whitespace cleanup
[binutils-gdb.git] / gdb / lynx-nat.c
1 /* Native-dependent code for LynxOS.
2 Copyright 1993, 1994, 1995, 1996, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "target.h"
26 #include "gdbcore.h"
27 #include "regcache.h"
28
29 #include <sys/ptrace.h>
30 #include <sys/wait.h>
31 #include <sys/fpp.h>
32
33 static unsigned long registers_addr (int pid);
34 static void fetch_core_registers (char *, unsigned, int, CORE_ADDR);
35
36 #define X(ENTRY)(offsetof(struct econtext, ENTRY))
37
38 #ifdef I386
39 /* Mappings from tm-i386v.h */
40
41 static int regmap[] =
42 {
43 X (eax),
44 X (ecx),
45 X (edx),
46 X (ebx),
47 X (esp), /* sp */
48 X (ebp), /* fp */
49 X (esi),
50 X (edi),
51 X (eip), /* pc */
52 X (flags), /* ps */
53 X (cs),
54 X (ss),
55 X (ds),
56 X (es),
57 X (ecode), /* Lynx doesn't give us either fs or gs, so */
58 X (fault), /* we just substitute these two in the hopes
59 that they are useful. */
60 };
61 #endif /* I386 */
62
63 #ifdef M68K
64 /* Mappings from tm-m68k.h */
65
66 static int regmap[] =
67 {
68 X (regs[0]), /* d0 */
69 X (regs[1]), /* d1 */
70 X (regs[2]), /* d2 */
71 X (regs[3]), /* d3 */
72 X (regs[4]), /* d4 */
73 X (regs[5]), /* d5 */
74 X (regs[6]), /* d6 */
75 X (regs[7]), /* d7 */
76 X (regs[8]), /* a0 */
77 X (regs[9]), /* a1 */
78 X (regs[10]), /* a2 */
79 X (regs[11]), /* a3 */
80 X (regs[12]), /* a4 */
81 X (regs[13]), /* a5 */
82 X (regs[14]), /* fp */
83 offsetof (st_t, usp) - offsetof (st_t, ec), /* sp */
84 X (status), /* ps */
85 X (pc),
86
87 X (fregs[0 * 3]), /* fp0 */
88 X (fregs[1 * 3]), /* fp1 */
89 X (fregs[2 * 3]), /* fp2 */
90 X (fregs[3 * 3]), /* fp3 */
91 X (fregs[4 * 3]), /* fp4 */
92 X (fregs[5 * 3]), /* fp5 */
93 X (fregs[6 * 3]), /* fp6 */
94 X (fregs[7 * 3]), /* fp7 */
95
96 X (fcregs[0]), /* fpcontrol */
97 X (fcregs[1]), /* fpstatus */
98 X (fcregs[2]), /* fpiaddr */
99 X (ssw), /* fpcode */
100 X (fault), /* fpflags */
101 };
102 #endif /* M68K */
103
104 #ifdef SPARC
105 /* Mappings from tm-sparc.h */
106
107 #define FX(ENTRY)(offsetof(struct fcontext, ENTRY))
108
109 static int regmap[] =
110 {
111 -1, /* g0 */
112 X (g1),
113 X (g2),
114 X (g3),
115 X (g4),
116 -1, /* g5->g7 aren't saved by Lynx */
117 -1,
118 -1,
119
120 X (o[0]),
121 X (o[1]),
122 X (o[2]),
123 X (o[3]),
124 X (o[4]),
125 X (o[5]),
126 X (o[6]), /* sp */
127 X (o[7]), /* ra */
128
129 -1, -1, -1, -1, -1, -1, -1, -1, /* l0 -> l7 */
130
131 -1, -1, -1, -1, -1, -1, -1, -1, /* i0 -> i7 */
