linux-nat.c: always mark execing LWP as resumed
[binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdb_wait.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "nat/linux-ptrace.h"
34 #include "nat/linux-procfs.h"
35 #include "linux-fork.h"
36 #include "gdbthread.h"
37 #include "gdbcmd.h"
38 #include "regcache.h"
39 #include "regset.h"
40 #include "inf-child.h"
41 #include "inf-ptrace.h"
42 #include "auxv.h"
43 #include <sys/procfs.h> /* for elf_gregset etc. */
44 #include "elf-bfd.h" /* for elfcore_write_* */
45 #include "gregset.h" /* for gregset */
46 #include "gdbcore.h" /* for get_exec_file */
47 #include <ctype.h> /* for isdigit */
48 #include <sys/stat.h> /* for struct stat */
49 #include <fcntl.h> /* for O_RDONLY */
50 #include "inf-loop.h"
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include <pwd.h>
54 #include <sys/types.h>
55 #include <dirent.h>
56 #include "xml-support.h"
57 #include <sys/vfs.h>
58 #include "solib.h"
59 #include "nat/linux-osdata.h"
60 #include "linux-tdep.h"
61 #include "symfile.h"
62 #include "agent.h"
63 #include "tracepoint.h"
64 #include "buffer.h"
65 #include "target-descriptions.h"
66 #include "filestuff.h"
67 #include "objfiles.h"
68
69 #ifndef SPUFS_MAGIC
70 #define SPUFS_MAGIC 0x23c9b64e
71 #endif
72
73 #ifdef HAVE_PERSONALITY
74 # include <sys/personality.h>
75 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
76 # define ADDR_NO_RANDOMIZE 0x0040000
77 # endif
78 #endif /* HAVE_PERSONALITY */
79
80 /* This comment documents high-level logic of this file.
81
82 Waiting for events in sync mode
83 ===============================
84
85 When waiting for an event in a specific thread, we just use waitpid, passing
86 the specific pid, and not passing WNOHANG.
87
88 When waiting for an event in all threads, waitpid is not quite good. Prior to
89 version 2.4, Linux can either wait for event in main thread, or in secondary
90 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
91 miss an event. The solution is to use non-blocking waitpid, together with
92 sigsuspend. First, we use non-blocking waitpid to get an event in the main
93 process, if any. Second, we use non-blocking waitpid with the __WCLONED
94 flag to check for events in cloned processes. If nothing is found, we use
95 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
96 happened to a child process -- and SIGCHLD will be delivered both for events
97 in main debugged process and in cloned processes. As soon as we know there's
98 an event, we get back to calling nonblocking waitpid with and without
99 __WCLONED.
100
101 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
102 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
103 blocked, the signal becomes pending and sigsuspend immediately
104 notices it and returns.
105
106 Waiting for events in async mode
107 ================================
108
109 In async mode, GDB should always be ready to handle both user input
110 and target events, so neither blocking waitpid nor sigsuspend are
111 viable options. Instead, we should asynchronously notify the GDB main
112 event loop whenever there's an unprocessed event from the target. We
113 detect asynchronous target events by handling SIGCHLD signals. To
114 notify the event loop about target events, the self-pipe trick is used
115 --- a pipe is registered as waitable event source in the event loop,
116 the event loop select/poll's on the read end of this pipe (as well on
117 other event sources, e.g., stdin), and the SIGCHLD handler writes a
118 byte to this pipe. This is more portable than relying on
119 pselect/ppoll, since on kernels that lack those syscalls, libc
120 emulates them with select/poll+sigprocmask, and that is racy
121 (a.k.a. plain broken).
122
123 Obviously, if we fail to notify the event loop if there's a target
124 event, it's bad. OTOH, if we notify the event loop when there's no
125 event from the target, linux_nat_wait will detect that there's no real
126 event to report, and return event of type TARGET_WAITKIND_IGNORE.
127 This is mostly harmless, but it will waste time and is better avoided.
128
129 The main design point is that every time GDB is outside linux-nat.c,
130 we have a SIGCHLD handler installed that is called when something
131 happens to the target and notifies the GDB event loop. Whenever GDB
132 core decides to handle the event, and calls into linux-nat.c, we
133 process things as in sync mode, except that the we never block in
134 sigsuspend.
135
136 While processing an event, we may end up momentarily blocked in
137 waitpid calls. Those waitpid calls, while blocking, are guarantied to
138 return quickly. E.g., in all-stop mode, before reporting to the core
139 that an LWP hit a breakpoint, all LWPs are stopped by sending them
140 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
141 Note that this is different from blocking indefinitely waiting for the
142 next event --- here, we're already handling an event.
143
144 Use of signals
145 ==============
146
147 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
148 signal is not entirely significant; we just need for a signal to be delivered,
149 so that we can intercept it. SIGSTOP's advantage is that it can not be
150 blocked. A disadvantage is that it is not a real-time signal, so it can only
151 be queued once; we do not keep track of other sources of SIGSTOP.
152
153 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
154 use them, because they have special behavior when the signal is generated -
155 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
156 kills the entire thread group.
157
158 A delivered SIGSTOP would stop the entire thread group, not just the thread we
159 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
160 cancel it (by PTRACE_CONT without passing SIGSTOP).
161
162 We could use a real-time signal instead. This would solve those problems; we
163 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
164 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
165 generates it, and there are races with trying to find a signal that is not
166 blocked. */
167
168 #ifndef O_LARGEFILE
169 #define O_LARGEFILE 0
170 #endif
171
172 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
173 the use of the multi-threaded target. */
174 static struct target_ops *linux_ops;
175 static struct target_ops linux_ops_saved;
176
177 /* The method to call, if any, when a new thread is attached. */
178 static void (*linux_nat_new_thread) (struct lwp_info *);
179
180 /* The method to call, if any, when a new fork is attached. */
181 static linux_nat_new_fork_ftype *linux_nat_new_fork;
182
183 /* The method to call, if any, when a process is no longer
184 attached. */
185 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
186
187 /* Hook to call prior to resuming a thread. */
188 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
189
190 /* The method to call, if any, when the siginfo object needs to be
191 converted between the layout returned by ptrace, and the layout in
192 the architecture of the inferior. */
193 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
194 gdb_byte *,
195 int);
196
197 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
198 Called by our to_xfer_partial. */
199 static target_xfer_partial_ftype *super_xfer_partial;
200
201 /* The saved to_close method, inherited from inf-ptrace.c.
202 Called by our to_close. */
203 static void (*super_close) (struct target_ops *);
204
205 static unsigned int debug_linux_nat;
206 static void
207 show_debug_linux_nat (struct ui_file *file, int from_tty,
208 struct cmd_list_element *c, const char *value)
209 {
210 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
211 value);
212 }
213
214 struct simple_pid_list
215 {
216 int pid;
217 int status;
218 struct simple_pid_list *next;
219 };
220 struct simple_pid_list *stopped_pids;
221
222 /* Async mode support. */
223
224 /* The read/write ends of the pipe registered as waitable file in the
225 event loop. */
226 static int linux_nat_event_pipe[2] = { -1, -1 };
227
228 /* Flush the event pipe. */
229
230 static void
231 async_file_flush (void)
232 {
233 int ret;
234 char buf;
235
236 do
237 {
238 ret = read (linux_nat_event_pipe[0], &buf, 1);
239 }
240 while (ret >= 0 || (ret == -1 && errno == EINTR));
241 }
242
243 /* Put something (anything, doesn't matter what, or how much) in event
244 pipe, so that the select/poll in the event-loop realizes we have
245 something to process. */
246
247 static void
248 async_file_mark (void)
249 {
250 int ret;
251
252 /* It doesn't really matter what the pipe contains, as long we end
253 up with something in it. Might as well flush the previous
254 left-overs. */
255 async_file_flush ();
256
257 do
258 {
259 ret = write (linux_nat_event_pipe[1], "+", 1);
260 }
261 while (ret == -1 && errno == EINTR);
262
263 /* Ignore EAGAIN. If the pipe is full, the event loop will already
264 be awakened anyway. */
265 }
266
267 static int kill_lwp (int lwpid, int signo);
268
269 static int stop_callback (struct lwp_info *lp, void *data);
270
271 static void block_child_signals (sigset_t *prev_mask);
272 static void restore_child_signals_mask (sigset_t *prev_mask);
273
274 struct lwp_info;
275 static struct lwp_info *add_lwp (ptid_t ptid);
276 static void purge_lwp_list (int pid);
277 static void delete_lwp (ptid_t ptid);
278 static struct lwp_info *find_lwp_pid (ptid_t ptid);
279
280 static int lwp_status_pending_p (struct lwp_info *lp);
281
282 \f
283 /* Trivial list manipulation functions to keep track of a list of
284 new stopped processes. */
285 static void
286 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
287 {
288 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
289
290 new_pid->pid = pid;
291 new_pid->status = status;
292 new_pid->next = *listp;
293 *listp = new_pid;
294 }
295
296 static int
297 in_pid_list_p (struct simple_pid_list *list, int pid)
298 {
299 struct simple_pid_list *p;
300
301 for (p = list; p != NULL; p = p->next)
302 if (p->pid == pid)
303 return 1;
304 return 0;
305 }
306
307 static int
308 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
309 {
310 struct simple_pid_list **p;
311
312 for (p = listp; *p != NULL; p = &(*p)->next)
313 if ((*p)->pid == pid)
314 {
315 struct simple_pid_list *next = (*p)->next;
316
317 *statusp = (*p)->status;
318 xfree (*p);
319 *p = next;
320 return 1;
321 }
322 return 0;
323 }
324
325 /* Initialize ptrace warnings and check for supported ptrace
326 features given PID.
327
328 ATTACHED should be nonzero iff we attached to the inferior. */
329
330 static void
331 linux_init_ptrace (pid_t pid, int attached)
332 {
333 linux_enable_event_reporting (pid, attached);
334 linux_ptrace_init_warnings ();
335 }
336
337 static void
338 linux_child_post_attach (struct target_ops *self, int pid)
339 {
340 linux_init_ptrace (pid, 1);
341 }
342
343 static void
344 linux_child_post_startup_inferior (struct target_ops *self, ptid_t ptid)
345 {
346 linux_init_ptrace (ptid_get_pid (ptid), 0);
347 }
348
349 /* Return the number of known LWPs in the tgid given by PID. */
350
351 static int
352 num_lwps (int pid)
353 {
354 int count = 0;
355 struct lwp_info *lp;
356
357 for (lp = lwp_list; lp; lp = lp->next)
358 if (ptid_get_pid (lp->ptid) == pid)
359 count++;
360
361 return count;
362 }
363
364 /* Call delete_lwp with prototype compatible for make_cleanup. */
365
366 static void
367 delete_lwp_cleanup (void *lp_voidp)
368 {
369 struct lwp_info *lp = lp_voidp;
370
371 delete_lwp (lp->ptid);
372 }
373
374 /* Target hook for follow_fork. On entry inferior_ptid must be the
375 ptid of the followed inferior. At return, inferior_ptid will be
376 unchanged. */
377
378 static int
379 linux_child_follow_fork (struct target_ops *ops, int follow_child,
380 int detach_fork)
381 {
382 if (!follow_child)
383 {
384 struct lwp_info *child_lp = NULL;
385 int status = W_STOPCODE (0);
386 struct cleanup *old_chain;
387 int has_vforked;
388 int parent_pid, child_pid;
389
390 has_vforked = (inferior_thread ()->pending_follow.kind
391 == TARGET_WAITKIND_VFORKED);
392 parent_pid = ptid_get_lwp (inferior_ptid);
393 if (parent_pid == 0)
394 parent_pid = ptid_get_pid (inferior_ptid);
395 child_pid
396 = ptid_get_pid (inferior_thread ()->pending_follow.value.related_pid);
397
398
399 /* We're already attached to the parent, by default. */
400 old_chain = save_inferior_ptid ();
401 inferior_ptid = ptid_build (child_pid, child_pid, 0);
402 child_lp = add_lwp (inferior_ptid);
403 child_lp->stopped = 1;
404 child_lp->last_resume_kind = resume_stop;
405
406 /* Detach new forked process? */
407 if (detach_fork)
408 {
409 make_cleanup (delete_lwp_cleanup, child_lp);
410
411 if (linux_nat_prepare_to_resume != NULL)
412 linux_nat_prepare_to_resume (child_lp);
413
414 /* When debugging an inferior in an architecture that supports
415 hardware single stepping on a kernel without commit
416 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
417 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
418 set if the parent process had them set.
419 To work around this, single step the child process
420 once before detaching to clear the flags. */
421
422 if (!gdbarch_software_single_step_p (target_thread_architecture
423 (child_lp->ptid)))
424 {
425 linux_disable_event_reporting (child_pid);
426 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
427 perror_with_name (_("Couldn't do single step"));
428 if (my_waitpid (child_pid, &status, 0) < 0)
429 perror_with_name (_("Couldn't wait vfork process"));
430 }
431
432 if (WIFSTOPPED (status))
433 {
434 int signo;
435
436 signo = WSTOPSIG (status);
437 if (signo != 0
438 && !signal_pass_state (gdb_signal_from_host (signo)))
439 signo = 0;
440 ptrace (PTRACE_DETACH, child_pid, 0, signo);
441 }
442
443 /* Resets value of inferior_ptid to parent ptid. */
444 do_cleanups (old_chain);
445 }
446 else
447 {
448 /* Let the thread_db layer learn about this new process. */
449 check_for_thread_db ();
450 }
451
452 do_cleanups (old_chain);
453
454 if (has_vforked)
455 {
456 struct lwp_info *parent_lp;
457
458 parent_lp = find_lwp_pid (pid_to_ptid (parent_pid));
459 gdb_assert (linux_supports_tracefork () >= 0);
460
461 if (linux_supports_tracevforkdone ())
462 {
463 if (debug_linux_nat)
464 fprintf_unfiltered (gdb_stdlog,
465 "LCFF: waiting for VFORK_DONE on %d\n",
466 parent_pid);
467 parent_lp->stopped = 1;
468
469 /* We'll handle the VFORK_DONE event like any other
470 event, in target_wait. */
471 }
472 else
473 {
474 /* We can't insert breakpoints until the child has
475 finished with the shared memory region. We need to
476 wait until that happens. Ideal would be to just
477 call:
478 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
479 - waitpid (parent_pid, &status, __WALL);
480 However, most architectures can't handle a syscall
481 being traced on the way out if it wasn't traced on
482 the way in.
483
484 We might also think to loop, continuing the child
485 until it exits or gets a SIGTRAP. One problem is
486 that the child might call ptrace with PTRACE_TRACEME.
487
488 There's no simple and reliable way to figure out when
489 the vforked child will be done with its copy of the
490 shared memory. We could step it out of the syscall,
491 two instructions, let it go, and then single-step the
492 parent once. When we have hardware single-step, this
493 would work; with software single-step it could still
494 be made to work but we'd have to be able to insert
495 single-step breakpoints in the child, and we'd have
496 to insert -just- the single-step breakpoint in the
497 parent. Very awkward.
498
499 In the end, the best we can do is to make sure it
500 runs for a little while. Hopefully it will be out of
501 range of any breakpoints we reinsert. Usually this
502 is only the single-step breakpoint at vfork's return
503 point. */
504
505 if (debug_linux_nat)
506 fprintf_unfiltered (gdb_stdlog,
507 "LCFF: no VFORK_DONE "
508 "support, sleeping a bit\n");
509
510 usleep (10000);
511
512 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
513 and leave it pending. The next linux_nat_resume call
514 will notice a pending event, and bypasses actually
515 resuming the inferior. */
516 parent_lp->status = 0;
517 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
518 parent_lp->stopped = 1;
519
520 /* If we're in async mode, need to tell the event loop
521 there's something here to process. */
522 if (target_can_async_p ())
523 async_file_mark ();
524 }
525 }
526 }
527 else
528 {
529 struct lwp_info *child_lp;
530
531 child_lp = add_lwp (inferior_ptid);
532 child_lp->stopped = 1;
533 child_lp->last_resume_kind = resume_stop;
534
535 /* Let the thread_db layer learn about this new process. */
536 check_for_thread_db ();
537 }
538
539 return 0;
540 }
541
542 \f
543 static int
544 linux_child_insert_fork_catchpoint (struct target_ops *self, int pid)
545 {
546 return !linux_supports_tracefork ();
547 }
548
549 static int
550 linux_child_remove_fork_catchpoint (struct target_ops *self, int pid)
551 {
552 return 0;
553 }
554
555 static int
556 linux_child_insert_vfork_catchpoint (struct target_ops *self, int pid)
557 {
558 return !linux_supports_tracefork ();
559 }
560
561 static int
562 linux_child_remove_vfork_catchpoint (struct target_ops *self, int pid)
563 {
564 return 0;
565 }
566
567 static int
568 linux_child_insert_exec_catchpoint (struct target_ops *self, int pid)
569 {
570 return !linux_supports_tracefork ();
571 }
572
573 static int
574 linux_child_remove_exec_catchpoint (struct target_ops *self, int pid)
575 {
576 return 0;
577 }
578
579 static int
580 linux_child_set_syscall_catchpoint (struct target_ops *self,
581 int pid, int needed, int any_count,
582 int table_size, int *table)
583 {
584 if (!linux_supports_tracesysgood ())
585 return 1;
586
587 /* On GNU/Linux, we ignore the arguments. It means that we only
588 enable the syscall catchpoints, but do not disable them.
589
590 Also, we do not use the `table' information because we do not
591 filter system calls here. We let GDB do the logic for us. */
592 return 0;
593 }
594
595 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
596 are processes sharing the same VM space. A multi-threaded process
597 is basically a group of such processes. However, such a grouping
598 is almost entirely a user-space issue; the kernel doesn't enforce
599 such a grouping at all (this might change in the future). In
600 general, we'll rely on the threads library (i.e. the GNU/Linux
601 Threads library) to provide such a grouping.
602
603 It is perfectly well possible to write a multi-threaded application
604 without the assistance of a threads library, by using the clone
605 system call directly. This module should be able to give some
606 rudimentary support for debugging such applications if developers
607 specify the CLONE_PTRACE flag in the clone system call, and are
608 using the Linux kernel 2.4 or above.
609
610 Note that there are some peculiarities in GNU/Linux that affect
611 this code:
612
613 - In general one should specify the __WCLONE flag to waitpid in
614 order to make it report events for any of the cloned processes
615 (and leave it out for the initial process). However, if a cloned
616 process has exited the exit status is only reported if the
617 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
618 we cannot use it since GDB must work on older systems too.
