gdb/testsuite: some additional tests in gdb.tui/scroll.exp
[binutils-gdb.git] / gdb / m32c-tdep.c
1 /* Renesas M32C target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 2004-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdb/sim-m32c.h"
22 #include "gdbtypes.h"
23 #include "regcache.h"
24 #include "arch-utils.h"
25 #include "frame.h"
26 #include "frame-unwind.h"
27 #include "symtab.h"
28 #include "gdbcore.h"
29 #include "value.h"
30 #include "reggroups.h"
31 #include "prologue-value.h"
32 #include "objfiles.h"
33 #include "gdbarch.h"
34
35 \f
36 /* The m32c tdep structure. */
37
38 static struct reggroup *m32c_dma_reggroup;
39
40 /* The type of a function that moves the value of REG between CACHE or
41 BUF --- in either direction. */
42 typedef enum register_status (m32c_write_reg_t) (struct m32c_reg *reg,
43 struct regcache *cache,
44 const gdb_byte *buf);
45
46 typedef enum register_status (m32c_read_reg_t) (struct m32c_reg *reg,
47 readable_regcache *cache,
48 gdb_byte *buf);
49
50 struct m32c_reg
51 {
52 /* The name of this register. */
53 const char *name;
54
55 /* Its type. */
56 struct type *type;
57
58 /* The architecture this register belongs to. */
59 struct gdbarch *arch;
60
61 /* Its GDB register number. */
62 int num;
63
64 /* Its sim register number. */
65 int sim_num;
66
67 /* Its DWARF register number, or -1 if it doesn't have one. */
68 int dwarf_num;
69
70 /* Register group memberships. */
71 unsigned int general_p : 1;
72 unsigned int dma_p : 1;
73 unsigned int system_p : 1;
74 unsigned int save_restore_p : 1;
75
76 /* Functions to read its value from a regcache, and write its value
77 to a regcache. */
78 m32c_read_reg_t *read;
79 m32c_write_reg_t *write;
80
81 /* Data for READ and WRITE functions. The exact meaning depends on
82 the specific functions selected; see the comments for those
83 functions. */
84 struct m32c_reg *rx, *ry;
85 int n;
86 };
87
88
89 /* An overestimate of the number of raw and pseudoregisters we will
90 have. The exact answer depends on the variant of the architecture
91 at hand, but we can use this to declare statically allocated
92 arrays, and bump it up when needed. */
93 #define M32C_MAX_NUM_REGS (75)
94
95 /* The largest assigned DWARF register number. */
96 #define M32C_MAX_DWARF_REGNUM (40)
97
98
99 struct m32c_gdbarch_tdep : gdbarch_tdep
100 {
101 /* All the registers for this variant, indexed by GDB register
102 number, and the number of registers present. */
103 struct m32c_reg regs[M32C_MAX_NUM_REGS] {};
104
105 /* The number of valid registers. */
106 int num_regs = 0;
107
108 /* Interesting registers. These are pointers into REGS. */
109 struct m32c_reg *pc = nullptr, *flg = nullptr;
110 struct m32c_reg *r0 = nullptr, *r1 = nullptr, *r2 = nullptr, *r3 = nullptr,
111 *a0 = nullptr, *a1 = nullptr;
112 struct m32c_reg *r2r0 = nullptr, *r3r2r1r0 = nullptr, *r3r1r2r0 = nullptr;
113 struct m32c_reg *sb = nullptr, *fb = nullptr, *sp = nullptr;
114
115 /* A table indexed by DWARF register numbers, pointing into
116 REGS. */
117 struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1] {};
118
119 /* Types for this architecture. We can't use the builtin_type_foo
120 types, because they're not initialized when building a gdbarch
121 structure. */
122 struct type *voyd = nullptr, *ptr_voyd = nullptr, *func_voyd = nullptr;
123 struct type *uint8 = nullptr, *uint16 = nullptr;
124 struct type *int8 = nullptr, *int16 = nullptr, *int32 = nullptr,
125 *int64 = nullptr;
126
127 /* The types for data address and code address registers. */
128 struct type *data_addr_reg_type = nullptr, *code_addr_reg_type = nullptr;
129
130 /* The number of bytes a return address pushed by a 'jsr' instruction
131 occupies on the stack. */
132 int ret_addr_bytes = 0;
133
134 /* The number of bytes an address register occupies on the stack
135 when saved by an 'enter' or 'pushm' instruction. */
136 int push_addr_bytes = 0;
137 };
138
139 \f
140 /* Types. */
141
142 static void
143 make_types (struct gdbarch *arch)
144 {
145 m32c_gdbarch_tdep *tdep = (m32c_gdbarch_tdep *) gdbarch_tdep (arch);
146 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
147 int data_addr_reg_bits, code_addr_reg_bits;
148 char type_name[50];
149
150 #if 0
151 /* This is used to clip CORE_ADDR values, so this value is
152 appropriate both on the m32c, where pointers are 32 bits long,
153 and on the m16c, where pointers are sixteen bits long, but there
154 may be code above the 64k boundary. */
155 set_gdbarch_addr_bit (arch, 24);
156 #else
157 /* GCC uses 32 bits for addrs in the dwarf info, even though
158 only 16/24 bits are used. Setting addr_bit to 24 causes
159 errors in reading the dwarf addresses. */
160 set_gdbarch_addr_bit (arch, 32);
161 #endif
162
163 set_gdbarch_int_bit (arch, 16);
164 switch (mach)
165 {
166 case bfd_mach_m16c:
167 data_addr_reg_bits = 16;
168 code_addr_reg_bits = 24;
169 set_gdbarch_ptr_bit (arch, 16);
170 tdep->ret_addr_bytes = 3;
171 tdep->push_addr_bytes = 2;
172 break;
173
174 case bfd_mach_m32c:
175 data_addr_reg_bits = 24;
176 code_addr_reg_bits = 24;
177 set_gdbarch_ptr_bit (arch, 32);
178 tdep->ret_addr_bytes = 4;
179 tdep->push_addr_bytes = 4;
180 break;
181
182 default:
183 gdb_assert_not_reached ("unexpected mach");
184 }
185
186 /* The builtin_type_mumble variables are sometimes uninitialized when
187 this is called, so we avoid using them. */
188 tdep->voyd = arch_type (arch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
189 tdep->ptr_voyd
190 = arch_pointer_type (arch, gdbarch_ptr_bit (arch), NULL, tdep->voyd);
191 tdep->func_voyd = lookup_function_type (tdep->voyd);
192
193 xsnprintf (type_name, sizeof (type_name), "%s_data_addr_t",
194 gdbarch_bfd_arch_info (arch)->printable_name);
195 tdep->data_addr_reg_type
196 = arch_pointer_type (arch, data_addr_reg_bits, type_name, tdep->voyd);
197
198 xsnprintf (type_name, sizeof (type_name), "%s_code_addr_t",
199 gdbarch_bfd_arch_info (arch)->printable_name);
200 tdep->code_addr_reg_type
201 = arch_pointer_type (arch, code_addr_reg_bits, type_name, tdep->func_voyd);
202
203 tdep->uint8 = arch_integer_type (arch, 8, 1, "uint8_t");
204 tdep->uint16 = arch_integer_type (arch, 16, 1, "uint16_t");
205 tdep->int8 = arch_integer_type (arch, 8, 0, "int8_t");
206 tdep->int16 = arch_integer_type (arch, 16, 0, "int16_t");
207 tdep->int32 = arch_integer_type (arch, 32, 0, "int32_t");
208 tdep->int64 = arch_integer_type (arch, 64, 0, "int64_t");
209 }
210
211
212 \f
213 /* Register set. */
214
215 static const char *
216 m32c_register_name (struct gdbarch *gdbarch, int num)
217 {
218 m32c_gdbarch_tdep *tdep = (m32c_gdbarch_tdep *) gdbarch_tdep (gdbarch);
219 return tdep->regs[num].name;
220 }
221
222
223 static struct type *
224 m32c_register_type (struct gdbarch *arch, int reg_nr)
225 {
226 m32c_gdbarch_tdep *tdep = (m32c_gdbarch_tdep *) gdbarch_tdep (arch);
227 return tdep->regs[reg_nr].type;
228 }
229
230
231 static int
232 m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr)
233 {
234 m32c_gdbarch_tdep *tdep = (m32c_gdbarch_tdep *) gdbarch_tdep (gdbarch);
235 return tdep->regs[reg_nr].sim_num;
236 }
237
238
239 static int
240 m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr)
241 {
242 m32c_gdbarch_tdep *tdep = (m32c_gdbarch_tdep *) gdbarch_tdep (gdbarch);
243 if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
244 && tdep->dwarf_regs[reg_nr])
245 return tdep->dwarf_regs[reg_nr]->num;
246 else
247 /* The DWARF CFI code expects to see -1 for invalid register
248 numbers. */
249 return -1;
250 }
251
252
253 static int
254 m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
255 struct reggroup *group)
256 {
257 m32c_gdbarch_tdep *tdep = (m32c_gdbarch_tdep *) gdbarch_tdep (gdbarch);
258 struct m32c_reg *reg = &tdep->regs[regnum];
259
260 /* The anonymous raw registers aren't in any groups. */
261 if (! reg->name)
262 return 0;
263
264 if (group == all_reggroup)
265 return 1;
266
267 if (group == general_reggroup
268 && reg->general_p)
269 return 1;
270
271 if (group == m32c_dma_reggroup
272 && reg->dma_p)
273 return 1;
274
275 if (group == system_reggroup
276 && reg->system_p)
277 return 1;
278
279 /* Since the m32c DWARF register numbers refer to cooked registers, not
280 raw registers, and frame_pop depends on the save and restore groups
281 containing registers the DWARF CFI will actually mention, our save
282 and restore groups are cooked registers, not raw registers. (This is
283 why we can't use the default reggroup function.) */
284 if ((group == save_reggroup
285 || group == restore_reggroup)
286 && reg->save_restore_p)
287 return 1;
288
289 return 0;
290 }
291
292
293 /* Register move functions. We declare them here using
294 m32c_{read,write}_reg_t to check the types. */
295 static m32c_read_reg_t m32c_raw_read;
296 static m32c_read_reg_t m32c_banked_read;
297 static m32c_read_reg_t m32c_sb_read;
298 static m32c_read_reg_t m32c_part_read;
299 static m32c_read_reg_t m32c_cat_read;
300 static m32c_read_reg_t m32c_r3r2r1r0_read;
301
302 static m32c_write_reg_t m32c_raw_write;
303 static m32c_write_reg_t m32c_banked_write;
304 static m32c_write_reg_t m32c_sb_write;
305 static m32c_write_reg_t m32c_part_write;
306 static m32c_write_reg_t m32c_cat_write;
307 static m32c_write_reg_t m32c_r3r2r1r0_write;
308
309 /* Copy the value of the raw register REG from CACHE to BUF. */
310 static enum register_status
311 m32c_raw_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
312 {
313 return cache->raw_read (reg->num, buf);
314 }
315
316
317 /* Copy the value of the raw register REG from BUF to CACHE. */
318 static enum register_status
319 m32c_raw_write (struct m32c_reg *reg, struct regcache *cache,
320 const gdb_byte *buf)
321 {
322 cache->raw_write (reg->num, buf);
323
324 return REG_VALID;
325 }
326
327
328 /* Return the value of the 'flg' register in CACHE. */
329 static int
330 m32c_read_flg (readable_regcache *cache)
331 {
332 gdbarch *arch = cache->arch ();
333 m32c_gdbarch_tdep *tdep = (m32c_gdbarch_tdep *) gdbarch_tdep (arch);
334 ULONGEST flg;
335
336 cache->raw_read (tdep->flg->num, &flg);
337 return flg & 0xffff;
338 }
339
340
341 /* Evaluate the real register number of a banked register. */
342 static struct m32c_reg *
343 m32c_banked_register (struct m32c_reg *reg, readable_regcache *cache)
344 {
345 return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
346 }
347
348
349 /* Move the value of a banked register from CACHE to BUF.
