[gdb/testsuite] Fix gdb.opt/inline-small-func.exp with clang
[binutils-gdb.git] / gdb / lm32-tdep.c
1 /* Target-dependent code for Lattice Mico32 processor, for GDB.
2 Contributed by Jon Beniston <jon@beniston.com>
3
4 Copyright (C) 2009-2022 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "frame-unwind.h"
24 #include "frame-base.h"
25 #include "inferior.h"
26 #include "dis-asm.h"
27 #include "symfile.h"
28 #include "remote.h"
29 #include "gdbcore.h"
30 #include "gdb/sim-lm32.h"
31 #include "arch-utils.h"
32 #include "regcache.h"
33 #include "trad-frame.h"
34 #include "reggroups.h"
35 #include "opcodes/lm32-desc.h"
36 #include <algorithm>
37 #include "gdbarch.h"
38
39 /* Macros to extract fields from an instruction. */
40 #define LM32_OPCODE(insn) ((insn >> 26) & 0x3f)
41 #define LM32_REG0(insn) ((insn >> 21) & 0x1f)
42 #define LM32_REG1(insn) ((insn >> 16) & 0x1f)
43 #define LM32_REG2(insn) ((insn >> 11) & 0x1f)
44 #define LM32_IMM16(insn) ((((long)insn & 0xffff) << 16) >> 16)
45
46 struct lm32_gdbarch_tdep : gdbarch_tdep_base
47 {
48 /* gdbarch target dependent data here. Currently unused for LM32. */
49 };
50
51 struct lm32_frame_cache
52 {
53 /* The frame's base. Used when constructing a frame ID. */
54 CORE_ADDR base;
55 CORE_ADDR pc;
56 /* Size of frame. */
57 int size;
58 /* Table indicating the location of each and every register. */
59 trad_frame_saved_reg *saved_regs;
60 };
61
62 /* Return whether a given register is in a given group. */
63
64 static int
65 lm32_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
66 const struct reggroup *group)
67 {
68 if (group == general_reggroup)
69 return ((regnum >= SIM_LM32_R0_REGNUM) && (regnum <= SIM_LM32_RA_REGNUM))
70 || (regnum == SIM_LM32_PC_REGNUM);
71 else if (group == system_reggroup)
72 return ((regnum >= SIM_LM32_BA_REGNUM) && (regnum <= SIM_LM32_EA_REGNUM))
73 || ((regnum >= SIM_LM32_EID_REGNUM) && (regnum <= SIM_LM32_IP_REGNUM));
74 return default_register_reggroup_p (gdbarch, regnum, group);
75 }
76
77 /* Return a name that corresponds to the given register number. */
78
79 static const char *
80 lm32_register_name (struct gdbarch *gdbarch, int reg_nr)
81 {
82 static const char *register_names[] = {
83 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
84 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
85 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
86 "r24", "r25", "gp", "fp", "sp", "ra", "ea", "ba",
87 "PC", "EID", "EBA", "DEBA", "IE", "IM", "IP"
88 };
89
90 if ((reg_nr < 0) || (reg_nr >= ARRAY_SIZE (register_names)))
91 return NULL;
92 else
93 return register_names[reg_nr];
94 }
95
96 /* Return type of register. */
97
98 static struct type *
99 lm32_register_type (struct gdbarch *gdbarch, int reg_nr)
100 {
101 return builtin_type (gdbarch)->builtin_int32;
102 }
103
104 /* Return non-zero if a register can't be written. */
105
106 static int
107 lm32_cannot_store_register (struct gdbarch *gdbarch, int regno)
108 {
109 return (regno == SIM_LM32_R0_REGNUM) || (regno == SIM_LM32_EID_REGNUM);
110 }
111
112 /* Analyze a function's prologue. */
113
114 static CORE_ADDR
115 lm32_analyze_prologue (struct gdbarch *gdbarch,
116 CORE_ADDR pc, CORE_ADDR limit,
117 struct lm32_frame_cache *info)
118 {
119 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
120 unsigned long instruction;
121
122 /* Keep reading though instructions, until we come across an instruction
123 that isn't likely to be part of the prologue. */
124 info->size = 0;
125 for (; pc < limit; pc += 4)
126 {
127
128 /* Read an instruction. */
129 instruction = read_memory_integer (pc, 4, byte_order);
130
131 if ((LM32_OPCODE (instruction) == OP_SW)
132 && (LM32_REG0 (instruction) == SIM_LM32_SP_REGNUM))
133 {
134 /* Any stack displaced store is likely part of the prologue.
