Document bfd/doc/Makefile.in TEXINPUTS problem.
[binutils-gdb.git] / gdb / m68k-tdep.c
1 /* Target dependent code for the Motorola 68000 series.
2 Copyright (C) 1990, 1992, 1993, 1994, 1995, 1996, 1999, 2000
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "symtab.h"
25 #include "gdbcore.h"
26 #include "value.h"
27 #include "gdb_string.h"
28 #include "inferior.h"
29 \f
30
31 #define P_LINKL_FP 0x480e
32 #define P_LINKW_FP 0x4e56
33 #define P_PEA_FP 0x4856
34 #define P_MOVL_SP_FP 0x2c4f
35 #define P_MOVL 0x207c
36 #define P_JSR 0x4eb9
37 #define P_BSR 0x61ff
38 #define P_LEAL 0x43fb
39 #define P_MOVML 0x48ef
40 #define P_FMOVM 0xf237
41 #define P_TRAP 0x4e40
42
43 /* The only reason this is here is the tm-altos.h reference below. It
44 was moved back here from tm-m68k.h. FIXME? */
45
46 extern CORE_ADDR
47 altos_skip_prologue (pc)
48 CORE_ADDR pc;
49 {
50 register int op = read_memory_integer (pc, 2);
51 if (op == P_LINKW_FP)
52 pc += 4; /* Skip link #word */
53 else if (op == P_LINKL_FP)
54 pc += 6; /* Skip link #long */
55 /* Not sure why branches are here. */
56 /* From tm-isi.h, tm-altos.h */
57 else if (op == 0060000)
58 pc += 4; /* Skip bra #word */
59 else if (op == 00600377)
60 pc += 6; /* skip bra #long */
61 else if ((op & 0177400) == 0060000)
62 pc += 2; /* skip bra #char */
63 return pc;
64 }
65
66 /* The only reason this is here is the tm-isi.h reference below. It
67 was moved back here from tm-m68k.h. FIXME? */
68
69 extern CORE_ADDR
70 isi_skip_prologue (pc)
71 CORE_ADDR pc;
72 {
73 register int op = read_memory_integer (pc, 2);
74 if (op == P_LINKW_FP)
75 pc += 4; /* Skip link #word */
76 else if (op == P_LINKL_FP)
77 pc += 6; /* Skip link #long */
78 /* Not sure why branches are here. */
79 /* From tm-isi.h, tm-altos.h */
80 else if (op == 0060000)
81 pc += 4; /* Skip bra #word */
82 else if (op == 00600377)
83 pc += 6; /* skip bra #long */
84 else if ((op & 0177400) == 0060000)
85 pc += 2; /* skip bra #char */
86 return pc;
87 }
88
89 int
90 delta68_in_sigtramp (pc, name)
91 CORE_ADDR pc;
92 char *name;
93 {
94 return strcmp (name, "_sigcode") == 0;
95 }
96
97 CORE_ADDR
98 delta68_frame_args_address (frame_info)
99 struct frame_info * frame_info;
100 {
101 /* we assume here that the only frameless functions are the system calls
102 or other functions who do not put anything on the stack. */
103 if (frame_info->signal_handler_caller)
104 return frame_info->frame + 12;
105 else if (frameless_look_for_prologue (frame_info))
106 {
107 /* Check for an interrupted system call */
108 if (frame_info->next && frame_info->next->signal_handler_caller)
109 return frame_info->next->frame + 16;
110 else
111 return frame_info->frame + 4;
112 }
113 else
114 return frame_info->frame;
115 }
116
117 CORE_ADDR
118 delta68_frame_saved_pc (frame_info)
119 struct frame_info * frame_info;
120 {
121 return read_memory_integer (delta68_frame_args_address (frame_info) + 4, 4);
122 }
123
124 /* Return number of args passed to a frame.
