2010-07-28 Balazs Kezes <rlblaster@gmail.com>
[binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "gdb_wait.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-fork.h"
34 #include "gdbthread.h"
35 #include "gdbcmd.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "inf-ptrace.h"
39 #include "auxv.h"
40 #include <sys/param.h> /* for MAXPATHLEN */
41 #include <sys/procfs.h> /* for elf_gregset etc. */
42 #include "elf-bfd.h" /* for elfcore_write_* */
43 #include "gregset.h" /* for gregset */
44 #include "gdbcore.h" /* for get_exec_file */
45 #include <ctype.h> /* for isdigit */
46 #include "gdbthread.h" /* for struct thread_info etc. */
47 #include "gdb_stat.h" /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include "gdb_dirent.h"
55 #include "xml-support.h"
56 #include "terminal.h"
57 #include <sys/vfs.h>
58 #include "solib.h"
59
60 #ifndef SPUFS_MAGIC
61 #define SPUFS_MAGIC 0x23c9b64e
62 #endif
63
64 #ifdef HAVE_PERSONALITY
65 # include <sys/personality.h>
66 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
67 # define ADDR_NO_RANDOMIZE 0x0040000
68 # endif
69 #endif /* HAVE_PERSONALITY */
70
71 /* This comment documents high-level logic of this file.
72
73 Waiting for events in sync mode
74 ===============================
75
76 When waiting for an event in a specific thread, we just use waitpid, passing
77 the specific pid, and not passing WNOHANG.
78
79 When waiting for an event in all threads, waitpid is not quite good. Prior to
80 version 2.4, Linux can either wait for event in main thread, or in secondary
81 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
82 miss an event. The solution is to use non-blocking waitpid, together with
83 sigsuspend. First, we use non-blocking waitpid to get an event in the main
84 process, if any. Second, we use non-blocking waitpid with the __WCLONED
85 flag to check for events in cloned processes. If nothing is found, we use
86 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
87 happened to a child process -- and SIGCHLD will be delivered both for events
88 in main debugged process and in cloned processes. As soon as we know there's
89 an event, we get back to calling nonblocking waitpid with and without __WCLONED.
90
91 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
92 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
93 blocked, the signal becomes pending and sigsuspend immediately
94 notices it and returns.
95
96 Waiting for events in async mode
97 ================================
98
99 In async mode, GDB should always be ready to handle both user input
100 and target events, so neither blocking waitpid nor sigsuspend are
101 viable options. Instead, we should asynchronously notify the GDB main
102 event loop whenever there's an unprocessed event from the target. We
103 detect asynchronous target events by handling SIGCHLD signals. To
104 notify the event loop about target events, the self-pipe trick is used
105 --- a pipe is registered as waitable event source in the event loop,
106 the event loop select/poll's on the read end of this pipe (as well on
107 other event sources, e.g., stdin), and the SIGCHLD handler writes a
108 byte to this pipe. This is more portable than relying on
109 pselect/ppoll, since on kernels that lack those syscalls, libc
110 emulates them with select/poll+sigprocmask, and that is racy
111 (a.k.a. plain broken).
112
113 Obviously, if we fail to notify the event loop if there's a target
114 event, it's bad. OTOH, if we notify the event loop when there's no
115 event from the target, linux_nat_wait will detect that there's no real
116 event to report, and return event of type TARGET_WAITKIND_IGNORE.
117 This is mostly harmless, but it will waste time and is better avoided.
118
119 The main design point is that every time GDB is outside linux-nat.c,
120 we have a SIGCHLD handler installed that is called when something
121 happens to the target and notifies the GDB event loop. Whenever GDB
122 core decides to handle the event, and calls into linux-nat.c, we
123 process things as in sync mode, except that the we never block in
124 sigsuspend.
125
126 While processing an event, we may end up momentarily blocked in
127 waitpid calls. Those waitpid calls, while blocking, are guarantied to
128 return quickly. E.g., in all-stop mode, before reporting to the core
129 that an LWP hit a breakpoint, all LWPs are stopped by sending them
130 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
131 Note that this is different from blocking indefinitely waiting for the
132 next event --- here, we're already handling an event.
133
134 Use of signals
135 ==============
136
137 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
138 signal is not entirely significant; we just need for a signal to be delivered,
139 so that we can intercept it. SIGSTOP's advantage is that it can not be
140 blocked. A disadvantage is that it is not a real-time signal, so it can only
141 be queued once; we do not keep track of other sources of SIGSTOP.
142
143 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
144 use them, because they have special behavior when the signal is generated -
145 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
146 kills the entire thread group.
147
148 A delivered SIGSTOP would stop the entire thread group, not just the thread we
149 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
150 cancel it (by PTRACE_CONT without passing SIGSTOP).
151
152 We could use a real-time signal instead. This would solve those problems; we
153 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
154 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
155 generates it, and there are races with trying to find a signal that is not
156 blocked. */
157
158 #ifndef O_LARGEFILE
159 #define O_LARGEFILE 0
160 #endif
161
162 /* If the system headers did not provide the constants, hard-code the normal
163 values. */
164 #ifndef PTRACE_EVENT_FORK
165
166 #define PTRACE_SETOPTIONS 0x4200
167 #define PTRACE_GETEVENTMSG 0x4201
168
169 /* options set using PTRACE_SETOPTIONS */
170 #define PTRACE_O_TRACESYSGOOD 0x00000001
171 #define PTRACE_O_TRACEFORK 0x00000002
172 #define PTRACE_O_TRACEVFORK 0x00000004
173 #define PTRACE_O_TRACECLONE 0x00000008
174 #define PTRACE_O_TRACEEXEC 0x00000010
175 #define PTRACE_O_TRACEVFORKDONE 0x00000020
176 #define PTRACE_O_TRACEEXIT 0x00000040
177
178 /* Wait extended result codes for the above trace options. */
179 #define PTRACE_EVENT_FORK 1
180 #define PTRACE_EVENT_VFORK 2
181 #define PTRACE_EVENT_CLONE 3
182 #define PTRACE_EVENT_EXEC 4
183 #define PTRACE_EVENT_VFORK_DONE 5
184 #define PTRACE_EVENT_EXIT 6
185
186 #endif /* PTRACE_EVENT_FORK */
187
188 /* Unlike other extended result codes, WSTOPSIG (status) on
189 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
190 instead SIGTRAP with bit 7 set. */
191 #define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
192
193 /* We can't always assume that this flag is available, but all systems
194 with the ptrace event handlers also have __WALL, so it's safe to use
195 here. */
196 #ifndef __WALL
197 #define __WALL 0x40000000 /* Wait for any child. */
198 #endif
199
200 #ifndef PTRACE_GETSIGINFO
201 # define PTRACE_GETSIGINFO 0x4202
202 # define PTRACE_SETSIGINFO 0x4203
203 #endif
204
205 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
206 the use of the multi-threaded target. */
207 static struct target_ops *linux_ops;
208 static struct target_ops linux_ops_saved;
209
210 /* The method to call, if any, when a new thread is attached. */
211 static void (*linux_nat_new_thread) (ptid_t);
212
213 /* The method to call, if any, when the siginfo object needs to be
214 converted between the layout returned by ptrace, and the layout in
215 the architecture of the inferior. */
216 static int (*linux_nat_siginfo_fixup) (struct siginfo *,
217 gdb_byte *,
218 int);
219
220 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
221 Called by our to_xfer_partial. */
222 static LONGEST (*super_xfer_partial) (struct target_ops *,
223 enum target_object,
224 const char *, gdb_byte *,
225 const gdb_byte *,
226 ULONGEST, LONGEST);
227
228 static int debug_linux_nat;
229 static void
230 show_debug_linux_nat (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232 {
233 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
234 value);
235 }
236
237 static int debug_linux_nat_async = 0;
238 static void
239 show_debug_linux_nat_async (struct ui_file *file, int from_tty,
240 struct cmd_list_element *c, const char *value)
241 {
242 fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
243 value);
244 }
245
246 static int disable_randomization = 1;
247
248 static void
249 show_disable_randomization (struct ui_file *file, int from_tty,
250 struct cmd_list_element *c, const char *value)
251 {
252 #ifdef HAVE_PERSONALITY
253 fprintf_filtered (file, _("\
254 Disabling randomization of debuggee's virtual address space is %s.\n"),
255 value);
256 #else /* !HAVE_PERSONALITY */
257 fputs_filtered (_("\
258 Disabling randomization of debuggee's virtual address space is unsupported on\n\
259 this platform.\n"), file);
260 #endif /* !HAVE_PERSONALITY */
261 }
262
263 static void
264 set_disable_randomization (char *args, int from_tty, struct cmd_list_element *c)
265 {
266 #ifndef HAVE_PERSONALITY
267 error (_("\
268 Disabling randomization of debuggee's virtual address space is unsupported on\n\
269 this platform."));
270 #endif /* !HAVE_PERSONALITY */
271 }
272
273 struct simple_pid_list
274 {
275 int pid;
276 int status;
277 struct simple_pid_list *next;
278 };
279 struct simple_pid_list *stopped_pids;
280
281 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
282 can not be used, 1 if it can. */
283
284 static int linux_supports_tracefork_flag = -1;
285
286 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACESYSGOOD
287 can not be used, 1 if it can. */
288
289 static int linux_supports_tracesysgood_flag = -1;
290
291 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
292 PTRACE_O_TRACEVFORKDONE. */
293
294 static int linux_supports_tracevforkdone_flag = -1;
295
296 /* Async mode support */
297
298 /* Zero if the async mode, although enabled, is masked, which means
299 linux_nat_wait should behave as if async mode was off. */
300 static int linux_nat_async_mask_value = 1;
301
302 /* Stores the current used ptrace() options. */
303 static int current_ptrace_options = 0;
304
305 /* The read/write ends of the pipe registered as waitable file in the
306 event loop. */
307 static int linux_nat_event_pipe[2] = { -1, -1 };
308
309 /* Flush the event pipe. */
310
311 static void
312 async_file_flush (void)
313 {
314 int ret;
315 char buf;
316
317 do
318 {
319 ret = read (linux_nat_event_pipe[0], &buf, 1);
320 }
321 while (ret >= 0 || (ret == -1 && errno == EINTR));
322 }
323
324 /* Put something (anything, doesn't matter what, or how much) in event
325 pipe, so that the select/poll in the event-loop realizes we have
326 something to process. */
327
328 static void
329 async_file_mark (void)
330 {
331 int ret;
332
333 /* It doesn't really matter what the pipe contains, as long we end
334 up with something in it. Might as well flush the previous
335 left-overs. */
336 async_file_flush ();
337
338 do
339 {
340 ret = write (linux_nat_event_pipe[1], "+", 1);
341 }
342 while (ret == -1 && errno == EINTR);
343
344 /* Ignore EAGAIN. If the pipe is full, the event loop will already
345 be awakened anyway. */
346 }
347
348 static void linux_nat_async (void (*callback)
349 (enum inferior_event_type event_type, void *context),
350 void *context);
351 static int linux_nat_async_mask (int mask);
352 static int kill_lwp (int lwpid, int signo);
353
354 static int stop_callback (struct lwp_info *lp, void *data);
355
356 static void block_child_signals (sigset_t *prev_mask);
357 static void restore_child_signals_mask (sigset_t *prev_mask);
358
359 struct lwp_info;
360 static struct lwp_info *add_lwp (ptid_t ptid);
361 static void purge_lwp_list (int pid);
362 static struct lwp_info *find_lwp_pid (ptid_t ptid);
363
364 \f
365 /* Trivial list manipulation functions to keep track of a list of
366 new stopped processes. */
367 static void
368 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
369 {
370 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
371
372 new_pid->pid = pid;
373 new_pid->status = status;
374 new_pid->next = *listp;
375 *listp = new_pid;
376 }
377
378 static int
379 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
380 {
381 struct simple_pid_list **p;
382
383 for (p = listp; *p != NULL; p = &(*p)->next)
384 if ((*p)->pid == pid)
385 {
386 struct simple_pid_list *next = (*p)->next;
387
388 *status = (*p)->status;
389 xfree (*p);
390 *p = next;
391 return 1;
392 }
393 return 0;
394 }
395
396 static void
397 linux_record_stopped_pid (int pid, int status)
398 {
399 add_to_pid_list (&stopped_pids, pid, status);
400 }
401
402 \f
403 /* A helper function for linux_test_for_tracefork, called after fork (). */
404
405 static void
406 linux_tracefork_child (void)
407 {
408 ptrace (PTRACE_TRACEME, 0, 0, 0);
409 kill (getpid (), SIGSTOP);
410 fork ();
411 _exit (0);
412 }
413
414 /* Wrapper function for waitpid which handles EINTR. */
415
416 static int
417 my_waitpid (int pid, int *status, int flags)
418 {
419 int ret;
420
421 do
422 {
423 ret = waitpid (pid, status, flags);
424 }
425 while (ret == -1 && errno == EINTR);
426
427 return ret;
428 }
429
430 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
431
432 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
433 we know that the feature is not available. This may change the tracing
434 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
435
436 However, if it succeeds, we don't know for sure that the feature is
437 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
438 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
439 fork tracing, and let it fork. If the process exits, we assume that we
440 can't use TRACEFORK; if we get the fork notification, and we can extract
441 the new child's PID, then we assume that we can. */
442
443 static void
444 linux_test_for_tracefork (int original_pid)
445 {
446 int child_pid, ret, status;
447 long second_pid;
448 sigset_t prev_mask;
449
450 /* We don't want those ptrace calls to be interrupted. */
451 block_child_signals (&prev_mask);
452
453 linux_supports_tracefork_flag = 0;
454 linux_supports_tracevforkdone_flag = 0;
455
456 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
457 if (ret != 0)
458 {
459 restore_child_signals_mask (&prev_mask);
460 return;
461 }
462
463 child_pid = fork ();
464 if (child_pid == -1)
465 perror_with_name (("fork"));
466
467 if (child_pid == 0)
468 linux_tracefork_child ();
469
470 ret = my_waitpid (child_pid, &status, 0);
471 if (ret == -1)
472 perror_with_name (("waitpid"));
473 else if (ret != child_pid)
474 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
475 if (! WIFSTOPPED (status))
476 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
477
478 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
479 if (ret != 0)
480 {
481 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
482 if (ret != 0)
483 {
484 warning (_("linux_test_for_tracefork: failed to kill child"));
485 restore_child_signals_mask (&prev_mask);
486 return;
487 }
488
489 ret = my_waitpid (child_pid, &status, 0);
490 if (ret != child_pid)
491 warning (_("linux_test_for_tracefork: failed to wait for killed child"));
492 else if (!WIFSIGNALED (status))
493 warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
494 "killed child"), status);
495
496 restore_child_signals_mask (&prev_mask);
497 return;
498 }
499
500 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
501 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
502 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
503 linux_supports_tracevforkdone_flag = (ret == 0);
504
505 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
506 if (ret != 0)
507 warning (_("linux_test_for_tracefork: failed to resume child"));
508
509 ret = my_waitpid (child_pid, &status, 0);
510
511 if (ret == child_pid && WIFSTOPPED (status)
512 && status >> 16 == PTRACE_EVENT_FORK)
513 {
514 second_pid = 0;
515 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
516 if (ret == 0 && second_pid != 0)
517 {
518 int second_status;
519
520 linux_supports_tracefork_flag = 1;
521 my_waitpid (second_pid, &second_status, 0);
522 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
523 if (ret != 0)
524 warning (_("linux_test_for_tracefork: failed to kill second child"));
525 my_waitpid (second_pid, &status, 0);
526 }
527 }
528 else
529 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
530 "(%d, status 0x%x)"), ret, status);
531
532 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
533 if (ret != 0)
534 warning (_("linux_test_for_tracefork: failed to kill child"));
535 my_waitpid (child_pid, &status, 0);
536
537 restore_child_signals_mask (&prev_mask);
538 }
539
540 /* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
541
542 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
543 we know that the feature is not available. This may change the tracing
544 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
545
546 static void
547 linux_test_for_tracesysgood (int original_pid)
548 {
549 int ret;
550 sigset_t prev_mask;
551
552 /* We don't want those ptrace calls to be interrupted. */
553 block_child_signals (&prev_mask);
554
555 linux_supports_tracesysgood_flag = 0;
556
557 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
558 if (ret != 0)
559 goto out;
560
561 linux_supports_tracesysgood_flag = 1;
562 out:
563 restore_child_signals_mask (&prev_mask);
564 }
565
566 /* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
567 This function also sets linux_supports_tracesysgood_flag. */
568
569 static int
570 linux_supports_tracesysgood (int pid)
571 {
572 if (linux_supports_tracesysgood_flag == -1)
573 linux_test_for_tracesysgood (pid);
574 return linux_supports_tracesysgood_flag;
575 }
576
577 /* Return non-zero iff we have tracefork functionality available.
578 This function also sets linux_supports_tracefork_flag. */
579
580 static int
581 linux_supports_tracefork (int pid)
582 {
583 if (linux_supports_tracefork_flag == -1)
584 linux_test_for_tracefork (pid);
585 return linux_supports_tracefork_flag;
586 }
587
588 static int
589 linux_supports_tracevforkdone (int pid)
590 {
591 if (linux_supports_tracefork_flag == -1)
592 linux_test_for_tracefork (pid);
593 return linux_supports_tracevforkdone_flag;
594 }
595
596 static void
597 linux_enable_tracesysgood (ptid_t ptid)
598 {
599 int pid = ptid_get_lwp (ptid);
600
601 if (pid == 0)
602 pid = ptid_get_pid (ptid);
603
604 if (linux_supports_tracesysgood (pid) == 0)
605 return;
606
607 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
608
609 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
610 }
611
612 \f
613 void
614 linux_enable_event_reporting (ptid_t ptid)
615 {
616 int pid = ptid_get_lwp (ptid);
617
618 if (pid == 0)
619 pid = ptid_get_pid (ptid);
620
621 if (! linux_supports_tracefork (pid))
622 return;
623
624 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
625 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
626
627 if (linux_supports_tracevforkdone (pid))
628 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
629
630 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
631 read-only process state. */
632
633 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
634 }
635
636 static void
637 linux_child_post_attach (int pid)
638 {
639 linux_enable_event_reporting (pid_to_ptid (pid));
640 check_for_thread_db ();
641 linux_enable_tracesysgood (pid_to_ptid (pid));
642 }
643
644 static void
645 linux_child_post_startup_inferior (ptid_t ptid)
646 {
647 linux_enable_event_reporting (ptid);
648 check_for_thread_db ();
649 linux_enable_tracesysgood (ptid);
650 }
651
652 static int
653 linux_child_follow_fork (struct target_ops *ops, int follow_child)
654 {
655 sigset_t prev_mask;
656 int has_vforked;
657 int parent_pid, child_pid;
658
659 block_child_signals (&prev_mask);
660
661 has_vforked = (inferior_thread ()->pending_follow.kind
662 == TARGET_WAITKIND_VFORKED);
663 parent_pid = ptid_get_lwp (inferior_ptid);
664 if (parent_pid == 0)
665 parent_pid = ptid_get_pid (inferior_ptid);
666 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
667
668 if (!detach_fork)
669 linux_enable_event_reporting (pid_to_ptid (child_pid));
670
671 if (has_vforked
672 && !non_stop /* Non-stop always resumes both branches. */
673 && (!target_is_async_p () || sync_execution)
674 && !(follow_child || detach_fork || sched_multi))
675 {
676 /* The parent stays blocked inside the vfork syscall until the
677 child execs or exits. If we don't let the child run, then
678 the parent stays blocked. If we're telling the parent to run
679 in the foreground, the user will not be able to ctrl-c to get
680 back the terminal, effectively hanging the debug session. */
681 fprintf_filtered (gdb_stderr, _("\
682 Can not resume the parent process over vfork in the foreground while\n\
683 holding the child stopped. Try \"set detach-on-fork\" or \
684 \"set schedule-multiple\".\n"));
685 return 1;
686 }
687
688 if (! follow_child)
689 {
690 struct lwp_info *child_lp = NULL;
691
692 /* We're already attached to the parent, by default. */
693
694 /* Detach new forked process? */
695 if (detach_fork)
696 {
697 /* Before detaching from the child, remove all breakpoints
698 from it. If we forked, then this has already been taken
699 care of by infrun.c. If we vforked however, any
700 breakpoint inserted in the parent is visible in the
701 child, even those added while stopped in a vfork
702 catchpoint. This will remove the breakpoints from the
703 parent also, but they'll be reinserted below. */
704 if (has_vforked)
705 {
706 /* keep breakpoints list in sync. */
707 remove_breakpoints_pid (GET_PID (inferior_ptid));
708 }
709
710 if (info_verbose || debug_linux_nat)
711 {
712 target_terminal_ours ();
713 fprintf_filtered (gdb_stdlog,
714 "Detaching after fork from child process %d.\n",
715 child_pid);
716 }
717
718 ptrace (PTRACE_DETACH, child_pid, 0, 0);
719 }
720 else
721 {
722 struct inferior *parent_inf, *child_inf;
723 struct cleanup *old_chain;
724
725 /* Add process to GDB's tables. */
726 child_inf = add_inferior (child_pid);
727
728 parent_inf = current_inferior ();
729 child_inf->attach_flag = parent_inf->attach_flag;
730 copy_terminal_info (child_inf, parent_inf);
731
732 old_chain = save_inferior_ptid ();
733 save_current_program_space ();
734
735 inferior_ptid = ptid_build (child_pid, child_pid, 0);
736 add_thread (inferior_ptid);
737 child_lp = add_lwp (inferior_ptid);
738 child_lp->stopped = 1;
739 child_lp->resumed = 1;
740
741 /* If this is a vfork child, then the address-space is
742 shared with the parent. */
743 if (has_vforked)
744 {
745 child_inf->pspace = parent_inf->pspace;
746 child_inf->aspace = parent_inf->aspace;
747
748 /* The parent will be frozen until the child is done
749 with the shared region. Keep track of the
750 parent. */
751 child_inf->vfork_parent = parent_inf;
752 child_inf->pending_detach = 0;
753 parent_inf->vfork_child = child_inf;
754 parent_inf->pending_detach = 0;
755 }
756 else
757 {
758 child_inf->aspace = new_address_space ();
759 child_inf->pspace = add_program_space (child_inf->aspace);
760 child_inf->removable = 1;
761 set_current_program_space (child_inf->pspace);
762 clone_program_space (child_inf->pspace, parent_inf->pspace);
763
764 /* Let the shared library layer (solib-svr4) learn about
765 this new process, relocate the cloned exec, pull in
766 shared libraries, and install the solib event
767 breakpoint. If a "cloned-VM" event was propagated
768 better throughout the core, this wouldn't be
769 required. */
770 solib_create_inferior_hook (0);
771 }
772
773 /* Let the thread_db layer learn about this new process. */
774 check_for_thread_db ();
775
776 do_cleanups (old_chain);
777 }
778
779 if (has_vforked)
780 {
781 struct lwp_info *lp;
782 struct inferior *parent_inf;
783
784 parent_inf = current_inferior ();
785
786 /* If we detached from the child, then we have to be careful
787 to not insert breakpoints in the parent until the child
788 is done with the shared memory region. However, if we're
789 staying attached to the child, then we can and should
790 insert breakpoints, so that we can debug it. A
791 subsequent child exec or exit is enough to know when does
792 the child stops using the parent's address space. */
793 parent_inf->waiting_for_vfork_done = detach_fork;
794 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
795
796 lp = find_lwp_pid (pid_to_ptid (parent_pid));
797 gdb_assert (linux_supports_tracefork_flag >= 0);
798 if (linux_supports_tracevforkdone (0))
799 {
800 if (debug_linux_nat)
801 fprintf_unfiltered (gdb_stdlog,
802 "LCFF: waiting for VFORK_DONE on %d\n",
803 parent_pid);
804
805 lp->stopped = 1;
806 lp->resumed = 1;
807
808 /* We'll handle the VFORK_DONE event like any other
809 event, in target_wait. */
810 }
811 else
812 {
813 /* We can't insert breakpoints until the child has
814 finished with the shared memory region. We need to
815 wait until that happens. Ideal would be to just
816 call:
817 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
818 - waitpid (parent_pid, &status, __WALL);
819 However, most architectures can't handle a syscall
820 being traced on the way out if it wasn't traced on
821 the way in.
