* breakpoint.c (mark_breakpoints_out): Make public.
[binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "gdb_wait.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-fork.h"
34 #include "gdbthread.h"
35 #include "gdbcmd.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "inf-ptrace.h"
39 #include "auxv.h"
40 #include <sys/param.h> /* for MAXPATHLEN */
41 #include <sys/procfs.h> /* for elf_gregset etc. */
42 #include "elf-bfd.h" /* for elfcore_write_* */
43 #include "gregset.h" /* for gregset */
44 #include "gdbcore.h" /* for get_exec_file */
45 #include <ctype.h> /* for isdigit */
46 #include "gdbthread.h" /* for struct thread_info etc. */
47 #include "gdb_stat.h" /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52
53 /* This comment documents high-level logic of this file.
54
55 Waiting for events in sync mode
56 ===============================
57
58 When waiting for an event in a specific thread, we just use waitpid, passing
59 the specific pid, and not passing WNOHANG.
60
61 When waiting for an event in all threads, waitpid is not quite good. Prior to
62 version 2.4, Linux can either wait for event in main thread, or in secondary
63 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
64 miss an event. The solution is to use non-blocking waitpid, together with
65 sigsuspend. First, we use non-blocking waitpid to get an event in the main
66 process, if any. Second, we use non-blocking waitpid with the __WCLONED
67 flag to check for events in cloned processes. If nothing is found, we use
68 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
69 happened to a child process -- and SIGCHLD will be delivered both for events
70 in main debugged process and in cloned processes. As soon as we know there's
71 an event, we get back to calling nonblocking waitpid with and without __WCLONED.
72
73 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
74 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
75 blocked, the signal becomes pending and sigsuspend immediately
76 notices it and returns.
77
78 Waiting for events in async mode
79 ================================
80
81 In async mode, GDB should always be ready to handle both user input and target
82 events, so neither blocking waitpid nor sigsuspend are viable
83 options. Instead, we should notify the GDB main event loop whenever there's
84 unprocessed event from the target. The only way to notify this event loop is
85 to make it wait on input from a pipe, and write something to the pipe whenever
86 there's event. Obviously, if we fail to notify the event loop if there's
87 target event, it's bad. If we notify the event loop when there's no event
88 from target, linux-nat.c will detect that there's no event, actually, and
89 report event of type TARGET_WAITKIND_IGNORE, but it will waste time and
90 better avoided.
91
92 The main design point is that every time GDB is outside linux-nat.c, we have a
93 SIGCHLD handler installed that is called when something happens to the target
94 and notifies the GDB event loop. Also, the event is extracted from the target
95 using waitpid and stored for future use. Whenever GDB core decides to handle
96 the event, and calls into linux-nat.c, we disable SIGCHLD and process things
97 as in sync mode, except that before waitpid call we check if there are any
98 previously read events.
99
100 It could happen that during event processing, we'll try to get more events
101 than there are events in the local queue, which will result to waitpid call.
102 Those waitpid calls, while blocking, are guarantied to always have
103 something for waitpid to return. E.g., stopping a thread with SIGSTOP, and
104 waiting for the lwp to stop.
105
106 The event loop is notified about new events using a pipe. SIGCHLD handler does
107 waitpid and writes the results in to a pipe. GDB event loop has the other end
108 of the pipe among the sources. When event loop starts to process the event
109 and calls a function in linux-nat.c, all events from the pipe are transferred
110 into a local queue and SIGCHLD is blocked. Further processing goes as in sync
111 mode. Before we return from linux_nat_wait, we transfer all unprocessed events
112 from local queue back to the pipe, so that when we get back to event loop,
113 event loop will notice there's something more to do.
114
115 SIGCHLD is blocked when we're inside target_wait, so that should we actually
116 want to wait for some more events, SIGCHLD handler does not steal them from
117 us. Technically, it would be possible to add new events to the local queue but
118 it's about the same amount of work as blocking SIGCHLD.
119
120 This moving of events from pipe into local queue and back into pipe when we
121 enter/leave linux-nat.c is somewhat ugly. Unfortunately, GDB event loop is
122 home-grown and incapable to wait on any queue.
123
124 Use of signals
125 ==============
126
127 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
128 signal is not entirely significant; we just need for a signal to be delivered,
129 so that we can intercept it. SIGSTOP's advantage is that it can not be
130 blocked. A disadvantage is that it is not a real-time signal, so it can only
131 be queued once; we do not keep track of other sources of SIGSTOP.
132
133 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
134 use them, because they have special behavior when the signal is generated -
135 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
136 kills the entire thread group.
137
138 A delivered SIGSTOP would stop the entire thread group, not just the thread we
139 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
140 cancel it (by PTRACE_CONT without passing SIGSTOP).
141
142 We could use a real-time signal instead. This would solve those problems; we
143 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
144 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
145 generates it, and there are races with trying to find a signal that is not
146 blocked. */
147
148 #ifndef O_LARGEFILE
149 #define O_LARGEFILE 0
150 #endif
151
152 /* If the system headers did not provide the constants, hard-code the normal
153 values. */
154 #ifndef PTRACE_EVENT_FORK
155
156 #define PTRACE_SETOPTIONS 0x4200
157 #define PTRACE_GETEVENTMSG 0x4201
158
159 /* options set using PTRACE_SETOPTIONS */
160 #define PTRACE_O_TRACESYSGOOD 0x00000001
161 #define PTRACE_O_TRACEFORK 0x00000002
162 #define PTRACE_O_TRACEVFORK 0x00000004
163 #define PTRACE_O_TRACECLONE 0x00000008
164 #define PTRACE_O_TRACEEXEC 0x00000010
165 #define PTRACE_O_TRACEVFORKDONE 0x00000020
166 #define PTRACE_O_TRACEEXIT 0x00000040
167
168 /* Wait extended result codes for the above trace options. */
169 #define PTRACE_EVENT_FORK 1
170 #define PTRACE_EVENT_VFORK 2
171 #define PTRACE_EVENT_CLONE 3
172 #define PTRACE_EVENT_EXEC 4
173 #define PTRACE_EVENT_VFORK_DONE 5
174 #define PTRACE_EVENT_EXIT 6
175
176 #endif /* PTRACE_EVENT_FORK */
177
178 /* We can't always assume that this flag is available, but all systems
179 with the ptrace event handlers also have __WALL, so it's safe to use
180 here. */
181 #ifndef __WALL
182 #define __WALL 0x40000000 /* Wait for any child. */
183 #endif
184
185 #ifndef PTRACE_GETSIGINFO
186 #define PTRACE_GETSIGINFO 0x4202
187 #endif
188
189 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
190 the use of the multi-threaded target. */
191 static struct target_ops *linux_ops;
192 static struct target_ops linux_ops_saved;
193
194 /* The method to call, if any, when a new thread is attached. */
195 static void (*linux_nat_new_thread) (ptid_t);
196
197 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
198 Called by our to_xfer_partial. */
199 static LONGEST (*super_xfer_partial) (struct target_ops *,
200 enum target_object,
201 const char *, gdb_byte *,
202 const gdb_byte *,
203 ULONGEST, LONGEST);
204
205 static int debug_linux_nat;
206 static void
207 show_debug_linux_nat (struct ui_file *file, int from_tty,
208 struct cmd_list_element *c, const char *value)
209 {
210 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
211 value);
212 }
213
214 static int debug_linux_nat_async = 0;
215 static void
216 show_debug_linux_nat_async (struct ui_file *file, int from_tty,
217 struct cmd_list_element *c, const char *value)
218 {
219 fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
220 value);
221 }
222
223 static int linux_parent_pid;
224
225 struct simple_pid_list
226 {
227 int pid;
228 int status;
229 struct simple_pid_list *next;
230 };
231 struct simple_pid_list *stopped_pids;
232
233 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
234 can not be used, 1 if it can. */
235
236 static int linux_supports_tracefork_flag = -1;
237
238 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
239 PTRACE_O_TRACEVFORKDONE. */
240
241 static int linux_supports_tracevforkdone_flag = -1;
242
243 /* Async mode support */
244
245 /* True if async mode is currently on. */
246 static int linux_nat_async_enabled;
247
248 /* Zero if the async mode, although enabled, is masked, which means
249 linux_nat_wait should behave as if async mode was off. */
250 static int linux_nat_async_mask_value = 1;
251
252 /* The read/write ends of the pipe registered as waitable file in the
253 event loop. */
254 static int linux_nat_event_pipe[2] = { -1, -1 };
255
256 /* Number of queued events in the pipe. */
257 static volatile int linux_nat_num_queued_events;
258
259 /* The possible SIGCHLD handling states. */
260
261 enum sigchld_state
262 {
263 /* SIGCHLD disabled, with action set to sigchld_handler, for the
264 sigsuspend in linux_nat_wait. */
265 sigchld_sync,
266 /* SIGCHLD enabled, with action set to async_sigchld_handler. */
267 sigchld_async,
268 /* Set SIGCHLD to default action. Used while creating an
269 inferior. */
270 sigchld_default
271 };
272
273 /* The current SIGCHLD handling state. */
274 static enum sigchld_state linux_nat_async_events_state;
275
276 static enum sigchld_state linux_nat_async_events (enum sigchld_state enable);
277 static void pipe_to_local_event_queue (void);
278 static void local_event_queue_to_pipe (void);
279 static void linux_nat_event_pipe_push (int pid, int status, int options);
280 static int linux_nat_event_pipe_pop (int* ptr_status, int* ptr_options);
281 static void linux_nat_set_async_mode (int on);
282 static void linux_nat_async (void (*callback)
283 (enum inferior_event_type event_type, void *context),
284 void *context);
285 static int linux_nat_async_mask (int mask);
286 static int kill_lwp (int lwpid, int signo);
287
288 /* Captures the result of a successful waitpid call, along with the
289 options used in that call. */
290 struct waitpid_result
291 {
292 int pid;
293 int status;
294 int options;
295 struct waitpid_result *next;
296 };
297
298 /* A singly-linked list of the results of the waitpid calls performed
299 in the async SIGCHLD handler. */
300 static struct waitpid_result *waitpid_queue = NULL;
301
302 static int
303 queued_waitpid (int pid, int *status, int flags)
304 {
305 struct waitpid_result *msg = waitpid_queue, *prev = NULL;
306
307 if (debug_linux_nat_async)
308 fprintf_unfiltered (gdb_stdlog,
309 "\
310 QWPID: linux_nat_async_events_state(%d), linux_nat_num_queued_events(%d)\n",
311 linux_nat_async_events_state,
312 linux_nat_num_queued_events);
313
314 if (flags & __WALL)
315 {
316 for (; msg; prev = msg, msg = msg->next)
317 if (pid == -1 || pid == msg->pid)
318 break;
319 }
320 else if (flags & __WCLONE)
321 {
322 for (; msg; prev = msg, msg = msg->next)
323 if (msg->options & __WCLONE
324 && (pid == -1 || pid == msg->pid))
325 break;
326 }
327 else
328 {
329 for (; msg; prev = msg, msg = msg->next)
330 if ((msg->options & __WCLONE) == 0
331 && (pid == -1 || pid == msg->pid))
332 break;
333 }
334
335 if (msg)
336 {
337 int pid;
338
339 if (prev)
340 prev->next = msg->next;
341 else
342 waitpid_queue = msg->next;
343
344 msg->next = NULL;
345 if (status)
346 *status = msg->status;
347 pid = msg->pid;
348
349 if (debug_linux_nat_async)
350 fprintf_unfiltered (gdb_stdlog, "QWPID: pid(%d), status(%x)\n",
351 pid, msg->status);
352 xfree (msg);
353
354 return pid;
355 }
356
357 if (debug_linux_nat_async)
358 fprintf_unfiltered (gdb_stdlog, "QWPID: miss\n");
359
360 if (status)
361 *status = 0;
362 return -1;
363 }
364
365 static void
366 push_waitpid (int pid, int status, int options)
367 {
368 struct waitpid_result *event, *new_event;
369
370 new_event = xmalloc (sizeof (*new_event));
371 new_event->pid = pid;
372 new_event->status = status;
373 new_event->options = options;
374 new_event->next = NULL;
375
376 if (waitpid_queue)
377 {
378 for (event = waitpid_queue;
379 event && event->next;
380 event = event->next)
381 ;
382
383 event->next = new_event;
384 }
385 else
386 waitpid_queue = new_event;
387 }
388
389 /* Drain all queued events of PID. If PID is -1, the effect is of
390 draining all events. */
391 static void
392 drain_queued_events (int pid)
393 {
394 while (queued_waitpid (pid, NULL, __WALL) != -1)
395 ;
396 }
397
398 \f
399 /* Trivial list manipulation functions to keep track of a list of
400 new stopped processes. */
401 static void
402 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
403 {
404 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
405 new_pid->pid = pid;
406 new_pid->status = status;
407 new_pid->next = *listp;
408 *listp = new_pid;
409 }
410
411 static int
412 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
413 {
414 struct simple_pid_list **p;
415
416 for (p = listp; *p != NULL; p = &(*p)->next)
417 if ((*p)->pid == pid)
418 {
419 struct simple_pid_list *next = (*p)->next;
420 *status = (*p)->status;
421 xfree (*p);
422 *p = next;
423 return 1;
424 }
425 return 0;
426 }
427
428 static void
429 linux_record_stopped_pid (int pid, int status)
430 {
431 add_to_pid_list (&stopped_pids, pid, status);
432 }
433
434 \f
435 /* A helper function for linux_test_for_tracefork, called after fork (). */
436
437 static void
438 linux_tracefork_child (void)
439 {
440 int ret;
441
442 ptrace (PTRACE_TRACEME, 0, 0, 0);
443 kill (getpid (), SIGSTOP);
444 fork ();
445 _exit (0);
446 }
447
448 /* Wrapper function for waitpid which handles EINTR, and checks for
449 locally queued events. */
450
451 static int
452 my_waitpid (int pid, int *status, int flags)
453 {
454 int ret;
455
456 /* There should be no concurrent calls to waitpid. */
457 gdb_assert (linux_nat_async_events_state == sigchld_sync);
458
459 ret = queued_waitpid (pid, status, flags);
460 if (ret != -1)
461 return ret;
462
463 do
464 {
465 ret = waitpid (pid, status, flags);
466 }
467 while (ret == -1 && errno == EINTR);
468
469 return ret;
470 }
471
472 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
473
474 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
475 we know that the feature is not available. This may change the tracing
476 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
477
478 However, if it succeeds, we don't know for sure that the feature is
479 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
480 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
481 fork tracing, and let it fork. If the process exits, we assume that we
482 can't use TRACEFORK; if we get the fork notification, and we can extract
483 the new child's PID, then we assume that we can. */
484
485 static void
486 linux_test_for_tracefork (int original_pid)
487 {
488 int child_pid, ret, status;
489 long second_pid;
490
491 linux_supports_tracefork_flag = 0;
492 linux_supports_tracevforkdone_flag = 0;
493
494 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
495 if (ret != 0)
496 return;
497
498 child_pid = fork ();
499 if (child_pid == -1)
500 perror_with_name (("fork"));
501
502 if (child_pid == 0)
503 linux_tracefork_child ();
504
505 ret = my_waitpid (child_pid, &status, 0);
506 if (ret == -1)
507 perror_with_name (("waitpid"));
508 else if (ret != child_pid)
509 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
510 if (! WIFSTOPPED (status))
511 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
512
513 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
514 if (ret != 0)
515 {
516 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
517 if (ret != 0)
518 {
519 warning (_("linux_test_for_tracefork: failed to kill child"));
520 return;
521 }
522
523 ret = my_waitpid (child_pid, &status, 0);
524 if (ret != child_pid)
525 warning (_("linux_test_for_tracefork: failed to wait for killed child"));
526 else if (!WIFSIGNALED (status))
527 warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
528 "killed child"), status);
529
530 return;
531 }
532
533 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
534 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
535 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
536 linux_supports_tracevforkdone_flag = (ret == 0);
537
538 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
539 if (ret != 0)
540 warning (_("linux_test_for_tracefork: failed to resume child"));
541
542 ret = my_waitpid (child_pid, &status, 0);
543
544 if (ret == child_pid && WIFSTOPPED (status)
545 && status >> 16 == PTRACE_EVENT_FORK)
546 {
547 second_pid = 0;
548 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
549 if (ret == 0 && second_pid != 0)
550 {
551 int second_status;
552
553 linux_supports_tracefork_flag = 1;
554 my_waitpid (second_pid, &second_status, 0);
555 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
556 if (ret != 0)
557 warning (_("linux_test_for_tracefork: failed to kill second child"));
558 my_waitpid (second_pid, &status, 0);
559 }
560 }
561 else
562 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
563 "(%d, status 0x%x)"), ret, status);
564
565 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
566 if (ret != 0)
567 warning (_("linux_test_for_tracefork: failed to kill child"));
568 my_waitpid (child_pid, &status, 0);
569 }
570
571 /* Return non-zero iff we have tracefork functionality available.
