625 if (!check_stopped_by_watchpoint (lp))
2626 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2627 }
2628 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
2629 {
2630 /* If we determine the LWP stopped for a SW breakpoint,
2631 trust it. Particularly don't check watchpoint
2632 registers, because, at least on s390, we'd find
2633 stopped-by-watchpoint as long as there's a watchpoint
2634 set. */
2635 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2636 }
2637 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2638 {
2639 /* This can indicate either a hardware breakpoint or
2640 hardware watchpoint. Check debug registers. */
2641 if (!check_stopped_by_watchpoint (lp))
2642 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2643 }
2644 else if (siginfo.si_code == TRAP_TRACE)
2645 {
2646 linux_nat_debug_printf ("%s stopped by trace",
2647 target_pid_to_str (lp->ptid).c_str ());
2648
2649 /* We may have single stepped an instruction that
2650 triggered a watchpoint. In that case, on some
2651 architectures (such as x86), instead of TRAP_HWBKPT,
2652 si_code indicates TRAP_TRACE, and we need to check
2653 the debug registers separately. */
2654 check_stopped_by_watchpoint (lp);
2655 }
2656 }
2657 }
2658 #else
2659 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2660 && software_breakpoint_inserted_here_p (regcache->aspace (),
2661 sw_bp_pc))
2662 {
2663 /* The LWP was either continued, or stepped a software
2664 breakpoint instruction. */
2665 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2666 }
2667
2668 if (hardware_breakpoint_inserted_here_p (regcache->aspace (), pc))
2669 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2670
2671 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
2672 check_stopped_by_watchpoint (lp);
2673 #endif
2674
2675 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
2676 {
2677 linux_nat_debug_printf ("%s stopped by software breakpoint",
2678 target_pid_to_str (lp->ptid).c_str ());
2679
2680 /* Back up the PC if necessary. */
2681 if (pc != sw_bp_pc)
2682 regcache_write_pc (regcache, sw_bp_pc);
2683
2684 /* Update this so we record the correct stop PC below. */
2685 pc = sw_bp_pc;
2686 }
2687 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2688 {
2689 linux_nat_debug_printf ("%s stopped by hardware breakpoint",
2690 target_pid_to_str (lp->ptid).c_str ());
2691 }
2692 else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
2693 {
2694 linux_nat_debug_printf ("%s stopped by hardware watchpoint",
2695 target_pid_to_str (lp->ptid).c_str ());
2696 }
2697
2698 lp->stop_pc = pc;
2699 }
2700
2701
2702 /* Returns true if the LWP had stopped for a software breakpoint. */
2703
2704 bool
2705 linux_nat_target::stopped_by_sw_breakpoint ()
2706 {
2707 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2708
2709 gdb_assert (lp != NULL);
2710
2711 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2712 }
2713
2714 /* Implement the supports_stopped_by_sw_breakpoint method. */
2715
2716 bool
2717 linux_nat_target::supports_stopped_by_sw_breakpoint ()
2718 {
2719 return USE_SIGTRAP_SIGINFO;
2720 }
2721
2722 /* Returns true if the LWP had stopped for a hardware
2723 breakpoint/watchpoint. */
2724
2725 bool
2726 linux_nat_target::stopped_by_hw_breakpoint ()
2727 {
2728 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2729
2730 gdb_assert (lp != NULL);
2731
2732 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2733 }
2734
2735 /* Implement the supports_stopped_by_hw_breakpoint method. */
2736
2737 bool
2738 linux_nat_target::supports_stopped_by_hw_breakpoint ()
2739 {
2740 return USE_SIGTRAP_SIGINFO;
2741 }
2742
2743 /* Select one LWP out of those that have events pending. */
2744
2745 static void
2746 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2747 {
2748 int num_events = 0;
2749 int random_selector;
2750 struct lwp_info *event_lp = NULL;
2751
2752 /* Record the wait status for the original LWP. */
2753 (*orig_lp)->status = *status;
2754
2755 /* In all-stop, give preference to the LWP that is being
2756 single-stepped. There will be at most one, and it will be the
2757 LWP that the core is most interested in. If we didn't do this,
2758 then we'd have to handle pending step SIGTRAPs somehow in case
2759 the core later continues the previously-stepped thread, as
2760 otherwise we'd report the pending SIGTRAP then, and the core, not
2761 having stepped the thread, wouldn't understand what the trap was
2762 for, and therefore would report it to the user as a random
2763 signal. */
2764 if (!target_is_non_stop_p ())
2765 {
2766 event_lp = iterate_over_lwps (filter, select_singlestep_lwp_callback);
2767 if (event_lp != NULL)
2768 {
2769 linux_nat_debug_printf ("Select single-step %s",
2770 target_pid_to_str (event_lp->ptid).c_str ());
2771 }
2772 }
2773
2774 if (event_lp == NULL)
2775 {
2776 /* Pick one at random, out of those which have had events. */
2777
2778 /* First see how many events we have. */
2779 iterate_over_lwps (filter,
2780 [&] (struct lwp_info *info)
2781 {
2782 return count_events_callback (info, &num_events);
2783 });
2784 gdb_assert (num_events > 0);
2785
2786 /* Now randomly pick a LWP out of those that have had
2787 events. */
2788 random_selector = (int)
2789 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2790
2791 if (num_events > 1)
2792 linux_nat_debug_printf ("Found %d events, selecting #%d",
2793 num_events, random_selector);
2794
2795 event_lp
2796 = (iterate_over_lwps
2797 (filter,
2798 [&] (struct lwp_info *info)
2799 {
2800 return select_event_lwp_callback (info,
2801 &random_selector);
2802 }));
2803 }
2804
2805 if (event_lp != NULL)
2806 {
2807 /* Switch the event LWP. */
2808 *orig_lp = event_lp;
2809 *status = event_lp->status;
2810 }
2811
2812 /* Flush the wait status for the event LWP. */
2813 (*orig_lp)->status = 0;
2814 }
2815
2816 /* Return non-zero if LP has been resumed. */
2817
2818 static int
2819 resumed_callback (struct lwp_info *lp)
2820 {
2821 return lp->resumed;
2822 }
2823
2824 /* Check if we should go on and pass this event to common code.
2825 Return the affected lwp if we should, or NULL otherwise. */
2826
2827 static struct lwp_info *
2828 linux_nat_filter_event (int lwpid, int status)
2829 {
2830 struct lwp_info *lp;
2831 int event = linux_ptrace_get_extended_event (status);
2832
2833 lp = find_lwp_pid (ptid_t (lwpid));
2834
2835 /* Check for stop events reported by a process we didn't already
2836 know about - anything not already in our LWP list.
2837
2838 If we're expecting to receive stopped processes after
2839 fork, vfork, and clone events, then we'll just add the
2840 new one to our list and go back to waiting for the event
2841 to be reported - the stopped process might be returned
2842 from waitpid before or after the event is.