822
823 We might also think to loop, continuing the child
824 until it exits or gets a SIGTRAP. One problem is
825 that the child might call ptrace with PTRACE_TRACEME.
826
827 There's no simple and reliable way to figure out when
828 the vforked child will be done with its copy of the
829 shared memory. We could step it out of the syscall,
830 two instructions, let it go, and then single-step the
831 parent once. When we have hardware single-step, this
832 would work; with software single-step it could still
833 be made to work but we'd have to be able to insert
834 single-step breakpoints in the child, and we'd have
835 to insert -just- the single-step breakpoint in the
836 parent. Very awkward.
837
838 In the end, the best we can do is to make sure it
839 runs for a little while. Hopefully it will be out of
840 range of any breakpoints we reinsert. Usually this
841 is only the single-step breakpoint at vfork's return
842 point. */
843
844 if (debug_linux_nat)
845 fprintf_unfiltered (gdb_stdlog,
846 "LCFF: no VFORK_DONE support, sleeping a bit\n");
847
848 usleep (10000);
849
850 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
851 and leave it pending. The next linux_nat_resume call
852 will notice a pending event, and bypasses actually
853 resuming the inferior. */
854 lp->status = 0;
855 lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
856 lp->stopped = 0;
857 lp->resumed = 1;
858
859 /* If we're in async mode, need to tell the event loop
860 there's something here to process. */
861 if (target_can_async_p ())
862 async_file_mark ();
863 }
864 }
865 }
866 else
867 {
868 struct inferior *parent_inf, *child_inf;
869 struct lwp_info *lp;
870 struct program_space *parent_pspace;
871
872 if (info_verbose || debug_linux_nat)
873 {
874 target_terminal_ours ();
875 if (has_vforked)
876 fprintf_filtered (gdb_stdlog, _("\
877 Attaching after process %d vfork to child process %d.\n"),
878 parent_pid, child_pid);
879 else
880 fprintf_filtered (gdb_stdlog, _("\
881 Attaching after process %d fork to child process %d.\n"),
882 parent_pid, child_pid);
883 }
884
885 /* Add the new inferior first, so that the target_detach below
886 doesn't unpush the target. */
887
888 child_inf = add_inferior (child_pid);
889
890 parent_inf = current_inferior ();
891 child_inf->attach_flag = parent_inf->attach_flag;
892 copy_terminal_info (child_inf, parent_inf);
893
894 parent_pspace = parent_inf->pspace;
895
896 /* If we're vforking, we want to hold on to the parent until the
897 child exits or execs. At child exec or exit time we can
898 remove the old breakpoints from the parent and detach or
899 resume debugging it. Otherwise, detach the parent now; we'll
900 want to reuse it's program/address spaces, but we can't set
901 them to the child before removing breakpoints from the
902 parent, otherwise, the breakpoints module could decide to
903 remove breakpoints from the wrong process (since they'd be
904 assigned to the same address space). */
905
906 if (has_vforked)
907 {
908 gdb_assert (child_inf->vfork_parent == NULL);
909 gdb_assert (parent_inf->vfork_child == NULL);
910 child_inf->vfork_parent = parent_inf;
911 child_inf->pending_detach = 0;
912 parent_inf->vfork_child = child_inf;
913 parent_inf->pending_detach = detach_fork;
914 parent_inf->waiting_for_vfork_done = 0;
915 }
916 else if (detach_fork)
917 target_detach (NULL, 0);
918
919 /* Note that the detach above makes PARENT_INF dangling. */
920
921 /* Add the child thread to the appropriate lists, and switch to
922 this new thread, before cloning the program space, and
923 informing the solib layer about this new process. */
924
925 inferior_ptid = ptid_build (child_pid, child_pid, 0);
926 add_thread (inferior_ptid);
927 lp = add_lwp (inferior_ptid);
928 lp->stopped = 1;
929 lp->resumed = 1;
930
931 /* If this is a vfork child, then the address-space is shared
932 with the parent. If we detached from the parent, then we can
933 reuse the parent's program/address spaces. */
934 if (has_vforked || detach_fork)
935 {
936 child_inf->pspace = parent_pspace;
937 child_inf->aspace = child_inf->pspace->aspace;
938 }
939 else
940 {
941 child_inf->aspace = new_address_space ();
942 child_inf->pspace = add_program_space (child_inf->aspace);
943 child_inf->removable = 1;
944 set_current_program_space (child_inf->pspace);
945 clone_program_space (child_inf->pspace, parent_pspace);
946
947 /* Let the shared library layer (solib-svr4) learn about
948 this new process, relocate the cloned exec, pull in
949 shared libraries, and install the solib event breakpoint.
950 If a "cloned-VM" event was propagated better throughout
951 the core, this wouldn't be required. */
952 solib_create_inferior_hook (0);
953 }
954
955 /* Let the thread_db layer learn about this new process. */
956 check_for_thread_db ();
957 }
958
959 restore_child_signals_mask (&prev_mask);
960 return 0;
961 }
962
963 \f
964 static void
965 linux_child_insert_fork_catchpoint (int pid)
966 {
967 if (! linux_supports_tracefork (pid))
968 error (_("Your system does not support fork catchpoints."));
969 }
970
971 static void
972 linux_child_insert_vfork_catchpoint (int pid)
973 {
974 if (!linux_supports_tracefork (pid))
975 error (_("Your system does not support vfork catchpoints."));
976 }
977
978 static void
979 linux_child_insert_exec_catchpoint (int pid)
980 {
981 if (!linux_supports_tracefork (pid))
982 error (_("Your system does not support exec catchpoints."));
983 }
984
985 static int
986 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
987 int table_size, int *table)
988 {
989 if (! linux_supports_tracesysgood (pid))
990 error (_("Your system does not support syscall catchpoints."));
991 /* On GNU/Linux, we ignore the arguments. It means that we only
992 enable the syscall catchpoints, but do not disable them.
993
994 Also, we do not use the `table' information because we do not
995 filter system calls here. We let GDB do the logic for us. */
996 return 0;
997 }
998
999 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
1000 are processes sharing the same VM space. A multi-threaded process
1001 is basically a group of such processes. However, such a grouping
1002 is almost entirely a user-space issue; the kernel doesn't enforce
1003 such a grouping at all (this might change in the future). In
1004 general, we'll rely on the threads library (i.e. the GNU/Linux
1005 Threads library) to provide such a grouping.
1006
1007 It is perfectly well possible to write a multi-threaded application
1008 without the assistance of a threads library, by using the clone
1009 system call directly. This module should be able to give some
1010 rudimentary support for debugging such applications if developers
1011 specify the CLONE_PTRACE flag in the clone system call, and are
1012 using the Linux kernel 2.4 or above.
1013
1014 Note that there are some peculiarities in GNU/Linux that affect
1015 this code:
1016
1017 - In general one should specify the __WCLONE flag to waitpid in
1018 order to make it report events for any of the cloned processes
1019 (and leave it out for the initial process). However, if a cloned
1020 process has exited the exit status is only reported if the
1021 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
1022 we cannot use it since GDB must work on older systems too.
1023
1024 - When a traced, cloned process exits and is waited for by the
1025 debugger, the kernel reassigns it to the original parent and
1026 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
1027 library doesn't notice this, which leads to the "zombie problem":
1028 When debugged a multi-threaded process that spawns a lot of
1029 threads will run out of processes, even if the threads exit,
1030 because the "zombies" stay around. */
1031
1032 /* List of known LWPs. */
1033 struct lwp_info *lwp_list;
1034 \f
1035
1036 /* Original signal mask. */
1037 static sigset_t normal_mask;
1038
1039 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
1040 _initialize_linux_nat. */
1041 static sigset_t suspend_mask;
1042
1043 /* Signals to block to make that sigsuspend work. */
1044 static sigset_t blocked_mask;
1045
1046 /* SIGCHLD action. */
1047 struct sigaction sigchld_action;
1048
1049 /* Block child signals (SIGCHLD and linux threads signals), and store
1050 the previous mask in PREV_MASK. */
1051
1052 static void
1053 block_child_signals (sigset_t *prev_mask)
1054 {
1055 /* Make sure SIGCHLD is blocked. */
1056 if (!sigismember (&blocked_mask, SIGCHLD))
1057 sigaddset (&blocked_mask, SIGCHLD);
1058
1059 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
1060 }
1061
1062 /* Restore child signals mask, previously returned by
1063 block_child_signals. */
1064
1065 static void
1066 restore_child_signals_mask (sigset_t *prev_mask)
1067 {
1068 sigprocmask (SIG_SETMASK, prev_mask, NULL);
1069 }
1070 \f
1071
1072 /* Prototypes for local functions. */
1073 static int stop_wait_callback (struct lwp_info *lp, void *data);
1074 static int linux_thread_alive (ptid_t ptid);
1075 static char *linux_child_pid_to_exec_file (int pid);
1076
1077 \f
1078 /* Convert wait status STATUS to a string. Used for printing debug
1079 messages only. */
1080
1081 static char *
1082 status_to_str (int status)
1083 {
1084 static char buf[64];
1085
1086 if (WIFSTOPPED (status))
1087 {
1088 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
1089 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
1090 strsignal (SIGTRAP));
1091 else
1092 snprintf (buf, sizeof (buf), "%s (stopped)",
1093 strsignal (WSTOPSIG (status)));
1094 }
1095 else if (WIFSIGNALED (status))
1096 snprintf (buf, sizeof (buf), "%s (terminated)",
1097 strsignal (WSTOPSIG (status)));
1098 else
1099 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1100
1101 return buf;
1102 }
1103
1104 /* Remove all LWPs belong to PID from the lwp list. */
1105
1106 static void
1107 purge_lwp_list (int pid)
1108 {
1109 struct lwp_info *lp, *lpprev, *lpnext;
1110
1111 lpprev = NULL;
1112
1113 for (lp = lwp_list; lp; lp = lpnext)
1114 {
1115 lpnext = lp->next;
1116
1117 if (ptid_get_pid (lp->ptid) == pid)
1118 {
1119 if (lp == lwp_list)
1120 lwp_list = lp->next;
1121 else
1122 lpprev->next = lp->next;
1123
1124 xfree (lp);
1125 }
1126 else
1127 lpprev = lp;
1128 }
1129 }
1130
1131 /* Return the number of known LWPs in the tgid given by PID. */
1132
1133 static int
1134 num_lwps (int pid)
1135 {
1136 int count = 0;
1137 struct lwp_info *lp;
1138
1139 for (lp = lwp_list; lp; lp = lp->next)
1140 if (ptid_get_pid (lp->ptid) == pid)
1141 count++;
1142
1143 return count;
1144 }
1145
1146 /* Add the LWP specified by PID to the list. Return a pointer to the
1147 structure describing the new LWP. The LWP should already be stopped
1148 (with an exception for the very first LWP). */
1149
1150 static struct lwp_info *
1151 add_lwp (ptid_t ptid)
1152 {
1153 struct lwp_info *lp;
1154
1155 gdb_assert (is_lwp (ptid));
1156
1157 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1158
1159 memset (lp, 0, sizeof (struct lwp_info));
1160
1161 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1162
1163 lp->ptid = ptid;
1164 lp->core = -1;
1165
1166 lp->next = lwp_list;
1167 lwp_list = lp;
1168
1169 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
1170 linux_nat_new_thread (ptid);
1171
1172 return lp;
1173 }
1174
1175 /* Remove the LWP specified by PID from the list. */
1176
1177 static void
1178 delete_lwp (ptid_t ptid)
1179 {
1180 struct lwp_info *lp, *lpprev;
1181
1182 lpprev = NULL;
1183
1184 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1185 if (ptid_equal (lp->ptid, ptid))
1186 break;
1187
1188 if (!lp)
1189 return;
1190
1191 if (lpprev)
1192 lpprev->next = lp->next;
1193 else
1194 lwp_list = lp->next;
1195
1196 xfree (lp);
1197 }
1198
1199 /* Return a pointer to the structure describing the LWP corresponding
1200 to PID. If no corresponding LWP could be found, return NULL. */
1201
1202 static struct lwp_info *
1203 find_lwp_pid (ptid_t ptid)
1204 {
1205 struct lwp_info *lp;
1206 int lwp;
1207
1208 if (is_lwp (ptid))
1209 lwp = GET_LWP (ptid);
1210 else
1211 lwp = GET_PID (ptid);
1212
1213 for (lp = lwp_list; lp; lp = lp->next)
1214 if (lwp == GET_LWP (lp->ptid))
1215 return lp;
1216
1217 return NULL;
1218 }
1219
1220 /* Call CALLBACK with its second argument set to DATA for every LWP in
1221 the list. If CALLBACK returns 1 for a particular LWP, return a
1222 pointer to the structure describing that LWP immediately.
1223 Otherwise return NULL. */
1224
1225 struct lwp_info *
1226 iterate_over_lwps (ptid_t filter,
1227 int (*callback) (struct lwp_info *, void *),
1228 void *data)
1229 {
1230 struct lwp_info *lp, *lpnext;
1231
1232 for (lp = lwp_list; lp; lp = lpnext)
1233 {
1234 lpnext = lp->next;
1235
1236 if (ptid_match (lp->ptid, filter))
1237 {
1238 if ((*callback) (lp, data))
1239 return lp;
1240 }
1241 }
1242
1243 return NULL;
1244 }
1245
1246 /* Update our internal state when changing from one checkpoint to
1247 another indicated by NEW_PTID. We can only switch single-threaded
1248 applications, so we only create one new LWP, and the previous list
1249 is discarded. */
1250
1251 void
1252 linux_nat_switch_fork (ptid_t new_ptid)
1253 {
1254 struct lwp_info *lp;
1255
1256 purge_lwp_list (GET_PID (inferior_ptid));
1257
1258 lp = add_lwp (new_ptid);
1259 lp->stopped = 1;
1260
1261 /* This changes the thread's ptid while preserving the gdb thread
1262 num. Also changes the inferior pid, while preserving the
1263 inferior num. */
1264 thread_change_ptid (inferior_ptid, new_ptid);
1265
1266 /* We've just told GDB core that the thread changed target id, but,
1267 in fact, it really is a different thread, with different register
1268 contents. */
1269 registers_changed ();
1270 }
1271
1272 /* Handle the exit of a single thread LP. */
1273
1274 static void
1275 exit_lwp (struct lwp_info *lp)
1276 {
1277 struct thread_info *th = find_thread_ptid (lp->ptid);
1278
1279 if (th)
1280 {
1281 if (print_thread_events)
1282 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1283
1284 delete_thread (lp->ptid);
1285 }
1286
1287 delete_lwp (lp->ptid);
1288 }
1289
1290 /* Return an lwp's tgid, found in `/proc/PID/status'. */
1291
1292 int
1293 linux_proc_get_tgid (int lwpid)
1294 {
1295 FILE *status_file;
1296 char buf[100];
1297 int tgid = -1;
1298
1299 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) lwpid);
1300 status_file = fopen (buf, "r");
1301 if (status_file != NULL)
1302 {
1303 while (fgets (buf, sizeof (buf), status_file))
1304 {
1305 if (strncmp (buf, "Tgid:", 5) == 0)
1306 {
1307 tgid = strtoul (buf + strlen ("Tgid:"), NULL, 10);
1308 break;
1309 }
1310 }
1311
1312 fclose (status_file);
1313 }
1314
1315 return tgid;
1316 }
1317
1318 /* Detect `T (stopped)' in `/proc/PID/status'.
1319 Other states including `T (tracing stop)' are reported as false. */
1320
1321 static int
1322 pid_is_stopped (pid_t pid)
1323 {
1324 FILE *status_file;
1325 char buf[100];
1326 int retval = 0;
1327
1328 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1329 status_file = fopen (buf, "r");
1330 if (status_file != NULL)
1331 {
1332 int have_state = 0;
1333
1334 while (fgets (buf, sizeof (buf), status_file))
1335 {
1336 if (strncmp (buf, "State:", 6) == 0)
1337 {
1338 have_state = 1;
1339 break;
1340 }
1341 }
1342 if (have_state && strstr (buf, "T (stopped)") != NULL)
1343 retval = 1;
1344 fclose (status_file);
1345 }
1346 return retval;
1347 }
1348
1349 /* Wait for the LWP specified by LP, which we have just attached to.
1350 Returns a wait status for that LWP, to cache. */
1351
1352 static int
1353 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1354 int *signalled)
1355 {
1356 pid_t new_pid, pid = GET_LWP (ptid);
1357 int status;
1358
1359 if (pid_is_stopped (pid))
1360 {
1361 if (debug_linux_nat)
1362 fprintf_unfiltered (gdb_stdlog,
1363 "LNPAW: Attaching to a stopped process\n");
1364
1365 /* The process is definitely stopped. It is in a job control
1366 stop, unless the kernel predates the TASK_STOPPED /
1367 TASK_TRACED distinction, in which case it might be in a
1368 ptrace stop. Make sure it is in a ptrace stop; from there we
1369 can kill it, signal it, et cetera.