135 Record that the register is being saved, and the offset
136 into the stack. */
137 info->saved_regs[LM32_REG1 (instruction)].set_addr (LM32_IMM16 (instruction));
138 }
139 else if ((LM32_OPCODE (instruction) == OP_ADDI)
140 && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
141 {
142 /* An add to the SP is likely to be part of the prologue.
143 Adjust stack size by whatever the instruction adds to the sp. */
144 info->size -= LM32_IMM16 (instruction);
145 }
146 else if ( /* add fp,fp,sp */
147 ((LM32_OPCODE (instruction) == OP_ADD)
148 && (LM32_REG2 (instruction) == SIM_LM32_FP_REGNUM)
149 && (LM32_REG0 (instruction) == SIM_LM32_FP_REGNUM)
150 && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
151 /* mv fp,imm */
152 || ((LM32_OPCODE (instruction) == OP_ADDI)
153 && (LM32_REG1 (instruction) == SIM_LM32_FP_REGNUM)
154 && (LM32_REG0 (instruction) == SIM_LM32_R0_REGNUM)))
155 {
156 /* Likely to be in the prologue for functions that require
157 a frame pointer. */
158 }
159 else
160 {
161 /* Any other instruction is likely not to be part of the
162 prologue. */
163 break;
164 }
165 }
166
167 return pc;
168 }
169
170 /* Return PC of first non prologue instruction, for the function at the
171 specified address. */
172
173 static CORE_ADDR
174 lm32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
175 {
176 CORE_ADDR func_addr, limit_pc;
177 struct lm32_frame_cache frame_info;
178 trad_frame_saved_reg saved_regs[SIM_LM32_NUM_REGS];
179
180 /* See if we can determine the end of the prologue via the symbol table.
181 If so, then return either PC, or the PC after the prologue, whichever
182 is greater. */
183 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
184 {
185 CORE_ADDR post_prologue_pc
186 = skip_prologue_using_sal (gdbarch, func_addr);
187 if (post_prologue_pc != 0)
188 return std::max (pc, post_prologue_pc);
189 }
190
191 /* Can't determine prologue from the symbol table, need to examine
192 instructions. */
193
194 /* Find an upper limit on the function prologue using the debug
195 information. If the debug information could not be used to provide
196 that bound, then use an arbitrary large number as the upper bound. */
197 limit_pc = skip_prologue_using_sal (gdbarch, pc);
198 if (limit_pc == 0)
199 limit_pc = pc + 100; /* Magic. */
200
201 frame_info.saved_regs = saved_regs;
202 return lm32_analyze_prologue (gdbarch, pc, limit_pc, &frame_info);
203 }
204
205 /* Create a breakpoint instruction. */
206 constexpr gdb_byte lm32_break_insn[4] = { OP_RAISE << 2, 0, 0, 2 };
207
208 typedef BP_MANIPULATION (lm32_break_insn) lm32_breakpoint;
209
210
211 /* Setup registers and stack for faking a call to a function in the
212 inferior. */
213
214 static CORE_ADDR
215 lm32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
216 struct regcache *regcache, CORE_ADDR bp_addr,
217 int nargs, struct value **args, CORE_ADDR sp,
218 function_call_return_method return_method,
219 CORE_ADDR struct_addr)
220 {
221 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
222 int first_arg_reg = SIM_LM32_R1_REGNUM;
223 int num_arg_regs = 8;
224 int i;
225
226 /* Set the return address. */
227 regcache_cooked_write_signed (regcache, SIM_LM32_RA_REGNUM, bp_addr);
228
229 /* If we're returning a large struct, a pointer to the address to
230 store it at is passed as a first hidden parameter. */
231 if (return_method == return_method_struct)
232 {