2843
2844 But note the case of a non-leader thread exec'ing after the
2845 leader having exited, and gone from our lists. The non-leader
2846 thread changes its tid to the tgid. */
2847
2848 if (WIFSTOPPED (status) && lp == NULL
2849 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
2850 {
2851 /* A multi-thread exec after we had seen the leader exiting. */
2852 linux_nat_debug_printf ("Re-adding thread group leader LWP %d.", lwpid);
2853
2854 lp = add_lwp (ptid_t (lwpid, lwpid, 0));
2855 lp->stopped = 1;
2856 lp->resumed = 1;
2857 add_thread (linux_target, lp->ptid);
2858 }
2859
2860 if (WIFSTOPPED (status) && !lp)
2861 {
2862 linux_nat_debug_printf ("saving LWP %ld status %s in stopped_pids list",
2863 (long) lwpid, status_to_str (status));
2864 add_to_pid_list (&stopped_pids, lwpid, status);
2865 return NULL;
2866 }
2867
2868 /* Make sure we don't report an event for the exit of an LWP not in
2869 our list, i.e. not part of the current process. This can happen
2870 if we detach from a program we originally forked and then it
2871 exits. */
2872 if (!WIFSTOPPED (status) && !lp)
2873 return NULL;
2874
2875 /* This LWP is stopped now. (And if dead, this prevents it from
2876 ever being continued.) */
2877 lp->stopped = 1;
2878
2879 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
2880 {
2881 inferior *inf = find_inferior_pid (linux_target, lp->ptid.pid ());
2882 int options = linux_nat_ptrace_options (inf->attach_flag);
2883
2884 linux_enable_event_reporting (lp->ptid.lwp (), options);
2885 lp->must_set_ptrace_flags = 0;
2886 }
2887
2888 /* Handle GNU/Linux's syscall SIGTRAPs. */
2889 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2890 {
2891 /* No longer need the sysgood bit. The ptrace event ends up
2892 recorded in lp->waitstatus if we care for it. We can carry
2893 on handling the event like a regular SIGTRAP from here
2894 on. */
2895 status = W_STOPCODE (SIGTRAP);
2896 if (linux_handle_syscall_trap (lp, 0))
2897 return NULL;
2898 }
2899 else
2900 {
2901 /* Almost all other ptrace-stops are known to be outside of system
2902 calls, with further exceptions in linux_handle_extended_wait. */
2903 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2904 }
2905
2906 /* Handle GNU/Linux's extended waitstatus for trace events. */
2907 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2908 && linux_is_extended_waitstatus (status))
2909 {
2910 linux_nat_debug_printf ("Handling extended status 0x%06x", status);
2911
2912 if (linux_handle_extended_wait (lp, status))
2913 return NULL;
2914 }
2915
2916 /* Check if the thread has exited. */
2917 if (WIFEXITED (status) || WIFSIGNALED (status))
2918 {
2919 if (!report_thread_events
2920 && num_lwps (lp->ptid.pid ()) > 1)
2921 {
2922 linux_nat_debug_printf ("%s exited.",
2923 target_pid_to_str (lp->ptid).c_str ());
2924
2925 /* If there is at least one more LWP, then the exit signal
2926 was not the end of the debugged application and should be
2927 ignored. */
2928 exit_lwp (lp);
2929 return NULL;
2930 }
2931
2932 /* Note that even if the leader was ptrace-stopped, it can still
2933 exit, if e.g., some other thread brings down the whole
2934 process (calls `exit'). So don't assert that the lwp is
2935 resumed. */
2936 linux_nat_debug_printf ("LWP %ld exited (resumed=%d)",
2937 lp->ptid.lwp (), lp->resumed);
2938
2939 /* Dead LWP's aren't expected to reported a pending sigstop. */
2940 lp->signalled = 0;
2941
2942 /* Store the pending event in the waitstatus, because
2943 W_EXITCODE(0,0) == 0. */
2944 store_waitstatus (&lp->waitstatus, status);
2945 return lp;
2946 }
2947
2948 /* Make sure we don't report a SIGSTOP that we sent ourselves in
2949 an attempt to stop an LWP. */
2950 if (lp->signalled
2951 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
2952 {
2953 lp->signalled = 0;
2954
2955 if (lp->last_resume_kind == resume_stop)
2956 {
2957 linux_nat_debug_printf ("resume_stop SIGSTOP caught for %s.",
2958 target_pid_to_str (lp->ptid).c_str ());
2959 }
2960 else
2961 {
2962 /* This is a delayed SIGSTOP. Filter out the event. */
2963
2964 linux_nat_debug_printf
2965 ("%s %s, 0, 0 (discard delayed SIGSTOP)",
2966 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2967 target_pid_to_str (lp->ptid).c_str ());
2968
2969 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2970 gdb_assert (lp->resumed);
2971 return NULL;
2972 }
2973 }
2974
2975 /* Make sure we don't report a SIGINT that we have already displayed
2976 for another thread. */
2977 if (lp->ignore_sigint
2978 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
2979 {
2980 linux_nat_debug_printf ("Delayed SIGINT caught for %s.",
2981 target_pid_to_str (lp->ptid).c_str ());
2982
2983 /* This is a delayed SIGINT. */
2984 lp->ignore_sigint = 0;
2985
2986 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2987 linux_nat_debug_printf ("%s %s, 0, 0 (discard SIGINT)",
2988 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2989 target_pid_to_str (lp->ptid).c_str ());
2990 gdb_assert (lp->resumed);
2991
2992 /* Discard the event. */
2993 return NULL;
2994 }
2995
2996 /* Don't report signals that GDB isn't interested in, such as
2997 signals that are neither printed nor stopped upon. Stopping all
2998 threads can be a bit time-consuming, so if we want decent
2999 performance with heavily multi-threaded programs, especially when
3000 they're using a high frequency timer, we'd better avoid it if we
3001 can. */
3002 if (WIFSTOPPED (status))
3003 {
3004 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3005
3006 if (!target_is_non_stop_p ())
3007 {
3008 /* Only do the below in all-stop, as we currently use SIGSTOP
3009 to implement target_stop (see linux_nat_stop) in
3010 non-stop. */
3011 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3012 {
3013 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3014 forwarded to the entire process group, that is, all LWPs
3015 will receive it - unless they're using CLONE_THREAD to
3016 share signals. Since we only want to report it once, we
3017 mark it as ignored for all LWPs except this one. */
3018 iterate_over_lwps (ptid_t (lp->ptid.pid ()), set_ignore_sigint);
3019 lp->ignore_sigint = 0;
3020 }
3021 else
3022 maybe_clear_ignore_sigint (lp);
3023 }
3024
3025 /* When using hardware single-step, we need to report every signal.
3026 Otherwise, signals in pass_mask may be short-circuited
3027 except signals that might be caused by a breakpoint, or SIGSTOP
3028 if we sent the SIGSTOP and are waiting for it to arrive. */
3029 if (!lp->step
3030 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3031 && (WSTOPSIG (status) != SIGSTOP
3032 || !find_thread_ptid (linux_target, lp->ptid)->stop_requested)
3033 && !linux_wstatus_maybe_breakpoint (status))
3034 {
3035 linux_resume_one_lwp (lp, lp->step, signo);
3036 linux_nat_debug_printf
3037 ("%s %s, %s (preempt 'handle')",
3038 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3039 target_pid_to_str (lp->ptid).c_str (),
3040 (signo != GDB_SIGNAL_0
3041 ? strsignal (gdb_signal_to_host (signo)) : "0"));
3042 return NULL;
3043 }
3044 }
3045
3046 /* An interesting event. */
3047 gdb_assert (lp);
3048 lp->status = status;
3049 save_stop_reason (lp);
3050 return lp;
3051 }
3052
3053 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3054 their exits until all other threads in the group have exited. */
3055
3056 static void
3057 check_zombie_leaders (void)
3058 {
3059 for (inferior *inf : all_inferiors ())
3060 {
3061 struct lwp_info *leader_lp;
3062
3063 if (inf->pid == 0)
3064 continue;
3065
3066 leader_lp = find_lwp_pid (ptid_t (inf->pid));
3067 if (leader_lp != NULL
3068 /* Check if there are other threads in the group, as we may
3069 have raced with the inferior simply exiting. */
3070 && num_lwps (inf->pid) > 1
3071 && linux_proc_pid_is_zombie (inf->pid))
3072 {
3073 linux_nat_debug_printf ("Thread group leader %d zombie "
3074 "(it exited, or another thread execd).",
3075 inf->pid);
3076
3077 /* A leader zombie can mean one of two things:
3078
3079 - It exited, and there's an exit status pending
3080 available, or only the leader exited (not the whole
3081 program). In the latter case, we can't waitpid the
3082 leader's exit status until all other threads are gone.