125 Can return -1, meaning no way to tell. */
126
127 int
128 isi_frame_num_args (fi)
129 struct frame_info *fi;
130 {
131 int val;
132 CORE_ADDR pc = FRAME_SAVED_PC (fi);
133 int insn = 0177777 & read_memory_integer (pc, 2);
134 val = 0;
135 if (insn == 0047757 || insn == 0157374) /* lea W(sp),sp or addaw #W,sp */
136 val = read_memory_integer (pc + 2, 2);
137 else if ((insn & 0170777) == 0050217 /* addql #N, sp */
138 || (insn & 0170777) == 0050117) /* addqw */
139 {
140 val = (insn >> 9) & 7;
141 if (val == 0)
142 val = 8;
143 }
144 else if (insn == 0157774) /* addal #WW, sp */
145 val = read_memory_integer (pc + 2, 4);
146 val >>= 2;
147 return val;
148 }
149
150 int
151 delta68_frame_num_args (fi)
152 struct frame_info *fi;
153 {
154 int val;
155 CORE_ADDR pc = FRAME_SAVED_PC (fi);
156 int insn = 0177777 & read_memory_integer (pc, 2);
157 val = 0;
158 if (insn == 0047757 || insn == 0157374) /* lea W(sp),sp or addaw #W,sp */
159 val = read_memory_integer (pc + 2, 2);
160 else if ((insn & 0170777) == 0050217 /* addql #N, sp */
161 || (insn & 0170777) == 0050117) /* addqw */
162 {
163 val = (insn >> 9) & 7;
164 if (val == 0)
165 val = 8;
166 }
167 else if (insn == 0157774) /* addal #WW, sp */
168 val = read_memory_integer (pc + 2, 4);
169 val >>= 2;
170 return val;
171 }
172
173 int
174 news_frame_num_args (fi)
175 struct frame_info *fi;
176 {
177 int val;
178 CORE_ADDR pc = FRAME_SAVED_PC (fi);
179 int insn = 0177777 & read_memory_integer (pc, 2);
180 val = 0;
181 if (insn == 0047757 || insn == 0157374) /* lea W(sp),sp or addaw #W,sp */
182 val = read_memory_integer (pc + 2, 2);
183 else if ((insn & 0170777) == 0050217 /* addql #N, sp */
184 || (insn & 0170777) == 0050117) /* addqw */
185 {
186 val = (insn >> 9) & 7;
187 if (val == 0)
188 val = 8;
189 }
190 else if (insn == 0157774) /* addal #WW, sp */
191 val = read_memory_integer (pc + 2, 4);
192 val >>= 2;
193 return val;
194 }
195
196 /* Push an empty stack frame, to record the current PC, etc. */
197
198 void
199 m68k_push_dummy_frame ()
200 {
201 register CORE_ADDR sp = read_register (SP_REGNUM);
202 register int regnum;
203 char raw_buffer[12];
204
205 sp = push_word (sp, read_register (PC_REGNUM));
206 sp = push_word (sp, read_register (FP_REGNUM));
207 write_register (FP_REGNUM, sp);
208
209 /* Always save the floating-point registers, whether they exist on
210 this target or not. */
211 for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--)
212 {
213 read_register_bytes (REGISTER_BYTE (regnum), raw_buffer, 12);
214 sp = push_bytes (sp, raw_buffer, 12);
215 }
216
217 for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--)
218 {
219 sp = push_word (sp, read_register (regnum));
220 }
221 sp = push_word (sp, read_register (PS_REGNUM));
222 write_register (SP_REGNUM, sp);
223 }
224
225 /* Discard from the stack the innermost frame,
226 restoring all saved registers. */
227
228 void
229 m68k_pop_frame ()
230 {
231 register struct frame_info *frame = get_current_frame ();
232 register CORE_ADDR fp;
233 register int regnum;
234 struct frame_saved_regs fsr;
235 char raw_buffer[12];
236
237 fp = FRAME_FP (frame);
238 get_frame_saved_regs (frame, &fsr);
239 for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--)
240 {
241 if (fsr.regs[regnum])
242 {
243 read_memory (fsr.regs[regnum], raw_buffer, 12);
244 write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, 12);
245 }
246 }
247 for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--)
248 {
249 if (fsr.regs[regnum])
250 {
251 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
252 }
253 }
254 if (fsr.regs[PS_REGNUM])
255 {
256 write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4));
257 }
258 write_register (FP_REGNUM, read_memory_integer (fp, 4));
259 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
260 write_register (SP_REGNUM, fp + 8);
261 flush_cached_frames ();
262 }
263 \f
264
265 /* Given an ip value corresponding to the start of a function,
266 return the ip of the first instruction after the function
267 prologue. This is the generic m68k support. Machines which
268 require something different can override the SKIP_PROLOGUE
269 macro to point elsewhere.