233 regcache_cooked_write_unsigned (regcache, first_arg_reg, struct_addr);
234 first_arg_reg++;
235 num_arg_regs--;
236 sp -= 4;
237 }
238
239 /* Setup parameters. */
240 for (i = 0; i < nargs; i++)
241 {
242 struct value *arg = args[i];
243 struct type *arg_type = check_typedef (value_type (arg));
244 gdb_byte *contents;
245 ULONGEST val;
246
247 /* Promote small integer types to int. */
248 switch (arg_type->code ())
249 {
250 case TYPE_CODE_INT:
251 case TYPE_CODE_BOOL:
252 case TYPE_CODE_CHAR:
253 case TYPE_CODE_RANGE:
254 case TYPE_CODE_ENUM:
255 if (TYPE_LENGTH (arg_type) < 4)
256 {
257 arg_type = builtin_type (gdbarch)->builtin_int32;
258 arg = value_cast (arg_type, arg);
259 }
260 break;
261 }
262
263 /* FIXME: Handle structures. */
264
265 contents = (gdb_byte *) value_contents (arg).data ();
266 val = extract_unsigned_integer (contents, TYPE_LENGTH (arg_type),
267 byte_order);
268
269 /* First num_arg_regs parameters are passed by registers,
270 and the rest are passed on the stack. */
271 if (i < num_arg_regs)
272 regcache_cooked_write_unsigned (regcache, first_arg_reg + i, val);
273 else
274 {
275 write_memory_unsigned_integer (sp, TYPE_LENGTH (arg_type), byte_order,
276 val);
277 sp -= 4;
278 }
279 }
280
281 /* Update stack pointer. */
282 regcache_cooked_write_signed (regcache, SIM_LM32_SP_REGNUM, sp);
283
284 /* Return adjusted stack pointer. */
285 return sp;
286 }
287
288 /* Extract return value after calling a function in the inferior. */
289
290 static void
291 lm32_extract_return_value (struct type *type, struct regcache *regcache,
292 gdb_byte *valbuf)
293 {
294 struct gdbarch *gdbarch = regcache->arch ();
295 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
296 ULONGEST l;
297 CORE_ADDR return_buffer;
298
299 if (type->code () != TYPE_CODE_STRUCT
300 && type->code () != TYPE_CODE_UNION
301 && type->code () != TYPE_CODE_ARRAY && TYPE_LENGTH (type) <= 4)
302 {
303 /* Return value is returned in a single register. */
304 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
305 store_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order, l);
306 }
307 else if ((type->code () == TYPE_CODE_INT) && (TYPE_LENGTH (type) == 8))
308 {
309 /* 64-bit values are returned in a register pair. */
310 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
311 memcpy (valbuf, &l, 4);
312 regcache_cooked_read_unsigned (regcache, SIM_LM32_R2_REGNUM, &l);
313 memcpy (valbuf + 4, &l, 4);
314 }
315 else
316 {
317 /* Aggregate types greater than a single register are returned
318 in memory. FIXME: Unless they are only 2 regs?. */
319 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
320 return_buffer = l;
321 read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
322 }
323 }
324
325 /* Write into appropriate registers a function return value of type
326 TYPE, given in virtual format. */
327 static void
328 lm32_store_return_value (struct type *type, struct regcache *regcache,
329 const gdb_byte *valbuf)
330 {
331 struct gdbarch *gdbarch = regcache->arch ();
332 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
333 ULONGEST val;
334 int len = TYPE_LENGTH (type);
335
336 if (len <= 4)
337 {
338 val = extract_unsigned_integer (valbuf, len, byte_order);
339 regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
340 }
341 else if (len <= 8)
342 {
343 val = extract_unsigned_integer (valbuf, 4, byte_order);
344 regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