572 This function also sets linux_supports_tracefork_flag. */
573
574 static int
575 linux_supports_tracefork (int pid)
576 {
577 if (linux_supports_tracefork_flag == -1)
578 linux_test_for_tracefork (pid);
579 return linux_supports_tracefork_flag;
580 }
581
582 static int
583 linux_supports_tracevforkdone (int pid)
584 {
585 if (linux_supports_tracefork_flag == -1)
586 linux_test_for_tracefork (pid);
587 return linux_supports_tracevforkdone_flag;
588 }
589
590 \f
591 void
592 linux_enable_event_reporting (ptid_t ptid)
593 {
594 int pid = ptid_get_lwp (ptid);
595 int options;
596
597 if (pid == 0)
598 pid = ptid_get_pid (ptid);
599
600 if (! linux_supports_tracefork (pid))
601 return;
602
603 options = PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK | PTRACE_O_TRACEEXEC
604 | PTRACE_O_TRACECLONE;
605 if (linux_supports_tracevforkdone (pid))
606 options |= PTRACE_O_TRACEVFORKDONE;
607
608 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
609 read-only process state. */
610
611 ptrace (PTRACE_SETOPTIONS, pid, 0, options);
612 }
613
614 static void
615 linux_child_post_attach (int pid)
616 {
617 linux_enable_event_reporting (pid_to_ptid (pid));
618 check_for_thread_db ();
619 }
620
621 static void
622 linux_child_post_startup_inferior (ptid_t ptid)
623 {
624 linux_enable_event_reporting (ptid);
625 check_for_thread_db ();
626 }
627
628 static int
629 linux_child_follow_fork (struct target_ops *ops, int follow_child)
630 {
631 ptid_t last_ptid;
632 struct target_waitstatus last_status;
633 int has_vforked;
634 int parent_pid, child_pid;
635
636 if (target_can_async_p ())
637 target_async (NULL, 0);
638
639 get_last_target_status (&last_ptid, &last_status);
640 has_vforked = (last_status.kind == TARGET_WAITKIND_VFORKED);
641 parent_pid = ptid_get_lwp (last_ptid);
642 if (parent_pid == 0)
643 parent_pid = ptid_get_pid (last_ptid);
644 child_pid = last_status.value.related_pid;
645
646 if (! follow_child)
647 {
648 /* We're already attached to the parent, by default. */
649
650 /* Before detaching from the child, remove all breakpoints from
651 it. (This won't actually modify the breakpoint list, but will
652 physically remove the breakpoints from the child.) */
653 /* If we vforked this will remove the breakpoints from the parent
654 also, but they'll be reinserted below. */
655 detach_breakpoints (child_pid);
656
657 /* Detach new forked process? */
658 if (detach_fork)
659 {
660 if (info_verbose || debug_linux_nat)
661 {
662 target_terminal_ours ();
663 fprintf_filtered (gdb_stdlog,
664 "Detaching after fork from child process %d.\n",
665 child_pid);
666 }
667
668 ptrace (PTRACE_DETACH, child_pid, 0, 0);
669 }
670 else
671 {
672 struct fork_info *fp;
673 /* Retain child fork in ptrace (stopped) state. */
674 fp = find_fork_pid (child_pid);
675 if (!fp)
676 fp = add_fork (child_pid);
677 fork_save_infrun_state (fp, 0);
678 }
679
680 if (has_vforked)
681 {
682 gdb_assert (linux_supports_tracefork_flag >= 0);
683 if (linux_supports_tracevforkdone (0))
684 {
685 int status;
686
687 ptrace (PTRACE_CONT, parent_pid, 0, 0);
688 my_waitpid (parent_pid, &status, __WALL);
689 if ((status >> 16) != PTRACE_EVENT_VFORK_DONE)
690 warning (_("Unexpected waitpid result %06x when waiting for "
691 "vfork-done"), status);
692 }
693 else
694 {
695 /* We can't insert breakpoints until the child has
696 finished with the shared memory region. We need to
697 wait until that happens. Ideal would be to just
698 call:
699 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
700 - waitpid (parent_pid, &status, __WALL);
701 However, most architectures can't handle a syscall
702 being traced on the way out if it wasn't traced on
703 the way in.
704
705 We might also think to loop, continuing the child
706 until it exits or gets a SIGTRAP. One problem is
707 that the child might call ptrace with PTRACE_TRACEME.
708
709 There's no simple and reliable way to figure out when
710 the vforked child will be done with its copy of the
711 shared memory. We could step it out of the syscall,
712 two instructions, let it go, and then single-step the
713 parent once. When we have hardware single-step, this
714 would work; with software single-step it could still
715 be made to work but we'd have to be able to insert
716 single-step breakpoints in the child, and we'd have
717 to insert -just- the single-step breakpoint in the
718 parent. Very awkward.
719
720 In the end, the best we can do is to make sure it
721 runs for a little while. Hopefully it will be out of
722 range of any breakpoints we reinsert. Usually this
723 is only the single-step breakpoint at vfork's return
724 point. */
725
726 usleep (10000);
727 }
728
729 /* Since we vforked, breakpoints were removed in the parent
730 too. Put them back. */
731 reattach_breakpoints (parent_pid);
732 }
733 }
734 else
735 {
736 char child_pid_spelling[40];
737
738 /* Needed to keep the breakpoint lists in sync. */
739 if (! has_vforked)
740 detach_breakpoints (child_pid);
741
742 /* Before detaching from the parent, remove all breakpoints from it. */
743 remove_breakpoints ();
744
745 if (info_verbose || debug_linux_nat)
746 {
747 target_terminal_ours ();
748 fprintf_filtered (gdb_stdlog,
749 "Attaching after fork to child process %d.\n",
750 child_pid);
751 }
752
753 /* If we're vforking, we may want to hold on to the parent until
754 the child exits or execs. At exec time we can remove the old
755 breakpoints from the parent and detach it; at exit time we
756 could do the same (or even, sneakily, resume debugging it - the
757 child's exec has failed, or something similar).
758
759 This doesn't clean up "properly", because we can't call
760 target_detach, but that's OK; if the current target is "child",
761 then it doesn't need any further cleanups, and lin_lwp will
762 generally not encounter vfork (vfork is defined to fork
763 in libpthread.so).
764
765 The holding part is very easy if we have VFORKDONE events;
766 but keeping track of both processes is beyond GDB at the
767 moment. So we don't expose the parent to the rest of GDB.
768 Instead we quietly hold onto it until such time as we can
769 safely resume it. */
770
771 if (has_vforked)
772 linux_parent_pid = parent_pid;
773 else if (!detach_fork)
774 {
775 struct fork_info *fp;
776 /* Retain parent fork in ptrace (stopped) state. */
777 fp = find_fork_pid (parent_pid);
778 if (!fp)
779 fp = add_fork (parent_pid);
780 fork_save_infrun_state (fp, 0);
781 }
782 else
783 target_detach (NULL, 0);
784
785 inferior_ptid = ptid_build (child_pid, child_pid, 0);
786
787 /* Reinstall ourselves, since we might have been removed in
788 target_detach (which does other necessary cleanup). */
789
790 push_target (ops);
791 linux_nat_switch_fork (inferior_ptid);
792 check_for_thread_db ();
793
794 /* Reset breakpoints in the child as appropriate. */
795 follow_inferior_reset_breakpoints ();
796 }
797
798 if (target_can_async_p ())
799 target_async (inferior_event_handler, 0);
800
801 return 0;
802 }
803
804 \f
805 static void
806 linux_child_insert_fork_catchpoint (int pid)
807 {
808 if (! linux_supports_tracefork (pid))
809 error (_("Your system does not support fork catchpoints."));
810 }
811
812 static void
813 linux_child_insert_vfork_catchpoint (int pid)
814 {
815 if (!linux_supports_tracefork (pid))
816 error (_("Your system does not support vfork catchpoints."));
817 }
818
819 static void
820 linux_child_insert_exec_catchpoint (int pid)
821 {
822 if (!linux_supports_tracefork (pid))
823 error (_("Your system does not support exec catchpoints."));
824 }
825
826 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
827 are processes sharing the same VM space. A multi-threaded process
828 is basically a group of such processes. However, such a grouping
829 is almost entirely a user-space issue; the kernel doesn't enforce
830 such a grouping at all (this might change in the future). In
831 general, we'll rely on the threads library (i.e. the GNU/Linux
832 Threads library) to provide such a grouping.
833
834 It is perfectly well possible to write a multi-threaded application
835 without the assistance of a threads library, by using the clone
836 system call directly. This module should be able to give some
837 rudimentary support for debugging such applications if developers
838 specify the CLONE_PTRACE flag in the clone system call, and are
839 using the Linux kernel 2.4 or above.
840
841 Note that there are some peculiarities in GNU/Linux that affect
842 this code:
843
844 - In general one should specify the __WCLONE flag to waitpid in
845 order to make it report events for any of the cloned processes
846 (and leave it out for the initial process). However, if a cloned
847 process has exited the exit status is only reported if the
848 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
849 we cannot use it since GDB must work on older systems too.
850
851 - When a traced, cloned process exits and is waited for by the
852 debugger, the kernel reassigns it to the original parent and
853 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
854 library doesn't notice this, which leads to the "zombie problem":
855 When debugged a multi-threaded process that spawns a lot of
856 threads will run out of processes, even if the threads exit,
857 because the "zombies" stay around. */
858
859 /* List of known LWPs. */
860 struct lwp_info *lwp_list;
861
862 /* Number of LWPs in the list. */
863 static int num_lwps;
864 \f
865
866 /* Original signal mask. */
867 static sigset_t normal_mask;
868
869 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
870 _initialize_linux_nat. */
871 static sigset_t suspend_mask;
872
873 /* SIGCHLD action for synchronous mode. */
874 struct sigaction sync_sigchld_action;
875
876 /* SIGCHLD action for asynchronous mode. */
877 static struct sigaction async_sigchld_action;
878
879 /* SIGCHLD default action, to pass to new inferiors. */
880 static struct sigaction sigchld_default_action;
881 \f
882
883 /* Prototypes for local functions. */
884 static int stop_wait_callback (struct lwp_info *lp, void *data);
885 static int linux_nat_thread_alive (ptid_t ptid);
886 static char *linux_child_pid_to_exec_file (int pid);
887 static int cancel_breakpoint (struct lwp_info *lp);
888
889 \f
890 /* Convert wait status STATUS to a string. Used for printing debug
891 messages only. */
892
893 static char *
894 status_to_str (int status)
895 {
896 static char buf[64];
897
898 if (WIFSTOPPED (status))
899 snprintf (buf, sizeof (buf), "%s (stopped)",
900 strsignal (WSTOPSIG (status)));
901 else if (WIFSIGNALED (status))
902 snprintf (buf, sizeof (buf), "%s (terminated)",
903 strsignal (WSTOPSIG (status)));
904 else
905 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
906
907 return buf;
908 }
909
910 /* Initialize the list of LWPs. Note that this module, contrary to
911 what GDB's generic threads layer does for its thread list,
912 re-initializes the LWP lists whenever we mourn or detach (which
913 doesn't involve mourning) the inferior. */
914
915 static void
916 init_lwp_list (void)
917 {
918 struct lwp_info *lp, *lpnext;
919
920 for (lp = lwp_list; lp; lp = lpnext)
921 {
922 lpnext = lp->next;
923 xfree (lp);
924 }
925
926 lwp_list = NULL;
927 num_lwps = 0;
928 }
929
930 /* Add the LWP specified by PID to the list. Return a pointer to the
931 structure describing the new LWP. The LWP should already be stopped
932 (with an exception for the very first LWP). */
933
934 static struct lwp_info *
935 add_lwp (ptid_t ptid)
936 {
937 struct lwp_info *lp;
938
939 gdb_assert (is_lwp (ptid));
940
941 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
942
943 memset (lp, 0, sizeof (struct lwp_info));
944
945 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
946
947 lp->ptid = ptid;
948
949 lp->next = lwp_list;
950 lwp_list = lp;
951 ++num_lwps;
952
953 if (num_lwps > 1 && linux_nat_new_thread != NULL)
954 linux_nat_new_thread (ptid);
955
956 return lp;
957 }
958
959 /* Remove the LWP specified by PID from the list. */
960
961 static void
962 delete_lwp (ptid_t ptid)
963 {
964 struct lwp_info *lp, *lpprev;
965
966 lpprev = NULL;
967
968 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
969 if (ptid_equal (lp->ptid, ptid))
970 break;
971
972 if (!lp)
973 return;
974
975 num_lwps--;
976
977 if (lpprev)
978 lpprev->next = lp->next;
979 else
980 lwp_list = lp->next;
981
982 xfree (lp);
983 }
984
985 /* Return a pointer to the structure describing the LWP corresponding
986 to PID. If no corresponding LWP could be found, return NULL. */
987
988 static struct lwp_info *
989 find_lwp_pid (ptid_t ptid)
990 {
991 struct lwp_info *lp;
992 int lwp;
993
994 if (is_lwp (ptid))
995 lwp = GET_LWP (ptid);
996 else
997 lwp = GET_PID (ptid);
998
999 for (lp = lwp_list; lp; lp = lp->next)
1000 if (lwp == GET_LWP (lp->ptid))
1001 return lp;
1002
1003 return NULL;
1004 }
1005
1006 /* Call CALLBACK with its second argument set to DATA for every LWP in
1007 the list. If CALLBACK returns 1 for a particular LWP, return a
1008 pointer to the structure describing that LWP immediately.
1009 Otherwise return NULL. */
1010
1011 struct lwp_info *
1012 iterate_over_lwps (int (*callback) (struct lwp_info *, void *), void *data)
1013 {
1014 struct lwp_info *lp, *lpnext;
1015
1016 for (lp = lwp_list; lp; lp = lpnext)
1017 {
1018 lpnext = lp->next;
1019 if ((*callback) (lp, data))
1020 return lp;
1021 }
1022
1023 return NULL;
1024 }
1025
1026 /* Update our internal state when changing from one fork (checkpoint,
1027 et cetera) to another indicated by NEW_PTID. We can only switch
1028 single-threaded applications, so we only create one new LWP, and
1029 the previous list is discarded. */
1030
1031 void
1032 linux_nat_switch_fork (ptid_t new_ptid)
1033 {
1034 struct lwp_info *lp;
1035
1036 init_thread_list ();
1037 init_lwp_list ();
1038 lp = add_lwp (new_ptid);
1039 add_thread_silent (new_ptid);
1040 lp->stopped = 1;
1041 }
1042
1043 /* Record a PTID for later deletion. */
1044
1045 struct saved_ptids
1046 {
1047 ptid_t ptid;
1048 struct saved_ptids *next;
1049 };
1050 static struct saved_ptids *threads_to_delete;
1051
1052 static void
1053 record_dead_thread (ptid_t ptid)
1054 {
1055 struct saved_ptids *p = xmalloc (sizeof (struct saved_ptids));
1056 p->ptid = ptid;
1057 p->next = threads_to_delete;
1058 threads_to_delete = p;
1059 }
1060
1061 /* Delete any dead threads which are not the current thread. */
1062
1063 static void
1064 prune_lwps (void)
1065 {
1066 struct saved_ptids **p = &threads_to_delete;
1067
1068 while (*p)
1069 if (! ptid_equal ((*p)->ptid, inferior_ptid))
1070 {
1071 struct saved_ptids *tmp = *p;
1072 delete_thread (tmp->ptid);
1073 *p = tmp->next;
1074 xfree (tmp);
1075 }
1076 else
1077 p = &(*p)->next;
1078 }
1079
1080 /* Handle the exit of a single thread LP. */
1081
1082 static void
1083 exit_lwp (struct lwp_info *lp)
1084 {
1085 struct thread_info *th = find_thread_pid (lp->ptid);
1086
1087 if (th)
1088 {
1089 if (print_thread_events)
1090 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1091
1092 /* Core GDB cannot deal with us deleting the current thread. */
1093 if (!ptid_equal (lp->ptid, inferior_ptid))
1094 delete_thread (lp->ptid);
1095 else
1096 record_dead_thread (lp->ptid);
1097 }
1098
1099 delete_lwp (lp->ptid);
1100 }
1101
1102 /* Detect `T (stopped)' in `/proc/PID/status'.
1103 Other states including `T (tracing stop)' are reported as false. */
1104
1105 static int
1106 pid_is_stopped (pid_t pid)
1107 {
1108 FILE *status_file;
1109 char buf[100];
1110 int retval = 0;
1111
1112 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1113 status_file = fopen (buf, "r");
1114 if (status_file != NULL)
1115 {
1116 int have_state = 0;
1117
1118 while (fgets (buf, sizeof (buf), status_file))
1119 {
1120 if (strncmp (buf, "State:", 6) == 0)
1121 {
1122 have_state = 1;
1123 break;
1124 }
1125 }
1126 if (have_state && strstr (buf, "T (stopped)") != NULL)
1127 retval = 1;
1128 fclose (status_file);
1129 }
1130 return retval;
1131 }
1132
1133 /* Wait for the LWP specified by LP, which we have just attached to.
1134 Returns a wait status for that LWP, to cache. */
1135
1136 static int
1137 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1138 int *signalled)
1139 {
1140 pid_t new_pid, pid = GET_LWP (ptid);
1141 int status;
1142
1143 if (pid_is_stopped (pid))
1144 {
1145 if (debug_linux_nat)
1146 fprintf_unfiltered (gdb_stdlog,
1147 "LNPAW: Attaching to a stopped process\n");
1148
1149 /* The process is definitely stopped. It is in a job control
1150 stop, unless the kernel predates the TASK_STOPPED /
1151 TASK_TRACED distinction, in which case it might be in a
1152 ptrace stop. Make sure it is in a ptrace stop; from there we
1153 can kill it, signal it, et cetera.
