Fix up some target is-async vs can-async confusions
[binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdb_wait.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "nat/linux-ptrace.h"
34 #include "nat/linux-procfs.h"
35 #include "nat/linux-personality.h"
36 #include "linux-fork.h"
37 #include "gdbthread.h"
38 #include "gdbcmd.h"
39 #include "regcache.h"
40 #include "regset.h"
41 #include "inf-child.h"
42 #include "inf-ptrace.h"
43 #include "auxv.h"
44 #include <sys/procfs.h> /* for elf_gregset etc. */
45 #include "elf-bfd.h" /* for elfcore_write_* */
46 #include "gregset.h" /* for gregset */
47 #include "gdbcore.h" /* for get_exec_file */
48 #include <ctype.h> /* for isdigit */
49 #include <sys/stat.h> /* for struct stat */
50 #include <fcntl.h> /* for O_RDONLY */
51 #include "inf-loop.h"
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include <pwd.h>
55 #include <sys/types.h>
56 #include <dirent.h>
57 #include "xml-support.h"
58 #include <sys/vfs.h>
59 #include "solib.h"
60 #include "nat/linux-osdata.h"
61 #include "linux-tdep.h"
62 #include "symfile.h"
63 #include "agent.h"
64 #include "tracepoint.h"
65 #include "buffer.h"
66 #include "target-descriptions.h"
67 #include "filestuff.h"
68 #include "objfiles.h"
69
70 #ifndef SPUFS_MAGIC
71 #define SPUFS_MAGIC 0x23c9b64e
72 #endif
73
74 /* This comment documents high-level logic of this file.
75
76 Waiting for events in sync mode
77 ===============================
78
79 When waiting for an event in a specific thread, we just use waitpid, passing
80 the specific pid, and not passing WNOHANG.
81
82 When waiting for an event in all threads, waitpid is not quite good. Prior to
83 version 2.4, Linux can either wait for event in main thread, or in secondary
84 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
85 miss an event. The solution is to use non-blocking waitpid, together with
86 sigsuspend. First, we use non-blocking waitpid to get an event in the main
87 process, if any. Second, we use non-blocking waitpid with the __WCLONED
88 flag to check for events in cloned processes. If nothing is found, we use
89 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
90 happened to a child process -- and SIGCHLD will be delivered both for events
91 in main debugged process and in cloned processes. As soon as we know there's
92 an event, we get back to calling nonblocking waitpid with and without
93 __WCLONED.
94
95 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
96 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
97 blocked, the signal becomes pending and sigsuspend immediately
98 notices it and returns.
99
100 Waiting for events in async mode
101 ================================
102
103 In async mode, GDB should always be ready to handle both user input
104 and target events, so neither blocking waitpid nor sigsuspend are
105 viable options. Instead, we should asynchronously notify the GDB main
106 event loop whenever there's an unprocessed event from the target. We
107 detect asynchronous target events by handling SIGCHLD signals. To
108 notify the event loop about target events, the self-pipe trick is used
109 --- a pipe is registered as waitable event source in the event loop,
110 the event loop select/poll's on the read end of this pipe (as well on
111 other event sources, e.g., stdin), and the SIGCHLD handler writes a
112 byte to this pipe. This is more portable than relying on
113 pselect/ppoll, since on kernels that lack those syscalls, libc
114 emulates them with select/poll+sigprocmask, and that is racy
115 (a.k.a. plain broken).
116
117 Obviously, if we fail to notify the event loop if there's a target
118 event, it's bad. OTOH, if we notify the event loop when there's no
119 event from the target, linux_nat_wait will detect that there's no real
120 event to report, and return event of type TARGET_WAITKIND_IGNORE.
121 This is mostly harmless, but it will waste time and is better avoided.
122
123 The main design point is that every time GDB is outside linux-nat.c,
124 we have a SIGCHLD handler installed that is called when something
125 happens to the target and notifies the GDB event loop. Whenever GDB
126 core decides to handle the event, and calls into linux-nat.c, we
127 process things as in sync mode, except that the we never block in
128 sigsuspend.
129
130 While processing an event, we may end up momentarily blocked in
131 waitpid calls. Those waitpid calls, while blocking, are guarantied to
132 return quickly. E.g., in all-stop mode, before reporting to the core
133 that an LWP hit a breakpoint, all LWPs are stopped by sending them
134 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
135 Note that this is different from blocking indefinitely waiting for the
136 next event --- here, we're already handling an event.
137
138 Use of signals
139 ==============
140
141 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
142 signal is not entirely significant; we just need for a signal to be delivered,
143 so that we can intercept it. SIGSTOP's advantage is that it can not be
144 blocked. A disadvantage is that it is not a real-time signal, so it can only
145 be queued once; we do not keep track of other sources of SIGSTOP.
146
147 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
148 use them, because they have special behavior when the signal is generated -
149 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
150 kills the entire thread group.
151
152 A delivered SIGSTOP would stop the entire thread group, not just the thread we
153 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
154 cancel it (by PTRACE_CONT without passing SIGSTOP).
155
156 We could use a real-time signal instead. This would solve those problems; we
157 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
158 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
159 generates it, and there are races with trying to find a signal that is not
160 blocked. */
161
162 #ifndef O_LARGEFILE
163 #define O_LARGEFILE 0
164 #endif
165
166 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
167 the use of the multi-threaded target. */
168 static struct target_ops *linux_ops;
169 static struct target_ops linux_ops_saved;
170
171 /* The method to call, if any, when a new thread is attached. */
172 static void (*linux_nat_new_thread) (struct lwp_info *);
173
174 /* The method to call, if any, when a new fork is attached. */
175 static linux_nat_new_fork_ftype *linux_nat_new_fork;
176
177 /* The method to call, if any, when a process is no longer
178 attached. */
179 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
180
181 /* Hook to call prior to resuming a thread. */
182 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
183
184 /* The method to call, if any, when the siginfo object needs to be
185 converted between the layout returned by ptrace, and the layout in
186 the architecture of the inferior. */
187 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
188 gdb_byte *,
189 int);
190
191 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
192 Called by our to_xfer_partial. */
193 static target_xfer_partial_ftype *super_xfer_partial;
194
195 /* The saved to_close method, inherited from inf-ptrace.c.
196 Called by our to_close. */
197 static void (*super_close) (struct target_ops *);
198
199 static unsigned int debug_linux_nat;
200 static void
201 show_debug_linux_nat (struct ui_file *file, int from_tty,
202 struct cmd_list_element *c, const char *value)
203 {
204 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
205 value);
206 }
207
208 struct simple_pid_list
209 {
210 int pid;
211 int status;
212 struct simple_pid_list *next;
213 };
214 struct simple_pid_list *stopped_pids;
215
216 /* Async mode support. */
217
218 /* The read/write ends of the pipe registered as waitable file in the
219 event loop. */
220 static int linux_nat_event_pipe[2] = { -1, -1 };
221
222 /* True if we're currently in async mode. */
223 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
224
225 /* Flush the event pipe. */
226
227 static void
228 async_file_flush (void)
229 {
230 int ret;
231 char buf;
232
233 do
234 {
235 ret = read (linux_nat_event_pipe[0], &buf, 1);
236 }
237 while (ret >= 0 || (ret == -1 && errno == EINTR));
238 }
239
240 /* Put something (anything, doesn't matter what, or how much) in event
241 pipe, so that the select/poll in the event-loop realizes we have
242 something to process. */
243
244 static void
245 async_file_mark (void)
246 {
247 int ret;
248
249 /* It doesn't really matter what the pipe contains, as long we end
250 up with something in it. Might as well flush the previous
251 left-overs. */
252 async_file_flush ();
253
254 do
255 {
256 ret = write (linux_nat_event_pipe[1], "+", 1);
257 }
258 while (ret == -1 && errno == EINTR);
259
260 /* Ignore EAGAIN. If the pipe is full, the event loop will already
261 be awakened anyway. */
262 }
263
264 static int kill_lwp (int lwpid, int signo);
265
266 static int stop_callback (struct lwp_info *lp, void *data);
267
268 static void block_child_signals (sigset_t *prev_mask);
269 static void restore_child_signals_mask (sigset_t *prev_mask);
270
271 struct lwp_info;
272 static struct lwp_info *add_lwp (ptid_t ptid);
273 static void purge_lwp_list (int pid);
274 static void delete_lwp (ptid_t ptid);
275 static struct lwp_info *find_lwp_pid (ptid_t ptid);
276
277 static int lwp_status_pending_p (struct lwp_info *lp);
278
279 static int check_stopped_by_breakpoint (struct lwp_info *lp);
280 static int sigtrap_is_event (int status);
281 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
282
283 \f
284 /* Trivial list manipulation functions to keep track of a list of
285 new stopped processes. */
286 static void
287 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
288 {
289 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
290
291 new_pid->pid = pid;
292 new_pid->status = status;
293 new_pid->next = *listp;
294 *listp = new_pid;
295 }
296
297 static int
298 in_pid_list_p (struct simple_pid_list *list, int pid)
299 {
300 struct simple_pid_list *p;
301
302 for (p = list; p != NULL; p = p->next)
303 if (p->pid == pid)
304 return 1;
305 return 0;
306 }
307
308 static int
309 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
310 {
311 struct simple_pid_list **p;
312
313 for (p = listp; *p != NULL; p = &(*p)->next)
314 if ((*p)->pid == pid)
315 {
316 struct simple_pid_list *next = (*p)->next;
317
318 *statusp = (*p)->status;
319 xfree (*p);
320 *p = next;
321 return 1;
322 }
323 return 0;
324 }
325
326 /* Initialize ptrace warnings and check for supported ptrace
327 features given PID.
328
329 ATTACHED should be nonzero iff we attached to the inferior. */
330
331 static void
332 linux_init_ptrace (pid_t pid, int attached)
333 {
334 linux_enable_event_reporting (pid, attached);
335 linux_ptrace_init_warnings ();
336 }
337
338 static void
339 linux_child_post_attach (struct target_ops *self, int pid)
340 {
341 linux_init_ptrace (pid, 1);
342 }
343
344 static void
345 linux_child_post_startup_inferior (struct target_ops *self, ptid_t ptid)
346 {
347 linux_init_ptrace (ptid_get_pid (ptid), 0);
348 }
349
350 /* Return the number of known LWPs in the tgid given by PID. */
351
352 static int
353 num_lwps (int pid)
354 {
355 int count = 0;
356 struct lwp_info *lp;
357
358 for (lp = lwp_list; lp; lp = lp->next)
359 if (ptid_get_pid (lp->ptid) == pid)
360 count++;
361
362 return count;
363 }
364
365 /* Call delete_lwp with prototype compatible for make_cleanup. */
366
367 static void
368 delete_lwp_cleanup (void *lp_voidp)
369 {
370 struct lwp_info *lp = lp_voidp;
371
372 delete_lwp (lp->ptid);
373 }
374
375 /* Target hook for follow_fork. On entry inferior_ptid must be the
376 ptid of the followed inferior. At return, inferior_ptid will be
377 unchanged. */
378
379 static int
380 linux_child_follow_fork (struct target_ops *ops, int follow_child,
381 int detach_fork)
382 {
383 if (!follow_child)
384 {
385 struct lwp_info *child_lp = NULL;
386 int status = W_STOPCODE (0);
387 struct cleanup *old_chain;
388 int has_vforked;
389 int parent_pid, child_pid;
390
391 has_vforked = (inferior_thread ()->pending_follow.kind
392 == TARGET_WAITKIND_VFORKED);
393 parent_pid = ptid_get_lwp (inferior_ptid);
394 if (parent_pid == 0)
395 parent_pid = ptid_get_pid (inferior_ptid);
396 child_pid
397 = ptid_get_pid (inferior_thread ()->pending_follow.value.related_pid);
398
399
400 /* We're already attached to the parent, by default. */
401 old_chain = save_inferior_ptid ();
402 inferior_ptid = ptid_build (child_pid, child_pid, 0);
403 child_lp = add_lwp (inferior_ptid);
404 child_lp->stopped = 1;
405 child_lp->last_resume_kind = resume_stop;
406
407 /* Detach new forked process? */
408 if (detach_fork)
409 {
410 make_cleanup (delete_lwp_cleanup, child_lp);
411
412 if (linux_nat_prepare_to_resume != NULL)
413 linux_nat_prepare_to_resume (child_lp);
414
415 /* When debugging an inferior in an architecture that supports
416 hardware single stepping on a kernel without commit
417 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
418 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
419 set if the parent process had them set.
420 To work around this, single step the child process
421 once before detaching to clear the flags. */
422
423 if (!gdbarch_software_single_step_p (target_thread_architecture
424 (child_lp->ptid)))
425 {
426 linux_disable_event_reporting (child_pid);
427 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
428 perror_with_name (_("Couldn't do single step"));
429 if (my_waitpid (child_pid, &status, 0) < 0)
430 perror_with_name (_("Couldn't wait vfork process"));
431 }
432
433 if (WIFSTOPPED (status))
434 {
435 int signo;
436
437 signo = WSTOPSIG (status);
438 if (signo != 0
439 && !signal_pass_state (gdb_signal_from_host (signo)))
440 signo = 0;
441 ptrace (PTRACE_DETACH, child_pid, 0, signo);
442 }
443
444 /* Resets value of inferior_ptid to parent ptid. */
445 do_cleanups (old_chain);
446 }
447 else
448 {
449 /* Let the thread_db layer learn about this new process. */
450 check_for_thread_db ();
451 }
452
453 do_cleanups (old_chain);
454
455 if (has_vforked)
456 {
457 struct lwp_info *parent_lp;
458
459 parent_lp = find_lwp_pid (pid_to_ptid (parent_pid));
460 gdb_assert (linux_supports_tracefork () >= 0);
461
462 if (linux_supports_tracevforkdone ())
463 {
464 if (debug_linux_nat)
465 fprintf_unfiltered (gdb_stdlog,
466 "LCFF: waiting for VFORK_DONE on %d\n",
467 parent_pid);
468 parent_lp->stopped = 1;
469
470 /* We'll handle the VFORK_DONE event like any other
471 event, in target_wait. */
472 }
473 else
474 {
475 /* We can't insert breakpoints until the child has
476 finished with the shared memory region. We need to
477 wait until that happens. Ideal would be to just
478 call:
479 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
480 - waitpid (parent_pid, &status, __WALL);
481 However, most architectures can't handle a syscall
482 being traced on the way out if it wasn't traced on
483 the way in.
484
485 We might also think to loop, continuing the child
486 until it exits or gets a SIGTRAP. One problem is
487 that the child might call ptrace with PTRACE_TRACEME.
488
489 There's no simple and reliable way to figure out when
490 the vforked child will be done with its copy of the
491 shared memory. We could step it out of the syscall,
492 two instructions, let it go, and then single-step the
493 parent once. When we have hardware single-step, this
494 would work; with software single-step it could still
495 be made to work but we'd have to be able to insert
496 single-step breakpoints in the child, and we'd have
497 to insert -just- the single-step breakpoint in the
498 parent. Very awkward.
499
500 In the end, the best we can do is to make sure it
501 runs for a little while. Hopefully it will be out of
502 range of any breakpoints we reinsert. Usually this
503 is only the single-step breakpoint at vfork's return
504 point. */
505
506 if (debug_linux_nat)
507 fprintf_unfiltered (gdb_stdlog,
508 "LCFF: no VFORK_DONE "
509 "support, sleeping a bit\n");
510
511 usleep (10000);
512
513 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
514 and leave it pending. The next linux_nat_resume call
515 will notice a pending event, and bypasses actually
516 resuming the inferior. */
517 parent_lp->status = 0;
518 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
519 parent_lp->stopped = 1;
520
521 /* If we're in async mode, need to tell the event loop
522 there's something here to process. */
523 if (target_is_async_p ())
524 async_file_mark ();
525 }
526 }
527 }
528 else
529 {
530 struct lwp_info *child_lp;
531
532 child_lp = add_lwp (inferior_ptid);
533 child_lp->stopped = 1;
534 child_lp->last_resume_kind = resume_stop;
535
536 /* Let the thread_db layer learn about this new process. */
537 check_for_thread_db ();
538 }
539
540 return 0;
541 }
542
543 \f
544 static int
545 linux_child_insert_fork_catchpoint (struct target_ops *self, int pid)
546 {
547 return !linux_supports_tracefork ();
548 }
549
550 static int
551 linux_child_remove_fork_catchpoint (struct target_ops *self, int pid)
552 {
553 return 0;
554 }
555
556 static int
557 linux_child_insert_vfork_catchpoint (struct target_ops *self, int pid)
558 {
559 return !linux_supports_tracefork ();
560 }
561
562 static int
563 linux_child_remove_vfork_catchpoint (struct target_ops *self, int pid)
564 {
565 return 0;
566 }
567
568 static int
569 linux_child_insert_exec_catchpoint (struct target_ops *self, int pid)
570 {
571 return !linux_supports_tracefork ();
572 }
573
574 static int
575 linux_child_remove_exec_catchpoint (struct target_ops *self, int pid)
576 {
577 return 0;
578 }
579
580 static int
581 linux_child_set_syscall_catchpoint (struct target_ops *self,
582 int pid, int needed, int any_count,
583 int table_size, int *table)
584 {
585 if (!linux_supports_tracesysgood ())
586 return 1;
587
588 /* On GNU/Linux, we ignore the arguments. It means that we only
589 enable the syscall catchpoints, but do not disable them.
590
591 Also, we do not use the `table' information because we do not
592 filter system calls here. We let GDB do the logic for us. */
593 return 0;
594 }
595
596 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
597 are processes sharing the same VM space. A multi-threaded process
598 is basically a group of such processes. However, such a grouping
599 is almost entirely a user-space issue; the kernel doesn't enforce
600 such a grouping at all (this might change in the future). In
601 general, we'll rely on the threads library (i.e. the GNU/Linux
602 Threads library) to provide such a grouping.
603
604 It is perfectly well possible to write a multi-threaded application
605 without the assistance of a threads library, by using the clone
606 system call directly. This module should be able to give some
607 rudimentary support for debugging such applications if developers
608 specify the CLONE_PTRACE flag in the clone system call, and are
609 using the Linux kernel 2.4 or above.
610
611 Note that there are some peculiarities in GNU/Linux that affect
612 this code:
613
614 - In general one should specify the __WCLONE flag to waitpid in
615 order to make it report events for any of the cloned processes
616 (and leave it out for the initial process). However, if a cloned
617 process has exited the exit status is only reported if the
618 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
619 we cannot use it since GDB must work on older systems too.