3083
3084 - There are 3 or more threads in the group, and a thread
3085 other than the leader exec'd. See comments on exec
3086 events at the top of the file. We could try
3087 distinguishing the exit and exec cases, by waiting once
3088 more, and seeing if something comes out, but it doesn't
3089 sound useful. The previous leader _does_ go away, and
3090 we'll re-add the new one once we see the exec event
3091 (which is just the same as what would happen if the
3092 previous leader did exit voluntarily before some other
3093 thread execs). */
3094
3095 linux_nat_debug_printf ("Thread group leader %d vanished.", inf->pid);
3096 exit_lwp (leader_lp);
3097 }
3098 }
3099 }
3100
3101 /* Convenience function that is called when the kernel reports an exit
3102 event. This decides whether to report the event to GDB as a
3103 process exit event, a thread exit event, or to suppress the
3104 event. */
3105
3106 static ptid_t
3107 filter_exit_event (struct lwp_info *event_child,
3108 struct target_waitstatus *ourstatus)
3109 {
3110 ptid_t ptid = event_child->ptid;
3111
3112 if (num_lwps (ptid.pid ()) > 1)
3113 {
3114 if (report_thread_events)
3115 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3116 else
3117 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3118
3119 exit_lwp (event_child);
3120 }
3121
3122 return ptid;
3123 }
3124
3125 static ptid_t
3126 linux_nat_wait_1 (ptid_t ptid, struct target_waitstatus *ourstatus,
3127 target_wait_flags target_options)
3128 {
3129 sigset_t prev_mask;
3130 enum resume_kind last_resume_kind;
3131 struct lwp_info *lp;
3132 int status;
3133
3134 linux_nat_debug_printf ("enter");
3135
3136 /* The first time we get here after starting a new inferior, we may
3137 not have added it to the LWP list yet - this is the earliest
3138 moment at which we know its PID. */
3139 if (ptid.is_pid () && find_lwp_pid (ptid) == nullptr)
3140 {
3141 ptid_t lwp_ptid (ptid.pid (), ptid.pid ());
3142
3143 /* Upgrade the main thread's ptid. */
3144 thread_change_ptid (linux_target, ptid, lwp_ptid);
3145 lp = add_initial_lwp (lwp_ptid);
3146 lp->resumed = 1;
3147 }
3148
3149 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3150 block_child_signals (&prev_mask);
3151
3152 /* First check if there is a LWP with a wait status pending. */
3153 lp = iterate_over_lwps (ptid, status_callback);
3154 if (lp != NULL)
3155 {
3156 linux_nat_debug_printf ("Using pending wait status %s for %s.",
3157 status_to_str (lp->status),
3158 target_pid_to_str (lp->ptid).c_str ());
3159 }
3160
3161 /* But if we don't find a pending event, we'll have to wait. Always
3162 pull all events out of the kernel. We'll randomly select an
3163 event LWP out of all that have events, to prevent starvation. */
3164
3165 while (lp == NULL)
3166 {
3167 pid_t lwpid;
3168
3169 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3170 quirks:
3171
3172 - If the thread group leader exits while other threads in the
3173 thread group still exist, waitpid(TGID, ...) hangs. That
3174 waitpid won't return an exit status until the other threads
3175 in the group are reaped.
3176
3177 - When a non-leader thread execs, that thread just vanishes
3178 without reporting an exit (so we'd hang if we waited for it
3179 explicitly in that case). The exec event is reported to
3180 the TGID pid. */
3181
3182 errno = 0;
3183 lwpid = my_waitpid (-1, &status, __WALL | WNOHANG);
3184
3185 linux_nat_debug_printf ("waitpid(-1, ...) returned %d, %s",
3186 lwpid,
3187 errno ? safe_strerror (errno) : "ERRNO-OK");
3188
3189 if (lwpid > 0)
3190 {
3191 linux_nat_debug_printf ("waitpid %ld received %s",
3192 (long) lwpid, status_to_str (status));
3193
3194 linux_nat_filter_event (lwpid, status);
3195 /* Retry until nothing comes out of waitpid. A single
3196 SIGCHLD can indicate more than one child stopped. */
3197 continue;
3198 }
3199
3200 /* Now that we've pulled all events out of the kernel, resume
3201 LWPs that don't have an interesting event to report. */
3202 iterate_over_lwps (minus_one_ptid,
3203 [] (struct lwp_info *info)
3204 {
3205 return resume_stopped_resumed_lwps (info, minus_one_ptid);
3206 });
3207
3208 /* ... and find an LWP with a status to report to the core, if
3209 any. */
3210 lp = iterate_over_lwps (ptid, status_callback);
3211 if (lp != NULL)
3212 break;
3213
3214 /* Check for zombie thread group leaders. Those can't be reaped
3215 until all other threads in the thread group are. */
3216 check_zombie_leaders ();
3217
3218 /* If there are no resumed children left, bail. We'd be stuck
3219 forever in the sigsuspend call below otherwise. */
3220 if (iterate_over_lwps (ptid, resumed_callback) == NULL)
3221 {
3222 linux_nat_debug_printf ("exit (no resumed LWP)");
3223
3224 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3225
3226 restore_child_signals_mask (&prev_mask);
3227 return minus_one_ptid;
3228 }
3229
3230 /* No interesting event to report to the core. */
3231
3232 if (target_options & TARGET_WNOHANG)
3233 {
3234 linux_nat_debug_printf ("exit (ignore)");
3235
3236 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3237 restore_child_signals_mask (&prev_mask);
3238 return minus_one_ptid;
3239 }
3240
3241 /* We shouldn't end up here unless we want to try again. */
3242 gdb_assert (lp == NULL);
3243
3244 /* Block until we get an event reported with SIGCHLD. */
3245 wait_for_signal ();
3246 }
3247
3248 gdb_assert (lp);
3249
3250 status = lp->status;
3251 lp->status = 0;
3252
3253 if (!target_is_non_stop_p ())
3254 {
3255 /* Now stop all other LWP's ... */
3256 iterate_over_lwps (minus_one_ptid, stop_callback);
3257
3258 /* ... and wait until all of them have reported back that
3259 they're no longer running. */
3260 iterate_over_lwps (minus_one_ptid, stop_wait_callback);
3261 }
3262
3263 /* If we're not waiting for a specific LWP, choose an event LWP from
3264 among those that have had events. Giving equal priority to all
3265 LWPs that have had events helps prevent starvation. */
3266 if (ptid == minus_one_ptid || ptid.is_pid ())
3267 select_event_lwp (ptid, &lp, &status);
3268
3269 gdb_assert (lp != NULL);
3270
3271 /* Now that we've selected our final event LWP, un-adjust its PC if
3272 it was a software breakpoint, and we can't reliably support the
3273 "stopped by software breakpoint" stop reason. */
3274 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3275 && !USE_SIGTRAP_SIGINFO)
3276 {
3277 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
3278 struct gdbarch *gdbarch = regcache->arch ();
3279 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3280