1154
1155 First make sure there is a pending SIGSTOP. Since we are
1156 already attached, the process can not transition from stopped
1157 to running without a PTRACE_CONT; so we know this signal will
1158 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1159 probably already in the queue (unless this kernel is old
1160 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1161 is not an RT signal, it can only be queued once. */
1162 kill_lwp (pid, SIGSTOP);
1163
1164 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1165 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1166 ptrace (PTRACE_CONT, pid, 0, 0);
1167 }
1168
1169 /* Make sure the initial process is stopped. The user-level threads
1170 layer might want to poke around in the inferior, and that won't
1171 work if things haven't stabilized yet. */
1172 new_pid = my_waitpid (pid, &status, 0);
1173 if (new_pid == -1 && errno == ECHILD)
1174 {
1175 if (first)
1176 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1177
1178 /* Try again with __WCLONE to check cloned processes. */
1179 new_pid = my_waitpid (pid, &status, __WCLONE);
1180 *cloned = 1;
1181 }
1182
1183 gdb_assert (pid == new_pid && WIFSTOPPED (status));
1184
1185 if (WSTOPSIG (status) != SIGSTOP)
1186 {
1187 *signalled = 1;
1188 if (debug_linux_nat)
1189 fprintf_unfiltered (gdb_stdlog,
1190 "LNPAW: Received %s after attaching\n",
1191 status_to_str (status));
1192 }
1193
1194 return status;
1195 }
1196
1197 /* Attach to the LWP specified by PID. Return 0 if successful or -1
1198 if the new LWP could not be attached. */
1199
1200 int
1201 lin_lwp_attach_lwp (ptid_t ptid)
1202 {
1203 struct lwp_info *lp;
1204 enum sigchld_state async_events_original_state;
1205
1206 gdb_assert (is_lwp (ptid));
1207
1208 async_events_original_state = linux_nat_async_events (sigchld_sync);
1209
1210 lp = find_lwp_pid (ptid);
1211
1212 /* We assume that we're already attached to any LWP that has an id
1213 equal to the overall process id, and to any LWP that is already
1214 in our list of LWPs. If we're not seeing exit events from threads
1215 and we've had PID wraparound since we last tried to stop all threads,
1216 this assumption might be wrong; fortunately, this is very unlikely
1217 to happen. */
1218 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
1219 {
1220 int status, cloned = 0, signalled = 0;
1221
1222 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
1223 {
1224 /* If we fail to attach to the thread, issue a warning,
1225 but continue. One way this can happen is if thread
1226 creation is interrupted; as of Linux kernel 2.6.19, a
1227 bug may place threads in the thread list and then fail
1228 to create them. */
1229 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1230 safe_strerror (errno));
1231 return -1;
1232 }
1233
1234 if (debug_linux_nat)
1235 fprintf_unfiltered (gdb_stdlog,
1236 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1237 target_pid_to_str (ptid));
1238
1239 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1240 lp = add_lwp (ptid);
1241 lp->stopped = 1;
1242 lp->cloned = cloned;
1243 lp->signalled = signalled;
1244 if (WSTOPSIG (status) != SIGSTOP)
1245 {
1246 lp->resumed = 1;
1247 lp->status = status;
1248 }
1249
1250 target_post_attach (GET_LWP (lp->ptid));
1251
1252 if (debug_linux_nat)
1253 {
1254 fprintf_unfiltered (gdb_stdlog,
1255 "LLAL: waitpid %s received %s\n",
1256 target_pid_to_str (ptid),
1257 status_to_str (status));
1258 }
1259 }
1260 else
1261 {
1262 /* We assume that the LWP representing the original process is
1263 already stopped. Mark it as stopped in the data structure
1264 that the GNU/linux ptrace layer uses to keep track of
1265 threads. Note that this won't have already been done since
1266 the main thread will have, we assume, been stopped by an
1267 attach from a different layer. */
1268 if (lp == NULL)
1269 lp = add_lwp (ptid);
1270 lp->stopped = 1;
1271 }
1272
1273 linux_nat_async_events (async_events_original_state);
1274 return 0;
1275 }
1276
1277 static void
1278 linux_nat_create_inferior (char *exec_file, char *allargs, char **env,
1279 int from_tty)
1280 {
1281 int saved_async = 0;
1282
1283 /* The fork_child mechanism is synchronous and calls target_wait, so
1284 we have to mask the async mode. */
1285
1286 if (target_can_async_p ())
1287 /* Mask async mode. Creating a child requires a loop calling
1288 wait_for_inferior currently. */
1289 saved_async = linux_nat_async_mask (0);
1290 else
1291 {
1292 /* Restore the original signal mask. */
1293 sigprocmask (SIG_SETMASK, &normal_mask, NULL);
1294 /* Make sure we don't block SIGCHLD during a sigsuspend. */
1295 suspend_mask = normal_mask;
1296 sigdelset (&suspend_mask, SIGCHLD);
1297 }
1298
1299 /* Set SIGCHLD to the default action, until after execing the child,
1300 since the inferior inherits the superior's signal mask. It will
1301 be blocked again in linux_nat_wait, which is only reached after
1302 the inferior execing. */
1303 linux_nat_async_events (sigchld_default);
1304
1305 linux_ops->to_create_inferior (exec_file, allargs, env, from_tty);
1306
1307 if (saved_async)
1308 linux_nat_async_mask (saved_async);
1309 }
1310
1311 static void
1312 linux_nat_attach (char *args, int from_tty)
1313 {
1314 struct lwp_info *lp;
1315 int status;
1316
1317 /* FIXME: We should probably accept a list of process id's, and
1318 attach all of them. */
1319 linux_ops->to_attach (args, from_tty);
1320
1321 if (!target_can_async_p ())
1322 {
1323 /* Restore the original signal mask. */
1324 sigprocmask (SIG_SETMASK, &normal_mask, NULL);
1325 /* Make sure we don't block SIGCHLD during a sigsuspend. */
1326 suspend_mask = normal_mask;
1327 sigdelset (&suspend_mask, SIGCHLD);
1328 }
1329
1330 /* Add the initial process as the first LWP to the list. */
1331 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1332 lp = add_lwp (inferior_ptid);
1333
1334 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1335 &lp->signalled);
1336 lp->stopped = 1;
1337
1338 /* If this process is not using thread_db, then we still don't
1339 detect any other threads, but add at least this one. */
1340 add_thread_silent (lp->ptid);
1341
1342 /* Save the wait status to report later. */
1343 lp->resumed = 1;
1344 if (debug_linux_nat)
1345 fprintf_unfiltered (gdb_stdlog,
1346 "LNA: waitpid %ld, saving status %s\n",
1347 (long) GET_PID (lp->ptid), status_to_str (status));
1348
1349 if (!target_can_async_p ())
1350 lp->status = status;
1351 else
1352 {
1353 /* We already waited for this LWP, so put the wait result on the
1354 pipe. The event loop will wake up and gets us to handling
1355 this event. */
1356 linux_nat_event_pipe_push (GET_PID (lp->ptid), status,
1357 lp->cloned ? __WCLONE : 0);
1358 /* Register in the event loop. */
1359 target_async (inferior_event_handler, 0);
1360 }
1361 }
1362
1363 /* Get pending status of LP. */
1364 static int
1365 get_pending_status (struct lwp_info *lp, int *status)
1366 {
1367 struct target_waitstatus last;
1368 ptid_t last_ptid;
1369
1370 get_last_target_status (&last_ptid, &last);
1371
1372 /* If this lwp is the ptid that GDB is processing an event from, the
1373 signal will be in stop_signal. Otherwise, in all-stop + sync
1374 mode, we may cache pending events in lp->status while trying to
1375 stop all threads (see stop_wait_callback). In async mode, the
1376 events are always cached in waitpid_queue. */
1377
1378 *status = 0;
1379 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1380 {
1381 if (stop_signal != TARGET_SIGNAL_0
1382 && signal_pass_state (stop_signal))
1383 *status = W_STOPCODE (target_signal_to_host (stop_signal));
1384 }
1385 else if (target_can_async_p ())
1386 queued_waitpid (GET_LWP (lp->ptid), status, __WALL);
1387 else
1388 *status = lp->status;
1389
1390 return 0;
1391 }
1392
1393 static int
1394 detach_callback (struct lwp_info *lp, void *data)
1395 {
1396 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1397
1398 if (debug_linux_nat && lp->status)
1399 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1400 strsignal (WSTOPSIG (lp->status)),
1401 target_pid_to_str (lp->ptid));
1402
1403 /* If there is a pending SIGSTOP, get rid of it. */
1404 if (lp->signalled)
1405 {
1406 if (debug_linux_nat)
1407 fprintf_unfiltered (gdb_stdlog,
1408 "DC: Sending SIGCONT to %s\n",
1409 target_pid_to_str (lp->ptid));
1410
1411 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1412 lp->signalled = 0;
1413 }
1414
1415 /* We don't actually detach from the LWP that has an id equal to the
1416 overall process id just yet. */
1417 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1418 {
1419 int status = 0;
1420
1421 /* Pass on any pending signal for this LWP. */
1422 get_pending_status (lp, &status);
1423
1424 errno = 0;
1425 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1426 WSTOPSIG (status)) < 0)
1427 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1428 safe_strerror (errno));
1429
1430 if (debug_linux_nat)
1431 fprintf_unfiltered (gdb_stdlog,
1432 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1433 target_pid_to_str (lp->ptid),
1434 strsignal (WSTOPSIG (lp->status)));
1435
1436 delete_lwp (lp->ptid);
1437 }
1438
1439 return 0;
1440 }
1441
1442 static void
1443 linux_nat_detach (char *args, int from_tty)
1444 {
1445 int pid;
1446 int status;
1447 enum target_signal sig;
1448
1449 if (target_can_async_p ())
1450 linux_nat_async (NULL, 0);
1451
1452 iterate_over_lwps (detach_callback, NULL);
1453
1454 /* Only the initial process should be left right now. */
1455 gdb_assert (num_lwps == 1);
1456
1457 /* Pass on any pending signal for the last LWP. */
1458 if ((args == NULL || *args == '\0')
1459 && get_pending_status (lwp_list, &status) != -1
1460 && WIFSTOPPED (status))
1461 {
1462 /* Put the signal number in ARGS so that inf_ptrace_detach will
1463 pass it along with PTRACE_DETACH. */
1464 args = alloca (8);
1465 sprintf (args, "%d", (int) WSTOPSIG (status));
1466 fprintf_unfiltered (gdb_stdlog,
1467 "LND: Sending signal %s to %s\n",
1468 args,
1469 target_pid_to_str (lwp_list->ptid));
1470 }
1471
1472 /* Destroy LWP info; it's no longer valid. */
1473 init_lwp_list ();
1474
1475 pid = GET_PID (inferior_ptid);
1476 inferior_ptid = pid_to_ptid (pid);
1477 linux_ops->to_detach (args, from_tty);
1478
1479 if (target_can_async_p ())
1480 drain_queued_events (pid);
1481 }
1482
1483 /* Resume LP. */
1484
1485 static int
1486 resume_callback (struct lwp_info *lp, void *data)
1487 {
1488 if (lp->stopped && lp->status == 0)
1489 {
1490 linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
1491 0, TARGET_SIGNAL_0);
1492 if (debug_linux_nat)
1493 fprintf_unfiltered (gdb_stdlog,
1494 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1495 target_pid_to_str (lp->ptid));
1496 lp->stopped = 0;
1497 lp->step = 0;
1498 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1499 }
1500
1501 return 0;
1502 }
1503
1504 static int
1505 resume_clear_callback (struct lwp_info *lp, void *data)
1506 {
1507 lp->resumed = 0;
1508 return 0;
1509 }
1510
1511 static int
1512 resume_set_callback (struct lwp_info *lp, void *data)
1513 {
1514 lp->resumed = 1;
1515 return 0;
1516 }
1517
1518 static void
1519 linux_nat_resume (ptid_t ptid, int step, enum target_signal signo)
1520 {
1521 struct lwp_info *lp;
1522 int resume_all;
1523
1524 if (debug_linux_nat)
1525 fprintf_unfiltered (gdb_stdlog,
1526 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1527 step ? "step" : "resume",
1528 target_pid_to_str (ptid),
1529 signo ? strsignal (signo) : "0",
1530 target_pid_to_str (inferior_ptid));
1531
1532 prune_lwps ();
1533
1534 if (target_can_async_p ())
1535 /* Block events while we're here. */
1536 linux_nat_async_events (sigchld_sync);
1537
1538 /* A specific PTID means `step only this process id'. */
1539 resume_all = (PIDGET (ptid) == -1);
1540
1541 if (resume_all)
1542 iterate_over_lwps (resume_set_callback, NULL);
1543 else
1544 iterate_over_lwps (resume_clear_callback, NULL);
1545
1546 /* If PID is -1, it's the current inferior that should be
1547 handled specially. */
1548 if (PIDGET (ptid) == -1)
1549 ptid = inferior_ptid;
1550
1551 lp = find_lwp_pid (ptid);
1552 gdb_assert (lp != NULL);
1553
1554 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1555
1556 /* Remember if we're stepping. */
1557 lp->step = step;
1558
1559 /* Mark this LWP as resumed. */
1560 lp->resumed = 1;
1561
1562 /* If we have a pending wait status for this thread, there is no
1563 point in resuming the process. But first make sure that
1564 linux_nat_wait won't preemptively handle the event - we
1565 should never take this short-circuit if we are going to
1566 leave LP running, since we have skipped resuming all the
1567 other threads. This bit of code needs to be synchronized
1568 with linux_nat_wait. */
1569
1570 /* In async mode, we never have pending wait status. */
1571 if (target_can_async_p () && lp->status)
1572 internal_error (__FILE__, __LINE__, "Pending status in async mode");
1573
1574 if (lp->status && WIFSTOPPED (lp->status))
1575 {
1576 int saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
1577
1578 if (signal_stop_state (saved_signo) == 0
1579 && signal_print_state (saved_signo) == 0
1580 && signal_pass_state (saved_signo) == 1)
1581 {
1582 if (debug_linux_nat)
1583 fprintf_unfiltered (gdb_stdlog,
1584 "LLR: Not short circuiting for ignored "
1585 "status 0x%x\n", lp->status);
1586
1587 /* FIXME: What should we do if we are supposed to continue
1588 this thread with a signal? */
1589 gdb_assert (signo == TARGET_SIGNAL_0);
1590 signo = saved_signo;
1591 lp->status = 0;
1592 }
1593 }
1594
1595 if (lp->status)
1596 {
1597 /* FIXME: What should we do if we are supposed to continue
1598 this thread with a signal? */
1599 gdb_assert (signo == TARGET_SIGNAL_0);
1600
1601 if (debug_linux_nat)
1602 fprintf_unfiltered (gdb_stdlog,
1603 "LLR: Short circuiting for status 0x%x\n",
1604 lp->status);
1605
1606 return;
1607 }
1608
1609 /* Mark LWP as not stopped to prevent it from being continued by
1610 resume_callback. */
1611 lp->stopped = 0;
1612
1613 if (resume_all)
1614 iterate_over_lwps (resume_callback, NULL);
1615
1616 linux_ops->to_resume (ptid, step, signo);
1617 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1618
1619 if (debug_linux_nat)
1620 fprintf_unfiltered (gdb_stdlog,
1621 "LLR: %s %s, %s (resume event thread)\n",
1622 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1623 target_pid_to_str (ptid),
1624 signo ? strsignal (signo) : "0");
1625
1626 if (target_can_async_p ())
1627 {
1628 target_executing = 1;
1629 target_async (inferior_event_handler, 0);
1630 }
1631 }
1632
1633 /* Issue kill to specified lwp. */
1634
1635 static int tkill_failed;
1636
1637 static int
1638 kill_lwp (int lwpid, int signo)
1639 {
1640 errno = 0;
1641
1642 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1643 fails, then we are not using nptl threads and we should be using kill. */
1644
1645 #ifdef HAVE_TKILL_SYSCALL
1646 if (!tkill_failed)
1647 {
1648 int ret = syscall (__NR_tkill, lwpid, signo);
1649 if (errno != ENOSYS)
1650 return ret;
1651 errno = 0;
1652 tkill_failed = 1;
1653 }
1654 #endif
1655
1656 return kill (lwpid, signo);
1657 }
1658
1659 /* Handle a GNU/Linux extended wait response. If we see a clone
1660 event, we need to add the new LWP to our list (and not report the
1661 trap to higher layers). This function returns non-zero if the
1662 event should be ignored and we should wait again. If STOPPING is
1663 true, the new LWP remains stopped, otherwise it is continued. */
1664
1665 static int
1666 linux_handle_extended_wait (struct lwp_info *lp, int status,
1667 int stopping)
1668 {
1669 int pid = GET_LWP (lp->ptid);
1670 struct target_waitstatus *ourstatus = &lp->waitstatus;
1671 struct lwp_info *new_lp = NULL;
1672 int event = status >> 16;
1673
1674 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1675 || event == PTRACE_EVENT_CLONE)
1676 {
1677 unsigned long new_pid;
1678 int ret;
1679
1680 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1681
1682 /* If we haven't already seen the new PID stop, wait for it now. */
1683 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1684 {
1685 /* The new child has a pending SIGSTOP. We can't affect it until it
1686 hits the SIGSTOP, but we're already attached. */
1687 ret = my_waitpid (new_pid, &status,
1688 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
1689 if (ret == -1)
1690 perror_with_name (_("waiting for new child"));
1691 else if (ret != new_pid)
1692 internal_error (__FILE__, __LINE__,
1693 _("wait returned unexpected PID %d"), ret);
1694 else if (!WIFSTOPPED (status))
1695 internal_error (__FILE__, __LINE__,
1696 _("wait returned unexpected status 0x%x"), status);
1697 }
1698
1699 ourstatus->value.related_pid = new_pid;
1700
1701 if (event == PTRACE_EVENT_FORK)
1702 ourstatus->kind = TARGET_WAITKIND_FORKED;
1703 else if (event == PTRACE_EVENT_VFORK)
1704 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1705 else
1706 {
1707 ourstatus->kind = TARGET_WAITKIND_IGNORE;
1708 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (inferior_ptid)));
1709 new_lp->cloned = 1;
1710
1711 if (WSTOPSIG (status) != SIGSTOP)
1712 {
1713 /* This can happen if someone starts sending signals to
1714 the new thread before it gets a chance to run, which
1715 have a lower number than SIGSTOP (e.g. SIGUSR1).