619
620 - When a traced, cloned process exits and is waited for by the
621 debugger, the kernel reassigns it to the original parent and
622 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
623 library doesn't notice this, which leads to the "zombie problem":
624 When debugged a multi-threaded process that spawns a lot of
625 threads will run out of processes, even if the threads exit,
626 because the "zombies" stay around. */
627
628 /* List of known LWPs. */
629 struct lwp_info *lwp_list;
630 \f
631
632 /* Original signal mask. */
633 static sigset_t normal_mask;
634
635 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
636 _initialize_linux_nat. */
637 static sigset_t suspend_mask;
638
639 /* Signals to block to make that sigsuspend work. */
640 static sigset_t blocked_mask;
641
642 /* SIGCHLD action. */
643 struct sigaction sigchld_action;
644
645 /* Block child signals (SIGCHLD and linux threads signals), and store
646 the previous mask in PREV_MASK. */
647
648 static void
649 block_child_signals (sigset_t *prev_mask)
650 {
651 /* Make sure SIGCHLD is blocked. */
652 if (!sigismember (&blocked_mask, SIGCHLD))
653 sigaddset (&blocked_mask, SIGCHLD);
654
655 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
656 }
657
658 /* Restore child signals mask, previously returned by
659 block_child_signals. */
660
661 static void
662 restore_child_signals_mask (sigset_t *prev_mask)
663 {
664 sigprocmask (SIG_SETMASK, prev_mask, NULL);
665 }
666
667 /* Mask of signals to pass directly to the inferior. */
668 static sigset_t pass_mask;
669
670 /* Update signals to pass to the inferior. */
671 static void
672 linux_nat_pass_signals (struct target_ops *self,
673 int numsigs, unsigned char *pass_signals)
674 {
675 int signo;
676
677 sigemptyset (&pass_mask);
678
679 for (signo = 1; signo < NSIG; signo++)
680 {
681 int target_signo = gdb_signal_from_host (signo);
682 if (target_signo < numsigs && pass_signals[target_signo])
683 sigaddset (&pass_mask, signo);
684 }
685 }
686
687 \f
688
689 /* Prototypes for local functions. */
690 static int stop_wait_callback (struct lwp_info *lp, void *data);
691 static int linux_thread_alive (ptid_t ptid);
692 static char *linux_child_pid_to_exec_file (struct target_ops *self, int pid);
693
694 \f
695
696 /* Destroy and free LP. */
697
698 static void
699 lwp_free (struct lwp_info *lp)
700 {
701 xfree (lp->arch_private);
702 xfree (lp);
703 }
704
705 /* Remove all LWPs belong to PID from the lwp list. */
706
707 static void
708 purge_lwp_list (int pid)
709 {
710 struct lwp_info *lp, *lpprev, *lpnext;
711
712 lpprev = NULL;
713
714 for (lp = lwp_list; lp; lp = lpnext)
715 {
716 lpnext = lp->next;
717
718 if (ptid_get_pid (lp->ptid) == pid)
719 {
720 if (lp == lwp_list)
721 lwp_list = lp->next;
722 else
723 lpprev->next = lp->next;
724
725 lwp_free (lp);
726 }
727 else
728 lpprev = lp;
729 }
730 }
731
732 /* Add the LWP specified by PTID to the list. PTID is the first LWP
733 in the process. Return a pointer to the structure describing the
734 new LWP.
735
736 This differs from add_lwp in that we don't let the arch specific
737 bits know about this new thread. Current clients of this callback
738 take the opportunity to install watchpoints in the new thread, and
739 we shouldn't do that for the first thread. If we're spawning a
740 child ("run"), the thread executes the shell wrapper first, and we
741 shouldn't touch it until it execs the program we want to debug.
742 For "attach", it'd be okay to call the callback, but it's not
743 necessary, because watchpoints can't yet have been inserted into
744 the inferior. */
745
746 static struct lwp_info *
747 add_initial_lwp (ptid_t ptid)
748 {
749 struct lwp_info *lp;
750
751 gdb_assert (ptid_lwp_p (ptid));
752
753 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
754
755 memset (lp, 0, sizeof (struct lwp_info));
756
757 lp->last_resume_kind = resume_continue;
758 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
759
760 lp->ptid = ptid;
761 lp->core = -1;
762
763 lp->next = lwp_list;
764 lwp_list = lp;
765
766 return lp;
767 }
768
769 /* Add the LWP specified by PID to the list. Return a pointer to the
770 structure describing the new LWP. The LWP should already be
771 stopped. */
772
773 static struct lwp_info *
774 add_lwp (ptid_t ptid)
775 {
776 struct lwp_info *lp;
777
778 lp = add_initial_lwp (ptid);
779
780 /* Let the arch specific bits know about this new thread. Current
781 clients of this callback take the opportunity to install
782 watchpoints in the new thread. We don't do this for the first
783 thread though. See add_initial_lwp. */
784 if (linux_nat_new_thread != NULL)
785 linux_nat_new_thread (lp);
786
787 return lp;
788 }
789
790 /* Remove the LWP specified by PID from the list. */
791
792 static void
793 delete_lwp (ptid_t ptid)
794 {
795 struct lwp_info *lp, *lpprev;
796
797 lpprev = NULL;
798
799 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
800 if (ptid_equal (lp->ptid, ptid))
801 break;
802
803 if (!lp)
804 return;
805
806 if (lpprev)
807 lpprev->next = lp->next;
808 else
809 lwp_list = lp->next;
810
811 lwp_free (lp);
812 }
813
814 /* Return a pointer to the structure describing the LWP corresponding
815 to PID. If no corresponding LWP could be found, return NULL. */
816
817 static struct lwp_info *
818 find_lwp_pid (ptid_t ptid)
819 {
820 struct lwp_info *lp;
821 int lwp;
822
823 if (ptid_lwp_p (ptid))
824 lwp = ptid_get_lwp (ptid);
825 else
826 lwp = ptid_get_pid (ptid);
827
828 for (lp = lwp_list; lp; lp = lp->next)
829 if (lwp == ptid_get_lwp (lp->ptid))
830 return lp;
831
832 return NULL;
833 }
834
835 /* Call CALLBACK with its second argument set to DATA for every LWP in
836 the list. If CALLBACK returns 1 for a particular LWP, return a
837 pointer to the structure describing that LWP immediately.
838 Otherwise return NULL. */
839
840 struct lwp_info *
841 iterate_over_lwps (ptid_t filter,
842 int (*callback) (struct lwp_info *, void *),
843 void *data)
844 {
845 struct lwp_info *lp, *lpnext;
846
847 for (lp = lwp_list; lp; lp = lpnext)
848 {
849 lpnext = lp->next;
850
851 if (ptid_match (lp->ptid, filter))
852 {
853 if ((*callback) (lp, data))
854 return lp;
855 }
856 }
857
858 return NULL;
859 }
860
861 /* Update our internal state when changing from one checkpoint to
862 another indicated by NEW_PTID. We can only switch single-threaded
863 applications, so we only create one new LWP, and the previous list
864 is discarded. */
865
866 void
867 linux_nat_switch_fork (ptid_t new_ptid)
868 {
869 struct lwp_info *lp;
870
871 purge_lwp_list (ptid_get_pid (inferior_ptid));
872
873 lp = add_lwp (new_ptid);
874 lp->stopped = 1;
875
876 /* This changes the thread's ptid while preserving the gdb thread
877 num. Also changes the inferior pid, while preserving the
878 inferior num. */
879 thread_change_ptid (inferior_ptid, new_ptid);
880
881 /* We've just told GDB core that the thread changed target id, but,
882 in fact, it really is a different thread, with different register
883 contents. */
884 registers_changed ();
885 }
886
887 /* Handle the exit of a single thread LP. */
888
889 static void
890 exit_lwp (struct lwp_info *lp)
891 {
892 struct thread_info *th = find_thread_ptid (lp->ptid);
893
894 if (th)
895 {
896 if (print_thread_events)
897 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
898
899 delete_thread (lp->ptid);
900 }
901
902 delete_lwp (lp->ptid);
903 }
904
905 /* Wait for the LWP specified by LP, which we have just attached to.
906 Returns a wait status for that LWP, to cache. */
907
908 static int
909 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
910 int *signalled)
911 {
912 pid_t new_pid, pid = ptid_get_lwp (ptid);
913 int status;
914
915 if (linux_proc_pid_is_stopped (pid))
916 {
917 if (debug_linux_nat)
918 fprintf_unfiltered (gdb_stdlog,
919 "LNPAW: Attaching to a stopped process\n");
920
921 /* The process is definitely stopped. It is in a job control
922 stop, unless the kernel predates the TASK_STOPPED /
923 TASK_TRACED distinction, in which case it might be in a
924 ptrace stop. Make sure it is in a ptrace stop; from there we
925 can kill it, signal it, et cetera.
926
927 First make sure there is a pending SIGSTOP. Since we are
928 already attached, the process can not transition from stopped
929 to running without a PTRACE_CONT; so we know this signal will
930 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
931 probably already in the queue (unless this kernel is old
932 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
933 is not an RT signal, it can only be queued once. */
934 kill_lwp (pid, SIGSTOP);
935
936 /* Finally, resume the stopped process. This will deliver the SIGSTOP
937 (or a higher priority signal, just like normal PTRACE_ATTACH). */
938 ptrace (PTRACE_CONT, pid, 0, 0);
939 }
940
941 /* Make sure the initial process is stopped. The user-level threads
942 layer might want to poke around in the inferior, and that won't
943 work if things haven't stabilized yet. */
944 new_pid = my_waitpid (pid, &status, 0);
945 if (new_pid == -1 && errno == ECHILD)
946 {
947 if (first)
948 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
949
950 /* Try again with __WCLONE to check cloned processes. */
951 new_pid = my_waitpid (pid, &status, __WCLONE);
952 *cloned = 1;
953 }
954
955 gdb_assert (pid == new_pid);
956
957 if (!WIFSTOPPED (status))
958 {
959 /* The pid we tried to attach has apparently just exited. */
960 if (debug_linux_nat)
961 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
962 pid, status_to_str (status));
963 return status;
964 }
965
966 if (WSTOPSIG (status) != SIGSTOP)
967 {
968 *signalled = 1;
969 if (debug_linux_nat)
970 fprintf_unfiltered (gdb_stdlog,
971 "LNPAW: Received %s after attaching\n",
972 status_to_str (status));
973 }
974
975 return status;
976 }
977
978 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
979 the new LWP could not be attached, or 1 if we're already auto
980 attached to this thread, but haven't processed the
981 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
982 its existance, without considering it an error. */
983
984 int
985 lin_lwp_attach_lwp (ptid_t ptid)
986 {
987 struct lwp_info *lp;
988 int lwpid;
989
990 gdb_assert (ptid_lwp_p (ptid));
991
992 lp = find_lwp_pid (ptid);
993 lwpid = ptid_get_lwp (ptid);
994
995 /* We assume that we're already attached to any LWP that has an id
996 equal to the overall process id, and to any LWP that is already
997 in our list of LWPs. If we're not seeing exit events from threads
998 and we've had PID wraparound since we last tried to stop all threads,
999 this assumption might be wrong; fortunately, this is very unlikely
1000 to happen. */
1001 if (lwpid != ptid_get_pid (ptid) && lp == NULL)
1002 {
1003 int status, cloned = 0, signalled = 0;
1004
1005 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1006 {
1007 if (linux_supports_tracefork ())
1008 {
1009 /* If we haven't stopped all threads when we get here,
1010 we may have seen a thread listed in thread_db's list,
1011 but not processed the PTRACE_EVENT_CLONE yet. If
1012 that's the case, ignore this new thread, and let
1013 normal event handling discover it later. */
1014 if (in_pid_list_p (stopped_pids, lwpid))
1015 {
1016 /* We've already seen this thread stop, but we
1017 haven't seen the PTRACE_EVENT_CLONE extended
1018 event yet. */
1019 return 0;
1020 }
1021 else
1022 {
1023 int new_pid;
1024 int status;
1025
1026 /* See if we've got a stop for this new child
1027 pending. If so, we're already attached. */
1028 gdb_assert (lwpid > 0);
1029 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1030 if (new_pid == -1 && errno == ECHILD)
1031 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1032 if (new_pid != -1)
1033 {
1034 if (WIFSTOPPED (status))
1035 add_to_pid_list (&stopped_pids, lwpid, status);
1036 return 1;
1037 }
1038 }
1039 }
1040
1041 /* If we fail to attach to the thread, issue a warning,
1042 but continue. One way this can happen is if thread
1043 creation is interrupted; as of Linux kernel 2.6.19, a
1044 bug may place threads in the thread list and then fail
1045 to create them. */
1046 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1047 safe_strerror (errno));
1048 return -1;
1049 }
1050
1051 if (debug_linux_nat)
1052 fprintf_unfiltered (gdb_stdlog,
1053 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1054 target_pid_to_str (ptid));
1055
1056 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1057 if (!WIFSTOPPED (status))
1058 return 1;
1059
1060 lp = add_lwp (ptid);
1061 lp->stopped = 1;
1062 lp->cloned = cloned;
1063 lp->signalled = signalled;
1064 if (WSTOPSIG (status) != SIGSTOP)
1065 {
1066 lp->resumed = 1;
1067 lp->status = status;
1068 }
1069
1070 target_post_attach (ptid_get_lwp (lp->ptid));
1071
1072 if (debug_linux_nat)
1073 {
1074 fprintf_unfiltered (gdb_stdlog,
1075 "LLAL: waitpid %s received %s\n",
1076 target_pid_to_str (ptid),
1077 status_to_str (status));
1078 }
1079 }
1080 else
1081 {
1082 /* We assume that the LWP representing the original process is
1083 already stopped. Mark it as stopped in the data structure
1084 that the GNU/linux ptrace layer uses to keep track of
1085 threads. Note that this won't have already been done since
1086 the main thread will have, we assume, been stopped by an
1087 attach from a different layer. */
1088 if (lp == NULL)
1089 lp = add_lwp (ptid);
1090 lp->stopped = 1;
1091 }
1092
1093 lp->last_resume_kind = resume_stop;
1094 return 0;
1095 }
1096
1097 static void
1098 linux_nat_create_inferior (struct target_ops *ops,
1099 char *exec_file, char *allargs, char **env,
1100 int from_tty)
1101 {
1102 #ifdef HAVE_PERSONALITY
1103 int personality_orig = 0, personality_set = 0;
1104 #endif /* HAVE_PERSONALITY */
1105
1106 /* The fork_child mechanism is synchronous and calls target_wait, so
1107 we have to mask the async mode. */
1108
1109 #ifdef HAVE_PERSONALITY
1110 if (disable_randomization)
1111 {
1112 errno = 0;
1113 personality_orig = personality (0xffffffff);
1114 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1115 {
1116 personality_set = 1;
1117 personality (personality_orig | ADDR_NO_RANDOMIZE);
1118 }
1119 if (errno != 0 || (personality_set
1120 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1121 warning (_("Error disabling address space randomization: %s"),
1122 safe_strerror (errno));
1123 }
1124 #endif /* HAVE_PERSONALITY */
1125
1126 /* Make sure we report all signals during startup. */
1127 linux_nat_pass_signals (ops, 0, NULL);
1128
1129 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1130
1131 #ifdef HAVE_PERSONALITY
1132 if (personality_set)
1133 {
1134 errno = 0;
1135 personality (personality_orig);
1136 if (errno != 0)
1137 warning (_("Error restoring address space randomization: %s"),
1138 safe_strerror (errno));
1139 }
1140 #endif /* HAVE_PERSONALITY */
1141 }
1142
1143 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1144 already attached. Returns true if a new LWP is found, false
1145 otherwise. */
1146
1147 static int
1148 attach_proc_task_lwp_callback (ptid_t ptid)
1149 {
1150 struct lwp_info *lp;
1151
1152 /* Ignore LWPs we're already attached to. */
1153 lp = find_lwp_pid (ptid);
1154 if (lp == NULL)
1155 {
1156 int lwpid = ptid_get_lwp (ptid);
1157
1158 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1159 {
1160 int err = errno;
1161
1162 /* Be quiet if we simply raced with the thread exiting.
1163 EPERM is returned if the thread's task still exists, and
1164 is marked as exited or zombie, as well as other
1165 conditions, so in that case, confirm the status in
1166 /proc/PID/status. */
1167 if (err == ESRCH
1168 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1169 {
1170 if (debug_linux_nat)
1171 {
1172 fprintf_unfiltered (gdb_stdlog,
1173 "Cannot attach to lwp %d: "
1174 "thread is gone (%d: %s)\n",
1175 lwpid, err, safe_strerror (err));
1176 }
1177 }
1178 else
1179 {
1180 warning (_("Cannot attach to lwp %d: %s\n"),
1181 lwpid,
1182 linux_ptrace_attach_fail_reason_string (ptid,
1183 err));
1184 }
1185 }
1186 else
1187 {
1188 if (debug_linux_nat)
1189 fprintf_unfiltered (gdb_stdlog,
1190 "PTRACE_ATTACH %s, 0, 0 (OK)\n",
1191 target_pid_to_str (ptid));
1192
1193 lp = add_lwp (ptid);
1194 lp->cloned = 1;
1195
1196 /* The next time we wait for this LWP we'll see a SIGSTOP as
1197 PTRACE_ATTACH brings it to a halt. */
1198 lp->signalled = 1;
1199
1200 /* We need to wait for a stop before being able to make the
1201 next ptrace call on this LWP. */
1202 lp->must_set_ptrace_flags = 1;
1203 }
1204
1205 return 1;
1206 }
1207 return 0;
1208 }
1209
1210 static void
1211 linux_nat_attach (struct target_ops *ops, const char *args, int from_tty)
1212 {
1213 struct lwp_info *lp;
1214 int status;
1215 ptid_t ptid;
1216 volatile struct gdb_exception ex;
1217
1218 /* Make sure we report all signals during attach. */
1219 linux_nat_pass_signals (ops, 0, NULL);
1220
1221 TRY_CATCH (ex, RETURN_MASK_ERROR)
1222 {
1223 linux_ops->to_attach (ops, args, from_tty);
1224 }
1225 if (ex.reason < 0)
1226 {
1227 pid_t pid = parse_pid_to_attach (args);
1228 struct buffer buffer;
1229 char *message, *buffer_s;
1230
1231 message = xstrdup (ex.message);
1232 make_cleanup (xfree, message);
1233
1234 buffer_init (&buffer);
1235 linux_ptrace_attach_fail_reason (pid, &buffer);
1236
1237 buffer_grow_str0 (&buffer, "");
1238 buffer_s = buffer_finish (&buffer);
1239 make_cleanup (xfree, buffer_s);
1240
1241 if (*buffer_s != '\0')
1242 throw_error (ex.error, "warning: %s\n%s", buffer_s, message);
1243 else
1244 throw_error (ex.error, "%s", message);
1245 }
1246
1247 /* The ptrace base target adds the main thread with (pid,0,0)
1248 format. Decorate it with lwp info. */
1249 ptid = ptid_build (ptid_get_pid (inferior_ptid),
1250 ptid_get_pid (inferior_ptid),
1251 0);
1252 thread_change_ptid (inferior_ptid, ptid);
1253
1254 /* Add the initial process as the first LWP to the list. */
1255 lp = add_initial_lwp (ptid);
1256
1257 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1258 &lp->signalled);
1259 if (!WIFSTOPPED (status))
1260 {
1261 if (WIFEXITED (status))
1262 {
1263 int exit_code = WEXITSTATUS (status);
1264
1265 target_terminal_ours ();
1266 target_mourn_inferior ();
1267 if (exit_code == 0)
1268 error (_("Unable to attach: program exited normally."));
1269 else
1270 error (_("Unable to attach: program exited with code %d."),
1271 exit_code);
1272 }
1273 else if (WIFSIGNALED (status))
1274 {
1275 enum gdb_signal signo;
1276
1277 target_terminal_ours ();
1278 target_mourn_inferior ();
1279
1280 signo = gdb_signal_from_host (WTERMSIG (status));
1281 error (_("Unable to attach: program terminated with signal "
1282 "%s, %s."),
1283 gdb_signal_to_name (signo),
1284 gdb_signal_to_string (signo));
1285 }
1286
1287 internal_error (__FILE__, __LINE__,
1288 _("unexpected status %d for PID %ld"),
1289 status, (long) ptid_get_lwp (ptid));
1290 }
1291
1292 lp->stopped = 1;
1293
1294 /* Save the wait status to report later. */
1295 lp->resumed = 1;
1296 if (debug_linux_nat)
1297 fprintf_unfiltered (gdb_stdlog,
1298 "LNA: waitpid %ld, saving status %s\n",
1299 (long) ptid_get_pid (lp->ptid), status_to_str (status));
1300
1301 lp->status = status;
1302
1303 /* We must attach to every LWP. If /proc is mounted, use that to
1304 find them now. The inferior may be using raw clone instead of
1305 using pthreads. But even if it is using pthreads, thread_db
1306 walks structures in the inferior's address space to find the list
1307 of threads/LWPs, and those structures may well be corrupted.