620
621 - When a traced, cloned process exits and is waited for by the
622 debugger, the kernel reassigns it to the original parent and
623 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
624 library doesn't notice this, which leads to the "zombie problem":
625 When debugged a multi-threaded process that spawns a lot of
626 threads will run out of processes, even if the threads exit,
627 because the "zombies" stay around. */
628
629 /* List of known LWPs. */
630 struct lwp_info *lwp_list;
631 \f
632
633 /* Original signal mask. */
634 static sigset_t normal_mask;
635
636 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
637 _initialize_linux_nat. */
638 static sigset_t suspend_mask;
639
640 /* Signals to block to make that sigsuspend work. */
641 static sigset_t blocked_mask;
642
643 /* SIGCHLD action. */
644 struct sigaction sigchld_action;
645
646 /* Block child signals (SIGCHLD and linux threads signals), and store
647 the previous mask in PREV_MASK. */
648
649 static void
650 block_child_signals (sigset_t *prev_mask)
651 {
652 /* Make sure SIGCHLD is blocked. */
653 if (!sigismember (&blocked_mask, SIGCHLD))
654 sigaddset (&blocked_mask, SIGCHLD);
655
656 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
657 }
658
659 /* Restore child signals mask, previously returned by
660 block_child_signals. */
661
662 static void
663 restore_child_signals_mask (sigset_t *prev_mask)
664 {
665 sigprocmask (SIG_SETMASK, prev_mask, NULL);
666 }
667
668 /* Mask of signals to pass directly to the inferior. */
669 static sigset_t pass_mask;
670
671 /* Update signals to pass to the inferior. */
672 static void
673 linux_nat_pass_signals (struct target_ops *self,
674 int numsigs, unsigned char *pass_signals)
675 {
676 int signo;
677
678 sigemptyset (&pass_mask);
679
680 for (signo = 1; signo < NSIG; signo++)
681 {
682 int target_signo = gdb_signal_from_host (signo);
683 if (target_signo < numsigs && pass_signals[target_signo])
684 sigaddset (&pass_mask, signo);
685 }
686 }
687
688 \f
689
690 /* Prototypes for local functions. */
691 static int stop_wait_callback (struct lwp_info *lp, void *data);
692 static int linux_thread_alive (ptid_t ptid);
693 static char *linux_child_pid_to_exec_file (struct target_ops *self, int pid);
694
695 \f
696
697 /* Destroy and free LP. */
698
699 static void
700 lwp_free (struct lwp_info *lp)
701 {
702 xfree (lp->arch_private);
703 xfree (lp);
704 }
705
706 /* Remove all LWPs belong to PID from the lwp list. */
707
708 static void
709 purge_lwp_list (int pid)
710 {
711 struct lwp_info *lp, *lpprev, *lpnext;
712
713 lpprev = NULL;
714
715 for (lp = lwp_list; lp; lp = lpnext)
716 {
717 lpnext = lp->next;
718
719 if (ptid_get_pid (lp->ptid) == pid)
720 {
721 if (lp == lwp_list)
722 lwp_list = lp->next;
723 else
724 lpprev->next = lp->next;
725
726 lwp_free (lp);
727 }
728 else
729 lpprev = lp;
730 }
731 }
732
733 /* Add the LWP specified by PTID to the list. PTID is the first LWP
734 in the process. Return a pointer to the structure describing the
735 new LWP.
736
737 This differs from add_lwp in that we don't let the arch specific
738 bits know about this new thread. Current clients of this callback
739 take the opportunity to install watchpoints in the new thread, and
740 we shouldn't do that for the first thread. If we're spawning a
741 child ("run"), the thread executes the shell wrapper first, and we
742 shouldn't touch it until it execs the program we want to debug.
743 For "attach", it'd be okay to call the callback, but it's not
744 necessary, because watchpoints can't yet have been inserted into
745 the inferior. */
746
747 static struct lwp_info *
748 add_initial_lwp (ptid_t ptid)
749 {
750 struct lwp_info *lp;
751
752 gdb_assert (ptid_lwp_p (ptid));
753
754 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
755
756 memset (lp, 0, sizeof (struct lwp_info));
757
758 lp->last_resume_kind = resume_continue;
759 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
760
761 lp->ptid = ptid;
762 lp->core = -1;
763
764 lp->next = lwp_list;
765 lwp_list = lp;
766
767 return lp;
768 }
769
770 /* Add the LWP specified by PID to the list. Return a pointer to the
771 structure describing the new LWP. The LWP should already be
772 stopped. */
773
774 static struct lwp_info *
775 add_lwp (ptid_t ptid)
776 {
777 struct lwp_info *lp;
778
779 lp = add_initial_lwp (ptid);
780
781 /* Let the arch specific bits know about this new thread. Current
782 clients of this callback take the opportunity to install
783 watchpoints in the new thread. We don't do this for the first
784 thread though. See add_initial_lwp. */
785 if (linux_nat_new_thread != NULL)
786 linux_nat_new_thread (lp);
787
788 return lp;
789 }
790
791 /* Remove the LWP specified by PID from the list. */
792
793 static void
794 delete_lwp (ptid_t ptid)
795 {
796 struct lwp_info *lp, *lpprev;
797
798 lpprev = NULL;
799
800 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
801 if (ptid_equal (lp->ptid, ptid))
802 break;
803
804 if (!lp)
805 return;
806
807 if (lpprev)
808 lpprev->next = lp->next;
809 else
810 lwp_list = lp->next;
811
812 lwp_free (lp);
813 }
814
815 /* Return a pointer to the structure describing the LWP corresponding
816 to PID. If no corresponding LWP could be found, return NULL. */
817
818 static struct lwp_info *
819 find_lwp_pid (ptid_t ptid)
820 {
821 struct lwp_info *lp;
822 int lwp;
823
824 if (ptid_lwp_p (ptid))
825 lwp = ptid_get_lwp (ptid);
826 else
827 lwp = ptid_get_pid (ptid);
828
829 for (lp = lwp_list; lp; lp = lp->next)
830 if (lwp == ptid_get_lwp (lp->ptid))
831 return lp;
832
833 return NULL;
834 }
835
836 /* Call CALLBACK with its second argument set to DATA for every LWP in
837 the list. If CALLBACK returns 1 for a particular LWP, return a
838 pointer to the structure describing that LWP immediately.
839 Otherwise return NULL. */
840
841 struct lwp_info *
842 iterate_over_lwps (ptid_t filter,
843 int (*callback) (struct lwp_info *, void *),
844 void *data)
845 {
846 struct lwp_info *lp, *lpnext;
847
848 for (lp = lwp_list; lp; lp = lpnext)
849 {
850 lpnext = lp->next;
851
852 if (ptid_match (lp->ptid, filter))
853 {
854 if ((*callback) (lp, data))
855 return lp;
856 }
857 }
858
859 return NULL;
860 }
861
862 /* Update our internal state when changing from one checkpoint to
863 another indicated by NEW_PTID. We can only switch single-threaded
864 applications, so we only create one new LWP, and the previous list
865 is discarded. */
866
867 void
868 linux_nat_switch_fork (ptid_t new_ptid)
869 {
870 struct lwp_info *lp;
871
872 purge_lwp_list (ptid_get_pid (inferior_ptid));
873
874 lp = add_lwp (new_ptid);
875 lp->stopped = 1;
876
877 /* This changes the thread's ptid while preserving the gdb thread
878 num. Also changes the inferior pid, while preserving the
879 inferior num. */
880 thread_change_ptid (inferior_ptid, new_ptid);
881
882 /* We've just told GDB core that the thread changed target id, but,
883 in fact, it really is a different thread, with different register
884 contents. */
885 registers_changed ();
886 }
887
888 /* Handle the exit of a single thread LP. */
889
890 static void
891 exit_lwp (struct lwp_info *lp)
892 {
893 struct thread_info *th = find_thread_ptid (lp->ptid);
894
895 if (th)
896 {
897 if (print_thread_events)
898 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
899
900 delete_thread (lp->ptid);
901 }
902
903 delete_lwp (lp->ptid);
904 }
905
906 /* Wait for the LWP specified by LP, which we have just attached to.
907 Returns a wait status for that LWP, to cache. */
908
909 static int
910 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
911 int *signalled)
912 {
913 pid_t new_pid, pid = ptid_get_lwp (ptid);
914 int status;
915
916 if (linux_proc_pid_is_stopped (pid))
917 {
918 if (debug_linux_nat)
919 fprintf_unfiltered (gdb_stdlog,
920 "LNPAW: Attaching to a stopped process\n");
921
922 /* The process is definitely stopped. It is in a job control
923 stop, unless the kernel predates the TASK_STOPPED /
924 TASK_TRACED distinction, in which case it might be in a
925 ptrace stop. Make sure it is in a ptrace stop; from there we
926 can kill it, signal it, et cetera.
927
928 First make sure there is a pending SIGSTOP. Since we are
929 already attached, the process can not transition from stopped
930 to running without a PTRACE_CONT; so we know this signal will
931 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
932 probably already in the queue (unless this kernel is old
933 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
934 is not an RT signal, it can only be queued once. */
935 kill_lwp (pid, SIGSTOP);
936
937 /* Finally, resume the stopped process. This will deliver the SIGSTOP
938 (or a higher priority signal, just like normal PTRACE_ATTACH). */
939 ptrace (PTRACE_CONT, pid, 0, 0);
940 }
941
942 /* Make sure the initial process is stopped. The user-level threads
943 layer might want to poke around in the inferior, and that won't
944 work if things haven't stabilized yet. */
945 new_pid = my_waitpid (pid, &status, 0);
946 if (new_pid == -1 && errno == ECHILD)
947 {
948 if (first)
949 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
950
951 /* Try again with __WCLONE to check cloned processes. */
952 new_pid = my_waitpid (pid, &status, __WCLONE);
953 *cloned = 1;
954 }
955
956 gdb_assert (pid == new_pid);
957
958 if (!WIFSTOPPED (status))
959 {
960 /* The pid we tried to attach has apparently just exited. */
961 if (debug_linux_nat)
962 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
963 pid, status_to_str (status));
964 return status;
965 }
966
967 if (WSTOPSIG (status) != SIGSTOP)
968 {
969 *signalled = 1;
970 if (debug_linux_nat)
971 fprintf_unfiltered (gdb_stdlog,
972 "LNPAW: Received %s after attaching\n",
973 status_to_str (status));
974 }
975
976 return status;
977 }
978
979 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
980 the new LWP could not be attached, or 1 if we're already auto
981 attached to this thread, but haven't processed the
982 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
983 its existance, without considering it an error. */
984
985 int
986 lin_lwp_attach_lwp (ptid_t ptid)
987 {
988 struct lwp_info *lp;
989 int lwpid;
990
991 gdb_assert (ptid_lwp_p (ptid));
992
993 lp = find_lwp_pid (ptid);
994 lwpid = ptid_get_lwp (ptid);
995
996 /* We assume that we're already attached to any LWP that has an id
997 equal to the overall process id, and to any LWP that is already
998 in our list of LWPs. If we're not seeing exit events from threads
999 and we've had PID wraparound since we last tried to stop all threads,
1000 this assumption might be wrong; fortunately, this is very unlikely
1001 to happen. */
1002 if (lwpid != ptid_get_pid (ptid) && lp == NULL)
1003 {
1004 int status, cloned = 0, signalled = 0;
1005
1006 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1007 {
1008 if (linux_supports_tracefork ())
1009 {
1010 /* If we haven't stopped all threads when we get here,
1011 we may have seen a thread listed in thread_db's list,
1012 but not processed the PTRACE_EVENT_CLONE yet. If
1013 that's the case, ignore this new thread, and let
1014 normal event handling discover it later. */
1015 if (in_pid_list_p (stopped_pids, lwpid))
1016 {
1017 /* We've already seen this thread stop, but we
1018 haven't seen the PTRACE_EVENT_CLONE extended
1019 event yet. */
1020 return 0;
1021 }
1022 else
1023 {
1024 int new_pid;
1025 int status;
1026
1027 /* See if we've got a stop for this new child
1028 pending. If so, we're already attached. */
1029 gdb_assert (lwpid > 0);
1030 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1031 if (new_pid == -1 && errno == ECHILD)
1032 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1033 if (new_pid != -1)
1034 {
1035 if (WIFSTOPPED (status))
1036 add_to_pid_list (&stopped_pids, lwpid, status);
1037 return 1;
1038 }
1039 }
1040 }
1041
1042 /* If we fail to attach to the thread, issue a warning,
1043 but continue. One way this can happen is if thread
1044 creation is interrupted; as of Linux kernel 2.6.19, a
1045 bug may place threads in the thread list and then fail
1046 to create them. */
1047 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1048 safe_strerror (errno));
1049 return -1;
1050 }
1051
1052 if (debug_linux_nat)
1053 fprintf_unfiltered (gdb_stdlog,
1054 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1055 target_pid_to_str (ptid));
1056
1057 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1058 if (!WIFSTOPPED (status))
1059 return 1;
1060
1061 lp = add_lwp (ptid);
1062 lp->stopped = 1;
1063 lp->cloned = cloned;
1064 lp->signalled = signalled;
1065 if (WSTOPSIG (status) != SIGSTOP)
1066 {
1067 lp->resumed = 1;
1068 lp->status = status;
1069 }
1070
1071 target_post_attach (ptid_get_lwp (lp->ptid));
1072
1073 if (debug_linux_nat)
1074 {
1075 fprintf_unfiltered (gdb_stdlog,
1076 "LLAL: waitpid %s received %s\n",
1077 target_pid_to_str (ptid),
1078 status_to_str (status));
1079 }
1080 }
1081 else
1082 {
1083 /* We assume that the LWP representing the original process is
1084 already stopped. Mark it as stopped in the data structure
1085 that the GNU/linux ptrace layer uses to keep track of
1086 threads. Note that this won't have already been done since
1087 the main thread will have, we assume, been stopped by an
1088 attach from a different layer. */
1089 if (lp == NULL)
1090 lp = add_lwp (ptid);
1091 lp->stopped = 1;
1092 }
1093
1094 lp->last_resume_kind = resume_stop;
1095 return 0;
1096 }
1097
1098 static void
1099 linux_nat_create_inferior (struct target_ops *ops,
1100 char *exec_file, char *allargs, char **env,
1101 int from_tty)
1102 {
1103 struct cleanup *restore_personality
1104 = maybe_disable_address_space_randomization (disable_randomization);
1105
1106 /* The fork_child mechanism is synchronous and calls target_wait, so
1107 we have to mask the async mode. */
1108
1109 /* Make sure we report all signals during startup. */
1110 linux_nat_pass_signals (ops, 0, NULL);
1111
1112 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1113
1114 do_cleanups (restore_personality);
1115 }
1116
1117 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1118 already attached. Returns true if a new LWP is found, false
1119 otherwise. */
1120
1121 static int
1122 attach_proc_task_lwp_callback (ptid_t ptid)
1123 {
1124 struct lwp_info *lp;
1125
1126 /* Ignore LWPs we're already attached to. */
1127 lp = find_lwp_pid (ptid);
1128 if (lp == NULL)
1129 {
1130 int lwpid = ptid_get_lwp (ptid);
1131
1132 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1133 {
1134 int err = errno;
1135
1136 /* Be quiet if we simply raced with the thread exiting.
1137 EPERM is returned if the thread's task still exists, and
1138 is marked as exited or zombie, as well as other
1139 conditions, so in that case, confirm the status in
1140 /proc/PID/status. */
1141 if (err == ESRCH
1142 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1143 {
1144 if (debug_linux_nat)
1145 {
1146 fprintf_unfiltered (gdb_stdlog,
1147 "Cannot attach to lwp %d: "
1148 "thread is gone (%d: %s)\n",
1149 lwpid, err, safe_strerror (err));
1150 }
1151 }
1152 else
1153 {
1154 warning (_("Cannot attach to lwp %d: %s"),
1155 lwpid,
1156 linux_ptrace_attach_fail_reason_string (ptid,
1157 err));
1158 }
1159 }
1160 else
1161 {
1162 if (debug_linux_nat)
1163 fprintf_unfiltered (gdb_stdlog,
1164 "PTRACE_ATTACH %s, 0, 0 (OK)\n",
1165 target_pid_to_str (ptid));
1166
1167 lp = add_lwp (ptid);
1168 lp->cloned = 1;
1169
1170 /* The next time we wait for this LWP we'll see a SIGSTOP as
1171 PTRACE_ATTACH brings it to a halt. */
1172 lp->signalled = 1;
1173
1174 /* We need to wait for a stop before being able to make the
1175 next ptrace call on this LWP. */
1176 lp->must_set_ptrace_flags = 1;
1177 }
1178
1179 return 1;
1180 }
1181 return 0;
1182 }
1183
1184 static void
1185 linux_nat_attach (struct target_ops *ops, const char *args, int from_tty)
1186 {
1187 struct lwp_info *lp;
1188 int status;
1189 ptid_t ptid;
1190 volatile struct gdb_exception ex;
1191
1192 /* Make sure we report all signals during attach. */
1193 linux_nat_pass_signals (ops, 0, NULL);
1194
1195 TRY_CATCH (ex, RETURN_MASK_ERROR)
1196 {
1197 linux_ops->to_attach (ops, args, from_tty);
1198 }
1199 if (ex.reason < 0)
1200 {
1201 pid_t pid = parse_pid_to_attach (args);
1202 struct buffer buffer;
1203 char *message, *buffer_s;
1204
1205 message = xstrdup (ex.message);
1206 make_cleanup (xfree, message);
1207
1208 buffer_init (&buffer);
1209 linux_ptrace_attach_fail_reason (pid, &buffer);
1210
1211 buffer_grow_str0 (&buffer, "");
1212 buffer_s = buffer_finish (&buffer);
1213 make_cleanup (xfree, buffer_s);
1214
1215 if (*buffer_s != '\0')
1216 throw_error (ex.error, "warning: %s\n%s", buffer_s, message);
1217 else
1218 throw_error (ex.error, "%s", message);
1219 }
1220
1221 /* The ptrace base target adds the main thread with (pid,0,0)
1222 format. Decorate it with lwp info. */
1223 ptid = ptid_build (ptid_get_pid (inferior_ptid),
1224 ptid_get_pid (inferior_ptid),
1225 0);
1226 thread_change_ptid (inferior_ptid, ptid);
1227
1228 /* Add the initial process as the first LWP to the list. */
1229 lp = add_initial_lwp (ptid);
1230
1231 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1232 &lp->signalled);
1233 if (!WIFSTOPPED (status))
1234 {
1235 if (WIFEXITED (status))
1236 {
1237 int exit_code = WEXITSTATUS (status);
1238
1239 target_terminal_ours ();
1240 target_mourn_inferior ();
1241 if (exit_code == 0)
1242 error (_("Unable to attach: program exited normally."));
1243 else
1244 error (_("Unable to attach: program exited with code %d."),
1245 exit_code);
1246 }
1247 else if (WIFSIGNALED (status))
1248 {
1249 enum gdb_signal signo;
1250
1251 target_terminal_ours ();
1252 target_mourn_inferior ();
1253
1254 signo = gdb_signal_from_host (WTERMSIG (status));
1255 error (_("Unable to attach: program terminated with signal "
1256 "%s, %s."),
1257 gdb_signal_to_name (signo),
1258 gdb_signal_to_string (signo));
1259 }
1260
1261 internal_error (__FILE__, __LINE__,
1262 _("unexpected status %d for PID %ld"),
1263 status, (long) ptid_get_lwp (ptid));
1264 }
1265
1266 lp->stopped = 1;
1267
1268 /* Save the wait status to report later. */
1269 lp->resumed = 1;
1270 if (debug_linux_nat)
1271 fprintf_unfiltered (gdb_stdlog,
1272 "LNA: waitpid %ld, saving status %s\n",
1273 (long) ptid_get_pid (lp->ptid), status_to_str (status));
1274
1275 lp->status = status;
1276
1277 /* We must attach to every LWP. If /proc is mounted, use that to
1278 find them now. The inferior may be using raw clone instead of
1279 using pthreads. But even if it is using pthreads, thread_db
1280 walks structures in the inferior's address space to find the list
1281 of threads/LWPs, and those structures may well be corrupted.