3281 if (decr_pc != 0)
3282 {
3283 CORE_ADDR pc;
3284
3285 pc = regcache_read_pc (regcache);
3286 regcache_write_pc (regcache, pc + decr_pc);
3287 }
3288 }
3289
3290 /* We'll need this to determine whether to report a SIGSTOP as
3291 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3292 clears it. */
3293 last_resume_kind = lp->last_resume_kind;
3294
3295 if (!target_is_non_stop_p ())
3296 {
3297 /* In all-stop, from the core's perspective, all LWPs are now
3298 stopped until a new resume action is sent over. */
3299 iterate_over_lwps (minus_one_ptid, resume_clear_callback);
3300 }
3301 else
3302 {
3303 resume_clear_callback (lp);
3304 }
3305
3306 if (linux_target->low_status_is_event (status))
3307 {
3308 linux_nat_debug_printf ("trap ptid is %s.",
3309 target_pid_to_str (lp->ptid).c_str ());
3310 }
3311
3312 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3313 {
3314 *ourstatus = lp->waitstatus;
3315 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3316 }
3317 else
3318 store_waitstatus (ourstatus, status);
3319
3320 linux_nat_debug_printf ("exit");
3321
3322 restore_child_signals_mask (&prev_mask);
3323
3324 if (last_resume_kind == resume_stop
3325 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3326 && WSTOPSIG (status) == SIGSTOP)
3327 {
3328 /* A thread that has been requested to stop by GDB with
3329 target_stop, and it stopped cleanly, so report as SIG0. The
3330 use of SIGSTOP is an implementation detail. */
3331 ourstatus->value.sig = GDB_SIGNAL_0;
3332 }
3333
3334 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3335 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3336 lp->core = -1;
3337 else
3338 lp->core = linux_common_core_of_thread (lp->ptid);
3339
3340 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3341 return filter_exit_event (lp, ourstatus);
3342
3343 return lp->ptid;
3344 }
3345
3346 /* Resume LWPs that are currently stopped without any pending status
3347 to report, but are resumed from the core's perspective. */
3348
3349 static int
3350 resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid)
3351 {
3352 if (!lp->stopped)
3353 {
3354 linux_nat_debug_printf ("NOT resuming LWP %s, not stopped",
3355 target_pid_to_str (lp->ptid).c_str ());
3356 }
3357 else if (!lp->resumed)
3358 {
3359 linux_nat_debug_printf ("NOT resuming LWP %s, not resumed",
3360 target_pid_to_str (lp->ptid).c_str ());
3361 }
3362 else if (lwp_status_pending_p (lp))
3363 {
3364 linux_nat_debug_printf ("NOT resuming LWP %s, has pending status",
3365 target_pid_to_str (lp->ptid).c_str ());
3366 }
3367 else
3368 {
3369 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
3370 struct gdbarch *gdbarch = regcache->arch ();
3371
3372 try
3373 {
3374 CORE_ADDR pc = regcache_read_pc (regcache);
3375 int leave_stopped = 0;
3376
3377 /* Don't bother if there's a breakpoint at PC that we'd hit
3378 immediately, and we're not waiting for this LWP. */
3379 if (!lp->ptid.matches (wait_ptid))
3380 {
3381 if (breakpoint_inserted_here_p (regcache->aspace (), pc))
3382 leave_stopped = 1;
3383 }
3384
3385 if (!leave_stopped)
3386 {
3387 linux_nat_debug_printf
3388 ("resuming stopped-resumed LWP %s at %s: step=%d",
3389 target_pid_to_str (lp->ptid).c_str (), paddress (gdbarch, pc),
3390 lp->step);
3391
3392 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3393 }
3394 }
3395 catch (const gdb_exception_error &ex)
3396 {
3397 if (!check_ptrace_stopped_lwp_gone (lp))
3398 throw;
3399 }
3400 }
3401
3402 return 0;
3403 }
3404
3405 ptid_t
3406 linux_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus,
3407 target_wait_flags target_options)
3408 {
3409 ptid_t event_ptid;
3410
3411 linux_nat_debug_printf ("[%s], [%s]", target_pid_to_str (ptid).c_str (),
3412 target_options_to_string (target_options).c_str ());
3413
3414 /* Flush the async file first. */
3415 if (target_is_async_p ())
3416 async_file_flush ();
3417
3418 /* Resume LWPs that are currently stopped without any pending status
3419 to report, but are resumed from the core's perspective. LWPs get
3420 in this state if we find them stopping at a time we're not
3421 interested in reporting the event (target_wait on a
3422 specific_process, for example, see linux_nat_wait_1), and
3423 meanwhile the event became uninteresting. Don't bother resuming
3424 LWPs we're not going to wait for if they'd stop immediately. */
3425 if (target_is_non_stop_p ())
3426 iterate_over_lwps (minus_one_ptid,
3427 [=] (struct lwp_info *info)
3428 {
3429 return resume_stopped_resumed_lwps (info, ptid);
3430 });
3431
3432 event_ptid = linux_nat_wait_1 (ptid, ourstatus, target_options);
3433
3434 /* If we requested any event, and something came out, assume there
3435 may be more. If we requested a specific lwp or process, also
3436 assume there may be more. */
3437 if (target_is_async_p ()
3438 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3439 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3440 || ptid != minus_one_ptid))
3441 async_file_mark ();
3442
3443 return event_ptid;
3444 }
3445
3446 /* Kill one LWP. */
3447
3448 static void
3449 kill_one_lwp (pid_t pid)
3450 {
3451 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3452
3453 errno = 0;
3454 kill_lwp (pid, SIGKILL);
3455
3456 if (debug_linux_nat)
3457 {
3458 int save_errno = errno;
3459
3460 linux_nat_debug_printf
3461 ("kill (SIGKILL) %ld, 0, 0 (%s)", (long) pid,
3462 save_errno != 0 ? safe_strerror (save_errno) : "OK");
3463 }
3464
3465 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3466
3467 errno = 0;
3468 ptrace (PTRACE_KILL, pid, 0, 0);
3469 if (debug_linux_nat)
3470 {
3471 int save_errno = errno;
3472
3473 linux_nat_debug_printf
3474 ("PTRACE_KILL %ld, 0, 0 (%s)", (long) pid,
3475 save_errno ? safe_strerror (save_errno) : "OK");
3476 }
3477 }
3478
3479 /* Wait for an LWP to die. */
3480
3481 static void
3482 kill_wait_one_lwp (pid_t pid)
3483 {
3484 pid_t res;
3485
3486 /* We must make sure that there are no pending events (delayed
3487 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3488 program doesn't interfere with any following debugging session. */
3489
3490 do
3491 {
3492 res = my_waitpid (pid, NULL, __WALL);
3493 if (res != (pid_t) -1)
3494 {
3495 linux_nat_debug_printf ("wait %ld received unknown.", (long) pid);
3496
3497 /* The Linux kernel sometimes fails to kill a thread
3498 completely after PTRACE_KILL; that goes from the stop
3499 point in do_fork out to the one in get_signal_to_deliver
3500 and waits again. So kill it again. */
3501 kill_one_lwp (pid);
3502 }
3503 }
3504 while (res == pid);