1308 Note that once thread_db is loaded, we'll still use it to list
1309 threads and associate pthread info with each LWP. */
1310 linux_proc_attach_tgid_threads (ptid_get_pid (lp->ptid),
1311 attach_proc_task_lwp_callback);
1312
1313 if (target_can_async_p ())
1314 target_async (inferior_event_handler, 0);
1315 }
1316
1317 /* Get pending status of LP. */
1318 static int
1319 get_pending_status (struct lwp_info *lp, int *status)
1320 {
1321 enum gdb_signal signo = GDB_SIGNAL_0;
1322
1323 /* If we paused threads momentarily, we may have stored pending
1324 events in lp->status or lp->waitstatus (see stop_wait_callback),
1325 and GDB core hasn't seen any signal for those threads.
1326 Otherwise, the last signal reported to the core is found in the
1327 thread object's stop_signal.
1328
1329 There's a corner case that isn't handled here at present. Only
1330 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1331 stop_signal make sense as a real signal to pass to the inferior.
1332 Some catchpoint related events, like
1333 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1334 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1335 those traps are debug API (ptrace in our case) related and
1336 induced; the inferior wouldn't see them if it wasn't being
1337 traced. Hence, we should never pass them to the inferior, even
1338 when set to pass state. Since this corner case isn't handled by
1339 infrun.c when proceeding with a signal, for consistency, neither
1340 do we handle it here (or elsewhere in the file we check for
1341 signal pass state). Normally SIGTRAP isn't set to pass state, so
1342 this is really a corner case. */
1343
1344 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1345 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1346 else if (lp->status)
1347 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1348 else if (non_stop && !is_executing (lp->ptid))
1349 {
1350 struct thread_info *tp = find_thread_ptid (lp->ptid);
1351
1352 signo = tp->suspend.stop_signal;
1353 }
1354 else if (!non_stop)
1355 {
1356 struct target_waitstatus last;
1357 ptid_t last_ptid;
1358
1359 get_last_target_status (&last_ptid, &last);
1360
1361 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1362 {
1363 struct thread_info *tp = find_thread_ptid (lp->ptid);
1364
1365 signo = tp->suspend.stop_signal;
1366 }
1367 }
1368
1369 *status = 0;
1370
1371 if (signo == GDB_SIGNAL_0)
1372 {
1373 if (debug_linux_nat)
1374 fprintf_unfiltered (gdb_stdlog,
1375 "GPT: lwp %s has no pending signal\n",
1376 target_pid_to_str (lp->ptid));
1377 }
1378 else if (!signal_pass_state (signo))
1379 {
1380 if (debug_linux_nat)
1381 fprintf_unfiltered (gdb_stdlog,
1382 "GPT: lwp %s had signal %s, "
1383 "but it is in no pass state\n",
1384 target_pid_to_str (lp->ptid),
1385 gdb_signal_to_string (signo));
1386 }
1387 else
1388 {
1389 *status = W_STOPCODE (gdb_signal_to_host (signo));
1390
1391 if (debug_linux_nat)
1392 fprintf_unfiltered (gdb_stdlog,
1393 "GPT: lwp %s has pending signal %s\n",
1394 target_pid_to_str (lp->ptid),
1395 gdb_signal_to_string (signo));
1396 }
1397
1398 return 0;
1399 }
1400
1401 static int
1402 detach_callback (struct lwp_info *lp, void *data)
1403 {
1404 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1405
1406 if (debug_linux_nat && lp->status)
1407 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1408 strsignal (WSTOPSIG (lp->status)),
1409 target_pid_to_str (lp->ptid));
1410
1411 /* If there is a pending SIGSTOP, get rid of it. */
1412 if (lp->signalled)
1413 {
1414 if (debug_linux_nat)
1415 fprintf_unfiltered (gdb_stdlog,
1416 "DC: Sending SIGCONT to %s\n",
1417 target_pid_to_str (lp->ptid));
1418
1419 kill_lwp (ptid_get_lwp (lp->ptid), SIGCONT);
1420 lp->signalled = 0;
1421 }
1422
1423 /* We don't actually detach from the LWP that has an id equal to the
1424 overall process id just yet. */
1425 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1426 {
1427 int status = 0;
1428
1429 /* Pass on any pending signal for this LWP. */
1430 get_pending_status (lp, &status);
1431
1432 if (linux_nat_prepare_to_resume != NULL)
1433 linux_nat_prepare_to_resume (lp);
1434 errno = 0;
1435 if (ptrace (PTRACE_DETACH, ptid_get_lwp (lp->ptid), 0,
1436 WSTOPSIG (status)) < 0)
1437 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1438 safe_strerror (errno));
1439
1440 if (debug_linux_nat)
1441 fprintf_unfiltered (gdb_stdlog,
1442 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1443 target_pid_to_str (lp->ptid),
1444 strsignal (WSTOPSIG (status)));
1445
1446 delete_lwp (lp->ptid);
1447 }
1448
1449 return 0;
1450 }
1451
1452 static void
1453 linux_nat_detach (struct target_ops *ops, const char *args, int from_tty)
1454 {
1455 int pid;
1456 int status;
1457 struct lwp_info *main_lwp;
1458
1459 pid = ptid_get_pid (inferior_ptid);
1460
1461 /* Don't unregister from the event loop, as there may be other
1462 inferiors running. */
1463
1464 /* Stop all threads before detaching. ptrace requires that the
1465 thread is stopped to sucessfully detach. */
1466 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1467 /* ... and wait until all of them have reported back that
1468 they're no longer running. */
1469 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1470
1471 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1472
1473 /* Only the initial process should be left right now. */
1474 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1);
1475
1476 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1477
1478 /* Pass on any pending signal for the last LWP. */
1479 if ((args == NULL || *args == '\0')
1480 && get_pending_status (main_lwp, &status) != -1
1481 && WIFSTOPPED (status))
1482 {
1483 char *tem;
1484
1485 /* Put the signal number in ARGS so that inf_ptrace_detach will
1486 pass it along with PTRACE_DETACH. */
1487 tem = alloca (8);
1488 xsnprintf (tem, 8, "%d", (int) WSTOPSIG (status));
1489 args = tem;
1490 if (debug_linux_nat)
1491 fprintf_unfiltered (gdb_stdlog,
1492 "LND: Sending signal %s to %s\n",
1493 args,
1494 target_pid_to_str (main_lwp->ptid));
1495 }
1496
1497 if (linux_nat_prepare_to_resume != NULL)
1498 linux_nat_prepare_to_resume (main_lwp);
1499 delete_lwp (main_lwp->ptid);
1500
1501 if (forks_exist_p ())
1502 {
1503 /* Multi-fork case. The current inferior_ptid is being detached
1504 from, but there are other viable forks to debug. Detach from
1505 the current fork, and context-switch to the first
1506 available. */
1507 linux_fork_detach (args, from_tty);
1508 }
1509 else
1510 linux_ops->to_detach (ops, args, from_tty);
1511 }
1512
1513 /* Resume execution of the inferior process. If STEP is nonzero,
1514 single-step it. If SIGNAL is nonzero, give it that signal. */
1515
1516 static void
1517 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1518 {
1519 ptid_t ptid;
1520
1521 lp->step = step;
1522 if (linux_nat_prepare_to_resume != NULL)
1523 linux_nat_prepare_to_resume (lp);
1524 /* Convert to something the lower layer understands. */
1525 ptid = pid_to_ptid (ptid_get_lwp (lp->ptid));
1526 linux_ops->to_resume (linux_ops, ptid, step, signo);
1527 lp->stopped_by_watchpoint = 0;
1528 lp->stopped = 0;
1529 registers_changed_ptid (lp->ptid);
1530 }
1531
1532 /* Resume LP. */
1533
1534 static void
1535 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1536 {
1537 if (lp->stopped)
1538 {
1539 struct inferior *inf = find_inferior_ptid (lp->ptid);
1540
1541 if (inf->vfork_child != NULL)
1542 {
1543 if (debug_linux_nat)
1544 fprintf_unfiltered (gdb_stdlog,
1545 "RC: Not resuming %s (vfork parent)\n",
1546 target_pid_to_str (lp->ptid));
1547 }
1548 else if (!lwp_status_pending_p (lp))
1549 {
1550 if (debug_linux_nat)
1551 fprintf_unfiltered (gdb_stdlog,
1552 "RC: Resuming sibling %s, %s, %s\n",
1553 target_pid_to_str (lp->ptid),
1554 (signo != GDB_SIGNAL_0
1555 ? strsignal (gdb_signal_to_host (signo))
1556 : "0"),
1557 step ? "step" : "resume");
1558
1559 linux_resume_one_lwp (lp, step, signo);
1560 }
1561 else
1562 {
1563 if (debug_linux_nat)
1564 fprintf_unfiltered (gdb_stdlog,
1565 "RC: Not resuming sibling %s (has pending)\n",
1566 target_pid_to_str (lp->ptid));
1567 }
1568 }
1569 else
1570 {
1571 if (debug_linux_nat)
1572 fprintf_unfiltered (gdb_stdlog,
1573 "RC: Not resuming sibling %s (not stopped)\n",
1574 target_pid_to_str (lp->ptid));
1575 }
1576 }
1577
1578 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1579 Resume LWP with the last stop signal, if it is in pass state. */
1580
1581 static int
1582 linux_nat_resume_callback (struct lwp_info *lp, void *except)
1583 {
1584 enum gdb_signal signo = GDB_SIGNAL_0;
1585
1586 if (lp == except)
1587 return 0;
1588
1589 if (lp->stopped)
1590 {
1591 struct thread_info *thread;
1592
1593 thread = find_thread_ptid (lp->ptid);
1594 if (thread != NULL)
1595 {
1596 signo = thread->suspend.stop_signal;
1597 thread->suspend.stop_signal = GDB_SIGNAL_0;
1598 }
1599 }
1600
1601 resume_lwp (lp, 0, signo);
1602 return 0;
1603 }
1604
1605 static int
1606 resume_clear_callback (struct lwp_info *lp, void *data)
1607 {
1608 lp->resumed = 0;
1609 lp->last_resume_kind = resume_stop;
1610 return 0;
1611 }
1612
1613 static int
1614 resume_set_callback (struct lwp_info *lp, void *data)
1615 {
1616 lp->resumed = 1;
1617 lp->last_resume_kind = resume_continue;
1618 return 0;
1619 }
1620
1621 static void
1622 linux_nat_resume (struct target_ops *ops,
1623 ptid_t ptid, int step, enum gdb_signal signo)
1624 {
1625 struct lwp_info *lp;
1626 int resume_many;
1627
1628 if (debug_linux_nat)
1629 fprintf_unfiltered (gdb_stdlog,
1630 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1631 step ? "step" : "resume",
1632 target_pid_to_str (ptid),
1633 (signo != GDB_SIGNAL_0
1634 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1635 target_pid_to_str (inferior_ptid));
1636
1637 /* A specific PTID means `step only this process id'. */
1638 resume_many = (ptid_equal (minus_one_ptid, ptid)
1639 || ptid_is_pid (ptid));
1640
1641 /* Mark the lwps we're resuming as resumed. */
1642 iterate_over_lwps (ptid, resume_set_callback, NULL);
1643
1644 /* See if it's the current inferior that should be handled
1645 specially. */
1646 if (resume_many)
1647 lp = find_lwp_pid (inferior_ptid);
1648 else
1649 lp = find_lwp_pid (ptid);
1650 gdb_assert (lp != NULL);
1651
1652 /* Remember if we're stepping. */
1653 lp->last_resume_kind = step ? resume_step : resume_continue;
1654
1655 /* If we have a pending wait status for this thread, there is no
1656 point in resuming the process. But first make sure that
1657 linux_nat_wait won't preemptively handle the event - we
1658 should never take this short-circuit if we are going to
1659 leave LP running, since we have skipped resuming all the
1660 other threads. This bit of code needs to be synchronized
1661 with linux_nat_wait. */
1662
1663 if (lp->status && WIFSTOPPED (lp->status))
1664 {
1665 if (!lp->step
1666 && WSTOPSIG (lp->status)
1667 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1668 {
1669 if (debug_linux_nat)
1670 fprintf_unfiltered (gdb_stdlog,
1671 "LLR: Not short circuiting for ignored "
1672 "status 0x%x\n", lp->status);
1673
1674 /* FIXME: What should we do if we are supposed to continue
1675 this thread with a signal? */
1676 gdb_assert (signo == GDB_SIGNAL_0);
1677 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1678 lp->status = 0;
1679 }
1680 }
1681
1682 if (lwp_status_pending_p (lp))
1683 {
1684 /* FIXME: What should we do if we are supposed to continue
1685 this thread with a signal? */
1686 gdb_assert (signo == GDB_SIGNAL_0);
1687
1688 if (debug_linux_nat)
1689 fprintf_unfiltered (gdb_stdlog,
1690 "LLR: Short circuiting for status 0x%x\n",
1691 lp->status);
1692
1693 if (target_can_async_p ())
1694 {
1695 target_async (inferior_event_handler, 0);
1696 /* Tell the event loop we have something to process. */
1697 async_file_mark ();
1698 }
1699 return;
1700 }
1701
1702 if (resume_many)
1703 iterate_over_lwps (ptid, linux_nat_resume_callback, lp);
1704
1705 linux_resume_one_lwp (lp, step, signo);
1706
1707 if (debug_linux_nat)
1708 fprintf_unfiltered (gdb_stdlog,
1709 "LLR: %s %s, %s (resume event thread)\n",
1710 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1711 target_pid_to_str (ptid),
1712 (signo != GDB_SIGNAL_0
1713 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1714
1715 if (target_can_async_p ())
1716 target_async (inferior_event_handler, 0);
1717 }
1718
1719 /* Send a signal to an LWP. */
1720
1721 static int
1722 kill_lwp (int lwpid, int signo)
1723 {
1724 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1725 fails, then we are not using nptl threads and we should be using kill. */
1726
1727 #ifdef HAVE_TKILL_SYSCALL
1728 {
1729 static int tkill_failed;
1730
1731 if (!tkill_failed)
1732 {
1733 int ret;
1734
1735 errno = 0;
1736 ret = syscall (__NR_tkill, lwpid, signo);
1737 if (errno != ENOSYS)
1738 return ret;
1739 tkill_failed = 1;
1740 }
1741 }
1742 #endif
1743
1744 return kill (lwpid, signo);
1745 }
1746
1747 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1748 event, check if the core is interested in it: if not, ignore the
1749 event, and keep waiting; otherwise, we need to toggle the LWP's
1750 syscall entry/exit status, since the ptrace event itself doesn't
1751 indicate it, and report the trap to higher layers. */
1752
1753 static int
1754 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1755 {
1756 struct target_waitstatus *ourstatus = &lp->waitstatus;
1757 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1758 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1759
1760 if (stopping)
1761 {
1762 /* If we're stopping threads, there's a SIGSTOP pending, which
1763 makes it so that the LWP reports an immediate syscall return,
1764 followed by the SIGSTOP. Skip seeing that "return" using
1765 PTRACE_CONT directly, and let stop_wait_callback collect the
1766 SIGSTOP. Later when the thread is resumed, a new syscall
1767 entry event. If we didn't do this (and returned 0), we'd
1768 leave a syscall entry pending, and our caller, by using
1769 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1770 itself. Later, when the user re-resumes this LWP, we'd see
1771 another syscall entry event and we'd mistake it for a return.
1772
1773 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1774 (leaving immediately with LWP->signalled set, without issuing
1775 a PTRACE_CONT), it would still be problematic to leave this
1776 syscall enter pending, as later when the thread is resumed,
1777 it would then see the same syscall exit mentioned above,
1778 followed by the delayed SIGSTOP, while the syscall didn't
1779 actually get to execute. It seems it would be even more
1780 confusing to the user. */
1781
1782 if (debug_linux_nat)
1783 fprintf_unfiltered (gdb_stdlog,
1784 "LHST: ignoring syscall %d "
1785 "for LWP %ld (stopping threads), "
1786 "resuming with PTRACE_CONT for SIGSTOP\n",
1787 syscall_number,
1788 ptid_get_lwp (lp->ptid));
1789
1790 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1791 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1792 lp->stopped = 0;
1793 return 1;
1794 }
1795
1796 if (catch_syscall_enabled ())
1797 {
1798 /* Always update the entry/return state, even if this particular
1799 syscall isn't interesting to the core now. In async mode,
1800 the user could install a new catchpoint for this syscall
1801 between syscall enter/return, and we'll need to know to
1802 report a syscall return if that happens. */
1803 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1804 ? TARGET_WAITKIND_SYSCALL_RETURN
1805 : TARGET_WAITKIND_SYSCALL_ENTRY);
1806
1807 if (catching_syscall_number (syscall_number))
1808 {
1809 /* Alright, an event to report. */
1810 ourstatus->kind = lp->syscall_state;
1811 ourstatus->value.syscall_number = syscall_number;
1812
1813 if (debug_linux_nat)
1814 fprintf_unfiltered (gdb_stdlog,
1815 "LHST: stopping for %s of syscall %d"
1816 " for LWP %ld\n",
1817 lp->syscall_state
1818 == TARGET_WAITKIND_SYSCALL_ENTRY
1819 ? "entry" : "return",
1820 syscall_number,
1821 ptid_get_lwp (lp->ptid));
1822 return 0;
1823 }
1824
1825 if (debug_linux_nat)
1826 fprintf_unfiltered (gdb_stdlog,
1827 "LHST: ignoring %s of syscall %d "
1828 "for LWP %ld\n",
1829 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1830 ? "entry" : "return",
1831 syscall_number,
1832 ptid_get_lwp (lp->ptid));
1833 }
1834 else
1835 {
1836 /* If we had been syscall tracing, and hence used PT_SYSCALL
1837 before on this LWP, it could happen that the user removes all
1838 syscall catchpoints before we get to process this event.
1839 There are two noteworthy issues here:
1840
1841 - When stopped at a syscall entry event, resuming with
1842 PT_STEP still resumes executing the syscall and reports a
1843 syscall return.