350 If the value of the 'flg' register in CACHE has any of the bits
351 masked in REG->n set, then read REG->ry. Otherwise, read
352 REG->rx. */
353 static enum register_status
354 m32c_banked_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
355 {
356 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
357 return cache->raw_read (bank_reg->num, buf);
358 }
359
360
361 /* Move the value of a banked register from BUF to CACHE.
362 If the value of the 'flg' register in CACHE has any of the bits
363 masked in REG->n set, then write REG->ry. Otherwise, write
364 REG->rx. */
365 static enum register_status
366 m32c_banked_write (struct m32c_reg *reg, struct regcache *cache,
367 const gdb_byte *buf)
368 {
369 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
370 cache->raw_write (bank_reg->num, buf);
371
372 return REG_VALID;
373 }
374
375
376 /* Move the value of SB from CACHE to BUF. On bfd_mach_m32c, SB is a
377 banked register; on bfd_mach_m16c, it's not. */
378 static enum register_status
379 m32c_sb_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
380 {
381 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
382 return m32c_raw_read (reg->rx, cache, buf);
383 else
384 return m32c_banked_read (reg, cache, buf);
385 }
386
387
388 /* Move the value of SB from BUF to CACHE. On bfd_mach_m32c, SB is a
389 banked register; on bfd_mach_m16c, it's not. */
390 static enum register_status
391 m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, const gdb_byte *buf)
392 {
393 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
394 m32c_raw_write (reg->rx, cache, buf);
395 else
396 m32c_banked_write (reg, cache, buf);
397
398 return REG_VALID;
399 }
400
401
402 /* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
403 and *LEN_P to the offset and length, in bytes, of the part REG
404 occupies in its underlying register. The offset is from the
405 lower-addressed end, regardless of the architecture's endianness.
406 (The M32C family is always little-endian, but let's keep those
407 assumptions out of here.) */
408 static void
409 m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
410 {
411 /* The length of the containing register, of which REG is one part. */
412 int containing_len = TYPE_LENGTH (reg->rx->type);
413
414 /* The length of one "element" in our imaginary array. */
415 int elt_len = TYPE_LENGTH (reg->type);
416
417 /* The offset of REG's "element" from the least significant end of
418 the containing register. */
419 int elt_offset = reg->n * elt_len;
420
421 /* If we extend off the end, trim the length of the element. */
422 if (elt_offset + elt_len > containing_len)
423 {
424 elt_len = containing_len - elt_offset;
425 /* We shouldn't be declaring partial registers that go off the
426 end of their containing registers. */
427 gdb_assert (elt_len > 0);
428 }
429
430 /* Flip the offset around if we're big-endian. */
431 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
432 elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;
433
434 *offset_p = elt_offset;
435 *len_p = elt_len;
436 }
437
438
439 /* Move the value of a partial register (r0h, intbl, etc.) from CACHE
440 to BUF. Treating the value of the register REG->rx as an array of
441 REG->type values, where higher indices refer to more significant
442 bits, read the value of the REG->n'th element. */
443 static enum register_status
444 m32c_part_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
445 {
446 int offset, len;
447
448 memset (buf, 0, TYPE_LENGTH (reg->type));
449 m32c_find_part (reg, &offset, &len);
450 return cache->cooked_read_part (reg->rx->num, offset, len, buf);
451 }
452
453
454 /* Move the value of a banked register from BUF to CACHE.
455 Treating the value of the register REG->rx as an array of REG->type
456 values, where higher indices refer to more significant bits, write
457 the value of the REG->n'th element. */
458 static enum register_status
459 m32c_part_write (struct m32c_reg *reg, struct regcache *cache,
460 const gdb_byte *buf)
461 {
462 int offset, len;
463
464 m32c_find_part (reg, &offset, &len);
465 cache->cooked_write_part (reg->rx->num, offset, len, buf);
466
467 return REG_VALID;
468 }
469
470
471 /* Move the value of REG from CACHE to BUF. REG's value is the
472 concatenation of the values of the registers REG->rx and REG->ry,
473 with REG->rx contributing the more significant bits. */
474 static enum register_status
475 m32c_cat_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
476 {
477 int high_bytes = TYPE_LENGTH (reg->rx->type);
478 int low_bytes = TYPE_LENGTH (reg->ry->type);
479 enum register_status status;
480
481 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
482
483 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
484 {
485 status = cache->cooked_read (reg->rx->num, buf);
486 if (status == REG_VALID)
487 status = cache->cooked_read (reg->ry->num, buf + high_bytes);
488 }
489 else
490 {
491 status = cache->cooked_read (reg->rx->num, buf + low_bytes);
492 if (status == REG_VALID)
493 status = cache->cooked_read (reg->ry->num, buf);
494 }
495 return status;
496 }
497
498
499 /* Move the value of REG from CACHE to BUF. REG's value is the
500 concatenation of the values of the registers REG->rx and REG->ry,
501 with REG->rx contributing the more significant bits. */
502 static enum register_status
503 m32c_cat_write (struct m32c_reg *reg, struct regcache *cache,
504 const gdb_byte *buf)
505 {
506 int high_bytes = TYPE_LENGTH (reg->rx->type);
507 int low_bytes = TYPE_LENGTH (reg->ry->type);
508
509 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
510
511 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
512 {
513 cache->cooked_write (reg->rx->num, buf);
514 cache->cooked_write (reg->ry->num, buf + high_bytes);
515 }
516 else
517 {
518 cache->cooked_write (reg->rx->num, buf + low_bytes);
519 cache->cooked_write (reg->ry->num, buf);
520 }
521
522 return REG_VALID;
523 }
524
525
526 /* Copy the value of the raw register REG from CACHE to BUF. REG is
527 the concatenation (from most significant to least) of r3, r2, r1,
528 and r0. */
529 static enum register_status
530 m32c_r3r2r1r0_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
531 {
532 gdbarch *arch = reg->arch;
533 m32c_gdbarch_tdep *tdep = (m32c_gdbarch_tdep *) gdbarch_tdep (arch);
534 int len = TYPE_LENGTH (tdep->r0->type);
535 enum register_status status;
536
537 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
538 {
539 status = cache->cooked_read (tdep->r0->num, buf + len * 3);
540 if (status == REG_VALID)
541 status = cache->cooked_read (tdep->r1->num, buf + len * 2);
542 if (status == REG_VALID)
543 status = cache->cooked_read (tdep->r2->num, buf + len * 1);
544 if (status == REG_VALID)
545 status = cache->cooked_read (tdep->r3->num, buf);
546 }
547 else
548 {
549 status = cache->cooked_read (tdep->r0->num, buf);
550 if (status == REG_VALID)
551 status = cache->cooked_read (tdep->r1->num, buf + len * 1);
552 if (status == REG_VALID)
553 status = cache->cooked_read (tdep->r2->num, buf + len * 2);
554 if (status == REG_VALID)
555 status = cache->cooked_read (tdep->r3->num, buf + len * 3);
556 }
557
558 return status;
559 }
560
561
562 /* Copy the value of the raw register REG from BUF to CACHE. REG is
563 the concatenation (from most significant to least) of r3, r2, r1,
564 and r0. */
565 static enum register_status
566 m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache,
567 const gdb_byte *buf)
568 {
569 gdbarch *arch = reg->arch;
570 m32c_gdbarch_tdep *tdep = (m32c_gdbarch_tdep *) gdbarch_tdep (arch);
571 int len = TYPE_LENGTH (tdep->r0->type);
572
573 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
574 {
575 cache->cooked_write (tdep->r0->num, buf + len * 3);
576 cache->cooked_write (tdep->r1->num, buf + len * 2);
577 cache->cooked_write (tdep->r2->num, buf + len * 1);
578 cache->cooked_write (tdep->r3->num, buf);
579 }
580 else
581 {
582 cache->cooked_write (tdep->r0->num, buf);
583 cache->cooked_write (tdep->r1->num, buf + len * 1);
584 cache->cooked_write (tdep->r2->num, buf + len * 2);
585 cache->cooked_write (tdep->r3->num, buf + len * 3);
586 }
587
588 return REG_VALID;
589 }
590
591
592 static enum register_status
593 m32c_pseudo_register_read (struct gdbarch *arch,
594 readable_regcache *cache,
595 int cookednum,
596 gdb_byte *buf)
597 {
598 m32c_gdbarch_tdep *tdep = (m32c_gdbarch_tdep *) gdbarch_tdep (arch);
599 struct m32c_reg *reg;
600
601 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
602 gdb_assert (arch == cache->arch ());
603 gdb_assert (arch == tdep->regs[cookednum].arch);
604 reg = &tdep->regs[cookednum];
605
606 return reg->read (reg, cache, buf);
607 }
608
609
610 static void
611 m32c_pseudo_register_write (struct gdbarch *arch,
612 struct regcache *cache,
613 int cookednum,
614 const gdb_byte *buf)
615 {
616 m32c_gdbarch_tdep *tdep = (m32c_gdbarch_tdep *) gdbarch_tdep (arch);
617 struct m32c_reg *reg;
618
619 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
620 gdb_assert (arch == cache->arch ());
621 gdb_assert (arch == tdep->regs[cookednum].arch);
622 reg = &tdep->regs[cookednum];
623
624 reg->write (reg, cache, buf);
625 }
626
627
628 /* Add a register with the given fields to the end of ARCH's table.
629 Return a pointer to the newly added register. */
630 static struct m32c_reg *
631 add_reg (struct gdbarch *arch,
632 const char *name,
633 struct type *type,
634 int sim_num,
635 m32c_read_reg_t *read,
636 m32c_write_reg_t *write,
637 struct m32c_reg *rx,
638 struct m32c_reg *ry,
639 int n)
640 {
641 m32c_gdbarch_tdep *tdep = (m32c_gdbarch_tdep *) gdbarch_tdep (arch);
642 struct m32c_reg *r = &tdep->regs[tdep->num_regs];
643
644 gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
645
646 r->name = name;
647 r->type = type;
648 r->arch = arch;
649 r->num = tdep->num_regs;
650 r->sim_num = sim_num;
651 r->dwarf_num = -1;
652 r->general_p = 0;
653 r->dma_p = 0;
654 r->system_p = 0;
655 r->save_restore_p = 0;
656 r->read = read;
657 r->write = write;
658 r->rx = rx;
659 r->ry = ry;
660 r->n = n;
661
662 tdep->num_regs++;
663
664 return r;
665 }
666
667
668 /* Record NUM as REG's DWARF register number. */
669 static void
670 set_dwarf_regnum (struct m32c_reg *reg, int num)
671 {
672 gdb_assert (num < M32C_MAX_NUM_REGS);
673
674 /* Update the reg->DWARF mapping. Only count the first number
675 assigned to this register. */
676 if (reg->dwarf_num == -1)
677 reg->dwarf_num = num;
678
679 /* Update the DWARF->reg mapping. */
680 gdbarch *arch = reg->arch;
681 m32c_gdbarch_tdep *tdep = (m32c_gdbarch_tdep *) gdbarch_tdep (arch);
682 tdep->dwarf_regs[num] = reg;
683 }
684
685
686 /* Mark REG as a general-purpose register, and return it. */
687 static struct m32c_reg *
688 mark_general (struct m32c_reg *reg)
689 {
690 reg->general_p = 1;
691 return reg;
692 }
693
694
695 /* Mark REG as a DMA register. */
696 static void
697 mark_dma (struct m32c_reg *reg)
698 {
699 reg->dma_p = 1;
700 }
701
702
703 /* Mark REG as a SYSTEM register, and return it. */
704 static struct m32c_reg *
705 mark_system (struct m32c_reg *reg)
706 {
707 reg->system_p = 1;
708 return reg;
709 }
710
711
712 /* Mark REG as a save-restore register, and return it. */
713 static struct m32c_reg *
714 mark_save_restore (struct m32c_reg *reg)
715 {
716 reg->save_restore_p = 1;
717 return reg;
718 }
719
720
721 #define FLAGBIT_B 0x0010
722 #define FLAGBIT_U 0x0080
723
724 /* Handy macros for declaring registers. These all evaluate to
725 pointers to the register declared. Macros that define two
726 registers evaluate to a pointer to the first. */
727
728 /* A raw register named NAME, with type TYPE and sim number SIM_NUM. */
729 #define R(name, type, sim_num) \
730 (add_reg (arch, (name), (type), (sim_num), \
731 m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
732
733 /* The simulator register number for a raw register named NAME. */
734 #define SIM(name) (m32c_sim_reg_ ## name)
735
736 /* A raw unsigned 16-bit data register named NAME.