132
133 FX (f.fregs[0]), /* f0 */
134 FX (f.fregs[1]),
135 FX (f.fregs[2]),
136 FX (f.fregs[3]),
137 FX (f.fregs[4]),
138 FX (f.fregs[5]),
139 FX (f.fregs[6]),
140 FX (f.fregs[7]),
141 FX (f.fregs[8]),
142 FX (f.fregs[9]),
143 FX (f.fregs[10]),
144 FX (f.fregs[11]),
145 FX (f.fregs[12]),
146 FX (f.fregs[13]),
147 FX (f.fregs[14]),
148 FX (f.fregs[15]),
149 FX (f.fregs[16]),
150 FX (f.fregs[17]),
151 FX (f.fregs[18]),
152 FX (f.fregs[19]),
153 FX (f.fregs[20]),
154 FX (f.fregs[21]),
155 FX (f.fregs[22]),
156 FX (f.fregs[23]),
157 FX (f.fregs[24]),
158 FX (f.fregs[25]),
159 FX (f.fregs[26]),
160 FX (f.fregs[27]),
161 FX (f.fregs[28]),
162 FX (f.fregs[29]),
163 FX (f.fregs[30]),
164 FX (f.fregs[31]),
165
166 X (y),
167 X (psr),
168 X (wim),
169 X (tbr),
170 X (pc),
171 X (npc),
172 FX (fsr), /* fpsr */
173 -1, /* cpsr */
174 };
175 #endif /* SPARC */
176
177 #ifdef rs6000
178
179 static int regmap[] =
180 {
181 X (iregs[0]), /* r0 */
182 X (iregs[1]),
183 X (iregs[2]),
184 X (iregs[3]),
185 X (iregs[4]),
186 X (iregs[5]),
187 X (iregs[6]),
188 X (iregs[7]),
189 X (iregs[8]),
190 X (iregs[9]),
191 X (iregs[10]),
192 X (iregs[11]),
193 X (iregs[12]),
194 X (iregs[13]),
195 X (iregs[14]),
196 X (iregs[15]),
197 X (iregs[16]),
198 X (iregs[17]),
199 X (iregs[18]),
200 X (iregs[19]),
201 X (iregs[20]),
202 X (iregs[21]),
203 X (iregs[22]),
204 X (iregs[23]),
205 X (iregs[24]),
206 X (iregs[25]),
207 X (iregs[26]),
208 X (iregs[27]),
209 X (iregs[28]),
210 X (iregs[29]),
211 X (iregs[30]),
212 X (iregs[31]),
213
214 X (fregs[0]), /* f0 */
215 X (fregs[1]),
216 X (fregs[2]),
217 X (fregs[3]),
218 X (fregs[4]),
219 X (fregs[5]),
220 X (fregs[6]),
221 X (fregs[7]),
222 X (fregs[8]),
223 X (fregs[9]),
224 X (fregs[10]),
225 X (fregs[11]),
226 X (fregs[12]),
227 X (fregs[13]),
228 X (fregs[14]),
229 X (fregs[15]),
230 X (fregs[16]),
231 X (fregs[17]),
232 X (fregs[18]),
233 X (fregs[19]),
234 X (fregs[20]),
235 X (fregs[21]),
236 X (fregs[22]),
237 X (fregs[23]),
238 X (fregs[24]),
239 X (fregs[25]),
240 X (fregs[26]),
241 X (fregs[27]),
242 X (fregs[28]),
243 X (fregs[29]),
244 X (fregs[30]),
245 X (fregs[31]),
246
247 X (srr0), /* IAR (PC) */
248 X (srr1), /* MSR (PS) */
249 X (cr), /* CR */
250 X (lr), /* LR */
251 X (ctr), /* CTR */
252 X (xer), /* XER */
253 X (mq) /* MQ */
254 };
255
256 #endif /* rs6000 */
257
258 #ifdef SPARC
259
260 /* This routine handles some oddball cases for Sparc registers and LynxOS.