1844
1845 - Only PT_SYSCALL catches syscall enters. If we last
1846 single-stepped this thread, then this event can't be a
1847 syscall enter. If we last single-stepped this thread, this
1848 has to be a syscall exit.
1849
1850 The points above mean that the next resume, be it PT_STEP or
1851 PT_CONTINUE, can not trigger a syscall trace event. */
1852 if (debug_linux_nat)
1853 fprintf_unfiltered (gdb_stdlog,
1854 "LHST: caught syscall event "
1855 "with no syscall catchpoints."
1856 " %d for LWP %ld, ignoring\n",
1857 syscall_number,
1858 ptid_get_lwp (lp->ptid));
1859 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1860 }
1861
1862 /* The core isn't interested in this event. For efficiency, avoid
1863 stopping all threads only to have the core resume them all again.
1864 Since we're not stopping threads, if we're still syscall tracing
1865 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1866 subsequent syscall. Simply resume using the inf-ptrace layer,
1867 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1868
1869 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1870 return 1;
1871 }
1872
1873 /* Handle a GNU/Linux extended wait response. If we see a clone
1874 event, we need to add the new LWP to our list (and not report the
1875 trap to higher layers). This function returns non-zero if the
1876 event should be ignored and we should wait again. If STOPPING is
1877 true, the new LWP remains stopped, otherwise it is continued. */
1878
1879 static int
1880 linux_handle_extended_wait (struct lwp_info *lp, int status,
1881 int stopping)
1882 {
1883 int pid = ptid_get_lwp (lp->ptid);
1884 struct target_waitstatus *ourstatus = &lp->waitstatus;
1885 int event = linux_ptrace_get_extended_event (status);
1886
1887 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1888 || event == PTRACE_EVENT_CLONE)
1889 {
1890 unsigned long new_pid;
1891 int ret;
1892
1893 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1894
1895 /* If we haven't already seen the new PID stop, wait for it now. */
1896 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1897 {
1898 /* The new child has a pending SIGSTOP. We can't affect it until it
1899 hits the SIGSTOP, but we're already attached. */
1900 ret = my_waitpid (new_pid, &status,
1901 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
1902 if (ret == -1)
1903 perror_with_name (_("waiting for new child"));
1904 else if (ret != new_pid)
1905 internal_error (__FILE__, __LINE__,
1906 _("wait returned unexpected PID %d"), ret);
1907 else if (!WIFSTOPPED (status))
1908 internal_error (__FILE__, __LINE__,
1909 _("wait returned unexpected status 0x%x"), status);
1910 }
1911
1912 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
1913
1914 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
1915 {
1916 /* The arch-specific native code may need to know about new
1917 forks even if those end up never mapped to an
1918 inferior. */
1919 if (linux_nat_new_fork != NULL)
1920 linux_nat_new_fork (lp, new_pid);
1921 }
1922
1923 if (event == PTRACE_EVENT_FORK
1924 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
1925 {
1926 /* Handle checkpointing by linux-fork.c here as a special
1927 case. We don't want the follow-fork-mode or 'catch fork'
1928 to interfere with this. */
1929
1930 /* This won't actually modify the breakpoint list, but will
1931 physically remove the breakpoints from the child. */
1932 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
1933
1934 /* Retain child fork in ptrace (stopped) state. */
1935 if (!find_fork_pid (new_pid))
1936 add_fork (new_pid);
1937
1938 /* Report as spurious, so that infrun doesn't want to follow
1939 this fork. We're actually doing an infcall in
1940 linux-fork.c. */
1941 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
1942
1943 /* Report the stop to the core. */
1944 return 0;
1945 }
1946
1947 if (event == PTRACE_EVENT_FORK)
1948 ourstatus->kind = TARGET_WAITKIND_FORKED;
1949 else if (event == PTRACE_EVENT_VFORK)
1950 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1951 else
1952 {
1953 struct lwp_info *new_lp;
1954
1955 ourstatus->kind = TARGET_WAITKIND_IGNORE;
1956
1957 if (debug_linux_nat)
1958 fprintf_unfiltered (gdb_stdlog,
1959 "LHEW: Got clone event "
1960 "from LWP %d, new child is LWP %ld\n",
1961 pid, new_pid);
1962
1963 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
1964 new_lp->cloned = 1;
1965 new_lp->stopped = 1;
1966
1967 if (WSTOPSIG (status) != SIGSTOP)
1968 {
1969 /* This can happen if someone starts sending signals to
1970 the new thread before it gets a chance to run, which
1971 have a lower number than SIGSTOP (e.g. SIGUSR1).
1972 This is an unlikely case, and harder to handle for
1973 fork / vfork than for clone, so we do not try - but
1974 we handle it for clone events here. We'll send
1975 the other signal on to the thread below. */
1976
1977 new_lp->signalled = 1;
1978 }
1979 else
1980 {
1981 struct thread_info *tp;
1982
1983 /* When we stop for an event in some other thread, and
1984 pull the thread list just as this thread has cloned,
1985 we'll have seen the new thread in the thread_db list
1986 before handling the CLONE event (glibc's
1987 pthread_create adds the new thread to the thread list
1988 before clone'ing, and has the kernel fill in the
1989 thread's tid on the clone call with
1990 CLONE_PARENT_SETTID). If that happened, and the core
1991 had requested the new thread to stop, we'll have
1992 killed it with SIGSTOP. But since SIGSTOP is not an
1993 RT signal, it can only be queued once. We need to be
1994 careful to not resume the LWP if we wanted it to
1995 stop. In that case, we'll leave the SIGSTOP pending.
1996 It will later be reported as GDB_SIGNAL_0. */
1997 tp = find_thread_ptid (new_lp->ptid);
1998 if (tp != NULL && tp->stop_requested)
1999 new_lp->last_resume_kind = resume_stop;
2000 else
2001 status = 0;
2002 }
2003
2004 if (non_stop)
2005 {
2006 /* Add the new thread to GDB's lists as soon as possible
2007 so that:
2008
2009 1) the frontend doesn't have to wait for a stop to
2010 display them, and,
2011
2012 2) we tag it with the correct running state. */
2013
2014 /* If the thread_db layer is active, let it know about
2015 this new thread, and add it to GDB's list. */
2016 if (!thread_db_attach_lwp (new_lp->ptid))
2017 {
2018 /* We're not using thread_db. Add it to GDB's
2019 list. */
2020 target_post_attach (ptid_get_lwp (new_lp->ptid));
2021 add_thread (new_lp->ptid);
2022 }
2023
2024 if (!stopping)
2025 {
2026 set_running (new_lp->ptid, 1);
2027 set_executing (new_lp->ptid, 1);
2028 /* thread_db_attach_lwp -> lin_lwp_attach_lwp forced
2029 resume_stop. */
2030 new_lp->last_resume_kind = resume_continue;
2031 }
2032 }
2033
2034 if (status != 0)
2035 {
2036 /* We created NEW_LP so it cannot yet contain STATUS. */
2037 gdb_assert (new_lp->status == 0);
2038
2039 /* Save the wait status to report later. */
2040 if (debug_linux_nat)
2041 fprintf_unfiltered (gdb_stdlog,
2042 "LHEW: waitpid of new LWP %ld, "
2043 "saving status %s\n",
2044 (long) ptid_get_lwp (new_lp->ptid),
2045 status_to_str (status));
2046 new_lp->status = status;
2047 }
2048
2049 /* Note the need to use the low target ops to resume, to
2050 handle resuming with PT_SYSCALL if we have syscall
2051 catchpoints. */
2052 if (!stopping)
2053 {
2054 new_lp->resumed = 1;
2055
2056 if (status == 0)
2057 {
2058 gdb_assert (new_lp->last_resume_kind == resume_continue);
2059 if (debug_linux_nat)
2060 fprintf_unfiltered (gdb_stdlog,
2061 "LHEW: resuming new LWP %ld\n",
2062 ptid_get_lwp (new_lp->ptid));
2063 linux_resume_one_lwp (new_lp, 0, GDB_SIGNAL_0);
2064 }
2065 }
2066
2067 if (debug_linux_nat)
2068 fprintf_unfiltered (gdb_stdlog,
2069 "LHEW: resuming parent LWP %d\n", pid);
2070 linux_resume_one_lwp (lp, 0, GDB_SIGNAL_0);
2071 return 1;
2072 }
2073
2074 return 0;
2075 }
2076
2077 if (event == PTRACE_EVENT_EXEC)
2078 {
2079 if (debug_linux_nat)
2080 fprintf_unfiltered (gdb_stdlog,
2081 "LHEW: Got exec event from LWP %ld\n",
2082 ptid_get_lwp (lp->ptid));
2083
2084 ourstatus->kind = TARGET_WAITKIND_EXECD;
2085 ourstatus->value.execd_pathname
2086 = xstrdup (linux_child_pid_to_exec_file (NULL, pid));
2087
2088 /* The thread that execed must have been resumed, but, when a
2089 thread execs, it changes its tid to the tgid, and the old
2090 tgid thread might have not been resumed. */
2091 lp->resumed = 1;
2092 return 0;
2093 }
2094
2095 if (event == PTRACE_EVENT_VFORK_DONE)
2096 {
2097 if (current_inferior ()->waiting_for_vfork_done)
2098 {
2099 if (debug_linux_nat)
2100 fprintf_unfiltered (gdb_stdlog,
2101 "LHEW: Got expected PTRACE_EVENT_"
2102 "VFORK_DONE from LWP %ld: stopping\n",
2103 ptid_get_lwp (lp->ptid));
2104
2105 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2106 return 0;
2107 }
2108
2109 if (debug_linux_nat)
2110 fprintf_unfiltered (gdb_stdlog,
2111 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2112 "from LWP %ld: resuming\n",
2113 ptid_get_lwp (lp->ptid));
2114 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2115 return 1;
2116 }
2117
2118 internal_error (__FILE__, __LINE__,
2119 _("unknown ptrace event %d"), event);
2120 }
2121
2122 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2123 exited. */
2124
2125 static int
2126 wait_lwp (struct lwp_info *lp)
2127 {
2128 pid_t pid;
2129 int status = 0;
2130 int thread_dead = 0;
2131 sigset_t prev_mask;
2132
2133 gdb_assert (!lp->stopped);
2134 gdb_assert (lp->status == 0);
2135
2136 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2137 block_child_signals (&prev_mask);
2138
2139 for (;;)
2140 {
2141 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2142 was right and we should just call sigsuspend. */
2143
2144 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, WNOHANG);
2145 if (pid == -1 && errno == ECHILD)
2146 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WCLONE | WNOHANG);
2147 if (pid == -1 && errno == ECHILD)
2148 {
2149 /* The thread has previously exited. We need to delete it
2150 now because, for some vendor 2.4 kernels with NPTL
2151 support backported, there won't be an exit event unless
2152 it is the main thread. 2.6 kernels will report an exit
2153 event for each thread that exits, as expected. */
2154 thread_dead = 1;
2155 if (debug_linux_nat)
2156 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2157 target_pid_to_str (lp->ptid));
2158 }
2159 if (pid != 0)
2160 break;
2161
2162 /* Bugs 10970, 12702.
2163 Thread group leader may have exited in which case we'll lock up in
2164 waitpid if there are other threads, even if they are all zombies too.
2165 Basically, we're not supposed to use waitpid this way.
2166 __WCLONE is not applicable for the leader so we can't use that.
2167 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2168 process; it gets ESRCH both for the zombie and for running processes.
2169
2170 As a workaround, check if we're waiting for the thread group leader and
2171 if it's a zombie, and avoid calling waitpid if it is.
2172
2173 This is racy, what if the tgl becomes a zombie right after we check?
2174 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2175 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2176
2177 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2178 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2179 {
2180 thread_dead = 1;
2181 if (debug_linux_nat)
2182 fprintf_unfiltered (gdb_stdlog,
2183 "WL: Thread group leader %s vanished.\n",
2184 target_pid_to_str (lp->ptid));
2185 break;
2186 }
2187
2188 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2189 get invoked despite our caller had them intentionally blocked by
2190 block_child_signals. This is sensitive only to the loop of
2191 linux_nat_wait_1 and there if we get called my_waitpid gets called
2192 again before it gets to sigsuspend so we can safely let the handlers
2193 get executed here. */
2194
2195 if (debug_linux_nat)
2196 fprintf_unfiltered (gdb_stdlog, "WL: about to sigsuspend\n");
2197 sigsuspend (&suspend_mask);
2198 }
2199
2200 restore_child_signals_mask (&prev_mask);
2201
2202 if (!thread_dead)
2203 {
2204 gdb_assert (pid == ptid_get_lwp (lp->ptid));
2205
2206 if (debug_linux_nat)
2207 {
2208 fprintf_unfiltered (gdb_stdlog,
2209 "WL: waitpid %s received %s\n",
2210 target_pid_to_str (lp->ptid),
2211 status_to_str (status));
2212 }
2213
2214 /* Check if the thread has exited. */
2215 if (WIFEXITED (status) || WIFSIGNALED (status))
2216 {
2217 thread_dead = 1;
2218 if (debug_linux_nat)
2219 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2220 target_pid_to_str (lp->ptid));
2221 }
2222 }
2223
2224 if (thread_dead)
2225 {
2226 exit_lwp (lp);
2227 return 0;
2228 }
2229
2230 gdb_assert (WIFSTOPPED (status));
2231 lp->stopped = 1;
2232
2233 if (lp->must_set_ptrace_flags)
2234 {
2235 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2236
2237 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), inf->attach_flag);
2238 lp->must_set_ptrace_flags = 0;
2239 }
2240
2241 /* Handle GNU/Linux's syscall SIGTRAPs. */
2242 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2243 {
2244 /* No longer need the sysgood bit. The ptrace event ends up
2245 recorded in lp->waitstatus if we care for it. We can carry
2246 on handling the event like a regular SIGTRAP from here
2247 on. */
2248 status = W_STOPCODE (SIGTRAP);
2249 if (linux_handle_syscall_trap (lp, 1))
2250 return wait_lwp (lp);
2251 }
2252
2253 /* Handle GNU/Linux's extended waitstatus for trace events. */
2254 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2255 && linux_is_extended_waitstatus (status))
2256 {
2257 if (debug_linux_nat)
2258 fprintf_unfiltered (gdb_stdlog,
2259 "WL: Handling extended status 0x%06x\n",
2260 status);
2261 if (linux_handle_extended_wait (lp, status, 1))
2262 return wait_lwp (lp);
2263 }
2264
2265 return status;
2266 }
2267
2268 /* Send a SIGSTOP to LP. */
2269
2270 static int
2271 stop_callback (struct lwp_info *lp, void *data)
2272 {
2273 if (!lp->stopped && !lp->signalled)
2274 {
2275 int ret;
2276
2277 if (debug_linux_nat)
2278 {
2279 fprintf_unfiltered (gdb_stdlog,
2280 "SC: kill %s **<SIGSTOP>**\n",
2281 target_pid_to_str (lp->ptid));
2282 }
2283 errno = 0;
2284 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2285 if (debug_linux_nat)
2286 {
2287 fprintf_unfiltered (gdb_stdlog,
2288 "SC: lwp kill %d %s\n",
2289 ret,
2290 errno ? safe_strerror (errno) : "ERRNO-OK");
2291 }
2292
2293 lp->signalled = 1;
2294 gdb_assert (lp->status == 0);
2295 }
2296
2297 return 0;
2298 }
2299
2300 /* Request a stop on LWP. */
2301
2302 void
2303 linux_stop_lwp (struct lwp_info *lwp)
2304 {
2305 stop_callback (lwp, NULL);
2306 }
2307
2308 /* Return non-zero if LWP PID has a pending SIGINT. */
2309
2310 static int
2311 linux_nat_has_pending_sigint (int pid)
2312 {
2313 sigset_t pending, blocked, ignored;
2314
2315 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2316
2317 if (sigismember (&pending, SIGINT)
2318 && !sigismember (&ignored, SIGINT))
2319 return 1;
2320
2321 return 0;
2322 }
2323
2324 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2325
2326 static int
2327 set_ignore_sigint (struct lwp_info *lp, void *data)
2328 {
2329 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2330 flag to consume the next one. */
2331 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2332 && WSTOPSIG (lp->status) == SIGINT)
2333 lp->status = 0;
2334 else
2335 lp->ignore_sigint = 1;
2336
2337 return 0;
2338 }
2339
2340 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2341 This function is called after we know the LWP has stopped; if the LWP
2342 stopped before the expected SIGINT was delivered, then it will never have
2343 arrived. Also, if the signal was delivered to a shared queue and consumed
2344 by a different thread, it will never be delivered to this LWP. */
2345
2346 static void
2347 maybe_clear_ignore_sigint (struct lwp_info *lp)
2348 {
2349 if (!lp->ignore_sigint)
2350 return;
2351
2352 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2353 {
2354 if (debug_linux_nat)
2355 fprintf_unfiltered (gdb_stdlog,
2356 "MCIS: Clearing bogus flag for %s\n",
2357 target_pid_to_str (lp->ptid));
2358 lp->ignore_sigint = 0;