3505
3506 gdb_assert (res == -1 && errno == ECHILD);
3507 }
3508
3509 /* Callback for iterate_over_lwps. */
3510
3511 static int
3512 kill_callback (struct lwp_info *lp)
3513 {
3514 kill_one_lwp (lp->ptid.lwp ());
3515 return 0;
3516 }
3517
3518 /* Callback for iterate_over_lwps. */
3519
3520 static int
3521 kill_wait_callback (struct lwp_info *lp)
3522 {
3523 kill_wait_one_lwp (lp->ptid.lwp ());
3524 return 0;
3525 }
3526
3527 /* Kill the fork children of any threads of inferior INF that are
3528 stopped at a fork event. */
3529
3530 static void
3531 kill_unfollowed_fork_children (struct inferior *inf)
3532 {
3533 for (thread_info *thread : inf->non_exited_threads ())
3534 {
3535 struct target_waitstatus *ws = &thread->pending_follow;
3536
3537 if (ws->kind == TARGET_WAITKIND_FORKED
3538 || ws->kind == TARGET_WAITKIND_VFORKED)
3539 {
3540 ptid_t child_ptid = ws->value.related_pid;
3541 int child_pid = child_ptid.pid ();
3542 int child_lwp = child_ptid.lwp ();
3543
3544 kill_one_lwp (child_lwp);
3545 kill_wait_one_lwp (child_lwp);
3546
3547 /* Let the arch-specific native code know this process is
3548 gone. */
3549 linux_target->low_forget_process (child_pid);
3550 }
3551 }
3552 }
3553
3554 void
3555 linux_nat_target::kill ()
3556 {
3557 /* If we're stopped while forking and we haven't followed yet,
3558 kill the other task. We need to do this first because the
3559 parent will be sleeping if this is a vfork. */
3560 kill_unfollowed_fork_children (current_inferior ());
3561
3562 if (forks_exist_p ())
3563 linux_fork_killall ();
3564 else
3565 {
3566 ptid_t ptid = ptid_t (inferior_ptid.pid ());
3567
3568 /* Stop all threads before killing them, since ptrace requires
3569 that the thread is stopped to successfully PTRACE_KILL. */
3570 iterate_over_lwps (ptid, stop_callback);
3571 /* ... and wait until all of them have reported back that
3572 they're no longer running. */
3573 iterate_over_lwps (ptid, stop_wait_callback);
3574
3575 /* Kill all LWP's ... */
3576 iterate_over_lwps (ptid, kill_callback);
3577
3578 /* ... and wait until we've flushed all events. */
3579 iterate_over_lwps (ptid, kill_wait_callback);
3580 }
3581
3582 target_mourn_inferior (inferior_ptid);
3583 }
3584
3585 void
3586 linux_nat_target::mourn_inferior ()
3587 {
3588 int pid = inferior_ptid.pid ();
3589
3590 purge_lwp_list (pid);
3591
3592 if (! forks_exist_p ())
3593 /* Normal case, no other forks available. */
3594 inf_ptrace_target::mourn_inferior ();
3595 else
3596 /* Multi-fork case. The current inferior_ptid has exited, but
3597 there are other viable forks to debug. Delete the exiting
3598 one and context-switch to the first available. */
3599 linux_fork_mourn_inferior ();
3600
3601 /* Let the arch-specific native code know this process is gone. */
3602 linux_target->low_forget_process (pid);
3603 }
3604
3605 /* Convert a native/host siginfo object, into/from the siginfo in the
3606 layout of the inferiors' architecture. */
3607
3608 static void
3609 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3610 {
3611 /* If the low target didn't do anything, then just do a straight
3612 memcpy. */
3613 if (!linux_target->low_siginfo_fixup (siginfo, inf_siginfo, direction))
3614 {
3615 if (direction == 1)
3616 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3617 else
3618 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3619 }
3620 }
3621
3622 static enum target_xfer_status
3623 linux_xfer_siginfo (enum target_object object,
3624 const char *annex, gdb_byte *readbuf,
3625 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3626 ULONGEST *xfered_len)
3627 {
3628 int pid;
3629 siginfo_t siginfo;
3630 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3631
3632 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3633 gdb_assert (readbuf || writebuf);
3634
3635 pid = inferior_ptid.lwp ();
3636 if (pid == 0)
3637 pid = inferior_ptid.pid ();
3638
3639 if (offset > sizeof (siginfo))
3640 return TARGET_XFER_E_IO;
3641
3642 errno = 0;
3643 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3644 if (errno != 0)
3645 return TARGET_XFER_E_IO;
3646
3647 /* When GDB is built as a 64-bit application, ptrace writes into
3648 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3649 inferior with a 64-bit GDB should look the same as debugging it
3650 with a 32-bit GDB, we need to convert it. GDB core always sees
3651 the converted layout, so any read/write will have to be done
3652 post-conversion. */
3653 siginfo_fixup (&siginfo, inf_siginfo, 0);
3654
3655 if (offset + len > sizeof (siginfo))
3656 len = sizeof (siginfo) - offset;
3657
3658 if (readbuf != NULL)
3659 memcpy (readbuf, inf_siginfo + offset, len);
3660 else
3661 {
3662 memcpy (inf_siginfo + offset, writebuf, len);
3663
3664 /* Convert back to ptrace layout before flushing it out. */
3665 siginfo_fixup (&siginfo, inf_siginfo, 1);
3666
3667 errno = 0;
3668 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3669 if (errno != 0)
3670 return TARGET_XFER_E_IO;
3671 }
3672
3673 *xfered_len = len;
3674 return TARGET_XFER_OK;
3675 }
3676
3677 static enum target_xfer_status
3678 linux_nat_xfer_osdata (enum target_object object,
3679 const char *annex, gdb_byte *readbuf,
3680 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3681 ULONGEST *xfered_len);
3682
3683 static enum target_xfer_status
3684 linux_proc_xfer_partial (enum target_object object,
3685 const char *annex, gdb_byte *readbuf,
3686 const gdb_byte *writebuf,
3687 ULONGEST offset, LONGEST len, ULONGEST *xfered_len);
3688
3689 enum target_xfer_status
3690 linux_nat_target::xfer_partial (enum target_object object,
3691 const char *annex, gdb_byte *readbuf,
3692 const gdb_byte *writebuf,
3693 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3694 {
3695 enum target_xfer_status xfer;
3696
3697 if (object == TARGET_OBJECT_SIGNAL_INFO)
3698 return linux_xfer_siginfo (object, annex, readbuf, writebuf,
3699 offset, len, xfered_len);
3700
3701 /* The target is connected but no live inferior is selected. Pass
3702 this request down to a lower stratum (e.g., the executable
3703 file). */
3704 if (object == TARGET_OBJECT_MEMORY && inferior_ptid == null_ptid)
3705 return TARGET_XFER_EOF;
3706
3707 if (object == TARGET_OBJECT_AUXV)
3708 return memory_xfer_auxv (this, object, annex, readbuf, writebuf,
3709 offset, len, xfered_len);
3710
3711 if (object == TARGET_OBJECT_OSDATA)
3712 return linux_nat_xfer_osdata (object, annex, readbuf, writebuf,
3713 offset, len, xfered_len);
3714
3715 /* GDB calculates all addresses in the largest possible address
3716 width.