737 NAME should be an identifier, not a string. */
738 #define R16U(name) \
739 (R(#name, tdep->uint16, SIM (name)))
740
741 /* A raw data address register named NAME.
742 NAME should be an identifier, not a string. */
743 #define RA(name) \
744 (R(#name, tdep->data_addr_reg_type, SIM (name)))
745
746 /* A raw code address register named NAME. NAME should
747 be an identifier, not a string. */
748 #define RC(name) \
749 (R(#name, tdep->code_addr_reg_type, SIM (name)))
750
751 /* A pair of raw registers named NAME0 and NAME1, with type TYPE.
752 NAME should be an identifier, not a string. */
753 #define RP(name, type) \
754 (R(#name "0", (type), SIM (name ## 0)), \
755 R(#name "1", (type), SIM (name ## 1)) - 1)
756
757 /* A raw banked general-purpose data register named NAME.
758 NAME should be an identifier, not a string. */
759 #define RBD(name) \
760 (R(NULL, tdep->int16, SIM (name ## _bank0)), \
761 R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)
762
763 /* A raw banked data address register named NAME.
764 NAME should be an identifier, not a string. */
765 #define RBA(name) \
766 (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)), \
767 R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
768
769 /* A cooked register named NAME referring to a raw banked register
770 from the bank selected by the current value of FLG. RAW_PAIR
771 should be a pointer to the first register in the banked pair.
772 NAME must be an identifier, not a string. */
773 #define CB(name, raw_pair) \
774 (add_reg (arch, #name, (raw_pair)->type, 0, \
775 m32c_banked_read, m32c_banked_write, \
776 (raw_pair), (raw_pair + 1), FLAGBIT_B))
777
778 /* A pair of registers named NAMEH and NAMEL, of type TYPE, that
779 access the top and bottom halves of the register pointed to by
780 NAME. NAME should be an identifier. */
781 #define CHL(name, type) \
782 (add_reg (arch, #name "h", (type), 0, \
783 m32c_part_read, m32c_part_write, name, NULL, 1), \
784 add_reg (arch, #name "l", (type), 0, \
785 m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
786
787 /* A register constructed by concatenating the two registers HIGH and
788 LOW, whose name is HIGHLOW and whose type is TYPE. */
789 #define CCAT(high, low, type) \
790 (add_reg (arch, #high #low, (type), 0, \
791 m32c_cat_read, m32c_cat_write, (high), (low), 0))
792
793 /* Abbreviations for marking register group membership. */
794 #define G(reg) (mark_general (reg))
795 #define S(reg) (mark_system (reg))
796 #define DMA(reg) (mark_dma (reg))
797
798
799 /* Construct the register set for ARCH. */
800 static void
801 make_regs (struct gdbarch *arch)
802 {
803 m32c_gdbarch_tdep *tdep = (m32c_gdbarch_tdep *) gdbarch_tdep (arch);
804 int mach = gdbarch_bfd_arch_info (arch)->mach;
805 int num_raw_regs;
806 int num_cooked_regs;
807
808 struct m32c_reg *r0;
809 struct m32c_reg *r1;
810 struct m32c_reg *r2;
811 struct m32c_reg *r3;
812 struct m32c_reg *a0;
813 struct m32c_reg *a1;
814 struct m32c_reg *fb;
815 struct m32c_reg *sb;
816 struct m32c_reg *sp;
817 struct m32c_reg *r0hl;
818 struct m32c_reg *r1hl;
819 struct m32c_reg *r2r0;
820 struct m32c_reg *r3r1;
821 struct m32c_reg *r3r1r2r0;
822 struct m32c_reg *r3r2r1r0;
823 struct m32c_reg *a1a0;
824
825 struct m32c_reg *raw_r0_pair = RBD (r0);
826 struct m32c_reg *raw_r1_pair = RBD (r1);
827 struct m32c_reg *raw_r2_pair = RBD (r2);
828 struct m32c_reg *raw_r3_pair = RBD (r3);
829 struct m32c_reg *raw_a0_pair = RBA (a0);
830 struct m32c_reg *raw_a1_pair = RBA (a1);
831 struct m32c_reg *raw_fb_pair = RBA (fb);
832
833 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
834 We always declare both raw registers, and deal with the distinction
835 in the pseudoregister. */
836 struct m32c_reg *raw_sb_pair = RBA (sb);
837
838 struct m32c_reg *usp = S (RA (usp));
839 struct m32c_reg *isp = S (RA (isp));
840 struct m32c_reg *intb = S (RC (intb));
841 struct m32c_reg *pc = G (RC (pc));
842 struct m32c_reg *flg = G (R16U (flg));
843
844 if (mach == bfd_mach_m32c)
845 {
846 S (R16U (svf));
847 S (RC (svp));
848 S (RC (vct));
849
850 DMA (RP (dmd, tdep->uint8));
851 DMA (RP (dct, tdep->uint16));
852 DMA (RP (drc, tdep->uint16));
853 DMA (RP (dma, tdep->data_addr_reg_type));
854 DMA (RP (dsa, tdep->data_addr_reg_type));
855 DMA (RP (dra, tdep->data_addr_reg_type));
856 }
857
858 num_raw_regs = tdep->num_regs;
859
860 r0 = G (CB (r0, raw_r0_pair));
861 r1 = G (CB (r1, raw_r1_pair));
862 r2 = G (CB (r2, raw_r2_pair));
863 r3 = G (CB (r3, raw_r3_pair));
864 a0 = G (CB (a0, raw_a0_pair));
865 a1 = G (CB (a1, raw_a1_pair));
866 fb = G (CB (fb, raw_fb_pair));
867
868 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
869 Specify custom read/write functions that do the right thing. */
870 sb = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
871 m32c_sb_read, m32c_sb_write,
872 raw_sb_pair, raw_sb_pair + 1, 0));
873
874 /* The current sp is either usp or isp, depending on the value of
875 the FLG register's U bit. */
876 sp = G (add_reg (arch, "sp", usp->type, 0,
877 m32c_banked_read, m32c_banked_write,
878 isp, usp, FLAGBIT_U));
879
880 r0hl = CHL (r0, tdep->int8);
881 r1hl = CHL (r1, tdep->int8);
882 CHL (r2, tdep->int8);
883 CHL (r3, tdep->int8);
884 CHL (intb, tdep->int16);
885
886 r2r0 = CCAT (r2, r0, tdep->int32);
887 r3r1 = CCAT (r3, r1, tdep->int32);
888 r3r1r2r0 = CCAT (r3r1, r2r0, tdep->int64);
889
890 r3r2r1r0
891 = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
892 m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
893
894 if (mach == bfd_mach_m16c)
895 a1a0 = CCAT (a1, a0, tdep->int32);
896 else
897 a1a0 = NULL;
898
899 num_cooked_regs = tdep->num_regs - num_raw_regs;
900
901 tdep->pc = pc;
902 tdep->flg = flg;
903 tdep->r0 = r0;
904 tdep->r1 = r1;
905 tdep->r2 = r2;
906 tdep->r3 = r3;
907 tdep->r2r0 = r2r0;
908 tdep->r3r2r1r0 = r3r2r1r0;
909 tdep->r3r1r2r0 = r3r1r2r0;
910 tdep->a0 = a0;
911 tdep->a1 = a1;
912 tdep->sb = sb;
913 tdep->fb = fb;
914 tdep->sp = sp;
915
916 /* Set up the DWARF register table. */
917 memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
918 set_dwarf_regnum (r0hl + 1, 0x01);
919 set_dwarf_regnum (r0hl + 0, 0x02);
920 set_dwarf_regnum (r1hl + 1, 0x03);
921 set_dwarf_regnum (r1hl + 0, 0x04);
922 set_dwarf_regnum (r0, 0x05);
923 set_dwarf_regnum (r1, 0x06);
924 set_dwarf_regnum (r2, 0x07);
925 set_dwarf_regnum (r3, 0x08);
926 set_dwarf_regnum (a0, 0x09);
927 set_dwarf_regnum (a1, 0x0a);
928 set_dwarf_regnum (fb, 0x0b);
929 set_dwarf_regnum (sp, 0x0c);
930 set_dwarf_regnum (pc, 0x0d); /* GCC's invention */
931 set_dwarf_regnum (sb, 0x13);
932 set_dwarf_regnum (r2r0, 0x15);
933 set_dwarf_regnum (r3r1, 0x16);
934 if (a1a0)
935 set_dwarf_regnum (a1a0, 0x17);
936
937 /* Enumerate the save/restore register group.
938
939 The regcache_save and regcache_restore functions apply their read
940 function to each register in this group.
941
942 Since frame_pop supplies frame_unwind_register as its read
943 function, the registers meaningful to the Dwarf unwinder need to
944 be in this group.
945
946 On the other hand, when we make inferior calls, save_inferior_status
947 and restore_inferior_status use them to preserve the current register
948 values across the inferior call. For this, you'd kind of like to
949 preserve all the raw registers, to protect the interrupted code from
950 any sort of bank switching the callee might have done. But we handle
951 those cases so badly anyway --- for example, it matters whether we
952 restore FLG before or after we restore the general-purpose registers,
953 but there's no way to express that --- that it isn't worth worrying
954 about.