2359 }
2360 }
2361
2362 /* Fetch the possible triggered data watchpoint info and store it in
2363 LP.
2364
2365 On some archs, like x86, that use debug registers to set
2366 watchpoints, it's possible that the way to know which watched
2367 address trapped, is to check the register that is used to select
2368 which address to watch. Problem is, between setting the watchpoint
2369 and reading back which data address trapped, the user may change
2370 the set of watchpoints, and, as a consequence, GDB changes the
2371 debug registers in the inferior. To avoid reading back a stale
2372 stopped-data-address when that happens, we cache in LP the fact
2373 that a watchpoint trapped, and the corresponding data address, as
2374 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2375 registers meanwhile, we have the cached data we can rely on. */
2376
2377 static void
2378 save_sigtrap (struct lwp_info *lp)
2379 {
2380 struct cleanup *old_chain;
2381
2382 if (linux_ops->to_stopped_by_watchpoint == NULL)
2383 {
2384 lp->stopped_by_watchpoint = 0;
2385 return;
2386 }
2387
2388 old_chain = save_inferior_ptid ();
2389 inferior_ptid = lp->ptid;
2390
2391 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint (linux_ops);
2392
2393 if (lp->stopped_by_watchpoint)
2394 {
2395 if (linux_ops->to_stopped_data_address != NULL)
2396 lp->stopped_data_address_p =
2397 linux_ops->to_stopped_data_address (&current_target,
2398 &lp->stopped_data_address);
2399 else
2400 lp->stopped_data_address_p = 0;
2401 }
2402
2403 do_cleanups (old_chain);
2404 }
2405
2406 /* See save_sigtrap. */
2407
2408 static int
2409 linux_nat_stopped_by_watchpoint (struct target_ops *ops)
2410 {
2411 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2412
2413 gdb_assert (lp != NULL);
2414
2415 return lp->stopped_by_watchpoint;
2416 }
2417
2418 static int
2419 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2420 {
2421 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2422
2423 gdb_assert (lp != NULL);
2424
2425 *addr_p = lp->stopped_data_address;
2426
2427 return lp->stopped_data_address_p;
2428 }
2429
2430 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2431
2432 static int
2433 sigtrap_is_event (int status)
2434 {
2435 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2436 }
2437
2438 /* SIGTRAP-like events recognizer. */
2439
2440 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
2441
2442 /* Check for SIGTRAP-like events in LP. */
2443
2444 static int
2445 linux_nat_lp_status_is_event (struct lwp_info *lp)
2446 {
2447 /* We check for lp->waitstatus in addition to lp->status, because we can
2448 have pending process exits recorded in lp->status
2449 and W_EXITCODE(0,0) == 0. We should probably have an additional
2450 lp->status_p flag. */
2451
2452 return (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2453 && linux_nat_status_is_event (lp->status));
2454 }
2455
2456 /* Set alternative SIGTRAP-like events recognizer. If
2457 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2458 applied. */
2459
2460 void
2461 linux_nat_set_status_is_event (struct target_ops *t,
2462 int (*status_is_event) (int status))
2463 {
2464 linux_nat_status_is_event = status_is_event;
2465 }
2466
2467 /* Wait until LP is stopped. */
2468
2469 static int
2470 stop_wait_callback (struct lwp_info *lp, void *data)
2471 {
2472 struct inferior *inf = find_inferior_ptid (lp->ptid);
2473
2474 /* If this is a vfork parent, bail out, it is not going to report
2475 any SIGSTOP until the vfork is done with. */
2476 if (inf->vfork_child != NULL)
2477 return 0;
2478
2479 if (!lp->stopped)
2480 {
2481 int status;
2482
2483 status = wait_lwp (lp);
2484 if (status == 0)
2485 return 0;
2486
2487 if (lp->ignore_sigint && WIFSTOPPED (status)
2488 && WSTOPSIG (status) == SIGINT)
2489 {
2490 lp->ignore_sigint = 0;
2491
2492 errno = 0;
2493 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2494 lp->stopped = 0;
2495 if (debug_linux_nat)
2496 fprintf_unfiltered (gdb_stdlog,
2497 "PTRACE_CONT %s, 0, 0 (%s) "
2498 "(discarding SIGINT)\n",
2499 target_pid_to_str (lp->ptid),
2500 errno ? safe_strerror (errno) : "OK");
2501
2502 return stop_wait_callback (lp, NULL);
2503 }
2504
2505 maybe_clear_ignore_sigint (lp);
2506
2507 if (WSTOPSIG (status) != SIGSTOP)
2508 {
2509 /* The thread was stopped with a signal other than SIGSTOP. */
2510
2511 save_sigtrap (lp);
2512
2513 if (debug_linux_nat)
2514 fprintf_unfiltered (gdb_stdlog,
2515 "SWC: Pending event %s in %s\n",
2516 status_to_str ((int) status),
2517 target_pid_to_str (lp->ptid));
2518
2519 /* Save the sigtrap event. */
2520 lp->status = status;
2521 gdb_assert (lp->signalled);
2522 }
2523 else
2524 {
2525 /* We caught the SIGSTOP that we intended to catch, so
2526 there's no SIGSTOP pending. */
2527
2528 if (debug_linux_nat)
2529 fprintf_unfiltered (gdb_stdlog,
2530 "SWC: Delayed SIGSTOP caught for %s.\n",
2531 target_pid_to_str (lp->ptid));
2532
2533 /* Reset SIGNALLED only after the stop_wait_callback call
2534 above as it does gdb_assert on SIGNALLED. */
2535 lp->signalled = 0;
2536 }
2537 }
2538
2539 return 0;
2540 }
2541
2542 /* Return non-zero if LP has a wait status pending. */
2543
2544 static int
2545 status_callback (struct lwp_info *lp, void *data)
2546 {
2547 /* Only report a pending wait status if we pretend that this has
2548 indeed been resumed. */
2549 if (!lp->resumed)
2550 return 0;
2551
2552 return lwp_status_pending_p (lp);
2553 }
2554
2555 /* Return non-zero if LP isn't stopped. */
2556
2557 static int
2558 running_callback (struct lwp_info *lp, void *data)
2559 {
2560 return (!lp->stopped
2561 || (lwp_status_pending_p (lp) && lp->resumed));
2562 }
2563
2564 /* Count the LWP's that have had events. */
2565
2566 static int
2567 count_events_callback (struct lwp_info *lp, void *data)
2568 {
2569 int *count = data;
2570
2571 gdb_assert (count != NULL);
2572
2573 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2574 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2575 (*count)++;
2576
2577 return 0;
2578 }
2579
2580 /* Select the LWP (if any) that is currently being single-stepped. */
2581
2582 static int
2583 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2584 {
2585 if (lp->last_resume_kind == resume_step
2586 && lp->status != 0)
2587 return 1;
2588 else
2589 return 0;
2590 }
2591
2592 /* Returns true if LP has a status pending. */
2593
2594 static int
2595 lwp_status_pending_p (struct lwp_info *lp)
2596 {
2597 /* We check for lp->waitstatus in addition to lp->status, because we
2598 can have pending process exits recorded in lp->status and
2599 W_EXITCODE(0,0) happens to be 0. */
2600 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2601 }
2602
2603 /* Select the Nth LWP that has had a SIGTRAP event. */
2604
2605 static int
2606 select_event_lwp_callback (struct lwp_info *lp, void *data)
2607 {
2608 int *selector = data;
2609
2610 gdb_assert (selector != NULL);
2611
2612 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2613 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2614 if ((*selector)-- == 0)
2615 return 1;
2616
2617 return 0;
2618 }
2619
2620 static int
2621 cancel_breakpoint (struct lwp_info *lp)
2622 {
2623 /* Arrange for a breakpoint to be hit again later. We don't keep
2624 the SIGTRAP status and don't forward the SIGTRAP signal to the
2625 LWP. We will handle the current event, eventually we will resume
2626 this LWP, and this breakpoint will trap again.
2627
2628 If we do not do this, then we run the risk that the user will
2629 delete or disable the breakpoint, but the LWP will have already
2630 tripped on it. */
2631
2632 struct regcache *regcache = get_thread_regcache (lp->ptid);
2633 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2634 CORE_ADDR pc;
2635
2636 pc = regcache_read_pc (regcache) - target_decr_pc_after_break (gdbarch);
2637 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2638 {
2639 if (debug_linux_nat)
2640 fprintf_unfiltered (gdb_stdlog,
2641 "CB: Push back breakpoint for %s\n",
2642 target_pid_to_str (lp->ptid));
2643
2644 /* Back up the PC if necessary. */
2645 if (target_decr_pc_after_break (gdbarch))
2646 regcache_write_pc (regcache, pc);
2647
2648 return 1;
2649 }
2650 return 0;
2651 }
2652
2653 static int
2654 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2655 {
2656 struct lwp_info *event_lp = data;
2657
2658 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2659 if (lp == event_lp)
2660 return 0;
2661
2662 /* If a LWP other than the LWP that we're reporting an event for has
2663 hit a GDB breakpoint (as opposed to some random trap signal),
2664 then just arrange for it to hit it again later. We don't keep
2665 the SIGTRAP status and don't forward the SIGTRAP signal to the
2666 LWP. We will handle the current event, eventually we will resume
2667 all LWPs, and this one will get its breakpoint trap again.
2668
2669 If we do not do this, then we run the risk that the user will
2670 delete or disable the breakpoint, but the LWP will have already
2671 tripped on it. */
2672
2673 if (linux_nat_lp_status_is_event (lp)
2674 && cancel_breakpoint (lp))
2675 /* Throw away the SIGTRAP. */
2676 lp->status = 0;
2677
2678 return 0;
2679 }
2680
2681 /* Select one LWP out of those that have events pending. */
2682
2683 static void
2684 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2685 {
2686 int num_events = 0;
2687 int random_selector;
2688 struct lwp_info *event_lp;
2689
2690 /* Record the wait status for the original LWP. */
2691 (*orig_lp)->status = *status;
2692
2693 /* Give preference to any LWP that is being single-stepped. */
2694 event_lp = iterate_over_lwps (filter,
2695 select_singlestep_lwp_callback, NULL);
2696 if (event_lp != NULL)
2697 {
2698 if (debug_linux_nat)
2699 fprintf_unfiltered (gdb_stdlog,
2700 "SEL: Select single-step %s\n",
2701 target_pid_to_str (event_lp->ptid));
2702 }
2703 else
2704 {
2705 /* No single-stepping LWP. Select one at random, out of those
2706 which have had SIGTRAP events. */
2707
2708 /* First see how many SIGTRAP events we have. */
2709 iterate_over_lwps (filter, count_events_callback, &num_events);
2710
2711 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2712 random_selector = (int)
2713 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2714
2715 if (debug_linux_nat && num_events > 1)
2716 fprintf_unfiltered (gdb_stdlog,
2717 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2718 num_events, random_selector);
2719
2720 event_lp = iterate_over_lwps (filter,
2721 select_event_lwp_callback,
2722 &random_selector);
2723 }
2724
2725 if (event_lp != NULL)
2726 {
2727 /* Switch the event LWP. */
2728 *orig_lp = event_lp;
2729 *status = event_lp->status;
2730 }
2731
2732 /* Flush the wait status for the event LWP. */
2733 (*orig_lp)->status = 0;
2734 }
2735
2736 /* Return non-zero if LP has been resumed. */
2737
2738 static int
2739 resumed_callback (struct lwp_info *lp, void *data)
2740 {
2741 return lp->resumed;
2742 }
2743
2744 /* Stop an active thread, verify it still exists, then resume it. If
2745 the thread ends up with a pending status, then it is not resumed,
2746 and *DATA (really a pointer to int), is set. */
2747
2748 static int
2749 stop_and_resume_callback (struct lwp_info *lp, void *data)
2750 {
2751 int *new_pending_p = data;
2752
2753 if (!lp->stopped)
2754 {
2755 ptid_t ptid = lp->ptid;
2756
2757 stop_callback (lp, NULL);
2758 stop_wait_callback (lp, NULL);
2759
2760 /* Resume if the lwp still exists, and the core wanted it
2761 running. */
2762 lp = find_lwp_pid (ptid);
2763 if (lp != NULL)
2764 {
2765 if (lp->last_resume_kind == resume_stop
2766 && !lwp_status_pending_p (lp))
2767 {
2768 /* The core wanted the LWP to stop. Even if it stopped
2769 cleanly (with SIGSTOP), leave the event pending. */
2770 if (debug_linux_nat)
2771 fprintf_unfiltered (gdb_stdlog,
2772 "SARC: core wanted LWP %ld stopped "
2773 "(leaving SIGSTOP pending)\n",
2774 ptid_get_lwp (lp->ptid));
2775 lp->status = W_STOPCODE (SIGSTOP);
2776 }
2777
2778 if (!lwp_status_pending_p (lp))
2779 {
2780 if (debug_linux_nat)
2781 fprintf_unfiltered (gdb_stdlog,
2782 "SARC: re-resuming LWP %ld\n",
2783 ptid_get_lwp (lp->ptid));
2784 resume_lwp (lp, lp->step, GDB_SIGNAL_0);
2785 }
2786 else
2787 {
2788 if (debug_linux_nat)
2789 fprintf_unfiltered (gdb_stdlog,
2790 "SARC: not re-resuming LWP %ld "
2791 "(has pending)\n",
2792 ptid_get_lwp (lp->ptid));
2793 if (new_pending_p)
2794 *new_pending_p = 1;
2795 }
2796 }
2797 }
2798 return 0;
2799 }
2800
2801 /* Check if we should go on and pass this event to common code.
2802 Return the affected lwp if we are, or NULL otherwise. If we stop
2803 all lwps temporarily, we may end up with new pending events in some
2804 other lwp. In that case set *NEW_PENDING_P to true. */
2805
2806 static struct lwp_info *
2807 linux_nat_filter_event (int lwpid, int status, int *new_pending_p)
2808 {
2809 struct lwp_info *lp;
2810 int event = linux_ptrace_get_extended_event (status);
2811
2812 *new_pending_p = 0;
2813
2814 lp = find_lwp_pid (pid_to_ptid (lwpid));
2815
2816 /* Check for stop events reported by a process we didn't already
2817 know about - anything not already in our LWP list.
2818
2819 If we're expecting to receive stopped processes after
2820 fork, vfork, and clone events, then we'll just add the
2821 new one to our list and go back to waiting for the event
2822 to be reported - the stopped process might be returned
2823 from waitpid before or after the event is.
2824
2825 But note the case of a non-leader thread exec'ing after the
2826 leader having exited, and gone from our lists. The non-leader
2827 thread changes its tid to the tgid. */
2828
2829 if (WIFSTOPPED (status) && lp == NULL
2830 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
2831 {
2832 /* A multi-thread exec after we had seen the leader exiting. */
2833 if (debug_linux_nat)
2834 fprintf_unfiltered (gdb_stdlog,
2835 "LLW: Re-adding thread group leader LWP %d.\n",
2836 lwpid);
2837
2838 lp = add_lwp (ptid_build (lwpid, lwpid, 0));
2839 lp->stopped = 1;
2840 lp->resumed = 1;
2841 add_thread (lp->ptid);
2842 }
2843
2844 if (WIFSTOPPED (status) && !lp)
2845 {
2846 add_to_pid_list (&stopped_pids, lwpid, status);
2847 return NULL;
2848 }
2849
2850 /* Make sure we don't report an event for the exit of an LWP not in
2851 our list, i.e. not part of the current process. This can happen
2852 if we detach from a program we originally forked and then it
2853 exits. */
2854 if (!WIFSTOPPED (status) && !lp)
2855 return NULL;
2856
2857 /* This LWP is stopped now. (And if dead, this prevents it from
2858 ever being continued.) */
2859 lp->stopped = 1;
2860
2861 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
2862 {
2863 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2864
2865 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), inf->attach_flag);
2866 lp->must_set_ptrace_flags = 0;
2867 }
2868
2869 /* Handle GNU/Linux's syscall SIGTRAPs. */
2870 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2871 {
2872 /* No longer need the sysgood bit. The ptrace event ends up
2873 recorded in lp->waitstatus if we care for it. We can carry
2874 on handling the event like a regular SIGTRAP from here
2875 on. */
2876 status = W_STOPCODE (SIGTRAP);
2877 if (linux_handle_syscall_trap (lp, 0))
2878 return NULL;
2879 }
2880
2881 /* Handle GNU/Linux's extended waitstatus for trace events. */
2882 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2883 && linux_is_extended_waitstatus (status))
2884 {
2885 if (debug_linux_nat)
2886 fprintf_unfiltered (gdb_stdlog,
2887 "LLW: Handling extended status 0x%06x\n",
2888 status);
2889 if (linux_handle_extended_wait (lp, status, 0))
2890 return NULL;
2891 }
2892
2893 if (linux_nat_status_is_event (status))
2894 save_sigtrap (lp);
2895
2896 /* Check if the thread has exited. */
2897 if ((WIFEXITED (status) || WIFSIGNALED (status))
2898 && num_lwps (ptid_get_pid (lp->ptid)) > 1)
2899 {
2900 /* If this is the main thread, we must stop all threads and verify
2901 if they are still alive. This is because in the nptl thread model
2902 on Linux 2.4, there is no signal issued for exiting LWPs
2903 other than the main thread. We only get the main thread exit
2904 signal once all child threads have already exited. If we
2905 stop all the threads and use the stop_wait_callback to check
2906 if they have exited we can determine whether this signal
2907 should be ignored or whether it means the end of the debugged
2908 application, regardless of which threading model is being
2909 used. */
2910 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
2911 {
2912 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
2913 stop_and_resume_callback, new_pending_p);
2914 }
2915
2916 if (debug_linux_nat)
2917 fprintf_unfiltered (gdb_stdlog,
2918 "LLW: %s exited.\n",
2919 target_pid_to_str (lp->ptid));
2920
2921 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
2922 {
2923 /* If there is at least one more LWP, then the exit signal
2924 was not the end of the debugged application and should be
2925 ignored. */
2926 exit_lwp (lp);
2927 return NULL;
2928 }
2929 }
2930
2931 /* Check if the current LWP has previously exited. In the nptl
2932 thread model, LWPs other than the main thread do not issue
2933 signals when they exit so we must check whenever the thread has
2934 stopped. A similar check is made in stop_wait_callback(). */
2935 if (num_lwps (ptid_get_pid (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
2936 {
2937 ptid_t ptid = pid_to_ptid (ptid_get_pid (lp->ptid));
2938
2939 if (debug_linux_nat)
2940 fprintf_unfiltered (gdb_stdlog,
2941 "LLW: %s exited.\n",
2942 target_pid_to_str (lp->ptid));
2943
2944 exit_lwp (lp);
2945
2946 /* Make sure there is at least one thread running. */
2947 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
2948
2949 /* Discard the event. */
2950 return NULL;
2951 }
2952
2953 /* Make sure we don't report a SIGSTOP that we sent ourselves in
2954 an attempt to stop an LWP. */
2955 if (lp->signalled
2956 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
2957 {
2958 if (debug_linux_nat)
2959 fprintf_unfiltered (gdb_stdlog,
2960 "LLW: Delayed SIGSTOP caught for %s.\n",
2961 target_pid_to_str (lp->ptid));
2962
2963 lp->signalled = 0;
2964
2965 if (lp->last_resume_kind != resume_stop)
2966 {
2967 /* This is a delayed SIGSTOP. */
2968
2969 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2970 if (debug_linux_nat)
2971 fprintf_unfiltered (gdb_stdlog,
2972 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
2973 lp->step ?
2974 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2975 target_pid_to_str (lp->ptid));
2976
2977 gdb_assert (lp->resumed);
2978
2979 /* Discard the event. */
2980 return NULL;
2981 }
2982 }
2983
2984 /* Make sure we don't report a SIGINT that we have already displayed
2985 for another thread. */
2986 if (lp->ignore_sigint
2987 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
2988 {
2989 if (debug_linux_nat)
2990 fprintf_unfiltered (gdb_stdlog,
2991 "LLW: Delayed SIGINT caught for %s.\n",
2992 target_pid_to_str (lp->ptid));
2993
2994 /* This is a delayed SIGINT. */
2995 lp->ignore_sigint = 0;
2996
2997 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2998 if (debug_linux_nat)
2999 fprintf_unfiltered (gdb_stdlog,
3000 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3001 lp->step ?
3002 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3003 target_pid_to_str (lp->ptid));
3004 gdb_assert (lp->resumed);
3005
3006 /* Discard the event. */
3007 return NULL;
3008 }
3009
3010 /* An interesting event. */
3011 gdb_assert (lp);
3012 lp->status = status;
3013 return lp;
3014 }
3015
3016 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3017 their exits until all other threads in the group have exited. */
3018
3019 static void
3020 check_zombie_leaders (void)
3021 {
3022 struct inferior *inf;
3023
3024 ALL_INFERIORS (inf)
3025 {
3026 struct lwp_info *leader_lp;
3027
3028 if (inf->pid == 0)
3029 continue;
3030
3031 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3032 if (leader_lp != NULL
3033 /* Check if there are other threads in the group, as we may
3034 have raced with the inferior simply exiting. */
3035 && num_lwps (inf->pid) > 1
3036 && linux_proc_pid_is_zombie (inf->pid))
3037 {
3038 if (debug_linux_nat)
3039 fprintf_unfiltered (gdb_stdlog,
3040 "CZL: Thread group leader %d zombie "
3041 "(it exited, or another thread execd).\n",
3042 inf->pid);
3043
3044 /* A leader zombie can mean one of two things:
3045
3046 - It exited, and there's an exit status pending
3047 available, or only the leader exited (not the whole
3048 program). In the latter case, we can't waitpid the
3049 leader's exit status until all other threads are gone.