1370
1371 First make sure there is a pending SIGSTOP. Since we are
1372 already attached, the process can not transition from stopped
1373 to running without a PTRACE_CONT; so we know this signal will
1374 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1375 probably already in the queue (unless this kernel is old
1376 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1377 is not an RT signal, it can only be queued once. */
1378 kill_lwp (pid, SIGSTOP);
1379
1380 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1381 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1382 ptrace (PTRACE_CONT, pid, 0, 0);
1383 }
1384
1385 /* Make sure the initial process is stopped. The user-level threads
1386 layer might want to poke around in the inferior, and that won't
1387 work if things haven't stabilized yet. */
1388 new_pid = my_waitpid (pid, &status, 0);
1389 if (new_pid == -1 && errno == ECHILD)
1390 {
1391 if (first)
1392 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1393
1394 /* Try again with __WCLONE to check cloned processes. */
1395 new_pid = my_waitpid (pid, &status, __WCLONE);
1396 *cloned = 1;
1397 }
1398
1399 gdb_assert (pid == new_pid);
1400
1401 if (!WIFSTOPPED (status))
1402 {
1403 /* The pid we tried to attach has apparently just exited. */
1404 if (debug_linux_nat)
1405 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1406 pid, status_to_str (status));
1407 return status;
1408 }
1409
1410 if (WSTOPSIG (status) != SIGSTOP)
1411 {
1412 *signalled = 1;
1413 if (debug_linux_nat)
1414 fprintf_unfiltered (gdb_stdlog,
1415 "LNPAW: Received %s after attaching\n",
1416 status_to_str (status));
1417 }
1418
1419 return status;
1420 }
1421
1422 /* Attach to the LWP specified by PID. Return 0 if successful or -1
1423 if the new LWP could not be attached. */
1424
1425 int
1426 lin_lwp_attach_lwp (ptid_t ptid)
1427 {
1428 struct lwp_info *lp;
1429 sigset_t prev_mask;
1430
1431 gdb_assert (is_lwp (ptid));
1432
1433 block_child_signals (&prev_mask);
1434
1435 lp = find_lwp_pid (ptid);
1436
1437 /* We assume that we're already attached to any LWP that has an id
1438 equal to the overall process id, and to any LWP that is already
1439 in our list of LWPs. If we're not seeing exit events from threads
1440 and we've had PID wraparound since we last tried to stop all threads,
1441 this assumption might be wrong; fortunately, this is very unlikely
1442 to happen. */
1443 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
1444 {
1445 int status, cloned = 0, signalled = 0;
1446
1447 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
1448 {
1449 /* If we fail to attach to the thread, issue a warning,
1450 but continue. One way this can happen is if thread
1451 creation is interrupted; as of Linux kernel 2.6.19, a
1452 bug may place threads in the thread list and then fail
1453 to create them. */
1454 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1455 safe_strerror (errno));
1456 restore_child_signals_mask (&prev_mask);
1457 return -1;
1458 }
1459
1460 if (debug_linux_nat)
1461 fprintf_unfiltered (gdb_stdlog,
1462 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1463 target_pid_to_str (ptid));
1464
1465 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1466 if (!WIFSTOPPED (status))
1467 return -1;
1468
1469 lp = add_lwp (ptid);
1470 lp->stopped = 1;
1471 lp->cloned = cloned;
1472 lp->signalled = signalled;
1473 if (WSTOPSIG (status) != SIGSTOP)
1474 {
1475 lp->resumed = 1;
1476 lp->status = status;
1477 }
1478
1479 target_post_attach (GET_LWP (lp->ptid));
1480
1481 if (debug_linux_nat)
1482 {
1483 fprintf_unfiltered (gdb_stdlog,
1484 "LLAL: waitpid %s received %s\n",
1485 target_pid_to_str (ptid),
1486 status_to_str (status));
1487 }
1488 }
1489 else
1490 {
1491 /* We assume that the LWP representing the original process is
1492 already stopped. Mark it as stopped in the data structure
1493 that the GNU/linux ptrace layer uses to keep track of
1494 threads. Note that this won't have already been done since
1495 the main thread will have, we assume, been stopped by an
1496 attach from a different layer. */
1497 if (lp == NULL)
1498 lp = add_lwp (ptid);
1499 lp->stopped = 1;
1500 }
1501
1502 restore_child_signals_mask (&prev_mask);
1503 return 0;
1504 }
1505
1506 static void
1507 linux_nat_create_inferior (struct target_ops *ops,
1508 char *exec_file, char *allargs, char **env,
1509 int from_tty)
1510 {
1511 #ifdef HAVE_PERSONALITY
1512 int personality_orig = 0, personality_set = 0;
1513 #endif /* HAVE_PERSONALITY */
1514
1515 /* The fork_child mechanism is synchronous and calls target_wait, so
1516 we have to mask the async mode. */
1517
1518 #ifdef HAVE_PERSONALITY
1519 if (disable_randomization)
1520 {
1521 errno = 0;
1522 personality_orig = personality (0xffffffff);
1523 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1524 {
1525 personality_set = 1;
1526 personality (personality_orig | ADDR_NO_RANDOMIZE);
1527 }
1528 if (errno != 0 || (personality_set
1529 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1530 warning (_("Error disabling address space randomization: %s"),
1531 safe_strerror (errno));
1532 }
1533 #endif /* HAVE_PERSONALITY */
1534
1535 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1536
1537 #ifdef HAVE_PERSONALITY
1538 if (personality_set)
1539 {
1540 errno = 0;
1541 personality (personality_orig);
1542 if (errno != 0)
1543 warning (_("Error restoring address space randomization: %s"),
1544 safe_strerror (errno));
1545 }
1546 #endif /* HAVE_PERSONALITY */
1547 }
1548
1549 static void
1550 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1551 {
1552 struct lwp_info *lp;
1553 int status;
1554 ptid_t ptid;
1555
1556 linux_ops->to_attach (ops, args, from_tty);
1557
1558 /* The ptrace base target adds the main thread with (pid,0,0)
1559 format. Decorate it with lwp info. */
1560 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1561 thread_change_ptid (inferior_ptid, ptid);
1562
1563 /* Add the initial process as the first LWP to the list. */
1564 lp = add_lwp (ptid);
1565
1566 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1567 &lp->signalled);
1568 if (!WIFSTOPPED (status))
1569 {
1570 if (WIFEXITED (status))
1571 {
1572 int exit_code = WEXITSTATUS (status);
1573
1574 target_terminal_ours ();
1575 target_mourn_inferior ();
1576 if (exit_code == 0)
1577 error (_("Unable to attach: program exited normally."));
1578 else
1579 error (_("Unable to attach: program exited with code %d."),
1580 exit_code);
1581 }
1582 else if (WIFSIGNALED (status))
1583 {
1584 enum target_signal signo;
1585
1586 target_terminal_ours ();
1587 target_mourn_inferior ();
1588
1589 signo = target_signal_from_host (WTERMSIG (status));
1590 error (_("Unable to attach: program terminated with signal "
1591 "%s, %s."),
1592 target_signal_to_name (signo),
1593 target_signal_to_string (signo));
1594 }
1595
1596 internal_error (__FILE__, __LINE__,
1597 _("unexpected status %d for PID %ld"),
1598 status, (long) GET_LWP (ptid));
1599 }
1600
1601 lp->stopped = 1;
1602
1603 /* Save the wait status to report later. */
1604 lp->resumed = 1;
1605 if (debug_linux_nat)
1606 fprintf_unfiltered (gdb_stdlog,
1607 "LNA: waitpid %ld, saving status %s\n",
1608 (long) GET_PID (lp->ptid), status_to_str (status));
1609
1610 lp->status = status;
1611
1612 if (target_can_async_p ())
1613 target_async (inferior_event_handler, 0);
1614 }
1615
1616 /* Get pending status of LP. */
1617 static int
1618 get_pending_status (struct lwp_info *lp, int *status)
1619 {
1620 enum target_signal signo = TARGET_SIGNAL_0;
1621
1622 /* If we paused threads momentarily, we may have stored pending
1623 events in lp->status or lp->waitstatus (see stop_wait_callback),
1624 and GDB core hasn't seen any signal for those threads.
1625 Otherwise, the last signal reported to the core is found in the
1626 thread object's stop_signal.
1627
1628 There's a corner case that isn't handled here at present. Only
1629 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1630 stop_signal make sense as a real signal to pass to the inferior.
1631 Some catchpoint related events, like
1632 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1633 to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1634 those traps are debug API (ptrace in our case) related and
1635 induced; the inferior wouldn't see them if it wasn't being
1636 traced. Hence, we should never pass them to the inferior, even
1637 when set to pass state. Since this corner case isn't handled by
1638 infrun.c when proceeding with a signal, for consistency, neither
1639 do we handle it here (or elsewhere in the file we check for
1640 signal pass state). Normally SIGTRAP isn't set to pass state, so
1641 this is really a corner case. */
1642
1643 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1644 signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1645 else if (lp->status)
1646 signo = target_signal_from_host (WSTOPSIG (lp->status));
1647 else if (non_stop && !is_executing (lp->ptid))
1648 {
1649 struct thread_info *tp = find_thread_ptid (lp->ptid);
1650
1651 signo = tp->stop_signal;
1652 }
1653 else if (!non_stop)
1654 {
1655 struct target_waitstatus last;
1656 ptid_t last_ptid;
1657
1658 get_last_target_status (&last_ptid, &last);
1659
1660 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1661 {
1662 struct thread_info *tp = find_thread_ptid (lp->ptid);
1663
1664 signo = tp->stop_signal;
1665 }
1666 }
1667
1668 *status = 0;
1669
1670 if (signo == TARGET_SIGNAL_0)
1671 {
1672 if (debug_linux_nat)
1673 fprintf_unfiltered (gdb_stdlog,
1674 "GPT: lwp %s has no pending signal\n",
1675 target_pid_to_str (lp->ptid));
1676 }
1677 else if (!signal_pass_state (signo))
1678 {
1679 if (debug_linux_nat)
1680 fprintf_unfiltered (gdb_stdlog, "\
1681 GPT: lwp %s had signal %s, but it is in no pass state\n",
1682 target_pid_to_str (lp->ptid),
1683 target_signal_to_string (signo));
1684 }
1685 else
1686 {
1687 *status = W_STOPCODE (target_signal_to_host (signo));
1688
1689 if (debug_linux_nat)
1690 fprintf_unfiltered (gdb_stdlog,
1691 "GPT: lwp %s has pending signal %s\n",
1692 target_pid_to_str (lp->ptid),
1693 target_signal_to_string (signo));
1694 }
1695
1696 return 0;
1697 }
1698
1699 static int
1700 detach_callback (struct lwp_info *lp, void *data)
1701 {
1702 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1703
1704 if (debug_linux_nat && lp->status)
1705 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1706 strsignal (WSTOPSIG (lp->status)),
1707 target_pid_to_str (lp->ptid));
1708
1709 /* If there is a pending SIGSTOP, get rid of it. */
1710 if (lp->signalled)
1711 {
1712 if (debug_linux_nat)
1713 fprintf_unfiltered (gdb_stdlog,
1714 "DC: Sending SIGCONT to %s\n",
1715 target_pid_to_str (lp->ptid));
1716
1717 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1718 lp->signalled = 0;
1719 }
1720
1721 /* We don't actually detach from the LWP that has an id equal to the
1722 overall process id just yet. */
1723 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1724 {
1725 int status = 0;
1726
1727 /* Pass on any pending signal for this LWP. */
1728 get_pending_status (lp, &status);
1729
1730 errno = 0;
1731 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1732 WSTOPSIG (status)) < 0)
1733 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1734 safe_strerror (errno));
1735
1736 if (debug_linux_nat)
1737 fprintf_unfiltered (gdb_stdlog,
1738 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1739 target_pid_to_str (lp->ptid),
1740 strsignal (WSTOPSIG (status)));
1741
1742 delete_lwp (lp->ptid);
1743 }
1744
1745 return 0;
1746 }
1747
1748 static void
1749 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1750 {
1751 int pid;
1752 int status;
1753 struct lwp_info *main_lwp;
1754
1755 pid = GET_PID (inferior_ptid);
1756
1757 if (target_can_async_p ())
1758 linux_nat_async (NULL, 0);
1759
1760 /* Stop all threads before detaching. ptrace requires that the
1761 thread is stopped to sucessfully detach. */
1762 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1763 /* ... and wait until all of them have reported back that
1764 they're no longer running. */
1765 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1766
1767 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1768
1769 /* Only the initial process should be left right now. */
1770 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1771
1772 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1773
1774 /* Pass on any pending signal for the last LWP. */
1775 if ((args == NULL || *args == '\0')
1776 && get_pending_status (main_lwp, &status) != -1
1777 && WIFSTOPPED (status))
1778 {
1779 /* Put the signal number in ARGS so that inf_ptrace_detach will
1780 pass it along with PTRACE_DETACH. */
1781 args = alloca (8);
1782 sprintf (args, "%d", (int) WSTOPSIG (status));
1783 if (debug_linux_nat)
1784 fprintf_unfiltered (gdb_stdlog,
1785 "LND: Sending signal %s to %s\n",
1786 args,
1787 target_pid_to_str (main_lwp->ptid));
1788 }
1789
1790 delete_lwp (main_lwp->ptid);
1791
1792 if (forks_exist_p ())
1793 {
1794 /* Multi-fork case. The current inferior_ptid is being detached
1795 from, but there are other viable forks to debug. Detach from
1796 the current fork, and context-switch to the first
1797 available. */
1798 linux_fork_detach (args, from_tty);
1799
1800 if (non_stop && target_can_async_p ())
1801 target_async (inferior_event_handler, 0);
1802 }
1803 else
1804 linux_ops->to_detach (ops, args, from_tty);
1805 }
1806
1807 /* Resume LP. */
1808
1809 static int
1810 resume_callback (struct lwp_info *lp, void *data)
1811 {
1812 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1813
1814 if (lp->stopped && inf->vfork_child != NULL)
1815 {
1816 if (debug_linux_nat)
1817 fprintf_unfiltered (gdb_stdlog,
1818 "RC: Not resuming %s (vfork parent)\n",
1819 target_pid_to_str (lp->ptid));
1820 }
1821 else if (lp->stopped && lp->status == 0)
1822 {
1823 if (debug_linux_nat)
1824 fprintf_unfiltered (gdb_stdlog,
1825 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1826 target_pid_to_str (lp->ptid));
1827
1828 linux_ops->to_resume (linux_ops,
1829 pid_to_ptid (GET_LWP (lp->ptid)),
1830 0, TARGET_SIGNAL_0);
1831 if (debug_linux_nat)
1832 fprintf_unfiltered (gdb_stdlog,
1833 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1834 target_pid_to_str (lp->ptid));
1835 lp->stopped = 0;
1836 lp->step = 0;
1837 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1838 lp->stopped_by_watchpoint = 0;
1839 }
1840 else if (lp->stopped && debug_linux_nat)
1841 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (has pending)\n",
1842 target_pid_to_str (lp->ptid));
1843 else if (debug_linux_nat)
1844 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (not stopped)\n",
1845 target_pid_to_str (lp->ptid));
1846
1847 return 0;
1848 }
1849
1850 static int
1851 resume_clear_callback (struct lwp_info *lp, void *data)
1852 {
1853 lp->resumed = 0;
1854 return 0;
1855 }
1856
1857 static int
1858 resume_set_callback (struct lwp_info *lp, void *data)
1859 {
1860 lp->resumed = 1;
1861 return 0;
1862 }
1863
1864 static void
1865 linux_nat_resume (struct target_ops *ops,
1866 ptid_t ptid, int step, enum target_signal signo)
1867 {
1868 sigset_t prev_mask;
1869 struct lwp_info *lp;
1870 int resume_many;
1871
1872 if (debug_linux_nat)
1873 fprintf_unfiltered (gdb_stdlog,
1874 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1875 step ? "step" : "resume",
1876 target_pid_to_str (ptid),
1877 signo ? strsignal (signo) : "0",
1878 target_pid_to_str (inferior_ptid));
1879
1880 block_child_signals (&prev_mask);
1881
1882 /* A specific PTID means `step only this process id'. */
1883 resume_many = (ptid_equal (minus_one_ptid, ptid)
1884 || ptid_is_pid (ptid));
1885
1886 /* Mark the lwps we're resuming as resumed. */
1887 iterate_over_lwps (ptid, resume_set_callback, NULL);
1888
1889 /* See if it's the current inferior that should be handled
1890 specially. */
1891 if (resume_many)
1892 lp = find_lwp_pid (inferior_ptid);
1893 else
1894 lp = find_lwp_pid (ptid);
1895 gdb_assert (lp != NULL);
1896
1897 /* Remember if we're stepping. */
1898 lp->step = step;
1899
1900 /* If we have a pending wait status for this thread, there is no
1901 point in resuming the process. But first make sure that
1902 linux_nat_wait won't preemptively handle the event - we
1903 should never take this short-circuit if we are going to
1904 leave LP running, since we have skipped resuming all the
1905 other threads. This bit of code needs to be synchronized
1906 with linux_nat_wait. */
1907
1908 if (lp->status && WIFSTOPPED (lp->status))
1909 {
1910 int saved_signo;
1911 struct inferior *inf;
1912
1913 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
1914 gdb_assert (inf);
1915 saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
1916
1917 /* Defer to common code if we're gaining control of the
1918 inferior. */
1919 if (inf->stop_soon == NO_STOP_QUIETLY
1920 && signal_stop_state (saved_signo) == 0
1921 && signal_print_state (saved_signo) == 0
1922 && signal_pass_state (saved_signo) == 1)
1923 {
1924 if (debug_linux_nat)
1925 fprintf_unfiltered (gdb_stdlog,
1926 "LLR: Not short circuiting for ignored "
1927 "status 0x%x\n", lp->status);
1928
1929 /* FIXME: What should we do if we are supposed to continue
1930 this thread with a signal? */
1931 gdb_assert (signo == TARGET_SIGNAL_0);
1932 signo = saved_signo;
1933 lp->status = 0;
1934 }
1935 }
1936
1937 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1938 {
1939 /* FIXME: What should we do if we are supposed to continue
1940 this thread with a signal? */
1941 gdb_assert (signo == TARGET_SIGNAL_0);
1942
1943 if (debug_linux_nat)
1944 fprintf_unfiltered (gdb_stdlog,
1945 "LLR: Short circuiting for status 0x%x\n",
1946 lp->status);
1947
1948 restore_child_signals_mask (&prev_mask);
1949 if (target_can_async_p ())
1950 {
1951 target_async (inferior_event_handler, 0);
1952 /* Tell the event loop we have something to process. */
1953 async_file_mark ();
1954 }
1955 return;
1956 }
1957
1958 /* Mark LWP as not stopped to prevent it from being continued by
1959 resume_callback. */
1960 lp->stopped = 0;
1961
1962 if (resume_many)
1963 iterate_over_lwps (ptid, resume_callback, NULL);
1964
1965 /* Convert to something the lower layer understands. */
1966 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1967
1968 linux_ops->to_resume (linux_ops, ptid, step, signo);
1969 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1970 lp->stopped_by_watchpoint = 0;
1971
1972 if (debug_linux_nat)
1973 fprintf_unfiltered (gdb_stdlog,
1974 "LLR: %s %s, %s (resume event thread)\n",
1975 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1976 target_pid_to_str (ptid),
1977 signo ? strsignal (signo) : "0");
1978
1979 restore_child_signals_mask (&prev_mask);
1980 if (target_can_async_p ())
1981 target_async (inferior_event_handler, 0);
1982 }
1983
1984 /* Send a signal to an LWP. */
1985
1986 static int
1987 kill_lwp (int lwpid, int signo)
1988 {
1989 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1990 fails, then we are not using nptl threads and we should be using kill. */
1991
1992 #ifdef HAVE_TKILL_SYSCALL
1993 {
1994 static int tkill_failed;
1995
1996 if (!tkill_failed)
1997 {
1998 int ret;
1999
2000 errno = 0;
2001 ret = syscall (__NR_tkill, lwpid, signo);
2002 if (errno != ENOSYS)
2003 return ret;
2004 tkill_failed = 1;
2005 }
2006 }
2007 #endif
2008
2009 return kill (lwpid, signo);
2010 }
2011
2012 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
2013 event, check if the core is interested in it: if not, ignore the
2014 event, and keep waiting; otherwise, we need to toggle the LWP's
2015 syscall entry/exit status, since the ptrace event itself doesn't
2016 indicate it, and report the trap to higher layers. */
2017
2018 static int
2019 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
2020 {
2021 struct target_waitstatus *ourstatus = &lp->waitstatus;
2022 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
2023 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2024
2025 if (stopping)
2026 {
2027 /* If we're stopping threads, there's a SIGSTOP pending, which
2028 makes it so that the LWP reports an immediate syscall return,
2029 followed by the SIGSTOP. Skip seeing that "return" using
2030 PTRACE_CONT directly, and let stop_wait_callback collect the
2031 SIGSTOP. Later when the thread is resumed, a new syscall
2032 entry event. If we didn't do this (and returned 0), we'd
2033 leave a syscall entry pending, and our caller, by using
2034 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
2035 itself. Later, when the user re-resumes this LWP, we'd see
2036 another syscall entry event and we'd mistake it for a return.
2037
2038 If stop_wait_callback didn't force the SIGSTOP out of the LWP
2039 (leaving immediately with LWP->signalled set, without issuing
2040 a PTRACE_CONT), it would still be problematic to leave this
2041 syscall enter pending, as later when the thread is resumed,
2042 it would then see the same syscall exit mentioned above,
2043 followed by the delayed SIGSTOP, while the syscall didn't
2044 actually get to execute. It seems it would be even more
2045 confusing to the user. */
2046
2047 if (debug_linux_nat)
2048 fprintf_unfiltered (gdb_stdlog,
2049 "LHST: ignoring syscall %d "
2050 "for LWP %ld (stopping threads), "
2051 "resuming with PTRACE_CONT for SIGSTOP\n",
2052 syscall_number,
2053 GET_LWP (lp->ptid));
2054
2055 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2056 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2057 return 1;
2058 }
2059
2060 if (catch_syscall_enabled ())
2061 {
2062 /* Always update the entry/return state, even if this particular
2063 syscall isn't interesting to the core now. In async mode,
2064 the user could install a new catchpoint for this syscall
2065 between syscall enter/return, and we'll need to know to
2066 report a syscall return if that happens. */
2067 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2068 ? TARGET_WAITKIND_SYSCALL_RETURN
2069 : TARGET_WAITKIND_SYSCALL_ENTRY);
2070
2071 if (catching_syscall_number (syscall_number))
2072 {
2073 /* Alright, an event to report. */
2074 ourstatus->kind = lp->syscall_state;
2075 ourstatus->value.syscall_number = syscall_number;
2076
2077 if (debug_linux_nat)
2078 fprintf_unfiltered (gdb_stdlog,
2079 "LHST: stopping for %s of syscall %d"
2080 " for LWP %ld\n",
2081 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2082 ? "entry" : "return",
2083 syscall_number,
2084 GET_LWP (lp->ptid));
2085 return 0;
2086 }
2087
2088 if (debug_linux_nat)
2089 fprintf_unfiltered (gdb_stdlog,
2090 "LHST: ignoring %s of syscall %d "
2091 "for LWP %ld\n",
2092 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2093 ? "entry" : "return",
2094 syscall_number,
2095 GET_LWP (lp->ptid));
2096 }
2097 else
2098 {
2099 /* If we had been syscall tracing, and hence used PT_SYSCALL
2100 before on this LWP, it could happen that the user removes all
2101 syscall catchpoints before we get to process this event.
2102 There are two noteworthy issues here:
2103
2104 - When stopped at a syscall entry event, resuming with
2105 PT_STEP still resumes executing the syscall and reports a
2106 syscall return.
2107
2108 - Only PT_SYSCALL catches syscall enters. If we last
2109 single-stepped this thread, then this event can't be a
2110 syscall enter. If we last single-stepped this thread, this
2111 has to be a syscall exit.
2112
2113 The points above mean that the next resume, be it PT_STEP or
2114 PT_CONTINUE, can not trigger a syscall trace event. */
2115 if (debug_linux_nat)
2116 fprintf_unfiltered (gdb_stdlog,
2117 "LHST: caught syscall event with no syscall catchpoints."
2118 " %d for LWP %ld, ignoring\n",
2119 syscall_number,
2120 GET_LWP (lp->ptid));
2121 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2122 }
2123
2124 /* The core isn't interested in this event. For efficiency, avoid
2125 stopping all threads only to have the core resume them all again.