955
956 We omit control registers like inthl: if you call a function that
957 changes those, it's probably because you wanted that change to be
958 visible to the interrupted code. */
959 mark_save_restore (r0);
960 mark_save_restore (r1);
961 mark_save_restore (r2);
962 mark_save_restore (r3);
963 mark_save_restore (a0);
964 mark_save_restore (a1);
965 mark_save_restore (sb);
966 mark_save_restore (fb);
967 mark_save_restore (sp);
968 mark_save_restore (pc);
969 mark_save_restore (flg);
970
971 set_gdbarch_num_regs (arch, num_raw_regs);
972 set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
973 set_gdbarch_pc_regnum (arch, pc->num);
974 set_gdbarch_sp_regnum (arch, sp->num);
975 set_gdbarch_register_name (arch, m32c_register_name);
976 set_gdbarch_register_type (arch, m32c_register_type);
977 set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
978 set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
979 set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
980 set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
981 set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
982 set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
983
984 reggroup_add (arch, general_reggroup);
985 reggroup_add (arch, all_reggroup);
986 reggroup_add (arch, save_reggroup);
987 reggroup_add (arch, restore_reggroup);
988 reggroup_add (arch, system_reggroup);
989 reggroup_add (arch, m32c_dma_reggroup);
990 }
991
992
993 \f
994 /* Breakpoints. */
995 constexpr gdb_byte m32c_break_insn[] = { 0x00 }; /* brk */
996
997 typedef BP_MANIPULATION (m32c_break_insn) m32c_breakpoint;
998
999 \f
1000 /* Prologue analysis. */
1001
1002 enum m32c_prologue_kind
1003 {
1004 /* This function uses a frame pointer. */
1005 prologue_with_frame_ptr,
1006
1007 /* This function has no frame pointer. */
1008 prologue_sans_frame_ptr,
1009
1010 /* This function sets up the stack, so its frame is the first
1011 frame on the stack. */
1012 prologue_first_frame
1013 };
1014
1015 struct m32c_prologue
1016 {
1017 /* For consistency with the DWARF 2 .debug_frame info generated by
1018 GCC, a frame's CFA is the address immediately after the saved
1019 return address. */
1020
1021 /* The architecture for which we generated this prologue info. */
1022 struct gdbarch *arch;
1023
1024 enum m32c_prologue_kind kind;
1025
1026 /* If KIND is prologue_with_frame_ptr, this is the offset from the
1027 CFA to where the frame pointer points. This is always zero or
1028 negative. */
1029 LONGEST frame_ptr_offset;
1030
1031 /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
1032 the stack pointer --- always zero or negative.
1033
1034 Calling this a "size" is a bit misleading, but given that the
1035 stack grows downwards, using offsets for everything keeps one
1036 from going completely sign-crazy: you never change anything's
1037 sign for an ADD instruction; always change the second operand's
1038 sign for a SUB instruction; and everything takes care of
1039 itself.
1040
1041 Functions that use alloca don't have a constant frame size. But
1042 they always have frame pointers, so we must use that to find the
1043 CFA (and perhaps to unwind the stack pointer). */
1044 LONGEST frame_size;
1045
1046 /* The address of the first instruction at which the frame has been
1047 set up and the arguments are where the debug info says they are
1048 --- as best as we can tell. */
1049 CORE_ADDR prologue_end;
1050
1051 /* reg_offset[R] is the offset from the CFA at which register R is
1052 saved, or 1 if register R has not been saved. (Real values are
1053 always zero or negative.) */
1054 LONGEST reg_offset[M32C_MAX_NUM_REGS];
1055 };
1056
1057
1058 /* The longest I've seen, anyway. */
1059 #define M32C_MAX_INSN_LEN (9)
1060
1061 /* Processor state, for the prologue analyzer. */
1062 struct m32c_pv_state
1063 {
1064 struct gdbarch *arch;
1065 pv_t r0, r1, r2, r3;
1066 pv_t a0, a1;
1067 pv_t sb, fb, sp;
1068 pv_t pc;
1069 struct pv_area *stack;
1070
1071 /* Bytes from the current PC, the address they were read from,
1072 and the address of the next unconsumed byte. */
1073 gdb_byte insn[M32C_MAX_INSN_LEN];
1074 CORE_ADDR scan_pc, next_addr;
1075 };
1076
1077
1078 /* Push VALUE on STATE's stack, occupying SIZE bytes. Return zero if
1079 all went well, or non-zero if simulating the action would trash our
1080 state. */
1081 static int
1082 m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
1083 {
1084 if (state->stack->store_would_trash (state->sp))
1085 return 1;
1086
1087 state->sp = pv_add_constant (state->sp, -size);
1088 state->stack->store (state->sp, size, value);
1089
1090 return 0;
1091 }
1092
1093
1094 enum srcdest_kind
1095 {
1096 srcdest_reg,
1097 srcdest_partial_reg,
1098 srcdest_mem
1099 };
1100
1101 /* A source or destination location for an m16c or m32c
1102 instruction. */
1103 struct srcdest
1104 {
1105 /* If srcdest_reg, the location is a register pointed to by REG.
1106 If srcdest_partial_reg, the location is part of a register pointed
1107 to by REG. We don't try to handle this too well.
1108 If srcdest_mem, the location is memory whose address is ADDR. */
1109 enum srcdest_kind kind;
1110 pv_t *reg, addr;
1111 };
1112
1113
1114 /* Return the SIZE-byte value at LOC in STATE. */
1115 static pv_t
1116 m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
1117 {
1118 if (loc.kind == srcdest_mem)
1119 return state->stack->fetch (loc.addr, size);
1120 else if (loc.kind == srcdest_partial_reg)
1121 return pv_unknown ();
1122 else
1123 return *loc.reg;
1124 }
1125
1126
1127 /* Write VALUE, a SIZE-byte value, to LOC in STATE. Return zero if
1128 all went well, or non-zero if simulating the store would trash our
1129 state. */
1130 static int
1131 m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
1132 pv_t value, int size)
1133 {
1134 if (loc.kind == srcdest_mem)
1135 {
1136 if (state->stack->store_would_trash (loc.addr))
1137 return 1;
1138 state->stack->store (loc.addr, size, value);
1139 }
1140 else if (loc.kind == srcdest_partial_reg)
1141 *loc.reg = pv_unknown ();
1142 else
1143 *loc.reg = value;
1144
1145 return 0;
1146 }
1147
1148
1149 static int
1150 m32c_sign_ext (int v, int bits)
1151 {
1152 int mask = 1 << (bits - 1);
1153 return (v ^ mask) - mask;
1154 }
1155
1156 static unsigned int
1157 m32c_next_byte (struct m32c_pv_state *st)
1158 {
1159 gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
1160 return st->insn[st->next_addr++ - st->scan_pc];
1161 }
1162
1163 static int
1164 m32c_udisp8 (struct m32c_pv_state *st)
1165 {
1166 return m32c_next_byte (st);
1167 }
1168
1169
1170 static int
1171 m32c_sdisp8 (struct m32c_pv_state *st)
1172 {
1173 return m32c_sign_ext (m32c_next_byte (st), 8);
1174 }
1175
1176
1177 static int
1178 m32c_udisp16 (struct m32c_pv_state *st)
1179 {
1180 int low = m32c_next_byte (st);
1181 int high = m32c_next_byte (st);
1182
1183 return low + (high << 8);
1184 }
1185
1186
1187 static int
1188 m32c_sdisp16 (struct m32c_pv_state *st)
1189 {
1190 int low = m32c_next_byte (st);
1191 int high = m32c_next_byte (st);
1192
1193 return m32c_sign_ext (low + (high << 8), 16);
1194 }
1195
1196
1197 static int
1198 m32c_udisp24 (struct m32c_pv_state *st)
1199 {
1200 int low = m32c_next_byte (st);
1201 int mid = m32c_next_byte (st);
1202 int high = m32c_next_byte (st);
1203
1204 return low + (mid << 8) + (high << 16);
1205 }
1206
1207
1208 /* Extract the 'source' field from an m32c MOV.size:G-format instruction. */
1209 static int
1210 m32c_get_src23 (unsigned char *i)
1211 {
1212 return (((i[0] & 0x70) >> 2)
1213 | ((i[1] & 0x30) >> 4));
1214 }
1215
1216
1217 /* Extract the 'dest' field from an m32c MOV.size:G-format instruction. */
1218 static int
1219 m32c_get_dest23 (unsigned char *i)
1220 {
1221 return (((i[0] & 0x0e) << 1)
1222 | ((i[1] & 0xc0) >> 6));
1223 }
1224
1225
1226 static struct srcdest
1227 m32c_decode_srcdest4 (struct m32c_pv_state *st,
1228 int code, int size)
1229 {
1230 struct srcdest sd;
1231
1232 if (code < 6)
1233 sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
1234 else
1235 sd.kind = srcdest_mem;
1236
1237 sd.addr = pv_unknown ();
1238 sd.reg = 0;
1239
1240 switch (code)
1241 {
1242 case 0x0: sd.reg = &st->r0; break;
1243 case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
1244 case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
1245 case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
1246
1247 case 0x4: sd.reg = &st->a0; break;
1248 case 0x5: sd.reg = &st->a1; break;
1249
1250 case 0x6: sd.addr = st->a0; break;
1251 case 0x7: sd.addr = st->a1; break;
1252
1253 case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1254 case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1255 case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1256 case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1257
1258 case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1259 case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1260 case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1261 case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1262
1263 default:
1264 gdb_assert_not_reached ("unexpected srcdest4");
1265 }
1266
1267 return sd;
1268 }
1269
1270
1271 static struct srcdest
1272 m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
1273 {
1274 struct srcdest sd;
1275
1276 sd.addr = pv_unknown ();
1277 sd.reg = 0;
1278
1279 switch (code)
1280 {
1281 case 0x12:
1282 case 0x13:
1283 case 0x10:
1284 case 0x11:
1285 sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
1286 break;
1287
1288 case 0x02:
1289 case 0x03:
1290 sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
1291 break;
1292
1293 default:
1294 sd.kind = srcdest_mem;
1295 break;
1296
1297 }
1298
1299 switch (code)
1300 {
1301 case 0x12: sd.reg = &st->r0; break;
1302 case 0x13: sd.reg = &st->r1; break;
1303 case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
1304 case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
1305 case 0x02: sd.reg = &st->a0; break;
1306 case 0x03: sd.reg = &st->a1; break;
1307
1308 case 0x00: sd.addr = st->a0; break;
1309 case 0x01: sd.addr = st->a1; break;
1310 case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1311 case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1312 case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1313 case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1314 case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1315 case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1316 case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1317 case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
1318 case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
1319 case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
1320 case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1321 case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
1322 default:
1323 gdb_assert_not_reached ("unexpected sd23");
1324 }
1325
1326 if (ind)
1327 {
1328 sd.addr = m32c_srcdest_fetch (st, sd, 4);
1329 sd.kind = srcdest_mem;
1330 }
1331
1332 return sd;
1333 }
1334
1335
1336 /* The r16c and r32c machines have instructions with similar
1337 semantics, but completely different machine language encodings. So
1338 we break out the semantics into their own functions, and leave
1339 machine-specific decoding in m32c_analyze_prologue.