270
271 Some instructions which typically may appear in a function
272 prologue include:
273
274 A link instruction, word form:
275
276 link.w %a6,&0 4e56 XXXX
277
278 A link instruction, long form:
279
280 link.l %fp,&F%1 480e XXXX XXXX
281
282 A movm instruction to preserve integer regs:
283
284 movm.l &M%1,(4,%sp) 48ef XXXX XXXX
285
286 A fmovm instruction to preserve float regs:
287
288 fmovm &FPM%1,(FPO%1,%sp) f237 XXXX XXXX XXXX XXXX
289
290 Some profiling setup code (FIXME, not recognized yet):
291
292 lea.l (.L3,%pc),%a1 43fb XXXX XXXX XXXX
293 bsr _mcount 61ff XXXX XXXX
294
295 */
296
297 CORE_ADDR
298 m68k_skip_prologue (ip)
299 CORE_ADDR ip;
300 {
301 register CORE_ADDR limit;
302 struct symtab_and_line sal;
303 register int op;
304
305 /* Find out if there is a known limit for the extent of the prologue.
306 If so, ensure we don't go past it. If not, assume "infinity". */
307
308 sal = find_pc_line (ip, 0);
309 limit = (sal.end) ? sal.end : (CORE_ADDR) ~ 0;
310
311 while (ip < limit)
312 {
313 op = read_memory_integer (ip, 2);
314 op &= 0xFFFF;
315
316 if (op == P_LINKW_FP)
317 ip += 4; /* Skip link.w */
318 else if (op == P_PEA_FP)
319 ip += 2; /* Skip pea %fp */
320 else if (op == P_MOVL_SP_FP)
321 ip += 2; /* Skip move.l %sp, %fp */
322 else if (op == P_LINKL_FP)
323 ip += 6; /* Skip link.l */
324 else if (op == P_MOVML)
325 ip += 6; /* Skip movm.l */
326 else if (op == P_FMOVM)
327 ip += 10; /* Skip fmovm */
328 else
329 break; /* Found unknown code, bail out. */
330 }
331 return (ip);
332 }
333
334 void
335 m68k_find_saved_regs (frame_info, saved_regs)
336 struct frame_info *frame_info;
337 struct frame_saved_regs *saved_regs;
338 {
339 register int regnum;
340 register int regmask;
341 register CORE_ADDR next_addr;
342 register CORE_ADDR pc;
343
344 /* First possible address for a pc in a call dummy for this frame. */
345 CORE_ADDR possible_call_dummy_start =
346 (frame_info)->frame - CALL_DUMMY_LENGTH - FP_REGNUM * 4 - 4 - 8 * 12;
347
348 int nextinsn;
349 memset (saved_regs, 0, sizeof (*saved_regs));
350 if ((frame_info)->pc >= possible_call_dummy_start
351 && (frame_info)->pc <= (frame_info)->frame)
352 {
353
354 /* It is a call dummy. We could just stop now, since we know
355 what the call dummy saves and where. But this code proceeds
356 to parse the "prologue" which is part of the call dummy.