2126 Since we're not stopping threads, if we're still syscall tracing
2127 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2128 subsequent syscall. Simply resume using the inf-ptrace layer,
2129 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2130
2131 /* Note that gdbarch_get_syscall_number may access registers, hence
2132 fill a regcache. */
2133 registers_changed ();
2134 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2135 lp->step, TARGET_SIGNAL_0);
2136 return 1;
2137 }
2138
2139 /* Handle a GNU/Linux extended wait response. If we see a clone
2140 event, we need to add the new LWP to our list (and not report the
2141 trap to higher layers). This function returns non-zero if the
2142 event should be ignored and we should wait again. If STOPPING is
2143 true, the new LWP remains stopped, otherwise it is continued. */
2144
2145 static int
2146 linux_handle_extended_wait (struct lwp_info *lp, int status,
2147 int stopping)
2148 {
2149 int pid = GET_LWP (lp->ptid);
2150 struct target_waitstatus *ourstatus = &lp->waitstatus;
2151 int event = status >> 16;
2152
2153 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2154 || event == PTRACE_EVENT_CLONE)
2155 {
2156 unsigned long new_pid;
2157 int ret;
2158
2159 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2160
2161 /* If we haven't already seen the new PID stop, wait for it now. */
2162 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2163 {
2164 /* The new child has a pending SIGSTOP. We can't affect it until it
2165 hits the SIGSTOP, but we're already attached. */
2166 ret = my_waitpid (new_pid, &status,
2167 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2168 if (ret == -1)
2169 perror_with_name (_("waiting for new child"));
2170 else if (ret != new_pid)
2171 internal_error (__FILE__, __LINE__,
2172 _("wait returned unexpected PID %d"), ret);
2173 else if (!WIFSTOPPED (status))
2174 internal_error (__FILE__, __LINE__,
2175 _("wait returned unexpected status 0x%x"), status);
2176 }
2177
2178 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2179
2180 if (event == PTRACE_EVENT_FORK
2181 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2182 {
2183 struct fork_info *fp;
2184
2185 /* Handle checkpointing by linux-fork.c here as a special
2186 case. We don't want the follow-fork-mode or 'catch fork'
2187 to interfere with this. */
2188
2189 /* This won't actually modify the breakpoint list, but will
2190 physically remove the breakpoints from the child. */
2191 detach_breakpoints (new_pid);
2192
2193 /* Retain child fork in ptrace (stopped) state. */
2194 fp = find_fork_pid (new_pid);
2195 if (!fp)
2196 fp = add_fork (new_pid);
2197
2198 /* Report as spurious, so that infrun doesn't want to follow
2199 this fork. We're actually doing an infcall in
2200 linux-fork.c. */
2201 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2202 linux_enable_event_reporting (pid_to_ptid (new_pid));
2203
2204 /* Report the stop to the core. */
2205 return 0;
2206 }
2207
2208 if (event == PTRACE_EVENT_FORK)
2209 ourstatus->kind = TARGET_WAITKIND_FORKED;
2210 else if (event == PTRACE_EVENT_VFORK)
2211 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2212 else
2213 {
2214 struct lwp_info *new_lp;
2215
2216 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2217
2218 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2219 new_lp->cloned = 1;
2220 new_lp->stopped = 1;
2221
2222 if (WSTOPSIG (status) != SIGSTOP)
2223 {
2224 /* This can happen if someone starts sending signals to
2225 the new thread before it gets a chance to run, which
2226 have a lower number than SIGSTOP (e.g. SIGUSR1).
2227 This is an unlikely case, and harder to handle for
2228 fork / vfork than for clone, so we do not try - but
2229 we handle it for clone events here. We'll send
2230 the other signal on to the thread below. */
2231
2232 new_lp->signalled = 1;
2233 }
2234 else
2235 status = 0;
2236
2237 if (non_stop)
2238 {
2239 /* Add the new thread to GDB's lists as soon as possible
2240 so that:
2241
2242 1) the frontend doesn't have to wait for a stop to
2243 display them, and,
2244
2245 2) we tag it with the correct running state. */
2246
2247 /* If the thread_db layer is active, let it know about
2248 this new thread, and add it to GDB's list. */
2249 if (!thread_db_attach_lwp (new_lp->ptid))
2250 {
2251 /* We're not using thread_db. Add it to GDB's
2252 list. */
2253 target_post_attach (GET_LWP (new_lp->ptid));
2254 add_thread (new_lp->ptid);
2255 }
2256
2257 if (!stopping)
2258 {
2259 set_running (new_lp->ptid, 1);
2260 set_executing (new_lp->ptid, 1);
2261 }
2262 }
2263
2264 /* Note the need to use the low target ops to resume, to
2265 handle resuming with PT_SYSCALL if we have syscall
2266 catchpoints. */
2267 if (!stopping)
2268 {
2269 int signo;
2270
2271 new_lp->stopped = 0;
2272 new_lp->resumed = 1;
2273
2274 signo = (status
2275 ? target_signal_from_host (WSTOPSIG (status))
2276 : TARGET_SIGNAL_0);
2277
2278 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2279 0, signo);
2280 }
2281 else
2282 {
2283 if (status != 0)
2284 {
2285 /* We created NEW_LP so it cannot yet contain STATUS. */
2286 gdb_assert (new_lp->status == 0);
2287
2288 /* Save the wait status to report later. */
2289 if (debug_linux_nat)
2290 fprintf_unfiltered (gdb_stdlog,
2291 "LHEW: waitpid of new LWP %ld, "
2292 "saving status %s\n",
2293 (long) GET_LWP (new_lp->ptid),
2294 status_to_str (status));
2295 new_lp->status = status;
2296 }
2297 }
2298
2299 if (debug_linux_nat)
2300 fprintf_unfiltered (gdb_stdlog,
2301 "LHEW: Got clone event from LWP %ld, resuming\n",
2302 GET_LWP (lp->ptid));
2303 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2304 0, TARGET_SIGNAL_0);
2305
2306 return 1;
2307 }
2308
2309 return 0;
2310 }
2311
2312 if (event == PTRACE_EVENT_EXEC)
2313 {
2314 if (debug_linux_nat)
2315 fprintf_unfiltered (gdb_stdlog,
2316 "LHEW: Got exec event from LWP %ld\n",
2317 GET_LWP (lp->ptid));
2318
2319 ourstatus->kind = TARGET_WAITKIND_EXECD;
2320 ourstatus->value.execd_pathname
2321 = xstrdup (linux_child_pid_to_exec_file (pid));
2322
2323 return 0;
2324 }
2325
2326 if (event == PTRACE_EVENT_VFORK_DONE)
2327 {
2328 if (current_inferior ()->waiting_for_vfork_done)
2329 {
2330 if (debug_linux_nat)
2331 fprintf_unfiltered (gdb_stdlog, "\
2332 LHEW: Got expected PTRACE_EVENT_VFORK_DONE from LWP %ld: stopping\n",
2333 GET_LWP (lp->ptid));
2334
2335 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2336 return 0;
2337 }
2338
2339 if (debug_linux_nat)
2340 fprintf_unfiltered (gdb_stdlog, "\
2341 LHEW: Got PTRACE_EVENT_VFORK_DONE from LWP %ld: resuming\n",
2342 GET_LWP (lp->ptid));
2343 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2344 return 1;
2345 }
2346
2347 internal_error (__FILE__, __LINE__,
2348 _("unknown ptrace event %d"), event);
2349 }
2350
2351 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2352 exited. */
2353
2354 static int
2355 wait_lwp (struct lwp_info *lp)
2356 {
2357 pid_t pid;
2358 int status;
2359 int thread_dead = 0;
2360
2361 gdb_assert (!lp->stopped);
2362 gdb_assert (lp->status == 0);
2363
2364 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
2365 if (pid == -1 && errno == ECHILD)
2366 {
2367 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
2368 if (pid == -1 && errno == ECHILD)
2369 {
2370 /* The thread has previously exited. We need to delete it
2371 now because, for some vendor 2.4 kernels with NPTL
2372 support backported, there won't be an exit event unless
2373 it is the main thread. 2.6 kernels will report an exit
2374 event for each thread that exits, as expected. */
2375 thread_dead = 1;
2376 if (debug_linux_nat)
2377 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2378 target_pid_to_str (lp->ptid));
2379 }
2380 }
2381
2382 if (!thread_dead)
2383 {
2384 gdb_assert (pid == GET_LWP (lp->ptid));
2385
2386 if (debug_linux_nat)
2387 {
2388 fprintf_unfiltered (gdb_stdlog,
2389 "WL: waitpid %s received %s\n",
2390 target_pid_to_str (lp->ptid),
2391 status_to_str (status));
2392 }
2393 }
2394
2395 /* Check if the thread has exited. */
2396 if (WIFEXITED (status) || WIFSIGNALED (status))
2397 {
2398 thread_dead = 1;
2399 if (debug_linux_nat)
2400 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2401 target_pid_to_str (lp->ptid));
2402 }
2403
2404 if (thread_dead)
2405 {
2406 exit_lwp (lp);
2407 return 0;
2408 }
2409
2410 gdb_assert (WIFSTOPPED (status));
2411
2412 /* Handle GNU/Linux's syscall SIGTRAPs. */
2413 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2414 {
2415 /* No longer need the sysgood bit. The ptrace event ends up
2416 recorded in lp->waitstatus if we care for it. We can carry
2417 on handling the event like a regular SIGTRAP from here
2418 on. */
2419 status = W_STOPCODE (SIGTRAP);
2420 if (linux_handle_syscall_trap (lp, 1))
2421 return wait_lwp (lp);
2422 }
2423
2424 /* Handle GNU/Linux's extended waitstatus for trace events. */
2425 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2426 {
2427 if (debug_linux_nat)
2428 fprintf_unfiltered (gdb_stdlog,
2429 "WL: Handling extended status 0x%06x\n",
2430 status);
2431 if (linux_handle_extended_wait (lp, status, 1))
2432 return wait_lwp (lp);
2433 }
2434
2435 return status;
2436 }
2437
2438 /* Save the most recent siginfo for LP. This is currently only called
2439 for SIGTRAP; some ports use the si_addr field for
2440 target_stopped_data_address. In the future, it may also be used to
2441 restore the siginfo of requeued signals. */
2442
2443 static void
2444 save_siginfo (struct lwp_info *lp)
2445 {
2446 errno = 0;
2447 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2448 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2449
2450 if (errno != 0)
2451 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2452 }
2453
2454 /* Send a SIGSTOP to LP. */
2455
2456 static int
2457 stop_callback (struct lwp_info *lp, void *data)
2458 {
2459 if (!lp->stopped && !lp->signalled)
2460 {
2461 int ret;
2462
2463 if (debug_linux_nat)
2464 {
2465 fprintf_unfiltered (gdb_stdlog,
2466 "SC: kill %s **<SIGSTOP>**\n",
2467 target_pid_to_str (lp->ptid));
2468 }
2469 errno = 0;
2470 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2471 if (debug_linux_nat)
2472 {
2473 fprintf_unfiltered (gdb_stdlog,
2474 "SC: lwp kill %d %s\n",
2475 ret,
2476 errno ? safe_strerror (errno) : "ERRNO-OK");
2477 }
2478
2479 lp->signalled = 1;
2480 gdb_assert (lp->status == 0);
2481 }
2482
2483 return 0;
2484 }
2485
2486 /* Return non-zero if LWP PID has a pending SIGINT. */
2487
2488 static int
2489 linux_nat_has_pending_sigint (int pid)
2490 {
2491 sigset_t pending, blocked, ignored;
2492
2493 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2494
2495 if (sigismember (&pending, SIGINT)
2496 && !sigismember (&ignored, SIGINT))
2497 return 1;
2498
2499 return 0;
2500 }
2501
2502 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2503
2504 static int
2505 set_ignore_sigint (struct lwp_info *lp, void *data)
2506 {
2507 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2508 flag to consume the next one. */
2509 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2510 && WSTOPSIG (lp->status) == SIGINT)
2511 lp->status = 0;
2512 else
2513 lp->ignore_sigint = 1;
2514
2515 return 0;
2516 }
2517
2518 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2519 This function is called after we know the LWP has stopped; if the LWP
2520 stopped before the expected SIGINT was delivered, then it will never have
2521 arrived. Also, if the signal was delivered to a shared queue and consumed
2522 by a different thread, it will never be delivered to this LWP. */
2523
2524 static void
2525 maybe_clear_ignore_sigint (struct lwp_info *lp)
2526 {
2527 if (!lp->ignore_sigint)
2528 return;
2529
2530 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2531 {
2532 if (debug_linux_nat)
2533 fprintf_unfiltered (gdb_stdlog,
2534 "MCIS: Clearing bogus flag for %s\n",
2535 target_pid_to_str (lp->ptid));
2536 lp->ignore_sigint = 0;
2537 }
2538 }
2539
2540 /* Fetch the possible triggered data watchpoint info and store it in
2541 LP.
2542
2543 On some archs, like x86, that use debug registers to set
2544 watchpoints, it's possible that the way to know which watched
2545 address trapped, is to check the register that is used to select
2546 which address to watch. Problem is, between setting the watchpoint
2547 and reading back which data address trapped, the user may change
2548 the set of watchpoints, and, as a consequence, GDB changes the
2549 debug registers in the inferior. To avoid reading back a stale
2550 stopped-data-address when that happens, we cache in LP the fact
2551 that a watchpoint trapped, and the corresponding data address, as
2552 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2553 registers meanwhile, we have the cached data we can rely on. */
2554
2555 static void
2556 save_sigtrap (struct lwp_info *lp)
2557 {
2558 struct cleanup *old_chain;
2559
2560 if (linux_ops->to_stopped_by_watchpoint == NULL)
2561 {
2562 lp->stopped_by_watchpoint = 0;
2563 return;
2564 }
2565
2566 old_chain = save_inferior_ptid ();
2567 inferior_ptid = lp->ptid;
2568
2569 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2570
2571 if (lp->stopped_by_watchpoint)
2572 {
2573 if (linux_ops->to_stopped_data_address != NULL)
2574 lp->stopped_data_address_p =
2575 linux_ops->to_stopped_data_address (&current_target,
2576 &lp->stopped_data_address);
2577 else
2578 lp->stopped_data_address_p = 0;
2579 }
2580
2581 do_cleanups (old_chain);
2582 }
2583
2584 /* See save_sigtrap. */
2585
2586 static int
2587 linux_nat_stopped_by_watchpoint (void)
2588 {
2589 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2590
2591 gdb_assert (lp != NULL);
2592
2593 return lp->stopped_by_watchpoint;
2594 }
2595
2596 static int
2597 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2598 {
2599 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2600
2601 gdb_assert (lp != NULL);
2602
2603 *addr_p = lp->stopped_data_address;
2604
2605 return lp->stopped_data_address_p;
2606 }
2607
2608 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2609
2610 static int
2611 sigtrap_is_event (int status)
2612 {
2613 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2614 }
2615
2616 /* SIGTRAP-like events recognizer. */
2617
2618 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
2619
2620 /* Check for SIGTRAP-like events in LP. */
2621
2622 static int
2623 linux_nat_lp_status_is_event (struct lwp_info *lp)
2624 {
2625 /* We check for lp->waitstatus in addition to lp->status, because we can
2626 have pending process exits recorded in lp->status
2627 and W_EXITCODE(0,0) == 0. We should probably have an additional
2628 lp->status_p flag. */
2629
2630 return (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2631 && linux_nat_status_is_event (lp->status));
2632 }
2633
2634 /* Set alternative SIGTRAP-like events recognizer. If
2635 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2636 applied. */
2637
2638 void
2639 linux_nat_set_status_is_event (struct target_ops *t,
2640 int (*status_is_event) (int status))
2641 {
2642 linux_nat_status_is_event = status_is_event;
2643 }
2644
2645 /* Wait until LP is stopped. */
2646
2647 static int
2648 stop_wait_callback (struct lwp_info *lp, void *data)
2649 {
2650 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2651
2652 /* If this is a vfork parent, bail out, it is not going to report
2653 any SIGSTOP until the vfork is done with. */
2654 if (inf->vfork_child != NULL)
2655 return 0;
2656
2657 if (!lp->stopped)
2658 {
2659 int status;
2660
2661 status = wait_lwp (lp);
2662 if (status == 0)
2663 return 0;
2664
2665 if (lp->ignore_sigint && WIFSTOPPED (status)
2666 && WSTOPSIG (status) == SIGINT)
2667 {
2668 lp->ignore_sigint = 0;
2669
2670 errno = 0;
2671 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2672 if (debug_linux_nat)
2673 fprintf_unfiltered (gdb_stdlog,
2674 "PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)\n",
2675 target_pid_to_str (lp->ptid),
2676 errno ? safe_strerror (errno) : "OK");
2677
2678 return stop_wait_callback (lp, NULL);
2679 }
2680
2681 maybe_clear_ignore_sigint (lp);
2682
2683 if (WSTOPSIG (status) != SIGSTOP)
2684 {
2685 if (linux_nat_status_is_event (status))
2686 {
2687 /* If a LWP other than the LWP that we're reporting an
2688 event for has hit a GDB breakpoint (as opposed to
2689 some random trap signal), then just arrange for it to
2690 hit it again later. We don't keep the SIGTRAP status
2691 and don't forward the SIGTRAP signal to the LWP. We
2692 will handle the current event, eventually we will
2693 resume all LWPs, and this one will get its breakpoint
2694 trap again.
2695
2696 If we do not do this, then we run the risk that the
2697 user will delete or disable the breakpoint, but the
2698 thread will have already tripped on it. */
2699
2700 /* Save the trap's siginfo in case we need it later. */
2701 save_siginfo (lp);
2702
2703 save_sigtrap (lp);
2704
2705 /* Now resume this LWP and get the SIGSTOP event. */
2706 errno = 0;
2707 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2708 if (debug_linux_nat)
2709 {
2710 fprintf_unfiltered (gdb_stdlog,
2711 "PTRACE_CONT %s, 0, 0 (%s)\n",
2712 target_pid_to_str (lp->ptid),
2713 errno ? safe_strerror (errno) : "OK");
2714
2715 fprintf_unfiltered (gdb_stdlog,
2716 "SWC: Candidate SIGTRAP event in %s\n",
2717 target_pid_to_str (lp->ptid));
2718 }
2719 /* Hold this event/waitstatus while we check to see if
2720 there are any more (we still want to get that SIGSTOP). */
2721 stop_wait_callback (lp, NULL);
2722
2723 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2724 there's another event, throw it back into the
2725 queue. */
2726 if (lp->status)
2727 {
2728 if (debug_linux_nat)
2729 fprintf_unfiltered (gdb_stdlog,
2730 "SWC: kill %s, %s\n",
2731 target_pid_to_str (lp->ptid),
2732 status_to_str ((int) status));
2733 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2734 }
2735
2736 /* Save the sigtrap event. */
2737 lp->status = status;
2738 return 0;
2739 }
2740 else
2741 {
2742 /* The thread was stopped with a signal other than
2743 SIGSTOP, and didn't accidentally trip a breakpoint. */
2744
2745 if (debug_linux_nat)
2746 {
2747 fprintf_unfiltered (gdb_stdlog,
2748 "SWC: Pending event %s in %s\n",
2749 status_to_str ((int) status),
2750 target_pid_to_str (lp->ptid));
2751 }
2752 /* Now resume this LWP and get the SIGSTOP event. */
2753 errno = 0;
2754 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2755 if (debug_linux_nat)
2756 fprintf_unfiltered (gdb_stdlog,
2757 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2758 target_pid_to_str (lp->ptid),
2759 errno ? safe_strerror (errno) : "OK");
2760
2761 /* Hold this event/waitstatus while we check to see if
2762 there are any more (we still want to get that SIGSTOP). */
2763 stop_wait_callback (lp, NULL);
2764
2765 /* If the lp->status field is still empty, use it to
2766 hold this event. If not, then this event must be
2767 returned to the event queue of the LWP. */
2768 if (lp->status)
2769 {
2770 if (debug_linux_nat)
2771 {
2772 fprintf_unfiltered (gdb_stdlog,
2773 "SWC: kill %s, %s\n",
2774 target_pid_to_str (lp->ptid),
2775 status_to_str ((int) status));
2776 }
2777 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2778 }
2779 else
2780 lp->status = status;
2781 return 0;
2782 }
2783 }
2784 else
2785 {
2786 /* We caught the SIGSTOP that we intended to catch, so
2787 there's no SIGSTOP pending. */
2788 lp->stopped = 1;
2789 lp->signalled = 0;
2790 }
2791 }
2792
2793 return 0;
2794 }
2795
2796 /* Return non-zero if LP has a wait status pending. */
2797
2798 static int
2799 status_callback (struct lwp_info *lp, void *data)
2800 {
2801 /* Only report a pending wait status if we pretend that this has
2802 indeed been resumed. */
2803 if (!lp->resumed)
2804 return 0;
2805
2806 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2807 {
2808 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2809 or a a pending process exit. Note that `W_EXITCODE(0,0) ==
2810 0', so a clean process exit can not be stored pending in
2811 lp->status, it is indistinguishable from
2812 no-pending-status. */
2813 return 1;
2814 }
2815
2816 if (lp->status != 0)
2817 return 1;
2818
2819 return 0;
2820 }
2821
2822 /* Return non-zero if LP isn't stopped. */
2823
2824 static int
2825 running_callback (struct lwp_info *lp, void *data)
2826 {
2827 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2828 }
2829
2830 /* Count the LWP's that have had events. */
2831
2832 static int
2833 count_events_callback (struct lwp_info *lp, void *data)
2834 {
2835 int *count = data;
2836
2837 gdb_assert (count != NULL);
2838
2839 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2840 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2841 (*count)++;
2842
2843 return 0;
2844 }
2845
2846 /* Select the LWP (if any) that is currently being single-stepped. */
2847
2848 static int
2849 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2850 {
2851 if (lp->step && lp->status != 0)
2852 return 1;
2853 else
2854 return 0;
2855 }
2856
2857 /* Select the Nth LWP that has had a SIGTRAP event. */
2858
2859 static int
2860 select_event_lwp_callback (struct lwp_info *lp, void *data)
2861 {
2862 int *selector = data;
2863
2864 gdb_assert (selector != NULL);
2865
2866 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2867 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2868 if ((*selector)-- == 0)
2869 return 1;
2870
2871 return 0;
2872 }
2873
2874 static int
2875 cancel_breakpoint (struct lwp_info *lp)
2876 {
2877 /* Arrange for a breakpoint to be hit again later. We don't keep
2878 the SIGTRAP status and don't forward the SIGTRAP signal to the
2879 LWP. We will handle the current event, eventually we will resume
2880 this LWP, and this breakpoint will trap again.
2881
2882 If we do not do this, then we run the risk that the user will
2883 delete or disable the breakpoint, but the LWP will have already
2884 tripped on it. */
2885
2886 struct regcache *regcache = get_thread_regcache (lp->ptid);
2887 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2888 CORE_ADDR pc;
2889
2890 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2891 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2892 {
2893 if (debug_linux_nat)
2894 fprintf_unfiltered (gdb_stdlog,
2895 "CB: Push back breakpoint for %s\n",
2896 target_pid_to_str (lp->ptid));
2897
2898 /* Back up the PC if necessary. */
2899 if (gdbarch_decr_pc_after_break (gdbarch))
2900 regcache_write_pc (regcache, pc);
2901
2902 return 1;
2903 }
2904 return 0;
2905 }
2906
2907 static int
2908 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2909 {
2910 struct lwp_info *event_lp = data;
2911
2912 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2913 if (lp == event_lp)
2914 return 0;
2915
2916 /* If a LWP other than the LWP that we're reporting an event for has
2917 hit a GDB breakpoint (as opposed to some random trap signal),
2918 then just arrange for it to hit it again later. We don't keep
2919 the SIGTRAP status and don't forward the SIGTRAP signal to the
2920 LWP. We will handle the current event, eventually we will resume
2921 all LWPs, and this one will get its breakpoint trap again.