3717 The address width must be masked before its final use - either by
3718 linux_proc_xfer_partial or inf_ptrace_target::xfer_partial.
3719
3720 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
3721
3722 if (object == TARGET_OBJECT_MEMORY)
3723 {
3724 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
3725
3726 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
3727 offset &= ((ULONGEST) 1 << addr_bit) - 1;
3728 }
3729
3730 xfer = linux_proc_xfer_partial (object, annex, readbuf, writebuf,
3731 offset, len, xfered_len);
3732 if (xfer != TARGET_XFER_EOF)
3733 return xfer;
3734
3735 return inf_ptrace_target::xfer_partial (object, annex, readbuf, writebuf,
3736 offset, len, xfered_len);
3737 }
3738
3739 bool
3740 linux_nat_target::thread_alive (ptid_t ptid)
3741 {
3742 /* As long as a PTID is in lwp list, consider it alive. */
3743 return find_lwp_pid (ptid) != NULL;
3744 }
3745
3746 /* Implement the to_update_thread_list target method for this
3747 target. */
3748
3749 void
3750 linux_nat_target::update_thread_list ()
3751 {
3752 struct lwp_info *lwp;
3753
3754 /* We add/delete threads from the list as clone/exit events are
3755 processed, so just try deleting exited threads still in the
3756 thread list. */
3757 delete_exited_threads ();
3758
3759 /* Update the processor core that each lwp/thread was last seen
3760 running on. */
3761 ALL_LWPS (lwp)
3762 {
3763 /* Avoid accessing /proc if the thread hasn't run since we last
3764 time we fetched the thread's core. Accessing /proc becomes
3765 noticeably expensive when we have thousands of LWPs. */
3766 if (lwp->core == -1)
3767 lwp->core = linux_common_core_of_thread (lwp->ptid);
3768 }
3769 }
3770
3771 std::string
3772 linux_nat_target::pid_to_str (ptid_t ptid)
3773 {
3774 if (ptid.lwp_p ()
3775 && (ptid.pid () != ptid.lwp ()
3776 || num_lwps (ptid.pid ()) > 1))
3777 return string_printf ("LWP %ld", ptid.lwp ());
3778
3779 return normal_pid_to_str (ptid);
3780 }
3781
3782 const char *
3783 linux_nat_target::thread_name (struct thread_info *thr)
3784 {
3785 return linux_proc_tid_get_name (thr->ptid);
3786 }
3787
3788 /* Accepts an integer PID; Returns a string representing a file that
3789 can be opened to get the symbols for the child process. */
3790
3791 char *
3792 linux_nat_target::pid_to_exec_file (int pid)
3793 {
3794 return linux_proc_pid_to_exec_file (pid);
3795 }
3796
3797 /* Implement the to_xfer_partial target method using /proc/<pid>/mem.
3798 Because we can use a single read/write call, this can be much more
3799 efficient than banging away at PTRACE_PEEKTEXT. */
3800
3801 static enum target_xfer_status
3802 linux_proc_xfer_partial (enum target_object object,
3803 const char *annex, gdb_byte *readbuf,
3804 const gdb_byte *writebuf,
3805 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
3806 {
3807 LONGEST ret;
3808 int fd;
3809 char filename[64];
3810
3811 if (object != TARGET_OBJECT_MEMORY)
3812 return TARGET_XFER_EOF;
3813
3814 /* Don't bother for one word. */
3815 if (len < 3 * sizeof (long))
3816 return TARGET_XFER_EOF;
3817
3818 /* We could keep this file open and cache it - possibly one per
3819 thread. That requires some juggling, but is even faster. */
3820 xsnprintf (filename, sizeof filename, "/proc/%ld/mem",
3821 inferior_ptid.lwp ());
3822 fd = gdb_open_cloexec (filename, ((readbuf ? O_RDONLY : O_WRONLY)
3823 | O_LARGEFILE), 0);
3824 if (fd == -1)
3825 return TARGET_XFER_EOF;
3826
3827 /* Use pread64/pwrite64 if available, since they save a syscall and can
3828 handle 64-bit offsets even on 32-bit platforms (for instance, SPARC
3829 debugging a SPARC64 application). */
3830 #ifdef HAVE_PREAD64
3831 ret = (readbuf ? pread64 (fd, readbuf, len, offset)
3832 : pwrite64 (fd, writebuf, len, offset));
3833 #else
3834 ret = lseek (fd, offset, SEEK_SET);
3835 if (ret != -1)
3836 ret = (readbuf ? read (fd, readbuf, len)
3837 : write (fd, writebuf, len));
3838 #endif
3839
3840 close (fd);
3841
3842 if (ret == -1 || ret == 0)
3843 return TARGET_XFER_EOF;
3844 else
3845 {
3846 *xfered_len = ret;
3847 return TARGET_XFER_OK;
3848 }
3849 }
3850
3851
3852 /* Parse LINE as a signal set and add its set bits to SIGS. */
3853
3854 static void
3855 add_line_to_sigset (const char *line, sigset_t *sigs)
3856 {
3857 int len = strlen (line) - 1;
3858 const char *p;
3859 int signum;
3860
3861 if (line[len] != '\n')
3862 error (_("Could not parse signal set: %s"), line);
3863
3864 p = line;
3865 signum = len * 4;
3866 while (len-- > 0)
3867 {
3868 int digit;
3869
3870 if (*p >= '0' && *p <= '9')
3871 digit = *p - '0';
3872 else if (*p >= 'a' && *p <= 'f')
3873 digit = *p - 'a' + 10;
3874 else
3875 error (_("Could not parse signal set: %s"), line);
3876
3877 signum -= 4;
3878
3879 if (digit & 1)
3880 sigaddset (sigs, signum + 1);
3881 if (digit & 2)
3882 sigaddset (sigs, signum + 2);
3883 if (digit & 4)
3884 sigaddset (sigs, signum + 3);
3885 if (digit & 8)
3886 sigaddset (sigs, signum + 4);
3887
3888 p++;
3889 }
3890 }
3891
3892 /* Find process PID's pending signals from /proc/pid/status and set
3893 SIGS to match. */
3894
3895 void
3896 linux_proc_pending_signals (int pid, sigset_t *pending,
3897 sigset_t *blocked, sigset_t *ignored)
3898 {
3899 char buffer[PATH_MAX], fname[PATH_MAX];
3900
3901 sigemptyset (pending);
3902 sigemptyset (blocked);
3903 sigemptyset (ignored);
3904 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
3905 gdb_file_up procfile = gdb_fopen_cloexec (fname, "r");
3906 if (procfile == NULL)
3907 error (_("Could not open %s"), fname);
3908
3909 while (fgets (buffer, PATH_MAX, procfile.get ()) != NULL)
3910 {
3911 /* Normal queued signals are on the SigPnd line in the status
3912 file. However, 2.6 kernels also have a "shared" pending
3913 queue for delivering signals to a thread group, so check for
3914 a ShdPnd line also.