345 val = extract_unsigned_integer (valbuf + 4, len - 4, byte_order);
346 regcache_cooked_write_unsigned (regcache, SIM_LM32_R2_REGNUM, val);
347 }
348 else
349 error (_("lm32_store_return_value: type length too large."));
350 }
351
352 /* Determine whether a functions return value is in a register or memory. */
353 static enum return_value_convention
354 lm32_return_value (struct gdbarch *gdbarch, struct value *function,
355 struct type *valtype, struct regcache *regcache,
356 gdb_byte *readbuf, const gdb_byte *writebuf)
357 {
358 enum type_code code = valtype->code ();
359
360 if (code == TYPE_CODE_STRUCT
361 || code == TYPE_CODE_UNION
362 || code == TYPE_CODE_ARRAY || TYPE_LENGTH (valtype) > 8)
363 return RETURN_VALUE_STRUCT_CONVENTION;
364
365 if (readbuf)
366 lm32_extract_return_value (valtype, regcache, readbuf);
367 if (writebuf)
368 lm32_store_return_value (valtype, regcache, writebuf);
369
370 return RETURN_VALUE_REGISTER_CONVENTION;
371 }
372
373 /* Put here the code to store, into fi->saved_regs, the addresses of
374 the saved registers of frame described by FRAME_INFO. This
375 includes special registers such as pc and fp saved in special ways
376 in the stack frame. sp is even more special: the address we return
377 for it IS the sp for the next frame. */
378
379 static struct lm32_frame_cache *
380 lm32_frame_cache (struct frame_info *this_frame, void **this_prologue_cache)
381 {
382 CORE_ADDR current_pc;
383 ULONGEST prev_sp;
384 ULONGEST this_base;
385 struct lm32_frame_cache *info;
386 int i;
387
388 if ((*this_prologue_cache))
389 return (struct lm32_frame_cache *) (*this_prologue_cache);
390
391 info = FRAME_OBSTACK_ZALLOC (struct lm32_frame_cache);
392 (*this_prologue_cache) = info;
393 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
394
395 info->pc = get_frame_func (this_frame);
396 current_pc = get_frame_pc (this_frame);
397 lm32_analyze_prologue (get_frame_arch (this_frame),
398 info->pc, current_pc, info);
399
400 /* Compute the frame's base, and the previous frame's SP. */
401 this_base = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM);
402 prev_sp = this_base + info->size;
403 info->base = this_base;
404
405 /* Convert callee save offsets into addresses. */
406 for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
407 {
408 if (info->saved_regs[i].is_addr ())
409 info->saved_regs[i].set_addr (this_base + info->saved_regs[i].addr ());
410 }
411
412 /* The call instruction moves the caller's PC in the callee's RA register.
413 Since this is an unwind, do the reverse. Copy the location of RA register
414 into PC (the address / regnum) so that a request for PC will be
415 converted into a request for the RA register. */
416 info->saved_regs[SIM_LM32_PC_REGNUM] = info->saved_regs[SIM_LM32_RA_REGNUM];
417
418 /* The previous frame's SP needed to be computed. Save the computed
419 value. */
420 info->saved_regs[SIM_LM32_SP_REGNUM].set_value (prev_sp);
421
422 return info;
423 }
424
425 static void
426 lm32_frame_this_id (struct frame_info *this_frame, void **this_cache,
427 struct frame_id *this_id)
428 {
429 struct lm32_frame_cache *cache = lm32_frame_cache (this_frame, this_cache);
430
431 /* This marks the outermost frame. */
432 if (cache->base == 0)
433 return;
434
435 (*this_id) = frame_id_build (cache->base, cache->pc);
436 }
437
438 static struct value *
439 lm32_frame_prev_register (struct frame_info *this_frame,