1716 This is an unlikely case, and harder to handle for
1717 fork / vfork than for clone, so we do not try - but
1718 we handle it for clone events here. We'll send
1719 the other signal on to the thread below. */
1720
1721 new_lp->signalled = 1;
1722 }
1723 else
1724 status = 0;
1725
1726 if (stopping)
1727 new_lp->stopped = 1;
1728 else
1729 {
1730 new_lp->resumed = 1;
1731 ptrace (PTRACE_CONT, lp->waitstatus.value.related_pid, 0,
1732 status ? WSTOPSIG (status) : 0);
1733 }
1734
1735 if (debug_linux_nat)
1736 fprintf_unfiltered (gdb_stdlog,
1737 "LHEW: Got clone event from LWP %ld, resuming\n",
1738 GET_LWP (lp->ptid));
1739 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
1740
1741 return 1;
1742 }
1743
1744 return 0;
1745 }
1746
1747 if (event == PTRACE_EVENT_EXEC)
1748 {
1749 ourstatus->kind = TARGET_WAITKIND_EXECD;
1750 ourstatus->value.execd_pathname
1751 = xstrdup (linux_child_pid_to_exec_file (pid));
1752
1753 if (linux_parent_pid)
1754 {
1755 detach_breakpoints (linux_parent_pid);
1756 ptrace (PTRACE_DETACH, linux_parent_pid, 0, 0);
1757
1758 linux_parent_pid = 0;
1759 }
1760
1761 /* At this point, all inserted breakpoints are gone. Doing this
1762 as soon as we detect an exec prevents the badness of deleting
1763 a breakpoint writing the current "shadow contents" to lift
1764 the bp. That shadow is NOT valid after an exec.
1765
1766 Note that we have to do this after the detach_breakpoints
1767 call above, otherwise breakpoints wouldn't be lifted from the
1768 parent on a vfork, because detach_breakpoints would think
1769 that breakpoints are not inserted. */
1770 mark_breakpoints_out ();
1771 return 0;
1772 }
1773
1774 internal_error (__FILE__, __LINE__,
1775 _("unknown ptrace event %d"), event);
1776 }
1777
1778 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
1779 exited. */
1780
1781 static int
1782 wait_lwp (struct lwp_info *lp)
1783 {
1784 pid_t pid;
1785 int status;
1786 int thread_dead = 0;
1787
1788 gdb_assert (!lp->stopped);
1789 gdb_assert (lp->status == 0);
1790
1791 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
1792 if (pid == -1 && errno == ECHILD)
1793 {
1794 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
1795 if (pid == -1 && errno == ECHILD)
1796 {
1797 /* The thread has previously exited. We need to delete it
1798 now because, for some vendor 2.4 kernels with NPTL
1799 support backported, there won't be an exit event unless
1800 it is the main thread. 2.6 kernels will report an exit
1801 event for each thread that exits, as expected. */
1802 thread_dead = 1;
1803 if (debug_linux_nat)
1804 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
1805 target_pid_to_str (lp->ptid));
1806 }
1807 }
1808
1809 if (!thread_dead)
1810 {
1811 gdb_assert (pid == GET_LWP (lp->ptid));
1812
1813 if (debug_linux_nat)
1814 {
1815 fprintf_unfiltered (gdb_stdlog,
1816 "WL: waitpid %s received %s\n",
1817 target_pid_to_str (lp->ptid),
1818 status_to_str (status));
1819 }
1820 }
1821
1822 /* Check if the thread has exited. */
1823 if (WIFEXITED (status) || WIFSIGNALED (status))
1824 {
1825 thread_dead = 1;
1826 if (debug_linux_nat)
1827 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
1828 target_pid_to_str (lp->ptid));
1829 }
1830
1831 if (thread_dead)
1832 {
1833 exit_lwp (lp);
1834 return 0;
1835 }
1836
1837 gdb_assert (WIFSTOPPED (status));
1838
1839 /* Handle GNU/Linux's extended waitstatus for trace events. */
1840 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
1841 {
1842 if (debug_linux_nat)
1843 fprintf_unfiltered (gdb_stdlog,
1844 "WL: Handling extended status 0x%06x\n",
1845 status);
1846 if (linux_handle_extended_wait (lp, status, 1))
1847 return wait_lwp (lp);
1848 }
1849
1850 return status;
1851 }
1852
1853 /* Save the most recent siginfo for LP. This is currently only called
1854 for SIGTRAP; some ports use the si_addr field for
1855 target_stopped_data_address. In the future, it may also be used to
1856 restore the siginfo of requeued signals. */
1857
1858 static void
1859 save_siginfo (struct lwp_info *lp)
1860 {
1861 errno = 0;
1862 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
1863 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
1864
1865 if (errno != 0)
1866 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1867 }
1868
1869 /* Send a SIGSTOP to LP. */
1870
1871 static int
1872 stop_callback (struct lwp_info *lp, void *data)
1873 {
1874 if (!lp->stopped && !lp->signalled)
1875 {
1876 int ret;
1877
1878 if (debug_linux_nat)
1879 {
1880 fprintf_unfiltered (gdb_stdlog,
1881 "SC: kill %s **<SIGSTOP>**\n",
1882 target_pid_to_str (lp->ptid));
1883 }
1884 errno = 0;
1885 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
1886 if (debug_linux_nat)
1887 {
1888 fprintf_unfiltered (gdb_stdlog,
1889 "SC: lwp kill %d %s\n",
1890 ret,
1891 errno ? safe_strerror (errno) : "ERRNO-OK");
1892 }
1893
1894 lp->signalled = 1;
1895 gdb_assert (lp->status == 0);
1896 }
1897
1898 return 0;
1899 }
1900
1901 /* Wait until LP is stopped. If DATA is non-null it is interpreted as
1902 a pointer to a set of signals to be flushed immediately. */
1903
1904 static int
1905 stop_wait_callback (struct lwp_info *lp, void *data)
1906 {
1907 sigset_t *flush_mask = data;
1908
1909 if (!lp->stopped)
1910 {
1911 int status;
1912
1913 status = wait_lwp (lp);
1914 if (status == 0)
1915 return 0;
1916
1917 /* Ignore any signals in FLUSH_MASK. */
1918 if (flush_mask && sigismember (flush_mask, WSTOPSIG (status)))
1919 {
1920 if (!lp->signalled)
1921 {
1922 lp->stopped = 1;
1923 return 0;
1924 }
1925
1926 errno = 0;
1927 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
1928 if (debug_linux_nat)
1929 fprintf_unfiltered (gdb_stdlog,
1930 "PTRACE_CONT %s, 0, 0 (%s)\n",
1931 target_pid_to_str (lp->ptid),
1932 errno ? safe_strerror (errno) : "OK");
1933
1934 return stop_wait_callback (lp, flush_mask);
1935 }
1936
1937 if (WSTOPSIG (status) != SIGSTOP)
1938 {
1939 if (WSTOPSIG (status) == SIGTRAP)
1940 {
1941 /* If a LWP other than the LWP that we're reporting an
1942 event for has hit a GDB breakpoint (as opposed to
1943 some random trap signal), then just arrange for it to
1944 hit it again later. We don't keep the SIGTRAP status
1945 and don't forward the SIGTRAP signal to the LWP. We
1946 will handle the current event, eventually we will
1947 resume all LWPs, and this one will get its breakpoint
1948 trap again.
1949
1950 If we do not do this, then we run the risk that the
1951 user will delete or disable the breakpoint, but the
1952 thread will have already tripped on it. */
1953
1954 /* Save the trap's siginfo in case we need it later. */
1955 save_siginfo (lp);
1956
1957 /* Now resume this LWP and get the SIGSTOP event. */
1958 errno = 0;
1959 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
1960 if (debug_linux_nat)
1961 {
1962 fprintf_unfiltered (gdb_stdlog,
1963 "PTRACE_CONT %s, 0, 0 (%s)\n",
1964 target_pid_to_str (lp->ptid),
1965 errno ? safe_strerror (errno) : "OK");
1966
1967 fprintf_unfiltered (gdb_stdlog,
1968 "SWC: Candidate SIGTRAP event in %s\n",
1969 target_pid_to_str (lp->ptid));
1970 }
1971 /* Hold this event/waitstatus while we check to see if
1972 there are any more (we still want to get that SIGSTOP). */
1973 stop_wait_callback (lp, data);
1974
1975 if (target_can_async_p ())
1976 {
1977 /* Don't leave a pending wait status in async mode.
1978 Retrigger the breakpoint. */
1979 if (!cancel_breakpoint (lp))
1980 {
1981 /* There was no gdb breakpoint set at pc. Put
1982 the event back in the queue. */
1983 if (debug_linux_nat)
1984 fprintf_unfiltered (gdb_stdlog,
1985 "SWC: kill %s, %s\n",
1986 target_pid_to_str (lp->ptid),
1987 status_to_str ((int) status));
1988 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
1989 }
1990 }
1991 else
1992 {
1993 /* Hold the SIGTRAP for handling by
1994 linux_nat_wait. */
1995 /* If there's another event, throw it back into the
1996 queue. */
1997 if (lp->status)
1998 {
1999 if (debug_linux_nat)
2000 fprintf_unfiltered (gdb_stdlog,
2001 "SWC: kill %s, %s\n",
2002 target_pid_to_str (lp->ptid),
2003 status_to_str ((int) status));
2004 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2005 }
2006 /* Save the sigtrap event. */
2007 lp->status = status;
2008 }
2009 return 0;
2010 }
2011 else
2012 {
2013 /* The thread was stopped with a signal other than
2014 SIGSTOP, and didn't accidentally trip a breakpoint. */
2015
2016 if (debug_linux_nat)
2017 {
2018 fprintf_unfiltered (gdb_stdlog,
2019 "SWC: Pending event %s in %s\n",
2020 status_to_str ((int) status),
2021 target_pid_to_str (lp->ptid));
2022 }
2023 /* Now resume this LWP and get the SIGSTOP event. */
2024 errno = 0;
2025 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2026 if (debug_linux_nat)
2027 fprintf_unfiltered (gdb_stdlog,
2028 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2029 target_pid_to_str (lp->ptid),
2030 errno ? safe_strerror (errno) : "OK");
2031
2032 /* Hold this event/waitstatus while we check to see if
2033 there are any more (we still want to get that SIGSTOP). */
2034 stop_wait_callback (lp, data);
2035
2036 /* If the lp->status field is still empty, use it to
2037 hold this event. If not, then this event must be
2038 returned to the event queue of the LWP. */
2039 if (lp->status || target_can_async_p ())
2040 {
2041 if (debug_linux_nat)
2042 {
2043 fprintf_unfiltered (gdb_stdlog,
2044 "SWC: kill %s, %s\n",
2045 target_pid_to_str (lp->ptid),
2046 status_to_str ((int) status));
2047 }
2048 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2049 }
2050 else
2051 lp->status = status;
2052 return 0;
2053 }
2054 }
2055 else
2056 {
2057 /* We caught the SIGSTOP that we intended to catch, so
2058 there's no SIGSTOP pending. */
2059 lp->stopped = 1;
2060 lp->signalled = 0;
2061 }
2062 }
2063
2064 return 0;
2065 }
2066
2067 /* Check whether PID has any pending signals in FLUSH_MASK. If so set
2068 the appropriate bits in PENDING, and return 1 - otherwise return 0. */
2069
2070 static int
2071 linux_nat_has_pending (int pid, sigset_t *pending, sigset_t *flush_mask)
2072 {
2073 sigset_t blocked, ignored;
2074 int i;
2075
2076 linux_proc_pending_signals (pid, pending, &blocked, &ignored);
2077
2078 if (!flush_mask)
2079 return 0;
2080
2081 for (i = 1; i < NSIG; i++)
2082 if (sigismember (pending, i))
2083 if (!sigismember (flush_mask, i)
2084 || sigismember (&blocked, i)
2085 || sigismember (&ignored, i))
2086 sigdelset (pending, i);
2087
2088 if (sigisemptyset (pending))
2089 return 0;
2090
2091 return 1;
2092 }
2093
2094 /* DATA is interpreted as a mask of signals to flush. If LP has
2095 signals pending, and they are all in the flush mask, then arrange
2096 to flush them. LP should be stopped, as should all other threads
2097 it might share a signal queue with. */
2098
2099 static int
2100 flush_callback (struct lwp_info *lp, void *data)
2101 {
2102 sigset_t *flush_mask = data;
2103 sigset_t pending, intersection, blocked, ignored;
2104 int pid, status;
2105
2106 /* Normally, when an LWP exits, it is removed from the LWP list. The
2107 last LWP isn't removed till later, however. So if there is only
2108 one LWP on the list, make sure it's alive. */
2109 if (lwp_list == lp && lp->next == NULL)
2110 if (!linux_nat_thread_alive (lp->ptid))
2111 return 0;
2112
2113 /* Just because the LWP is stopped doesn't mean that new signals
2114 can't arrive from outside, so this function must be careful of
2115 race conditions. However, because all threads are stopped, we
2116 can assume that the pending mask will not shrink unless we resume
2117 the LWP, and that it will then get another signal. We can't
2118 control which one, however. */
2119
2120 if (lp->status)
2121 {
2122 if (debug_linux_nat)
2123 printf_unfiltered (_("FC: LP has pending status %06x\n"), lp->status);
2124 if (WIFSTOPPED (lp->status) && sigismember (flush_mask, WSTOPSIG (lp->status)))
2125 lp->status = 0;
2126 }
2127
2128 /* While there is a pending signal we would like to flush, continue
2129 the inferior and collect another signal. But if there's already
2130 a saved status that we don't want to flush, we can't resume the
2131 inferior - if it stopped for some other reason we wouldn't have
2132 anywhere to save the new status. In that case, we must leave the
2133 signal unflushed (and possibly generate an extra SIGINT stop).
2134 That's much less bad than losing a signal. */
2135 while (lp->status == 0
2136 && linux_nat_has_pending (GET_LWP (lp->ptid), &pending, flush_mask))
2137 {
2138 int ret;
2139
2140 errno = 0;
2141 ret = ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2142 if (debug_linux_nat)
2143 fprintf_unfiltered (gdb_stderr,
2144 "FC: Sent PTRACE_CONT, ret %d %d\n", ret, errno);
2145
2146 lp->stopped = 0;
2147 stop_wait_callback (lp, flush_mask);
2148 if (debug_linux_nat)
2149 fprintf_unfiltered (gdb_stderr,
2150 "FC: Wait finished; saved status is %d\n",
2151 lp->status);
2152 }
2153
2154 return 0;
2155 }
2156
2157 /* Return non-zero if LP has a wait status pending. */
2158
2159 static int
2160 status_callback (struct lwp_info *lp, void *data)
2161 {
2162 /* Only report a pending wait status if we pretend that this has
2163 indeed been resumed. */
2164 return (lp->status != 0 && lp->resumed);
2165 }
2166
2167 /* Return non-zero if LP isn't stopped. */
2168
2169 static int
2170 running_callback (struct lwp_info *lp, void *data)
2171 {
2172 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2173 }
2174
2175 /* Count the LWP's that have had events. */
2176
2177 static int
2178 count_events_callback (struct lwp_info *lp, void *data)
2179 {
2180 int *count = data;
2181
2182 gdb_assert (count != NULL);
2183
2184 /* Count only LWPs that have a SIGTRAP event pending. */
2185 if (lp->status != 0
2186 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2187 (*count)++;
2188
2189 return 0;
2190 }
2191
2192 /* Select the LWP (if any) that is currently being single-stepped. */
2193
2194 static int
2195 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2196 {
2197 if (lp->step && lp->status != 0)
2198 return 1;
2199 else
2200 return 0;
2201 }
2202
2203 /* Select the Nth LWP that has had a SIGTRAP event. */
2204
2205 static int
2206 select_event_lwp_callback (struct lwp_info *lp, void *data)
2207 {
2208 int *selector = data;
2209
2210 gdb_assert (selector != NULL);
2211
2212 /* Select only LWPs that have a SIGTRAP event pending. */
2213 if (lp->status != 0
2214 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2215 if ((*selector)-- == 0)
2216 return 1;
2217
2218 return 0;
2219 }
2220
2221 static int
2222 cancel_breakpoint (struct lwp_info *lp)
2223 {
2224 /* Arrange for a breakpoint to be hit again later. We don't keep
2225 the SIGTRAP status and don't forward the SIGTRAP signal to the
2226 LWP. We will handle the current event, eventually we will resume
2227 this LWP, and this breakpoint will trap again.
2228
2229 If we do not do this, then we run the risk that the user will
2230 delete or disable the breakpoint, but the LWP will have already
2231 tripped on it. */
2232
2233 struct regcache *regcache = get_thread_regcache (lp->ptid);
2234 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2235 CORE_ADDR pc;
2236
2237 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2238 if (breakpoint_inserted_here_p (pc))
2239 {
2240 if (debug_linux_nat)
2241 fprintf_unfiltered (gdb_stdlog,
2242 "CB: Push back breakpoint for %s\n",
2243 target_pid_to_str (lp->ptid));
2244
2245 /* Back up the PC if necessary. */
2246 if (gdbarch_decr_pc_after_break (gdbarch))
2247 regcache_write_pc (regcache, pc);
2248
2249 return 1;
2250 }
2251 return 0;
2252 }
2253
2254 static int
2255 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2256 {
2257 struct lwp_info *event_lp = data;
2258
2259 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2260 if (lp == event_lp)
2261 return 0;
2262
2263 /* If a LWP other than the LWP that we're reporting an event for has
2264 hit a GDB breakpoint (as opposed to some random trap signal),
2265 then just arrange for it to hit it again later. We don't keep
2266 the SIGTRAP status and don't forward the SIGTRAP signal to the
2267 LWP. We will handle the current event, eventually we will resume
2268 all LWPs, and this one will get its breakpoint trap again.