3915
3916 Unfortunately some Red Hat kernels include the shared pending
3917 queue but not the ShdPnd status field. */
3918
3919 if (startswith (buffer, "SigPnd:\t"))
3920 add_line_to_sigset (buffer + 8, pending);
3921 else if (startswith (buffer, "ShdPnd:\t"))
3922 add_line_to_sigset (buffer + 8, pending);
3923 else if (startswith (buffer, "SigBlk:\t"))
3924 add_line_to_sigset (buffer + 8, blocked);
3925 else if (startswith (buffer, "SigIgn:\t"))
3926 add_line_to_sigset (buffer + 8, ignored);
3927 }
3928 }
3929
3930 static enum target_xfer_status
3931 linux_nat_xfer_osdata (enum target_object object,
3932 const char *annex, gdb_byte *readbuf,
3933 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3934 ULONGEST *xfered_len)
3935 {
3936 gdb_assert (object == TARGET_OBJECT_OSDATA);
3937
3938 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
3939 if (*xfered_len == 0)
3940 return TARGET_XFER_EOF;
3941 else
3942 return TARGET_XFER_OK;
3943 }
3944
3945 std::vector<static_tracepoint_marker>
3946 linux_nat_target::static_tracepoint_markers_by_strid (const char *strid)
3947 {
3948 char s[IPA_CMD_BUF_SIZE];
3949 int pid = inferior_ptid.pid ();
3950 std::vector<static_tracepoint_marker> markers;
3951 const char *p = s;
3952 ptid_t ptid = ptid_t (pid, 0, 0);
3953 static_tracepoint_marker marker;
3954
3955 /* Pause all */
3956 target_stop (ptid);
3957
3958 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
3959 s[sizeof ("qTfSTM")] = 0;
3960
3961 agent_run_command (pid, s, strlen (s) + 1);
3962
3963 /* Unpause all. */
3964 SCOPE_EXIT { target_continue_no_signal (ptid); };
3965
3966 while (*p++ == 'm')
3967 {
3968 do
3969 {
3970 parse_static_tracepoint_marker_definition (p, &p, &marker);
3971
3972 if (strid == NULL || marker.str_id == strid)
3973 markers.push_back (std::move (marker));
3974 }
3975 while (*p++ == ','); /* comma-separated list */
3976
3977 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
3978 s[sizeof ("qTsSTM")] = 0;
3979 agent_run_command (pid, s, strlen (s) + 1);
3980 p = s;
3981 }
3982
3983 return markers;
3984 }
3985
3986 /* target_is_async_p implementation. */
3987
3988 bool
3989 linux_nat_target::is_async_p ()
3990 {
3991 return linux_is_async_p ();
3992 }
3993
3994 /* target_can_async_p implementation. */
3995
3996 bool
3997 linux_nat_target::can_async_p ()
3998 {
3999 /* We're always async, unless the user explicitly prevented it with the
4000 "maint set target-async" command. */
4001 return target_async_permitted;
4002 }
4003
4004 bool
4005 linux_nat_target::supports_non_stop ()
4006 {
4007 return true;
4008 }
4009
4010 /* to_always_non_stop_p implementation. */
4011
4012 bool
4013 linux_nat_target::always_non_stop_p ()
4014 {
4015 return true;
4016 }
4017
4018 bool
4019 linux_nat_target::supports_multi_process ()
4020 {
4021 return true;
4022 }
4023
4024 bool
4025 linux_nat_target::supports_disable_randomization ()
4026 {
4027 #ifdef HAVE_PERSONALITY
4028 return true;
4029 #else
4030 return false;
4031 #endif
4032 }
4033
4034 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4035 so we notice when any child changes state, and notify the
4036 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4037 above to wait for the arrival of a SIGCHLD. */
4038
4039 static void
4040 sigchld_handler (int signo)
4041 {
4042 int old_errno = errno;
4043
4044 if (debug_linux_nat)
4045 gdb_stdlog->write_async_safe ("sigchld\n", sizeof ("sigchld\n") - 1);
4046
4047 if (signo == SIGCHLD
4048 && linux_nat_event_pipe[0] != -1)
4049 async_file_mark (); /* Let the event loop know that there are
4050 events to handle. */
4051
4052 errno = old_errno;
4053 }
4054
4055 /* Callback registered with the target events file descriptor. */
4056
4057 static void
4058 handle_target_event (int error, gdb_client_data client_data)
4059 {
4060 inferior_event_handler (INF_REG_EVENT);
4061 }
4062
4063 /* Create/destroy the target events pipe. Returns previous state. */
4064
4065 static int
4066 linux_async_pipe (int enable)
4067 {
4068 int previous = linux_is_async_p ();
4069
4070 if (previous != enable)
4071 {
4072 sigset_t prev_mask;
4073
4074 /* Block child signals while we create/destroy the pipe, as
4075 their handler writes to it. */
4076 block_child_signals (&prev_mask);
4077
4078 if (enable)
4079 {
4080 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4081 internal_error (__FILE__, __LINE__,
4082 "creating event pipe failed.");
4083
4084 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4085 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4086 }
4087 else
4088 {
4089 close (linux_nat_event_pipe[0]);
4090 close (linux_nat_event_pipe[1]);
4091 linux_nat_event_pipe[0] = -1;
4092 linux_nat_event_pipe[1] = -1;
4093 }
4094
4095 restore_child_signals_mask (&prev_mask);
4096 }
4097
4098 return previous;
4099 }
4100
4101 int
4102 linux_nat_target::async_wait_fd ()
4103 {
4104 return linux_nat_event_pipe[0];
4105 }
4106
4107 /* target_async implementation. */
4108
4109 void
4110 linux_nat_target::async (int enable)
4111 {
4112 if (enable)
4113 {
4114 if (!linux_async_pipe (1))
4115 {
4116 add_file_handler (linux_nat_event_pipe[0],
4117 handle_target_event, NULL,
4118 "linux-nat");
4119 /* There may be pending events to handle. Tell the event loop
4120 to poll them. */
4121 async_file_mark ();
4122 }
4123 }
4124 else
4125 {
4126 delete_file_handler (linux_nat_event_pipe[0]);
4127 linux_async_pipe (0);
4128 }
4129 return;
4130 }
4131
4132 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4133 event came out. */
4134
4135 static int
4136 linux_nat_stop_lwp (struct lwp_info *lwp)
4137 {
4138 if (!lwp->stopped)
4139 {
4140 linux_nat_debug_printf ("running -> suspending %s",
4141 target_pid_to_str (lwp->ptid).c_str ());
4142
4143
4144 if (lwp->last_resume_kind == resume_stop)
4145 {
4146 linux_nat_debug_printf ("already stopping LWP %ld at GDB's request",
4147 lwp->ptid.lwp ());
4148 return 0;
4149 }
4150
4151 stop_callback (lwp);
4152 lwp->last_resume_kind = resume_stop;
4153 }
4154 else
4155 {
4156 /* Already known to be stopped; do nothing. */
4157
4158 if (debug_linux_nat)
4159 {
4160 if (find_thread_ptid (linux_target, lwp->ptid)->stop_requested)
4161 linux_nat_debug_printf ("already stopped/stop_requested %s",
4162 target_pid_to_str (lwp->ptid).c_str ());
4163 else
4164 linux_nat_debug_printf ("already stopped/no stop_requested yet %s",
4165 target_pid_to_str (lwp->ptid).c_str ());
4166 }
4167 }
4168 return 0;
4169 }
4170
4171 void
4172 linux_nat_target::stop (ptid_t ptid)
4173 {
4174 iterate_over_lwps (ptid, linux_nat_stop_lwp);
4175 }
4176
4177 void
4178 linux_nat_target::close ()
4179 {
4180 /* Unregister from the event loop. */