357 This is needlessly complex and confusing. FIXME. */
358
359 next_addr = (frame_info)->frame;
360 pc = possible_call_dummy_start;
361 }
362 else
363 {
364 pc = get_pc_function_start ((frame_info)->pc);
365
366 nextinsn = read_memory_integer (pc, 2);
367 if (P_PEA_FP == nextinsn
368 && P_MOVL_SP_FP == read_memory_integer (pc + 2, 2))
369 {
370 /* pea %fp
371 move.l %sp, %fp */
372 next_addr = frame_info->frame;
373 pc += 4;
374 }
375 else if (P_LINKL_FP == nextinsn)
376 /* link.l %fp */
377 /* Find the address above the saved
378 regs using the amount of storage from the link instruction. */
379 {
380 next_addr = (frame_info)->frame + read_memory_integer (pc + 2, 4);
381 pc += 6;
382 }
383 else if (P_LINKW_FP == nextinsn)
384 /* link.w %fp */
385 /* Find the address above the saved
386 regs using the amount of storage from the link instruction. */
387 {
388 next_addr = (frame_info)->frame + read_memory_integer (pc + 2, 2);
389 pc += 4;
390 }
391 else
392 goto lose;
393
394 /* If have an addal #-n, sp next, adjust next_addr. */
395 if ((0177777 & read_memory_integer (pc, 2)) == 0157774)
396 next_addr += read_memory_integer (pc += 2, 4), pc += 4;
397 }
398
399 for ( ; ; )
400 {
401 nextinsn = 0xffff & read_memory_integer (pc, 2);
402 regmask = read_memory_integer (pc + 2, 2);
403 /* fmovemx to -(sp) */
404 if (0xf227 == nextinsn && (regmask & 0xff00) == 0xe000)
405 {
406 /* Regmask's low bit is for register fp7, the first pushed */
407 for (regnum = FP0_REGNUM + 8; --regnum >= FP0_REGNUM; regmask >>= 1)
408 if (regmask & 1)
409 saved_regs->regs[regnum] = (next_addr -= 12);
410 pc += 4;
411 }
412 /* fmovemx to (fp + displacement) */
413 else if (0171056 == nextinsn && (regmask & 0xff00) == 0xf000)
414 {
415 register CORE_ADDR addr;
416
417 addr = (frame_info)->frame + read_memory_integer (pc + 4, 2);
418 /* Regmask's low bit is for register fp7, the first pushed */
419 for (regnum = FP0_REGNUM + 8; --regnum >= FP0_REGNUM; regmask >>= 1)
420 if (regmask & 1)
421 {
422 saved_regs->regs[regnum] = addr;
423 addr += 12;
424 }
425 pc += 6;
426 }
427 /* moveml to (sp) */
428 else if (0044327 == nextinsn)
429 {
430 /* Regmask's low bit is for register 0, the first written */
431 for (regnum = 0; regnum < 16; regnum++, regmask >>= 1)
432 if (regmask & 1)
433 {
434 saved_regs->regs[regnum] = next_addr;
435 next_addr += 4;
436 }
437 pc += 4;
438 }
439 /* moveml to (fp + displacement) */
440 else if (0044356 == nextinsn)
441 {
442 register CORE_ADDR addr;
443
444 addr = (frame_info)->frame + read_memory_integer (pc + 4, 2);
445 /* Regmask's low bit is for register 0, the first written */
446 for (regnum = 0; regnum < 16; regnum++, regmask >>= 1)
447 if (regmask & 1)
448 {
449 saved_regs->regs[regnum] = addr;
450 addr += 4;
451 }
452 pc += 6;
453 }
454 /* moveml to -(sp) */
455 else if (0044347 == nextinsn)
456 {
457 /* Regmask's low bit is for register 15, the first pushed */
458 for (regnum = 16; --regnum >= 0; regmask >>= 1)
459 if (regmask & 1)
460 saved_regs->regs[regnum] = (next_addr -= 4);
461 pc += 4;
462 }
463 /* movl r,-(sp) */
464 else if (0x2f00 == (0xfff0 & nextinsn))
465 {
466 regnum = 0xf & nextinsn;
467 saved_regs->regs[regnum] = (next_addr -= 4);
468 pc += 2;
469 }
470 /* fmovemx to index of sp */