1340
1341 The following functions all expect their arguments already decoded,
1342 and they all return zero if analysis should continue past this
1343 instruction, or non-zero if analysis should stop. */
1344
1345
1346 /* Simulate an 'enter SIZE' instruction in STATE. */
1347 static int
1348 m32c_pv_enter (struct m32c_pv_state *state, int size)
1349 {
1350 /* If simulating this store would require us to forget
1351 everything we know about the stack frame in the name of
1352 accuracy, it would be better to just quit now. */
1353 if (state->stack->store_would_trash (state->sp))
1354 return 1;
1355
1356 gdbarch *arch = state->arch;
1357 m32c_gdbarch_tdep *tdep = (m32c_gdbarch_tdep *) gdbarch_tdep (arch);
1358 if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
1359 return 1;
1360
1361 state->fb = state->sp;
1362 state->sp = pv_add_constant (state->sp, -size);
1363
1364 return 0;
1365 }
1366
1367
1368 static int
1369 m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
1370 int bit, int src, int size)
1371 {
1372 if (bit & src)
1373 {
1374 if (m32c_pv_push (state, reg, size))
1375 return 1;
1376 }
1377
1378 return 0;
1379 }
1380
1381
1382 /* Simulate a 'pushm SRC' instruction in STATE. */
1383 static int
1384 m32c_pv_pushm (struct m32c_pv_state *state, int src)
1385 {
1386 gdbarch *arch = state->arch;
1387 m32c_gdbarch_tdep *tdep = (m32c_gdbarch_tdep *) gdbarch_tdep (arch);
1388
1389 /* The bits in SRC indicating which registers to save are:
1390 r0 r1 r2 r3 a0 a1 sb fb */
1391 return
1392 ( m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
1393 || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
1394 || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
1395 || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
1396 || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
1397 || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
1398 || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
1399 || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
1400 }
1401
1402 /* Return non-zero if VALUE is the first incoming argument register. */
1403
1404 static int
1405 m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
1406 {
1407 gdbarch *arch = state->arch;
1408 m32c_gdbarch_tdep *tdep = (m32c_gdbarch_tdep *) gdbarch_tdep (arch);
1409
1410 return (value.kind == pvk_register
1411 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1412 ? (value.reg == tdep->r1->num)
1413 : (value.reg == tdep->r0->num))
1414 && value.k == 0);
1415 }
1416
1417 /* Return non-zero if VALUE is an incoming argument register. */
1418
1419 static int
1420 m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
1421 {
1422 gdbarch *arch = state->arch;
1423 m32c_gdbarch_tdep *tdep = (m32c_gdbarch_tdep *) gdbarch_tdep (arch);
1424
1425 return (value.kind == pvk_register
1426 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1427 ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
1428 : (value.reg == tdep->r0->num))
1429 && value.k == 0);
1430 }
1431
1432 /* Return non-zero if a store of VALUE to LOC is probably spilling an
1433 argument register to its stack slot in STATE. Such instructions
1434 should be included in the prologue, if possible.
1435
1436 The store is a spill if:
1437 - the value being stored is the original value of an argument register;
1438 - the value has not already been stored somewhere in STACK; and
1439 - LOC is a stack slot (e.g., a memory location whose address is
1440 relative to the original value of the SP). */
1441
1442 static int
1443 m32c_is_arg_spill (struct m32c_pv_state *st,
1444 struct srcdest loc,
1445 pv_t value)
1446 {
1447 gdbarch *arch = st->arch;
1448 m32c_gdbarch_tdep *tdep = (m32c_gdbarch_tdep *) gdbarch_tdep (arch);
1449
1450 return (m32c_is_arg_reg (st, value)
1451 && loc.kind == srcdest_mem
1452 && pv_is_register (loc.addr, tdep->sp->num)
1453 && ! st->stack->find_reg (st->arch, value.reg, 0));
1454 }
1455
1456 /* Return non-zero if a store of VALUE to LOC is probably
1457 copying the struct return address into an address register
1458 for immediate use. This is basically a "spill" into the
1459 address register, instead of onto the stack.
1460
1461 The prerequisites are:
1462 - value being stored is original value of the FIRST arg register;
1463 - value has not already been stored on stack; and
1464 - LOC is an address register (a0 or a1). */
1465
1466 static int
1467 m32c_is_struct_return (struct m32c_pv_state *st,
1468 struct srcdest loc,
1469 pv_t value)
1470 {
1471 gdbarch *arch = st->arch;
1472 m32c_gdbarch_tdep *tdep = (m32c_gdbarch_tdep *) gdbarch_tdep (arch);
1473
1474 return (m32c_is_1st_arg_reg (st, value)
1475 && !st->stack->find_reg (st->arch, value.reg, 0)
1476 && loc.kind == srcdest_reg
1477 && (pv_is_register (*loc.reg, tdep->a0->num)
1478 || pv_is_register (*loc.reg, tdep->a1->num)));
1479 }
1480
1481 /* Return non-zero if a 'pushm' saving the registers indicated by SRC
1482 was a register save:
1483 - all the named registers should have their original values, and
1484 - the stack pointer should be at a constant offset from the
1485 original stack pointer. */
1486 static int
1487 m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
1488 {
1489 gdbarch *arch = st->arch;
1490 m32c_gdbarch_tdep *tdep = (m32c_gdbarch_tdep *) gdbarch_tdep (arch);
1491
1492 /* The bits in SRC indicating which registers to save are:
1493 r0 r1 r2 r3 a0 a1 sb fb */
1494 return
1495 (pv_is_register (st->sp, tdep->sp->num)
1496 && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
1497 && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
1498 && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
1499 && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
1500 && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
1501 && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
1502 && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
1503 && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
1504 }
1505
1506
1507 /* Function for finding saved registers in a 'struct pv_area'; we pass
1508 this to pv_area::scan.
1509
1510 If VALUE is a saved register, ADDR says it was saved at a constant
1511 offset from the frame base, and SIZE indicates that the whole
1512 register was saved, record its offset in RESULT_UNTYPED. */
1513 static void
1514 check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1515 {
1516 struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
1517 struct gdbarch *arch = prologue->arch;
1518 m32c_gdbarch_tdep *tdep = (m32c_gdbarch_tdep *) gdbarch_tdep (arch);
1519
1520 /* Is this the unchanged value of some register being saved on the
1521 stack? */
1522 if (value.kind == pvk_register
1523 && value.k == 0
1524 && pv_is_register (addr, tdep->sp->num))
1525 {
1526 /* Some registers require special handling: they're saved as a
1527 larger value than the register itself. */
1528 CORE_ADDR saved_size = register_size (arch, value.reg);
1529
1530 if (value.reg == tdep->pc->num)
1531 saved_size = tdep->ret_addr_bytes;
1532 else if (register_type (arch, value.reg)
1533 == tdep->data_addr_reg_type)
1534 saved_size = tdep->push_addr_bytes;
1535
1536 if (size == saved_size)
1537 {
1538 /* Find which end of the saved value corresponds to our
1539 register. */
1540 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
1541 prologue->reg_offset[value.reg]
1542 = (addr.k + saved_size - register_size (arch, value.reg));
1543 else
1544 prologue->reg_offset[value.reg] = addr.k;
1545 }
1546 }
1547 }
1548
1549
1550 /* Analyze the function prologue for ARCH at START, going no further
1551 than LIMIT, and place a description of what we found in
1552 PROLOGUE. */
1553 static void
1554 m32c_analyze_prologue (struct gdbarch *arch,
1555 CORE_ADDR start, CORE_ADDR limit,
1556 struct m32c_prologue *prologue)
1557 {
1558 m32c_gdbarch_tdep *tdep = (m32c_gdbarch_tdep *) gdbarch_tdep (arch);
1559 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
1560 CORE_ADDR after_last_frame_related_insn;
1561 struct m32c_pv_state st;
1562
1563 st.arch = arch;
1564 st.r0 = pv_register (tdep->r0->num, 0);
1565 st.r1 = pv_register (tdep->r1->num, 0);
1566 st.r2 = pv_register (tdep->r2->num, 0);
1567 st.r3 = pv_register (tdep->r3->num, 0);
1568 st.a0 = pv_register (tdep->a0->num, 0);
1569 st.a1 = pv_register (tdep->a1->num, 0);
1570 st.sb = pv_register (tdep->sb->num, 0);
1571 st.fb = pv_register (tdep->fb->num, 0);
1572 st.sp = pv_register (tdep->sp->num, 0);
1573 st.pc = pv_register (tdep->pc->num, 0);
1574 pv_area stack (tdep->sp->num, gdbarch_addr_bit (arch));
1575 st.stack = &stack;
1576
1577 /* Record that the call instruction has saved the return address on
1578 the stack. */
1579 m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
1580
1581 memset (prologue, 0, sizeof (*prologue));
1582 prologue->arch = arch;
1583 {
1584 int i;
1585 for (i = 0; i < M32C_MAX_NUM_REGS; i++)
1586 prologue->reg_offset[i] = 1;
1587 }
1588
1589 st.scan_pc = after_last_frame_related_insn = start;
1590
1591 while (st.scan_pc < limit)
1592 {
1593 pv_t pre_insn_fb = st.fb;
1594 pv_t pre_insn_sp = st.sp;
1595
1596 /* In theory we could get in trouble by trying to read ahead
1597 here, when we only know we're expecting one byte. In
1598 practice I doubt anyone will care, and it makes the rest of
1599 the code easier. */
1600 if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
1601 /* If we can't fetch the instruction from memory, stop here
1602 and hope for the best. */
1603 break;
1604 st.next_addr = st.scan_pc;
1605
1606 /* The assembly instructions are written as they appear in the
1607 section of the processor manuals that describe the
1608 instruction encodings.
1609
1610 When a single assembly language instruction has several
1611 different machine-language encodings, the manual
1612 distinguishes them by a number in parens, before the
1613 mnemonic. Those numbers are included, as well.
1614
1615 The srcdest decoding instructions have the same names as the
1616 analogous functions in the simulator. */
1617 if (mach == bfd_mach_m16c)
1618 {
1619 /* (1) ENTER #imm8 */
1620 if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
1621 {
1622 if (m32c_pv_enter (&st, st.insn[2]))
1623 break;
1624 st.next_addr += 3;
1625 }
1626 /* (1) PUSHM src */
1627 else if (st.insn[0] == 0xec)
1628 {
1629 int src = st.insn[1];
1630 if (m32c_pv_pushm (&st, src))
1631 break;
1632 st.next_addr += 2;
1633
1634 if (m32c_pushm_is_reg_save (&st, src))
1635 after_last_frame_related_insn = st.next_addr;
1636 }
1637
1638 /* (6) MOV.size:G src, dest */
1639 else if ((st.insn[0] & 0xfe) == 0x72)
1640 {
1641 int size = (st.insn[0] & 0x01) ? 2 : 1;
1642 struct srcdest src;
1643 struct srcdest dest;
1644 pv_t src_value;
1645 st.next_addr += 2;
1646
1647 src
1648 = m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
1649 dest
1650 = m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
1651 src_value = m32c_srcdest_fetch (&st, src, size);
1652
1653 if (m32c_is_arg_spill (&st, dest, src_value))
1654 after_last_frame_related_insn = st.next_addr;
1655 else if (m32c_is_struct_return (&st, dest, src_value))
1656 after_last_frame_related_insn = st.next_addr;
1657
1658 if (m32c_srcdest_store (&st, dest, src_value, size))
1659 break;
1660 }
1661
1662 /* (1) LDC #IMM16, sp */
1663 else if (st.insn[0] == 0xeb
1664 && st.insn[1] == 0x50)
1665 {
1666 st.next_addr += 2;
1667 st.sp = pv_constant (m32c_udisp16 (&st));
1668 }
1669
1670 else
1671 /* We've hit some instruction we don't know how to simulate.