2269
2270 If we do not do this, then we run the risk that the user will
2271 delete or disable the breakpoint, but the LWP will have already
2272 tripped on it. */
2273
2274 if (lp->status != 0
2275 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
2276 && cancel_breakpoint (lp))
2277 /* Throw away the SIGTRAP. */
2278 lp->status = 0;
2279
2280 return 0;
2281 }
2282
2283 /* Select one LWP out of those that have events pending. */
2284
2285 static void
2286 select_event_lwp (struct lwp_info **orig_lp, int *status)
2287 {
2288 int num_events = 0;
2289 int random_selector;
2290 struct lwp_info *event_lp;
2291
2292 /* Record the wait status for the original LWP. */
2293 (*orig_lp)->status = *status;
2294
2295 /* Give preference to any LWP that is being single-stepped. */
2296 event_lp = iterate_over_lwps (select_singlestep_lwp_callback, NULL);
2297 if (event_lp != NULL)
2298 {
2299 if (debug_linux_nat)
2300 fprintf_unfiltered (gdb_stdlog,
2301 "SEL: Select single-step %s\n",
2302 target_pid_to_str (event_lp->ptid));
2303 }
2304 else
2305 {
2306 /* No single-stepping LWP. Select one at random, out of those
2307 which have had SIGTRAP events. */
2308
2309 /* First see how many SIGTRAP events we have. */
2310 iterate_over_lwps (count_events_callback, &num_events);
2311
2312 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2313 random_selector = (int)
2314 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2315
2316 if (debug_linux_nat && num_events > 1)
2317 fprintf_unfiltered (gdb_stdlog,
2318 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2319 num_events, random_selector);
2320
2321 event_lp = iterate_over_lwps (select_event_lwp_callback,
2322 &random_selector);
2323 }
2324
2325 if (event_lp != NULL)
2326 {
2327 /* Switch the event LWP. */
2328 *orig_lp = event_lp;
2329 *status = event_lp->status;
2330 }
2331
2332 /* Flush the wait status for the event LWP. */
2333 (*orig_lp)->status = 0;
2334 }
2335
2336 /* Return non-zero if LP has been resumed. */
2337
2338 static int
2339 resumed_callback (struct lwp_info *lp, void *data)
2340 {
2341 return lp->resumed;
2342 }
2343
2344 /* Stop an active thread, verify it still exists, then resume it. */
2345
2346 static int
2347 stop_and_resume_callback (struct lwp_info *lp, void *data)
2348 {
2349 struct lwp_info *ptr;
2350
2351 if (!lp->stopped && !lp->signalled)
2352 {
2353 stop_callback (lp, NULL);
2354 stop_wait_callback (lp, NULL);
2355 /* Resume if the lwp still exists. */
2356 for (ptr = lwp_list; ptr; ptr = ptr->next)
2357 if (lp == ptr)
2358 {
2359 resume_callback (lp, NULL);
2360 resume_set_callback (lp, NULL);
2361 }
2362 }
2363 return 0;
2364 }
2365
2366 /* Check if we should go on and pass this event to common code.
2367 Return the affected lwp if we are, or NULL otherwise. */
2368 static struct lwp_info *
2369 linux_nat_filter_event (int lwpid, int status, int options)
2370 {
2371 struct lwp_info *lp;
2372
2373 lp = find_lwp_pid (pid_to_ptid (lwpid));
2374
2375 /* Check for stop events reported by a process we didn't already
2376 know about - anything not already in our LWP list.
2377
2378 If we're expecting to receive stopped processes after
2379 fork, vfork, and clone events, then we'll just add the
2380 new one to our list and go back to waiting for the event
2381 to be reported - the stopped process might be returned
2382 from waitpid before or after the event is. */
2383 if (WIFSTOPPED (status) && !lp)
2384 {
2385 linux_record_stopped_pid (lwpid, status);
2386 return NULL;
2387 }
2388
2389 /* Make sure we don't report an event for the exit of an LWP not in
2390 our list, i.e. not part of the current process. This can happen
2391 if we detach from a program we original forked and then it
2392 exits. */
2393 if (!WIFSTOPPED (status) && !lp)
2394 return NULL;
2395
2396 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
2397 CLONE_PTRACE processes which do not use the thread library -
2398 otherwise we wouldn't find the new LWP this way. That doesn't
2399 currently work, and the following code is currently unreachable
2400 due to the two blocks above. If it's fixed some day, this code
2401 should be broken out into a function so that we can also pick up
2402 LWPs from the new interface. */
2403 if (!lp)
2404 {
2405 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
2406 if (options & __WCLONE)
2407 lp->cloned = 1;
2408
2409 gdb_assert (WIFSTOPPED (status)
2410 && WSTOPSIG (status) == SIGSTOP);
2411 lp->signalled = 1;
2412
2413 if (!in_thread_list (inferior_ptid))
2414 {
2415 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
2416 GET_PID (inferior_ptid));
2417 add_thread (inferior_ptid);
2418 }
2419
2420 add_thread (lp->ptid);
2421 }
2422
2423 /* Save the trap's siginfo in case we need it later. */
2424 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
2425 save_siginfo (lp);
2426
2427 /* Handle GNU/Linux's extended waitstatus for trace events. */
2428 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2429 {
2430 if (debug_linux_nat)
2431 fprintf_unfiltered (gdb_stdlog,
2432 "LLW: Handling extended status 0x%06x\n",
2433 status);
2434 if (linux_handle_extended_wait (lp, status, 0))
2435 return NULL;
2436 }
2437
2438 /* Check if the thread has exited. */
2439 if ((WIFEXITED (status) || WIFSIGNALED (status)) && num_lwps > 1)
2440 {
2441 /* If this is the main thread, we must stop all threads and
2442 verify if they are still alive. This is because in the nptl
2443 thread model, there is no signal issued for exiting LWPs
2444 other than the main thread. We only get the main thread exit
2445 signal once all child threads have already exited. If we
2446 stop all the threads and use the stop_wait_callback to check
2447 if they have exited we can determine whether this signal
2448 should be ignored or whether it means the end of the debugged
2449 application, regardless of which threading model is being
2450 used. */
2451 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
2452 {
2453 lp->stopped = 1;
2454 iterate_over_lwps (stop_and_resume_callback, NULL);
2455 }
2456
2457 if (debug_linux_nat)
2458 fprintf_unfiltered (gdb_stdlog,
2459 "LLW: %s exited.\n",
2460 target_pid_to_str (lp->ptid));
2461
2462 exit_lwp (lp);
2463
2464 /* If there is at least one more LWP, then the exit signal was
2465 not the end of the debugged application and should be
2466 ignored. */
2467 if (num_lwps > 0)
2468 {
2469 /* Make sure there is at least one thread running. */
2470 gdb_assert (iterate_over_lwps (running_callback, NULL));
2471
2472 /* Discard the event. */
2473 return NULL;
2474 }
2475 }
2476
2477 /* Check if the current LWP has previously exited. In the nptl
2478 thread model, LWPs other than the main thread do not issue
2479 signals when they exit so we must check whenever the thread has
2480 stopped. A similar check is made in stop_wait_callback(). */
2481 if (num_lwps > 1 && !linux_nat_thread_alive (lp->ptid))
2482 {
2483 if (debug_linux_nat)
2484 fprintf_unfiltered (gdb_stdlog,
2485 "LLW: %s exited.\n",
2486 target_pid_to_str (lp->ptid));
2487
2488 exit_lwp (lp);
2489
2490 /* Make sure there is at least one thread running. */
2491 gdb_assert (iterate_over_lwps (running_callback, NULL));
2492
2493 /* Discard the event. */
2494 return NULL;
2495 }
2496
2497 /* Make sure we don't report a SIGSTOP that we sent ourselves in
2498 an attempt to stop an LWP. */
2499 if (lp->signalled
2500 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
2501 {
2502 if (debug_linux_nat)
2503 fprintf_unfiltered (gdb_stdlog,
2504 "LLW: Delayed SIGSTOP caught for %s.\n",
2505 target_pid_to_str (lp->ptid));
2506
2507 /* This is a delayed SIGSTOP. */
2508 lp->signalled = 0;
2509
2510 registers_changed ();
2511
2512 linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
2513 lp->step, TARGET_SIGNAL_0);
2514 if (debug_linux_nat)
2515 fprintf_unfiltered (gdb_stdlog,
2516 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
2517 lp->step ?
2518 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2519 target_pid_to_str (lp->ptid));
2520
2521 lp->stopped = 0;
2522 gdb_assert (lp->resumed);
2523
2524 /* Discard the event. */
2525 return NULL;
2526 }
2527
2528 /* An interesting event. */
2529 gdb_assert (lp);
2530 return lp;
2531 }
2532
2533 /* Get the events stored in the pipe into the local queue, so they are
2534 accessible to queued_waitpid. We need to do this, since it is not
2535 always the case that the event at the head of the pipe is the event
2536 we want. */
2537
2538 static void
2539 pipe_to_local_event_queue (void)
2540 {
2541 if (debug_linux_nat_async)
2542 fprintf_unfiltered (gdb_stdlog,
2543 "PTLEQ: linux_nat_num_queued_events(%d)\n",
2544 linux_nat_num_queued_events);
2545 while (linux_nat_num_queued_events)
2546 {
2547 int lwpid, status, options;
2548 lwpid = linux_nat_event_pipe_pop (&status, &options);
2549 gdb_assert (lwpid > 0);
2550 push_waitpid (lwpid, status, options);
2551 }
2552 }
2553
2554 /* Get the unprocessed events stored in the local queue back into the
2555 pipe, so the event loop realizes there's something else to
2556 process. */
2557
2558 static void
2559 local_event_queue_to_pipe (void)
2560 {
2561 struct waitpid_result *w = waitpid_queue;
2562 while (w)
2563 {
2564 struct waitpid_result *next = w->next;
2565 linux_nat_event_pipe_push (w->pid,
2566 w->status,
2567 w->options);
2568 xfree (w);
2569 w = next;
2570 }
2571 waitpid_queue = NULL;
2572
2573 if (debug_linux_nat_async)
2574 fprintf_unfiltered (gdb_stdlog,
2575 "LEQTP: linux_nat_num_queued_events(%d)\n",
2576 linux_nat_num_queued_events);
2577 }
2578
2579 static ptid_t
2580 linux_nat_wait (ptid_t ptid, struct target_waitstatus *ourstatus)
2581 {
2582 struct lwp_info *lp = NULL;
2583 int options = 0;
2584 int status = 0;
2585 pid_t pid = PIDGET (ptid);
2586 sigset_t flush_mask;
2587
2588 if (debug_linux_nat_async)
2589 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
2590
2591 /* The first time we get here after starting a new inferior, we may
2592 not have added it to the LWP list yet - this is the earliest
2593 moment at which we know its PID. */
2594 if (num_lwps == 0)
2595 {
2596 gdb_assert (!is_lwp (inferior_ptid));
2597
2598 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
2599 GET_PID (inferior_ptid));
2600 lp = add_lwp (inferior_ptid);
2601 lp->resumed = 1;
2602 /* Add the main thread to GDB's thread list. */
2603 add_thread_silent (lp->ptid);
2604 }
2605
2606 sigemptyset (&flush_mask);
2607
2608 /* Block events while we're here. */
2609 linux_nat_async_events (sigchld_sync);
2610
2611 retry:
2612
2613 /* Make sure there is at least one LWP that has been resumed. */
2614 gdb_assert (iterate_over_lwps (resumed_callback, NULL));
2615
2616 /* First check if there is a LWP with a wait status pending. */
2617 if (pid == -1)
2618 {
2619 /* Any LWP that's been resumed will do. */
2620 lp = iterate_over_lwps (status_callback, NULL);
2621 if (lp)
2622 {
2623 if (target_can_async_p ())
2624 internal_error (__FILE__, __LINE__,
2625 "Found an LWP with a pending status in async mode.");
2626
2627 status = lp->status;
2628 lp->status = 0;
2629
2630 if (debug_linux_nat && status)
2631 fprintf_unfiltered (gdb_stdlog,
2632 "LLW: Using pending wait status %s for %s.\n",
2633 status_to_str (status),
2634 target_pid_to_str (lp->ptid));
2635 }
2636
2637 /* But if we don't find one, we'll have to wait, and check both
2638 cloned and uncloned processes. We start with the cloned
2639 processes. */
2640 options = __WCLONE | WNOHANG;
2641 }
2642 else if (is_lwp (ptid))
2643 {
2644 if (debug_linux_nat)
2645 fprintf_unfiltered (gdb_stdlog,
2646 "LLW: Waiting for specific LWP %s.\n",
2647 target_pid_to_str (ptid));
2648
2649 /* We have a specific LWP to check. */
2650 lp = find_lwp_pid (ptid);
2651 gdb_assert (lp);
2652 status = lp->status;
2653 lp->status = 0;
2654
2655 if (debug_linux_nat && status)
2656 fprintf_unfiltered (gdb_stdlog,
2657 "LLW: Using pending wait status %s for %s.\n",
2658 status_to_str (status),
2659 target_pid_to_str (lp->ptid));
2660
2661 /* If we have to wait, take into account whether PID is a cloned
2662 process or not. And we have to convert it to something that
2663 the layer beneath us can understand. */
2664 options = lp->cloned ? __WCLONE : 0;
2665 pid = GET_LWP (ptid);
2666 }
2667
2668 if (status && lp->signalled)
2669 {
2670 /* A pending SIGSTOP may interfere with the normal stream of
2671 events. In a typical case where interference is a problem,
2672 we have a SIGSTOP signal pending for LWP A while
2673 single-stepping it, encounter an event in LWP B, and take the
2674 pending SIGSTOP while trying to stop LWP A. After processing
2675 the event in LWP B, LWP A is continued, and we'll never see
2676 the SIGTRAP associated with the last time we were
2677 single-stepping LWP A. */
2678
2679 /* Resume the thread. It should halt immediately returning the
2680 pending SIGSTOP. */
2681 registers_changed ();
2682 linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
2683 lp->step, TARGET_SIGNAL_0);
2684 if (debug_linux_nat)
2685 fprintf_unfiltered (gdb_stdlog,
2686 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
2687 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2688 target_pid_to_str (lp->ptid));
2689 lp->stopped = 0;
2690 gdb_assert (lp->resumed);
2691
2692 /* This should catch the pending SIGSTOP. */
2693 stop_wait_callback (lp, NULL);
2694 }
2695
2696 if (!target_can_async_p ())
2697 {
2698 /* Causes SIGINT to be passed on to the attached process. */
2699 set_sigint_trap ();
2700 set_sigio_trap ();
2701 }
2702
2703 while (status == 0)
2704 {
2705 pid_t lwpid;
2706
2707 if (target_can_async_p ())
2708 /* In async mode, don't ever block. Only look at the locally
2709 queued events. */
2710 lwpid = queued_waitpid (pid, &status, options);
2711 else
2712 lwpid = my_waitpid (pid, &status, options);
2713
2714 if (lwpid > 0)
2715 {
2716 gdb_assert (pid == -1 || lwpid == pid);
2717
2718 if (debug_linux_nat)
2719 {
2720 fprintf_unfiltered (gdb_stdlog,
2721 "LLW: waitpid %ld received %s\n",
2722 (long) lwpid, status_to_str (status));
2723 }
2724
2725 lp = linux_nat_filter_event (lwpid, status, options);
2726 if (!lp)
2727 {
2728 /* A discarded event. */
2729 status = 0;
2730 continue;
2731 }
2732
2733 break;
2734 }
2735
2736 if (pid == -1)
2737 {
2738 /* Alternate between checking cloned and uncloned processes. */
2739 options ^= __WCLONE;
2740
2741 /* And every time we have checked both:
2742 In async mode, return to event loop;
2743 In sync mode, suspend waiting for a SIGCHLD signal. */
2744 if (options & __WCLONE)
2745 {
2746 if (target_can_async_p ())
2747 {
2748 /* No interesting event. */
2749 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2750
2751 /* Get ready for the next event. */
2752 target_async (inferior_event_handler, 0);
2753
2754 if (debug_linux_nat_async)
2755 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
2756
2757 return minus_one_ptid;
2758 }
2759
2760 sigsuspend (&suspend_mask);
2761 }
2762 }
2763
2764 /* We shouldn't end up here unless we want to try again. */
2765 gdb_assert (status == 0);
2766 }
2767
2768 if (!target_can_async_p ())
2769 {
2770 clear_sigio_trap ();
2771 clear_sigint_trap ();
2772 }
2773
2774 gdb_assert (lp);
2775
2776 /* Don't report signals that GDB isn't interested in, such as
2777 signals that are neither printed nor stopped upon. Stopping all
2778 threads can be a bit time-consuming so if we want decent
2779 performance with heavily multi-threaded programs, especially when
2780 they're using a high frequency timer, we'd better avoid it if we
2781 can. */
2782
2783 if (WIFSTOPPED (status))
2784 {
2785 int signo = target_signal_from_host (WSTOPSIG (status));
2786
2787 /* If we get a signal while single-stepping, we may need special
2788 care, e.g. to skip the signal handler. Defer to common code. */
2789 if (!lp->step
2790 && signal_stop_state (signo) == 0
2791 && signal_print_state (signo) == 0
2792 && signal_pass_state (signo) == 1)
2793 {
2794 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
2795 here? It is not clear we should. GDB may not expect
2796 other threads to run. On the other hand, not resuming
2797 newly attached threads may cause an unwanted delay in
2798 getting them running. */
2799 registers_changed ();
2800 linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
2801 lp->step, signo);
2802 if (debug_linux_nat)
2803 fprintf_unfiltered (gdb_stdlog,
2804 "LLW: %s %s, %s (preempt 'handle')\n",
2805 lp->step ?