471 else if (0xf236 == nextinsn && (regmask & 0xff00) == 0xf000)
472 {
473 /* Regmask's low bit is for register fp0, the first written */
474 for (regnum = FP0_REGNUM + 8; --regnum >= FP0_REGNUM; regmask >>= 1)
475 if (regmask & 1)
476 {
477 saved_regs->regs[regnum] = next_addr;
478 next_addr += 12;
479 }
480 pc += 10;
481 }
482 /* clrw -(sp); movw ccr,-(sp) */
483 else if (0x4267 == nextinsn && 0x42e7 == regmask)
484 {
485 saved_regs->regs[PS_REGNUM] = (next_addr -= 4);
486 pc += 4;
487 }
488 else
489 break;
490 }
491 lose:;
492 saved_regs->regs[SP_REGNUM] = (frame_info)->frame + 8;
493 saved_regs->regs[FP_REGNUM] = (frame_info)->frame;
494 saved_regs->regs[PC_REGNUM] = (frame_info)->frame + 4;
495 #ifdef SIG_SP_FP_OFFSET
496 /* Adjust saved SP_REGNUM for fake _sigtramp frames. */
497 if (frame_info->signal_handler_caller && frame_info->next)
498 saved_regs->regs[SP_REGNUM] = frame_info->next->frame + SIG_SP_FP_OFFSET;
499 #endif
500 }
501
502
503 #ifdef USE_PROC_FS /* Target dependent support for /proc */
504
505 #include <sys/procfs.h>
506
507 /* The /proc interface divides the target machine's register set up into
508 two different sets, the general register set (gregset) and the floating
509 point register set (fpregset). For each set, there is an ioctl to get
510 the current register set and another ioctl to set the current values.
511
512 The actual structure passed through the ioctl interface is, of course,
513 naturally machine dependent, and is different for each set of registers.
514 For the m68k for example, the general register set is typically defined
515 by:
516
517 typedef int gregset_t[18];
518
519 #define R_D0 0
520 ...
521 #define R_PS 17
522
523 and the floating point set by:
524
525 typedef struct fpregset {
526 int f_pcr;
527 int f_psr;
528 int f_fpiaddr;
529 int f_fpregs[8][3]; (8 regs, 96 bits each)
530 } fpregset_t;
531
532 These routines provide the packing and unpacking of gregset_t and
533 fpregset_t formatted data.
534
535 */
536
537 /* Atari SVR4 has R_SR but not R_PS */
538
539 #if !defined (R_PS) && defined (R_SR)
540 #define R_PS R_SR
541 #endif
542
543 /* Given a pointer to a general register set in /proc format (gregset_t *),
544 unpack the register contents and supply them as gdb's idea of the current
545 register values. */
546
547 void
548 supply_gregset (gregsetp)
549 gregset_t *gregsetp;
550 {
551 register int regi;
552 register greg_t *regp = (greg_t *) gregsetp;
553
554 for (regi = 0; regi < R_PC; regi++)
555 {
556 supply_register (regi, (char *) (regp + regi));
557 }
558 supply_register (PS_REGNUM, (char *) (regp + R_PS));
559 supply_register (PC_REGNUM, (char *) (regp + R_PC));
560 }
561
562 void
563 fill_gregset (gregsetp, regno)
564 gregset_t *gregsetp;
565 int regno;
566 {
567 register int regi;
568 register greg_t *regp = (greg_t *) gregsetp;
569
570 for (regi = 0; regi < R_PC; regi++)
571 {
572 if ((regno == -1) || (regno == regi))
573 {
574 *(regp + regi) = *(int *) &registers[REGISTER_BYTE (regi)];
575 }
576 }
577 if ((regno == -1) || (regno == PS_REGNUM))
578 {
579 *(regp + R_PS) = *(int *) &registers[REGISTER_BYTE (PS_REGNUM)];
580 }
581 if ((regno == -1) || (regno == PC_REGNUM))
582 {
583 *(regp + R_PC) = *(int *) &registers[REGISTER_BYTE (PC_REGNUM)];
584 }
585 }
586
587 #if defined (FP0_REGNUM)