261 In partucular, it causes refs to G0, g5->7, and all fp regs to return zero.
262 It also handles knows where to find the I & L regs on the stack. */
263
264 void
265 fetch_inferior_registers (int regno)
266 {
267 int whatregs = 0;
268
269 #define WHATREGS_FLOAT 1
270 #define WHATREGS_GEN 2
271 #define WHATREGS_STACK 4
272
273 if (regno == -1)
274 whatregs = WHATREGS_FLOAT | WHATREGS_GEN | WHATREGS_STACK;
275 else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
276 whatregs = WHATREGS_STACK;
277 else if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32)
278 whatregs = WHATREGS_FLOAT;
279 else
280 whatregs = WHATREGS_GEN;
281
282 if (whatregs & WHATREGS_GEN)
283 {
284 struct econtext ec; /* general regs */
285 char *buf = alloca (max_register_size (current_gdbarch));
286 int retval;
287 int i;
288
289 errno = 0;
290 retval = ptrace (PTRACE_GETREGS, PIDGET (inferior_ptid),
291 (PTRACE_ARG3_TYPE) & ec, 0);
292 if (errno)
293 perror_with_name ("ptrace(PTRACE_GETREGS)");
294
295 memset (buf, 0, REGISTER_RAW_SIZE (G0_REGNUM));
296 supply_register (G0_REGNUM, buf);
297 supply_register (TBR_REGNUM, (char *) &ec.tbr);
298
299 memcpy (&deprecated_registers[REGISTER_BYTE (G1_REGNUM)], &ec.g1,
300 4 * REGISTER_RAW_SIZE (G1_REGNUM));
301 for (i = G1_REGNUM; i <= G1_REGNUM + 3; i++)
302 deprecated_register_valid[i] = 1;
303
304 supply_register (PS_REGNUM, (char *) &ec.psr);
305 supply_register (Y_REGNUM, (char *) &ec.y);
306 supply_register (PC_REGNUM, (char *) &ec.pc);
307 supply_register (NPC_REGNUM, (char *) &ec.npc);
308 supply_register (WIM_REGNUM, (char *) &ec.wim);
309
310 memcpy (&deprecated_registers[REGISTER_BYTE (O0_REGNUM)], ec.o,
311 8 * REGISTER_RAW_SIZE (O0_REGNUM));
312 for (i = O0_REGNUM; i <= O0_REGNUM + 7; i++)
313 deprecated_register_valid[i] = 1;
314 }
315
316 if (whatregs & WHATREGS_STACK)
317 {
318 CORE_ADDR sp;
319 int i;
320
321 sp = read_register (SP_REGNUM);
322
323 target_read_memory (sp + FRAME_SAVED_I0,
324 &deprecated_registers[REGISTER_BYTE (I0_REGNUM)],
325 8 * REGISTER_RAW_SIZE (I0_REGNUM));
326 for (i = I0_REGNUM; i <= I7_REGNUM; i++)
327 deprecated_register_valid[i] = 1;
328
329 target_read_memory (sp + FRAME_SAVED_L0,
330 &deprecated_registers[REGISTER_BYTE (L0_REGNUM)],
331 8 * REGISTER_RAW_SIZE (L0_REGNUM));
332 for (i = L0_REGNUM; i <= L0_REGNUM + 7; i++)
333 deprecated_register_valid[i] = 1;
334 }
335
336 if (whatregs & WHATREGS_FLOAT)
337 {
338 struct fcontext fc; /* fp regs */
339 int retval;
340 int i;
341
342 errno = 0;
343 retval = ptrace (PTRACE_GETFPREGS, PIDGET (inferior_ptid),
344 (PTRACE_ARG3_TYPE) & fc, 0);
345 if (errno)
346 perror_with_name ("ptrace(PTRACE_GETFPREGS)");
347
348 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM)], fc.f.fregs,
349 32 * REGISTER_RAW_SIZE (FP0_REGNUM));