2806 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2807 target_pid_to_str (lp->ptid),
2808 signo ? strsignal (signo) : "0");
2809 lp->stopped = 0;
2810 status = 0;
2811 goto retry;
2812 }
2813
2814 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
2815 {
2816 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
2817 forwarded to the entire process group, that is, all LWP's
2818 will receive it. Since we only want to report it once,
2819 we try to flush it from all LWPs except this one. */
2820 sigaddset (&flush_mask, SIGINT);
2821 }
2822 }
2823
2824 /* This LWP is stopped now. */
2825 lp->stopped = 1;
2826
2827 if (debug_linux_nat)
2828 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
2829 status_to_str (status), target_pid_to_str (lp->ptid));
2830
2831 /* Now stop all other LWP's ... */
2832 iterate_over_lwps (stop_callback, NULL);
2833
2834 /* ... and wait until all of them have reported back that they're no
2835 longer running. */
2836 iterate_over_lwps (stop_wait_callback, &flush_mask);
2837 iterate_over_lwps (flush_callback, &flush_mask);
2838
2839 /* If we're not waiting for a specific LWP, choose an event LWP from
2840 among those that have had events. Giving equal priority to all
2841 LWPs that have had events helps prevent starvation. */
2842 if (pid == -1)
2843 select_event_lwp (&lp, &status);
2844
2845 /* Now that we've selected our final event LWP, cancel any
2846 breakpoints in other LWPs that have hit a GDB breakpoint. See
2847 the comment in cancel_breakpoints_callback to find out why. */
2848 iterate_over_lwps (cancel_breakpoints_callback, lp);
2849
2850 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
2851 {
2852 if (debug_linux_nat)
2853 fprintf_unfiltered (gdb_stdlog,
2854 "LLW: trap ptid is %s.\n",
2855 target_pid_to_str (lp->ptid));
2856 }
2857
2858 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2859 {
2860 *ourstatus = lp->waitstatus;
2861 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
2862 }
2863 else
2864 store_waitstatus (ourstatus, status);
2865
2866 /* Get ready for the next event. */
2867 if (target_can_async_p ())
2868 target_async (inferior_event_handler, 0);
2869
2870 if (debug_linux_nat_async)
2871 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
2872
2873 return lp->ptid;
2874 }
2875
2876 static int
2877 kill_callback (struct lwp_info *lp, void *data)
2878 {
2879 errno = 0;
2880 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
2881 if (debug_linux_nat)
2882 fprintf_unfiltered (gdb_stdlog,
2883 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
2884 target_pid_to_str (lp->ptid),
2885 errno ? safe_strerror (errno) : "OK");
2886
2887 return 0;
2888 }
2889
2890 static int
2891 kill_wait_callback (struct lwp_info *lp, void *data)
2892 {
2893 pid_t pid;
2894
2895 /* We must make sure that there are no pending events (delayed
2896 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
2897 program doesn't interfere with any following debugging session. */
2898
2899 /* For cloned processes we must check both with __WCLONE and
2900 without, since the exit status of a cloned process isn't reported
2901 with __WCLONE. */
2902 if (lp->cloned)
2903 {
2904 do
2905 {
2906 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
2907 if (pid != (pid_t) -1)
2908 {
2909 if (debug_linux_nat)
2910 fprintf_unfiltered (gdb_stdlog,
2911 "KWC: wait %s received unknown.\n",
2912 target_pid_to_str (lp->ptid));
2913 /* The Linux kernel sometimes fails to kill a thread
2914 completely after PTRACE_KILL; that goes from the stop
2915 point in do_fork out to the one in
2916 get_signal_to_deliever and waits again. So kill it
2917 again. */
2918 kill_callback (lp, NULL);
2919 }
2920 }
2921 while (pid == GET_LWP (lp->ptid));
2922
2923 gdb_assert (pid == -1 && errno == ECHILD);
2924 }
2925
2926 do
2927 {
2928 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
2929 if (pid != (pid_t) -1)
2930 {
2931 if (debug_linux_nat)
2932 fprintf_unfiltered (gdb_stdlog,
2933 "KWC: wait %s received unk.\n",
2934 target_pid_to_str (lp->ptid));
2935 /* See the call to kill_callback above. */
2936 kill_callback (lp, NULL);
2937 }
2938 }
2939 while (pid == GET_LWP (lp->ptid));
2940
2941 gdb_assert (pid == -1 && errno == ECHILD);
2942 return 0;
2943 }
2944
2945 static void
2946 linux_nat_kill (void)
2947 {
2948 struct target_waitstatus last;
2949 ptid_t last_ptid;
2950 int status;
2951
2952 if (target_can_async_p ())
2953 target_async (NULL, 0);
2954
2955 /* If we're stopped while forking and we haven't followed yet,
2956 kill the other task. We need to do this first because the
2957 parent will be sleeping if this is a vfork. */
2958
2959 get_last_target_status (&last_ptid, &last);
2960
2961 if (last.kind == TARGET_WAITKIND_FORKED
2962 || last.kind == TARGET_WAITKIND_VFORKED)
2963 {
2964 ptrace (PT_KILL, last.value.related_pid, 0, 0);
2965 wait (&status);
2966 }
2967
2968 if (forks_exist_p ())
2969 {
2970 linux_fork_killall ();
2971 drain_queued_events (-1);
2972 }
2973 else
2974 {
2975 /* Kill all LWP's ... */
2976 iterate_over_lwps (kill_callback, NULL);
2977
2978 /* ... and wait until we've flushed all events. */
2979 iterate_over_lwps (kill_wait_callback, NULL);
2980 }
2981
2982 target_mourn_inferior ();
2983 }
2984
2985 static void
2986 linux_nat_mourn_inferior (void)
2987 {
2988 /* Destroy LWP info; it's no longer valid. */
2989 init_lwp_list ();
2990
2991 if (! forks_exist_p ())
2992 {
2993 /* Normal case, no other forks available. */
2994 if (target_can_async_p ())
2995 linux_nat_async (NULL, 0);
2996 linux_ops->to_mourn_inferior ();
2997 }
2998 else
2999 /* Multi-fork case. The current inferior_ptid has exited, but
3000 there are other viable forks to debug. Delete the exiting
3001 one and context-switch to the first available. */
3002 linux_fork_mourn_inferior ();
3003 }
3004
3005 static LONGEST
3006 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3007 const char *annex, gdb_byte *readbuf,
3008 const gdb_byte *writebuf,
3009 ULONGEST offset, LONGEST len)
3010 {
3011 struct cleanup *old_chain = save_inferior_ptid ();
3012 LONGEST xfer;
3013
3014 if (is_lwp (inferior_ptid))
3015 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
3016
3017 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3018 offset, len);
3019
3020 do_cleanups (old_chain);
3021 return xfer;
3022 }
3023
3024 static int
3025 linux_nat_thread_alive (ptid_t ptid)
3026 {
3027 gdb_assert (is_lwp (ptid));
3028
3029 errno = 0;
3030 ptrace (PTRACE_PEEKUSER, GET_LWP (ptid), 0, 0);
3031 if (debug_linux_nat)
3032 fprintf_unfiltered (gdb_stdlog,
3033 "LLTA: PTRACE_PEEKUSER %s, 0, 0 (%s)\n",
3034 target_pid_to_str (ptid),
3035 errno ? safe_strerror (errno) : "OK");
3036
3037 /* Not every Linux kernel implements PTRACE_PEEKUSER. But we can
3038 handle that case gracefully since ptrace will first do a lookup
3039 for the process based upon the passed-in pid. If that fails we
3040 will get either -ESRCH or -EPERM, otherwise the child exists and
3041 is alive. */
3042 if (errno == ESRCH || errno == EPERM)
3043 return 0;
3044
3045 return 1;
3046 }
3047
3048 static char *
3049 linux_nat_pid_to_str (ptid_t ptid)
3050 {
3051 static char buf[64];
3052
3053 if (is_lwp (ptid)
3054 && ((lwp_list && lwp_list->next)
3055 || GET_PID (ptid) != GET_LWP (ptid)))
3056 {
3057 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
3058 return buf;
3059 }
3060
3061 return normal_pid_to_str (ptid);
3062 }
3063
3064 static void
3065 sigchld_handler (int signo)
3066 {
3067 if (linux_nat_async_enabled
3068 && linux_nat_async_events_state != sigchld_sync
3069 && signo == SIGCHLD)
3070 /* It is *always* a bug to hit this. */
3071 internal_error (__FILE__, __LINE__,
3072 "sigchld_handler called when async events are enabled");
3073
3074 /* Do nothing. The only reason for this handler is that it allows
3075 us to use sigsuspend in linux_nat_wait above to wait for the
3076 arrival of a SIGCHLD. */
3077 }
3078
3079 /* Accepts an integer PID; Returns a string representing a file that
3080 can be opened to get the symbols for the child process. */
3081
3082 static char *
3083 linux_child_pid_to_exec_file (int pid)
3084 {
3085 char *name1, *name2;
3086
3087 name1 = xmalloc (MAXPATHLEN);
3088 name2 = xmalloc (MAXPATHLEN);
3089 make_cleanup (xfree, name1);
3090 make_cleanup (xfree, name2);
3091 memset (name2, 0, MAXPATHLEN);
3092
3093 sprintf (name1, "/proc/%d/exe", pid);
3094 if (readlink (name1, name2, MAXPATHLEN) > 0)
3095 return name2;
3096 else
3097 return name1;
3098 }
3099
3100 /* Service function for corefiles and info proc. */
3101
3102 static int
3103 read_mapping (FILE *mapfile,
3104 long long *addr,
3105 long long *endaddr,
3106 char *permissions,
3107 long long *offset,
3108 char *device, long long *inode, char *filename)
3109 {
3110 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
3111 addr, endaddr, permissions, offset, device, inode);
3112
3113 filename[0] = '\0';
3114 if (ret > 0 && ret != EOF)
3115 {
3116 /* Eat everything up to EOL for the filename. This will prevent
3117 weird filenames (such as one with embedded whitespace) from
3118 confusing this code. It also makes this code more robust in
3119 respect to annotations the kernel may add after the filename.
3120
3121 Note the filename is used for informational purposes
3122 only. */
3123 ret += fscanf (mapfile, "%[^\n]\n", filename);
3124 }
3125
3126 return (ret != 0 && ret != EOF);
3127 }
3128
3129 /* Fills the "to_find_memory_regions" target vector. Lists the memory
3130 regions in the inferior for a corefile. */
3131
3132 static int
3133 linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
3134 unsigned long,
3135 int, int, int, void *), void *obfd)
3136 {
3137 long long pid = PIDGET (inferior_ptid);
3138 char mapsfilename[MAXPATHLEN];
3139 FILE *mapsfile;
3140 long long addr, endaddr, size, offset, inode;
3141 char permissions[8], device[8], filename[MAXPATHLEN];
3142 int read, write, exec;
3143 int ret;
3144
3145 /* Compose the filename for the /proc memory map, and open it. */
3146 sprintf (mapsfilename, "/proc/%lld/maps", pid);
3147 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
3148 error (_("Could not open %s."), mapsfilename);
3149
3150 if (info_verbose)
3151 fprintf_filtered (gdb_stdout,
3152 "Reading memory regions from %s\n", mapsfilename);
3153
3154 /* Now iterate until end-of-file. */
3155 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
3156 &offset, &device[0], &inode, &filename[0]))
3157 {
3158 size = endaddr - addr;
3159
3160 /* Get the segment's permissions. */
3161 read = (strchr (permissions, 'r') != 0);
3162 write = (strchr (permissions, 'w') != 0);
3163 exec = (strchr (permissions, 'x') != 0);
3164
3165 if (info_verbose)
3166 {
3167 fprintf_filtered (gdb_stdout,
3168 "Save segment, %lld bytes at 0x%s (%c%c%c)",
3169 size, paddr_nz (addr),
3170 read ? 'r' : ' ',
3171 write ? 'w' : ' ', exec ? 'x' : ' ');
3172 if (filename[0])
3173 fprintf_filtered (gdb_stdout, " for %s", filename);
3174 fprintf_filtered (gdb_stdout, "\n");
3175 }
3176
3177 /* Invoke the callback function to create the corefile
3178 segment. */
3179 func (addr, size, read, write, exec, obfd);
3180 }
3181 fclose (mapsfile);
3182 return 0;
3183 }
3184
3185 /* Records the thread's register state for the corefile note
3186 section. */
3187
3188 static char *
3189 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
3190 char *note_data, int *note_size)
3191 {
3192 gdb_gregset_t gregs;
3193 gdb_fpregset_t fpregs;
3194 unsigned long lwp = ptid_get_lwp (ptid);
3195 struct regcache *regcache = get_thread_regcache (ptid);
3196 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3197 const struct regset *regset;
3198 int core_regset_p;
3199 struct cleanup *old_chain;
3200 struct core_regset_section *sect_list;
3201 char *gdb_regset;
3202
3203 old_chain = save_inferior_ptid ();
3204 inferior_ptid = ptid;
3205 target_fetch_registers (regcache, -1);
3206 do_cleanups (old_chain);
3207
3208 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
3209 sect_list = gdbarch_core_regset_sections (gdbarch);
3210
3211 if (core_regset_p
3212 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
3213 sizeof (gregs))) != NULL
3214 && regset->collect_regset != NULL)
3215 regset->collect_regset (regset, regcache, -1,
3216 &gregs, sizeof (gregs));
3217 else
3218 fill_gregset (regcache, &gregs, -1);
3219
3220 note_data = (char *) elfcore_write_prstatus (obfd,
3221 note_data,
3222 note_size,
3223 lwp,
3224 stop_signal, &gregs);
3225
3226 /* The loop below uses the new struct core_regset_section, which stores
3227 the supported section names and sizes for the core file. Note that
3228 note PRSTATUS needs to be treated specially. But the other notes are
3229 structurally the same, so they can benefit from the new struct. */
3230 if (core_regset_p && sect_list != NULL)
3231 while (sect_list->sect_name != NULL)
3232 {
3233 /* .reg was already handled above. */
3234 if (strcmp (sect_list->sect_name, ".reg") == 0)
3235 {
3236 sect_list++;
3237 continue;
3238 }
3239 regset = gdbarch_regset_from_core_section (gdbarch,
3240 sect_list->sect_name,
3241 sect_list->size);
3242 gdb_assert (regset && regset->collect_regset);
3243 gdb_regset = xmalloc (sect_list->size);
3244 regset->collect_regset (regset, regcache, -1,
3245 gdb_regset, sect_list->size);
3246 note_data = (char *) elfcore_write_register_note (obfd,
3247 note_data,
3248 note_size,
3249 sect_list->sect_name,
3250 gdb_regset,
3251 sect_list->size);
3252 xfree (gdb_regset);
3253 sect_list++;
3254 }
3255
3256 /* For architectures that does not have the struct core_regset_section
3257 implemented, we use the old method. When all the architectures have
3258 the new support, the code below should be deleted. */
3259 else
3260 {
3261 if (core_regset_p
3262 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
3263 sizeof (fpregs))) != NULL
3264 && regset->collect_regset != NULL)
3265 regset->collect_regset (regset, regcache, -1,
3266 &fpregs, sizeof (fpregs));
3267 else
3268 fill_fpregset (regcache, &fpregs, -1);
3269
3270 note_data = (char *) elfcore_write_prfpreg (obfd,
3271 note_data,
3272 note_size,
3273 &fpregs, sizeof (fpregs));
3274 }
3275
3276 return note_data;
3277 }
3278
3279 struct linux_nat_corefile_thread_data
3280 {
3281 bfd *obfd;
3282 char *note_data;
3283 int *note_size;
3284 int num_notes;
3285 };
3286
3287 /* Called by gdbthread.c once per thread. Records the thread's
3288 register state for the corefile note section. */
3289
3290 static int
3291 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
3292 {
3293 struct linux_nat_corefile_thread_data *args = data;
3294
3295 args->note_data = linux_nat_do_thread_registers (args->obfd,
3296 ti->ptid,
3297 args->note_data,
3298 args->note_size);
3299 args->num_notes++;
3300
3301 return 0;
3302 }
3303
3304 /* Records the register state for the corefile note section. */
3305
3306 static char *
3307 linux_nat_do_registers (bfd *obfd, ptid_t ptid,
3308 char *note_data, int *note_size)
3309 {
3310 return linux_nat_do_thread_registers (obfd,
3311 ptid_build (ptid_get_pid (inferior_ptid),
3312 ptid_get_pid (inferior_ptid),
3313 0),
3314 note_data, note_size);
3315 }
3316
3317 /* Fills the "to_make_corefile_note" target vector. Builds the note
3318 section for a corefile, and returns it in a malloc buffer. */
3319
3320 static char *
3321 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
3322 {
3323 struct linux_nat_corefile_thread_data thread_args;
3324 struct cleanup *old_chain;
3325 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
3326 char fname[16] = { '\0' };
3327 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
3328 char psargs[80] = { '\0' };
3329 char *note_data = NULL;
3330 ptid_t current_ptid = inferior_ptid;
3331 gdb_byte *auxv;
3332 int auxv_len;
3333
3334 if (get_exec_file (0))
3335 {
3336 strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
3337 strncpy (psargs, get_exec_file (0), sizeof (psargs));
3338 if (get_inferior_args ())
3339 {
3340 char *string_end;
3341 char *psargs_end = psargs + sizeof (psargs);
3342
3343 /* linux_elfcore_write_prpsinfo () handles zero unterminated
3344 strings fine. */
3345 string_end = memchr (psargs, 0, sizeof (psargs));
3346 if (string_end != NULL)
3347 {
3348 *string_end++ = ' ';
3349 strncpy (string_end, get_inferior_args (),
3350 psargs_end - string_end);
3351 }
3352 }
3353 note_data = (char *) elfcore_write_prpsinfo (obfd,
3354 note_data,
3355 note_size, fname, psargs);
3356 }
3357
3358 /* Dump information for threads. */
3359 thread_args.obfd = obfd;
3360 thread_args.note_data = note_data;
3361 thread_args.note_size = note_size;
3362 thread_args.num_notes = 0;
3363 iterate_over_lwps (linux_nat_corefile_thread_callback, &thread_args);
3364 if (thread_args.num_notes == 0)
3365 {
3366 /* iterate_over_threads didn't come up with any threads; just
3367 use inferior_ptid. */
3368 note_data = linux_nat_do_registers (obfd, inferior_ptid,
3369 note_data, note_size);
3370 }