3050
3051 - There are 3 or more threads in the group, and a thread
3052 other than the leader exec'd. On an exec, the Linux
3053 kernel destroys all other threads (except the execing
3054 one) in the thread group, and resets the execing thread's
3055 tid to the tgid. No exit notification is sent for the
3056 execing thread -- from the ptracer's perspective, it
3057 appears as though the execing thread just vanishes.
3058 Until we reap all other threads except the leader and the
3059 execing thread, the leader will be zombie, and the
3060 execing thread will be in `D (disc sleep)'. As soon as
3061 all other threads are reaped, the execing thread changes
3062 it's tid to the tgid, and the previous (zombie) leader
3063 vanishes, giving place to the "new" leader. We could try
3064 distinguishing the exit and exec cases, by waiting once
3065 more, and seeing if something comes out, but it doesn't
3066 sound useful. The previous leader _does_ go away, and
3067 we'll re-add the new one once we see the exec event
3068 (which is just the same as what would happen if the
3069 previous leader did exit voluntarily before some other
3070 thread execs). */
3071
3072 if (debug_linux_nat)
3073 fprintf_unfiltered (gdb_stdlog,
3074 "CZL: Thread group leader %d vanished.\n",
3075 inf->pid);
3076 exit_lwp (leader_lp);
3077 }
3078 }
3079 }
3080
3081 static ptid_t
3082 linux_nat_wait_1 (struct target_ops *ops,
3083 ptid_t ptid, struct target_waitstatus *ourstatus,
3084 int target_options)
3085 {
3086 sigset_t prev_mask;
3087 enum resume_kind last_resume_kind;
3088 struct lwp_info *lp;
3089 int status;
3090
3091 if (debug_linux_nat)
3092 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3093
3094 /* The first time we get here after starting a new inferior, we may
3095 not have added it to the LWP list yet - this is the earliest
3096 moment at which we know its PID. */
3097 if (ptid_is_pid (inferior_ptid))
3098 {
3099 /* Upgrade the main thread's ptid. */
3100 thread_change_ptid (inferior_ptid,
3101 ptid_build (ptid_get_pid (inferior_ptid),
3102 ptid_get_pid (inferior_ptid), 0));
3103
3104 lp = add_initial_lwp (inferior_ptid);
3105 lp->resumed = 1;
3106 }
3107
3108 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3109 block_child_signals (&prev_mask);
3110
3111 retry:
3112 status = 0;
3113
3114 /* First check if there is a LWP with a wait status pending. */
3115 lp = iterate_over_lwps (ptid, status_callback, NULL);
3116 if (lp != NULL)
3117 {
3118 if (debug_linux_nat)
3119 fprintf_unfiltered (gdb_stdlog,
3120 "LLW: Using pending wait status %s for %s.\n",
3121 status_to_str (lp->status),
3122 target_pid_to_str (lp->ptid));
3123 }
3124
3125 if (!target_can_async_p ())
3126 {
3127 /* Causes SIGINT to be passed on to the attached process. */
3128 set_sigint_trap ();
3129 }
3130
3131 /* But if we don't find a pending event, we'll have to wait. */
3132
3133 while (lp == NULL)
3134 {
3135 pid_t lwpid;
3136
3137 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3138 quirks:
3139
3140 - If the thread group leader exits while other threads in the
3141 thread group still exist, waitpid(TGID, ...) hangs. That
3142 waitpid won't return an exit status until the other threads
3143 in the group are reapped.
3144
3145 - When a non-leader thread execs, that thread just vanishes
3146 without reporting an exit (so we'd hang if we waited for it
3147 explicitly in that case). The exec event is reported to
3148 the TGID pid. */
3149
3150 errno = 0;
3151 lwpid = my_waitpid (-1, &status, __WCLONE | WNOHANG);
3152 if (lwpid == 0 || (lwpid == -1 && errno == ECHILD))
3153 lwpid = my_waitpid (-1, &status, WNOHANG);
3154
3155 if (debug_linux_nat)
3156 fprintf_unfiltered (gdb_stdlog,
3157 "LNW: waitpid(-1, ...) returned %d, %s\n",
3158 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3159
3160 if (lwpid > 0)
3161 {
3162 /* If this is true, then we paused LWPs momentarily, and may
3163 now have pending events to handle. */
3164 int new_pending;
3165
3166 if (debug_linux_nat)
3167 {
3168 fprintf_unfiltered (gdb_stdlog,
3169 "LLW: waitpid %ld received %s\n",
3170 (long) lwpid, status_to_str (status));
3171 }
3172
3173 lp = linux_nat_filter_event (lwpid, status, &new_pending);
3174
3175 /* STATUS is now no longer valid, use LP->STATUS instead. */
3176 status = 0;
3177
3178 if (lp && !ptid_match (lp->ptid, ptid))
3179 {
3180 gdb_assert (lp->resumed);
3181
3182 if (debug_linux_nat)
3183 fprintf_unfiltered (gdb_stdlog,
3184 "LWP %ld got an event %06x, "
3185 "leaving pending.\n",
3186 ptid_get_lwp (lp->ptid), lp->status);
3187
3188 if (WIFSTOPPED (lp->status))
3189 {
3190 if (WSTOPSIG (lp->status) != SIGSTOP)
3191 {
3192 /* Cancel breakpoint hits. The breakpoint may
3193 be removed before we fetch events from this
3194 process to report to the core. It is best
3195 not to assume the moribund breakpoints
3196 heuristic always handles these cases --- it
3197 could be too many events go through to the
3198 core before this one is handled. All-stop
3199 always cancels breakpoint hits in all
3200 threads. */
3201 if (non_stop
3202 && linux_nat_lp_status_is_event (lp)
3203 && cancel_breakpoint (lp))
3204 {
3205 /* Throw away the SIGTRAP. */
3206 lp->status = 0;
3207
3208 if (debug_linux_nat)
3209 fprintf_unfiltered (gdb_stdlog,
3210 "LLW: LWP %ld hit a "
3211 "breakpoint while "
3212 "waiting for another "
3213 "process; "
3214 "cancelled it\n",
3215 ptid_get_lwp (lp->ptid));
3216 }
3217 }
3218 else
3219 lp->signalled = 0;
3220 }
3221 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3222 {
3223 if (debug_linux_nat)
3224 fprintf_unfiltered (gdb_stdlog,
3225 "Process %ld exited while stopping "
3226 "LWPs\n",
3227 ptid_get_lwp (lp->ptid));
3228
3229 /* This was the last lwp in the process. Since
3230 events are serialized to GDB core, and we can't
3231 report this one right now, but GDB core and the
3232 other target layers will want to be notified
3233 about the exit code/signal, leave the status
3234 pending for the next time we're able to report
3235 it. */
3236
3237 /* Dead LWP's aren't expected to reported a pending
3238 sigstop. */
3239 lp->signalled = 0;
3240
3241 /* Store the pending event in the waitstatus as
3242 well, because W_EXITCODE(0,0) == 0. */
3243 store_waitstatus (&lp->waitstatus, lp->status);
3244 }
3245
3246 /* Keep looking. */
3247 lp = NULL;
3248 }
3249
3250 if (new_pending)
3251 {
3252 /* Some LWP now has a pending event. Go all the way
3253 back to check it. */
3254 goto retry;
3255 }
3256
3257 if (lp)
3258 {
3259 /* We got an event to report to the core. */
3260 break;
3261 }
3262
3263 /* Retry until nothing comes out of waitpid. A single
3264 SIGCHLD can indicate more than one child stopped. */
3265 continue;
3266 }
3267
3268 /* Check for zombie thread group leaders. Those can't be reaped
3269 until all other threads in the thread group are. */
3270 check_zombie_leaders ();
3271
3272 /* If there are no resumed children left, bail. We'd be stuck
3273 forever in the sigsuspend call below otherwise. */
3274 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3275 {
3276 if (debug_linux_nat)
3277 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3278
3279 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3280
3281 if (!target_can_async_p ())
3282 clear_sigint_trap ();
3283
3284 restore_child_signals_mask (&prev_mask);
3285 return minus_one_ptid;
3286 }
3287
3288 /* No interesting event to report to the core. */
3289
3290 if (target_options & TARGET_WNOHANG)
3291 {
3292 if (debug_linux_nat)
3293 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3294
3295 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3296 restore_child_signals_mask (&prev_mask);
3297 return minus_one_ptid;
3298 }
3299
3300 /* We shouldn't end up here unless we want to try again. */
3301 gdb_assert (lp == NULL);
3302
3303 /* Block until we get an event reported with SIGCHLD. */
3304 if (debug_linux_nat)
3305 fprintf_unfiltered (gdb_stdlog, "LNW: about to sigsuspend\n");
3306 sigsuspend (&suspend_mask);
3307 }
3308
3309 if (!target_can_async_p ())
3310 clear_sigint_trap ();
3311
3312 gdb_assert (lp);
3313
3314 status = lp->status;
3315 lp->status = 0;
3316
3317 /* Don't report signals that GDB isn't interested in, such as
3318 signals that are neither printed nor stopped upon. Stopping all
3319 threads can be a bit time-consuming so if we want decent
3320 performance with heavily multi-threaded programs, especially when
3321 they're using a high frequency timer, we'd better avoid it if we
3322 can. */
3323
3324 if (WIFSTOPPED (status))
3325 {
3326 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3327
3328 /* When using hardware single-step, we need to report every signal.
3329 Otherwise, signals in pass_mask may be short-circuited. */
3330 if (!lp->step
3331 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)))
3332 {
3333 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3334 here? It is not clear we should. GDB may not expect
3335 other threads to run. On the other hand, not resuming
3336 newly attached threads may cause an unwanted delay in
3337 getting them running. */
3338 linux_resume_one_lwp (lp, lp->step, signo);
3339 if (debug_linux_nat)
3340 fprintf_unfiltered (gdb_stdlog,
3341 "LLW: %s %s, %s (preempt 'handle')\n",
3342 lp->step ?
3343 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3344 target_pid_to_str (lp->ptid),
3345 (signo != GDB_SIGNAL_0
3346 ? strsignal (gdb_signal_to_host (signo))
3347 : "0"));
3348 goto retry;
3349 }
3350
3351 if (!non_stop)
3352 {
3353 /* Only do the below in all-stop, as we currently use SIGINT
3354 to implement target_stop (see linux_nat_stop) in
3355 non-stop. */
3356 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3357 {
3358 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3359 forwarded to the entire process group, that is, all LWPs
3360 will receive it - unless they're using CLONE_THREAD to
3361 share signals. Since we only want to report it once, we
3362 mark it as ignored for all LWPs except this one. */
3363 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3364 set_ignore_sigint, NULL);
3365 lp->ignore_sigint = 0;
3366 }
3367 else
3368 maybe_clear_ignore_sigint (lp);
3369 }
3370 }
3371
3372 /* This LWP is stopped now. */
3373 lp->stopped = 1;
3374
3375 if (debug_linux_nat)
3376 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3377 status_to_str (status), target_pid_to_str (lp->ptid));
3378
3379 if (!non_stop)
3380 {
3381 /* Now stop all other LWP's ... */
3382 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3383
3384 /* ... and wait until all of them have reported back that
3385 they're no longer running. */
3386 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3387
3388 /* If we're not waiting for a specific LWP, choose an event LWP
3389 from among those that have had events. Giving equal priority
3390 to all LWPs that have had events helps prevent
3391 starvation. */
3392 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3393 select_event_lwp (ptid, &lp, &status);
3394
3395 /* Now that we've selected our final event LWP, cancel any
3396 breakpoints in other LWPs that have hit a GDB breakpoint.
3397 See the comment in cancel_breakpoints_callback to find out
3398 why. */
3399 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3400
3401 /* We'll need this to determine whether to report a SIGSTOP as
3402 TARGET_WAITKIND_0. Need to take a copy because
3403 resume_clear_callback clears it. */
3404 last_resume_kind = lp->last_resume_kind;
3405
3406 /* In all-stop, from the core's perspective, all LWPs are now
3407 stopped until a new resume action is sent over. */
3408 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3409 }
3410 else
3411 {
3412 /* See above. */
3413 last_resume_kind = lp->last_resume_kind;
3414 resume_clear_callback (lp, NULL);
3415 }
3416
3417 if (linux_nat_status_is_event (status))
3418 {
3419 if (debug_linux_nat)
3420 fprintf_unfiltered (gdb_stdlog,
3421 "LLW: trap ptid is %s.\n",
3422 target_pid_to_str (lp->ptid));
3423 }
3424
3425 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3426 {
3427 *ourstatus = lp->waitstatus;
3428 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3429 }
3430 else
3431 store_waitstatus (ourstatus, status);
3432
3433 if (debug_linux_nat)
3434 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3435
3436 restore_child_signals_mask (&prev_mask);
3437
3438 if (last_resume_kind == resume_stop
3439 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3440 && WSTOPSIG (status) == SIGSTOP)
3441 {
3442 /* A thread that has been requested to stop by GDB with
3443 target_stop, and it stopped cleanly, so report as SIG0. The
3444 use of SIGSTOP is an implementation detail. */
3445 ourstatus->value.sig = GDB_SIGNAL_0;
3446 }
3447
3448 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3449 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3450 lp->core = -1;
3451 else
3452 lp->core = linux_common_core_of_thread (lp->ptid);
3453
3454 return lp->ptid;
3455 }
3456
3457 /* Resume LWPs that are currently stopped without any pending status
3458 to report, but are resumed from the core's perspective. */
3459
3460 static int
3461 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3462 {
3463 ptid_t *wait_ptid_p = data;
3464
3465 if (lp->stopped
3466 && lp->resumed
3467 && !lwp_status_pending_p (lp))
3468 {
3469 struct regcache *regcache = get_thread_regcache (lp->ptid);
3470 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3471 CORE_ADDR pc = regcache_read_pc (regcache);
3472
3473 gdb_assert (is_executing (lp->ptid));
3474
3475 /* Don't bother if there's a breakpoint at PC that we'd hit
3476 immediately, and we're not waiting for this LWP. */
3477 if (!ptid_match (lp->ptid, *wait_ptid_p))
3478 {
3479 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3480 return 0;
3481 }
3482
3483 if (debug_linux_nat)
3484 fprintf_unfiltered (gdb_stdlog,
3485 "RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
3486 target_pid_to_str (lp->ptid),
3487 paddress (gdbarch, pc),
3488 lp->step);
3489
3490 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3491 }
3492
3493 return 0;
3494 }
3495
3496 static ptid_t
3497 linux_nat_wait (struct target_ops *ops,
3498 ptid_t ptid, struct target_waitstatus *ourstatus,
3499 int target_options)
3500 {
3501 ptid_t event_ptid;
3502
3503 if (debug_linux_nat)
3504 {
3505 char *options_string;
3506
3507 options_string = target_options_to_string (target_options);
3508 fprintf_unfiltered (gdb_stdlog,
3509 "linux_nat_wait: [%s], [%s]\n",
3510 target_pid_to_str (ptid),
3511 options_string);
3512 xfree (options_string);
3513 }
3514
3515 /* Flush the async file first. */
3516 if (target_can_async_p ())
3517 async_file_flush ();
3518
3519 /* Resume LWPs that are currently stopped without any pending status
3520 to report, but are resumed from the core's perspective. LWPs get
3521 in this state if we find them stopping at a time we're not
3522 interested in reporting the event (target_wait on a
3523 specific_process, for example, see linux_nat_wait_1), and
3524 meanwhile the event became uninteresting. Don't bother resuming
3525 LWPs we're not going to wait for if they'd stop immediately. */
3526 if (non_stop)
3527 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3528
3529 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3530
3531 /* If we requested any event, and something came out, assume there
3532 may be more. If we requested a specific lwp or process, also
3533 assume there may be more. */
3534 if (target_can_async_p ()
3535 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3536 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3537 || !ptid_equal (ptid, minus_one_ptid)))
3538 async_file_mark ();
3539
3540 /* Get ready for the next event. */
3541 if (target_can_async_p ())
3542 target_async (inferior_event_handler, 0);
3543
3544 return event_ptid;
3545 }
3546
3547 static int
3548 kill_callback (struct lwp_info *lp, void *data)
3549 {
3550 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3551
3552 errno = 0;
3553 kill_lwp (ptid_get_lwp (lp->ptid), SIGKILL);
3554 if (debug_linux_nat)
3555 {
3556 int save_errno = errno;
3557
3558 fprintf_unfiltered (gdb_stdlog,
3559 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3560 target_pid_to_str (lp->ptid),
3561 save_errno ? safe_strerror (save_errno) : "OK");
3562 }
3563
3564 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3565
3566 errno = 0;
3567 ptrace (PTRACE_KILL, ptid_get_lwp (lp->ptid), 0, 0);
3568 if (debug_linux_nat)
3569 {
3570 int save_errno = errno;
3571
3572 fprintf_unfiltered (gdb_stdlog,
3573 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3574 target_pid_to_str (lp->ptid),
3575 save_errno ? safe_strerror (save_errno) : "OK");
3576 }
3577
3578 return 0;
3579 }
3580
3581 static int
3582 kill_wait_callback (struct lwp_info *lp, void *data)
3583 {
3584 pid_t pid;
3585
3586 /* We must make sure that there are no pending events (delayed
3587 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3588 program doesn't interfere with any following debugging session. */
3589
3590 /* For cloned processes we must check both with __WCLONE and
3591 without, since the exit status of a cloned process isn't reported
3592 with __WCLONE. */
3593 if (lp->cloned)
3594 {
3595 do
3596 {
3597 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, __WCLONE);
3598 if (pid != (pid_t) -1)
3599 {
3600 if (debug_linux_nat)
3601 fprintf_unfiltered (gdb_stdlog,
3602 "KWC: wait %s received unknown.\n",
3603 target_pid_to_str (lp->ptid));
3604 /* The Linux kernel sometimes fails to kill a thread
3605 completely after PTRACE_KILL; that goes from the stop
3606 point in do_fork out to the one in
3607 get_signal_to_deliever and waits again. So kill it
3608 again. */
3609 kill_callback (lp, NULL);
3610 }
3611 }
3612 while (pid == ptid_get_lwp (lp->ptid));
3613
3614 gdb_assert (pid == -1 && errno == ECHILD);
3615 }
3616
3617 do
3618 {
3619 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, 0);
3620 if (pid != (pid_t) -1)
3621 {
3622 if (debug_linux_nat)
3623 fprintf_unfiltered (gdb_stdlog,
3624 "KWC: wait %s received unk.\n",
3625 target_pid_to_str (lp->ptid));
3626 /* See the call to kill_callback above. */
3627 kill_callback (lp, NULL);
3628 }
3629 }
3630 while (pid == ptid_get_lwp (lp->ptid));
3631
3632 gdb_assert (pid == -1 && errno == ECHILD);
3633 return 0;
3634 }
3635
3636 static void
3637 linux_nat_kill (struct target_ops *ops)
3638 {
3639 struct target_waitstatus last;
3640 ptid_t last_ptid;
3641 int status;
3642
3643 /* If we're stopped while forking and we haven't followed yet,
3644 kill the other task. We need to do this first because the
3645 parent will be sleeping if this is a vfork. */
3646
3647 get_last_target_status (&last_ptid, &last);
3648
3649 if (last.kind == TARGET_WAITKIND_FORKED
3650 || last.kind == TARGET_WAITKIND_VFORKED)
3651 {
3652 ptrace (PT_KILL, ptid_get_pid (last.value.related_pid), 0, 0);
3653 wait (&status);
3654
3655 /* Let the arch-specific native code know this process is
3656 gone. */
3657 linux_nat_forget_process (ptid_get_pid (last.value.related_pid));
3658 }
3659
3660 if (forks_exist_p ())