350 for (i = FP0_REGNUM; i <= FP0_REGNUM + 31; i++)
351 deprecated_register_valid[i] = 1;
352
353 supply_register (FPS_REGNUM, (char *) &fc.fsr);
354 }
355 }
356
357 /* This routine handles storing of the I & L regs for the Sparc. The trick
358 here is that they actually live on the stack. The really tricky part is
359 that when changing the stack pointer, the I & L regs must be written to
360 where the new SP points, otherwise the regs will be incorrect when the
361 process is started up again. We assume that the I & L regs are valid at
362 this point. */
363
364 void
365 store_inferior_registers (int regno)
366 {
367 int whatregs = 0;
368
369 if (regno == -1)
370 whatregs = WHATREGS_FLOAT | WHATREGS_GEN | WHATREGS_STACK;
371 else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
372 whatregs = WHATREGS_STACK;
373 else if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32)
374 whatregs = WHATREGS_FLOAT;
375 else if (regno == SP_REGNUM)
376 whatregs = WHATREGS_STACK | WHATREGS_GEN;
377 else
378 whatregs = WHATREGS_GEN;
379
380 if (whatregs & WHATREGS_GEN)
381 {
382 struct econtext ec; /* general regs */
383 int retval;
384
385 ec.tbr = read_register (TBR_REGNUM);
386 memcpy (&ec.g1, &deprecated_registers[REGISTER_BYTE (G1_REGNUM)],
387 4 * REGISTER_RAW_SIZE (G1_REGNUM));
388
389 ec.psr = read_register (PS_REGNUM);
390 ec.y = read_register (Y_REGNUM);
391 ec.pc = read_register (PC_REGNUM);
392 ec.npc = read_register (NPC_REGNUM);
393 ec.wim = read_register (WIM_REGNUM);
394
395 memcpy (ec.o, &deprecated_registers[REGISTER_BYTE (O0_REGNUM)],
396 8 * REGISTER_RAW_SIZE (O0_REGNUM));
397
398 errno = 0;
399 retval = ptrace (PTRACE_SETREGS, PIDGET (inferior_ptid),
400 (PTRACE_ARG3_TYPE) & ec, 0);
401 if (errno)
402 perror_with_name ("ptrace(PTRACE_SETREGS)");
403 }
404
405 if (whatregs & WHATREGS_STACK)
406 {
407 int regoffset;
408 CORE_ADDR sp;
409
410 sp = read_register (SP_REGNUM);
411
412 if (regno == -1 || regno == SP_REGNUM)
413 {
414 if (!deprecated_register_valid[L0_REGNUM + 5])
415 internal_error (__FILE__, __LINE__, "failed internal consistency check");
416 target_write_memory (sp + FRAME_SAVED_I0,
417 &deprecated_registers[REGISTER_BYTE (I0_REGNUM)],
418 8 * REGISTER_RAW_SIZE (I0_REGNUM));
419
420 target_write_memory (sp + FRAME_SAVED_L0,
421 &deprecated_registers[REGISTER_BYTE (L0_REGNUM)],
422 8 * REGISTER_RAW_SIZE (L0_REGNUM));
423 }
424 else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
425 {
426 if (!deprecated_register_valid[regno])
427 internal_error (__FILE__, __LINE__, "failed internal consistency check");
428 if (regno >= L0_REGNUM && regno <= L0_REGNUM + 7)
429 regoffset = REGISTER_BYTE (regno) - REGISTER_BYTE (L0_REGNUM)
430 + FRAME_SAVED_L0;
431 else
432 regoffset = REGISTER_BYTE (regno) - REGISTER_BYTE (I0_REGNUM)