1282 Note that once thread_db is loaded, we'll still use it to list
1283 threads and associate pthread info with each LWP. */
1284 linux_proc_attach_tgid_threads (ptid_get_pid (lp->ptid),
1285 attach_proc_task_lwp_callback);
1286
1287 if (target_can_async_p ())
1288 target_async (inferior_event_handler, 0);
1289 }
1290
1291 /* Get pending status of LP. */
1292 static int
1293 get_pending_status (struct lwp_info *lp, int *status)
1294 {
1295 enum gdb_signal signo = GDB_SIGNAL_0;
1296
1297 /* If we paused threads momentarily, we may have stored pending
1298 events in lp->status or lp->waitstatus (see stop_wait_callback),
1299 and GDB core hasn't seen any signal for those threads.
1300 Otherwise, the last signal reported to the core is found in the
1301 thread object's stop_signal.
1302
1303 There's a corner case that isn't handled here at present. Only
1304 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1305 stop_signal make sense as a real signal to pass to the inferior.
1306 Some catchpoint related events, like
1307 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1308 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1309 those traps are debug API (ptrace in our case) related and
1310 induced; the inferior wouldn't see them if it wasn't being
1311 traced. Hence, we should never pass them to the inferior, even
1312 when set to pass state. Since this corner case isn't handled by
1313 infrun.c when proceeding with a signal, for consistency, neither
1314 do we handle it here (or elsewhere in the file we check for
1315 signal pass state). Normally SIGTRAP isn't set to pass state, so
1316 this is really a corner case. */
1317
1318 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1319 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1320 else if (lp->status)
1321 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1322 else if (non_stop && !is_executing (lp->ptid))
1323 {
1324 struct thread_info *tp = find_thread_ptid (lp->ptid);
1325
1326 signo = tp->suspend.stop_signal;
1327 }
1328 else if (!non_stop)
1329 {
1330 struct target_waitstatus last;
1331 ptid_t last_ptid;
1332
1333 get_last_target_status (&last_ptid, &last);
1334
1335 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1336 {
1337 struct thread_info *tp = find_thread_ptid (lp->ptid);
1338
1339 signo = tp->suspend.stop_signal;
1340 }
1341 }
1342
1343 *status = 0;
1344
1345 if (signo == GDB_SIGNAL_0)
1346 {
1347 if (debug_linux_nat)
1348 fprintf_unfiltered (gdb_stdlog,
1349 "GPT: lwp %s has no pending signal\n",
1350 target_pid_to_str (lp->ptid));
1351 }
1352 else if (!signal_pass_state (signo))
1353 {
1354 if (debug_linux_nat)
1355 fprintf_unfiltered (gdb_stdlog,
1356 "GPT: lwp %s had signal %s, "
1357 "but it is in no pass state\n",
1358 target_pid_to_str (lp->ptid),
1359 gdb_signal_to_string (signo));
1360 }
1361 else
1362 {
1363 *status = W_STOPCODE (gdb_signal_to_host (signo));
1364
1365 if (debug_linux_nat)
1366 fprintf_unfiltered (gdb_stdlog,
1367 "GPT: lwp %s has pending signal %s\n",
1368 target_pid_to_str (lp->ptid),
1369 gdb_signal_to_string (signo));
1370 }
1371
1372 return 0;
1373 }
1374
1375 static int
1376 detach_callback (struct lwp_info *lp, void *data)
1377 {
1378 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1379
1380 if (debug_linux_nat && lp->status)
1381 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1382 strsignal (WSTOPSIG (lp->status)),
1383 target_pid_to_str (lp->ptid));
1384
1385 /* If there is a pending SIGSTOP, get rid of it. */
1386 if (lp->signalled)
1387 {
1388 if (debug_linux_nat)
1389 fprintf_unfiltered (gdb_stdlog,
1390 "DC: Sending SIGCONT to %s\n",
1391 target_pid_to_str (lp->ptid));
1392
1393 kill_lwp (ptid_get_lwp (lp->ptid), SIGCONT);
1394 lp->signalled = 0;
1395 }
1396
1397 /* We don't actually detach from the LWP that has an id equal to the
1398 overall process id just yet. */
1399 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1400 {
1401 int status = 0;
1402
1403 /* Pass on any pending signal for this LWP. */
1404 get_pending_status (lp, &status);
1405
1406 if (linux_nat_prepare_to_resume != NULL)
1407 linux_nat_prepare_to_resume (lp);
1408 errno = 0;
1409 if (ptrace (PTRACE_DETACH, ptid_get_lwp (lp->ptid), 0,
1410 WSTOPSIG (status)) < 0)
1411 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1412 safe_strerror (errno));
1413
1414 if (debug_linux_nat)
1415 fprintf_unfiltered (gdb_stdlog,
1416 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1417 target_pid_to_str (lp->ptid),
1418 strsignal (WSTOPSIG (status)));
1419
1420 delete_lwp (lp->ptid);
1421 }
1422
1423 return 0;
1424 }
1425
1426 static void
1427 linux_nat_detach (struct target_ops *ops, const char *args, int from_tty)
1428 {
1429 int pid;
1430 int status;
1431 struct lwp_info *main_lwp;
1432
1433 pid = ptid_get_pid (inferior_ptid);
1434
1435 /* Don't unregister from the event loop, as there may be other
1436 inferiors running. */
1437
1438 /* Stop all threads before detaching. ptrace requires that the
1439 thread is stopped to sucessfully detach. */
1440 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1441 /* ... and wait until all of them have reported back that
1442 they're no longer running. */
1443 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1444
1445 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1446
1447 /* Only the initial process should be left right now. */
1448 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1);
1449
1450 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1451
1452 /* Pass on any pending signal for the last LWP. */
1453 if ((args == NULL || *args == '\0')
1454 && get_pending_status (main_lwp, &status) != -1
1455 && WIFSTOPPED (status))
1456 {
1457 char *tem;
1458
1459 /* Put the signal number in ARGS so that inf_ptrace_detach will
1460 pass it along with PTRACE_DETACH. */
1461 tem = alloca (8);
1462 xsnprintf (tem, 8, "%d", (int) WSTOPSIG (status));
1463 args = tem;
1464 if (debug_linux_nat)
1465 fprintf_unfiltered (gdb_stdlog,
1466 "LND: Sending signal %s to %s\n",
1467 args,
1468 target_pid_to_str (main_lwp->ptid));
1469 }
1470
1471 if (linux_nat_prepare_to_resume != NULL)
1472 linux_nat_prepare_to_resume (main_lwp);
1473 delete_lwp (main_lwp->ptid);
1474
1475 if (forks_exist_p ())
1476 {
1477 /* Multi-fork case. The current inferior_ptid is being detached
1478 from, but there are other viable forks to debug. Detach from
1479 the current fork, and context-switch to the first
1480 available. */
1481 linux_fork_detach (args, from_tty);
1482 }
1483 else
1484 linux_ops->to_detach (ops, args, from_tty);
1485 }
1486
1487 /* Resume execution of the inferior process. If STEP is nonzero,
1488 single-step it. If SIGNAL is nonzero, give it that signal. */
1489
1490 static void
1491 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1492 {
1493 ptid_t ptid;
1494
1495 lp->step = step;
1496
1497 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1498 We only presently need that if the LWP is stepped though (to
1499 handle the case of stepping a breakpoint instruction). */
1500 if (step)
1501 {
1502 struct regcache *regcache = get_thread_regcache (lp->ptid);
1503
1504 lp->stop_pc = regcache_read_pc (regcache);
1505 }
1506 else
1507 lp->stop_pc = 0;
1508
1509 if (linux_nat_prepare_to_resume != NULL)
1510 linux_nat_prepare_to_resume (lp);
1511 /* Convert to something the lower layer understands. */
1512 ptid = pid_to_ptid (ptid_get_lwp (lp->ptid));
1513 linux_ops->to_resume (linux_ops, ptid, step, signo);
1514 lp->stop_reason = LWP_STOPPED_BY_NO_REASON;
1515 lp->stopped = 0;
1516 registers_changed_ptid (lp->ptid);
1517 }
1518
1519 /* Resume LP. */
1520
1521 static void
1522 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1523 {
1524 if (lp->stopped)
1525 {
1526 struct inferior *inf = find_inferior_ptid (lp->ptid);
1527
1528 if (inf->vfork_child != NULL)
1529 {
1530 if (debug_linux_nat)
1531 fprintf_unfiltered (gdb_stdlog,
1532 "RC: Not resuming %s (vfork parent)\n",
1533 target_pid_to_str (lp->ptid));
1534 }
1535 else if (!lwp_status_pending_p (lp))
1536 {
1537 if (debug_linux_nat)
1538 fprintf_unfiltered (gdb_stdlog,
1539 "RC: Resuming sibling %s, %s, %s\n",
1540 target_pid_to_str (lp->ptid),
1541 (signo != GDB_SIGNAL_0
1542 ? strsignal (gdb_signal_to_host (signo))
1543 : "0"),
1544 step ? "step" : "resume");
1545
1546 linux_resume_one_lwp (lp, step, signo);
1547 }
1548 else
1549 {
1550 if (debug_linux_nat)
1551 fprintf_unfiltered (gdb_stdlog,
1552 "RC: Not resuming sibling %s (has pending)\n",
1553 target_pid_to_str (lp->ptid));
1554 }
1555 }
1556 else
1557 {
1558 if (debug_linux_nat)
1559 fprintf_unfiltered (gdb_stdlog,
1560 "RC: Not resuming sibling %s (not stopped)\n",
1561 target_pid_to_str (lp->ptid));
1562 }
1563 }
1564
1565 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1566 Resume LWP with the last stop signal, if it is in pass state. */
1567
1568 static int
1569 linux_nat_resume_callback (struct lwp_info *lp, void *except)
1570 {
1571 enum gdb_signal signo = GDB_SIGNAL_0;
1572
1573 if (lp == except)
1574 return 0;
1575
1576 if (lp->stopped)
1577 {
1578 struct thread_info *thread;
1579
1580 thread = find_thread_ptid (lp->ptid);
1581 if (thread != NULL)
1582 {
1583 signo = thread->suspend.stop_signal;
1584 thread->suspend.stop_signal = GDB_SIGNAL_0;
1585 }
1586 }
1587
1588 resume_lwp (lp, 0, signo);
1589 return 0;
1590 }
1591
1592 static int
1593 resume_clear_callback (struct lwp_info *lp, void *data)
1594 {
1595 lp->resumed = 0;
1596 lp->last_resume_kind = resume_stop;
1597 return 0;
1598 }
1599
1600 static int
1601 resume_set_callback (struct lwp_info *lp, void *data)
1602 {
1603 lp->resumed = 1;
1604 lp->last_resume_kind = resume_continue;
1605 return 0;
1606 }
1607
1608 static void
1609 linux_nat_resume (struct target_ops *ops,
1610 ptid_t ptid, int step, enum gdb_signal signo)
1611 {
1612 struct lwp_info *lp;
1613 int resume_many;
1614
1615 if (debug_linux_nat)
1616 fprintf_unfiltered (gdb_stdlog,
1617 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1618 step ? "step" : "resume",
1619 target_pid_to_str (ptid),
1620 (signo != GDB_SIGNAL_0
1621 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1622 target_pid_to_str (inferior_ptid));
1623
1624 /* A specific PTID means `step only this process id'. */
1625 resume_many = (ptid_equal (minus_one_ptid, ptid)
1626 || ptid_is_pid (ptid));
1627
1628 /* Mark the lwps we're resuming as resumed. */
1629 iterate_over_lwps (ptid, resume_set_callback, NULL);
1630
1631 /* See if it's the current inferior that should be handled
1632 specially. */
1633 if (resume_many)
1634 lp = find_lwp_pid (inferior_ptid);
1635 else
1636 lp = find_lwp_pid (ptid);
1637 gdb_assert (lp != NULL);
1638
1639 /* Remember if we're stepping. */
1640 lp->last_resume_kind = step ? resume_step : resume_continue;
1641
1642 /* If we have a pending wait status for this thread, there is no
1643 point in resuming the process. But first make sure that
1644 linux_nat_wait won't preemptively handle the event - we
1645 should never take this short-circuit if we are going to
1646 leave LP running, since we have skipped resuming all the
1647 other threads. This bit of code needs to be synchronized
1648 with linux_nat_wait. */
1649
1650 if (lp->status && WIFSTOPPED (lp->status))
1651 {
1652 if (!lp->step
1653 && WSTOPSIG (lp->status)
1654 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1655 {
1656 if (debug_linux_nat)
1657 fprintf_unfiltered (gdb_stdlog,
1658 "LLR: Not short circuiting for ignored "
1659 "status 0x%x\n", lp->status);
1660
1661 /* FIXME: What should we do if we are supposed to continue
1662 this thread with a signal? */
1663 gdb_assert (signo == GDB_SIGNAL_0);
1664 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1665 lp->status = 0;
1666 }
1667 }
1668
1669 if (lwp_status_pending_p (lp))
1670 {
1671 /* FIXME: What should we do if we are supposed to continue
1672 this thread with a signal? */
1673 gdb_assert (signo == GDB_SIGNAL_0);
1674
1675 if (debug_linux_nat)
1676 fprintf_unfiltered (gdb_stdlog,
1677 "LLR: Short circuiting for status 0x%x\n",
1678 lp->status);
1679
1680 if (target_can_async_p ())
1681 {
1682 target_async (inferior_event_handler, 0);
1683 /* Tell the event loop we have something to process. */
1684 async_file_mark ();
1685 }
1686 return;
1687 }
1688
1689 if (resume_many)
1690 iterate_over_lwps (ptid, linux_nat_resume_callback, lp);
1691
1692 linux_resume_one_lwp (lp, step, signo);
1693
1694 if (debug_linux_nat)
1695 fprintf_unfiltered (gdb_stdlog,
1696 "LLR: %s %s, %s (resume event thread)\n",
1697 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1698 target_pid_to_str (ptid),
1699 (signo != GDB_SIGNAL_0
1700 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1701
1702 if (target_can_async_p ())
1703 target_async (inferior_event_handler, 0);
1704 }
1705
1706 /* Send a signal to an LWP. */
1707
1708 static int
1709 kill_lwp (int lwpid, int signo)
1710 {
1711 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1712 fails, then we are not using nptl threads and we should be using kill. */
1713
1714 #ifdef HAVE_TKILL_SYSCALL
1715 {
1716 static int tkill_failed;
1717
1718 if (!tkill_failed)
1719 {
1720 int ret;
1721
1722 errno = 0;
1723 ret = syscall (__NR_tkill, lwpid, signo);
1724 if (errno != ENOSYS)
1725 return ret;
1726 tkill_failed = 1;
1727 }
1728 }
1729 #endif
1730
1731 return kill (lwpid, signo);
1732 }
1733
1734 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1735 event, check if the core is interested in it: if not, ignore the
1736 event, and keep waiting; otherwise, we need to toggle the LWP's
1737 syscall entry/exit status, since the ptrace event itself doesn't
1738 indicate it, and report the trap to higher layers. */
1739
1740 static int
1741 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1742 {
1743 struct target_waitstatus *ourstatus = &lp->waitstatus;
1744 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1745 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1746
1747 if (stopping)
1748 {
1749 /* If we're stopping threads, there's a SIGSTOP pending, which
1750 makes it so that the LWP reports an immediate syscall return,
1751 followed by the SIGSTOP. Skip seeing that "return" using
1752 PTRACE_CONT directly, and let stop_wait_callback collect the
1753 SIGSTOP. Later when the thread is resumed, a new syscall
1754 entry event. If we didn't do this (and returned 0), we'd
1755 leave a syscall entry pending, and our caller, by using
1756 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1757 itself. Later, when the user re-resumes this LWP, we'd see
1758 another syscall entry event and we'd mistake it for a return.
1759
1760 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1761 (leaving immediately with LWP->signalled set, without issuing
1762 a PTRACE_CONT), it would still be problematic to leave this
1763 syscall enter pending, as later when the thread is resumed,
1764 it would then see the same syscall exit mentioned above,
1765 followed by the delayed SIGSTOP, while the syscall didn't
1766 actually get to execute. It seems it would be even more
1767 confusing to the user. */
1768
1769 if (debug_linux_nat)
1770 fprintf_unfiltered (gdb_stdlog,
1771 "LHST: ignoring syscall %d "
1772 "for LWP %ld (stopping threads), "
1773 "resuming with PTRACE_CONT for SIGSTOP\n",
1774 syscall_number,
1775 ptid_get_lwp (lp->ptid));
1776
1777 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1778 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1779 lp->stopped = 0;
1780 return 1;
1781 }
1782
1783 if (catch_syscall_enabled ())
1784 {
1785 /* Always update the entry/return state, even if this particular
1786 syscall isn't interesting to the core now. In async mode,
1787 the user could install a new catchpoint for this syscall
1788 between syscall enter/return, and we'll need to know to
1789 report a syscall return if that happens. */
1790 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1791 ? TARGET_WAITKIND_SYSCALL_RETURN
1792 : TARGET_WAITKIND_SYSCALL_ENTRY);
1793
1794 if (catching_syscall_number (syscall_number))
1795 {
1796 /* Alright, an event to report. */
1797 ourstatus->kind = lp->syscall_state;
1798 ourstatus->value.syscall_number = syscall_number;
1799
1800 if (debug_linux_nat)
1801 fprintf_unfiltered (gdb_stdlog,
1802 "LHST: stopping for %s of syscall %d"
1803 " for LWP %ld\n",
1804 lp->syscall_state
1805 == TARGET_WAITKIND_SYSCALL_ENTRY
1806 ? "entry" : "return",
1807 syscall_number,
1808 ptid_get_lwp (lp->ptid));
1809 return 0;
1810 }
1811
1812 if (debug_linux_nat)
1813 fprintf_unfiltered (gdb_stdlog,
1814 "LHST: ignoring %s of syscall %d "
1815 "for LWP %ld\n",
1816 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1817 ? "entry" : "return",
1818 syscall_number,
1819 ptid_get_lwp (lp->ptid));
1820 }
1821 else
1822 {
1823 /* If we had been syscall tracing, and hence used PT_SYSCALL
1824 before on this LWP, it could happen that the user removes all
1825 syscall catchpoints before we get to process this event.
1826 There are two noteworthy issues here:
1827
1828 - When stopped at a syscall entry event, resuming with
1829 PT_STEP still resumes executing the syscall and reports a
1830 syscall return.
1831
1832 - Only PT_SYSCALL catches syscall enters. If we last
1833 single-stepped this thread, then this event can't be a
1834 syscall enter. If we last single-stepped this thread, this
1835 has to be a syscall exit.