440 void **this_prologue_cache, int regnum)
441 {
442 struct lm32_frame_cache *info;
443
444 info = lm32_frame_cache (this_frame, this_prologue_cache);
445 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
446 }
447
448 static const struct frame_unwind lm32_frame_unwind = {
449 "lm32 prologue",
450 NORMAL_FRAME,
451 default_frame_unwind_stop_reason,
452 lm32_frame_this_id,
453 lm32_frame_prev_register,
454 NULL,
455 default_frame_sniffer
456 };
457
458 static CORE_ADDR
459 lm32_frame_base_address (struct frame_info *this_frame, void **this_cache)
460 {
461 struct lm32_frame_cache *info = lm32_frame_cache (this_frame, this_cache);
462
463 return info->base;
464 }
465
466 static const struct frame_base lm32_frame_base = {
467 &lm32_frame_unwind,
468 lm32_frame_base_address,
469 lm32_frame_base_address,
470 lm32_frame_base_address
471 };
472
473 static CORE_ADDR
474 lm32_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
475 {
476 /* Align to the size of an instruction (so that they can safely be
477 pushed onto the stack. */
478 return sp & ~3;
479 }
480
481 static struct gdbarch *
482 lm32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
483 {
484 struct gdbarch *gdbarch;
485
486 /* If there is already a candidate, use it. */
487 arches = gdbarch_list_lookup_by_info (arches, &info);
488 if (arches != NULL)
489 return arches->gdbarch;
490
491 /* None found, create a new architecture from the information provided. */
492 lm32_gdbarch_tdep *tdep = new lm32_gdbarch_tdep;
493 gdbarch = gdbarch_alloc (&info, tdep);
494
495 /* Type sizes. */
496 set_gdbarch_short_bit (gdbarch, 16);
497 set_gdbarch_int_bit (gdbarch, 32);
498 set_gdbarch_long_bit (gdbarch, 32);
499 set_gdbarch_long_long_bit (gdbarch, 64);
500 set_gdbarch_float_bit (gdbarch, 32);
501 set_gdbarch_double_bit (gdbarch, 64);
502 set_gdbarch_long_double_bit (gdbarch, 64);
503 set_gdbarch_ptr_bit (gdbarch, 32);
504
505 /* Register info. */
506 set_gdbarch_num_regs (gdbarch, SIM_LM32_NUM_REGS);
507 set_gdbarch_sp_regnum (gdbarch, SIM_LM32_SP_REGNUM);
508 set_gdbarch_pc_regnum (gdbarch, SIM_LM32_PC_REGNUM);
509 set_gdbarch_register_name (gdbarch, lm32_register_name);
510 set_gdbarch_register_type (gdbarch, lm32_register_type);
511 set_gdbarch_cannot_store_register (gdbarch, lm32_cannot_store_register);
512
513 /* Frame info. */
514 set_gdbarch_skip_prologue (gdbarch, lm32_skip_prologue);
515 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
516 set_gdbarch_decr_pc_after_break (gdbarch, 0);
517 set_gdbarch_frame_args_skip (gdbarch, 0);
518
519 /* Frame unwinding. */
520 set_gdbarch_frame_align (gdbarch, lm32_frame_align);
521 frame_base_set_default (gdbarch, &lm32_frame_base);
522 frame_unwind_append_unwinder (gdbarch, &lm32_frame_unwind);
523
524 /* Breakpoints. */
525 set_gdbarch_breakpoint_kind_from_pc (gdbarch, lm32_breakpoint::kind_from_pc);
526 set_gdbarch_sw_breakpoint_from_kind (gdbarch, lm32_breakpoint::bp_from_kind);
527 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
528
529 /* Calling functions in the inferior. */
530 set_gdbarch_push_dummy_call (gdbarch, lm32_push_dummy_call);
531 set_gdbarch_return_value (gdbarch, lm32_return_value);
532
533 set_gdbarch_register_reggroup_p (gdbarch, lm32_register_reggroup_p);
534
535 return gdbarch;
536 }
537
538 void _initialize_lm32_tdep ();
539 void
540 _initialize_lm32_tdep ()
541 {
542 register_gdbarch_init (bfd_arch_lm32, lm32_gdbarch_init);
543 }