433 + FRAME_SAVED_I0;
434 target_write_memory (sp + regoffset,
435 &deprecated_registers[REGISTER_BYTE (regno)],
436 REGISTER_RAW_SIZE (regno));
437 }
438 }
439
440 if (whatregs & WHATREGS_FLOAT)
441 {
442 struct fcontext fc; /* fp regs */
443 int retval;
444
445 /* We read fcontext first so that we can get good values for fq_t... */
446 errno = 0;
447 retval = ptrace (PTRACE_GETFPREGS, PIDGET (inferior_ptid),
448 (PTRACE_ARG3_TYPE) & fc, 0);
449 if (errno)
450 perror_with_name ("ptrace(PTRACE_GETFPREGS)");
451
452 memcpy (fc.f.fregs, &deprecated_registers[REGISTER_BYTE (FP0_REGNUM)],
453 32 * REGISTER_RAW_SIZE (FP0_REGNUM));
454
455 fc.fsr = read_register (FPS_REGNUM);
456
457 errno = 0;
458 retval = ptrace (PTRACE_SETFPREGS, PIDGET (inferior_ptid),
459 (PTRACE_ARG3_TYPE) & fc, 0);
460 if (errno)
461 perror_with_name ("ptrace(PTRACE_SETFPREGS)");
462 }
463 }
464 #endif /* SPARC */
465
466 #if defined (I386) || defined (M68K) || defined (rs6000)
467
468 /* Return the offset relative to the start of the per-thread data to the
469 saved context block. */
470
471 static unsigned long
472 registers_addr (int pid)
473 {
474 CORE_ADDR stblock;
475 int ecpoff = offsetof (st_t, ecp);
476 CORE_ADDR ecp;
477
478 errno = 0;
479 stblock = (CORE_ADDR) ptrace (PTRACE_THREADUSER, pid, (PTRACE_ARG3_TYPE) 0,
480 0);
481 if (errno)
482 perror_with_name ("ptrace(PTRACE_THREADUSER)");
483
484 ecp = (CORE_ADDR) ptrace (PTRACE_PEEKTHREAD, pid, (PTRACE_ARG3_TYPE) ecpoff,
485 0);
486 if (errno)
487 perror_with_name ("ptrace(PTRACE_PEEKTHREAD)");
488
489 return ecp - stblock;
490 }
491
492 /* Fetch one or more registers from the inferior. REGNO == -1 to get
493 them all. We actually fetch more than requested, when convenient,
494 marking them as valid so we won't fetch them again. */
495
496 void
497 fetch_inferior_registers (int regno)
498 {
499 int reglo, reghi;
500 int i;
501 unsigned long ecp;
502
503 if (regno == -1)
504 {
505 reglo = 0;
506 reghi = NUM_REGS - 1;
507 }
508 else
509 reglo = reghi = regno;
510
511 ecp = registers_addr (PIDGET (inferior_ptid));
512
513 {
514 char *buf = alloca (max_register_size (current_gdbarch));
515 for (regno = reglo; regno <= reghi; regno++)
516 {
517 int ptrace_fun = PTRACE_PEEKTHREAD;
518
519 #ifdef M68K
520 ptrace_fun = regno == SP_REGNUM ? PTRACE_PEEKUSP : PTRACE_PEEKTHREAD;
521 #endif
522
523 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
524 {
525 unsigned int reg;
526
527 errno = 0;
528 reg = ptrace (ptrace_fun, PIDGET (inferior_ptid),
529 (PTRACE_ARG3_TYPE) (ecp + regmap[regno] + i), 0);
530 if (errno)
531 perror_with_name ("ptrace(PTRACE_PEEKUSP)");
532
533 *(int *) &buf[i] = reg;
534 }
535 supply_register (regno, buf);
536 }
537 }
538 }
539
540 /* Store our register values back into the inferior.