1836
1837 The points above mean that the next resume, be it PT_STEP or
1838 PT_CONTINUE, can not trigger a syscall trace event. */
1839 if (debug_linux_nat)
1840 fprintf_unfiltered (gdb_stdlog,
1841 "LHST: caught syscall event "
1842 "with no syscall catchpoints."
1843 " %d for LWP %ld, ignoring\n",
1844 syscall_number,
1845 ptid_get_lwp (lp->ptid));
1846 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1847 }
1848
1849 /* The core isn't interested in this event. For efficiency, avoid
1850 stopping all threads only to have the core resume them all again.
1851 Since we're not stopping threads, if we're still syscall tracing
1852 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1853 subsequent syscall. Simply resume using the inf-ptrace layer,
1854 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1855
1856 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1857 return 1;
1858 }
1859
1860 /* Handle a GNU/Linux extended wait response. If we see a clone
1861 event, we need to add the new LWP to our list (and not report the
1862 trap to higher layers). This function returns non-zero if the
1863 event should be ignored and we should wait again. If STOPPING is
1864 true, the new LWP remains stopped, otherwise it is continued. */
1865
1866 static int
1867 linux_handle_extended_wait (struct lwp_info *lp, int status,
1868 int stopping)
1869 {
1870 int pid = ptid_get_lwp (lp->ptid);
1871 struct target_waitstatus *ourstatus = &lp->waitstatus;
1872 int event = linux_ptrace_get_extended_event (status);
1873
1874 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1875 || event == PTRACE_EVENT_CLONE)
1876 {
1877 unsigned long new_pid;
1878 int ret;
1879
1880 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1881
1882 /* If we haven't already seen the new PID stop, wait for it now. */
1883 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1884 {
1885 /* The new child has a pending SIGSTOP. We can't affect it until it
1886 hits the SIGSTOP, but we're already attached. */
1887 ret = my_waitpid (new_pid, &status,
1888 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
1889 if (ret == -1)
1890 perror_with_name (_("waiting for new child"));
1891 else if (ret != new_pid)
1892 internal_error (__FILE__, __LINE__,
1893 _("wait returned unexpected PID %d"), ret);
1894 else if (!WIFSTOPPED (status))
1895 internal_error (__FILE__, __LINE__,
1896 _("wait returned unexpected status 0x%x"), status);
1897 }
1898
1899 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
1900
1901 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
1902 {
1903 /* The arch-specific native code may need to know about new
1904 forks even if those end up never mapped to an
1905 inferior. */
1906 if (linux_nat_new_fork != NULL)
1907 linux_nat_new_fork (lp, new_pid);
1908 }
1909
1910 if (event == PTRACE_EVENT_FORK
1911 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
1912 {
1913 /* Handle checkpointing by linux-fork.c here as a special
1914 case. We don't want the follow-fork-mode or 'catch fork'
1915 to interfere with this. */
1916
1917 /* This won't actually modify the breakpoint list, but will
1918 physically remove the breakpoints from the child. */
1919 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
1920
1921 /* Retain child fork in ptrace (stopped) state. */
1922 if (!find_fork_pid (new_pid))
1923 add_fork (new_pid);
1924
1925 /* Report as spurious, so that infrun doesn't want to follow
1926 this fork. We're actually doing an infcall in
1927 linux-fork.c. */
1928 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
1929
1930 /* Report the stop to the core. */
1931 return 0;
1932 }
1933
1934 if (event == PTRACE_EVENT_FORK)
1935 ourstatus->kind = TARGET_WAITKIND_FORKED;
1936 else if (event == PTRACE_EVENT_VFORK)
1937 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1938 else
1939 {
1940 struct lwp_info *new_lp;
1941
1942 ourstatus->kind = TARGET_WAITKIND_IGNORE;
1943
1944 if (debug_linux_nat)
1945 fprintf_unfiltered (gdb_stdlog,
1946 "LHEW: Got clone event "
1947 "from LWP %d, new child is LWP %ld\n",
1948 pid, new_pid);
1949
1950 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
1951 new_lp->cloned = 1;
1952 new_lp->stopped = 1;
1953
1954 if (WSTOPSIG (status) != SIGSTOP)
1955 {
1956 /* This can happen if someone starts sending signals to
1957 the new thread before it gets a chance to run, which
1958 have a lower number than SIGSTOP (e.g. SIGUSR1).
1959 This is an unlikely case, and harder to handle for
1960 fork / vfork than for clone, so we do not try - but
1961 we handle it for clone events here. We'll send
1962 the other signal on to the thread below. */
1963
1964 new_lp->signalled = 1;
1965 }
1966 else
1967 {
1968 struct thread_info *tp;
1969
1970 /* When we stop for an event in some other thread, and
1971 pull the thread list just as this thread has cloned,
1972 we'll have seen the new thread in the thread_db list
1973 before handling the CLONE event (glibc's
1974 pthread_create adds the new thread to the thread list
1975 before clone'ing, and has the kernel fill in the
1976 thread's tid on the clone call with
1977 CLONE_PARENT_SETTID). If that happened, and the core
1978 had requested the new thread to stop, we'll have
1979 killed it with SIGSTOP. But since SIGSTOP is not an
1980 RT signal, it can only be queued once. We need to be
1981 careful to not resume the LWP if we wanted it to
1982 stop. In that case, we'll leave the SIGSTOP pending.
1983 It will later be reported as GDB_SIGNAL_0. */
1984 tp = find_thread_ptid (new_lp->ptid);
1985 if (tp != NULL && tp->stop_requested)
1986 new_lp->last_resume_kind = resume_stop;
1987 else
1988 status = 0;
1989 }
1990
1991 if (non_stop)
1992 {
1993 /* Add the new thread to GDB's lists as soon as possible
1994 so that:
1995
1996 1) the frontend doesn't have to wait for a stop to
1997 display them, and,
1998
1999 2) we tag it with the correct running state. */
2000
2001 /* If the thread_db layer is active, let it know about
2002 this new thread, and add it to GDB's list. */
2003 if (!thread_db_attach_lwp (new_lp->ptid))
2004 {
2005 /* We're not using thread_db. Add it to GDB's
2006 list. */
2007 target_post_attach (ptid_get_lwp (new_lp->ptid));
2008 add_thread (new_lp->ptid);
2009 }
2010
2011 if (!stopping)
2012 {
2013 set_running (new_lp->ptid, 1);
2014 set_executing (new_lp->ptid, 1);
2015 /* thread_db_attach_lwp -> lin_lwp_attach_lwp forced
2016 resume_stop. */
2017 new_lp->last_resume_kind = resume_continue;
2018 }
2019 }
2020
2021 if (status != 0)
2022 {
2023 /* We created NEW_LP so it cannot yet contain STATUS. */
2024 gdb_assert (new_lp->status == 0);
2025
2026 /* Save the wait status to report later. */
2027 if (debug_linux_nat)
2028 fprintf_unfiltered (gdb_stdlog,
2029 "LHEW: waitpid of new LWP %ld, "
2030 "saving status %s\n",
2031 (long) ptid_get_lwp (new_lp->ptid),
2032 status_to_str (status));
2033 new_lp->status = status;
2034 }
2035
2036 /* Note the need to use the low target ops to resume, to
2037 handle resuming with PT_SYSCALL if we have syscall
2038 catchpoints. */
2039 if (!stopping)
2040 {
2041 new_lp->resumed = 1;
2042
2043 if (status == 0)
2044 {
2045 gdb_assert (new_lp->last_resume_kind == resume_continue);
2046 if (debug_linux_nat)
2047 fprintf_unfiltered (gdb_stdlog,
2048 "LHEW: resuming new LWP %ld\n",
2049 ptid_get_lwp (new_lp->ptid));
2050 linux_resume_one_lwp (new_lp, 0, GDB_SIGNAL_0);
2051 }
2052 }
2053
2054 if (debug_linux_nat)
2055 fprintf_unfiltered (gdb_stdlog,
2056 "LHEW: resuming parent LWP %d\n", pid);
2057 linux_resume_one_lwp (lp, 0, GDB_SIGNAL_0);
2058 return 1;
2059 }
2060
2061 return 0;
2062 }
2063
2064 if (event == PTRACE_EVENT_EXEC)
2065 {
2066 if (debug_linux_nat)
2067 fprintf_unfiltered (gdb_stdlog,
2068 "LHEW: Got exec event from LWP %ld\n",
2069 ptid_get_lwp (lp->ptid));
2070
2071 ourstatus->kind = TARGET_WAITKIND_EXECD;
2072 ourstatus->value.execd_pathname
2073 = xstrdup (linux_child_pid_to_exec_file (NULL, pid));
2074
2075 /* The thread that execed must have been resumed, but, when a
2076 thread execs, it changes its tid to the tgid, and the old
2077 tgid thread might have not been resumed. */
2078 lp->resumed = 1;
2079 return 0;
2080 }
2081
2082 if (event == PTRACE_EVENT_VFORK_DONE)
2083 {
2084 if (current_inferior ()->waiting_for_vfork_done)
2085 {
2086 if (debug_linux_nat)
2087 fprintf_unfiltered (gdb_stdlog,
2088 "LHEW: Got expected PTRACE_EVENT_"
2089 "VFORK_DONE from LWP %ld: stopping\n",
2090 ptid_get_lwp (lp->ptid));
2091
2092 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2093 return 0;
2094 }
2095
2096 if (debug_linux_nat)
2097 fprintf_unfiltered (gdb_stdlog,
2098 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2099 "from LWP %ld: resuming\n",
2100 ptid_get_lwp (lp->ptid));
2101 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2102 return 1;
2103 }
2104
2105 internal_error (__FILE__, __LINE__,
2106 _("unknown ptrace event %d"), event);
2107 }
2108
2109 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2110 exited. */
2111
2112 static int
2113 wait_lwp (struct lwp_info *lp)
2114 {
2115 pid_t pid;
2116 int status = 0;
2117 int thread_dead = 0;
2118 sigset_t prev_mask;
2119
2120 gdb_assert (!lp->stopped);
2121 gdb_assert (lp->status == 0);
2122
2123 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2124 block_child_signals (&prev_mask);
2125
2126 for (;;)
2127 {
2128 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2129 was right and we should just call sigsuspend. */
2130
2131 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, WNOHANG);
2132 if (pid == -1 && errno == ECHILD)
2133 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WCLONE | WNOHANG);
2134 if (pid == -1 && errno == ECHILD)
2135 {
2136 /* The thread has previously exited. We need to delete it
2137 now because, for some vendor 2.4 kernels with NPTL
2138 support backported, there won't be an exit event unless
2139 it is the main thread. 2.6 kernels will report an exit
2140 event for each thread that exits, as expected. */
2141 thread_dead = 1;
2142 if (debug_linux_nat)
2143 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2144 target_pid_to_str (lp->ptid));
2145 }
2146 if (pid != 0)
2147 break;
2148
2149 /* Bugs 10970, 12702.
2150 Thread group leader may have exited in which case we'll lock up in
2151 waitpid if there are other threads, even if they are all zombies too.
2152 Basically, we're not supposed to use waitpid this way.
2153 __WCLONE is not applicable for the leader so we can't use that.
2154 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2155 process; it gets ESRCH both for the zombie and for running processes.
2156
2157 As a workaround, check if we're waiting for the thread group leader and
2158 if it's a zombie, and avoid calling waitpid if it is.
2159
2160 This is racy, what if the tgl becomes a zombie right after we check?
2161 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2162 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2163
2164 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2165 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2166 {
2167 thread_dead = 1;
2168 if (debug_linux_nat)
2169 fprintf_unfiltered (gdb_stdlog,
2170 "WL: Thread group leader %s vanished.\n",
2171 target_pid_to_str (lp->ptid));
2172 break;
2173 }
2174
2175 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2176 get invoked despite our caller had them intentionally blocked by
2177 block_child_signals. This is sensitive only to the loop of
2178 linux_nat_wait_1 and there if we get called my_waitpid gets called
2179 again before it gets to sigsuspend so we can safely let the handlers
2180 get executed here. */
2181
2182 if (debug_linux_nat)
2183 fprintf_unfiltered (gdb_stdlog, "WL: about to sigsuspend\n");
2184 sigsuspend (&suspend_mask);
2185 }
2186
2187 restore_child_signals_mask (&prev_mask);
2188
2189 if (!thread_dead)
2190 {
2191 gdb_assert (pid == ptid_get_lwp (lp->ptid));
2192
2193 if (debug_linux_nat)
2194 {
2195 fprintf_unfiltered (gdb_stdlog,
2196 "WL: waitpid %s received %s\n",
2197 target_pid_to_str (lp->ptid),
2198 status_to_str (status));
2199 }
2200
2201 /* Check if the thread has exited. */
2202 if (WIFEXITED (status) || WIFSIGNALED (status))
2203 {
2204 thread_dead = 1;
2205 if (debug_linux_nat)
2206 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2207 target_pid_to_str (lp->ptid));
2208 }
2209 }
2210
2211 if (thread_dead)
2212 {
2213 exit_lwp (lp);
2214 return 0;
2215 }
2216
2217 gdb_assert (WIFSTOPPED (status));
2218 lp->stopped = 1;
2219
2220 if (lp->must_set_ptrace_flags)
2221 {
2222 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2223
2224 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), inf->attach_flag);
2225 lp->must_set_ptrace_flags = 0;
2226 }
2227
2228 /* Handle GNU/Linux's syscall SIGTRAPs. */
2229 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2230 {
2231 /* No longer need the sysgood bit. The ptrace event ends up
2232 recorded in lp->waitstatus if we care for it. We can carry
2233 on handling the event like a regular SIGTRAP from here
2234 on. */
2235 status = W_STOPCODE (SIGTRAP);
2236 if (linux_handle_syscall_trap (lp, 1))
2237 return wait_lwp (lp);
2238 }
2239
2240 /* Handle GNU/Linux's extended waitstatus for trace events. */
2241 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2242 && linux_is_extended_waitstatus (status))
2243 {
2244 if (debug_linux_nat)
2245 fprintf_unfiltered (gdb_stdlog,
2246 "WL: Handling extended status 0x%06x\n",
2247 status);
2248 if (linux_handle_extended_wait (lp, status, 1))
2249 return wait_lwp (lp);
2250 }
2251
2252 return status;
2253 }
2254
2255 /* Send a SIGSTOP to LP. */
2256
2257 static int
2258 stop_callback (struct lwp_info *lp, void *data)
2259 {
2260 if (!lp->stopped && !lp->signalled)
2261 {
2262 int ret;
2263
2264 if (debug_linux_nat)
2265 {
2266 fprintf_unfiltered (gdb_stdlog,
2267 "SC: kill %s **<SIGSTOP>**\n",
2268 target_pid_to_str (lp->ptid));
2269 }
2270 errno = 0;
2271 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2272 if (debug_linux_nat)
2273 {
2274 fprintf_unfiltered (gdb_stdlog,
2275 "SC: lwp kill %d %s\n",
2276 ret,
2277 errno ? safe_strerror (errno) : "ERRNO-OK");
2278 }
2279
2280 lp->signalled = 1;
2281 gdb_assert (lp->status == 0);
2282 }
2283
2284 return 0;
2285 }
2286
2287 /* Request a stop on LWP. */
2288
2289 void
2290 linux_stop_lwp (struct lwp_info *lwp)
2291 {
2292 stop_callback (lwp, NULL);
2293 }
2294
2295 /* Return non-zero if LWP PID has a pending SIGINT. */
2296
2297 static int
2298 linux_nat_has_pending_sigint (int pid)
2299 {
2300 sigset_t pending, blocked, ignored;
2301
2302 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2303
2304 if (sigismember (&pending, SIGINT)
2305 && !sigismember (&ignored, SIGINT))
2306 return 1;
2307
2308 return 0;
2309 }
2310
2311 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2312
2313 static int
2314 set_ignore_sigint (struct lwp_info *lp, void *data)
2315 {
2316 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2317 flag to consume the next one. */
2318 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2319 && WSTOPSIG (lp->status) == SIGINT)
2320 lp->status = 0;
2321 else
2322 lp->ignore_sigint = 1;
2323
2324 return 0;
2325 }
2326
2327 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2328 This function is called after we know the LWP has stopped; if the LWP
2329 stopped before the expected SIGINT was delivered, then it will never have
2330 arrived. Also, if the signal was delivered to a shared queue and consumed
2331 by a different thread, it will never be delivered to this LWP. */
2332
2333 static void
2334 maybe_clear_ignore_sigint (struct lwp_info *lp)
2335 {
2336 if (!lp->ignore_sigint)
2337 return;
2338
2339 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2340 {
2341 if (debug_linux_nat)
2342 fprintf_unfiltered (gdb_stdlog,
2343 "MCIS: Clearing bogus flag for %s\n",
2344 target_pid_to_str (lp->ptid));
2345 lp->ignore_sigint = 0;