3371 else
3372 {
3373 note_data = thread_args.note_data;
3374 }
3375
3376 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
3377 NULL, &auxv);
3378 if (auxv_len > 0)
3379 {
3380 note_data = elfcore_write_note (obfd, note_data, note_size,
3381 "CORE", NT_AUXV, auxv, auxv_len);
3382 xfree (auxv);
3383 }
3384
3385 make_cleanup (xfree, note_data);
3386 return note_data;
3387 }
3388
3389 /* Implement the "info proc" command. */
3390
3391 static void
3392 linux_nat_info_proc_cmd (char *args, int from_tty)
3393 {
3394 long long pid = PIDGET (inferior_ptid);
3395 FILE *procfile;
3396 char **argv = NULL;
3397 char buffer[MAXPATHLEN];
3398 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
3399 int cmdline_f = 1;
3400 int cwd_f = 1;
3401 int exe_f = 1;
3402 int mappings_f = 0;
3403 int environ_f = 0;
3404 int status_f = 0;
3405 int stat_f = 0;
3406 int all = 0;
3407 struct stat dummy;
3408
3409 if (args)
3410 {
3411 /* Break up 'args' into an argv array. */
3412 if ((argv = buildargv (args)) == NULL)
3413 nomem (0);
3414 else
3415 make_cleanup_freeargv (argv);
3416 }
3417 while (argv != NULL && *argv != NULL)
3418 {
3419 if (isdigit (argv[0][0]))
3420 {
3421 pid = strtoul (argv[0], NULL, 10);
3422 }
3423 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
3424 {
3425 mappings_f = 1;
3426 }
3427 else if (strcmp (argv[0], "status") == 0)
3428 {
3429 status_f = 1;
3430 }
3431 else if (strcmp (argv[0], "stat") == 0)
3432 {
3433 stat_f = 1;
3434 }
3435 else if (strcmp (argv[0], "cmd") == 0)
3436 {
3437 cmdline_f = 1;
3438 }
3439 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
3440 {
3441 exe_f = 1;
3442 }
3443 else if (strcmp (argv[0], "cwd") == 0)
3444 {
3445 cwd_f = 1;
3446 }
3447 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
3448 {
3449 all = 1;
3450 }
3451 else
3452 {
3453 /* [...] (future options here) */
3454 }
3455 argv++;
3456 }
3457 if (pid == 0)
3458 error (_("No current process: you must name one."));
3459
3460 sprintf (fname1, "/proc/%lld", pid);
3461 if (stat (fname1, &dummy) != 0)
3462 error (_("No /proc directory: '%s'"), fname1);
3463
3464 printf_filtered (_("process %lld\n"), pid);
3465 if (cmdline_f || all)
3466 {
3467 sprintf (fname1, "/proc/%lld/cmdline", pid);
3468 if ((procfile = fopen (fname1, "r")) != NULL)
3469 {
3470 fgets (buffer, sizeof (buffer), procfile);
3471 printf_filtered ("cmdline = '%s'\n", buffer);
3472 fclose (procfile);
3473 }
3474 else
3475 warning (_("unable to open /proc file '%s'"), fname1);
3476 }
3477 if (cwd_f || all)
3478 {
3479 sprintf (fname1, "/proc/%lld/cwd", pid);
3480 memset (fname2, 0, sizeof (fname2));
3481 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
3482 printf_filtered ("cwd = '%s'\n", fname2);
3483 else
3484 warning (_("unable to read link '%s'"), fname1);
3485 }
3486 if (exe_f || all)
3487 {
3488 sprintf (fname1, "/proc/%lld/exe", pid);
3489 memset (fname2, 0, sizeof (fname2));
3490 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
3491 printf_filtered ("exe = '%s'\n", fname2);
3492 else
3493 warning (_("unable to read link '%s'"), fname1);
3494 }
3495 if (mappings_f || all)
3496 {
3497 sprintf (fname1, "/proc/%lld/maps", pid);
3498 if ((procfile = fopen (fname1, "r")) != NULL)
3499 {
3500 long long addr, endaddr, size, offset, inode;
3501 char permissions[8], device[8], filename[MAXPATHLEN];
3502
3503 printf_filtered (_("Mapped address spaces:\n\n"));
3504 if (gdbarch_addr_bit (current_gdbarch) == 32)
3505 {
3506 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
3507 "Start Addr",
3508 " End Addr",
3509 " Size", " Offset", "objfile");
3510 }
3511 else
3512 {
3513 printf_filtered (" %18s %18s %10s %10s %7s\n",
3514 "Start Addr",
3515 " End Addr",
3516 " Size", " Offset", "objfile");
3517 }
3518
3519 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
3520 &offset, &device[0], &inode, &filename[0]))
3521 {
3522 size = endaddr - addr;
3523
3524 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
3525 calls here (and possibly above) should be abstracted
3526 out into their own functions? Andrew suggests using
3527 a generic local_address_string instead to print out
3528 the addresses; that makes sense to me, too. */
3529
3530 if (gdbarch_addr_bit (current_gdbarch) == 32)
3531 {
3532 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
3533 (unsigned long) addr, /* FIXME: pr_addr */
3534 (unsigned long) endaddr,
3535 (int) size,
3536 (unsigned int) offset,
3537 filename[0] ? filename : "");
3538 }
3539 else
3540 {
3541 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
3542 (unsigned long) addr, /* FIXME: pr_addr */
3543 (unsigned long) endaddr,
3544 (int) size,
3545 (unsigned int) offset,
3546 filename[0] ? filename : "");
3547 }
3548 }
3549
3550 fclose (procfile);
3551 }
3552 else
3553 warning (_("unable to open /proc file '%s'"), fname1);
3554 }
3555 if (status_f || all)
3556 {
3557 sprintf (fname1, "/proc/%lld/status", pid);
3558 if ((procfile = fopen (fname1, "r")) != NULL)
3559 {
3560 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
3561 puts_filtered (buffer);
3562 fclose (procfile);
3563 }
3564 else
3565 warning (_("unable to open /proc file '%s'"), fname1);
3566 }
3567 if (stat_f || all)
3568 {
3569 sprintf (fname1, "/proc/%lld/stat", pid);
3570 if ((procfile = fopen (fname1, "r")) != NULL)
3571 {
3572 int itmp;
3573 char ctmp;
3574 long ltmp;
3575
3576 if (fscanf (procfile, "%d ", &itmp) > 0)
3577 printf_filtered (_("Process: %d\n"), itmp);
3578 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
3579 printf_filtered (_("Exec file: %s\n"), buffer);
3580 if (fscanf (procfile, "%c ", &ctmp) > 0)
3581 printf_filtered (_("State: %c\n"), ctmp);
3582 if (fscanf (procfile, "%d ", &itmp) > 0)
3583 printf_filtered (_("Parent process: %d\n"), itmp);
3584 if (fscanf (procfile, "%d ", &itmp) > 0)
3585 printf_filtered (_("Process group: %d\n"), itmp);
3586 if (fscanf (procfile, "%d ", &itmp) > 0)
3587 printf_filtered (_("Session id: %d\n"), itmp);
3588 if (fscanf (procfile, "%d ", &itmp) > 0)
3589 printf_filtered (_("TTY: %d\n"), itmp);
3590 if (fscanf (procfile, "%d ", &itmp) > 0)
3591 printf_filtered (_("TTY owner process group: %d\n"), itmp);
3592 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3593 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
3594 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3595 printf_filtered (_("Minor faults (no memory page): %lu\n"),
3596 (unsigned long) ltmp);
3597 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3598 printf_filtered (_("Minor faults, children: %lu\n"),
3599 (unsigned long) ltmp);
3600 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3601 printf_filtered (_("Major faults (memory page faults): %lu\n"),
3602 (unsigned long) ltmp);
3603 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3604 printf_filtered (_("Major faults, children: %lu\n"),
3605 (unsigned long) ltmp);
3606 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3607 printf_filtered (_("utime: %ld\n"), ltmp);
3608 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3609 printf_filtered (_("stime: %ld\n"), ltmp);
3610 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3611 printf_filtered (_("utime, children: %ld\n"), ltmp);
3612 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3613 printf_filtered (_("stime, children: %ld\n"), ltmp);
3614 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3615 printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
3616 ltmp);
3617 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3618 printf_filtered (_("'nice' value: %ld\n"), ltmp);
3619 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3620 printf_filtered (_("jiffies until next timeout: %lu\n"),
3621 (unsigned long) ltmp);
3622 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3623 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
3624 (unsigned long) ltmp);
3625 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3626 printf_filtered (_("start time (jiffies since system boot): %ld\n"),
3627 ltmp);
3628 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3629 printf_filtered (_("Virtual memory size: %lu\n"),
3630 (unsigned long) ltmp);
3631 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3632 printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
3633 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3634 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
3635 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3636 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
3637 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3638 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
3639 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3640 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
3641 #if 0 /* Don't know how architecture-dependent the rest is...
3642 Anyway the signal bitmap info is available from "status". */
3643 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
3644 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
3645 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
3646 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
3647 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3648 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
3649 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3650 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
3651 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3652 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
3653 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3654 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
3655 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
3656 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
3657 #endif
3658 fclose (procfile);
3659 }
3660 else
3661 warning (_("unable to open /proc file '%s'"), fname1);
3662 }
3663 }
3664
3665 /* Implement the to_xfer_partial interface for memory reads using the /proc
3666 filesystem. Because we can use a single read() call for /proc, this
3667 can be much more efficient than banging away at PTRACE_PEEKTEXT,
3668 but it doesn't support writes. */
3669
3670 static LONGEST
3671 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
3672 const char *annex, gdb_byte *readbuf,
3673 const gdb_byte *writebuf,
3674 ULONGEST offset, LONGEST len)
3675 {
3676 LONGEST ret;
3677 int fd;
3678 char filename[64];
3679
3680 if (object != TARGET_OBJECT_MEMORY || !readbuf)
3681 return 0;
3682
3683 /* Don't bother for one word. */
3684 if (len < 3 * sizeof (long))
3685 return 0;
3686
3687 /* We could keep this file open and cache it - possibly one per
3688 thread. That requires some juggling, but is even faster. */
3689 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
3690 fd = open (filename, O_RDONLY | O_LARGEFILE);
3691 if (fd == -1)
3692 return 0;
3693
3694 /* If pread64 is available, use it. It's faster if the kernel
3695 supports it (only one syscall), and it's 64-bit safe even on
3696 32-bit platforms (for instance, SPARC debugging a SPARC64
3697 application). */
3698 #ifdef HAVE_PREAD64
3699 if (pread64 (fd, readbuf, len, offset) != len)
3700 #else
3701 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
3702 #endif
3703 ret = 0;
3704 else
3705 ret = len;
3706
3707 close (fd);
3708 return ret;
3709 }
3710
3711 /* Parse LINE as a signal set and add its set bits to SIGS. */
3712
3713 static void
3714 add_line_to_sigset (const char *line, sigset_t *sigs)
3715 {
3716 int len = strlen (line) - 1;
3717 const char *p;
3718 int signum;
3719
3720 if (line[len] != '\n')
3721 error (_("Could not parse signal set: %s"), line);
3722
3723 p = line;
3724 signum = len * 4;
3725 while (len-- > 0)
3726 {
3727 int digit;
3728
3729 if (*p >= '0' && *p <= '9')
3730 digit = *p - '0';
3731 else if (*p >= 'a' && *p <= 'f')
3732 digit = *p - 'a' + 10;
3733 else
3734 error (_("Could not parse signal set: %s"), line);
3735
3736 signum -= 4;
3737
3738 if (digit & 1)
3739 sigaddset (sigs, signum + 1);
3740 if (digit & 2)
3741 sigaddset (sigs, signum + 2);
3742 if (digit & 4)
3743 sigaddset (sigs, signum + 3);
3744 if (digit & 8)
3745 sigaddset (sigs, signum + 4);
3746
3747 p++;
3748 }
3749 }
3750
3751 /* Find process PID's pending signals from /proc/pid/status and set
3752 SIGS to match. */
3753
3754 void
3755 linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
3756 {
3757 FILE *procfile;
3758 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
3759 int signum;
3760
3761 sigemptyset (pending);
3762 sigemptyset (blocked);
3763 sigemptyset (ignored);
3764 sprintf (fname, "/proc/%d/status", pid);
3765 procfile = fopen (fname, "r");
3766 if (procfile == NULL)
3767 error (_("Could not open %s"), fname);
3768
3769 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
3770 {
3771 /* Normal queued signals are on the SigPnd line in the status
3772 file. However, 2.6 kernels also have a "shared" pending
3773 queue for delivering signals to a thread group, so check for
3774 a ShdPnd line also.
3775
3776 Unfortunately some Red Hat kernels include the shared pending
3777 queue but not the ShdPnd status field. */
3778
3779 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
3780 add_line_to_sigset (buffer + 8, pending);
3781 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
3782 add_line_to_sigset (buffer + 8, pending);
3783 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
3784 add_line_to_sigset (buffer + 8, blocked);
3785 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
3786 add_line_to_sigset (buffer + 8, ignored);
3787 }
3788
3789 fclose (procfile);
3790 }
3791
3792 static LONGEST
3793 linux_xfer_partial (struct target_ops *ops, enum target_object object,
3794 const char *annex, gdb_byte *readbuf,
3795 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3796 {
3797 LONGEST xfer;
3798
3799 if (object == TARGET_OBJECT_AUXV)
3800 return procfs_xfer_auxv (ops, object, annex, readbuf, writebuf,
3801 offset, len);
3802
3803 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
3804 offset, len);
3805 if (xfer != 0)
3806 return xfer;
3807
3808 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
3809 offset, len);
3810 }
3811
3812 /* Create a prototype generic GNU/Linux target. The client can override
3813 it with local methods. */
3814
3815 static void
3816 linux_target_install_ops (struct target_ops *t)
3817 {
3818 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
3819 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
3820 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
3821 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
3822 t->to_post_startup_inferior = linux_child_post_startup_inferior;
3823 t->to_post_attach = linux_child_post_attach;
3824 t->to_follow_fork = linux_child_follow_fork;
3825 t->to_find_memory_regions = linux_nat_find_memory_regions;
3826 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
3827
3828 super_xfer_partial = t->to_xfer_partial;
3829 t->to_xfer_partial = linux_xfer_partial;
3830 }
3831
3832 struct target_ops *
3833 linux_target (void)
3834 {
3835 struct target_ops *t;
3836
3837 t = inf_ptrace_target ();
3838 linux_target_install_ops (t);
3839
3840 return t;
3841 }
3842
3843 struct target_ops *
3844 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
3845 {
3846 struct target_ops *t;
3847
3848 t = inf_ptrace_trad_target (register_u_offset);
3849 linux_target_install_ops (t);
3850
3851 return t;
3852 }
3853
3854 /* Controls if async mode is permitted. */
3855 static int linux_async_permitted = 0;
3856
3857 /* The set command writes to this variable. If the inferior is
3858 executing, linux_nat_async_permitted is *not* updated. */
3859 static int linux_async_permitted_1 = 0;
3860
3861 static void
3862 set_maintenance_linux_async_permitted (char *args, int from_tty,
3863 struct cmd_list_element *c)
3864 {
3865 if (target_has_execution)
3866 {
3867 linux_async_permitted_1 = linux_async_permitted;
3868 error (_("Cannot change this setting while the inferior is running."));
3869 }
3870
3871 linux_async_permitted = linux_async_permitted_1;
3872 linux_nat_set_async_mode (linux_async_permitted);
3873 }
3874
3875 static void
3876 show_maintenance_linux_async_permitted (struct ui_file *file, int from_tty,
3877 struct cmd_list_element *c, const char *value)
3878 {
3879 fprintf_filtered (file, _("\
3880 Controlling the GNU/Linux inferior in asynchronous mode is %s.\n"),
3881 value);
3882 }
3883
3884 /* target_is_async_p implementation. */
3885
3886 static int
3887 linux_nat_is_async_p (void)
3888 {
3889 /* NOTE: palves 2008-03-21: We're only async when the user requests
3890 it explicitly with the "maintenance set linux-async" command.
3891 Someday, linux will always be async. */
3892 if (!linux_async_permitted)
3893 return 0;
3894
3895 return 1;
3896 }
3897
3898 /* target_can_async_p implementation. */
3899
3900 static int
3901 linux_nat_can_async_p (void)
3902 {
3903 /* NOTE: palves 2008-03-21: We're only async when the user requests
3904 it explicitly with the "maintenance set linux-async" command.