3661 linux_fork_killall ();
3662 else
3663 {
3664 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3665
3666 /* Stop all threads before killing them, since ptrace requires
3667 that the thread is stopped to sucessfully PTRACE_KILL. */
3668 iterate_over_lwps (ptid, stop_callback, NULL);
3669 /* ... and wait until all of them have reported back that
3670 they're no longer running. */
3671 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3672
3673 /* Kill all LWP's ... */
3674 iterate_over_lwps (ptid, kill_callback, NULL);
3675
3676 /* ... and wait until we've flushed all events. */
3677 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3678 }
3679
3680 target_mourn_inferior ();
3681 }
3682
3683 static void
3684 linux_nat_mourn_inferior (struct target_ops *ops)
3685 {
3686 int pid = ptid_get_pid (inferior_ptid);
3687
3688 purge_lwp_list (pid);
3689
3690 if (! forks_exist_p ())
3691 /* Normal case, no other forks available. */
3692 linux_ops->to_mourn_inferior (ops);
3693 else
3694 /* Multi-fork case. The current inferior_ptid has exited, but
3695 there are other viable forks to debug. Delete the exiting
3696 one and context-switch to the first available. */
3697 linux_fork_mourn_inferior ();
3698
3699 /* Let the arch-specific native code know this process is gone. */
3700 linux_nat_forget_process (pid);
3701 }
3702
3703 /* Convert a native/host siginfo object, into/from the siginfo in the
3704 layout of the inferiors' architecture. */
3705
3706 static void
3707 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3708 {
3709 int done = 0;
3710
3711 if (linux_nat_siginfo_fixup != NULL)
3712 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3713
3714 /* If there was no callback, or the callback didn't do anything,
3715 then just do a straight memcpy. */
3716 if (!done)
3717 {
3718 if (direction == 1)
3719 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3720 else
3721 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3722 }
3723 }
3724
3725 static enum target_xfer_status
3726 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3727 const char *annex, gdb_byte *readbuf,
3728 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3729 ULONGEST *xfered_len)
3730 {
3731 int pid;
3732 siginfo_t siginfo;
3733 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3734
3735 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3736 gdb_assert (readbuf || writebuf);
3737
3738 pid = ptid_get_lwp (inferior_ptid);
3739 if (pid == 0)
3740 pid = ptid_get_pid (inferior_ptid);
3741
3742 if (offset > sizeof (siginfo))
3743 return TARGET_XFER_E_IO;
3744
3745 errno = 0;
3746 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3747 if (errno != 0)
3748 return TARGET_XFER_E_IO;
3749
3750 /* When GDB is built as a 64-bit application, ptrace writes into
3751 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3752 inferior with a 64-bit GDB should look the same as debugging it
3753 with a 32-bit GDB, we need to convert it. GDB core always sees
3754 the converted layout, so any read/write will have to be done
3755 post-conversion. */
3756 siginfo_fixup (&siginfo, inf_siginfo, 0);
3757
3758 if (offset + len > sizeof (siginfo))
3759 len = sizeof (siginfo) - offset;
3760
3761 if (readbuf != NULL)
3762 memcpy (readbuf, inf_siginfo + offset, len);
3763 else
3764 {
3765 memcpy (inf_siginfo + offset, writebuf, len);
3766
3767 /* Convert back to ptrace layout before flushing it out. */
3768 siginfo_fixup (&siginfo, inf_siginfo, 1);
3769
3770 errno = 0;
3771 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3772 if (errno != 0)
3773 return TARGET_XFER_E_IO;
3774 }
3775
3776 *xfered_len = len;
3777 return TARGET_XFER_OK;
3778 }
3779
3780 static enum target_xfer_status
3781 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3782 const char *annex, gdb_byte *readbuf,
3783 const gdb_byte *writebuf,
3784 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3785 {
3786 struct cleanup *old_chain;
3787 enum target_xfer_status xfer;
3788
3789 if (object == TARGET_OBJECT_SIGNAL_INFO)
3790 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3791 offset, len, xfered_len);
3792
3793 /* The target is connected but no live inferior is selected. Pass
3794 this request down to a lower stratum (e.g., the executable
3795 file). */
3796 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3797 return TARGET_XFER_EOF;
3798
3799 old_chain = save_inferior_ptid ();
3800
3801 if (ptid_lwp_p (inferior_ptid))
3802 inferior_ptid = pid_to_ptid (ptid_get_lwp (inferior_ptid));
3803
3804 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3805 offset, len, xfered_len);
3806
3807 do_cleanups (old_chain);
3808 return xfer;
3809 }
3810
3811 static int
3812 linux_thread_alive (ptid_t ptid)
3813 {
3814 int err, tmp_errno;
3815
3816 gdb_assert (ptid_lwp_p (ptid));
3817
3818 /* Send signal 0 instead of anything ptrace, because ptracing a
3819 running thread errors out claiming that the thread doesn't
3820 exist. */
3821 err = kill_lwp (ptid_get_lwp (ptid), 0);
3822 tmp_errno = errno;
3823 if (debug_linux_nat)
3824 fprintf_unfiltered (gdb_stdlog,
3825 "LLTA: KILL(SIG0) %s (%s)\n",
3826 target_pid_to_str (ptid),
3827 err ? safe_strerror (tmp_errno) : "OK");
3828
3829 if (err != 0)
3830 return 0;
3831
3832 return 1;
3833 }
3834
3835 static int
3836 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3837 {
3838 return linux_thread_alive (ptid);
3839 }
3840
3841 static char *
3842 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3843 {
3844 static char buf[64];
3845
3846 if (ptid_lwp_p (ptid)
3847 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
3848 || num_lwps (ptid_get_pid (ptid)) > 1))
3849 {
3850 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
3851 return buf;
3852 }
3853
3854 return normal_pid_to_str (ptid);
3855 }
3856
3857 static char *
3858 linux_nat_thread_name (struct target_ops *self, struct thread_info *thr)
3859 {
3860 int pid = ptid_get_pid (thr->ptid);
3861 long lwp = ptid_get_lwp (thr->ptid);
3862 #define FORMAT "/proc/%d/task/%ld/comm"
3863 char buf[sizeof (FORMAT) + 30];
3864 FILE *comm_file;
3865 char *result = NULL;
3866
3867 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
3868 comm_file = gdb_fopen_cloexec (buf, "r");
3869 if (comm_file)
3870 {
3871 /* Not exported by the kernel, so we define it here. */
3872 #define COMM_LEN 16
3873 static char line[COMM_LEN + 1];
3874
3875 if (fgets (line, sizeof (line), comm_file))
3876 {
3877 char *nl = strchr (line, '\n');
3878
3879 if (nl)
3880 *nl = '\0';
3881 if (*line != '\0')
3882 result = line;
3883 }
3884
3885 fclose (comm_file);
3886 }
3887
3888 #undef COMM_LEN
3889 #undef FORMAT
3890
3891 return result;
3892 }
3893
3894 /* Accepts an integer PID; Returns a string representing a file that
3895 can be opened to get the symbols for the child process. */
3896
3897 static char *
3898 linux_child_pid_to_exec_file (struct target_ops *self, int pid)
3899 {
3900 static char buf[PATH_MAX];
3901 char name[PATH_MAX];
3902
3903 xsnprintf (name, PATH_MAX, "/proc/%d/exe", pid);
3904 memset (buf, 0, PATH_MAX);
3905 if (readlink (name, buf, PATH_MAX - 1) <= 0)
3906 strcpy (buf, name);
3907
3908 return buf;
3909 }
3910
3911 /* Implement the to_xfer_partial interface for memory reads using the /proc
3912 filesystem. Because we can use a single read() call for /proc, this
3913 can be much more efficient than banging away at PTRACE_PEEKTEXT,
3914 but it doesn't support writes. */
3915
3916 static enum target_xfer_status
3917 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
3918 const char *annex, gdb_byte *readbuf,
3919 const gdb_byte *writebuf,
3920 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
3921 {
3922 LONGEST ret;
3923 int fd;
3924 char filename[64];
3925
3926 if (object != TARGET_OBJECT_MEMORY || !readbuf)
3927 return 0;
3928
3929 /* Don't bother for one word. */
3930 if (len < 3 * sizeof (long))
3931 return TARGET_XFER_EOF;
3932
3933 /* We could keep this file open and cache it - possibly one per
3934 thread. That requires some juggling, but is even faster. */
3935 xsnprintf (filename, sizeof filename, "/proc/%d/mem",
3936 ptid_get_pid (inferior_ptid));
3937 fd = gdb_open_cloexec (filename, O_RDONLY | O_LARGEFILE, 0);
3938 if (fd == -1)
3939 return TARGET_XFER_EOF;
3940
3941 /* If pread64 is available, use it. It's faster if the kernel
3942 supports it (only one syscall), and it's 64-bit safe even on
3943 32-bit platforms (for instance, SPARC debugging a SPARC64
3944 application). */
3945 #ifdef HAVE_PREAD64
3946 if (pread64 (fd, readbuf, len, offset) != len)
3947 #else
3948 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
3949 #endif
3950 ret = 0;
3951 else
3952 ret = len;
3953
3954 close (fd);
3955
3956 if (ret == 0)
3957 return TARGET_XFER_EOF;
3958 else
3959 {
3960 *xfered_len = ret;
3961 return TARGET_XFER_OK;
3962 }
3963 }
3964
3965
3966 /* Enumerate spufs IDs for process PID. */
3967 static LONGEST
3968 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
3969 {
3970 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3971 LONGEST pos = 0;
3972 LONGEST written = 0;
3973 char path[128];
3974 DIR *dir;
3975 struct dirent *entry;
3976
3977 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
3978 dir = opendir (path);
3979 if (!dir)
3980 return -1;
3981
3982 rewinddir (dir);
3983 while ((entry = readdir (dir)) != NULL)
3984 {
3985 struct stat st;
3986 struct statfs stfs;
3987 int fd;
3988
3989 fd = atoi (entry->d_name);
3990 if (!fd)
3991 continue;
3992
3993 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
3994 if (stat (path, &st) != 0)
3995 continue;
3996 if (!S_ISDIR (st.st_mode))
3997 continue;
3998
3999 if (statfs (path, &stfs) != 0)
4000 continue;
4001 if (stfs.f_type != SPUFS_MAGIC)
4002 continue;
4003
4004 if (pos >= offset && pos + 4 <= offset + len)
4005 {
4006 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4007 written += 4;
4008 }
4009 pos += 4;
4010 }
4011
4012 closedir (dir);
4013 return written;
4014 }
4015
4016 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4017 object type, using the /proc file system. */
4018
4019 static enum target_xfer_status
4020 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4021 const char *annex, gdb_byte *readbuf,
4022 const gdb_byte *writebuf,
4023 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4024 {
4025 char buf[128];
4026 int fd = 0;
4027 int ret = -1;
4028 int pid = ptid_get_pid (inferior_ptid);
4029
4030 if (!annex)
4031 {
4032 if (!readbuf)
4033 return TARGET_XFER_E_IO;
4034 else
4035 {
4036 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4037
4038 if (l < 0)
4039 return TARGET_XFER_E_IO;
4040 else if (l == 0)
4041 return TARGET_XFER_EOF;
4042 else
4043 {
4044 *xfered_len = (ULONGEST) l;
4045 return TARGET_XFER_OK;
4046 }
4047 }
4048 }
4049
4050 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4051 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4052 if (fd <= 0)
4053 return TARGET_XFER_E_IO;
4054
4055 if (offset != 0
4056 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4057 {
4058 close (fd);
4059 return TARGET_XFER_EOF;
4060 }
4061
4062 if (writebuf)
4063 ret = write (fd, writebuf, (size_t) len);
4064 else if (readbuf)
4065 ret = read (fd, readbuf, (size_t) len);
4066
4067 close (fd);
4068
4069 if (ret < 0)
4070 return TARGET_XFER_E_IO;
4071 else if (ret == 0)
4072 return TARGET_XFER_EOF;
4073 else
4074 {
4075 *xfered_len = (ULONGEST) ret;
4076 return TARGET_XFER_OK;
4077 }
4078 }
4079
4080
4081 /* Parse LINE as a signal set and add its set bits to SIGS. */
4082
4083 static void
4084 add_line_to_sigset (const char *line, sigset_t *sigs)
4085 {
4086 int len = strlen (line) - 1;
4087 const char *p;
4088 int signum;
4089
4090 if (line[len] != '\n')
4091 error (_("Could not parse signal set: %s"), line);
4092
4093 p = line;
4094 signum = len * 4;
4095 while (len-- > 0)
4096 {
4097 int digit;
4098
4099 if (*p >= '0' && *p <= '9')
4100 digit = *p - '0';
4101 else if (*p >= 'a' && *p <= 'f')
4102 digit = *p - 'a' + 10;
4103 else
4104 error (_("Could not parse signal set: %s"), line);
4105
4106 signum -= 4;
4107
4108 if (digit & 1)
4109 sigaddset (sigs, signum + 1);
4110 if (digit & 2)
4111 sigaddset (sigs, signum + 2);
4112 if (digit & 4)
4113 sigaddset (sigs, signum + 3);
4114 if (digit & 8)
4115 sigaddset (sigs, signum + 4);
4116
4117 p++;
4118 }
4119 }
4120
4121 /* Find process PID's pending signals from /proc/pid/status and set
4122 SIGS to match. */
4123
4124 void
4125 linux_proc_pending_signals (int pid, sigset_t *pending,
4126 sigset_t *blocked, sigset_t *ignored)
4127 {
4128 FILE *procfile;
4129 char buffer[PATH_MAX], fname[PATH_MAX];
4130 struct cleanup *cleanup;
4131
4132 sigemptyset (pending);
4133 sigemptyset (blocked);
4134 sigemptyset (ignored);
4135 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4136 procfile = gdb_fopen_cloexec (fname, "r");
4137 if (procfile == NULL)
4138 error (_("Could not open %s"), fname);
4139 cleanup = make_cleanup_fclose (procfile);
4140
4141 while (fgets (buffer, PATH_MAX, procfile) != NULL)
4142 {
4143 /* Normal queued signals are on the SigPnd line in the status
4144 file. However, 2.6 kernels also have a "shared" pending
4145 queue for delivering signals to a thread group, so check for
4146 a ShdPnd line also.
4147
4148 Unfortunately some Red Hat kernels include the shared pending
4149 queue but not the ShdPnd status field. */
4150
4151 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4152 add_line_to_sigset (buffer + 8, pending);
4153 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4154 add_line_to_sigset (buffer + 8, pending);
4155 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4156 add_line_to_sigset (buffer + 8, blocked);
4157 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4158 add_line_to_sigset (buffer + 8, ignored);
4159 }
4160
4161 do_cleanups (cleanup);
4162 }
4163
4164 static enum target_xfer_status
4165 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4166 const char *annex, gdb_byte *readbuf,
4167 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4168 ULONGEST *xfered_len)
4169 {
4170 gdb_assert (object == TARGET_OBJECT_OSDATA);
4171
4172 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4173 if (*xfered_len == 0)
4174 return TARGET_XFER_EOF;
4175 else
4176 return TARGET_XFER_OK;
4177 }
4178
4179 static enum target_xfer_status
4180 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4181 const char *annex, gdb_byte *readbuf,
4182 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4183 ULONGEST *xfered_len)
4184 {
4185 enum target_xfer_status xfer;
4186
4187 if (object == TARGET_OBJECT_AUXV)
4188 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4189 offset, len, xfered_len);
4190
4191 if (object == TARGET_OBJECT_OSDATA)
4192 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4193 offset, len, xfered_len);
4194
4195 if (object == TARGET_OBJECT_SPU)
4196 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4197 offset, len, xfered_len);
4198
4199 /* GDB calculates all the addresses in possibly larget width of the address.
4200 Address width needs to be masked before its final use - either by
4201 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4202
4203 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4204
4205 if (object == TARGET_OBJECT_MEMORY)
4206 {
4207 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4208
4209 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4210 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4211 }
4212
4213 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4214 offset, len, xfered_len);
4215 if (xfer != TARGET_XFER_EOF)
4216 return xfer;
4217
4218 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4219 offset, len, xfered_len);
4220 }
4221
4222 static void
4223 cleanup_target_stop (void *arg)
4224 {
4225 ptid_t *ptid = (ptid_t *) arg;
4226
4227 gdb_assert (arg != NULL);
4228
4229 /* Unpause all */
4230 target_resume (*ptid, 0, GDB_SIGNAL_0);
4231 }
4232
4233 static VEC(static_tracepoint_marker_p) *
4234 linux_child_static_tracepoint_markers_by_strid (struct target_ops *self,
4235 const char *strid)
4236 {
4237 char s[IPA_CMD_BUF_SIZE];
4238 struct cleanup *old_chain;
4239 int pid = ptid_get_pid (inferior_ptid);
4240 VEC(static_tracepoint_marker_p) *markers = NULL;
4241 struct static_tracepoint_marker *marker = NULL;
4242 char *p = s;
4243 ptid_t ptid = ptid_build (pid, 0, 0);
4244
4245 /* Pause all */
4246 target_stop (ptid);
4247
4248 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4249 s[sizeof ("qTfSTM")] = 0;
4250
4251 agent_run_command (pid, s, strlen (s) + 1);
4252
4253 old_chain = make_cleanup (free_current_marker, &marker);
4254 make_cleanup (cleanup_target_stop, &ptid);
4255
4256 while (*p++ == 'm')
4257 {
4258 if (marker == NULL)
4259 marker = XCNEW (struct static_tracepoint_marker);
4260
4261 do
4262 {
4263 parse_static_tracepoint_marker_definition (p, &p, marker);
4264
4265 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4266 {
4267 VEC_safe_push (static_tracepoint_marker_p,
4268 markers, marker);
4269 marker = NULL;
4270 }
4271 else
4272 {
4273 release_static_tracepoint_marker (marker);
4274 memset (marker, 0, sizeof (*marker));
4275 }
4276 }
4277 while (*p++ == ','); /* comma-separated list */
4278
4279 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4280 s[sizeof ("qTsSTM")] = 0;
4281 agent_run_command (pid, s, strlen (s) + 1);
4282 p = s;
4283 }
4284
4285 do_cleanups (old_chain);
4286
4287 return markers;
4288 }
4289
4290 /* Create a prototype generic GNU/Linux target. The client can override
4291 it with local methods. */
4292
4293 static void
4294 linux_target_install_ops (struct target_ops *t)
4295 {
4296 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4297 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4298 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4299 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4300 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4301 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4302 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4303 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4304 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4305 t->to_post_attach = linux_child_post_attach;
4306 t->to_follow_fork = linux_child_follow_fork;
4307
4308 super_xfer_partial = t->to_xfer_partial;
4309 t->to_xfer_partial = linux_xfer_partial;
4310
4311 t->to_static_tracepoint_markers_by_strid
4312 = linux_child_static_tracepoint_markers_by_strid;
4313 }
4314
4315 struct target_ops *
4316 linux_target (void)
4317 {
4318 struct target_ops *t;
4319
4320 t = inf_ptrace_target ();
4321 linux_target_install_ops (t);
4322
4323 return t;
4324 }
4325
4326 struct target_ops *
4327 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4328 {
4329 struct target_ops *t;
4330
4331 t = inf_ptrace_trad_target (register_u_offset);
4332 linux_target_install_ops (t);
4333
4334 return t;
4335 }
4336
4337 /* target_is_async_p implementation. */
4338
4339 static int
4340 linux_nat_is_async_p (struct target_ops *ops)
4341 {
4342 /* NOTE: palves 2008-03-21: We're only async when the user requests
4343 it explicitly with the "set target-async" command.