2346 }
2347 }
2348
2349 /* Fetch the possible triggered data watchpoint info and store it in
2350 LP.
2351
2352 On some archs, like x86, that use debug registers to set
2353 watchpoints, it's possible that the way to know which watched
2354 address trapped, is to check the register that is used to select
2355 which address to watch. Problem is, between setting the watchpoint
2356 and reading back which data address trapped, the user may change
2357 the set of watchpoints, and, as a consequence, GDB changes the
2358 debug registers in the inferior. To avoid reading back a stale
2359 stopped-data-address when that happens, we cache in LP the fact
2360 that a watchpoint trapped, and the corresponding data address, as
2361 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2362 registers meanwhile, we have the cached data we can rely on. */
2363
2364 static int
2365 check_stopped_by_watchpoint (struct lwp_info *lp)
2366 {
2367 struct cleanup *old_chain;
2368
2369 if (linux_ops->to_stopped_by_watchpoint == NULL)
2370 return 0;
2371
2372 old_chain = save_inferior_ptid ();
2373 inferior_ptid = lp->ptid;
2374
2375 if (linux_ops->to_stopped_by_watchpoint (linux_ops))
2376 {
2377 lp->stop_reason = LWP_STOPPED_BY_WATCHPOINT;
2378
2379 if (linux_ops->to_stopped_data_address != NULL)
2380 lp->stopped_data_address_p =
2381 linux_ops->to_stopped_data_address (&current_target,
2382 &lp->stopped_data_address);
2383 else
2384 lp->stopped_data_address_p = 0;
2385 }
2386
2387 do_cleanups (old_chain);
2388
2389 return lp->stop_reason == LWP_STOPPED_BY_WATCHPOINT;
2390 }
2391
2392 /* Called when the LWP stopped for a trap that could be explained by a
2393 watchpoint or a breakpoint. */
2394
2395 static void
2396 save_sigtrap (struct lwp_info *lp)
2397 {
2398 gdb_assert (lp->stop_reason == LWP_STOPPED_BY_NO_REASON);
2399 gdb_assert (lp->status != 0);
2400
2401 if (check_stopped_by_watchpoint (lp))
2402 return;
2403
2404 if (linux_nat_status_is_event (lp->status))
2405 check_stopped_by_breakpoint (lp);
2406 }
2407
2408 /* Returns true if the LWP had stopped for a watchpoint. */
2409
2410 static int
2411 linux_nat_stopped_by_watchpoint (struct target_ops *ops)
2412 {
2413 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2414
2415 gdb_assert (lp != NULL);
2416
2417 return lp->stop_reason == LWP_STOPPED_BY_WATCHPOINT;
2418 }
2419
2420 static int
2421 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2422 {
2423 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2424
2425 gdb_assert (lp != NULL);
2426
2427 *addr_p = lp->stopped_data_address;
2428
2429 return lp->stopped_data_address_p;
2430 }
2431
2432 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2433
2434 static int
2435 sigtrap_is_event (int status)
2436 {
2437 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2438 }
2439
2440 /* Set alternative SIGTRAP-like events recognizer. If
2441 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2442 applied. */
2443
2444 void
2445 linux_nat_set_status_is_event (struct target_ops *t,
2446 int (*status_is_event) (int status))
2447 {
2448 linux_nat_status_is_event = status_is_event;
2449 }
2450
2451 /* Wait until LP is stopped. */
2452
2453 static int
2454 stop_wait_callback (struct lwp_info *lp, void *data)
2455 {
2456 struct inferior *inf = find_inferior_ptid (lp->ptid);
2457
2458 /* If this is a vfork parent, bail out, it is not going to report
2459 any SIGSTOP until the vfork is done with. */
2460 if (inf->vfork_child != NULL)
2461 return 0;
2462
2463 if (!lp->stopped)
2464 {
2465 int status;
2466
2467 status = wait_lwp (lp);
2468 if (status == 0)
2469 return 0;
2470
2471 if (lp->ignore_sigint && WIFSTOPPED (status)
2472 && WSTOPSIG (status) == SIGINT)
2473 {
2474 lp->ignore_sigint = 0;
2475
2476 errno = 0;
2477 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2478 lp->stopped = 0;
2479 if (debug_linux_nat)
2480 fprintf_unfiltered (gdb_stdlog,
2481 "PTRACE_CONT %s, 0, 0 (%s) "
2482 "(discarding SIGINT)\n",
2483 target_pid_to_str (lp->ptid),
2484 errno ? safe_strerror (errno) : "OK");
2485
2486 return stop_wait_callback (lp, NULL);
2487 }
2488
2489 maybe_clear_ignore_sigint (lp);
2490
2491 if (WSTOPSIG (status) != SIGSTOP)
2492 {
2493 /* The thread was stopped with a signal other than SIGSTOP. */
2494
2495 if (debug_linux_nat)
2496 fprintf_unfiltered (gdb_stdlog,
2497 "SWC: Pending event %s in %s\n",
2498 status_to_str ((int) status),
2499 target_pid_to_str (lp->ptid));
2500
2501 /* Save the sigtrap event. */
2502 lp->status = status;
2503 gdb_assert (lp->signalled);
2504 save_sigtrap (lp);
2505 }
2506 else
2507 {
2508 /* We caught the SIGSTOP that we intended to catch, so
2509 there's no SIGSTOP pending. */
2510
2511 if (debug_linux_nat)
2512 fprintf_unfiltered (gdb_stdlog,
2513 "SWC: Delayed SIGSTOP caught for %s.\n",
2514 target_pid_to_str (lp->ptid));
2515
2516 /* Reset SIGNALLED only after the stop_wait_callback call
2517 above as it does gdb_assert on SIGNALLED. */
2518 lp->signalled = 0;
2519 }
2520 }
2521
2522 return 0;
2523 }
2524
2525 /* Return non-zero if LP has a wait status pending. Discard the
2526 pending event and resume the LWP if the event that originally
2527 caused the stop became uninteresting. */
2528
2529 static int
2530 status_callback (struct lwp_info *lp, void *data)
2531 {
2532 /* Only report a pending wait status if we pretend that this has
2533 indeed been resumed. */
2534 if (!lp->resumed)
2535 return 0;
2536
2537 if (lp->stop_reason == LWP_STOPPED_BY_SW_BREAKPOINT
2538 || lp->stop_reason == LWP_STOPPED_BY_HW_BREAKPOINT)
2539 {
2540 struct regcache *regcache = get_thread_regcache (lp->ptid);
2541 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2542 CORE_ADDR pc;
2543 int discard = 0;
2544
2545 gdb_assert (lp->status != 0);
2546
2547 pc = regcache_read_pc (regcache);
2548
2549 if (pc != lp->stop_pc)
2550 {
2551 if (debug_linux_nat)
2552 fprintf_unfiltered (gdb_stdlog,
2553 "SC: PC of %s changed. was=%s, now=%s\n",
2554 target_pid_to_str (lp->ptid),
2555 paddress (target_gdbarch (), lp->stop_pc),
2556 paddress (target_gdbarch (), pc));
2557 discard = 1;
2558 }
2559 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2560 {
2561 if (debug_linux_nat)
2562 fprintf_unfiltered (gdb_stdlog,
2563 "SC: previous breakpoint of %s, at %s gone\n",
2564 target_pid_to_str (lp->ptid),
2565 paddress (target_gdbarch (), lp->stop_pc));
2566
2567 discard = 1;
2568 }
2569
2570 if (discard)
2571 {
2572 if (debug_linux_nat)
2573 fprintf_unfiltered (gdb_stdlog,
2574 "SC: pending event of %s cancelled.\n",
2575 target_pid_to_str (lp->ptid));
2576
2577 lp->status = 0;
2578 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2579 return 0;
2580 }
2581 return 1;
2582 }
2583
2584 return lwp_status_pending_p (lp);
2585 }
2586
2587 /* Return non-zero if LP isn't stopped. */
2588
2589 static int
2590 running_callback (struct lwp_info *lp, void *data)
2591 {
2592 return (!lp->stopped
2593 || (lwp_status_pending_p (lp) && lp->resumed));
2594 }
2595
2596 /* Count the LWP's that have had events. */
2597
2598 static int
2599 count_events_callback (struct lwp_info *lp, void *data)
2600 {
2601 int *count = data;
2602
2603 gdb_assert (count != NULL);
2604
2605 /* Select only resumed LWPs that have an event pending. */
2606 if (lp->resumed && lwp_status_pending_p (lp))
2607 (*count)++;
2608
2609 return 0;
2610 }
2611
2612 /* Select the LWP (if any) that is currently being single-stepped. */
2613
2614 static int
2615 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2616 {
2617 if (lp->last_resume_kind == resume_step
2618 && lp->status != 0)
2619 return 1;
2620 else
2621 return 0;
2622 }
2623
2624 /* Returns true if LP has a status pending. */
2625
2626 static int
2627 lwp_status_pending_p (struct lwp_info *lp)
2628 {
2629 /* We check for lp->waitstatus in addition to lp->status, because we
2630 can have pending process exits recorded in lp->status and
2631 W_EXITCODE(0,0) happens to be 0. */
2632 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2633 }
2634
2635 /* Select the Nth LWP that has had a SIGTRAP event. */
2636
2637 static int
2638 select_event_lwp_callback (struct lwp_info *lp, void *data)
2639 {
2640 int *selector = data;
2641
2642 gdb_assert (selector != NULL);
2643
2644 /* Select only resumed LWPs that have an event pending. */
2645 if (lp->resumed && lwp_status_pending_p (lp))
2646 if ((*selector)-- == 0)
2647 return 1;
2648
2649 return 0;
2650 }
2651
2652 /* Called when the LWP got a signal/trap that could be explained by a
2653 software or hardware breakpoint. */
2654
2655 static int
2656 check_stopped_by_breakpoint (struct lwp_info *lp)
2657 {
2658 /* Arrange for a breakpoint to be hit again later. We don't keep
2659 the SIGTRAP status and don't forward the SIGTRAP signal to the
2660 LWP. We will handle the current event, eventually we will resume
2661 this LWP, and this breakpoint will trap again.
2662
2663 If we do not do this, then we run the risk that the user will
2664 delete or disable the breakpoint, but the LWP will have already
2665 tripped on it. */
2666
2667 struct regcache *regcache = get_thread_regcache (lp->ptid);
2668 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2669 CORE_ADDR pc;
2670 CORE_ADDR sw_bp_pc;
2671
2672 pc = regcache_read_pc (regcache);
2673 sw_bp_pc = pc - target_decr_pc_after_break (gdbarch);
2674
2675 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2676 && software_breakpoint_inserted_here_p (get_regcache_aspace (regcache),
2677 sw_bp_pc))
2678 {
2679 /* The LWP was either continued, or stepped a software
2680 breakpoint instruction. */
2681 if (debug_linux_nat)
2682 fprintf_unfiltered (gdb_stdlog,
2683 "CB: Push back software breakpoint for %s\n",
2684 target_pid_to_str (lp->ptid));
2685
2686 /* Back up the PC if necessary. */
2687 if (pc != sw_bp_pc)
2688 regcache_write_pc (regcache, sw_bp_pc);
2689
2690 lp->stop_pc = sw_bp_pc;
2691 lp->stop_reason = LWP_STOPPED_BY_SW_BREAKPOINT;
2692 return 1;
2693 }
2694
2695 if (hardware_breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2696 {
2697 if (debug_linux_nat)
2698 fprintf_unfiltered (gdb_stdlog,
2699 "CB: Push back hardware breakpoint for %s\n",
2700 target_pid_to_str (lp->ptid));
2701
2702 lp->stop_pc = pc;
2703 lp->stop_reason = LWP_STOPPED_BY_HW_BREAKPOINT;
2704 return 1;
2705 }
2706
2707 return 0;
2708 }
2709
2710 /* Select one LWP out of those that have events pending. */
2711
2712 static void
2713 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2714 {
2715 int num_events = 0;
2716 int random_selector;
2717 struct lwp_info *event_lp = NULL;
2718
2719 /* Record the wait status for the original LWP. */
2720 (*orig_lp)->status = *status;
2721
2722 /* In all-stop, give preference to the LWP that is being
2723 single-stepped. There will be at most one, and it will be the
2724 LWP that the core is most interested in. If we didn't do this,
2725 then we'd have to handle pending step SIGTRAPs somehow in case
2726 the core later continues the previously-stepped thread, as
2727 otherwise we'd report the pending SIGTRAP then, and the core, not
2728 having stepped the thread, wouldn't understand what the trap was
2729 for, and therefore would report it to the user as a random
2730 signal. */
2731 if (!non_stop)
2732 {
2733 event_lp = iterate_over_lwps (filter,
2734 select_singlestep_lwp_callback, NULL);
2735 if (event_lp != NULL)
2736 {
2737 if (debug_linux_nat)
2738 fprintf_unfiltered (gdb_stdlog,
2739 "SEL: Select single-step %s\n",
2740 target_pid_to_str (event_lp->ptid));
2741 }
2742 }
2743
2744 if (event_lp == NULL)
2745 {
2746 /* Pick one at random, out of those which have had events. */
2747
2748 /* First see how many events we have. */
2749 iterate_over_lwps (filter, count_events_callback, &num_events);
2750
2751 /* Now randomly pick a LWP out of those that have had
2752 events. */
2753 random_selector = (int)
2754 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2755
2756 if (debug_linux_nat && num_events > 1)
2757 fprintf_unfiltered (gdb_stdlog,
2758 "SEL: Found %d events, selecting #%d\n",
2759 num_events, random_selector);
2760
2761 event_lp = iterate_over_lwps (filter,
2762 select_event_lwp_callback,
2763 &random_selector);
2764 }
2765
2766 if (event_lp != NULL)
2767 {
2768 /* Switch the event LWP. */
2769 *orig_lp = event_lp;
2770 *status = event_lp->status;
2771 }
2772
2773 /* Flush the wait status for the event LWP. */
2774 (*orig_lp)->status = 0;
2775 }
2776
2777 /* Return non-zero if LP has been resumed. */
2778
2779 static int
2780 resumed_callback (struct lwp_info *lp, void *data)
2781 {
2782 return lp->resumed;
2783 }
2784
2785 /* Stop an active thread, verify it still exists, then resume it. If
2786 the thread ends up with a pending status, then it is not resumed,
2787 and *DATA (really a pointer to int), is set. */
2788
2789 static int
2790 stop_and_resume_callback (struct lwp_info *lp, void *data)
2791 {
2792 if (!lp->stopped)
2793 {
2794 ptid_t ptid = lp->ptid;
2795
2796 stop_callback (lp, NULL);
2797 stop_wait_callback (lp, NULL);
2798
2799 /* Resume if the lwp still exists, and the core wanted it
2800 running. */
2801 lp = find_lwp_pid (ptid);
2802 if (lp != NULL)
2803 {
2804 if (lp->last_resume_kind == resume_stop
2805 && !lwp_status_pending_p (lp))
2806 {
2807 /* The core wanted the LWP to stop. Even if it stopped
2808 cleanly (with SIGSTOP), leave the event pending. */
2809 if (debug_linux_nat)
2810 fprintf_unfiltered (gdb_stdlog,
2811 "SARC: core wanted LWP %ld stopped "
2812 "(leaving SIGSTOP pending)\n",
2813 ptid_get_lwp (lp->ptid));
2814 lp->status = W_STOPCODE (SIGSTOP);
2815 }
2816
2817 if (!lwp_status_pending_p (lp))
2818 {
2819 if (debug_linux_nat)
2820 fprintf_unfiltered (gdb_stdlog,
2821 "SARC: re-resuming LWP %ld\n",
2822 ptid_get_lwp (lp->ptid));
2823 resume_lwp (lp, lp->step, GDB_SIGNAL_0);
2824 }
2825 else
2826 {
2827 if (debug_linux_nat)
2828 fprintf_unfiltered (gdb_stdlog,
2829 "SARC: not re-resuming LWP %ld "
2830 "(has pending)\n",
2831 ptid_get_lwp (lp->ptid));
2832 }
2833 }
2834 }
2835 return 0;
2836 }
2837
2838 /* Check if we should go on and pass this event to common code.
2839 Return the affected lwp if we are, or NULL otherwise. */
2840
2841 static struct lwp_info *
2842 linux_nat_filter_event (int lwpid, int status)
2843 {
2844 struct lwp_info *lp;
2845 int event = linux_ptrace_get_extended_event (status);
2846
2847 lp = find_lwp_pid (pid_to_ptid (lwpid));
2848
2849 /* Check for stop events reported by a process we didn't already
2850 know about - anything not already in our LWP list.
2851
2852 If we're expecting to receive stopped processes after
2853 fork, vfork, and clone events, then we'll just add the
2854 new one to our list and go back to waiting for the event
2855 to be reported - the stopped process might be returned
2856 from waitpid before or after the event is.
2857
2858 But note the case of a non-leader thread exec'ing after the
2859 leader having exited, and gone from our lists. The non-leader
2860 thread changes its tid to the tgid. */
2861
2862 if (WIFSTOPPED (status) && lp == NULL
2863 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
2864 {
2865 /* A multi-thread exec after we had seen the leader exiting. */
2866 if (debug_linux_nat)
2867 fprintf_unfiltered (gdb_stdlog,
2868 "LLW: Re-adding thread group leader LWP %d.\n",
2869 lwpid);
2870
2871 lp = add_lwp (ptid_build (lwpid, lwpid, 0));
2872 lp->stopped = 1;
2873 lp->resumed = 1;
2874 add_thread (lp->ptid);
2875 }
2876
2877 if (WIFSTOPPED (status) && !lp)
2878 {
2879 add_to_pid_list (&stopped_pids, lwpid, status);
2880 return NULL;
2881 }
2882
2883 /* Make sure we don't report an event for the exit of an LWP not in
2884 our list, i.e. not part of the current process. This can happen
2885 if we detach from a program we originally forked and then it
2886 exits. */
2887 if (!WIFSTOPPED (status) && !lp)
2888 return NULL;
2889
2890 /* This LWP is stopped now. (And if dead, this prevents it from
2891 ever being continued.) */
2892 lp->stopped = 1;
2893
2894 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
2895 {
2896 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2897
2898 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), inf->attach_flag);
2899 lp->must_set_ptrace_flags = 0;
2900 }
2901
2902 /* Handle GNU/Linux's syscall SIGTRAPs. */
2903 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2904 {
2905 /* No longer need the sysgood bit. The ptrace event ends up
2906 recorded in lp->waitstatus if we care for it. We can carry
2907 on handling the event like a regular SIGTRAP from here
2908 on. */
2909 status = W_STOPCODE (SIGTRAP);
2910 if (linux_handle_syscall_trap (lp, 0))
2911 return NULL;
2912 }
2913
2914 /* Handle GNU/Linux's extended waitstatus for trace events. */
2915 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2916 && linux_is_extended_waitstatus (status))
2917 {
2918 if (debug_linux_nat)
2919 fprintf_unfiltered (gdb_stdlog,
2920 "LLW: Handling extended status 0x%06x\n",
2921 status);
2922 if (linux_handle_extended_wait (lp, status, 0))
2923 return NULL;
2924 }
2925
2926 /* Check if the thread has exited. */
2927 if (WIFEXITED (status) || WIFSIGNALED (status))
2928 {
2929 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
2930 {
2931 /* If this is the main thread, we must stop all threads and
2932 verify if they are still alive. This is because in the
2933 nptl thread model on Linux 2.4, there is no signal issued
2934 for exiting LWPs other than the main thread. We only get
2935 the main thread exit signal once all child threads have
2936 already exited. If we stop all the threads and use the
2937 stop_wait_callback to check if they have exited we can
2938 determine whether this signal should be ignored or
2939 whether it means the end of the debugged application,
2940 regardless of which threading model is being used. */
2941 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
2942 {
2943 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
2944 stop_and_resume_callback, NULL);
2945 }
2946
2947 if (debug_linux_nat)
2948 fprintf_unfiltered (gdb_stdlog,
2949 "LLW: %s exited.\n",
2950 target_pid_to_str (lp->ptid));
2951
2952 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
2953 {
2954 /* If there is at least one more LWP, then the exit signal
2955 was not the end of the debugged application and should be
2956 ignored. */
2957 exit_lwp (lp);
2958 return NULL;
2959 }
2960 }
2961
2962 gdb_assert (lp->resumed);
2963
2964 if (debug_linux_nat)
2965 fprintf_unfiltered (gdb_stdlog,
2966 "Process %ld exited\n",
2967 ptid_get_lwp (lp->ptid));
2968
2969 /* This was the last lwp in the process. Since events are
2970 serialized to GDB core, we may not be able report this one
2971 right now, but GDB core and the other target layers will want
2972 to be notified about the exit code/signal, leave the status
2973 pending for the next time we're able to report it. */
2974
2975 /* Dead LWP's aren't expected to reported a pending sigstop. */
2976 lp->signalled = 0;
2977
2978 /* Store the pending event in the waitstatus, because
2979 W_EXITCODE(0,0) == 0. */
2980 store_waitstatus (&lp->waitstatus, status);
2981 return lp;
2982 }
2983
2984 /* Check if the current LWP has previously exited. In the nptl
2985 thread model, LWPs other than the main thread do not issue
2986 signals when they exit so we must check whenever the thread has
2987 stopped. A similar check is made in stop_wait_callback(). */
2988 if (num_lwps (ptid_get_pid (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
2989 {
2990 ptid_t ptid = pid_to_ptid (ptid_get_pid (lp->ptid));
2991
2992 if (debug_linux_nat)
2993 fprintf_unfiltered (gdb_stdlog,
2994 "LLW: %s exited.\n",
2995 target_pid_to_str (lp->ptid));
2996
2997 exit_lwp (lp);
2998
2999 /* Make sure there is at least one thread running. */
3000 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3001
3002 /* Discard the event. */
3003 return NULL;
3004 }
3005
3006 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3007 an attempt to stop an LWP. */
3008 if (lp->signalled
3009 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3010 {
3011 if (debug_linux_nat)
3012 fprintf_unfiltered (gdb_stdlog,
3013 "LLW: Delayed SIGSTOP caught for %s.\n",
3014 target_pid_to_str (lp->ptid));
3015
3016 lp->signalled = 0;
3017
3018 if (lp->last_resume_kind != resume_stop)
3019 {
3020 /* This is a delayed SIGSTOP. */
3021
3022 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3023 if (debug_linux_nat)
3024 fprintf_unfiltered (gdb_stdlog,
3025 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3026 lp->step ?