3905 Someday, linux will always be async. */
3906 if (!linux_async_permitted)
3907 return 0;
3908
3909 /* See target.h/target_async_mask. */
3910 return linux_nat_async_mask_value;
3911 }
3912
3913 /* target_async_mask implementation. */
3914
3915 static int
3916 linux_nat_async_mask (int mask)
3917 {
3918 int current_state;
3919 current_state = linux_nat_async_mask_value;
3920
3921 if (current_state != mask)
3922 {
3923 if (mask == 0)
3924 {
3925 linux_nat_async (NULL, 0);
3926 linux_nat_async_mask_value = mask;
3927 }
3928 else
3929 {
3930 linux_nat_async_mask_value = mask;
3931 linux_nat_async (inferior_event_handler, 0);
3932 }
3933 }
3934
3935 return current_state;
3936 }
3937
3938 /* Pop an event from the event pipe. */
3939
3940 static int
3941 linux_nat_event_pipe_pop (int* ptr_status, int* ptr_options)
3942 {
3943 struct waitpid_result event = {0};
3944 int ret;
3945
3946 do
3947 {
3948 ret = read (linux_nat_event_pipe[0], &event, sizeof (event));
3949 }
3950 while (ret == -1 && errno == EINTR);
3951
3952 gdb_assert (ret == sizeof (event));
3953
3954 *ptr_status = event.status;
3955 *ptr_options = event.options;
3956
3957 linux_nat_num_queued_events--;
3958
3959 return event.pid;
3960 }
3961
3962 /* Push an event into the event pipe. */
3963
3964 static void
3965 linux_nat_event_pipe_push (int pid, int status, int options)
3966 {
3967 int ret;
3968 struct waitpid_result event = {0};
3969 event.pid = pid;
3970 event.status = status;
3971 event.options = options;
3972
3973 do
3974 {
3975 ret = write (linux_nat_event_pipe[1], &event, sizeof (event));
3976 gdb_assert ((ret == -1 && errno == EINTR) || ret == sizeof (event));
3977 } while (ret == -1 && errno == EINTR);
3978
3979 linux_nat_num_queued_events++;
3980 }
3981
3982 static void
3983 get_pending_events (void)
3984 {
3985 int status, options, pid;
3986
3987 if (!linux_nat_async_enabled
3988 || linux_nat_async_events_state != sigchld_async)
3989 internal_error (__FILE__, __LINE__,
3990 "get_pending_events called with async masked");
3991
3992 while (1)
3993 {
3994 status = 0;
3995 options = __WCLONE | WNOHANG;
3996
3997 do
3998 {
3999 pid = waitpid (-1, &status, options);
4000 }
4001 while (pid == -1 && errno == EINTR);
4002
4003 if (pid <= 0)
4004 {
4005 options = WNOHANG;
4006 do
4007 {
4008 pid = waitpid (-1, &status, options);
4009 }
4010 while (pid == -1 && errno == EINTR);
4011 }
4012
4013 if (pid <= 0)
4014 /* No more children reporting events. */
4015 break;
4016
4017 if (debug_linux_nat_async)
4018 fprintf_unfiltered (gdb_stdlog, "\
4019 get_pending_events: pid(%d), status(%x), options (%x)\n",
4020 pid, status, options);
4021
4022 linux_nat_event_pipe_push (pid, status, options);
4023 }
4024
4025 if (debug_linux_nat_async)
4026 fprintf_unfiltered (gdb_stdlog, "\
4027 get_pending_events: linux_nat_num_queued_events(%d)\n",
4028 linux_nat_num_queued_events);
4029 }
4030
4031 /* SIGCHLD handler for async mode. */
4032
4033 static void
4034 async_sigchld_handler (int signo)
4035 {
4036 if (debug_linux_nat_async)
4037 fprintf_unfiltered (gdb_stdlog, "async_sigchld_handler\n");
4038
4039 get_pending_events ();
4040 }
4041
4042 /* Set SIGCHLD handling state to STATE. Returns previous state. */
4043
4044 static enum sigchld_state
4045 linux_nat_async_events (enum sigchld_state state)
4046 {
4047 enum sigchld_state current_state = linux_nat_async_events_state;
4048
4049 if (debug_linux_nat_async)
4050 fprintf_unfiltered (gdb_stdlog,
4051 "LNAE: state(%d): linux_nat_async_events_state(%d), "
4052 "linux_nat_num_queued_events(%d)\n",
4053 state, linux_nat_async_events_state,
4054 linux_nat_num_queued_events);
4055
4056 if (current_state != state)
4057 {
4058 sigset_t mask;
4059 sigemptyset (&mask);
4060 sigaddset (&mask, SIGCHLD);
4061
4062 /* Always block before changing state. */
4063 sigprocmask (SIG_BLOCK, &mask, NULL);
4064
4065 /* Set new state. */
4066 linux_nat_async_events_state = state;
4067
4068 switch (state)
4069 {
4070 case sigchld_sync:
4071 {
4072 /* Block target events. */
4073 sigprocmask (SIG_BLOCK, &mask, NULL);
4074 sigaction (SIGCHLD, &sync_sigchld_action, NULL);
4075 /* Get events out of queue, and make them available to
4076 queued_waitpid / my_waitpid. */
4077 pipe_to_local_event_queue ();
4078 }
4079 break;
4080 case sigchld_async:
4081 {
4082 /* Unblock target events for async mode. */
4083
4084 sigprocmask (SIG_BLOCK, &mask, NULL);
4085
4086 /* Put events we already waited on, in the pipe first, so
4087 events are FIFO. */
4088 local_event_queue_to_pipe ();
4089 /* While in masked async, we may have not collected all
4090 the pending events. Get them out now. */
4091 get_pending_events ();
4092
4093 /* Let'em come. */
4094 sigaction (SIGCHLD, &async_sigchld_action, NULL);
4095 sigprocmask (SIG_UNBLOCK, &mask, NULL);
4096 }
4097 break;
4098 case sigchld_default:
4099 {
4100 /* SIGCHLD default mode. */
4101 sigaction (SIGCHLD, &sigchld_default_action, NULL);
4102
4103 /* Get events out of queue, and make them available to
4104 queued_waitpid / my_waitpid. */
4105 pipe_to_local_event_queue ();
4106
4107 /* Unblock SIGCHLD. */
4108 sigprocmask (SIG_UNBLOCK, &mask, NULL);
4109 }
4110 break;
4111 }
4112 }
4113
4114 return current_state;
4115 }
4116
4117 static int async_terminal_is_ours = 1;
4118
4119 /* target_terminal_inferior implementation. */
4120
4121 static void
4122 linux_nat_terminal_inferior (void)
4123 {
4124 if (!target_is_async_p ())
4125 {
4126 /* Async mode is disabled. */
4127 terminal_inferior ();
4128 return;
4129 }
4130
4131 /* GDB should never give the terminal to the inferior, if the
4132 inferior is running in the background (run&, continue&, etc.).
4133 This check can be removed when the common code is fixed. */
4134 if (!sync_execution)
4135 return;
4136
4137 terminal_inferior ();
4138
4139 if (!async_terminal_is_ours)
4140 return;
4141
4142 delete_file_handler (input_fd);
4143 async_terminal_is_ours = 0;
4144 set_sigint_trap ();
4145 }
4146
4147 /* target_terminal_ours implementation. */
4148
4149 void
4150 linux_nat_terminal_ours (void)
4151 {
4152 if (!target_is_async_p ())
4153 {
4154 /* Async mode is disabled. */
4155 terminal_ours ();
4156 return;
4157 }
4158
4159 /* GDB should never give the terminal to the inferior if the
4160 inferior is running in the background (run&, continue&, etc.),
4161 but claiming it sure should. */
4162 terminal_ours ();
4163
4164 if (!sync_execution)
4165 return;
4166
4167 if (async_terminal_is_ours)
4168 return;
4169
4170 clear_sigint_trap ();
4171 add_file_handler (input_fd, stdin_event_handler, 0);
4172 async_terminal_is_ours = 1;
4173 }
4174
4175 static void (*async_client_callback) (enum inferior_event_type event_type,
4176 void *context);
4177 static void *async_client_context;
4178
4179 static void
4180 linux_nat_async_file_handler (int error, gdb_client_data client_data)
4181 {
4182 async_client_callback (INF_REG_EVENT, async_client_context);
4183 }
4184
4185 /* target_async implementation. */
4186
4187 static void
4188 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
4189 void *context), void *context)
4190 {
4191 if (linux_nat_async_mask_value == 0 || !linux_nat_async_enabled)
4192 internal_error (__FILE__, __LINE__,
4193 "Calling target_async when async is masked");
4194
4195 if (callback != NULL)
4196 {
4197 async_client_callback = callback;
4198 async_client_context = context;
4199 add_file_handler (linux_nat_event_pipe[0],
4200 linux_nat_async_file_handler, NULL);
4201
4202 linux_nat_async_events (sigchld_async);
4203 }
4204 else
4205 {
4206 async_client_callback = callback;
4207 async_client_context = context;
4208
4209 linux_nat_async_events (sigchld_sync);
4210 delete_file_handler (linux_nat_event_pipe[0]);
4211 }
4212 return;
4213 }
4214
4215 /* Enable/Disable async mode. */
4216
4217 static void
4218 linux_nat_set_async_mode (int on)
4219 {
4220 if (linux_nat_async_enabled != on)
4221 {
4222 if (on)
4223 {
4224 gdb_assert (waitpid_queue == NULL);
4225 if (pipe (linux_nat_event_pipe) == -1)
4226 internal_error (__FILE__, __LINE__,
4227 "creating event pipe failed.");
4228 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4229 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4230 }
4231 else
4232 {
4233 drain_queued_events (-1);
4234 linux_nat_num_queued_events = 0;
4235 close (linux_nat_event_pipe[0]);
4236 close (linux_nat_event_pipe[1]);
4237 linux_nat_event_pipe[0] = linux_nat_event_pipe[1] = -1;
4238
4239 }
4240 }
4241 linux_nat_async_enabled = on;
4242 }
4243
4244 void
4245 linux_nat_add_target (struct target_ops *t)
4246 {
4247 /* Save the provided single-threaded target. We save this in a separate
4248 variable because another target we've inherited from (e.g. inf-ptrace)
4249 may have saved a pointer to T; we want to use it for the final
4250 process stratum target. */
4251 linux_ops_saved = *t;
4252 linux_ops = &linux_ops_saved;
4253
4254 /* Override some methods for multithreading. */
4255 t->to_create_inferior = linux_nat_create_inferior;
4256 t->to_attach = linux_nat_attach;
4257 t->to_detach = linux_nat_detach;
4258 t->to_resume = linux_nat_resume;
4259 t->to_wait = linux_nat_wait;
4260 t->to_xfer_partial = linux_nat_xfer_partial;
4261 t->to_kill = linux_nat_kill;
4262 t->to_mourn_inferior = linux_nat_mourn_inferior;
4263 t->to_thread_alive = linux_nat_thread_alive;
4264 t->to_pid_to_str = linux_nat_pid_to_str;
4265 t->to_has_thread_control = tc_schedlock;
4266
4267 t->to_can_async_p = linux_nat_can_async_p;
4268 t->to_is_async_p = linux_nat_is_async_p;
4269 t->to_async = linux_nat_async;
4270 t->to_async_mask = linux_nat_async_mask;
4271 t->to_terminal_inferior = linux_nat_terminal_inferior;
4272 t->to_terminal_ours = linux_nat_terminal_ours;
4273
4274 /* We don't change the stratum; this target will sit at
4275 process_stratum and thread_db will set at thread_stratum. This
4276 is a little strange, since this is a multi-threaded-capable
4277 target, but we want to be on the stack below thread_db, and we
4278 also want to be used for single-threaded processes. */
4279
4280 add_target (t);
4281
4282 /* TODO: Eliminate this and have libthread_db use
4283 find_target_beneath. */
4284 thread_db_init (t);
4285 }
4286
4287 /* Register a method to call whenever a new thread is attached. */
4288 void
4289 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
4290 {
4291 /* Save the pointer. We only support a single registered instance
4292 of the GNU/Linux native target, so we do not need to map this to
4293 T. */
4294 linux_nat_new_thread = new_thread;
4295 }
4296
4297 /* Return the saved siginfo associated with PTID. */
4298 struct siginfo *
4299 linux_nat_get_siginfo (ptid_t ptid)
4300 {
4301 struct lwp_info *lp = find_lwp_pid (ptid);
4302
4303 gdb_assert (lp != NULL);
4304
4305 return &lp->siginfo;
4306 }
4307
4308 void
4309 _initialize_linux_nat (void)
4310 {
4311 sigset_t mask;
4312
4313 add_info ("proc", linux_nat_info_proc_cmd, _("\
4314 Show /proc process information about any running process.\n\
4315 Specify any process id, or use the program being debugged by default.\n\
4316 Specify any of the following keywords for detailed info:\n\
4317 mappings -- list of mapped memory regions.\n\
4318 stat -- list a bunch of random process info.\n\
4319 status -- list a different bunch of random process info.\n\
4320 all -- list all available /proc info."));
4321
4322 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
4323 &debug_linux_nat, _("\
4324 Set debugging of GNU/Linux lwp module."), _("\
4325 Show debugging of GNU/Linux lwp module."), _("\
4326 Enables printf debugging output."),
4327 NULL,
4328 show_debug_linux_nat,
4329 &setdebuglist, &showdebuglist);
4330
4331 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
4332 &debug_linux_nat_async, _("\
4333 Set debugging of GNU/Linux async lwp module."), _("\
4334 Show debugging of GNU/Linux async lwp module."), _("\
4335 Enables printf debugging output."),
4336 NULL,
4337 show_debug_linux_nat_async,
4338 &setdebuglist, &showdebuglist);
4339
4340 add_setshow_boolean_cmd ("linux-async", class_maintenance,
4341 &linux_async_permitted_1, _("\
4342 Set whether gdb controls the GNU/Linux inferior in asynchronous mode."), _("\
4343 Show whether gdb controls the GNU/Linux inferior in asynchronous mode."), _("\
4344 Tells gdb whether to control the GNU/Linux inferior in asynchronous mode."),
4345 set_maintenance_linux_async_permitted,
4346 show_maintenance_linux_async_permitted,
4347 &maintenance_set_cmdlist,
4348 &maintenance_show_cmdlist);
4349
4350 /* Get the default SIGCHLD action. Used while forking an inferior
4351 (see linux_nat_create_inferior/linux_nat_async_events). */
4352 sigaction (SIGCHLD, NULL, &sigchld_default_action);
4353
4354 /* Block SIGCHLD by default. Doing this early prevents it getting
4355 unblocked if an exception is thrown due to an error while the
4356 inferior is starting (sigsetjmp/siglongjmp). */
4357 sigemptyset (&mask);
4358 sigaddset (&mask, SIGCHLD);
4359 sigprocmask (SIG_BLOCK, &mask, NULL);
4360
4361 /* Save this mask as the default. */
4362 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4363
4364 /* The synchronous SIGCHLD handler. */
4365 sync_sigchld_action.sa_handler = sigchld_handler;
4366 sigemptyset (&sync_sigchld_action.sa_mask);
4367 sync_sigchld_action.sa_flags = SA_RESTART;
4368
4369 /* Make it the default. */
4370 sigaction (SIGCHLD, &sync_sigchld_action, NULL);
4371
4372 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4373 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4374 sigdelset (&suspend_mask, SIGCHLD);
4375
4376 /* SIGCHLD handler for async mode. */
4377 async_sigchld_action.sa_handler = async_sigchld_handler;
4378 sigemptyset (&async_sigchld_action.sa_mask);
4379 async_sigchld_action.sa_flags = SA_RESTART;
4380
4381 /* Install the default mode. */
4382 linux_nat_set_async_mode (linux_async_permitted);
4383 }
4384 \f
4385
4386 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4387 the GNU/Linux Threads library and therefore doesn't really belong
4388 here. */
4389
4390 /* Read variable NAME in the target and return its value if found.
4391 Otherwise return zero. It is assumed that the type of the variable
4392 is `int'. */
4393
4394 static int
4395 get_signo (const char *name)
4396 {
4397 struct minimal_symbol *ms;
4398 int signo;
4399
4400 ms = lookup_minimal_symbol (name, NULL, NULL);
4401 if (ms == NULL)
4402 return 0;
4403
4404 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
4405 sizeof (signo)) != 0)
4406 return 0;
4407
4408 return signo;
4409 }
4410
4411 /* Return the set of signals used by the threads library in *SET. */
4412
4413 void
4414 lin_thread_get_thread_signals (sigset_t *set)
4415 {
4416 struct sigaction action;
4417 int restart, cancel;
4418 sigset_t blocked_mask;
4419
4420 sigemptyset (&blocked_mask);
4421 sigemptyset (set);
4422
4423 restart = get_signo ("__pthread_sig_restart");
4424 cancel = get_signo ("__pthread_sig_cancel");
4425
4426 /* LinuxThreads normally uses the first two RT signals, but in some legacy
4427 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
4428 not provide any way for the debugger to query the signal numbers -
4429 fortunately they don't change! */
4430
4431 if (restart == 0)
4432 restart = __SIGRTMIN;
4433
4434 if (cancel == 0)
4435 cancel = __SIGRTMIN + 1;
4436
4437 sigaddset (set, restart);
4438 sigaddset (set, cancel);
4439
4440 /* The GNU/Linux Threads library makes terminating threads send a
4441 special "cancel" signal instead of SIGCHLD. Make sure we catch
4442 those (to prevent them from terminating GDB itself, which is
4443 likely to be their default action) and treat them the same way as
4444 SIGCHLD. */
4445
4446 action.sa_handler = sigchld_handler;
4447 sigemptyset (&action.sa_mask);
4448 action.sa_flags = SA_RESTART;
4449 sigaction (cancel, &action, NULL);
4450
4451 /* We block the "cancel" signal throughout this code ... */
4452 sigaddset (&blocked_mask, cancel);
4453 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
4454
4455 /* ... except during a sigsuspend. */
4456 sigdelset (&suspend_mask, cancel);
4457 }