4344 Someday, linux will always be async. */
4345 return target_async_permitted;
4346 }
4347
4348 /* target_can_async_p implementation. */
4349
4350 static int
4351 linux_nat_can_async_p (struct target_ops *ops)
4352 {
4353 /* NOTE: palves 2008-03-21: We're only async when the user requests
4354 it explicitly with the "set target-async" command.
4355 Someday, linux will always be async. */
4356 return target_async_permitted;
4357 }
4358
4359 static int
4360 linux_nat_supports_non_stop (struct target_ops *self)
4361 {
4362 return 1;
4363 }
4364
4365 /* True if we want to support multi-process. To be removed when GDB
4366 supports multi-exec. */
4367
4368 int linux_multi_process = 1;
4369
4370 static int
4371 linux_nat_supports_multi_process (struct target_ops *self)
4372 {
4373 return linux_multi_process;
4374 }
4375
4376 static int
4377 linux_nat_supports_disable_randomization (struct target_ops *self)
4378 {
4379 #ifdef HAVE_PERSONALITY
4380 return 1;
4381 #else
4382 return 0;
4383 #endif
4384 }
4385
4386 static int async_terminal_is_ours = 1;
4387
4388 /* target_terminal_inferior implementation.
4389
4390 This is a wrapper around child_terminal_inferior to add async support. */
4391
4392 static void
4393 linux_nat_terminal_inferior (struct target_ops *self)
4394 {
4395 if (!target_is_async_p ())
4396 {
4397 /* Async mode is disabled. */
4398 child_terminal_inferior (self);
4399 return;
4400 }
4401
4402 child_terminal_inferior (self);
4403
4404 /* Calls to target_terminal_*() are meant to be idempotent. */
4405 if (!async_terminal_is_ours)
4406 return;
4407
4408 delete_file_handler (input_fd);
4409 async_terminal_is_ours = 0;
4410 set_sigint_trap ();
4411 }
4412
4413 /* target_terminal_ours implementation.
4414
4415 This is a wrapper around child_terminal_ours to add async support (and
4416 implement the target_terminal_ours vs target_terminal_ours_for_output
4417 distinction). child_terminal_ours is currently no different than
4418 child_terminal_ours_for_output.
4419 We leave target_terminal_ours_for_output alone, leaving it to
4420 child_terminal_ours_for_output. */
4421
4422 static void
4423 linux_nat_terminal_ours (struct target_ops *self)
4424 {
4425 if (!target_is_async_p ())
4426 {
4427 /* Async mode is disabled. */
4428 child_terminal_ours (self);
4429 return;
4430 }
4431
4432 /* GDB should never give the terminal to the inferior if the
4433 inferior is running in the background (run&, continue&, etc.),
4434 but claiming it sure should. */
4435 child_terminal_ours (self);
4436
4437 if (async_terminal_is_ours)
4438 return;
4439
4440 clear_sigint_trap ();
4441 add_file_handler (input_fd, stdin_event_handler, 0);
4442 async_terminal_is_ours = 1;
4443 }
4444
4445 static void (*async_client_callback) (enum inferior_event_type event_type,
4446 void *context);
4447 static void *async_client_context;
4448
4449 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4450 so we notice when any child changes state, and notify the
4451 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4452 above to wait for the arrival of a SIGCHLD. */
4453
4454 static void
4455 sigchld_handler (int signo)
4456 {
4457 int old_errno = errno;
4458
4459 if (debug_linux_nat)
4460 ui_file_write_async_safe (gdb_stdlog,
4461 "sigchld\n", sizeof ("sigchld\n") - 1);
4462
4463 if (signo == SIGCHLD
4464 && linux_nat_event_pipe[0] != -1)
4465 async_file_mark (); /* Let the event loop know that there are
4466 events to handle. */
4467
4468 errno = old_errno;
4469 }
4470
4471 /* Callback registered with the target events file descriptor. */
4472
4473 static void
4474 handle_target_event (int error, gdb_client_data client_data)
4475 {
4476 (*async_client_callback) (INF_REG_EVENT, async_client_context);
4477 }
4478
4479 /* Create/destroy the target events pipe. Returns previous state. */
4480
4481 static int
4482 linux_async_pipe (int enable)
4483 {
4484 int previous = (linux_nat_event_pipe[0] != -1);
4485
4486 if (previous != enable)
4487 {
4488 sigset_t prev_mask;
4489
4490 /* Block child signals while we create/destroy the pipe, as
4491 their handler writes to it. */
4492 block_child_signals (&prev_mask);
4493
4494 if (enable)
4495 {
4496 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4497 internal_error (__FILE__, __LINE__,
4498 "creating event pipe failed.");
4499
4500 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4501 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4502 }
4503 else
4504 {
4505 close (linux_nat_event_pipe[0]);
4506 close (linux_nat_event_pipe[1]);
4507 linux_nat_event_pipe[0] = -1;
4508 linux_nat_event_pipe[1] = -1;
4509 }
4510
4511 restore_child_signals_mask (&prev_mask);
4512 }
4513
4514 return previous;
4515 }
4516
4517 /* target_async implementation. */
4518
4519 static void
4520 linux_nat_async (struct target_ops *ops,
4521 void (*callback) (enum inferior_event_type event_type,
4522 void *context),
4523 void *context)
4524 {
4525 if (callback != NULL)
4526 {
4527 async_client_callback = callback;
4528 async_client_context = context;
4529 if (!linux_async_pipe (1))
4530 {
4531 add_file_handler (linux_nat_event_pipe[0],
4532 handle_target_event, NULL);
4533 /* There may be pending events to handle. Tell the event loop
4534 to poll them. */
4535 async_file_mark ();
4536 }
4537 }
4538 else
4539 {
4540 async_client_callback = callback;
4541 async_client_context = context;
4542 delete_file_handler (linux_nat_event_pipe[0]);
4543 linux_async_pipe (0);
4544 }
4545 return;
4546 }
4547
4548 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4549 event came out. */
4550
4551 static int
4552 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4553 {
4554 if (!lwp->stopped)
4555 {
4556 if (debug_linux_nat)
4557 fprintf_unfiltered (gdb_stdlog,
4558 "LNSL: running -> suspending %s\n",
4559 target_pid_to_str (lwp->ptid));
4560
4561
4562 if (lwp->last_resume_kind == resume_stop)
4563 {
4564 if (debug_linux_nat)
4565 fprintf_unfiltered (gdb_stdlog,
4566 "linux-nat: already stopping LWP %ld at "
4567 "GDB's request\n",
4568 ptid_get_lwp (lwp->ptid));
4569 return 0;
4570 }
4571
4572 stop_callback (lwp, NULL);
4573 lwp->last_resume_kind = resume_stop;
4574 }
4575 else
4576 {
4577 /* Already known to be stopped; do nothing. */
4578
4579 if (debug_linux_nat)
4580 {
4581 if (find_thread_ptid (lwp->ptid)->stop_requested)
4582 fprintf_unfiltered (gdb_stdlog,
4583 "LNSL: already stopped/stop_requested %s\n",
4584 target_pid_to_str (lwp->ptid));
4585 else
4586 fprintf_unfiltered (gdb_stdlog,
4587 "LNSL: already stopped/no "
4588 "stop_requested yet %s\n",
4589 target_pid_to_str (lwp->ptid));
4590 }
4591 }
4592 return 0;
4593 }
4594
4595 static void
4596 linux_nat_stop (struct target_ops *self, ptid_t ptid)
4597 {
4598 if (non_stop)
4599 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4600 else
4601 linux_ops->to_stop (linux_ops, ptid);
4602 }
4603
4604 static void
4605 linux_nat_close (struct target_ops *self)
4606 {
4607 /* Unregister from the event loop. */
4608 if (linux_nat_is_async_p (self))
4609 linux_nat_async (self, NULL, NULL);
4610
4611 if (linux_ops->to_close)
4612 linux_ops->to_close (linux_ops);
4613
4614 super_close (self);
4615 }
4616
4617 /* When requests are passed down from the linux-nat layer to the
4618 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4619 used. The address space pointer is stored in the inferior object,
4620 but the common code that is passed such ptid can't tell whether
4621 lwpid is a "main" process id or not (it assumes so). We reverse
4622 look up the "main" process id from the lwp here. */
4623
4624 static struct address_space *
4625 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4626 {
4627 struct lwp_info *lwp;
4628 struct inferior *inf;
4629 int pid;
4630
4631 if (ptid_get_lwp (ptid) == 0)
4632 {
4633 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4634 tgid. */
4635 lwp = find_lwp_pid (ptid);
4636 pid = ptid_get_pid (lwp->ptid);
4637 }
4638 else
4639 {
4640 /* A (pid,lwpid,0) ptid. */
4641 pid = ptid_get_pid (ptid);
4642 }
4643
4644 inf = find_inferior_pid (pid);
4645 gdb_assert (inf != NULL);
4646 return inf->aspace;
4647 }
4648
4649 /* Return the cached value of the processor core for thread PTID. */
4650
4651 static int
4652 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4653 {
4654 struct lwp_info *info = find_lwp_pid (ptid);
4655
4656 if (info)
4657 return info->core;
4658 return -1;
4659 }
4660
4661 void
4662 linux_nat_add_target (struct target_ops *t)
4663 {
4664 /* Save the provided single-threaded target. We save this in a separate
4665 variable because another target we've inherited from (e.g. inf-ptrace)
4666 may have saved a pointer to T; we want to use it for the final
4667 process stratum target. */
4668 linux_ops_saved = *t;
4669 linux_ops = &linux_ops_saved;
4670
4671 /* Override some methods for multithreading. */
4672 t->to_create_inferior = linux_nat_create_inferior;
4673 t->to_attach = linux_nat_attach;
4674 t->to_detach = linux_nat_detach;
4675 t->to_resume = linux_nat_resume;
4676 t->to_wait = linux_nat_wait;
4677 t->to_pass_signals = linux_nat_pass_signals;
4678 t->to_xfer_partial = linux_nat_xfer_partial;
4679 t->to_kill = linux_nat_kill;
4680 t->to_mourn_inferior = linux_nat_mourn_inferior;
4681 t->to_thread_alive = linux_nat_thread_alive;
4682 t->to_pid_to_str = linux_nat_pid_to_str;
4683 t->to_thread_name = linux_nat_thread_name;
4684 t->to_has_thread_control = tc_schedlock;
4685 t->to_thread_address_space = linux_nat_thread_address_space;
4686 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
4687 t->to_stopped_data_address = linux_nat_stopped_data_address;
4688
4689 t->to_can_async_p = linux_nat_can_async_p;
4690 t->to_is_async_p = linux_nat_is_async_p;
4691 t->to_supports_non_stop = linux_nat_supports_non_stop;
4692 t->to_async = linux_nat_async;
4693 t->to_terminal_inferior = linux_nat_terminal_inferior;
4694 t->to_terminal_ours = linux_nat_terminal_ours;
4695
4696 super_close = t->to_close;
4697 t->to_close = linux_nat_close;
4698
4699 /* Methods for non-stop support. */
4700 t->to_stop = linux_nat_stop;
4701
4702 t->to_supports_multi_process = linux_nat_supports_multi_process;
4703
4704 t->to_supports_disable_randomization
4705 = linux_nat_supports_disable_randomization;
4706
4707 t->to_core_of_thread = linux_nat_core_of_thread;
4708
4709 /* We don't change the stratum; this target will sit at
4710 process_stratum and thread_db will set at thread_stratum. This
4711 is a little strange, since this is a multi-threaded-capable
4712 target, but we want to be on the stack below thread_db, and we
4713 also want to be used for single-threaded processes. */
4714
4715 add_target (t);
4716 }
4717
4718 /* Register a method to call whenever a new thread is attached. */
4719 void
4720 linux_nat_set_new_thread (struct target_ops *t,
4721 void (*new_thread) (struct lwp_info *))
4722 {
4723 /* Save the pointer. We only support a single registered instance
4724 of the GNU/Linux native target, so we do not need to map this to
4725 T. */
4726 linux_nat_new_thread = new_thread;
4727 }
4728
4729 /* See declaration in linux-nat.h. */
4730
4731 void
4732 linux_nat_set_new_fork (struct target_ops *t,
4733 linux_nat_new_fork_ftype *new_fork)
4734 {
4735 /* Save the pointer. */
4736 linux_nat_new_fork = new_fork;
4737 }
4738
4739 /* See declaration in linux-nat.h. */
4740
4741 void
4742 linux_nat_set_forget_process (struct target_ops *t,
4743 linux_nat_forget_process_ftype *fn)
4744 {
4745 /* Save the pointer. */
4746 linux_nat_forget_process_hook = fn;
4747 }
4748
4749 /* See declaration in linux-nat.h. */
4750
4751 void
4752 linux_nat_forget_process (pid_t pid)
4753 {
4754 if (linux_nat_forget_process_hook != NULL)
4755 linux_nat_forget_process_hook (pid);
4756 }
4757
4758 /* Register a method that converts a siginfo object between the layout
4759 that ptrace returns, and the layout in the architecture of the
4760 inferior. */
4761 void
4762 linux_nat_set_siginfo_fixup (struct target_ops *t,
4763 int (*siginfo_fixup) (siginfo_t *,
4764 gdb_byte *,
4765 int))
4766 {
4767 /* Save the pointer. */
4768 linux_nat_siginfo_fixup = siginfo_fixup;
4769 }
4770
4771 /* Register a method to call prior to resuming a thread. */
4772
4773 void
4774 linux_nat_set_prepare_to_resume (struct target_ops *t,
4775 void (*prepare_to_resume) (struct lwp_info *))
4776 {
4777 /* Save the pointer. */
4778 linux_nat_prepare_to_resume = prepare_to_resume;
4779 }
4780
4781 /* See linux-nat.h. */
4782
4783 int
4784 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4785 {
4786 int pid;
4787
4788 pid = ptid_get_lwp (ptid);
4789 if (pid == 0)
4790 pid = ptid_get_pid (ptid);
4791
4792 errno = 0;
4793 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4794 if (errno != 0)
4795 {
4796 memset (siginfo, 0, sizeof (*siginfo));
4797 return 0;
4798 }
4799 return 1;
4800 }
4801
4802 /* Provide a prototype to silence -Wmissing-prototypes. */
4803 extern initialize_file_ftype _initialize_linux_nat;
4804
4805 void
4806 _initialize_linux_nat (void)
4807 {
4808 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4809 &debug_linux_nat, _("\
4810 Set debugging of GNU/Linux lwp module."), _("\
4811 Show debugging of GNU/Linux lwp module."), _("\
4812 Enables printf debugging output."),
4813 NULL,
4814 show_debug_linux_nat,
4815 &setdebuglist, &showdebuglist);
4816
4817 /* Save this mask as the default. */
4818 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4819
4820 /* Install a SIGCHLD handler. */
4821 sigchld_action.sa_handler = sigchld_handler;
4822 sigemptyset (&sigchld_action.sa_mask);
4823 sigchld_action.sa_flags = SA_RESTART;
4824
4825 /* Make it the default. */
4826 sigaction (SIGCHLD, &sigchld_action, NULL);
4827
4828 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4829 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4830 sigdelset (&suspend_mask, SIGCHLD);
4831
4832 sigemptyset (&blocked_mask);
4833
4834 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to
4835 support read-only process state. */
4836 linux_ptrace_set_additional_flags (PTRACE_O_TRACESYSGOOD
4837 | PTRACE_O_TRACEVFORKDONE
4838 | PTRACE_O_TRACEVFORK
4839 | PTRACE_O_TRACEFORK
4840 | PTRACE_O_TRACEEXEC);
4841 }
4842 \f
4843
4844 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4845 the GNU/Linux Threads library and therefore doesn't really belong
4846 here. */
4847
4848 /* Read variable NAME in the target and return its value if found.
4849 Otherwise return zero. It is assumed that the type of the variable
4850 is `int'. */
4851
4852 static int
4853 get_signo (const char *name)
4854 {
4855 struct bound_minimal_symbol ms;
4856 int signo;
4857
4858 ms = lookup_minimal_symbol (name, NULL, NULL);
4859 if (ms.minsym == NULL)
4860 return 0;
4861
4862 if (target_read_memory (BMSYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
4863 sizeof (signo)) != 0)
4864 return 0;
4865
4866 return signo;
4867 }
4868
4869 /* Return the set of signals used by the threads library in *SET. */
4870
4871 void
4872 lin_thread_get_thread_signals (sigset_t *set)
4873 {
4874 struct sigaction action;
4875 int restart, cancel;
4876
4877 sigemptyset (&blocked_mask);
4878 sigemptyset (set);
4879
4880 restart = get_signo ("__pthread_sig_restart");
4881 cancel = get_signo ("__pthread_sig_cancel");
4882
4883 /* LinuxThreads normally uses the first two RT signals, but in some legacy
4884 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
4885 not provide any way for the debugger to query the signal numbers -
4886 fortunately they don't change! */
4887
4888 if (restart == 0)
4889 restart = __SIGRTMIN;
4890
4891 if (cancel == 0)
4892 cancel = __SIGRTMIN + 1;
4893
4894 sigaddset (set, restart);
4895 sigaddset (set, cancel);
4896
4897 /* The GNU/Linux Threads library makes terminating threads send a
4898 special "cancel" signal instead of SIGCHLD. Make sure we catch
4899 those (to prevent them from terminating GDB itself, which is
4900 likely to be their default action) and treat them the same way as
4901 SIGCHLD. */
4902
4903 action.sa_handler = sigchld_handler;
4904 sigemptyset (&action.sa_mask);
4905 action.sa_flags = SA_RESTART;
4906 sigaction (cancel, &action, NULL);
4907
4908 /* We block the "cancel" signal throughout this code ... */
4909 sigaddset (&blocked_mask, cancel);
4910 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
4911
4912 /* ... except during a sigsuspend. */
4913 sigdelset (&suspend_mask, cancel);
4914 }