3027 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3028 target_pid_to_str (lp->ptid));
3029
3030 gdb_assert (lp->resumed);
3031
3032 /* Discard the event. */
3033 return NULL;
3034 }
3035 }
3036
3037 /* Make sure we don't report a SIGINT that we have already displayed
3038 for another thread. */
3039 if (lp->ignore_sigint
3040 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3041 {
3042 if (debug_linux_nat)
3043 fprintf_unfiltered (gdb_stdlog,
3044 "LLW: Delayed SIGINT caught for %s.\n",
3045 target_pid_to_str (lp->ptid));
3046
3047 /* This is a delayed SIGINT. */
3048 lp->ignore_sigint = 0;
3049
3050 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3051 if (debug_linux_nat)
3052 fprintf_unfiltered (gdb_stdlog,
3053 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3054 lp->step ?
3055 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3056 target_pid_to_str (lp->ptid));
3057 gdb_assert (lp->resumed);
3058
3059 /* Discard the event. */
3060 return NULL;
3061 }
3062
3063 /* Don't report signals that GDB isn't interested in, such as
3064 signals that are neither printed nor stopped upon. Stopping all
3065 threads can be a bit time-consuming so if we want decent
3066 performance with heavily multi-threaded programs, especially when
3067 they're using a high frequency timer, we'd better avoid it if we
3068 can. */
3069 if (WIFSTOPPED (status))
3070 {
3071 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3072
3073 if (!non_stop)
3074 {
3075 /* Only do the below in all-stop, as we currently use SIGSTOP
3076 to implement target_stop (see linux_nat_stop) in
3077 non-stop. */
3078 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3079 {
3080 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3081 forwarded to the entire process group, that is, all LWPs
3082 will receive it - unless they're using CLONE_THREAD to
3083 share signals. Since we only want to report it once, we
3084 mark it as ignored for all LWPs except this one. */
3085 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3086 set_ignore_sigint, NULL);
3087 lp->ignore_sigint = 0;
3088 }
3089 else
3090 maybe_clear_ignore_sigint (lp);
3091 }
3092
3093 /* When using hardware single-step, we need to report every signal.
3094 Otherwise, signals in pass_mask may be short-circuited. */
3095 if (!lp->step
3096 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)))
3097 {
3098 linux_resume_one_lwp (lp, lp->step, signo);
3099 if (debug_linux_nat)
3100 fprintf_unfiltered (gdb_stdlog,
3101 "LLW: %s %s, %s (preempt 'handle')\n",
3102 lp->step ?
3103 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3104 target_pid_to_str (lp->ptid),
3105 (signo != GDB_SIGNAL_0
3106 ? strsignal (gdb_signal_to_host (signo))
3107 : "0"));
3108 return NULL;
3109 }
3110 }
3111
3112 /* An interesting event. */
3113 gdb_assert (lp);
3114 lp->status = status;
3115 save_sigtrap (lp);
3116 return lp;
3117 }
3118
3119 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3120 their exits until all other threads in the group have exited. */
3121
3122 static void
3123 check_zombie_leaders (void)
3124 {
3125 struct inferior *inf;
3126
3127 ALL_INFERIORS (inf)
3128 {
3129 struct lwp_info *leader_lp;
3130
3131 if (inf->pid == 0)
3132 continue;
3133
3134 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3135 if (leader_lp != NULL
3136 /* Check if there are other threads in the group, as we may
3137 have raced with the inferior simply exiting. */
3138 && num_lwps (inf->pid) > 1
3139 && linux_proc_pid_is_zombie (inf->pid))
3140 {
3141 if (debug_linux_nat)
3142 fprintf_unfiltered (gdb_stdlog,
3143 "CZL: Thread group leader %d zombie "
3144 "(it exited, or another thread execd).\n",
3145 inf->pid);
3146
3147 /* A leader zombie can mean one of two things:
3148
3149 - It exited, and there's an exit status pending
3150 available, or only the leader exited (not the whole
3151 program). In the latter case, we can't waitpid the
3152 leader's exit status until all other threads are gone.
3153
3154 - There are 3 or more threads in the group, and a thread
3155 other than the leader exec'd. On an exec, the Linux
3156 kernel destroys all other threads (except the execing
3157 one) in the thread group, and resets the execing thread's
3158 tid to the tgid. No exit notification is sent for the
3159 execing thread -- from the ptracer's perspective, it
3160 appears as though the execing thread just vanishes.
3161 Until we reap all other threads except the leader and the
3162 execing thread, the leader will be zombie, and the
3163 execing thread will be in `D (disc sleep)'. As soon as
3164 all other threads are reaped, the execing thread changes
3165 it's tid to the tgid, and the previous (zombie) leader
3166 vanishes, giving place to the "new" leader. We could try
3167 distinguishing the exit and exec cases, by waiting once
3168 more, and seeing if something comes out, but it doesn't
3169 sound useful. The previous leader _does_ go away, and
3170 we'll re-add the new one once we see the exec event
3171 (which is just the same as what would happen if the
3172 previous leader did exit voluntarily before some other
3173 thread execs). */
3174
3175 if (debug_linux_nat)
3176 fprintf_unfiltered (gdb_stdlog,
3177 "CZL: Thread group leader %d vanished.\n",
3178 inf->pid);
3179 exit_lwp (leader_lp);
3180 }
3181 }
3182 }
3183
3184 static ptid_t
3185 linux_nat_wait_1 (struct target_ops *ops,
3186 ptid_t ptid, struct target_waitstatus *ourstatus,
3187 int target_options)
3188 {
3189 sigset_t prev_mask;
3190 enum resume_kind last_resume_kind;
3191 struct lwp_info *lp;
3192 int status;
3193
3194 if (debug_linux_nat)
3195 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3196
3197 /* The first time we get here after starting a new inferior, we may
3198 not have added it to the LWP list yet - this is the earliest
3199 moment at which we know its PID. */
3200 if (ptid_is_pid (inferior_ptid))
3201 {
3202 /* Upgrade the main thread's ptid. */
3203 thread_change_ptid (inferior_ptid,
3204 ptid_build (ptid_get_pid (inferior_ptid),
3205 ptid_get_pid (inferior_ptid), 0));
3206
3207 lp = add_initial_lwp (inferior_ptid);
3208 lp->resumed = 1;
3209 }
3210
3211 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3212 block_child_signals (&prev_mask);
3213
3214 /* First check if there is a LWP with a wait status pending. */
3215 lp = iterate_over_lwps (ptid, status_callback, NULL);
3216 if (lp != NULL)
3217 {
3218 if (debug_linux_nat)
3219 fprintf_unfiltered (gdb_stdlog,
3220 "LLW: Using pending wait status %s for %s.\n",
3221 status_to_str (lp->status),
3222 target_pid_to_str (lp->ptid));
3223 }
3224
3225 if (!target_is_async_p ())
3226 {
3227 /* Causes SIGINT to be passed on to the attached process. */
3228 set_sigint_trap ();
3229 }
3230
3231 /* But if we don't find a pending event, we'll have to wait. Always
3232 pull all events out of the kernel. We'll randomly select an
3233 event LWP out of all that have events, to prevent starvation. */
3234
3235 while (lp == NULL)
3236 {
3237 pid_t lwpid;
3238
3239 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3240 quirks:
3241
3242 - If the thread group leader exits while other threads in the
3243 thread group still exist, waitpid(TGID, ...) hangs. That
3244 waitpid won't return an exit status until the other threads
3245 in the group are reapped.
3246
3247 - When a non-leader thread execs, that thread just vanishes
3248 without reporting an exit (so we'd hang if we waited for it
3249 explicitly in that case). The exec event is reported to
3250 the TGID pid. */
3251
3252 errno = 0;
3253 lwpid = my_waitpid (-1, &status, __WCLONE | WNOHANG);
3254 if (lwpid == 0 || (lwpid == -1 && errno == ECHILD))
3255 lwpid = my_waitpid (-1, &status, WNOHANG);
3256
3257 if (debug_linux_nat)
3258 fprintf_unfiltered (gdb_stdlog,
3259 "LNW: waitpid(-1, ...) returned %d, %s\n",
3260 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3261
3262 if (lwpid > 0)
3263 {
3264 if (debug_linux_nat)
3265 {
3266 fprintf_unfiltered (gdb_stdlog,
3267 "LLW: waitpid %ld received %s\n",
3268 (long) lwpid, status_to_str (status));
3269 }
3270
3271 linux_nat_filter_event (lwpid, status);
3272 /* Retry until nothing comes out of waitpid. A single
3273 SIGCHLD can indicate more than one child stopped. */
3274 continue;
3275 }
3276
3277 /* Now that we've pulled all events out of the kernel, check if
3278 there's any LWP with a status to report to the core. */
3279 lp = iterate_over_lwps (ptid, status_callback, NULL);
3280 if (lp != NULL)
3281 break;
3282
3283 /* Check for zombie thread group leaders. Those can't be reaped
3284 until all other threads in the thread group are. */
3285 check_zombie_leaders ();
3286
3287 /* If there are no resumed children left, bail. We'd be stuck
3288 forever in the sigsuspend call below otherwise. */
3289 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3290 {
3291 if (debug_linux_nat)
3292 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3293
3294 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3295
3296 if (!target_is_async_p ())
3297 clear_sigint_trap ();
3298
3299 restore_child_signals_mask (&prev_mask);
3300 return minus_one_ptid;
3301 }
3302
3303 /* No interesting event to report to the core. */
3304
3305 if (target_options & TARGET_WNOHANG)
3306 {
3307 if (debug_linux_nat)
3308 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3309
3310 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3311 restore_child_signals_mask (&prev_mask);
3312 return minus_one_ptid;
3313 }
3314
3315 /* We shouldn't end up here unless we want to try again. */
3316 gdb_assert (lp == NULL);
3317
3318 /* Block until we get an event reported with SIGCHLD. */
3319 if (debug_linux_nat)
3320 fprintf_unfiltered (gdb_stdlog, "LNW: about to sigsuspend\n");
3321 sigsuspend (&suspend_mask);
3322 }
3323
3324 if (!target_is_async_p ())
3325 clear_sigint_trap ();
3326
3327 gdb_assert (lp);
3328
3329 status = lp->status;
3330 lp->status = 0;
3331
3332 if (!non_stop)
3333 {
3334 /* Now stop all other LWP's ... */
3335 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3336
3337 /* ... and wait until all of them have reported back that
3338 they're no longer running. */
3339 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3340 }
3341
3342 /* If we're not waiting for a specific LWP, choose an event LWP from
3343 among those that have had events. Giving equal priority to all
3344 LWPs that have had events helps prevent starvation. */
3345 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3346 select_event_lwp (ptid, &lp, &status);
3347
3348 gdb_assert (lp != NULL);
3349
3350 /* Now that we've selected our final event LWP, un-adjust its PC if
3351 it was a software breakpoint. */
3352 if (lp->stop_reason == LWP_STOPPED_BY_SW_BREAKPOINT)
3353 {
3354 struct regcache *regcache = get_thread_regcache (lp->ptid);
3355 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3356 int decr_pc = target_decr_pc_after_break (gdbarch);
3357
3358 if (decr_pc != 0)
3359 {
3360 CORE_ADDR pc;
3361
3362 pc = regcache_read_pc (regcache);
3363 regcache_write_pc (regcache, pc + decr_pc);
3364 }
3365 }
3366
3367 /* We'll need this to determine whether to report a SIGSTOP as
3368 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3369 clears it. */
3370 last_resume_kind = lp->last_resume_kind;
3371
3372 if (!non_stop)
3373 {
3374 /* In all-stop, from the core's perspective, all LWPs are now
3375 stopped until a new resume action is sent over. */
3376 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3377 }
3378 else
3379 {
3380 resume_clear_callback (lp, NULL);
3381 }
3382
3383 if (linux_nat_status_is_event (status))
3384 {
3385 if (debug_linux_nat)
3386 fprintf_unfiltered (gdb_stdlog,
3387 "LLW: trap ptid is %s.\n",
3388 target_pid_to_str (lp->ptid));
3389 }
3390
3391 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3392 {
3393 *ourstatus = lp->waitstatus;
3394 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3395 }
3396 else
3397 store_waitstatus (ourstatus, status);
3398
3399 if (debug_linux_nat)
3400 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3401
3402 restore_child_signals_mask (&prev_mask);
3403
3404 if (last_resume_kind == resume_stop
3405 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3406 && WSTOPSIG (status) == SIGSTOP)
3407 {
3408 /* A thread that has been requested to stop by GDB with
3409 target_stop, and it stopped cleanly, so report as SIG0. The
3410 use of SIGSTOP is an implementation detail. */
3411 ourstatus->value.sig = GDB_SIGNAL_0;
3412 }
3413
3414 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3415 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3416 lp->core = -1;
3417 else
3418 lp->core = linux_common_core_of_thread (lp->ptid);
3419
3420 return lp->ptid;
3421 }
3422
3423 /* Resume LWPs that are currently stopped without any pending status
3424 to report, but are resumed from the core's perspective. */
3425
3426 static int
3427 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3428 {
3429 ptid_t *wait_ptid_p = data;
3430
3431 if (lp->stopped
3432 && lp->resumed
3433 && !lwp_status_pending_p (lp))
3434 {
3435 struct regcache *regcache = get_thread_regcache (lp->ptid);
3436 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3437 CORE_ADDR pc = regcache_read_pc (regcache);
3438
3439 gdb_assert (is_executing (lp->ptid));
3440
3441 /* Don't bother if there's a breakpoint at PC that we'd hit
3442 immediately, and we're not waiting for this LWP. */
3443 if (!ptid_match (lp->ptid, *wait_ptid_p))
3444 {
3445 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3446 return 0;
3447 }
3448
3449 if (debug_linux_nat)
3450 fprintf_unfiltered (gdb_stdlog,
3451 "RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
3452 target_pid_to_str (lp->ptid),
3453 paddress (gdbarch, pc),
3454 lp->step);
3455
3456 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3457 }
3458
3459 return 0;
3460 }
3461
3462 static ptid_t
3463 linux_nat_wait (struct target_ops *ops,
3464 ptid_t ptid, struct target_waitstatus *ourstatus,
3465 int target_options)
3466 {
3467 ptid_t event_ptid;
3468
3469 if (debug_linux_nat)
3470 {
3471 char *options_string;
3472
3473 options_string = target_options_to_string (target_options);
3474 fprintf_unfiltered (gdb_stdlog,
3475 "linux_nat_wait: [%s], [%s]\n",
3476 target_pid_to_str (ptid),
3477 options_string);
3478 xfree (options_string);
3479 }
3480
3481 /* Flush the async file first. */
3482 if (target_is_async_p ())
3483 async_file_flush ();
3484
3485 /* Resume LWPs that are currently stopped without any pending status
3486 to report, but are resumed from the core's perspective. LWPs get
3487 in this state if we find them stopping at a time we're not
3488 interested in reporting the event (target_wait on a
3489 specific_process, for example, see linux_nat_wait_1), and
3490 meanwhile the event became uninteresting. Don't bother resuming
3491 LWPs we're not going to wait for if they'd stop immediately. */
3492 if (non_stop)
3493 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3494
3495 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3496
3497 /* If we requested any event, and something came out, assume there
3498 may be more. If we requested a specific lwp or process, also
3499 assume there may be more. */
3500 if (target_is_async_p ()
3501 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3502 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3503 || !ptid_equal (ptid, minus_one_ptid)))
3504 async_file_mark ();
3505
3506 return event_ptid;
3507 }
3508
3509 static int
3510 kill_callback (struct lwp_info *lp, void *data)
3511 {
3512 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3513
3514 errno = 0;
3515 kill_lwp (ptid_get_lwp (lp->ptid), SIGKILL);
3516 if (debug_linux_nat)
3517 {
3518 int save_errno = errno;
3519
3520 fprintf_unfiltered (gdb_stdlog,
3521 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3522 target_pid_to_str (lp->ptid),
3523 save_errno ? safe_strerror (save_errno) : "OK");
3524 }
3525
3526 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3527
3528 errno = 0;
3529 ptrace (PTRACE_KILL, ptid_get_lwp (lp->ptid), 0, 0);
3530 if (debug_linux_nat)
3531 {
3532 int save_errno = errno;
3533
3534 fprintf_unfiltered (gdb_stdlog,
3535 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3536 target_pid_to_str (lp->ptid),
3537 save_errno ? safe_strerror (save_errno) : "OK");
3538 }
3539
3540 return 0;
3541 }
3542
3543 static int
3544 kill_wait_callback (struct lwp_info *lp, void *data)
3545 {
3546 pid_t pid;
3547
3548 /* We must make sure that there are no pending events (delayed
3549 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3550 program doesn't interfere with any following debugging session. */
3551
3552 /* For cloned processes we must check both with __WCLONE and
3553 without, since the exit status of a cloned process isn't reported
3554 with __WCLONE. */
3555 if (lp->cloned)
3556 {
3557 do
3558 {
3559 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, __WCLONE);
3560 if (pid != (pid_t) -1)
3561 {
3562 if (debug_linux_nat)
3563 fprintf_unfiltered (gdb_stdlog,
3564 "KWC: wait %s received unknown.\n",
3565 target_pid_to_str (lp->ptid));
3566 /* The Linux kernel sometimes fails to kill a thread
3567 completely after PTRACE_KILL; that goes from the stop
3568 point in do_fork out to the one in
3569 get_signal_to_deliever and waits again. So kill it
3570 again. */
3571 kill_callback (lp, NULL);
3572 }
3573 }
3574 while (pid == ptid_get_lwp (lp->ptid));
3575
3576 gdb_assert (pid == -1 && errno == ECHILD);
3577 }
3578
3579 do
3580 {
3581 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, 0);
3582 if (pid != (pid_t) -1)
3583 {
3584 if (debug_linux_nat)
3585 fprintf_unfiltered (gdb_stdlog,
3586 "KWC: wait %s received unk.\n",
3587 target_pid_to_str (lp->ptid));
3588 /* See the call to kill_callback above. */
3589 kill_callback (lp, NULL);
3590 }
3591 }
3592 while (pid == ptid_get_lwp (lp->ptid));
3593
3594 gdb_assert (pid == -1 && errno == ECHILD);
3595 return 0;
3596 }
3597
3598 static void
3599 linux_nat_kill (struct target_ops *ops)
3600 {
3601 struct target_waitstatus last;
3602 ptid_t last_ptid;
3603 int status;
3604
3605 /* If we're stopped while forking and we haven't followed yet,
3606 kill the other task. We need to do this first because the
3607 parent will be sleeping if this is a vfork. */
3608
3609 get_last_target_status (&last_ptid, &last);
3610
3611 if (last.kind == TARGET_WAITKIND_FORKED
3612 || last.kind == TARGET_WAITKIND_VFORKED)
3613 {
3614 ptrace (PT_KILL, ptid_get_pid (last.value.related_pid), 0, 0);
3615 wait (&status);
3616
3617 /* Let the arch-specific native code know this process is
3618 gone. */
3619 linux_nat_forget_process (ptid_get_pid (last.value.related_pid));
3620 }
3621
3622 if (forks_exist_p ())
3623 linux_fork_killall ();
3624 else
3625 {
3626 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3627
3628 /* Stop all threads before killing them, since ptrace requires
3629 that the thread is stopped to sucessfully PTRACE_KILL. */
3630 iterate_over_lwps (ptid, stop_callback, NULL);