2922
2923 If we do not do this, then we run the risk that the user will
2924 delete or disable the breakpoint, but the LWP will have already
2925 tripped on it. */
2926
2927 if (linux_nat_lp_status_is_event (lp)
2928 && cancel_breakpoint (lp))
2929 /* Throw away the SIGTRAP. */
2930 lp->status = 0;
2931
2932 return 0;
2933 }
2934
2935 /* Select one LWP out of those that have events pending. */
2936
2937 static void
2938 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2939 {
2940 int num_events = 0;
2941 int random_selector;
2942 struct lwp_info *event_lp;
2943
2944 /* Record the wait status for the original LWP. */
2945 (*orig_lp)->status = *status;
2946
2947 /* Give preference to any LWP that is being single-stepped. */
2948 event_lp = iterate_over_lwps (filter,
2949 select_singlestep_lwp_callback, NULL);
2950 if (event_lp != NULL)
2951 {
2952 if (debug_linux_nat)
2953 fprintf_unfiltered (gdb_stdlog,
2954 "SEL: Select single-step %s\n",
2955 target_pid_to_str (event_lp->ptid));
2956 }
2957 else
2958 {
2959 /* No single-stepping LWP. Select one at random, out of those
2960 which have had SIGTRAP events. */
2961
2962 /* First see how many SIGTRAP events we have. */
2963 iterate_over_lwps (filter, count_events_callback, &num_events);
2964
2965 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2966 random_selector = (int)
2967 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2968
2969 if (debug_linux_nat && num_events > 1)
2970 fprintf_unfiltered (gdb_stdlog,
2971 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2972 num_events, random_selector);
2973
2974 event_lp = iterate_over_lwps (filter,
2975 select_event_lwp_callback,
2976 &random_selector);
2977 }
2978
2979 if (event_lp != NULL)
2980 {
2981 /* Switch the event LWP. */
2982 *orig_lp = event_lp;
2983 *status = event_lp->status;
2984 }
2985
2986 /* Flush the wait status for the event LWP. */
2987 (*orig_lp)->status = 0;
2988 }
2989
2990 /* Return non-zero if LP has been resumed. */
2991
2992 static int
2993 resumed_callback (struct lwp_info *lp, void *data)
2994 {
2995 return lp->resumed;
2996 }
2997
2998 /* Stop an active thread, verify it still exists, then resume it. */
2999
3000 static int
3001 stop_and_resume_callback (struct lwp_info *lp, void *data)
3002 {
3003 struct lwp_info *ptr;
3004
3005 if (!lp->stopped && !lp->signalled)
3006 {
3007 stop_callback (lp, NULL);
3008 stop_wait_callback (lp, NULL);
3009 /* Resume if the lwp still exists. */
3010 for (ptr = lwp_list; ptr; ptr = ptr->next)
3011 if (lp == ptr)
3012 {
3013 resume_callback (lp, NULL);
3014 resume_set_callback (lp, NULL);
3015 }
3016 }
3017 return 0;
3018 }
3019
3020 /* Check if we should go on and pass this event to common code.
3021 Return the affected lwp if we are, or NULL otherwise. */
3022 static struct lwp_info *
3023 linux_nat_filter_event (int lwpid, int status, int options)
3024 {
3025 struct lwp_info *lp;
3026
3027 lp = find_lwp_pid (pid_to_ptid (lwpid));
3028
3029 /* Check for stop events reported by a process we didn't already
3030 know about - anything not already in our LWP list.
3031
3032 If we're expecting to receive stopped processes after
3033 fork, vfork, and clone events, then we'll just add the
3034 new one to our list and go back to waiting for the event
3035 to be reported - the stopped process might be returned
3036 from waitpid before or after the event is. */
3037 if (WIFSTOPPED (status) && !lp)
3038 {
3039 linux_record_stopped_pid (lwpid, status);
3040 return NULL;
3041 }
3042
3043 /* Make sure we don't report an event for the exit of an LWP not in
3044 our list, i.e. not part of the current process. This can happen
3045 if we detach from a program we original forked and then it
3046 exits. */
3047 if (!WIFSTOPPED (status) && !lp)
3048 return NULL;
3049
3050 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
3051 CLONE_PTRACE processes which do not use the thread library -
3052 otherwise we wouldn't find the new LWP this way. That doesn't
3053 currently work, and the following code is currently unreachable
3054 due to the two blocks above. If it's fixed some day, this code
3055 should be broken out into a function so that we can also pick up
3056 LWPs from the new interface. */
3057 if (!lp)
3058 {
3059 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
3060 if (options & __WCLONE)
3061 lp->cloned = 1;
3062
3063 gdb_assert (WIFSTOPPED (status)
3064 && WSTOPSIG (status) == SIGSTOP);
3065 lp->signalled = 1;
3066
3067 if (!in_thread_list (inferior_ptid))
3068 {
3069 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
3070 GET_PID (inferior_ptid));
3071 add_thread (inferior_ptid);
3072 }
3073
3074 add_thread (lp->ptid);
3075 }
3076
3077 /* Handle GNU/Linux's syscall SIGTRAPs. */
3078 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3079 {
3080 /* No longer need the sysgood bit. The ptrace event ends up
3081 recorded in lp->waitstatus if we care for it. We can carry
3082 on handling the event like a regular SIGTRAP from here
3083 on. */
3084 status = W_STOPCODE (SIGTRAP);
3085 if (linux_handle_syscall_trap (lp, 0))
3086 return NULL;
3087 }
3088
3089 /* Handle GNU/Linux's extended waitstatus for trace events. */
3090 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
3091 {
3092 if (debug_linux_nat)
3093 fprintf_unfiltered (gdb_stdlog,
3094 "LLW: Handling extended status 0x%06x\n",
3095 status);
3096 if (linux_handle_extended_wait (lp, status, 0))
3097 return NULL;
3098 }
3099
3100 if (linux_nat_status_is_event (status))
3101 {
3102 /* Save the trap's siginfo in case we need it later. */
3103 save_siginfo (lp);
3104
3105 save_sigtrap (lp);
3106 }
3107
3108 /* Check if the thread has exited. */
3109 if ((WIFEXITED (status) || WIFSIGNALED (status))
3110 && num_lwps (GET_PID (lp->ptid)) > 1)
3111 {
3112 /* If this is the main thread, we must stop all threads and verify
3113 if they are still alive. This is because in the nptl thread model
3114 on Linux 2.4, there is no signal issued for exiting LWPs
3115 other than the main thread. We only get the main thread exit
3116 signal once all child threads have already exited. If we
3117 stop all the threads and use the stop_wait_callback to check
3118 if they have exited we can determine whether this signal
3119 should be ignored or whether it means the end of the debugged
3120 application, regardless of which threading model is being
3121 used. */
3122 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3123 {
3124 lp->stopped = 1;
3125 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3126 stop_and_resume_callback, NULL);
3127 }
3128
3129 if (debug_linux_nat)
3130 fprintf_unfiltered (gdb_stdlog,
3131 "LLW: %s exited.\n",
3132 target_pid_to_str (lp->ptid));
3133
3134 if (num_lwps (GET_PID (lp->ptid)) > 1)
3135 {
3136 /* If there is at least one more LWP, then the exit signal
3137 was not the end of the debugged application and should be
3138 ignored. */
3139 exit_lwp (lp);
3140 return NULL;
3141 }
3142 }
3143
3144 /* Check if the current LWP has previously exited. In the nptl
3145 thread model, LWPs other than the main thread do not issue
3146 signals when they exit so we must check whenever the thread has
3147 stopped. A similar check is made in stop_wait_callback(). */
3148 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3149 {
3150 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3151
3152 if (debug_linux_nat)
3153 fprintf_unfiltered (gdb_stdlog,
3154 "LLW: %s exited.\n",
3155 target_pid_to_str (lp->ptid));
3156
3157 exit_lwp (lp);
3158
3159 /* Make sure there is at least one thread running. */
3160 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3161
3162 /* Discard the event. */
3163 return NULL;
3164 }
3165
3166 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3167 an attempt to stop an LWP. */
3168 if (lp->signalled
3169 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3170 {
3171 if (debug_linux_nat)
3172 fprintf_unfiltered (gdb_stdlog,
3173 "LLW: Delayed SIGSTOP caught for %s.\n",
3174 target_pid_to_str (lp->ptid));
3175
3176 /* This is a delayed SIGSTOP. */
3177 lp->signalled = 0;
3178
3179 registers_changed ();
3180
3181 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3182 lp->step, TARGET_SIGNAL_0);
3183 if (debug_linux_nat)
3184 fprintf_unfiltered (gdb_stdlog,
3185 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3186 lp->step ?
3187 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3188 target_pid_to_str (lp->ptid));
3189
3190 lp->stopped = 0;
3191 gdb_assert (lp->resumed);
3192
3193 /* Discard the event. */
3194 return NULL;
3195 }
3196
3197 /* Make sure we don't report a SIGINT that we have already displayed
3198 for another thread. */
3199 if (lp->ignore_sigint
3200 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3201 {
3202 if (debug_linux_nat)
3203 fprintf_unfiltered (gdb_stdlog,
3204 "LLW: Delayed SIGINT caught for %s.\n",
3205 target_pid_to_str (lp->ptid));
3206
3207 /* This is a delayed SIGINT. */
3208 lp->ignore_sigint = 0;
3209
3210 registers_changed ();
3211 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3212 lp->step, TARGET_SIGNAL_0);
3213 if (debug_linux_nat)
3214 fprintf_unfiltered (gdb_stdlog,
3215 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3216 lp->step ?
3217 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3218 target_pid_to_str (lp->ptid));
3219
3220 lp->stopped = 0;
3221 gdb_assert (lp->resumed);
3222
3223 /* Discard the event. */
3224 return NULL;
3225 }
3226
3227 /* An interesting event. */
3228 gdb_assert (lp);
3229 lp->status = status;
3230 return lp;
3231 }
3232
3233 static ptid_t
3234 linux_nat_wait_1 (struct target_ops *ops,
3235 ptid_t ptid, struct target_waitstatus *ourstatus,
3236 int target_options)
3237 {
3238 static sigset_t prev_mask;
3239 struct lwp_info *lp = NULL;
3240 int options = 0;
3241 int status = 0;
3242 pid_t pid;
3243
3244 if (debug_linux_nat_async)
3245 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3246
3247 /* The first time we get here after starting a new inferior, we may
3248 not have added it to the LWP list yet - this is the earliest
3249 moment at which we know its PID. */
3250 if (ptid_is_pid (inferior_ptid))
3251 {
3252 /* Upgrade the main thread's ptid. */
3253 thread_change_ptid (inferior_ptid,
3254 BUILD_LWP (GET_PID (inferior_ptid),
3255 GET_PID (inferior_ptid)));
3256
3257 lp = add_lwp (inferior_ptid);
3258 lp->resumed = 1;
3259 }
3260
3261 /* Make sure SIGCHLD is blocked. */
3262 block_child_signals (&prev_mask);
3263
3264 if (ptid_equal (ptid, minus_one_ptid))
3265 pid = -1;
3266 else if (ptid_is_pid (ptid))
3267 /* A request to wait for a specific tgid. This is not possible
3268 with waitpid, so instead, we wait for any child, and leave
3269 children we're not interested in right now with a pending
3270 status to report later. */
3271 pid = -1;
3272 else
3273 pid = GET_LWP (ptid);
3274
3275 retry:
3276 lp = NULL;
3277 status = 0;
3278
3279 /* Make sure that of those LWPs we want to get an event from, there
3280 is at least one LWP that has been resumed. If there's none, just
3281 bail out. The core may just be flushing asynchronously all
3282 events. */
3283 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3284 {
3285 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3286
3287 if (debug_linux_nat_async)
3288 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3289
3290 restore_child_signals_mask (&prev_mask);
3291 return minus_one_ptid;
3292 }
3293
3294 /* First check if there is a LWP with a wait status pending. */
3295 if (pid == -1)
3296 {
3297 /* Any LWP that's been resumed will do. */
3298 lp = iterate_over_lwps (ptid, status_callback, NULL);
3299 if (lp)
3300 {
3301 if (debug_linux_nat && lp->status)
3302 fprintf_unfiltered (gdb_stdlog,
3303 "LLW: Using pending wait status %s for %s.\n",
3304 status_to_str (lp->status),
3305 target_pid_to_str (lp->ptid));
3306 }
3307
3308 /* But if we don't find one, we'll have to wait, and check both
3309 cloned and uncloned processes. We start with the cloned
3310 processes. */
3311 options = __WCLONE | WNOHANG;
3312 }
3313 else if (is_lwp (ptid))
3314 {
3315 if (debug_linux_nat)
3316 fprintf_unfiltered (gdb_stdlog,
3317 "LLW: Waiting for specific LWP %s.\n",
3318 target_pid_to_str (ptid));
3319
3320 /* We have a specific LWP to check. */
3321 lp = find_lwp_pid (ptid);
3322 gdb_assert (lp);
3323
3324 if (debug_linux_nat && lp->status)
3325 fprintf_unfiltered (gdb_stdlog,
3326 "LLW: Using pending wait status %s for %s.\n",
3327 status_to_str (lp->status),
3328 target_pid_to_str (lp->ptid));
3329
3330 /* If we have to wait, take into account whether PID is a cloned
3331 process or not. And we have to convert it to something that
3332 the layer beneath us can understand. */
3333 options = lp->cloned ? __WCLONE : 0;
3334 pid = GET_LWP (ptid);
3335
3336 /* We check for lp->waitstatus in addition to lp->status,
3337 because we can have pending process exits recorded in
3338 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3339 an additional lp->status_p flag. */
3340 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3341 lp = NULL;
3342 }
3343
3344 if (lp && lp->signalled)
3345 {
3346 /* A pending SIGSTOP may interfere with the normal stream of
3347 events. In a typical case where interference is a problem,
3348 we have a SIGSTOP signal pending for LWP A while
3349 single-stepping it, encounter an event in LWP B, and take the
3350 pending SIGSTOP while trying to stop LWP A. After processing
3351 the event in LWP B, LWP A is continued, and we'll never see
3352 the SIGTRAP associated with the last time we were
3353 single-stepping LWP A. */
3354
3355 /* Resume the thread. It should halt immediately returning the
3356 pending SIGSTOP. */
3357 registers_changed ();
3358 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3359 lp->step, TARGET_SIGNAL_0);
3360 if (debug_linux_nat)
3361 fprintf_unfiltered (gdb_stdlog,
3362 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
3363 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3364 target_pid_to_str (lp->ptid));
3365 lp->stopped = 0;
3366 gdb_assert (lp->resumed);
3367
3368 /* Catch the pending SIGSTOP. */
3369 status = lp->status;
3370 lp->status = 0;
3371
3372 stop_wait_callback (lp, NULL);
3373
3374 /* If the lp->status field isn't empty, we caught another signal
3375 while flushing the SIGSTOP. Return it back to the event
3376 queue of the LWP, as we already have an event to handle. */
3377 if (lp->status)
3378 {
3379 if (debug_linux_nat)
3380 fprintf_unfiltered (gdb_stdlog,
3381 "LLW: kill %s, %s\n",
3382 target_pid_to_str (lp->ptid),
3383 status_to_str (lp->status));
3384 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
3385 }
3386
3387 lp->status = status;
3388 }
3389
3390 if (!target_can_async_p ())
3391 {
3392 /* Causes SIGINT to be passed on to the attached process. */
3393 set_sigint_trap ();
3394 }
3395
3396 /* Translate generic target_wait options into waitpid options. */
3397 if (target_options & TARGET_WNOHANG)
3398 options |= WNOHANG;
3399
3400 while (lp == NULL)
3401 {
3402 pid_t lwpid;
3403
3404 lwpid = my_waitpid (pid, &status, options);
3405
3406 if (lwpid > 0)
3407 {
3408 gdb_assert (pid == -1 || lwpid == pid);
3409
3410 if (debug_linux_nat)
3411 {
3412 fprintf_unfiltered (gdb_stdlog,
3413 "LLW: waitpid %ld received %s\n",
3414 (long) lwpid, status_to_str (status));
3415 }
3416
3417 lp = linux_nat_filter_event (lwpid, status, options);
3418
3419 /* STATUS is now no longer valid, use LP->STATUS instead. */
3420 status = 0;
3421
3422 if (lp
3423 && ptid_is_pid (ptid)
3424 && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
3425 {
3426 gdb_assert (lp->resumed);
3427
3428 if (debug_linux_nat)
3429 fprintf (stderr, "LWP %ld got an event %06x, leaving pending.\n",
3430 ptid_get_lwp (lp->ptid), lp->status);
3431
3432 if (WIFSTOPPED (lp->status))
3433 {
3434 if (WSTOPSIG (lp->status) != SIGSTOP)
3435 {
3436 /* Cancel breakpoint hits. The breakpoint may
3437 be removed before we fetch events from this
3438 process to report to the core. It is best
3439 not to assume the moribund breakpoints
3440 heuristic always handles these cases --- it
3441 could be too many events go through to the
3442 core before this one is handled. All-stop
3443 always cancels breakpoint hits in all
3444 threads. */
3445 if (non_stop
3446 && linux_nat_lp_status_is_event (lp)
3447 && cancel_breakpoint (lp))
3448 {
3449 /* Throw away the SIGTRAP. */
3450 lp->status = 0;
3451
3452 if (debug_linux_nat)
3453 fprintf (stderr,
3454 "LLW: LWP %ld hit a breakpoint while waiting "
3455 "for another process; cancelled it\n",
3456 ptid_get_lwp (lp->ptid));
3457 }
3458 lp->stopped = 1;
3459 }
3460 else
3461 {
3462 lp->stopped = 1;
3463 lp->signalled = 0;
3464 }
3465 }
3466 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3467 {
3468 if (debug_linux_nat)
3469 fprintf (stderr, "Process %ld exited while stopping LWPs\n",
3470 ptid_get_lwp (lp->ptid));
3471
3472 /* This was the last lwp in the process. Since
3473 events are serialized to GDB core, and we can't
3474 report this one right now, but GDB core and the
3475 other target layers will want to be notified
3476 about the exit code/signal, leave the status
3477 pending for the next time we're able to report
3478 it. */
3479
3480 /* Prevent trying to stop this thread again. We'll
3481 never try to resume it because it has a pending
3482 status. */
3483 lp->stopped = 1;
3484
3485 /* Dead LWP's aren't expected to reported a pending
3486 sigstop. */
3487 lp->signalled = 0;
3488
3489 /* Store the pending event in the waitstatus as
3490 well, because W_EXITCODE(0,0) == 0. */
3491 store_waitstatus (&lp->waitstatus, lp->status);
3492 }
3493
3494 /* Keep looking. */
3495 lp = NULL;
3496 continue;
3497 }
3498
3499 if (lp)
3500 break;
3501 else
3502 {
3503 if (pid == -1)
3504 {
3505 /* waitpid did return something. Restart over. */
3506 options |= __WCLONE;
3507 }
3508 continue;
3509 }
3510 }
3511
3512 if (pid == -1)
3513 {
3514 /* Alternate between checking cloned and uncloned processes. */
3515 options ^= __WCLONE;
3516
3517 /* And every time we have checked both:
3518 In async mode, return to event loop;
3519 In sync mode, suspend waiting for a SIGCHLD signal. */
3520 if (options & __WCLONE)
3521 {
3522 if (target_options & TARGET_WNOHANG)
3523 {
3524 /* No interesting event. */
3525 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3526
3527 if (debug_linux_nat_async)
3528 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3529
3530 restore_child_signals_mask (&prev_mask);
3531 return minus_one_ptid;
3532 }
3533
3534 sigsuspend (&suspend_mask);
3535 }
3536 }
3537 else if (target_options & TARGET_WNOHANG)
3538 {
3539 /* No interesting event for PID yet. */
3540 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3541
3542 if (debug_linux_nat_async)
3543 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3544
3545 restore_child_signals_mask (&prev_mask);
3546 return minus_one_ptid;
3547 }
3548
3549 /* We shouldn't end up here unless we want to try again. */
3550 gdb_assert (lp == NULL);
3551 }
3552
3553 if (!target_can_async_p ())
3554 clear_sigint_trap ();
3555
3556 gdb_assert (lp);
3557
3558 status = lp->status;
3559 lp->status = 0;
3560
3561 /* Don't report signals that GDB isn't interested in, such as
3562 signals that are neither printed nor stopped upon. Stopping all
3563 threads can be a bit time-consuming so if we want decent
3564 performance with heavily multi-threaded programs, especially when
3565 they're using a high frequency timer, we'd better avoid it if we
3566 can. */
3567
3568 if (WIFSTOPPED (status))
3569 {
3570 int signo = target_signal_from_host (WSTOPSIG (status));
3571 struct inferior *inf;
3572
3573 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3574 gdb_assert (inf);
3575
3576 /* Defer to common code if we get a signal while
3577 single-stepping, since that may need special care, e.g. to
3578 skip the signal handler, or, if we're gaining control of the
3579 inferior. */
3580 if (!lp->step
3581 && inf->stop_soon == NO_STOP_QUIETLY
3582 && signal_stop_state (signo) == 0
3583 && signal_print_state (signo) == 0
3584 && signal_pass_state (signo) == 1)
3585 {
3586 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3587 here? It is not clear we should. GDB may not expect
3588 other threads to run. On the other hand, not resuming
3589 newly attached threads may cause an unwanted delay in
3590 getting them running. */
3591 registers_changed ();
3592 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3593 lp->step, signo);
3594 if (debug_linux_nat)
3595 fprintf_unfiltered (gdb_stdlog,
3596 "LLW: %s %s, %s (preempt 'handle')\n",
3597 lp->step ?