541 If REGNO is -1, do this for all registers.
542 Otherwise, REGNO specifies which register (so we can save time). */
543
544 void
545 store_inferior_registers (int regno)
546 {
547 int reglo, reghi;
548 int i;
549 unsigned long ecp;
550
551 if (regno == -1)
552 {
553 reglo = 0;
554 reghi = NUM_REGS - 1;
555 }
556 else
557 reglo = reghi = regno;
558
559 ecp = registers_addr (PIDGET (inferior_ptid));
560
561 for (regno = reglo; regno <= reghi; regno++)
562 {
563 int ptrace_fun = PTRACE_POKEUSER;
564
565 if (CANNOT_STORE_REGISTER (regno))
566 continue;
567
568 #ifdef M68K
569 ptrace_fun = regno == SP_REGNUM ? PTRACE_POKEUSP : PTRACE_POKEUSER;
570 #endif
571
572 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
573 {
574 unsigned int reg;
575
576 reg = *(unsigned int *) &deprecated_registers[REGISTER_BYTE (regno) + i];
577
578 errno = 0;
579 ptrace (ptrace_fun, PIDGET (inferior_ptid),
580 (PTRACE_ARG3_TYPE) (ecp + regmap[regno] + i), reg);
581 if (errno)
582 perror_with_name ("ptrace(PTRACE_POKEUSP)");
583 }
584 }
585 }
586 #endif /* defined (I386) || defined (M68K) || defined (rs6000) */
587
588 /* Wait for child to do something. Return pid of child, or -1 in case
589 of error; store status through argument pointer OURSTATUS. */
590
591 ptid_t
592 child_wait (ptid_t ptid, struct target_waitstatus *ourstatus)
593 {
594 int save_errno;
595 int thread;
596 union wait status;
597 int pid;
598
599 while (1)
600 {
601 int sig;
602
603 set_sigint_trap (); /* Causes SIGINT to be passed on to the
604 attached process. */
605 pid = wait (&status);
606
607 save_errno = errno;
608
609 clear_sigint_trap ();
610
611 if (pid == -1)
612 {
613 if (save_errno == EINTR)
614 continue;
615 fprintf_unfiltered (gdb_stderr, "Child process unexpectedly missing: %s.\n",
616 safe_strerror (save_errno));
617 /* Claim it exited with unknown signal. */
618 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
619 ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN;
620 return -1;
621 }
622
623 if (pid != PIDGET (inferior_ptid)) /* Some other process?!? */
624 continue;
625
626 thread = status.w_tid; /* Get thread id from status */
627
628 /* Initial thread value can only be acquired via wait, so we have to
629 resort to this hack. */
630
631 if (TIDGET (inferior_ptid) == 0 && thread != 0)
632 {
633 inferior_ptid = MERGEPID (PIDGET (inferior_ptid), thread);
634 add_thread (inferior_ptid);
635 }
636
637 ptid = BUILDPID (pid, thread);
638
639 /* We've become a single threaded process again. */
640 if (thread == 0)
641 inferior_ptid = ptid;
642
643 /* Check for thread creation. */
644 if (WIFSTOPPED (status)
645 && WSTOPSIG (status) == SIGTRAP
646 && !in_thread_list (ptid))
647 {
648 int realsig;
649
650 realsig = ptrace (PTRACE_GETTRACESIG, PIDGET (ptid),
651 (PTRACE_ARG3_TYPE) 0, 0);
652
653 if (realsig == SIGNEWTHREAD)
654 {
655 /* It's a new thread notification. We don't want to much with
656 realsig -- the code in wait_for_inferior expects SIGTRAP. */
657 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
658 ourstatus->value.sig = TARGET_SIGNAL_0;
659 return ptid;
660 }
661 else
662 error ("Signal for unknown thread was not SIGNEWTHREAD");
663 }
664
665 /* Check for thread termination. */
666 else if (WIFSTOPPED (status)
667 && WSTOPSIG (status) == SIGTRAP
668 && in_thread_list (ptid))
669 {
670 int realsig;
671
672 realsig = ptrace (PTRACE_GETTRACESIG, PIDGET (ptid),
673 (PTRACE_ARG3_TYPE) 0, 0);
674
675 if (realsig == SIGTHREADEXIT)
676 {
677 ptrace (PTRACE_CONT, PIDGET (ptid), (PTRACE_ARG3_TYPE) 0, 0);
678 continue;
679 }
680 }
681
682 #ifdef SPARC
683 /* SPARC Lynx uses an byte reversed wait status; we must use the
684 host macros to access it. These lines just a copy of
685 store_waitstatus. We can't use CHILD_SPECIAL_WAITSTATUS
686 because target.c can't include the Lynx <sys/wait.h>. */
687 if (WIFEXITED (status))
688 {
689 ourstatus->kind = TARGET_WAITKIND_EXITED;
690 ourstatus->value.integer = WEXITSTATUS (status);
691 }
692 else if (!WIFSTOPPED (status))
693 {
694 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
695 ourstatus->value.sig =
696 target_signal_from_host (WTERMSIG (status));
697 }
698 else
699 {
700 ourstatus->kind = TARGET_WAITKIND_STOPPED;
701 ourstatus->value.sig =
702 target_signal_from_host (WSTOPSIG (status));
703 }
704 #else
705 store_waitstatus (ourstatus, status.w_status);
706 #endif
707
708 return ptid;
709 }
710 }
711
712 /* Return nonzero if the given thread is still alive. */
713 int
714 child_thread_alive (ptid_t ptid)
715 {
716 int pid = PIDGET (ptid);
717
718 /* Arggh. Apparently pthread_kill only works for threads within
719 the process that calls pthread_kill.