3631 /* ... and wait until all of them have reported back that
3632 they're no longer running. */
3633 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3634
3635 /* Kill all LWP's ... */
3636 iterate_over_lwps (ptid, kill_callback, NULL);
3637
3638 /* ... and wait until we've flushed all events. */
3639 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3640 }
3641
3642 target_mourn_inferior ();
3643 }
3644
3645 static void
3646 linux_nat_mourn_inferior (struct target_ops *ops)
3647 {
3648 int pid = ptid_get_pid (inferior_ptid);
3649
3650 purge_lwp_list (pid);
3651
3652 if (! forks_exist_p ())
3653 /* Normal case, no other forks available. */
3654 linux_ops->to_mourn_inferior (ops);
3655 else
3656 /* Multi-fork case. The current inferior_ptid has exited, but
3657 there are other viable forks to debug. Delete the exiting
3658 one and context-switch to the first available. */
3659 linux_fork_mourn_inferior ();
3660
3661 /* Let the arch-specific native code know this process is gone. */
3662 linux_nat_forget_process (pid);
3663 }
3664
3665 /* Convert a native/host siginfo object, into/from the siginfo in the
3666 layout of the inferiors' architecture. */
3667
3668 static void
3669 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3670 {
3671 int done = 0;
3672
3673 if (linux_nat_siginfo_fixup != NULL)
3674 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3675
3676 /* If there was no callback, or the callback didn't do anything,
3677 then just do a straight memcpy. */
3678 if (!done)
3679 {
3680 if (direction == 1)
3681 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3682 else
3683 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3684 }
3685 }
3686
3687 static enum target_xfer_status
3688 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3689 const char *annex, gdb_byte *readbuf,
3690 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3691 ULONGEST *xfered_len)
3692 {
3693 int pid;
3694 siginfo_t siginfo;
3695 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3696
3697 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3698 gdb_assert (readbuf || writebuf);
3699
3700 pid = ptid_get_lwp (inferior_ptid);
3701 if (pid == 0)
3702 pid = ptid_get_pid (inferior_ptid);
3703
3704 if (offset > sizeof (siginfo))
3705 return TARGET_XFER_E_IO;
3706
3707 errno = 0;
3708 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3709 if (errno != 0)
3710 return TARGET_XFER_E_IO;
3711
3712 /* When GDB is built as a 64-bit application, ptrace writes into
3713 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3714 inferior with a 64-bit GDB should look the same as debugging it
3715 with a 32-bit GDB, we need to convert it. GDB core always sees
3716 the converted layout, so any read/write will have to be done
3717 post-conversion. */
3718 siginfo_fixup (&siginfo, inf_siginfo, 0);
3719
3720 if (offset + len > sizeof (siginfo))
3721 len = sizeof (siginfo) - offset;
3722
3723 if (readbuf != NULL)
3724 memcpy (readbuf, inf_siginfo + offset, len);
3725 else
3726 {
3727 memcpy (inf_siginfo + offset, writebuf, len);
3728
3729 /* Convert back to ptrace layout before flushing it out. */
3730 siginfo_fixup (&siginfo, inf_siginfo, 1);
3731
3732 errno = 0;
3733 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3734 if (errno != 0)
3735 return TARGET_XFER_E_IO;
3736 }
3737
3738 *xfered_len = len;
3739 return TARGET_XFER_OK;
3740 }
3741
3742 static enum target_xfer_status
3743 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3744 const char *annex, gdb_byte *readbuf,
3745 const gdb_byte *writebuf,
3746 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3747 {
3748 struct cleanup *old_chain;
3749 enum target_xfer_status xfer;
3750
3751 if (object == TARGET_OBJECT_SIGNAL_INFO)
3752 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3753 offset, len, xfered_len);
3754
3755 /* The target is connected but no live inferior is selected. Pass
3756 this request down to a lower stratum (e.g., the executable
3757 file). */
3758 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3759 return TARGET_XFER_EOF;
3760
3761 old_chain = save_inferior_ptid ();
3762
3763 if (ptid_lwp_p (inferior_ptid))
3764 inferior_ptid = pid_to_ptid (ptid_get_lwp (inferior_ptid));
3765
3766 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3767 offset, len, xfered_len);
3768
3769 do_cleanups (old_chain);
3770 return xfer;
3771 }
3772
3773 static int
3774 linux_thread_alive (ptid_t ptid)
3775 {
3776 int err, tmp_errno;
3777
3778 gdb_assert (ptid_lwp_p (ptid));
3779
3780 /* Send signal 0 instead of anything ptrace, because ptracing a
3781 running thread errors out claiming that the thread doesn't
3782 exist. */
3783 err = kill_lwp (ptid_get_lwp (ptid), 0);
3784 tmp_errno = errno;
3785 if (debug_linux_nat)
3786 fprintf_unfiltered (gdb_stdlog,
3787 "LLTA: KILL(SIG0) %s (%s)\n",
3788 target_pid_to_str (ptid),
3789 err ? safe_strerror (tmp_errno) : "OK");
3790
3791 if (err != 0)
3792 return 0;
3793
3794 return 1;
3795 }
3796
3797 static int
3798 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3799 {
3800 return linux_thread_alive (ptid);
3801 }
3802
3803 static char *
3804 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3805 {
3806 static char buf[64];
3807
3808 if (ptid_lwp_p (ptid)
3809 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
3810 || num_lwps (ptid_get_pid (ptid)) > 1))
3811 {
3812 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
3813 return buf;
3814 }
3815
3816 return normal_pid_to_str (ptid);
3817 }
3818
3819 static char *
3820 linux_nat_thread_name (struct target_ops *self, struct thread_info *thr)
3821 {
3822 int pid = ptid_get_pid (thr->ptid);
3823 long lwp = ptid_get_lwp (thr->ptid);
3824 #define FORMAT "/proc/%d/task/%ld/comm"
3825 char buf[sizeof (FORMAT) + 30];
3826 FILE *comm_file;
3827 char *result = NULL;
3828
3829 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
3830 comm_file = gdb_fopen_cloexec (buf, "r");
3831 if (comm_file)
3832 {
3833 /* Not exported by the kernel, so we define it here. */
3834 #define COMM_LEN 16
3835 static char line[COMM_LEN + 1];
3836
3837 if (fgets (line, sizeof (line), comm_file))
3838 {
3839 char *nl = strchr (line, '\n');
3840
3841 if (nl)
3842 *nl = '\0';
3843 if (*line != '\0')
3844 result = line;
3845 }
3846
3847 fclose (comm_file);
3848 }
3849
3850 #undef COMM_LEN
3851 #undef FORMAT
3852
3853 return result;
3854 }
3855
3856 /* Accepts an integer PID; Returns a string representing a file that
3857 can be opened to get the symbols for the child process. */
3858
3859 static char *
3860 linux_child_pid_to_exec_file (struct target_ops *self, int pid)
3861 {
3862 static char buf[PATH_MAX];
3863 char name[PATH_MAX];
3864
3865 xsnprintf (name, PATH_MAX, "/proc/%d/exe", pid);
3866 memset (buf, 0, PATH_MAX);
3867 if (readlink (name, buf, PATH_MAX - 1) <= 0)
3868 strcpy (buf, name);
3869
3870 return buf;
3871 }
3872
3873 /* Implement the to_xfer_partial interface for memory reads using the /proc
3874 filesystem. Because we can use a single read() call for /proc, this
3875 can be much more efficient than banging away at PTRACE_PEEKTEXT,
3876 but it doesn't support writes. */
3877
3878 static enum target_xfer_status
3879 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
3880 const char *annex, gdb_byte *readbuf,
3881 const gdb_byte *writebuf,
3882 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
3883 {
3884 LONGEST ret;
3885 int fd;
3886 char filename[64];
3887
3888 if (object != TARGET_OBJECT_MEMORY || !readbuf)
3889 return 0;
3890
3891 /* Don't bother for one word. */
3892 if (len < 3 * sizeof (long))
3893 return TARGET_XFER_EOF;
3894
3895 /* We could keep this file open and cache it - possibly one per
3896 thread. That requires some juggling, but is even faster. */
3897 xsnprintf (filename, sizeof filename, "/proc/%d/mem",
3898 ptid_get_pid (inferior_ptid));
3899 fd = gdb_open_cloexec (filename, O_RDONLY | O_LARGEFILE, 0);
3900 if (fd == -1)
3901 return TARGET_XFER_EOF;
3902
3903 /* If pread64 is available, use it. It's faster if the kernel
3904 supports it (only one syscall), and it's 64-bit safe even on
3905 32-bit platforms (for instance, SPARC debugging a SPARC64
3906 application). */
3907 #ifdef HAVE_PREAD64
3908 if (pread64 (fd, readbuf, len, offset) != len)
3909 #else
3910 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
3911 #endif
3912 ret = 0;
3913 else
3914 ret = len;
3915
3916 close (fd);
3917
3918 if (ret == 0)
3919 return TARGET_XFER_EOF;
3920 else
3921 {
3922 *xfered_len = ret;
3923 return TARGET_XFER_OK;
3924 }
3925 }
3926
3927
3928 /* Enumerate spufs IDs for process PID. */
3929 static LONGEST
3930 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
3931 {
3932 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3933 LONGEST pos = 0;
3934 LONGEST written = 0;
3935 char path[128];
3936 DIR *dir;
3937 struct dirent *entry;
3938
3939 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
3940 dir = opendir (path);
3941 if (!dir)
3942 return -1;
3943
3944 rewinddir (dir);
3945 while ((entry = readdir (dir)) != NULL)
3946 {
3947 struct stat st;
3948 struct statfs stfs;
3949 int fd;
3950
3951 fd = atoi (entry->d_name);
3952 if (!fd)
3953 continue;
3954
3955 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
3956 if (stat (path, &st) != 0)
3957 continue;
3958 if (!S_ISDIR (st.st_mode))
3959 continue;
3960
3961 if (statfs (path, &stfs) != 0)
3962 continue;
3963 if (stfs.f_type != SPUFS_MAGIC)
3964 continue;
3965
3966 if (pos >= offset && pos + 4 <= offset + len)
3967 {
3968 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
3969 written += 4;
3970 }
3971 pos += 4;
3972 }
3973
3974 closedir (dir);
3975 return written;
3976 }
3977
3978 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
3979 object type, using the /proc file system. */
3980
3981 static enum target_xfer_status
3982 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
3983 const char *annex, gdb_byte *readbuf,
3984 const gdb_byte *writebuf,
3985 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3986 {
3987 char buf[128];
3988 int fd = 0;
3989 int ret = -1;
3990 int pid = ptid_get_pid (inferior_ptid);
3991
3992 if (!annex)
3993 {
3994 if (!readbuf)
3995 return TARGET_XFER_E_IO;
3996 else
3997 {
3998 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
3999
4000 if (l < 0)
4001 return TARGET_XFER_E_IO;
4002 else if (l == 0)
4003 return TARGET_XFER_EOF;
4004 else
4005 {
4006 *xfered_len = (ULONGEST) l;
4007 return TARGET_XFER_OK;
4008 }
4009 }
4010 }
4011
4012 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4013 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4014 if (fd <= 0)
4015 return TARGET_XFER_E_IO;
4016
4017 if (offset != 0
4018 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4019 {
4020 close (fd);
4021 return TARGET_XFER_EOF;
4022 }
4023
4024 if (writebuf)
4025 ret = write (fd, writebuf, (size_t) len);
4026 else if (readbuf)
4027 ret = read (fd, readbuf, (size_t) len);
4028
4029 close (fd);
4030
4031 if (ret < 0)
4032 return TARGET_XFER_E_IO;
4033 else if (ret == 0)
4034 return TARGET_XFER_EOF;
4035 else
4036 {
4037 *xfered_len = (ULONGEST) ret;
4038 return TARGET_XFER_OK;
4039 }
4040 }
4041
4042
4043 /* Parse LINE as a signal set and add its set bits to SIGS. */
4044
4045 static void
4046 add_line_to_sigset (const char *line, sigset_t *sigs)
4047 {
4048 int len = strlen (line) - 1;
4049 const char *p;
4050 int signum;
4051
4052 if (line[len] != '\n')
4053 error (_("Could not parse signal set: %s"), line);
4054
4055 p = line;
4056 signum = len * 4;
4057 while (len-- > 0)
4058 {
4059 int digit;
4060
4061 if (*p >= '0' && *p <= '9')
4062 digit = *p - '0';
4063 else if (*p >= 'a' && *p <= 'f')
4064 digit = *p - 'a' + 10;
4065 else
4066 error (_("Could not parse signal set: %s"), line);
4067
4068 signum -= 4;
4069
4070 if (digit & 1)
4071 sigaddset (sigs, signum + 1);
4072 if (digit & 2)
4073 sigaddset (sigs, signum + 2);
4074 if (digit & 4)
4075 sigaddset (sigs, signum + 3);
4076 if (digit & 8)
4077 sigaddset (sigs, signum + 4);
4078
4079 p++;
4080 }
4081 }
4082
4083 /* Find process PID's pending signals from /proc/pid/status and set
4084 SIGS to match. */
4085
4086 void
4087 linux_proc_pending_signals (int pid, sigset_t *pending,
4088 sigset_t *blocked, sigset_t *ignored)
4089 {
4090 FILE *procfile;
4091 char buffer[PATH_MAX], fname[PATH_MAX];
4092 struct cleanup *cleanup;
4093
4094 sigemptyset (pending);
4095 sigemptyset (blocked);
4096 sigemptyset (ignored);
4097 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4098 procfile = gdb_fopen_cloexec (fname, "r");
4099 if (procfile == NULL)
4100 error (_("Could not open %s"), fname);
4101 cleanup = make_cleanup_fclose (procfile);
4102
4103 while (fgets (buffer, PATH_MAX, procfile) != NULL)
4104 {
4105 /* Normal queued signals are on the SigPnd line in the status
4106 file. However, 2.6 kernels also have a "shared" pending
4107 queue for delivering signals to a thread group, so check for
4108 a ShdPnd line also.
4109
4110 Unfortunately some Red Hat kernels include the shared pending
4111 queue but not the ShdPnd status field. */
4112
4113 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4114 add_line_to_sigset (buffer + 8, pending);
4115 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4116 add_line_to_sigset (buffer + 8, pending);
4117 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4118 add_line_to_sigset (buffer + 8, blocked);
4119 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4120 add_line_to_sigset (buffer + 8, ignored);
4121 }
4122
4123 do_cleanups (cleanup);
4124 }
4125
4126 static enum target_xfer_status
4127 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4128 const char *annex, gdb_byte *readbuf,
4129 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4130 ULONGEST *xfered_len)
4131 {
4132 gdb_assert (object == TARGET_OBJECT_OSDATA);
4133
4134 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4135 if (*xfered_len == 0)
4136 return TARGET_XFER_EOF;
4137 else
4138 return TARGET_XFER_OK;
4139 }
4140
4141 static enum target_xfer_status
4142 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4143 const char *annex, gdb_byte *readbuf,
4144 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4145 ULONGEST *xfered_len)
4146 {
4147 enum target_xfer_status xfer;
4148
4149 if (object == TARGET_OBJECT_AUXV)
4150 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4151 offset, len, xfered_len);
4152
4153 if (object == TARGET_OBJECT_OSDATA)
4154 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4155 offset, len, xfered_len);
4156
4157 if (object == TARGET_OBJECT_SPU)
4158 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4159 offset, len, xfered_len);
4160
4161 /* GDB calculates all the addresses in possibly larget width of the address.
4162 Address width needs to be masked before its final use - either by
4163 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4164
4165 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4166
4167 if (object == TARGET_OBJECT_MEMORY)
4168 {
4169 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4170
4171 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4172 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4173 }
4174
4175 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4176 offset, len, xfered_len);
4177 if (xfer != TARGET_XFER_EOF)
4178 return xfer;
4179
4180 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4181 offset, len, xfered_len);
4182 }
4183
4184 static void
4185 cleanup_target_stop (void *arg)
4186 {
4187 ptid_t *ptid = (ptid_t *) arg;
4188
4189 gdb_assert (arg != NULL);
4190
4191 /* Unpause all */
4192 target_resume (*ptid, 0, GDB_SIGNAL_0);
4193 }
4194
4195 static VEC(static_tracepoint_marker_p) *
4196 linux_child_static_tracepoint_markers_by_strid (struct target_ops *self,
4197 const char *strid)
4198 {
4199 char s[IPA_CMD_BUF_SIZE];
4200 struct cleanup *old_chain;
4201 int pid = ptid_get_pid (inferior_ptid);
4202 VEC(static_tracepoint_marker_p) *markers = NULL;
4203 struct static_tracepoint_marker *marker = NULL;
4204 char *p = s;
4205 ptid_t ptid = ptid_build (pid, 0, 0);
4206
4207 /* Pause all */
4208 target_stop (ptid);
4209
4210 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4211 s[sizeof ("qTfSTM")] = 0;
4212
4213 agent_run_command (pid, s, strlen (s) + 1);
4214
4215 old_chain = make_cleanup (free_current_marker, &marker);
4216 make_cleanup (cleanup_target_stop, &ptid);
4217
4218 while (*p++ == 'm')
4219 {
4220 if (marker == NULL)
4221 marker = XCNEW (struct static_tracepoint_marker);
4222
4223 do
4224 {
4225 parse_static_tracepoint_marker_definition (p, &p, marker);
4226
4227 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4228 {
4229 VEC_safe_push (static_tracepoint_marker_p,
4230 markers, marker);
4231 marker = NULL;
4232 }
4233 else
4234 {
4235 release_static_tracepoint_marker (marker);
4236 memset (marker, 0, sizeof (*marker));
4237 }
4238 }
4239 while (*p++ == ','); /* comma-separated list */
4240
4241 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4242 s[sizeof ("qTsSTM")] = 0;
4243 agent_run_command (pid, s, strlen (s) + 1);
4244 p = s;
4245 }
4246
4247 do_cleanups (old_chain);
4248
4249 return markers;
4250 }
4251
4252 /* Create a prototype generic GNU/Linux target. The client can override
4253 it with local methods. */
4254
4255 static void
4256 linux_target_install_ops (struct target_ops *t)
4257 {
4258 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4259 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4260 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4261 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4262 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4263 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4264 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4265 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4266 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4267 t->to_post_attach = linux_child_post_attach;
4268 t->to_follow_fork = linux_child_follow_fork;
4269
4270 super_xfer_partial = t->to_xfer_partial;
4271 t->to_xfer_partial = linux_xfer_partial;
4272
4273 t->to_static_tracepoint_markers_by_strid
4274 = linux_child_static_tracepoint_markers_by_strid;
4275 }
4276
4277 struct target_ops *
4278 linux_target (void)
4279 {
4280 struct target_ops *t;
4281
4282 t = inf_ptrace_target ();
4283 linux_target_install_ops (t);
4284
4285 return t;
4286 }
4287
4288 struct target_ops *
4289 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4290 {
4291 struct target_ops *t;
4292
4293 t = inf_ptrace_trad_target (register_u_offset);
4294 linux_target_install_ops (t);
4295
4296 return t;
4297 }
4298
4299 /* target_is_async_p implementation. */
4300
4301 static int
4302 linux_nat_is_async_p (struct target_ops *ops)
4303 {
4304 return linux_is_async_p ();
4305 }
4306
4307 /* target_can_async_p implementation. */
4308
4309 static int
4310 linux_nat_can_async_p (struct target_ops *ops)
4311 {
4312 /* NOTE: palves 2008-03-21: We're only async when the user requests
4313 it explicitly with the "set target-async" command.