3598 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3599 target_pid_to_str (lp->ptid),
3600 signo ? strsignal (signo) : "0");
3601 lp->stopped = 0;
3602 goto retry;
3603 }
3604
3605 if (!non_stop)
3606 {
3607 /* Only do the below in all-stop, as we currently use SIGINT
3608 to implement target_stop (see linux_nat_stop) in
3609 non-stop. */
3610 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3611 {
3612 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3613 forwarded to the entire process group, that is, all LWPs
3614 will receive it - unless they're using CLONE_THREAD to
3615 share signals. Since we only want to report it once, we
3616 mark it as ignored for all LWPs except this one. */
3617 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3618 set_ignore_sigint, NULL);
3619 lp->ignore_sigint = 0;
3620 }
3621 else
3622 maybe_clear_ignore_sigint (lp);
3623 }
3624 }
3625
3626 /* This LWP is stopped now. */
3627 lp->stopped = 1;
3628
3629 if (debug_linux_nat)
3630 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3631 status_to_str (status), target_pid_to_str (lp->ptid));
3632
3633 if (!non_stop)
3634 {
3635 /* Now stop all other LWP's ... */
3636 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3637
3638 /* ... and wait until all of them have reported back that
3639 they're no longer running. */
3640 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3641
3642 /* If we're not waiting for a specific LWP, choose an event LWP
3643 from among those that have had events. Giving equal priority
3644 to all LWPs that have had events helps prevent
3645 starvation. */
3646 if (pid == -1)
3647 select_event_lwp (ptid, &lp, &status);
3648
3649 /* Now that we've selected our final event LWP, cancel any
3650 breakpoints in other LWPs that have hit a GDB breakpoint.
3651 See the comment in cancel_breakpoints_callback to find out
3652 why. */
3653 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3654
3655 /* In all-stop, from the core's perspective, all LWPs are now
3656 stopped until a new resume action is sent over. */
3657 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3658 }
3659 else
3660 lp->resumed = 0;
3661
3662 if (linux_nat_status_is_event (status))
3663 {
3664 if (debug_linux_nat)
3665 fprintf_unfiltered (gdb_stdlog,
3666 "LLW: trap ptid is %s.\n",
3667 target_pid_to_str (lp->ptid));
3668 }
3669
3670 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3671 {
3672 *ourstatus = lp->waitstatus;
3673 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3674 }
3675 else
3676 store_waitstatus (ourstatus, status);
3677
3678 if (debug_linux_nat_async)
3679 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3680
3681 restore_child_signals_mask (&prev_mask);
3682
3683 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3684 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3685 lp->core = -1;
3686 else
3687 lp->core = linux_nat_core_of_thread_1 (lp->ptid);
3688
3689 return lp->ptid;
3690 }
3691
3692 /* Resume LWPs that are currently stopped without any pending status
3693 to report, but are resumed from the core's perspective. */
3694
3695 static int
3696 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3697 {
3698 ptid_t *wait_ptid_p = data;
3699
3700 if (lp->stopped
3701 && lp->resumed
3702 && lp->status == 0
3703 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3704 {
3705 gdb_assert (is_executing (lp->ptid));
3706
3707 /* Don't bother if there's a breakpoint at PC that we'd hit
3708 immediately, and we're not waiting for this LWP. */
3709 if (!ptid_match (lp->ptid, *wait_ptid_p))
3710 {
3711 struct regcache *regcache = get_thread_regcache (lp->ptid);
3712 CORE_ADDR pc = regcache_read_pc (regcache);
3713
3714 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3715 return 0;
3716 }
3717
3718 if (debug_linux_nat)
3719 fprintf_unfiltered (gdb_stdlog,
3720 "RSRL: resuming stopped-resumed LWP %s\n",
3721 target_pid_to_str (lp->ptid));
3722
3723 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3724 lp->step, TARGET_SIGNAL_0);
3725 lp->stopped = 0;
3726 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
3727 lp->stopped_by_watchpoint = 0;
3728 }
3729
3730 return 0;
3731 }
3732
3733 static ptid_t
3734 linux_nat_wait (struct target_ops *ops,
3735 ptid_t ptid, struct target_waitstatus *ourstatus,
3736 int target_options)
3737 {
3738 ptid_t event_ptid;
3739
3740 if (debug_linux_nat)
3741 fprintf_unfiltered (gdb_stdlog, "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3742
3743 /* Flush the async file first. */
3744 if (target_can_async_p ())
3745 async_file_flush ();
3746
3747 /* Resume LWPs that are currently stopped without any pending status
3748 to report, but are resumed from the core's perspective. LWPs get
3749 in this state if we find them stopping at a time we're not
3750 interested in reporting the event (target_wait on a
3751 specific_process, for example, see linux_nat_wait_1), and
3752 meanwhile the event became uninteresting. Don't bother resuming
3753 LWPs we're not going to wait for if they'd stop immediately. */
3754 if (non_stop)
3755 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3756
3757 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3758
3759 /* If we requested any event, and something came out, assume there
3760 may be more. If we requested a specific lwp or process, also
3761 assume there may be more. */
3762 if (target_can_async_p ()
3763 && (ourstatus->kind != TARGET_WAITKIND_IGNORE
3764 || !ptid_equal (ptid, minus_one_ptid)))
3765 async_file_mark ();
3766
3767 /* Get ready for the next event. */
3768 if (target_can_async_p ())
3769 target_async (inferior_event_handler, 0);
3770
3771 return event_ptid;
3772 }
3773
3774 static int
3775 kill_callback (struct lwp_info *lp, void *data)
3776 {
3777 errno = 0;
3778 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3779 if (debug_linux_nat)
3780 fprintf_unfiltered (gdb_stdlog,
3781 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3782 target_pid_to_str (lp->ptid),
3783 errno ? safe_strerror (errno) : "OK");
3784
3785 return 0;
3786 }
3787
3788 static int
3789 kill_wait_callback (struct lwp_info *lp, void *data)
3790 {
3791 pid_t pid;
3792
3793 /* We must make sure that there are no pending events (delayed
3794 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3795 program doesn't interfere with any following debugging session. */
3796
3797 /* For cloned processes we must check both with __WCLONE and
3798 without, since the exit status of a cloned process isn't reported
3799 with __WCLONE. */
3800 if (lp->cloned)
3801 {
3802 do
3803 {
3804 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3805 if (pid != (pid_t) -1)
3806 {
3807 if (debug_linux_nat)
3808 fprintf_unfiltered (gdb_stdlog,
3809 "KWC: wait %s received unknown.\n",
3810 target_pid_to_str (lp->ptid));
3811 /* The Linux kernel sometimes fails to kill a thread
3812 completely after PTRACE_KILL; that goes from the stop
3813 point in do_fork out to the one in
3814 get_signal_to_deliever and waits again. So kill it
3815 again. */
3816 kill_callback (lp, NULL);
3817 }
3818 }
3819 while (pid == GET_LWP (lp->ptid));
3820
3821 gdb_assert (pid == -1 && errno == ECHILD);
3822 }
3823
3824 do
3825 {
3826 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3827 if (pid != (pid_t) -1)
3828 {
3829 if (debug_linux_nat)
3830 fprintf_unfiltered (gdb_stdlog,
3831 "KWC: wait %s received unk.\n",
3832 target_pid_to_str (lp->ptid));
3833 /* See the call to kill_callback above. */
3834 kill_callback (lp, NULL);
3835 }
3836 }
3837 while (pid == GET_LWP (lp->ptid));
3838
3839 gdb_assert (pid == -1 && errno == ECHILD);
3840 return 0;
3841 }
3842
3843 static void
3844 linux_nat_kill (struct target_ops *ops)
3845 {
3846 struct target_waitstatus last;
3847 ptid_t last_ptid;
3848 int status;
3849
3850 /* If we're stopped while forking and we haven't followed yet,
3851 kill the other task. We need to do this first because the
3852 parent will be sleeping if this is a vfork. */
3853
3854 get_last_target_status (&last_ptid, &last);
3855
3856 if (last.kind == TARGET_WAITKIND_FORKED
3857 || last.kind == TARGET_WAITKIND_VFORKED)
3858 {
3859 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
3860 wait (&status);
3861 }
3862
3863 if (forks_exist_p ())
3864 linux_fork_killall ();
3865 else
3866 {
3867 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3868
3869 /* Stop all threads before killing them, since ptrace requires
3870 that the thread is stopped to sucessfully PTRACE_KILL. */
3871 iterate_over_lwps (ptid, stop_callback, NULL);
3872 /* ... and wait until all of them have reported back that
3873 they're no longer running. */
3874 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3875
3876 /* Kill all LWP's ... */
3877 iterate_over_lwps (ptid, kill_callback, NULL);
3878
3879 /* ... and wait until we've flushed all events. */
3880 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3881 }
3882
3883 target_mourn_inferior ();
3884 }
3885
3886 static void
3887 linux_nat_mourn_inferior (struct target_ops *ops)
3888 {
3889 purge_lwp_list (ptid_get_pid (inferior_ptid));
3890
3891 if (! forks_exist_p ())
3892 /* Normal case, no other forks available. */
3893 linux_ops->to_mourn_inferior (ops);
3894 else
3895 /* Multi-fork case. The current inferior_ptid has exited, but
3896 there are other viable forks to debug. Delete the exiting
3897 one and context-switch to the first available. */
3898 linux_fork_mourn_inferior ();
3899 }
3900
3901 /* Convert a native/host siginfo object, into/from the siginfo in the
3902 layout of the inferiors' architecture. */
3903
3904 static void
3905 siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
3906 {
3907 int done = 0;
3908
3909 if (linux_nat_siginfo_fixup != NULL)
3910 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3911
3912 /* If there was no callback, or the callback didn't do anything,
3913 then just do a straight memcpy. */
3914 if (!done)
3915 {
3916 if (direction == 1)
3917 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
3918 else
3919 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
3920 }
3921 }
3922
3923 static LONGEST
3924 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3925 const char *annex, gdb_byte *readbuf,
3926 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3927 {
3928 int pid;
3929 struct siginfo siginfo;
3930 gdb_byte inf_siginfo[sizeof (struct siginfo)];
3931
3932 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3933 gdb_assert (readbuf || writebuf);
3934
3935 pid = GET_LWP (inferior_ptid);
3936 if (pid == 0)
3937 pid = GET_PID (inferior_ptid);
3938
3939 if (offset > sizeof (siginfo))
3940 return -1;
3941
3942 errno = 0;
3943 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3944 if (errno != 0)
3945 return -1;
3946
3947 /* When GDB is built as a 64-bit application, ptrace writes into
3948 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3949 inferior with a 64-bit GDB should look the same as debugging it
3950 with a 32-bit GDB, we need to convert it. GDB core always sees
3951 the converted layout, so any read/write will have to be done
3952 post-conversion. */
3953 siginfo_fixup (&siginfo, inf_siginfo, 0);
3954
3955 if (offset + len > sizeof (siginfo))
3956 len = sizeof (siginfo) - offset;
3957
3958 if (readbuf != NULL)
3959 memcpy (readbuf, inf_siginfo + offset, len);
3960 else
3961 {
3962 memcpy (inf_siginfo + offset, writebuf, len);
3963
3964 /* Convert back to ptrace layout before flushing it out. */
3965 siginfo_fixup (&siginfo, inf_siginfo, 1);
3966
3967 errno = 0;
3968 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3969 if (errno != 0)
3970 return -1;
3971 }
3972
3973 return len;
3974 }
3975
3976 static LONGEST
3977 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3978 const char *annex, gdb_byte *readbuf,
3979 const gdb_byte *writebuf,
3980 ULONGEST offset, LONGEST len)
3981 {
3982 struct cleanup *old_chain;
3983 LONGEST xfer;
3984
3985 if (object == TARGET_OBJECT_SIGNAL_INFO)
3986 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3987 offset, len);
3988
3989 /* The target is connected but no live inferior is selected. Pass
3990 this request down to a lower stratum (e.g., the executable
3991 file). */
3992 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3993 return 0;
3994
3995 old_chain = save_inferior_ptid ();
3996
3997 if (is_lwp (inferior_ptid))
3998 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
3999
4000 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
4001 offset, len);
4002
4003 do_cleanups (old_chain);
4004 return xfer;
4005 }
4006
4007 static int
4008 linux_thread_alive (ptid_t ptid)
4009 {
4010 int err;
4011
4012 gdb_assert (is_lwp (ptid));
4013
4014 /* Send signal 0 instead of anything ptrace, because ptracing a
4015 running thread errors out claiming that the thread doesn't
4016 exist. */
4017 err = kill_lwp (GET_LWP (ptid), 0);
4018
4019 if (debug_linux_nat)
4020 fprintf_unfiltered (gdb_stdlog,
4021 "LLTA: KILL(SIG0) %s (%s)\n",
4022 target_pid_to_str (ptid),
4023 err ? safe_strerror (err) : "OK");
4024
4025 if (err != 0)
4026 return 0;
4027
4028 return 1;
4029 }
4030
4031 static int
4032 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
4033 {
4034 return linux_thread_alive (ptid);
4035 }
4036
4037 static char *
4038 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
4039 {
4040 static char buf[64];
4041
4042 if (is_lwp (ptid)
4043 && (GET_PID (ptid) != GET_LWP (ptid)
4044 || num_lwps (GET_PID (ptid)) > 1))
4045 {
4046 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
4047 return buf;
4048 }
4049
4050 return normal_pid_to_str (ptid);
4051 }
4052
4053 /* Accepts an integer PID; Returns a string representing a file that
4054 can be opened to get the symbols for the child process. */
4055
4056 static char *
4057 linux_child_pid_to_exec_file (int pid)
4058 {
4059 char *name1, *name2;
4060
4061 name1 = xmalloc (MAXPATHLEN);
4062 name2 = xmalloc (MAXPATHLEN);
4063 make_cleanup (xfree, name1);
4064 make_cleanup (xfree, name2);
4065 memset (name2, 0, MAXPATHLEN);
4066
4067 sprintf (name1, "/proc/%d/exe", pid);
4068 if (readlink (name1, name2, MAXPATHLEN) > 0)
4069 return name2;
4070 else
4071 return name1;
4072 }
4073
4074 /* Service function for corefiles and info proc. */
4075
4076 static int
4077 read_mapping (FILE *mapfile,
4078 long long *addr,
4079 long long *endaddr,
4080 char *permissions,
4081 long long *offset,
4082 char *device, long long *inode, char *filename)
4083 {
4084 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
4085 addr, endaddr, permissions, offset, device, inode);
4086
4087 filename[0] = '\0';
4088 if (ret > 0 && ret != EOF)
4089 {
4090 /* Eat everything up to EOL for the filename. This will prevent
4091 weird filenames (such as one with embedded whitespace) from
4092 confusing this code. It also makes this code more robust in
4093 respect to annotations the kernel may add after the filename.
4094
4095 Note the filename is used for informational purposes
4096 only. */
4097 ret += fscanf (mapfile, "%[^\n]\n", filename);
4098 }
4099
4100 return (ret != 0 && ret != EOF);
4101 }
4102
4103 /* Fills the "to_find_memory_regions" target vector. Lists the memory
4104 regions in the inferior for a corefile. */
4105
4106 static int
4107 linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
4108 unsigned long,
4109 int, int, int, void *), void *obfd)
4110 {
4111 int pid = PIDGET (inferior_ptid);
4112 char mapsfilename[MAXPATHLEN];
4113 FILE *mapsfile;
4114 long long addr, endaddr, size, offset, inode;
4115 char permissions[8], device[8], filename[MAXPATHLEN];
4116 int read, write, exec;
4117 struct cleanup *cleanup;
4118
4119 /* Compose the filename for the /proc memory map, and open it. */
4120 sprintf (mapsfilename, "/proc/%d/maps", pid);
4121 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
4122 error (_("Could not open %s."), mapsfilename);
4123 cleanup = make_cleanup_fclose (mapsfile);
4124
4125 if (info_verbose)
4126 fprintf_filtered (gdb_stdout,
4127 "Reading memory regions from %s\n", mapsfilename);
4128
4129 /* Now iterate until end-of-file. */
4130 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
4131 &offset, &device[0], &inode, &filename[0]))
4132 {
4133 size = endaddr - addr;
4134
4135 /* Get the segment's permissions. */
4136 read = (strchr (permissions, 'r') != 0);
4137 write = (strchr (permissions, 'w') != 0);
4138 exec = (strchr (permissions, 'x') != 0);
4139
4140 if (info_verbose)
4141 {
4142 fprintf_filtered (gdb_stdout,
4143 "Save segment, %s bytes at %s (%c%c%c)",
4144 plongest (size), paddress (target_gdbarch, addr),
4145 read ? 'r' : ' ',
4146 write ? 'w' : ' ', exec ? 'x' : ' ');
4147 if (filename[0])
4148 fprintf_filtered (gdb_stdout, " for %s", filename);
4149 fprintf_filtered (gdb_stdout, "\n");
4150 }
4151
4152 /* Invoke the callback function to create the corefile
4153 segment. */
4154 func (addr, size, read, write, exec, obfd);
4155 }
4156 do_cleanups (cleanup);
4157 return 0;
4158 }
4159
4160 static int
4161 find_signalled_thread (struct thread_info *info, void *data)
4162 {
4163 if (info->stop_signal != TARGET_SIGNAL_0
4164 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
4165 return 1;
4166
4167 return 0;
4168 }
4169
4170 static enum target_signal
4171 find_stop_signal (void)
4172 {
4173 struct thread_info *info =
4174 iterate_over_threads (find_signalled_thread, NULL);
4175
4176 if (info)
4177 return info->stop_signal;
4178 else
4179 return TARGET_SIGNAL_0;
4180 }
4181
4182 /* Records the thread's register state for the corefile note
4183 section. */
4184
4185 static char *
4186 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
4187 char *note_data, int *note_size,
4188 enum target_signal stop_signal)
4189 {
4190 unsigned long lwp = ptid_get_lwp (ptid);
4191 struct gdbarch *gdbarch = target_gdbarch;
4192 struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
4193 const struct regset *regset;
4194 int core_regset_p;
4195 struct cleanup *old_chain;
4196 struct core_regset_section *sect_list;
4197 char *gdb_regset;
4198
4199 old_chain = save_inferior_ptid ();
4200 inferior_ptid = ptid;
4201 target_fetch_registers (regcache, -1);
4202 do_cleanups (old_chain);
4203
4204 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4205 sect_list = gdbarch_core_regset_sections (gdbarch);
4206
4207 /* The loop below uses the new struct core_regset_section, which stores
4208 the supported section names and sizes for the core file. Note that
4209 note PRSTATUS needs to be treated specially. But the other notes are
4210 structurally the same, so they can benefit from the new struct. */
4211 if (core_regset_p && sect_list != NULL)
4212 while (sect_list->sect_name != NULL)
4213 {
4214 regset = gdbarch_regset_from_core_section (gdbarch,
4215 sect_list->sect_name,
4216 sect_list->size);
4217 gdb_assert (regset && regset->collect_regset);
4218 gdb_regset = xmalloc (sect_list->size);
4219 regset->collect_regset (regset, regcache, -1,
4220 gdb_regset, sect_list->size);
4221
4222 if (strcmp (sect_list->sect_name, ".reg") == 0)
4223 note_data = (char *) elfcore_write_prstatus
4224 (obfd, note_data, note_size,
4225 lwp, target_signal_to_host (stop_signal),
4226 gdb_regset);
4227 else
4228 note_data = (char *) elfcore_write_register_note
4229 (obfd, note_data, note_size,
4230 sect_list->sect_name, gdb_regset,
4231 sect_list->size);
4232 xfree (gdb_regset);
4233 sect_list++;
4234 }
4235
4236 /* For architectures that does not have the struct core_regset_section
4237 implemented, we use the old method. When all the architectures have
4238 the new support, the code below should be deleted. */
4239 else
4240 {
4241 gdb_gregset_t gregs;
4242 gdb_fpregset_t fpregs;
4243
4244 if (core_regset_p
4245 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4246 sizeof (gregs))) != NULL
4247 && regset->collect_regset != NULL)
4248 regset->collect_regset (regset, regcache, -1,
4249 &gregs, sizeof (gregs));
4250 else
4251 fill_gregset (regcache, &gregs, -1);
4252
4253 note_data = (char *) elfcore_write_prstatus
4254 (obfd, note_data, note_size, lwp, target_signal_to_host (stop_signal),
4255 &gregs);
4256
4257 if (core_regset_p
4258 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4259 sizeof (fpregs))) != NULL
4260 && regset->collect_regset != NULL)
4261 regset->collect_regset (regset, regcache, -1,
4262 &fpregs, sizeof (fpregs));
4263 else
4264 fill_fpregset (regcache, &fpregs, -1);
4265
4266 note_data = (char *) elfcore_write_prfpreg (obfd,
4267 note_data,
4268 note_size,
4269 &fpregs, sizeof (fpregs));
4270 }
4271
4272 return note_data;
4273 }
4274
4275 struct linux_nat_corefile_thread_data
4276 {
4277 bfd *obfd;
4278 char *note_data;
4279 int *note_size;
4280 int num_notes;
4281 enum target_signal stop_signal;
4282 };
4283
4284 /* Called by gdbthread.c once per thread. Records the thread's
4285 register state for the corefile note section. */
4286
4287 static int
4288 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
4289 {
4290 struct linux_nat_corefile_thread_data *args = data;
4291
4292 args->note_data = linux_nat_do_thread_registers (args->obfd,
4293 ti->ptid,
4294 args->note_data,
4295 args->note_size,
4296 args->stop_signal);
4297 args->num_notes++;
4298
4299 return 0;
4300 }
4301
4302 /* Enumerate spufs IDs for process PID. */
4303
4304 static void
4305 iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
4306 {
4307 char path[128];
4308 DIR *dir;
4309 struct dirent *entry;
4310
4311 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4312 dir = opendir (path);
4313 if (!dir)
4314 return;
4315
4316 rewinddir (dir);
4317 while ((entry = readdir (dir)) != NULL)
4318 {
4319 struct stat st;
4320 struct statfs stfs;
4321 int fd;
4322
4323 fd = atoi (entry->d_name);
4324 if (!fd)
4325 continue;
4326
4327 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4328 if (stat (path, &st) != 0)
4329 continue;
4330 if (!S_ISDIR (st.st_mode))
4331 continue;
4332
4333 if (statfs (path, &stfs) != 0)
4334 continue;
4335 if (stfs.f_type != SPUFS_MAGIC)
4336 continue;
4337
4338 callback (data, fd);
4339 }
4340
4341 closedir (dir);
4342 }
4343
4344 /* Generate corefile notes for SPU contexts. */
4345
4346 struct linux_spu_corefile_data
4347 {
4348 bfd *obfd;
4349 char *note_data;
4350 int *note_size;
4351 };
4352
4353 static void
4354 linux_spu_corefile_callback (void *data, int fd)
4355 {
4356 struct linux_spu_corefile_data *args = data;
4357 int i;
4358
4359 static const char *spu_files[] =
4360 {
4361 "object-id",
4362 "mem",
4363 "regs",
4364 "fpcr",
4365 "lslr",
4366 "decr",
4367 "decr_status",
4368 "signal1",
4369 "signal1_type",
4370 "signal2",
4371 "signal2_type",
4372 "event_mask",
4373 "event_status",
4374 "mbox_info",
4375 "ibox_info",
4376 "wbox_info",
4377 "dma_info",
4378 "proxydma_info",
4379 };
4380