1672 Strictly speaking, we should set every value we're
1673 tracking to "unknown". But we'll be optimistic, assume
1674 that we have enough information already, and stop
1675 analysis here. */
1676 break;
1677 }
1678 else
1679 {
1680 int src_indirect = 0;
1681 int dest_indirect = 0;
1682 int i = 0;
1683
1684 gdb_assert (mach == bfd_mach_m32c);
1685
1686 /* Check for prefix bytes indicating indirect addressing. */
1687 if (st.insn[0] == 0x41)
1688 {
1689 src_indirect = 1;
1690 i++;
1691 }
1692 else if (st.insn[0] == 0x09)
1693 {
1694 dest_indirect = 1;
1695 i++;
1696 }
1697 else if (st.insn[0] == 0x49)
1698 {
1699 src_indirect = dest_indirect = 1;
1700 i++;
1701 }
1702
1703 /* (1) ENTER #imm8 */
1704 if (st.insn[i] == 0xec)
1705 {
1706 if (m32c_pv_enter (&st, st.insn[i + 1]))
1707 break;
1708 st.next_addr += 2;
1709 }
1710
1711 /* (1) PUSHM src */
1712 else if (st.insn[i] == 0x8f)
1713 {
1714 int src = st.insn[i + 1];
1715 if (m32c_pv_pushm (&st, src))
1716 break;
1717 st.next_addr += 2;
1718
1719 if (m32c_pushm_is_reg_save (&st, src))
1720 after_last_frame_related_insn = st.next_addr;
1721 }
1722
1723 /* (7) MOV.size:G src, dest */
1724 else if ((st.insn[i] & 0x80) == 0x80
1725 && (st.insn[i + 1] & 0x0f) == 0x0b
1726 && m32c_get_src23 (&st.insn[i]) < 20
1727 && m32c_get_dest23 (&st.insn[i]) < 20)
1728 {
1729 struct srcdest src;
1730 struct srcdest dest;
1731 pv_t src_value;
1732 int bw = st.insn[i] & 0x01;
1733 int size = bw ? 2 : 1;
1734 st.next_addr += 2;
1735
1736 src
1737 = m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
1738 size, src_indirect);
1739 dest
1740 = m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
1741 size, dest_indirect);
1742 src_value = m32c_srcdest_fetch (&st, src, size);
1743
1744 if (m32c_is_arg_spill (&st, dest, src_value))
1745 after_last_frame_related_insn = st.next_addr;
1746
1747 if (m32c_srcdest_store (&st, dest, src_value, size))
1748 break;
1749 }
1750 /* (2) LDC #IMM24, sp */
1751 else if (st.insn[i] == 0xd5
1752 && st.insn[i + 1] == 0x29)
1753 {
1754 st.next_addr += 2;
1755 st.sp = pv_constant (m32c_udisp24 (&st));
1756 }
1757 else
1758 /* We've hit some instruction we don't know how to simulate.
1759 Strictly speaking, we should set every value we're
1760 tracking to "unknown". But we'll be optimistic, assume
1761 that we have enough information already, and stop
1762 analysis here. */
1763 break;
1764 }
1765
1766 /* If this instruction changed the FB or decreased the SP (i.e.,
1767 allocated more stack space), then this may be a good place to
1768 declare the prologue finished. However, there are some
1769 exceptions:
1770
1771 - If the instruction just changed the FB back to its original
1772 value, then that's probably a restore instruction. The
1773 prologue should definitely end before that.
1774
1775 - If the instruction increased the value of the SP (that is,
1776 shrunk the frame), then it's probably part of a frame
1777 teardown sequence, and the prologue should end before
1778 that. */
1779
1780 if (! pv_is_identical (st.fb, pre_insn_fb))
1781 {
1782 if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
1783 after_last_frame_related_insn = st.next_addr;
1784 }
1785 else if (! pv_is_identical (st.sp, pre_insn_sp))
1786 {
1787 /* The comparison of the constants looks odd, there, because
1788 .k is unsigned. All it really means is that the SP is
1789 lower than it was before the instruction. */
1790 if ( pv_is_register (pre_insn_sp, tdep->sp->num)
1791 && pv_is_register (st.sp, tdep->sp->num)
1792 && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
1793 after_last_frame_related_insn = st.next_addr;
1794 }
1795
1796 st.scan_pc = st.next_addr;
1797 }
1798
1799 /* Did we load a constant value into the stack pointer? */
1800 if (pv_is_constant (st.sp))
1801 prologue->kind = prologue_first_frame;
1802
1803 /* Alternatively, did we initialize the frame pointer? Remember
1804 that the CFA is the address after the return address. */
1805 if (pv_is_register (st.fb, tdep->sp->num))
1806 {
1807 prologue->kind = prologue_with_frame_ptr;
1808 prologue->frame_ptr_offset = st.fb.k;
1809 }
1810
1811 /* Is the frame size a known constant? Remember that frame_size is
1812 actually the offset from the CFA to the SP (i.e., a negative
1813 value). */
1814 else if (pv_is_register (st.sp, tdep->sp->num))
1815 {
1816 prologue->kind = prologue_sans_frame_ptr;
1817 prologue->frame_size = st.sp.k;
1818 }
1819
1820 /* We haven't been able to make sense of this function's frame. Treat
1821 it as the first frame. */
1822 else
1823 prologue->kind = prologue_first_frame;
1824
1825 /* Record where all the registers were saved. */
1826 st.stack->scan (check_for_saved, (void *) prologue);
1827
1828 prologue->prologue_end = after_last_frame_related_insn;
1829 }
1830
1831
1832 static CORE_ADDR
1833 m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip)
1834 {
1835 const char *name;
1836 CORE_ADDR func_addr, func_end, sal_end;
1837 struct m32c_prologue p;
1838
1839 /* Try to find the extent of the function that contains IP. */
1840 if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
1841 return ip;
1842
1843 /* Find end by prologue analysis. */
1844 m32c_analyze_prologue (gdbarch, ip, func_end, &p);
1845 /* Find end by line info. */
1846 sal_end = skip_prologue_using_sal (gdbarch, ip);
1847 /* Return whichever is lower. */
1848 if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
1849 return sal_end;
1850 else
1851 return p.prologue_end;
1852 }
1853
1854
1855 \f
1856 /* Stack unwinding. */
1857
1858 static struct m32c_prologue *
1859 m32c_analyze_frame_prologue (struct frame_info *this_frame,
1860 void **this_prologue_cache)
1861 {
1862 if (! *this_prologue_cache)
1863 {
1864 CORE_ADDR func_start = get_frame_func (this_frame);
1865 CORE_ADDR stop_addr = get_frame_pc (this_frame);
1866
1867 /* If we couldn't find any function containing the PC, then
1868 just initialize the prologue cache, but don't do anything. */
1869 if (! func_start)
1870 stop_addr = func_start;
1871
1872 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
1873 m32c_analyze_prologue (get_frame_arch (this_frame),
1874 func_start, stop_addr,
1875 (struct m32c_prologue *) *this_prologue_cache);
1876 }
1877
1878 return (struct m32c_prologue *) *this_prologue_cache;
1879 }
1880
1881
1882 static CORE_ADDR
1883 m32c_frame_base (struct frame_info *this_frame,
1884 void **this_prologue_cache)
1885 {
1886 struct m32c_prologue *p
1887 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1888 gdbarch *arch = get_frame_arch (this_frame);
1889 m32c_gdbarch_tdep *tdep = (m32c_gdbarch_tdep *) gdbarch_tdep (arch);
1890
1891 /* In functions that use alloca, the distance between the stack
1892 pointer and the frame base varies dynamically, so we can't use
1893 the SP plus static information like prologue analysis to find the
1894 frame base. However, such functions must have a frame pointer,
1895 to be able to restore the SP on exit. So whenever we do have a
1896 frame pointer, use that to find the base. */
1897 switch (p->kind)
1898 {
1899 case prologue_with_frame_ptr:
1900 {
1901 CORE_ADDR fb
1902 = get_frame_register_unsigned (this_frame, tdep->fb->num);
1903 return fb - p->frame_ptr_offset;
1904 }
1905
1906 case prologue_sans_frame_ptr:
1907 {
1908 CORE_ADDR sp
1909 = get_frame_register_unsigned (this_frame, tdep->sp->num);
1910 return sp - p->frame_size;
1911 }
1912
1913 case prologue_first_frame:
1914 return 0;
1915
1916 default:
1917 gdb_assert_not_reached ("unexpected prologue kind");
1918 }
1919 }
1920
1921
1922 static void
1923 m32c_this_id (struct frame_info *this_frame,
1924 void **this_prologue_cache,
1925 struct frame_id *this_id)
1926 {
1927 CORE_ADDR base = m32c_frame_base (this_frame, this_prologue_cache);
1928
1929 if (base)
1930 *this_id = frame_id_build (base, get_frame_func (this_frame));
1931 /* Otherwise, leave it unset, and that will terminate the backtrace. */
1932 }
1933
1934
1935 static struct value *
1936 m32c_prev_register (struct frame_info *this_frame,
1937 void **this_prologue_cache, int regnum)
1938 {
1939 gdbarch *arch = get_frame_arch (this_frame);
1940 m32c_gdbarch_tdep *tdep = (m32c_gdbarch_tdep *) gdbarch_tdep (arch);
1941 struct m32c_prologue *p
1942 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1943 CORE_ADDR frame_base = m32c_frame_base (this_frame, this_prologue_cache);
1944
1945 if (regnum == tdep->sp->num)
1946 return frame_unwind_got_constant (this_frame, regnum, frame_base);
1947
1948 /* If prologue analysis says we saved this register somewhere,
1949 return a description of the stack slot holding it. */
1950 if (p->reg_offset[regnum] != 1)
1951 return frame_unwind_got_memory (this_frame, regnum,
1952 frame_base + p->reg_offset[regnum]);
1953
1954 /* Otherwise, presume we haven't changed the value of this
1955 register, and get it from the next frame. */
1956 return frame_unwind_got_register (this_frame, regnum, regnum);
1957 }
1958
1959
1960 static const struct frame_unwind m32c_unwind = {
1961 "m32c prologue",
1962 NORMAL_FRAME,
1963 default_frame_unwind_stop_reason,
1964 m32c_this_id,
1965 m32c_prev_register,
1966 NULL,
1967 default_frame_sniffer
1968 };
1969
1970 \f
1971 /* Inferior calls. */
1972
1973 /* The calling conventions, according to GCC:
1974
1975 r8c, m16c
1976 ---------
1977 First arg may be passed in r1l or r1 if it (1) fits (QImode or
1978 HImode), (2) is named, and (3) is an integer or pointer type (no
1979 structs, floats, etc). Otherwise, it's passed on the stack.
1980
1981 Second arg may be passed in r2, same restrictions (but not QImode),
1982 even if the first arg is passed on the stack.
1983
1984 Third and further args are passed on the stack. No padding is
1985 used, stack "alignment" is 8 bits.