4314 Someday, linux will always be async. */
4315 return target_async_permitted;
4316 }
4317
4318 static int
4319 linux_nat_supports_non_stop (struct target_ops *self)
4320 {
4321 return 1;
4322 }
4323
4324 /* True if we want to support multi-process. To be removed when GDB
4325 supports multi-exec. */
4326
4327 int linux_multi_process = 1;
4328
4329 static int
4330 linux_nat_supports_multi_process (struct target_ops *self)
4331 {
4332 return linux_multi_process;
4333 }
4334
4335 static int
4336 linux_nat_supports_disable_randomization (struct target_ops *self)
4337 {
4338 #ifdef HAVE_PERSONALITY
4339 return 1;
4340 #else
4341 return 0;
4342 #endif
4343 }
4344
4345 static int async_terminal_is_ours = 1;
4346
4347 /* target_terminal_inferior implementation.
4348
4349 This is a wrapper around child_terminal_inferior to add async support. */
4350
4351 static void
4352 linux_nat_terminal_inferior (struct target_ops *self)
4353 {
4354 /* Like target_terminal_inferior, use target_can_async_p, not
4355 target_is_async_p, since at this point the target is not async
4356 yet. If it can async, then we know it will become async prior to
4357 resume. */
4358 if (!target_can_async_p ())
4359 {
4360 /* Async mode is disabled. */
4361 child_terminal_inferior (self);
4362 return;
4363 }
4364
4365 child_terminal_inferior (self);
4366
4367 /* Calls to target_terminal_*() are meant to be idempotent. */
4368 if (!async_terminal_is_ours)
4369 return;
4370
4371 delete_file_handler (input_fd);
4372 async_terminal_is_ours = 0;
4373 set_sigint_trap ();
4374 }
4375
4376 /* target_terminal_ours implementation.
4377
4378 This is a wrapper around child_terminal_ours to add async support (and
4379 implement the target_terminal_ours vs target_terminal_ours_for_output
4380 distinction). child_terminal_ours is currently no different than
4381 child_terminal_ours_for_output.
4382 We leave target_terminal_ours_for_output alone, leaving it to
4383 child_terminal_ours_for_output. */
4384
4385 static void
4386 linux_nat_terminal_ours (struct target_ops *self)
4387 {
4388 /* GDB should never give the terminal to the inferior if the
4389 inferior is running in the background (run&, continue&, etc.),
4390 but claiming it sure should. */
4391 child_terminal_ours (self);
4392
4393 if (async_terminal_is_ours)
4394 return;
4395
4396 clear_sigint_trap ();
4397 add_file_handler (input_fd, stdin_event_handler, 0);
4398 async_terminal_is_ours = 1;
4399 }
4400
4401 static void (*async_client_callback) (enum inferior_event_type event_type,
4402 void *context);
4403 static void *async_client_context;
4404
4405 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4406 so we notice when any child changes state, and notify the
4407 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4408 above to wait for the arrival of a SIGCHLD. */
4409
4410 static void
4411 sigchld_handler (int signo)
4412 {
4413 int old_errno = errno;
4414
4415 if (debug_linux_nat)
4416 ui_file_write_async_safe (gdb_stdlog,
4417 "sigchld\n", sizeof ("sigchld\n") - 1);
4418
4419 if (signo == SIGCHLD
4420 && linux_nat_event_pipe[0] != -1)
4421 async_file_mark (); /* Let the event loop know that there are
4422 events to handle. */
4423
4424 errno = old_errno;
4425 }
4426
4427 /* Callback registered with the target events file descriptor. */
4428
4429 static void
4430 handle_target_event (int error, gdb_client_data client_data)
4431 {
4432 (*async_client_callback) (INF_REG_EVENT, async_client_context);
4433 }
4434
4435 /* Create/destroy the target events pipe. Returns previous state. */
4436
4437 static int
4438 linux_async_pipe (int enable)
4439 {
4440 int previous = linux_is_async_p ();
4441
4442 if (previous != enable)
4443 {
4444 sigset_t prev_mask;
4445
4446 /* Block child signals while we create/destroy the pipe, as
4447 their handler writes to it. */
4448 block_child_signals (&prev_mask);
4449
4450 if (enable)
4451 {
4452 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4453 internal_error (__FILE__, __LINE__,
4454 "creating event pipe failed.");
4455
4456 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4457 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4458 }
4459 else
4460 {
4461 close (linux_nat_event_pipe[0]);
4462 close (linux_nat_event_pipe[1]);
4463 linux_nat_event_pipe[0] = -1;
4464 linux_nat_event_pipe[1] = -1;
4465 }
4466
4467 restore_child_signals_mask (&prev_mask);
4468 }
4469
4470 return previous;
4471 }
4472
4473 /* target_async implementation. */
4474
4475 static void
4476 linux_nat_async (struct target_ops *ops,
4477 void (*callback) (enum inferior_event_type event_type,
4478 void *context),
4479 void *context)
4480 {
4481 if (callback != NULL)
4482 {
4483 async_client_callback = callback;
4484 async_client_context = context;
4485 if (!linux_async_pipe (1))
4486 {
4487 add_file_handler (linux_nat_event_pipe[0],
4488 handle_target_event, NULL);
4489 /* There may be pending events to handle. Tell the event loop
4490 to poll them. */
4491 async_file_mark ();
4492 }
4493 }
4494 else
4495 {
4496 async_client_callback = callback;
4497 async_client_context = context;
4498 delete_file_handler (linux_nat_event_pipe[0]);
4499 linux_async_pipe (0);
4500 }
4501 return;
4502 }
4503
4504 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4505 event came out. */
4506
4507 static int
4508 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4509 {
4510 if (!lwp->stopped)
4511 {
4512 if (debug_linux_nat)
4513 fprintf_unfiltered (gdb_stdlog,
4514 "LNSL: running -> suspending %s\n",
4515 target_pid_to_str (lwp->ptid));
4516
4517
4518 if (lwp->last_resume_kind == resume_stop)
4519 {
4520 if (debug_linux_nat)
4521 fprintf_unfiltered (gdb_stdlog,
4522 "linux-nat: already stopping LWP %ld at "
4523 "GDB's request\n",
4524 ptid_get_lwp (lwp->ptid));
4525 return 0;
4526 }
4527
4528 stop_callback (lwp, NULL);
4529 lwp->last_resume_kind = resume_stop;
4530 }
4531 else
4532 {
4533 /* Already known to be stopped; do nothing. */
4534
4535 if (debug_linux_nat)
4536 {
4537 if (find_thread_ptid (lwp->ptid)->stop_requested)
4538 fprintf_unfiltered (gdb_stdlog,
4539 "LNSL: already stopped/stop_requested %s\n",
4540 target_pid_to_str (lwp->ptid));
4541 else
4542 fprintf_unfiltered (gdb_stdlog,
4543 "LNSL: already stopped/no "
4544 "stop_requested yet %s\n",
4545 target_pid_to_str (lwp->ptid));
4546 }
4547 }
4548 return 0;
4549 }
4550
4551 static void
4552 linux_nat_stop (struct target_ops *self, ptid_t ptid)
4553 {
4554 if (non_stop)
4555 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4556 else
4557 linux_ops->to_stop (linux_ops, ptid);
4558 }
4559
4560 static void
4561 linux_nat_close (struct target_ops *self)
4562 {
4563 /* Unregister from the event loop. */
4564 if (linux_nat_is_async_p (self))
4565 linux_nat_async (self, NULL, NULL);
4566
4567 if (linux_ops->to_close)
4568 linux_ops->to_close (linux_ops);
4569
4570 super_close (self);
4571 }
4572
4573 /* When requests are passed down from the linux-nat layer to the
4574 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4575 used. The address space pointer is stored in the inferior object,
4576 but the common code that is passed such ptid can't tell whether
4577 lwpid is a "main" process id or not (it assumes so). We reverse
4578 look up the "main" process id from the lwp here. */
4579
4580 static struct address_space *
4581 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4582 {
4583 struct lwp_info *lwp;
4584 struct inferior *inf;
4585 int pid;
4586
4587 if (ptid_get_lwp (ptid) == 0)
4588 {
4589 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4590 tgid. */
4591 lwp = find_lwp_pid (ptid);
4592 pid = ptid_get_pid (lwp->ptid);
4593 }
4594 else
4595 {
4596 /* A (pid,lwpid,0) ptid. */
4597 pid = ptid_get_pid (ptid);
4598 }
4599
4600 inf = find_inferior_pid (pid);
4601 gdb_assert (inf != NULL);
4602 return inf->aspace;
4603 }
4604
4605 /* Return the cached value of the processor core for thread PTID. */
4606
4607 static int
4608 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4609 {
4610 struct lwp_info *info = find_lwp_pid (ptid);
4611
4612 if (info)
4613 return info->core;
4614 return -1;
4615 }
4616
4617 void
4618 linux_nat_add_target (struct target_ops *t)
4619 {
4620 /* Save the provided single-threaded target. We save this in a separate
4621 variable because another target we've inherited from (e.g. inf-ptrace)
4622 may have saved a pointer to T; we want to use it for the final
4623 process stratum target. */
4624 linux_ops_saved = *t;
4625 linux_ops = &linux_ops_saved;
4626
4627 /* Override some methods for multithreading. */
4628 t->to_create_inferior = linux_nat_create_inferior;
4629 t->to_attach = linux_nat_attach;
4630 t->to_detach = linux_nat_detach;
4631 t->to_resume = linux_nat_resume;
4632 t->to_wait = linux_nat_wait;
4633 t->to_pass_signals = linux_nat_pass_signals;
4634 t->to_xfer_partial = linux_nat_xfer_partial;
4635 t->to_kill = linux_nat_kill;
4636 t->to_mourn_inferior = linux_nat_mourn_inferior;
4637 t->to_thread_alive = linux_nat_thread_alive;
4638 t->to_pid_to_str = linux_nat_pid_to_str;
4639 t->to_thread_name = linux_nat_thread_name;
4640 t->to_has_thread_control = tc_schedlock;
4641 t->to_thread_address_space = linux_nat_thread_address_space;
4642 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
4643 t->to_stopped_data_address = linux_nat_stopped_data_address;
4644
4645 t->to_can_async_p = linux_nat_can_async_p;
4646 t->to_is_async_p = linux_nat_is_async_p;
4647 t->to_supports_non_stop = linux_nat_supports_non_stop;
4648 t->to_async = linux_nat_async;
4649 t->to_terminal_inferior = linux_nat_terminal_inferior;
4650 t->to_terminal_ours = linux_nat_terminal_ours;
4651
4652 super_close = t->to_close;
4653 t->to_close = linux_nat_close;
4654
4655 /* Methods for non-stop support. */
4656 t->to_stop = linux_nat_stop;
4657
4658 t->to_supports_multi_process = linux_nat_supports_multi_process;
4659
4660 t->to_supports_disable_randomization
4661 = linux_nat_supports_disable_randomization;
4662
4663 t->to_core_of_thread = linux_nat_core_of_thread;
4664
4665 /* We don't change the stratum; this target will sit at
4666 process_stratum and thread_db will set at thread_stratum. This
4667 is a little strange, since this is a multi-threaded-capable
4668 target, but we want to be on the stack below thread_db, and we
4669 also want to be used for single-threaded processes. */
4670
4671 add_target (t);
4672 }
4673
4674 /* Register a method to call whenever a new thread is attached. */
4675 void
4676 linux_nat_set_new_thread (struct target_ops *t,
4677 void (*new_thread) (struct lwp_info *))
4678 {
4679 /* Save the pointer. We only support a single registered instance
4680 of the GNU/Linux native target, so we do not need to map this to
4681 T. */
4682 linux_nat_new_thread = new_thread;
4683 }
4684
4685 /* See declaration in linux-nat.h. */
4686
4687 void
4688 linux_nat_set_new_fork (struct target_ops *t,
4689 linux_nat_new_fork_ftype *new_fork)
4690 {
4691 /* Save the pointer. */
4692 linux_nat_new_fork = new_fork;
4693 }
4694
4695 /* See declaration in linux-nat.h. */
4696
4697 void
4698 linux_nat_set_forget_process (struct target_ops *t,
4699 linux_nat_forget_process_ftype *fn)
4700 {
4701 /* Save the pointer. */
4702 linux_nat_forget_process_hook = fn;
4703 }
4704
4705 /* See declaration in linux-nat.h. */
4706
4707 void
4708 linux_nat_forget_process (pid_t pid)
4709 {
4710 if (linux_nat_forget_process_hook != NULL)
4711 linux_nat_forget_process_hook (pid);
4712 }
4713
4714 /* Register a method that converts a siginfo object between the layout
4715 that ptrace returns, and the layout in the architecture of the
4716 inferior. */
4717 void
4718 linux_nat_set_siginfo_fixup (struct target_ops *t,
4719 int (*siginfo_fixup) (siginfo_t *,
4720 gdb_byte *,
4721 int))
4722 {
4723 /* Save the pointer. */
4724 linux_nat_siginfo_fixup = siginfo_fixup;
4725 }
4726
4727 /* Register a method to call prior to resuming a thread. */
4728
4729 void
4730 linux_nat_set_prepare_to_resume (struct target_ops *t,
4731 void (*prepare_to_resume) (struct lwp_info *))
4732 {
4733 /* Save the pointer. */
4734 linux_nat_prepare_to_resume = prepare_to_resume;
4735 }
4736
4737 /* See linux-nat.h. */
4738
4739 int
4740 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4741 {
4742 int pid;
4743
4744 pid = ptid_get_lwp (ptid);
4745 if (pid == 0)
4746 pid = ptid_get_pid (ptid);
4747
4748 errno = 0;
4749 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4750 if (errno != 0)
4751 {
4752 memset (siginfo, 0, sizeof (*siginfo));
4753 return 0;
4754 }
4755 return 1;
4756 }
4757
4758 /* Provide a prototype to silence -Wmissing-prototypes. */
4759 extern initialize_file_ftype _initialize_linux_nat;
4760
4761 void
4762 _initialize_linux_nat (void)
4763 {
4764 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4765 &debug_linux_nat, _("\
4766 Set debugging of GNU/Linux lwp module."), _("\
4767 Show debugging of GNU/Linux lwp module."), _("\
4768 Enables printf debugging output."),
4769 NULL,
4770 show_debug_linux_nat,
4771 &setdebuglist, &showdebuglist);
4772
4773 /* Save this mask as the default. */
4774 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4775
4776 /* Install a SIGCHLD handler. */
4777 sigchld_action.sa_handler = sigchld_handler;
4778 sigemptyset (&sigchld_action.sa_mask);
4779 sigchld_action.sa_flags = SA_RESTART;
4780
4781 /* Make it the default. */
4782 sigaction (SIGCHLD, &sigchld_action, NULL);
4783
4784 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4785 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4786 sigdelset (&suspend_mask, SIGCHLD);
4787
4788 sigemptyset (&blocked_mask);
4789
4790 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to
4791 support read-only process state. */
4792 linux_ptrace_set_additional_flags (PTRACE_O_TRACESYSGOOD
4793 | PTRACE_O_TRACEVFORKDONE
4794 | PTRACE_O_TRACEVFORK
4795 | PTRACE_O_TRACEFORK
4796 | PTRACE_O_TRACEEXEC);
4797 }
4798 \f
4799
4800 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4801 the GNU/Linux Threads library and therefore doesn't really belong
4802 here. */
4803
4804 /* Read variable NAME in the target and return its value if found.
4805 Otherwise return zero. It is assumed that the type of the variable
4806 is `int'. */
4807
4808 static int
4809 get_signo (const char *name)
4810 {
4811 struct bound_minimal_symbol ms;
4812 int signo;
4813
4814 ms = lookup_minimal_symbol (name, NULL, NULL);
4815 if (ms.minsym == NULL)
4816 return 0;
4817
4818 if (target_read_memory (BMSYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
4819 sizeof (signo)) != 0)
4820 return 0;
4821
4822 return signo;
4823 }
4824
4825 /* Return the set of signals used by the threads library in *SET. */
4826
4827 void
4828 lin_thread_get_thread_signals (sigset_t *set)
4829 {
4830 struct sigaction action;
4831 int restart, cancel;
4832
4833 sigemptyset (&blocked_mask);
4834 sigemptyset (set);
4835
4836 restart = get_signo ("__pthread_sig_restart");
4837 cancel = get_signo ("__pthread_sig_cancel");
4838
4839 /* LinuxThreads normally uses the first two RT signals, but in some legacy
4840 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
4841 not provide any way for the debugger to query the signal numbers -
4842 fortunately they don't change! */
4843
4844 if (restart == 0)
4845 restart = __SIGRTMIN;
4846
4847 if (cancel == 0)
4848 cancel = __SIGRTMIN + 1;
4849
4850 sigaddset (set, restart);
4851 sigaddset (set, cancel);
4852
4853 /* The GNU/Linux Threads library makes terminating threads send a
4854 special "cancel" signal instead of SIGCHLD. Make sure we catch
4855 those (to prevent them from terminating GDB itself, which is
4856 likely to be their default action) and treat them the same way as
4857 SIGCHLD. */
4858
4859 action.sa_handler = sigchld_handler;
4860 sigemptyset (&action.sa_mask);
4861 action.sa_flags = SA_RESTART;
4862 sigaction (cancel, &action, NULL);
4863
4864 /* We block the "cancel" signal throughout this code ... */
4865 sigaddset (&blocked_mask, cancel);
4866 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
4867
4868 /* ... except during a sigsuspend. */
4869 sigdelset (&suspend_mask, cancel);
4870 }