4381 for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
4382 {
4383 char annex[32], note_name[32];
4384 gdb_byte *spu_data;
4385 LONGEST spu_len;
4386
4387 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
4388 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
4389 annex, &spu_data);
4390 if (spu_len > 0)
4391 {
4392 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
4393 args->note_data = elfcore_write_note (args->obfd, args->note_data,
4394 args->note_size, note_name,
4395 NT_SPU, spu_data, spu_len);
4396 xfree (spu_data);
4397 }
4398 }
4399 }
4400
4401 static char *
4402 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
4403 {
4404 struct linux_spu_corefile_data args;
4405
4406 args.obfd = obfd;
4407 args.note_data = note_data;
4408 args.note_size = note_size;
4409
4410 iterate_over_spus (PIDGET (inferior_ptid),
4411 linux_spu_corefile_callback, &args);
4412
4413 return args.note_data;
4414 }
4415
4416 /* Fills the "to_make_corefile_note" target vector. Builds the note
4417 section for a corefile, and returns it in a malloc buffer. */
4418
4419 static char *
4420 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4421 {
4422 struct linux_nat_corefile_thread_data thread_args;
4423 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
4424 char fname[16] = { '\0' };
4425 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
4426 char psargs[80] = { '\0' };
4427 char *note_data = NULL;
4428 ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
4429 gdb_byte *auxv;
4430 int auxv_len;
4431
4432 if (get_exec_file (0))
4433 {
4434 strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
4435 strncpy (psargs, get_exec_file (0), sizeof (psargs));
4436 if (get_inferior_args ())
4437 {
4438 char *string_end;
4439 char *psargs_end = psargs + sizeof (psargs);
4440
4441 /* linux_elfcore_write_prpsinfo () handles zero unterminated
4442 strings fine. */
4443 string_end = memchr (psargs, 0, sizeof (psargs));
4444 if (string_end != NULL)
4445 {
4446 *string_end++ = ' ';
4447 strncpy (string_end, get_inferior_args (),
4448 psargs_end - string_end);
4449 }
4450 }
4451 note_data = (char *) elfcore_write_prpsinfo (obfd,
4452 note_data,
4453 note_size, fname, psargs);
4454 }
4455
4456 /* Dump information for threads. */
4457 thread_args.obfd = obfd;
4458 thread_args.note_data = note_data;
4459 thread_args.note_size = note_size;
4460 thread_args.num_notes = 0;
4461 thread_args.stop_signal = find_stop_signal ();
4462 iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
4463 gdb_assert (thread_args.num_notes != 0);
4464 note_data = thread_args.note_data;
4465
4466 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
4467 NULL, &auxv);
4468 if (auxv_len > 0)
4469 {
4470 note_data = elfcore_write_note (obfd, note_data, note_size,
4471 "CORE", NT_AUXV, auxv, auxv_len);
4472 xfree (auxv);
4473 }
4474
4475 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
4476
4477 make_cleanup (xfree, note_data);
4478 return note_data;
4479 }
4480
4481 /* Implement the "info proc" command. */
4482
4483 static void
4484 linux_nat_info_proc_cmd (char *args, int from_tty)
4485 {
4486 /* A long is used for pid instead of an int to avoid a loss of precision
4487 compiler warning from the output of strtoul. */
4488 long pid = PIDGET (inferior_ptid);
4489 FILE *procfile;
4490 char **argv = NULL;
4491 char buffer[MAXPATHLEN];
4492 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
4493 int cmdline_f = 1;
4494 int cwd_f = 1;
4495 int exe_f = 1;
4496 int mappings_f = 0;
4497 int status_f = 0;
4498 int stat_f = 0;
4499 int all = 0;
4500 struct stat dummy;
4501
4502 if (args)
4503 {
4504 /* Break up 'args' into an argv array. */
4505 argv = gdb_buildargv (args);
4506 make_cleanup_freeargv (argv);
4507 }
4508 while (argv != NULL && *argv != NULL)
4509 {
4510 if (isdigit (argv[0][0]))
4511 {
4512 pid = strtoul (argv[0], NULL, 10);
4513 }
4514 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
4515 {
4516 mappings_f = 1;
4517 }
4518 else if (strcmp (argv[0], "status") == 0)
4519 {
4520 status_f = 1;
4521 }
4522 else if (strcmp (argv[0], "stat") == 0)
4523 {
4524 stat_f = 1;
4525 }
4526 else if (strcmp (argv[0], "cmd") == 0)
4527 {
4528 cmdline_f = 1;
4529 }
4530 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
4531 {
4532 exe_f = 1;
4533 }
4534 else if (strcmp (argv[0], "cwd") == 0)
4535 {
4536 cwd_f = 1;
4537 }
4538 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
4539 {
4540 all = 1;
4541 }
4542 else
4543 {
4544 /* [...] (future options here) */
4545 }
4546 argv++;
4547 }
4548 if (pid == 0)
4549 error (_("No current process: you must name one."));
4550
4551 sprintf (fname1, "/proc/%ld", pid);
4552 if (stat (fname1, &dummy) != 0)
4553 error (_("No /proc directory: '%s'"), fname1);
4554
4555 printf_filtered (_("process %ld\n"), pid);
4556 if (cmdline_f || all)
4557 {
4558 sprintf (fname1, "/proc/%ld/cmdline", pid);
4559 if ((procfile = fopen (fname1, "r")) != NULL)
4560 {
4561 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4562
4563 if (fgets (buffer, sizeof (buffer), procfile))
4564 printf_filtered ("cmdline = '%s'\n", buffer);
4565 else
4566 warning (_("unable to read '%s'"), fname1);
4567 do_cleanups (cleanup);
4568 }
4569 else
4570 warning (_("unable to open /proc file '%s'"), fname1);
4571 }
4572 if (cwd_f || all)
4573 {
4574 sprintf (fname1, "/proc/%ld/cwd", pid);
4575 memset (fname2, 0, sizeof (fname2));
4576 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4577 printf_filtered ("cwd = '%s'\n", fname2);
4578 else
4579 warning (_("unable to read link '%s'"), fname1);
4580 }
4581 if (exe_f || all)
4582 {
4583 sprintf (fname1, "/proc/%ld/exe", pid);
4584 memset (fname2, 0, sizeof (fname2));
4585 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4586 printf_filtered ("exe = '%s'\n", fname2);
4587 else
4588 warning (_("unable to read link '%s'"), fname1);
4589 }
4590 if (mappings_f || all)
4591 {
4592 sprintf (fname1, "/proc/%ld/maps", pid);
4593 if ((procfile = fopen (fname1, "r")) != NULL)
4594 {
4595 long long addr, endaddr, size, offset, inode;
4596 char permissions[8], device[8], filename[MAXPATHLEN];
4597 struct cleanup *cleanup;
4598
4599 cleanup = make_cleanup_fclose (procfile);
4600 printf_filtered (_("Mapped address spaces:\n\n"));
4601 if (gdbarch_addr_bit (target_gdbarch) == 32)
4602 {
4603 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
4604 "Start Addr",
4605 " End Addr",
4606 " Size", " Offset", "objfile");
4607 }
4608 else
4609 {
4610 printf_filtered (" %18s %18s %10s %10s %7s\n",
4611 "Start Addr",
4612 " End Addr",
4613 " Size", " Offset", "objfile");
4614 }
4615
4616 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
4617 &offset, &device[0], &inode, &filename[0]))
4618 {
4619 size = endaddr - addr;
4620
4621 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
4622 calls here (and possibly above) should be abstracted
4623 out into their own functions? Andrew suggests using
4624 a generic local_address_string instead to print out
4625 the addresses; that makes sense to me, too. */
4626
4627 if (gdbarch_addr_bit (target_gdbarch) == 32)
4628 {
4629 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
4630 (unsigned long) addr, /* FIXME: pr_addr */
4631 (unsigned long) endaddr,
4632 (int) size,
4633 (unsigned int) offset,
4634 filename[0] ? filename : "");
4635 }
4636 else
4637 {
4638 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
4639 (unsigned long) addr, /* FIXME: pr_addr */
4640 (unsigned long) endaddr,
4641 (int) size,
4642 (unsigned int) offset,
4643 filename[0] ? filename : "");
4644 }
4645 }
4646
4647 do_cleanups (cleanup);
4648 }
4649 else
4650 warning (_("unable to open /proc file '%s'"), fname1);
4651 }
4652 if (status_f || all)
4653 {
4654 sprintf (fname1, "/proc/%ld/status", pid);
4655 if ((procfile = fopen (fname1, "r")) != NULL)
4656 {
4657 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4658
4659 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
4660 puts_filtered (buffer);
4661 do_cleanups (cleanup);
4662 }
4663 else
4664 warning (_("unable to open /proc file '%s'"), fname1);
4665 }
4666 if (stat_f || all)
4667 {
4668 sprintf (fname1, "/proc/%ld/stat", pid);
4669 if ((procfile = fopen (fname1, "r")) != NULL)
4670 {
4671 int itmp;
4672 char ctmp;
4673 long ltmp;
4674 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4675
4676 if (fscanf (procfile, "%d ", &itmp) > 0)
4677 printf_filtered (_("Process: %d\n"), itmp);
4678 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
4679 printf_filtered (_("Exec file: %s\n"), buffer);
4680 if (fscanf (procfile, "%c ", &ctmp) > 0)
4681 printf_filtered (_("State: %c\n"), ctmp);
4682 if (fscanf (procfile, "%d ", &itmp) > 0)
4683 printf_filtered (_("Parent process: %d\n"), itmp);
4684 if (fscanf (procfile, "%d ", &itmp) > 0)
4685 printf_filtered (_("Process group: %d\n"), itmp);
4686 if (fscanf (procfile, "%d ", &itmp) > 0)
4687 printf_filtered (_("Session id: %d\n"), itmp);
4688 if (fscanf (procfile, "%d ", &itmp) > 0)
4689 printf_filtered (_("TTY: %d\n"), itmp);
4690 if (fscanf (procfile, "%d ", &itmp) > 0)
4691 printf_filtered (_("TTY owner process group: %d\n"), itmp);
4692 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4693 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
4694 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4695 printf_filtered (_("Minor faults (no memory page): %lu\n"),
4696 (unsigned long) ltmp);
4697 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4698 printf_filtered (_("Minor faults, children: %lu\n"),
4699 (unsigned long) ltmp);
4700 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4701 printf_filtered (_("Major faults (memory page faults): %lu\n"),
4702 (unsigned long) ltmp);
4703 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4704 printf_filtered (_("Major faults, children: %lu\n"),
4705 (unsigned long) ltmp);
4706 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4707 printf_filtered (_("utime: %ld\n"), ltmp);
4708 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4709 printf_filtered (_("stime: %ld\n"), ltmp);
4710 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4711 printf_filtered (_("utime, children: %ld\n"), ltmp);
4712 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4713 printf_filtered (_("stime, children: %ld\n"), ltmp);
4714 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4715 printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
4716 ltmp);
4717 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4718 printf_filtered (_("'nice' value: %ld\n"), ltmp);
4719 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4720 printf_filtered (_("jiffies until next timeout: %lu\n"),
4721 (unsigned long) ltmp);
4722 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4723 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
4724 (unsigned long) ltmp);
4725 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4726 printf_filtered (_("start time (jiffies since system boot): %ld\n"),
4727 ltmp);
4728 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4729 printf_filtered (_("Virtual memory size: %lu\n"),
4730 (unsigned long) ltmp);
4731 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4732 printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
4733 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4734 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
4735 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4736 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
4737 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4738 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
4739 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4740 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
4741 #if 0 /* Don't know how architecture-dependent the rest is...
4742 Anyway the signal bitmap info is available from "status". */
4743 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4744 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
4745 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4746 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
4747 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4748 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
4749 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4750 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
4751 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4752 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
4753 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4754 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
4755 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4756 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
4757 #endif
4758 do_cleanups (cleanup);
4759 }
4760 else
4761 warning (_("unable to open /proc file '%s'"), fname1);
4762 }
4763 }
4764
4765 /* Implement the to_xfer_partial interface for memory reads using the /proc
4766 filesystem. Because we can use a single read() call for /proc, this
4767 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4768 but it doesn't support writes. */
4769
4770 static LONGEST
4771 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4772 const char *annex, gdb_byte *readbuf,
4773 const gdb_byte *writebuf,
4774 ULONGEST offset, LONGEST len)
4775 {
4776 LONGEST ret;
4777 int fd;
4778 char filename[64];
4779
4780 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4781 return 0;
4782
4783 /* Don't bother for one word. */
4784 if (len < 3 * sizeof (long))
4785 return 0;
4786
4787 /* We could keep this file open and cache it - possibly one per
4788 thread. That requires some juggling, but is even faster. */
4789 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4790 fd = open (filename, O_RDONLY | O_LARGEFILE);
4791 if (fd == -1)
4792 return 0;
4793
4794 /* If pread64 is available, use it. It's faster if the kernel
4795 supports it (only one syscall), and it's 64-bit safe even on
4796 32-bit platforms (for instance, SPARC debugging a SPARC64
4797 application). */
4798 #ifdef HAVE_PREAD64
4799 if (pread64 (fd, readbuf, len, offset) != len)
4800 #else
4801 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4802 #endif
4803 ret = 0;
4804 else
4805 ret = len;
4806
4807 close (fd);
4808 return ret;
4809 }
4810
4811
4812 /* Enumerate spufs IDs for process PID. */
4813 static LONGEST
4814 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4815 {
4816 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
4817 LONGEST pos = 0;
4818 LONGEST written = 0;
4819 char path[128];
4820 DIR *dir;
4821 struct dirent *entry;
4822
4823 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4824 dir = opendir (path);
4825 if (!dir)
4826 return -1;
4827
4828 rewinddir (dir);
4829 while ((entry = readdir (dir)) != NULL)
4830 {
4831 struct stat st;
4832 struct statfs stfs;
4833 int fd;
4834
4835 fd = atoi (entry->d_name);
4836 if (!fd)
4837 continue;
4838
4839 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4840 if (stat (path, &st) != 0)
4841 continue;
4842 if (!S_ISDIR (st.st_mode))
4843 continue;
4844
4845 if (statfs (path, &stfs) != 0)
4846 continue;
4847 if (stfs.f_type != SPUFS_MAGIC)
4848 continue;
4849
4850 if (pos >= offset && pos + 4 <= offset + len)
4851 {
4852 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4853 written += 4;
4854 }
4855 pos += 4;
4856 }
4857
4858 closedir (dir);
4859 return written;
4860 }
4861
4862 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4863 object type, using the /proc file system. */
4864 static LONGEST
4865 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4866 const char *annex, gdb_byte *readbuf,
4867 const gdb_byte *writebuf,
4868 ULONGEST offset, LONGEST len)
4869 {
4870 char buf[128];
4871 int fd = 0;
4872 int ret = -1;
4873 int pid = PIDGET (inferior_ptid);
4874
4875 if (!annex)
4876 {
4877 if (!readbuf)
4878 return -1;
4879 else
4880 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4881 }
4882
4883 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4884 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
4885 if (fd <= 0)
4886 return -1;
4887
4888 if (offset != 0
4889 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4890 {
4891 close (fd);
4892 return 0;
4893 }
4894
4895 if (writebuf)
4896 ret = write (fd, writebuf, (size_t) len);
4897 else if (readbuf)
4898 ret = read (fd, readbuf, (size_t) len);
4899
4900 close (fd);
4901 return ret;
4902 }
4903
4904
4905 /* Parse LINE as a signal set and add its set bits to SIGS. */
4906
4907 static void
4908 add_line_to_sigset (const char *line, sigset_t *sigs)
4909 {
4910 int len = strlen (line) - 1;
4911 const char *p;
4912 int signum;
4913
4914 if (line[len] != '\n')
4915 error (_("Could not parse signal set: %s"), line);
4916
4917 p = line;
4918 signum = len * 4;
4919 while (len-- > 0)
4920 {
4921 int digit;
4922
4923 if (*p >= '0' && *p <= '9')
4924 digit = *p - '0';
4925 else if (*p >= 'a' && *p <= 'f')
4926 digit = *p - 'a' + 10;
4927 else
4928 error (_("Could not parse signal set: %s"), line);
4929
4930 signum -= 4;
4931
4932 if (digit & 1)
4933 sigaddset (sigs, signum + 1);
4934 if (digit & 2)
4935 sigaddset (sigs, signum + 2);
4936 if (digit & 4)
4937 sigaddset (sigs, signum + 3);
4938 if (digit & 8)
4939 sigaddset (sigs, signum + 4);
4940
4941 p++;
4942 }
4943 }
4944
4945 /* Find process PID's pending signals from /proc/pid/status and set
4946 SIGS to match. */
4947
4948 void
4949 linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
4950 {
4951 FILE *procfile;
4952 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
4953 struct cleanup *cleanup;
4954
4955 sigemptyset (pending);
4956 sigemptyset (blocked);
4957 sigemptyset (ignored);
4958 sprintf (fname, "/proc/%d/status", pid);
4959 procfile = fopen (fname, "r");
4960 if (procfile == NULL)
4961 error (_("Could not open %s"), fname);
4962 cleanup = make_cleanup_fclose (procfile);
4963
4964 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
4965 {
4966 /* Normal queued signals are on the SigPnd line in the status
4967 file. However, 2.6 kernels also have a "shared" pending
4968 queue for delivering signals to a thread group, so check for
4969 a ShdPnd line also.
4970
4971 Unfortunately some Red Hat kernels include the shared pending
4972 queue but not the ShdPnd status field. */
4973
4974 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4975 add_line_to_sigset (buffer + 8, pending);
4976 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4977 add_line_to_sigset (buffer + 8, pending);
4978 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4979 add_line_to_sigset (buffer + 8, blocked);
4980 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4981 add_line_to_sigset (buffer + 8, ignored);
4982 }
4983
4984 do_cleanups (cleanup);
4985 }
4986
4987 static LONGEST
4988 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4989 const char *annex, gdb_byte *readbuf,
4990 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4991 {
4992 /* We make the process list snapshot when the object starts to be
4993 read. */
4994 static const char *buf;
4995 static LONGEST len_avail = -1;
4996 static struct obstack obstack;
4997
4998 DIR *dirp;
4999
5000 gdb_assert (object == TARGET_OBJECT_OSDATA);
5001
5002 if (!annex)
5003 {
5004 if (offset == 0)
5005 {
5006 if (len_avail != -1 && len_avail != 0)
5007 obstack_free (&obstack, NULL);
5008 len_avail = 0;
5009 buf = NULL;
5010 obstack_init (&obstack);
5011 obstack_grow_str (&obstack, "<osdata type=\"types\">\n");
5012
5013 obstack_xml_printf (
5014 &obstack,
5015 "<item>"
5016 "<column name=\"Type\">processes</column>"
5017 "<column name=\"Description\">Listing of all processes</column>"
5018 "</item>");
5019
5020 obstack_grow_str0 (&obstack, "</osdata>\n");
5021 buf = obstack_finish (&obstack);
5022 len_avail = strlen (buf);
5023 }
5024
5025 if (offset >= len_avail)
5026 {
5027 /* Done. Get rid of the obstack. */
5028 obstack_free (&obstack, NULL);
5029 buf = NULL;
5030 len_avail = 0;
5031 return 0;
5032 }
5033
5034 if (len > len_avail - offset)
5035 len = len_avail - offset;
5036 memcpy (readbuf, buf + offset, len);
5037
5038 return len;
5039 }
5040
5041 if (strcmp (annex, "processes") != 0)
5042 return 0;
5043
5044 gdb_assert (readbuf && !writebuf);
5045
5046 if (offset == 0)
5047 {
5048 if (len_avail != -1 && len_avail != 0)
5049 obstack_free (&obstack, NULL);
5050 len_avail = 0;
5051 buf = NULL;
5052 obstack_init (&obstack);
5053 obstack_grow_str (&obstack, "<osdata type=\"processes\">\n");
5054
5055 dirp = opendir ("/proc");
5056 if (dirp)
5057 {
5058 struct dirent *dp;
5059
5060 while ((dp = readdir (dirp)) != NULL)
5061 {
5062 struct stat statbuf;
5063 char procentry[sizeof ("/proc/4294967295")];
5064
5065 if (!isdigit (dp->d_name[0])
5066 || NAMELEN (dp) > sizeof ("4294967295") - 1)
5067 continue;
5068
5069 sprintf (procentry, "/proc/%s", dp->d_name);
5070 if (stat (procentry, &statbuf) == 0
5071 && S_ISDIR (statbuf.st_mode))
5072 {
5073 char *pathname;
5074 FILE *f;
5075 char cmd[MAXPATHLEN + 1];
5076 struct passwd *entry;
5077
5078 pathname = xstrprintf ("/proc/%s/cmdline", dp->d_name);
5079 entry = getpwuid (statbuf.st_uid);
5080
5081 if ((f = fopen (pathname, "r")) != NULL)
5082 {
5083 size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
5084
5085 if (len > 0)
5086 {
5087 int i;
5088
5089 for (i = 0; i < len; i++)
5090 if (cmd[i] == '\0')
5091 cmd[i] = ' ';
5092 cmd[len] = '\0';
5093
5094 obstack_xml_printf (
5095 &obstack,
5096 "<item>"
5097 "<column name=\"pid\">%s</column>"
5098 "<column name=\"user\">%s</column>"
5099 "<column name=\"command\">%s</column>"
5100 "</item>",
5101 dp->d_name,
5102 entry ? entry->pw_name : "?",
5103 cmd);
5104 }
5105 fclose (f);
5106 }
5107
5108 xfree (pathname);
5109 }
5110 }
5111
5112 closedir (dirp);
5113 }
5114
5115 obstack_grow_str0 (&obstack, "</osdata>\n");
5116 buf = obstack_finish (&obstack);
5117 len_avail = strlen (buf);
5118 }
5119
5120 if (offset >= len_avail)
5121 {
5122 /* Done. Get rid of the obstack. */
5123 obstack_free (&obstack, NULL);
5124 buf = NULL;
5125 len_avail = 0;
5126 return 0;
5127 }
5128
5129 if (len > len_avail - offset)
5130 len = len_avail - offset;
5131 memcpy (readbuf, buf + offset, len);
5132
5133 return len;
5134 }
5135
5136 static LONGEST
5137 linux_xfer_partial (struct target_ops *ops, enum target_object object,
5138 const char *annex, gdb_byte *readbuf,
5139 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5140 {
5141 LONGEST xfer;
5142
5143 if (object == TARGET_OBJECT_AUXV)
5144 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
5145 offset, len);
5146
5147 if (object == TARGET_OBJECT_OSDATA)
5148 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
5149 offset, len);
5150
5151 if (object == TARGET_OBJECT_SPU)
5152 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
5153 offset, len);
5154
5155 /* GDB calculates all the addresses in possibly larget width of the address.