720
721 We want to avoid the lynx signal extensions as they simply don't
722 map well to the generic gdb interface we want to keep.
723
724 All we want to do is determine if a particular thread is alive;
725 it appears as if we can just make a harmless thread specific
726 ptrace call to do that. */
727 return (ptrace (PTRACE_THREADUSER, pid, 0, 0) != -1);
728 }
729
730 /* Resume execution of the inferior process.
731 If STEP is nonzero, single-step it.
732 If SIGNAL is nonzero, give it that signal. */
733
734 void
735 child_resume (ptid_t ptid, int step, enum target_signal signal)
736 {
737 int func;
738 int pid = PIDGET (ptid);
739
740 errno = 0;
741
742 /* If pid == -1, then we want to step/continue all threads, else
743 we only want to step/continue a single thread. */
744 if (pid == -1)
745 {
746 pid = PIDGET (inferior_ptid);
747 func = step ? PTRACE_SINGLESTEP : PTRACE_CONT;
748 }
749 else
750 func = step ? PTRACE_SINGLESTEP_ONE : PTRACE_CONT_ONE;
751
752
753 /* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
754 it was. (If GDB wanted it to start some other way, we have already
755 written a new PC value to the child.)
756
757 If this system does not support PT_STEP, a higher level function will
758 have called single_step() to transmute the step request into a
759 continue request (by setting breakpoints on all possible successor
760 instructions), so we don't have to worry about that here. */
761
762 ptrace (func, pid, (PTRACE_ARG3_TYPE) 1, target_signal_to_host (signal));
763
764 if (errno)
765 perror_with_name ("ptrace");
766 }
767
768 /* Convert a Lynx process ID to a string. Returns the string in a static
769 buffer. */
770
771 char *
772 child_pid_to_str (ptid_t ptid)
773 {
774 static char buf[40];
775
776 sprintf (buf, "process %d thread %d", PIDGET (ptid), TIDGET (ptid));
777
778 return buf;
779 }
780
781 /* Extract the register values out of the core file and store
782 them where `read_register' will find them.
783
784 CORE_REG_SECT points to the register values themselves, read into memory.
785 CORE_REG_SIZE is the size of that area.
786 WHICH says which set of registers we are handling (0 = int, 2 = float
787 on machines where they are discontiguous).
788 REG_ADDR is the offset from u.u_ar0 to the register values relative to
789 core_reg_sect. This is used with old-fashioned core files to
790 locate the registers in a large upage-plus-stack ".reg" section.
791 Original upage address X is at location core_reg_sect+x+reg_addr.
792 */
793
794 static void
795 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size, int which,
796 CORE_ADDR reg_addr)
797 {
798 struct st_entry s;
799 unsigned int regno;
800
801 for (regno = 0; regno < NUM_REGS; regno++)
802 if (regmap[regno] != -1)
803 supply_register (regno, core_reg_sect + offsetof (st_t, ec)
804 + regmap[regno]);
805
806 #ifdef SPARC
807 /* Fetching this register causes all of the I & L regs to be read from the
808 stack and validated. */
809
810 fetch_inferior_registers (I0_REGNUM);
811 #endif
812 }
813 \f
814
815 /* Register that we are able to handle lynx core file formats.
816 FIXME: is this really bfd_target_unknown_flavour? */
817
818 static struct core_fns lynx_core_fns =
819 {
820 bfd_target_unknown_flavour, /* core_flavour */
821 default_check_format, /* check_format */
822 default_core_sniffer, /* core_sniffer */
823 fetch_core_registers, /* core_read_registers */
824 NULL /* next */
825 };
826
827 void
828 _initialize_core_lynx (void)
829 {
830 add_core_fns (&lynx_core_fns);
831 }