4181 if (is_async_p ())
4182 async (0);
4183
4184 inf_ptrace_target::close ();
4185 }
4186
4187 /* When requests are passed down from the linux-nat layer to the
4188 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4189 used. The address space pointer is stored in the inferior object,
4190 but the common code that is passed such ptid can't tell whether
4191 lwpid is a "main" process id or not (it assumes so). We reverse
4192 look up the "main" process id from the lwp here. */
4193
4194 struct address_space *
4195 linux_nat_target::thread_address_space (ptid_t ptid)
4196 {
4197 struct lwp_info *lwp;
4198 struct inferior *inf;
4199 int pid;
4200
4201 if (ptid.lwp () == 0)
4202 {
4203 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4204 tgid. */
4205 lwp = find_lwp_pid (ptid);
4206 pid = lwp->ptid.pid ();
4207 }
4208 else
4209 {
4210 /* A (pid,lwpid,0) ptid. */
4211 pid = ptid.pid ();
4212 }
4213
4214 inf = find_inferior_pid (this, pid);
4215 gdb_assert (inf != NULL);
4216 return inf->aspace;
4217 }
4218
4219 /* Return the cached value of the processor core for thread PTID. */
4220
4221 int
4222 linux_nat_target::core_of_thread (ptid_t ptid)
4223 {
4224 struct lwp_info *info = find_lwp_pid (ptid);
4225
4226 if (info)
4227 return info->core;
4228 return -1;
4229 }
4230
4231 /* Implementation of to_filesystem_is_local. */
4232
4233 bool
4234 linux_nat_target::filesystem_is_local ()
4235 {
4236 struct inferior *inf = current_inferior ();
4237
4238 if (inf->fake_pid_p || inf->pid == 0)
4239 return true;
4240
4241 return linux_ns_same (inf->pid, LINUX_NS_MNT);
4242 }
4243
4244 /* Convert the INF argument passed to a to_fileio_* method
4245 to a process ID suitable for passing to its corresponding
4246 linux_mntns_* function. If INF is non-NULL then the
4247 caller is requesting the filesystem seen by INF. If INF
4248 is NULL then the caller is requesting the filesystem seen
4249 by the GDB. We fall back to GDB's filesystem in the case
4250 that INF is non-NULL but its PID is unknown. */
4251
4252 static pid_t
4253 linux_nat_fileio_pid_of (struct inferior *inf)
4254 {
4255 if (inf == NULL || inf->fake_pid_p || inf->pid == 0)
4256 return getpid ();
4257 else
4258 return inf->pid;
4259 }
4260
4261 /* Implementation of to_fileio_open. */
4262
4263 int
4264 linux_nat_target::fileio_open (struct inferior *inf, const char *filename,
4265 int flags, int mode, int warn_if_slow,
4266 int *target_errno)
4267 {
4268 int nat_flags;
4269 mode_t nat_mode;
4270 int fd;
4271
4272 if (fileio_to_host_openflags (flags, &nat_flags) == -1
4273 || fileio_to_host_mode (mode, &nat_mode) == -1)
4274 {
4275 *target_errno = FILEIO_EINVAL;
4276 return -1;
4277 }
4278
4279 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf),
4280 filename, nat_flags, nat_mode);
4281 if (fd == -1)
4282 *target_errno = host_to_fileio_error (errno);
4283
4284 return fd;
4285 }
4286
4287 /* Implementation of to_fileio_readlink. */
4288
4289 gdb::optional<std::string>
4290 linux_nat_target::fileio_readlink (struct inferior *inf, const char *filename,
4291 int *target_errno)
4292 {
4293 char buf[PATH_MAX];
4294 int len;
4295
4296 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf),
4297 filename, buf, sizeof (buf));
4298 if (len < 0)
4299 {
4300 *target_errno = host_to_fileio_error (errno);
4301 return {};
4302 }
4303
4304 return std::string (buf, len);
4305 }
4306
4307 /* Implementation of to_fileio_unlink. */
4308
4309 int
4310 linux_nat_target::fileio_unlink (struct inferior *inf, const char *filename,
4311 int *target_errno)
4312 {
4313 int ret;
4314
4315 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf),
4316 filename);
4317 if (ret == -1)
4318 *target_errno = host_to_fileio_error (errno);
4319
4320 return ret;
4321 }
4322
4323 /* Implementation of the to_thread_events method. */
4324
4325 void
4326 linux_nat_target::thread_events (int enable)
4327 {
4328 report_thread_events = enable;
4329 }
4330
4331 linux_nat_target::linux_nat_target ()
4332 {
4333 /* We don't change the stratum; this target will sit at
4334 process_stratum and thread_db will set at thread_stratum. This
4335 is a little strange, since this is a multi-threaded-capable
4336 target, but we want to be on the stack below thread_db, and we
4337 also want to be used for single-threaded processes. */
4338 }
4339
4340 /* See linux-nat.h. */
4341
4342 int
4343 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4344 {
4345 int pid;
4346
4347 pid = ptid.lwp ();
4348 if (pid == 0)
4349 pid = ptid.pid ();
4350
4351 errno = 0;
4352 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4353 if (errno != 0)
4354 {
4355 memset (siginfo, 0, sizeof (*siginfo));
4356 return 0;
4357 }
4358 return 1;
4359 }
4360
4361 /* See nat/linux-nat.h. */
4362
4363 ptid_t
4364 current_lwp_ptid (void)
4365 {
4366 gdb_assert (inferior_ptid.lwp_p ());
4367 return inferior_ptid;
4368 }
4369
4370 void _initialize_linux_nat ();
4371 void
4372 _initialize_linux_nat ()
4373 {
4374 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4375 &debug_linux_nat, _("\
4376 Set debugging of GNU/Linux lwp module."), _("\
4377 Show debugging of GNU/Linux lwp module."), _("\
4378 Enables printf debugging output."),
4379 NULL,
4380 show_debug_linux_nat,
4381 &setdebuglist, &showdebuglist);
4382
4383 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance,
4384 &debug_linux_namespaces, _("\
4385 Set debugging of GNU/Linux namespaces module."), _("\
4386 Show debugging of GNU/Linux namespaces module."), _("\
4387 Enables printf debugging output."),
4388 NULL,
4389 NULL,
4390 &setdebuglist, &showdebuglist);
4391
4392 /* Install a SIGCHLD handler. */
4393 sigchld_action.sa_handler = sigchld_handler;
4394 sigemptyset (&sigchld_action.sa_mask);
4395 sigchld_action.sa_flags = SA_RESTART;
4396
4397 /* Make it the default. */
4398 sigaction (SIGCHLD, &sigchld_action, NULL);
4399
4400 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4401 gdb_sigmask (SIG_SETMASK, NULL, &suspend_mask);
4402 sigdelset (&suspend_mask, SIGCHLD);
4403
4404 sigemptyset (&blocked_mask);
4405
4406 lwp_lwpid_htab_create ();
4407 }
4408 \f
4409
4410 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4411 the GNU/Linux Threads library and therefore doesn't really belong
4412 here. */
4413
4414 /* Return the set of signals used by the threads library in *SET. */
4415
4416 void
4417 lin_thread_get_thread_signals (sigset_t *set)
4418 {
4419 sigemptyset (set);
4420
4421 /* NPTL reserves the first two RT signals, but does not provide any
4422 way for the debugger to query the signal numbers - fortunately
4423 they don't change. */
4424 sigaddset (set, __SIGRTMIN);
4425 sigaddset (set, __SIGRTMIN + 1);
4426 }