5156 Address width needs to be masked before its final use - either by
5157 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
5158
5159 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
5160
5161 if (object == TARGET_OBJECT_MEMORY)
5162 {
5163 int addr_bit = gdbarch_addr_bit (target_gdbarch);
5164
5165 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
5166 offset &= ((ULONGEST) 1 << addr_bit) - 1;
5167 }
5168
5169 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
5170 offset, len);
5171 if (xfer != 0)
5172 return xfer;
5173
5174 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
5175 offset, len);
5176 }
5177
5178 /* Create a prototype generic GNU/Linux target. The client can override
5179 it with local methods. */
5180
5181 static void
5182 linux_target_install_ops (struct target_ops *t)
5183 {
5184 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
5185 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
5186 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
5187 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
5188 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
5189 t->to_post_startup_inferior = linux_child_post_startup_inferior;
5190 t->to_post_attach = linux_child_post_attach;
5191 t->to_follow_fork = linux_child_follow_fork;
5192 t->to_find_memory_regions = linux_nat_find_memory_regions;
5193 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
5194
5195 super_xfer_partial = t->to_xfer_partial;
5196 t->to_xfer_partial = linux_xfer_partial;
5197 }
5198
5199 struct target_ops *
5200 linux_target (void)
5201 {
5202 struct target_ops *t;
5203
5204 t = inf_ptrace_target ();
5205 linux_target_install_ops (t);
5206
5207 return t;
5208 }
5209
5210 struct target_ops *
5211 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
5212 {
5213 struct target_ops *t;
5214
5215 t = inf_ptrace_trad_target (register_u_offset);
5216 linux_target_install_ops (t);
5217
5218 return t;
5219 }
5220
5221 /* target_is_async_p implementation. */
5222
5223 static int
5224 linux_nat_is_async_p (void)
5225 {
5226 /* NOTE: palves 2008-03-21: We're only async when the user requests
5227 it explicitly with the "set target-async" command.
5228 Someday, linux will always be async. */
5229 if (!target_async_permitted)
5230 return 0;
5231
5232 /* See target.h/target_async_mask. */
5233 return linux_nat_async_mask_value;
5234 }
5235
5236 /* target_can_async_p implementation. */
5237
5238 static int
5239 linux_nat_can_async_p (void)
5240 {
5241 /* NOTE: palves 2008-03-21: We're only async when the user requests
5242 it explicitly with the "set target-async" command.
5243 Someday, linux will always be async. */
5244 if (!target_async_permitted)
5245 return 0;
5246
5247 /* See target.h/target_async_mask. */
5248 return linux_nat_async_mask_value;
5249 }
5250
5251 static int
5252 linux_nat_supports_non_stop (void)
5253 {
5254 return 1;
5255 }
5256
5257 /* True if we want to support multi-process. To be removed when GDB
5258 supports multi-exec. */
5259
5260 int linux_multi_process = 1;
5261
5262 static int
5263 linux_nat_supports_multi_process (void)
5264 {
5265 return linux_multi_process;
5266 }
5267
5268 /* target_async_mask implementation. */
5269
5270 static int
5271 linux_nat_async_mask (int new_mask)
5272 {
5273 int curr_mask = linux_nat_async_mask_value;
5274
5275 if (curr_mask != new_mask)
5276 {
5277 if (new_mask == 0)
5278 {
5279 linux_nat_async (NULL, 0);
5280 linux_nat_async_mask_value = new_mask;
5281 }
5282 else
5283 {
5284 linux_nat_async_mask_value = new_mask;
5285
5286 /* If we're going out of async-mask in all-stop, then the
5287 inferior is stopped. The next resume will call
5288 target_async. In non-stop, the target event source
5289 should be always registered in the event loop. Do so
5290 now. */
5291 if (non_stop)
5292 linux_nat_async (inferior_event_handler, 0);
5293 }
5294 }
5295
5296 return curr_mask;
5297 }
5298
5299 static int async_terminal_is_ours = 1;
5300
5301 /* target_terminal_inferior implementation. */
5302
5303 static void
5304 linux_nat_terminal_inferior (void)
5305 {
5306 if (!target_is_async_p ())
5307 {
5308 /* Async mode is disabled. */
5309 terminal_inferior ();
5310 return;
5311 }
5312
5313 terminal_inferior ();
5314
5315 /* Calls to target_terminal_*() are meant to be idempotent. */
5316 if (!async_terminal_is_ours)
5317 return;
5318
5319 delete_file_handler (input_fd);
5320 async_terminal_is_ours = 0;
5321 set_sigint_trap ();
5322 }
5323
5324 /* target_terminal_ours implementation. */
5325
5326 static void
5327 linux_nat_terminal_ours (void)
5328 {
5329 if (!target_is_async_p ())
5330 {
5331 /* Async mode is disabled. */
5332 terminal_ours ();
5333 return;
5334 }
5335
5336 /* GDB should never give the terminal to the inferior if the
5337 inferior is running in the background (run&, continue&, etc.),
5338 but claiming it sure should. */
5339 terminal_ours ();
5340
5341 if (async_terminal_is_ours)
5342 return;
5343
5344 clear_sigint_trap ();
5345 add_file_handler (input_fd, stdin_event_handler, 0);
5346 async_terminal_is_ours = 1;
5347 }
5348
5349 static void (*async_client_callback) (enum inferior_event_type event_type,
5350 void *context);
5351 static void *async_client_context;
5352
5353 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5354 so we notice when any child changes state, and notify the
5355 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
5356 above to wait for the arrival of a SIGCHLD. */
5357
5358 static void
5359 sigchld_handler (int signo)
5360 {
5361 int old_errno = errno;
5362
5363 if (debug_linux_nat_async)
5364 fprintf_unfiltered (gdb_stdlog, "sigchld\n");
5365
5366 if (signo == SIGCHLD
5367 && linux_nat_event_pipe[0] != -1)
5368 async_file_mark (); /* Let the event loop know that there are
5369 events to handle. */
5370
5371 errno = old_errno;
5372 }
5373
5374 /* Callback registered with the target events file descriptor. */
5375
5376 static void
5377 handle_target_event (int error, gdb_client_data client_data)
5378 {
5379 (*async_client_callback) (INF_REG_EVENT, async_client_context);
5380 }
5381
5382 /* Create/destroy the target events pipe. Returns previous state. */
5383
5384 static int
5385 linux_async_pipe (int enable)
5386 {
5387 int previous = (linux_nat_event_pipe[0] != -1);
5388
5389 if (previous != enable)
5390 {
5391 sigset_t prev_mask;
5392
5393 block_child_signals (&prev_mask);
5394
5395 if (enable)
5396 {
5397 if (pipe (linux_nat_event_pipe) == -1)
5398 internal_error (__FILE__, __LINE__,
5399 "creating event pipe failed.");
5400
5401 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
5402 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
5403 }
5404 else
5405 {
5406 close (linux_nat_event_pipe[0]);
5407 close (linux_nat_event_pipe[1]);
5408 linux_nat_event_pipe[0] = -1;
5409 linux_nat_event_pipe[1] = -1;
5410 }
5411
5412 restore_child_signals_mask (&prev_mask);
5413 }
5414
5415 return previous;
5416 }
5417
5418 /* target_async implementation. */
5419
5420 static void
5421 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
5422 void *context), void *context)
5423 {
5424 if (linux_nat_async_mask_value == 0 || !target_async_permitted)
5425 internal_error (__FILE__, __LINE__,
5426 "Calling target_async when async is masked");
5427
5428 if (callback != NULL)
5429 {
5430 async_client_callback = callback;
5431 async_client_context = context;
5432 if (!linux_async_pipe (1))
5433 {
5434 add_file_handler (linux_nat_event_pipe[0],
5435 handle_target_event, NULL);
5436 /* There may be pending events to handle. Tell the event loop
5437 to poll them. */
5438 async_file_mark ();
5439 }
5440 }
5441 else
5442 {
5443 async_client_callback = callback;
5444 async_client_context = context;
5445 delete_file_handler (linux_nat_event_pipe[0]);
5446 linux_async_pipe (0);
5447 }
5448 return;
5449 }
5450
5451 /* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
5452 event came out. */
5453
5454 static int
5455 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
5456 {
5457 if (!lwp->stopped)
5458 {
5459 ptid_t ptid = lwp->ptid;
5460
5461 if (debug_linux_nat)
5462 fprintf_unfiltered (gdb_stdlog,
5463 "LNSL: running -> suspending %s\n",
5464 target_pid_to_str (lwp->ptid));
5465
5466
5467 stop_callback (lwp, NULL);
5468 stop_wait_callback (lwp, NULL);
5469
5470 /* If the lwp exits while we try to stop it, there's nothing
5471 else to do. */
5472 lwp = find_lwp_pid (ptid);
5473 if (lwp == NULL)
5474 return 0;
5475
5476 /* If we didn't collect any signal other than SIGSTOP while
5477 stopping the LWP, push a SIGNAL_0 event. In either case, the
5478 event-loop will end up calling target_wait which will collect
5479 these. */
5480 if (lwp->status == 0)
5481 lwp->status = W_STOPCODE (0);
5482 async_file_mark ();
5483 }
5484 else
5485 {
5486 /* Already known to be stopped; do nothing. */
5487
5488 if (debug_linux_nat)
5489 {
5490 if (find_thread_ptid (lwp->ptid)->stop_requested)
5491 fprintf_unfiltered (gdb_stdlog, "\
5492 LNSL: already stopped/stop_requested %s\n",
5493 target_pid_to_str (lwp->ptid));
5494 else
5495 fprintf_unfiltered (gdb_stdlog, "\
5496 LNSL: already stopped/no stop_requested yet %s\n",
5497 target_pid_to_str (lwp->ptid));
5498 }
5499 }
5500 return 0;
5501 }
5502
5503 static void
5504 linux_nat_stop (ptid_t ptid)
5505 {
5506 if (non_stop)
5507 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
5508 else
5509 linux_ops->to_stop (ptid);
5510 }
5511
5512 static void
5513 linux_nat_close (int quitting)
5514 {
5515 /* Unregister from the event loop. */
5516 if (target_is_async_p ())
5517 target_async (NULL, 0);
5518
5519 /* Reset the async_masking. */
5520 linux_nat_async_mask_value = 1;
5521
5522 if (linux_ops->to_close)
5523 linux_ops->to_close (quitting);
5524 }
5525
5526 /* When requests are passed down from the linux-nat layer to the
5527 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
5528 used. The address space pointer is stored in the inferior object,
5529 but the common code that is passed such ptid can't tell whether
5530 lwpid is a "main" process id or not (it assumes so). We reverse
5531 look up the "main" process id from the lwp here. */
5532
5533 struct address_space *
5534 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
5535 {
5536 struct lwp_info *lwp;
5537 struct inferior *inf;
5538 int pid;
5539
5540 pid = GET_LWP (ptid);
5541 if (GET_LWP (ptid) == 0)
5542 {
5543 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
5544 tgid. */
5545 lwp = find_lwp_pid (ptid);
5546 pid = GET_PID (lwp->ptid);
5547 }
5548 else
5549 {
5550 /* A (pid,lwpid,0) ptid. */
5551 pid = GET_PID (ptid);
5552 }
5553
5554 inf = find_inferior_pid (pid);
5555 gdb_assert (inf != NULL);
5556 return inf->aspace;
5557 }
5558
5559 int
5560 linux_nat_core_of_thread_1 (ptid_t ptid)
5561 {
5562 struct cleanup *back_to;
5563 char *filename;
5564 FILE *f;
5565 char *content = NULL;
5566 char *p;
5567 char *ts = 0;
5568 int content_read = 0;
5569 int i;
5570 int core;
5571
5572 filename = xstrprintf ("/proc/%d/task/%ld/stat",
5573 GET_PID (ptid), GET_LWP (ptid));
5574 back_to = make_cleanup (xfree, filename);
5575
5576 f = fopen (filename, "r");
5577 if (!f)
5578 {
5579 do_cleanups (back_to);
5580 return -1;
5581 }
5582
5583 make_cleanup_fclose (f);
5584
5585 for (;;)
5586 {
5587 int n;
5588
5589 content = xrealloc (content, content_read + 1024);
5590 n = fread (content + content_read, 1, 1024, f);
5591 content_read += n;
5592 if (n < 1024)
5593 {
5594 content[content_read] = '\0';
5595 break;
5596 }
5597 }
5598
5599 make_cleanup (xfree, content);
5600
5601 p = strchr (content, '(');
5602
5603 /* Skip ")". */
5604 if (p != NULL)
5605 p = strchr (p, ')');
5606 if (p != NULL)
5607 p++;
5608
5609 /* If the first field after program name has index 0, then core number is
5610 the field with index 36. There's no constant for that anywhere. */
5611 if (p != NULL)
5612 p = strtok_r (p, " ", &ts);
5613 for (i = 0; p != NULL && i != 36; ++i)
5614 p = strtok_r (NULL, " ", &ts);
5615
5616 if (p == NULL || sscanf (p, "%d", &core) == 0)
5617 core = -1;
5618
5619 do_cleanups (back_to);
5620
5621 return core;
5622 }
5623
5624 /* Return the cached value of the processor core for thread PTID. */
5625
5626 int
5627 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
5628 {
5629 struct lwp_info *info = find_lwp_pid (ptid);
5630
5631 if (info)
5632 return info->core;
5633 return -1;
5634 }
5635
5636 void
5637 linux_nat_add_target (struct target_ops *t)
5638 {
5639 /* Save the provided single-threaded target. We save this in a separate
5640 variable because another target we've inherited from (e.g. inf-ptrace)
5641 may have saved a pointer to T; we want to use it for the final
5642 process stratum target. */
5643 linux_ops_saved = *t;
5644 linux_ops = &linux_ops_saved;
5645
5646 /* Override some methods for multithreading. */
5647 t->to_create_inferior = linux_nat_create_inferior;
5648 t->to_attach = linux_nat_attach;
5649 t->to_detach = linux_nat_detach;
5650 t->to_resume = linux_nat_resume;
5651 t->to_wait = linux_nat_wait;
5652 t->to_xfer_partial = linux_nat_xfer_partial;
5653 t->to_kill = linux_nat_kill;
5654 t->to_mourn_inferior = linux_nat_mourn_inferior;
5655 t->to_thread_alive = linux_nat_thread_alive;
5656 t->to_pid_to_str = linux_nat_pid_to_str;
5657 t->to_has_thread_control = tc_schedlock;
5658 t->to_thread_address_space = linux_nat_thread_address_space;
5659 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5660 t->to_stopped_data_address = linux_nat_stopped_data_address;
5661
5662 t->to_can_async_p = linux_nat_can_async_p;
5663 t->to_is_async_p = linux_nat_is_async_p;
5664 t->to_supports_non_stop = linux_nat_supports_non_stop;
5665 t->to_async = linux_nat_async;
5666 t->to_async_mask = linux_nat_async_mask;
5667 t->to_terminal_inferior = linux_nat_terminal_inferior;
5668 t->to_terminal_ours = linux_nat_terminal_ours;
5669 t->to_close = linux_nat_close;
5670
5671 /* Methods for non-stop support. */
5672 t->to_stop = linux_nat_stop;
5673
5674 t->to_supports_multi_process = linux_nat_supports_multi_process;
5675
5676 t->to_core_of_thread = linux_nat_core_of_thread;
5677
5678 /* We don't change the stratum; this target will sit at
5679 process_stratum and thread_db will set at thread_stratum. This
5680 is a little strange, since this is a multi-threaded-capable
5681 target, but we want to be on the stack below thread_db, and we
5682 also want to be used for single-threaded processes. */
5683
5684 add_target (t);
5685 }
5686
5687 /* Register a method to call whenever a new thread is attached. */
5688 void
5689 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
5690 {
5691 /* Save the pointer. We only support a single registered instance
5692 of the GNU/Linux native target, so we do not need to map this to
5693 T. */
5694 linux_nat_new_thread = new_thread;
5695 }
5696
5697 /* Register a method that converts a siginfo object between the layout
5698 that ptrace returns, and the layout in the architecture of the
5699 inferior. */
5700 void
5701 linux_nat_set_siginfo_fixup (struct target_ops *t,
5702 int (*siginfo_fixup) (struct siginfo *,
5703 gdb_byte *,
5704 int))
5705 {
5706 /* Save the pointer. */
5707 linux_nat_siginfo_fixup = siginfo_fixup;
5708 }
5709
5710 /* Return the saved siginfo associated with PTID. */
5711 struct siginfo *
5712 linux_nat_get_siginfo (ptid_t ptid)
5713 {
5714 struct lwp_info *lp = find_lwp_pid (ptid);
5715
5716 gdb_assert (lp != NULL);
5717
5718 return &lp->siginfo;
5719 }
5720
5721 /* Provide a prototype to silence -Wmissing-prototypes. */
5722 extern initialize_file_ftype _initialize_linux_nat;
5723
5724 void
5725 _initialize_linux_nat (void)
5726 {
5727 add_info ("proc", linux_nat_info_proc_cmd, _("\
5728 Show /proc process information about any running process.\n\
5729 Specify any process id, or use the program being debugged by default.\n\
5730 Specify any of the following keywords for detailed info:\n\
5731 mappings -- list of mapped memory regions.\n\
5732 stat -- list a bunch of random process info.\n\
5733 status -- list a different bunch of random process info.\n\
5734 all -- list all available /proc info."));
5735
5736 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5737 &debug_linux_nat, _("\
5738 Set debugging of GNU/Linux lwp module."), _("\
5739 Show debugging of GNU/Linux lwp module."), _("\
5740 Enables printf debugging output."),
5741 NULL,
5742 show_debug_linux_nat,
5743 &setdebuglist, &showdebuglist);
5744
5745 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
5746 &debug_linux_nat_async, _("\
5747 Set debugging of GNU/Linux async lwp module."), _("\
5748 Show debugging of GNU/Linux async lwp module."), _("\
5749 Enables printf debugging output."),
5750 NULL,
5751 show_debug_linux_nat_async,
5752 &setdebuglist, &showdebuglist);
5753
5754 /* Save this mask as the default. */
5755 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5756
5757 /* Install a SIGCHLD handler. */
5758 sigchld_action.sa_handler = sigchld_handler;
5759 sigemptyset (&sigchld_action.sa_mask);
5760 sigchld_action.sa_flags = SA_RESTART;
5761
5762 /* Make it the default. */
5763 sigaction (SIGCHLD, &sigchld_action, NULL);
5764
5765 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5766 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5767 sigdelset (&suspend_mask, SIGCHLD);
5768
5769 sigemptyset (&blocked_mask);
5770
5771 add_setshow_boolean_cmd ("disable-randomization", class_support,
5772 &disable_randomization, _("\
5773 Set disabling of debuggee's virtual address space randomization."), _("\
5774 Show disabling of debuggee's virtual address space randomization."), _("\
5775 When this mode is on (which is the default), randomization of the virtual\n\
5776 address space is disabled. Standalone programs run with the randomization\n\
5777 enabled by default on some platforms."),
5778 &set_disable_randomization,
5779 &show_disable_randomization,
5780 &setlist, &showlist);
5781 }
5782 \f
5783
5784 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5785 the GNU/Linux Threads library and therefore doesn't really belong
5786 here. */
5787
5788 /* Read variable NAME in the target and return its value if found.
5789 Otherwise return zero. It is assumed that the type of the variable
5790 is `int'. */
5791
5792 static int
5793 get_signo (const char *name)
5794 {
5795 struct minimal_symbol *ms;
5796 int signo;
5797
5798 ms = lookup_minimal_symbol (name, NULL, NULL);
5799 if (ms == NULL)
5800 return 0;
5801
5802 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5803 sizeof (signo)) != 0)
5804 return 0;
5805
5806 return signo;
5807 }
5808
5809 /* Return the set of signals used by the threads library in *SET. */
5810
5811 void
5812 lin_thread_get_thread_signals (sigset_t *set)
5813 {
5814 struct sigaction action;
5815 int restart, cancel;
5816
5817 sigemptyset (&blocked_mask);
5818 sigemptyset (set);
5819
5820 restart = get_signo ("__pthread_sig_restart");
5821 cancel = get_signo ("__pthread_sig_cancel");
5822
5823 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5824 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5825 not provide any way for the debugger to query the signal numbers -
5826 fortunately they don't change! */
5827
5828 if (restart == 0)
5829 restart = __SIGRTMIN;
5830
5831 if (cancel == 0)
5832 cancel = __SIGRTMIN + 1;
5833
5834 sigaddset (set, restart);
5835 sigaddset (set, cancel);
5836
5837 /* The GNU/Linux Threads library makes terminating threads send a
5838 special "cancel" signal instead of SIGCHLD. Make sure we catch
5839 those (to prevent them from terminating GDB itself, which is
5840 likely to be their default action) and treat them the same way as
5841 SIGCHLD. */
5842
5843 action.sa_handler = sigchld_handler;
5844 sigemptyset (&action.sa_mask);
5845 action.sa_flags = SA_RESTART;
5846 sigaction (cancel, &action, NULL);
5847
5848 /* We block the "cancel" signal throughout this code ... */
5849 sigaddset (&blocked_mask, cancel);
5850 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5851
5852 /* ... except during a sigsuspend. */
5853 sigdelset (&suspend_mask, cancel);
5854 }