1986
1987 m32cm, m32c
1988 -----------
1989
1990 First arg may be passed in r0l or r0, same restrictions as above.
1991
1992 Second and further args are passed on the stack. Padding is used
1993 after QImode parameters (i.e. lower-addressed byte is the value,
1994 higher-addressed byte is the padding), stack "alignment" is 16
1995 bits. */
1996
1997
1998 /* Return true if TYPE is a type that can be passed in registers. (We
1999 ignore the size, and pay attention only to the type code;
2000 acceptable sizes depends on which register is being considered to
2001 hold it.) */
2002 static int
2003 m32c_reg_arg_type (struct type *type)
2004 {
2005 enum type_code code = type->code ();
2006
2007 return (code == TYPE_CODE_INT
2008 || code == TYPE_CODE_ENUM
2009 || code == TYPE_CODE_PTR
2010 || TYPE_IS_REFERENCE (type)
2011 || code == TYPE_CODE_BOOL
2012 || code == TYPE_CODE_CHAR);
2013 }
2014
2015
2016 static CORE_ADDR
2017 m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2018 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2019 struct value **args, CORE_ADDR sp,
2020 function_call_return_method return_method,
2021 CORE_ADDR struct_addr)
2022 {
2023 m32c_gdbarch_tdep *tdep = (m32c_gdbarch_tdep *) gdbarch_tdep (gdbarch);
2024 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2025 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2026 CORE_ADDR cfa;
2027 int i;
2028
2029 /* The number of arguments given in this function's prototype, or
2030 zero if it has a non-prototyped function type. The m32c ABI
2031 passes arguments mentioned in the prototype differently from
2032 those in the ellipsis of a varargs function, or from those passed
2033 to a non-prototyped function. */
2034 int num_prototyped_args = 0;
2035
2036 {
2037 struct type *func_type = value_type (function);
2038
2039 /* Dereference function pointer types. */
2040 if (func_type->code () == TYPE_CODE_PTR)
2041 func_type = TYPE_TARGET_TYPE (func_type);
2042
2043 gdb_assert (func_type->code () == TYPE_CODE_FUNC ||
2044 func_type->code () == TYPE_CODE_METHOD);
2045
2046 #if 0
2047 /* The ABI description in gcc/config/m32c/m32c.abi says that
2048 we need to handle prototyped and non-prototyped functions
2049 separately, but the code in GCC doesn't actually do so. */
2050 if (TYPE_PROTOTYPED (func_type))
2051 #endif
2052 num_prototyped_args = func_type->num_fields ();
2053 }
2054
2055 /* First, if the function returns an aggregate by value, push a
2056 pointer to a buffer for it. This doesn't affect the way
2057 subsequent arguments are allocated to registers. */
2058 if (return_method == return_method_struct)
2059 {
2060 int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
2061 sp -= ptr_len;
2062 write_memory_unsigned_integer (sp, ptr_len, byte_order, struct_addr);
2063 }
2064
2065 /* Push the arguments. */
2066 for (i = nargs - 1; i >= 0; i--)
2067 {
2068 struct value *arg = args[i];
2069 const gdb_byte *arg_bits = value_contents (arg).data ();
2070 struct type *arg_type = value_type (arg);
2071 ULONGEST arg_size = TYPE_LENGTH (arg_type);
2072
2073 /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)? */
2074 if (i == 0
2075 && arg_size <= 2
2076 && i < num_prototyped_args
2077 && m32c_reg_arg_type (arg_type))
2078 {
2079 /* Extract and re-store as an integer as a terse way to make
2080 sure it ends up in the least significant end of r1. (GDB
2081 should avoid assuming endianness, even on uni-endian
2082 processors.) */
2083 ULONGEST u = extract_unsigned_integer (arg_bits, arg_size,
2084 byte_order);
2085 struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
2086 regcache_cooked_write_unsigned (regcache, reg->num, u);
2087 }
2088
2089 /* Can it go in r2? */
2090 else if (mach == bfd_mach_m16c
2091 && i == 1
2092 && arg_size == 2
2093 && i < num_prototyped_args
2094 && m32c_reg_arg_type (arg_type))
2095 regcache->cooked_write (tdep->r2->num, arg_bits);
2096
2097 /* Everything else goes on the stack. */
2098 else
2099 {
2100 sp -= arg_size;
2101
2102 /* Align the stack. */
2103 if (mach == bfd_mach_m32c)
2104 sp &= ~1;
2105
2106 write_memory (sp, arg_bits, arg_size);
2107 }
2108 }
2109
2110 /* This is the CFA we use to identify the dummy frame. */
2111 cfa = sp;
2112
2113 /* Push the return address. */
2114 sp -= tdep->ret_addr_bytes;
2115 write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, byte_order,
2116 bp_addr);
2117
2118 /* Update the stack pointer. */
2119 regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
2120
2121 /* We need to borrow an odd trick from the i386 target here.
2122
2123 The value we return from this function gets used as the stack
2124 address (the CFA) for the dummy frame's ID. The obvious thing is
2125 to return the new TOS. However, that points at the return
2126 address, saved on the stack, which is inconsistent with the CFA's
2127 described by GCC's DWARF 2 .debug_frame information: DWARF 2
2128 .debug_frame info uses the address immediately after the saved
2129 return address. So you end up with a dummy frame whose CFA
2130 points at the return address, but the frame for the function
2131 being called has a CFA pointing after the return address: the
2132 younger CFA is *greater than* the older CFA. The sanity checks
2133 in frame.c don't like that.
2134
2135 So we try to be consistent with the CFA's used by DWARF 2.
2136 Having a dummy frame and a real frame with the *same* CFA is
2137 tolerable. */
2138 return cfa;
2139 }
2140
2141
2142 \f
2143 /* Return values. */
2144
2145 /* Return value conventions, according to GCC:
2146
2147 r8c, m16c
2148 ---------
2149
2150 QImode in r0l
2151 HImode in r0
2152 SImode in r2r0
2153 near pointer in r0
2154 far pointer in r2r0
2155
2156 Aggregate values (regardless of size) are returned by pushing a
2157 pointer to a temporary area on the stack after the args are pushed.
2158 The function fills in this area with the value. Note that this
2159 pointer on the stack does not affect how register arguments, if any,
2160 are configured.
2161
2162 m32cm, m32c
2163 -----------
2164 Same. */
2165
2166 /* Return non-zero if values of type TYPE are returned by storing them
2167 in a buffer whose address is passed on the stack, ahead of the
2168 other arguments. */
2169 static int
2170 m32c_return_by_passed_buf (struct type *type)
2171 {
2172 enum type_code code = type->code ();
2173
2174 return (code == TYPE_CODE_STRUCT
2175 || code == TYPE_CODE_UNION);
2176 }
2177
2178 static enum return_value_convention
2179 m32c_return_value (struct gdbarch *gdbarch,
2180 struct value *function,
2181 struct type *valtype,
2182 struct regcache *regcache,
2183 gdb_byte *readbuf,
2184 const gdb_byte *writebuf)
2185 {
2186 m32c_gdbarch_tdep *tdep = (m32c_gdbarch_tdep *) gdbarch_tdep (gdbarch);
2187 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2188 enum return_value_convention conv;
2189 ULONGEST valtype_len = TYPE_LENGTH (valtype);
2190
2191 if (m32c_return_by_passed_buf (valtype))
2192 conv = RETURN_VALUE_STRUCT_CONVENTION;
2193 else
2194 conv = RETURN_VALUE_REGISTER_CONVENTION;
2195
2196 if (readbuf)
2197 {
2198 /* We should never be called to find values being returned by
2199 RETURN_VALUE_STRUCT_CONVENTION. Those can't be located,
2200 unless we made the call ourselves. */
2201 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2202
2203 gdb_assert (valtype_len <= 8);
2204
2205 /* Anything that fits in r0 is returned there. */
2206 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2207 {
2208 ULONGEST u;
2209 regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
2210 store_unsigned_integer (readbuf, valtype_len, byte_order, u);
2211 }
2212 else
2213 {
2214 /* Everything else is passed in mem0, using as many bytes as
2215 needed. This is not what the Renesas tools do, but it's
2216 what GCC does at the moment. */
2217 struct bound_minimal_symbol mem0
2218 = lookup_minimal_symbol ("mem0", NULL, NULL);
2219
2220 if (! mem0.minsym)
2221 error (_("The return value is stored in memory at 'mem0', "
2222 "but GDB cannot find\n"
2223 "its address."));
2224 read_memory (BMSYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
2225 }
2226 }
2227
2228 if (writebuf)
2229 {
2230 /* We should never be called to store values to be returned
2231 using RETURN_VALUE_STRUCT_CONVENTION. We have no way of
2232 finding the buffer, unless we made the call ourselves. */
2233 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2234
2235 gdb_assert (valtype_len <= 8);
2236
2237 /* Anything that fits in r0 is returned there. */
2238 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2239 {
2240 ULONGEST u = extract_unsigned_integer (writebuf, valtype_len,
2241 byte_order);
2242 regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
2243 }
2244 else
2245 {
2246 /* Everything else is passed in mem0, using as many bytes as
2247 needed. This is not what the Renesas tools do, but it's
2248 what GCC does at the moment. */
2249 struct bound_minimal_symbol mem0
2250 = lookup_minimal_symbol ("mem0", NULL, NULL);
2251
2252 if (! mem0.minsym)
2253 error (_("The return value is stored in memory at 'mem0', "
2254 "but GDB cannot find\n"
2255 " its address."));
2256 write_memory (BMSYMBOL_VALUE_ADDRESS (mem0), writebuf, valtype_len);
2257 }
2258 }
2259
2260 return conv;
2261 }
2262
2263
2264 \f
2265 /* Trampolines. */
2266
2267 /* The m16c and m32c use a trampoline function for indirect function
2268 calls. An indirect call looks like this:
2269
2270 ... push arguments ...
2271 ... push target function address ...
2272 jsr.a m32c_jsri16
2273
2274 The code for m32c_jsri16 looks like this:
2275
2276 m32c_jsri16:
2277
2278 # Save return address.
2279 pop.w m32c_jsri_ret
2280 pop.b m32c_jsri_ret+2
2281
2282 # Store target function address.
2283 pop.w m32c_jsri_addr
2284
2285 # Re-push return address.
2286 push.b m32c_jsri_ret+2
2287 push.w m32c_jsri_ret
2288
2289 # Call the target function.
2290 jmpi.a m32c_jsri_addr
2291
2292 Without further information, GDB will treat calls to m32c_jsri16
2293 like calls to any other function. Since m32c_jsri16 doesn't have
2294 debugging information, that normally means that GDB sets a step-
2295 resume breakpoint and lets the program continue --- which is not
2296 what the user wanted. (Giving the trampoline debugging info
2297 doesn't help: the user expects the program to stop in the function
2298 their program is calling, not in some trampoline code they've never
2299 seen before.)
2300
2301 The gdbarch_skip_trampoline_code method tells GDB how to step
2302 through such trampoline functions transparently to the user. When
2303 given the address of a trampoline function's first instruction,
2304 gdbarch_skip_trampoline_code should return the address of the first
2305 instruction of the function really being called. If GDB decides it
2306 wants to step into that function, it will set a breakpoint there
2307 and silently continue to it.
2308
2309 We recognize the trampoline by name, and extract the target address
2310 directly from the stack. This isn't great, but recognizing by its
2311 code sequence seems more fragile. */
2312
2313 static CORE_ADDR
2314 m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
2315 {
2316 struct gdbarch *gdbarch = get_frame_arch (frame);
2317 m32c_gdbarch_tdep *tdep = (m32c_gdbarch_tdep *) gdbarch_tdep (gdbarch);
2318 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2319
2320 /* It would be nicer to simply look up the addresses of known
2321 trampolines once, and then compare stop_pc with them. However,
2322 we'd need to ensure that that cached address got invalidated when
2323 someone loaded a new executable, and I'm not quite sure of the
2324 best way to do that. find_pc_partial_function does do some
2325 caching, so we'll see how this goes. */
2326 const char *name;
2327 CORE_ADDR start, end;
2328
2329 if (find_pc_partial_function (stop_pc, &name, &start, &end))
2330 {
2331 /* Are we stopped at the beginning of the trampoline function? */
2332 if (strcmp (name, "m32c_jsri16") == 0
2333 && stop_pc == start)
2334 {
2335 /* Get the stack pointer. The return address is at the top,
2336 and the target function's address is just below that. We
2337 know it's a two-byte address, since the trampoline is
2338 m32c_jsri*16*. */
2339 CORE_ADDR sp = get_frame_sp (get_current_frame ());
2340 CORE_ADDR target
2341 = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes,
2342 2, byte_order);
2343
2344 /* What we have now is the address of a jump instruction.
2345 What we need is the destination of that jump.
2346 The opcode is 1 byte, and the destination is the next 3 bytes. */
2347
2348 target = read_memory_unsigned_integer (target + 1, 3, byte_order);
2349 return target;
2350 }
2351 }
2352
2353 return 0;
2354 }
2355
2356
2357 /* Address/pointer conversions. */
2358
2359 /* On the m16c, there is a 24-bit address space, but only a very few
2360 instructions can generate addresses larger than 0xffff: jumps,
2361 jumps to subroutines, and the lde/std (load/store extended)
2362 instructions.
2363
2364 Since GCC can only support one size of pointer, we can't have
2365 distinct 'near' and 'far' pointer types; we have to pick one size
2366 for everything. If we wanted to use 24-bit pointers, then GCC
2367 would have to use lde and ste for all memory references, which
2368 would be terrible for performance and code size. So the GNU
2369 toolchain uses 16-bit pointers for everything, and gives up the
2370 ability to have pointers point outside the first 64k of memory.
2371
2372 However, as a special hack, we let the linker place functions at
2373 addresses above 0xffff, as long as it also places a trampoline in
2374 the low 64k for every function whose address is taken. Each
2375 trampoline consists of a single jmp.a instruction that jumps to the
2376 function's real entry point. Pointers to functions can be 16 bits
2377 long, even though the functions themselves are at higher addresses:
2378 the pointers refer to the trampolines, not the functions.
2379
2380 This complicates things for GDB, however: given the address of a
2381 function (from debug info or linker symbols, say) which could be
2382 anywhere in the 24-bit address space, how can we find an
2383 appropriate 16-bit value to use as a pointer to it?
2384
2385 If the linker has not generated a trampoline for the function,
2386 we're out of luck. Well, I guess we could malloc some space and
2387 write a jmp.a instruction to it, but I'm not going to get into that
2388 at the moment.
2389
2390 If the linker has generated a trampoline for the function, then it
2391 also emitted a symbol for the trampoline: if the function's linker
2392 symbol is named NAME, then the function's trampoline's linker
2393 symbol is named NAME.plt.
2394
2395 So, given a code address:
2396 - We try to find a linker symbol at that address.
2397 - If we find such a symbol named NAME, we look for a linker symbol
2398 named NAME.plt.
2399 - If we find such a symbol, we assume it is a trampoline, and use
2400 its address as the pointer value.
2401
2402 And, given a function pointer:
2403 - We try to find a linker symbol at that address named NAME.plt.
2404 - If we find such a symbol, we look for a linker symbol named NAME.
2405 - If we find that, we provide that as the function's address.
2406 - If any of the above steps fail, we return the original address
2407 unchanged; it might really be a function in the low 64k.
2408
2409 See? You *knew* there was a reason you wanted to be a computer
2410 programmer! :) */
2411
2412 static void
2413 m32c_m16c_address_to_pointer (struct gdbarch *gdbarch,
2414 struct type *type, gdb_byte *buf, CORE_ADDR addr)
2415 {
2416 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2417 enum type_code target_code;
2418 gdb_assert (type->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type));
2419
2420 target_code = TYPE_TARGET_TYPE (type)->code ();
2421
2422 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2423 {
2424 const char *func_name;
2425 char *tramp_name;
2426 struct bound_minimal_symbol tramp_msym;
2427
2428 /* Try to find a linker symbol at this address. */
2429 struct bound_minimal_symbol func_msym
2430 = lookup_minimal_symbol_by_pc (addr);
2431
2432 if (! func_msym.minsym)
2433 error (_("Cannot convert code address %s to function pointer:\n"
2434 "couldn't find a symbol at that address, to find trampoline."),
2435 paddress (gdbarch, addr));
2436
2437 func_name = func_msym.minsym->linkage_name ();
2438 tramp_name = (char *) xmalloc (strlen (func_name) + 5);
2439 strcpy (tramp_name, func_name);
2440 strcat (tramp_name, ".plt");
2441
2442 /* Try to find a linker symbol for the trampoline. */
2443 tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);
2444
2445 /* We've either got another copy of the name now, or don't need
2446 the name any more. */
2447 xfree (tramp_name);
2448
2449 if (! tramp_msym.minsym)
2450 {
2451 CORE_ADDR ptrval;
2452
2453 /* No PLT entry found. Mask off the upper bits of the address
2454 to make a pointer. As noted in the warning to the user
2455 below, this value might be useful if converted back into
2456 an address by GDB, but will otherwise, almost certainly,
2457 be garbage.
2458
2459 Using this masked result does seem to be useful
2460 in gdb.cp/cplusfuncs.exp in which ~40 FAILs turn into
2461 PASSes. These results appear to be correct as well.
2462
2463 We print a warning here so that the user can make a
2464 determination about whether the result is useful or not. */
2465 ptrval = addr & 0xffff;
2466
2467 warning (_("Cannot convert code address %s to function pointer:\n"
2468 "couldn't find trampoline named '%s.plt'.\n"
2469 "Returning pointer value %s instead; this may produce\n"
2470 "a useful result if converted back into an address by GDB,\n"
2471 "but will most likely not be useful otherwise."),
2472 paddress (gdbarch, addr), func_name,
2473 paddress (gdbarch, ptrval));
2474
2475 addr = ptrval;
2476
2477 }
2478 else
2479 {
2480 /* The trampoline's address is our pointer. */
2481 addr = BMSYMBOL_VALUE_ADDRESS (tramp_msym);
2482 }
2483 }
2484
2485 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
2486 }
2487
2488
2489 static CORE_ADDR
2490 m32c_m16c_pointer_to_address (struct gdbarch *gdbarch,
2491 struct type *type, const gdb_byte *buf)
2492 {
2493 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2494 CORE_ADDR ptr;
2495 enum type_code target_code;
2496
2497 gdb_assert (type->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type));
2498
2499 ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
2500
2501 target_code = TYPE_TARGET_TYPE (type)->code ();
2502
2503 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2504 {
2505 /* See if there is a minimal symbol at that address whose name is
2506 "NAME.plt". */
2507 struct bound_minimal_symbol ptr_msym = lookup_minimal_symbol_by_pc (ptr);
2508
2509 if (ptr_msym.minsym)
2510 {
2511 const char *ptr_msym_name = ptr_msym.minsym->linkage_name ();
2512 int len = strlen (ptr_msym_name);
2513
2514 if (len > 4
2515 && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
2516 {
2517 struct bound_minimal_symbol func_msym;
2518 /* We have a .plt symbol; try to find the symbol for the
2519 corresponding function.
2520
2521 Since the trampoline contains a jump instruction, we
2522 could also just extract the jump's target address. I
2523 don't see much advantage one way or the other. */
2524 char *func_name = (char *) xmalloc (len - 4 + 1);
2525 memcpy (func_name, ptr_msym_name, len - 4);
2526 func_name[len - 4] = '\0';
2527 func_msym
2528 = lookup_minimal_symbol (func_name, NULL, NULL);
2529
2530 /* If we do have such a symbol, return its value as the
2531 function's true address. */
2532 if (func_msym.minsym)
2533 ptr = BMSYMBOL_VALUE_ADDRESS (func_msym);
2534 }
2535 }
2536 else
2537 {
2538 int aspace;
2539
2540 for (aspace = 1; aspace <= 15; aspace++)
2541 {
2542 ptr_msym = lookup_minimal_symbol_by_pc ((aspace << 16) | ptr);
2543
2544 if (ptr_msym.minsym)
2545 ptr |= aspace << 16;
2546 }
2547 }
2548 }
2549
2550 return ptr;
2551 }
2552
2553 static void
2554 m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
2555 int *frame_regnum,
2556 LONGEST *frame_offset)
2557 {
2558 const char *name;
2559 CORE_ADDR func_addr, func_end;
2560 struct m32c_prologue p;
2561
2562 struct regcache *regcache = get_current_regcache ();
2563 m32c_gdbarch_tdep *tdep = (m32c_gdbarch_tdep *) gdbarch_tdep (gdbarch);
2564
2565 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
2566 internal_error (__FILE__, __LINE__,
2567 _("No virtual frame pointer available"));
2568
2569 m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
2570 switch (p.kind)
2571 {
2572 case prologue_with_frame_ptr:
2573 *frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
2574 *frame_offset = p.frame_ptr_offset;
2575 break;
2576 case prologue_sans_frame_ptr:
2577 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2578 *frame_offset = p.frame_size;
2579 break;
2580 default:
2581 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2582 *frame_offset = 0;
2583 break;
2584 }
2585 /* Sanity check */
2586 if (*frame_regnum > gdbarch_num_regs (gdbarch))
2587 internal_error (__FILE__, __LINE__,
2588 _("No virtual frame pointer available"));
2589 }
2590
2591 \f
2592 /* Initialization. */
2593
2594 static struct gdbarch *
2595 m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2596 {
2597 struct gdbarch *gdbarch;
2598 unsigned long mach = info.bfd_arch_info->mach;
2599
2600 /* Find a candidate among the list of architectures we've created
2601 already. */
2602 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2603 arches != NULL;
2604 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2605 return arches->gdbarch;
2606
2607 m32c_gdbarch_tdep *tdep = new m32c_gdbarch_tdep;
2608 gdbarch = gdbarch_alloc (&info, tdep);
2609
2610 /* Essential types. */
2611 make_types (gdbarch);
2612
2613 /* Address/pointer conversions. */
2614 if (mach == bfd_mach_m16c)
2615 {
2616 set_gdbarch_address_to_pointer (gdbarch, m32c_m16c_address_to_pointer);
2617 set_gdbarch_pointer_to_address (gdbarch, m32c_m16c_pointer_to_address);
2618 }
2619
2620 /* Register set. */
2621 make_regs (gdbarch);
2622
2623 /* Breakpoints. */
2624 set_gdbarch_breakpoint_kind_from_pc (gdbarch, m32c_breakpoint::kind_from_pc);
2625 set_gdbarch_sw_breakpoint_from_kind (gdbarch, m32c_breakpoint::bp_from_kind);
2626
2627 /* Prologue analysis and unwinding. */
2628 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2629 set_gdbarch_skip_prologue (gdbarch, m32c_skip_prologue);
2630 #if 0
2631 /* I'm dropping the dwarf2 sniffer because it has a few problems.
2632 They may be in the dwarf2 cfi code in GDB, or they may be in
2633 the debug info emitted by the upstream toolchain. I don't
2634 know which, but I do know that the prologue analyzer works better.
2635 MVS 04/13/06 */
2636 dwarf2_append_sniffers (gdbarch);
2637 #endif
2638 frame_unwind_append_unwinder (gdbarch, &m32c_unwind);
2639
2640 /* Inferior calls. */
2641 set_gdbarch_push_dummy_call (gdbarch, m32c_push_dummy_call);
2642 set_gdbarch_return_value (gdbarch, m32c_return_value);
2643
2644 /* Trampolines. */
2645 set_gdbarch_skip_trampoline_code (gdbarch, m32c_skip_trampoline_code);
2646
2647 set_gdbarch_virtual_frame_pointer (gdbarch, m32c_virtual_frame_pointer);
2648
2649 /* m32c function boundary addresses are not necessarily even.
2650 Therefore, the `vbit', which indicates a pointer to a virtual
2651 member function, is stored in the delta field, rather than as
2652 the low bit of a function pointer address.
2653
2654 In order to verify this, see the definition of
2655 TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the
2656 definition of FUNCTION_BOUNDARY in gcc/config/m32c/m32c.h. */
2657 set_gdbarch_vbit_in_delta (gdbarch, 1);
2658
2659 return gdbarch;
2660 }
2661
2662 void _initialize_m32c_tdep ();
2663 void
2664 _initialize_m32c_tdep ()
2665 {
2666 register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);
2667
2668 m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);
2669 }