588
589 /* Given a pointer to a floating point register set in /proc format
590 (fpregset_t *), unpack the register contents and supply them as gdb's
591 idea of the current floating point register values. */
592
593 void
594 supply_fpregset (fpregsetp)
595 fpregset_t *fpregsetp;
596 {
597 register int regi;
598 char *from;
599
600 for (regi = FP0_REGNUM; regi < FPC_REGNUM; regi++)
601 {
602 from = (char *) &(fpregsetp->f_fpregs[regi - FP0_REGNUM][0]);
603 supply_register (regi, from);
604 }
605 supply_register (FPC_REGNUM, (char *) &(fpregsetp->f_pcr));
606 supply_register (FPS_REGNUM, (char *) &(fpregsetp->f_psr));
607 supply_register (FPI_REGNUM, (char *) &(fpregsetp->f_fpiaddr));
608 }
609
610 /* Given a pointer to a floating point register set in /proc format
611 (fpregset_t *), update the register specified by REGNO from gdb's idea
612 of the current floating point register set. If REGNO is -1, update
613 them all. */
614
615 void
616 fill_fpregset (fpregsetp, regno)
617 fpregset_t *fpregsetp;
618 int regno;
619 {
620 int regi;
621 char *to;
622 char *from;
623
624 for (regi = FP0_REGNUM; regi < FPC_REGNUM; regi++)
625 {
626 if ((regno == -1) || (regno == regi))
627 {
628 from = (char *) &registers[REGISTER_BYTE (regi)];
629 to = (char *) &(fpregsetp->f_fpregs[regi - FP0_REGNUM][0]);
630 memcpy (to, from, REGISTER_RAW_SIZE (regi));
631 }
632 }
633 if ((regno == -1) || (regno == FPC_REGNUM))
634 {
635 fpregsetp->f_pcr = *(int *) &registers[REGISTER_BYTE (FPC_REGNUM)];
636 }
637 if ((regno == -1) || (regno == FPS_REGNUM))
638 {
639 fpregsetp->f_psr = *(int *) &registers[REGISTER_BYTE (FPS_REGNUM)];
640 }
641 if ((regno == -1) || (regno == FPI_REGNUM))
642 {
643 fpregsetp->f_fpiaddr = *(int *) &registers[REGISTER_BYTE (FPI_REGNUM)];
644 }
645 }
646
647 #endif /* defined (FP0_REGNUM) */
648
649 #endif /* USE_PROC_FS */
650
651 #ifdef GET_LONGJMP_TARGET
652 /* Figure out where the longjmp will land. Slurp the args out of the stack.
653 We expect the first arg to be a pointer to the jmp_buf structure from which
654 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
655 This routine returns true on success. */
656
657 int
658 get_longjmp_target (pc)
659 CORE_ADDR *pc;
660 {
661 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
662 CORE_ADDR sp, jb_addr;
663
664 sp = read_register (SP_REGNUM);
665
666 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
667 buf,
668 TARGET_PTR_BIT / TARGET_CHAR_BIT))
669 return 0;
670
671 jb_addr = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
672
673 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
674 TARGET_PTR_BIT / TARGET_CHAR_BIT))
675 return 0;
676
677 *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
678
679 return 1;
680 }
681 #endif /* GET_LONGJMP_TARGET */
682
683 /* Immediately after a function call, return the saved pc before the frame
684 is setup. For sun3's, we check for the common case of being inside of a
685 system call, and if so, we know that Sun pushes the call # on the stack
686 prior to doing the trap. */
687
688 CORE_ADDR
689 m68k_saved_pc_after_call (frame)
690 struct frame_info *frame;
691 {
692 #ifdef SYSCALL_TRAP
693 int op;
694
695 op = read_memory_integer (frame->pc - SYSCALL_TRAP_OFFSET, 2);
696
697 if (op == SYSCALL_TRAP)
698 return read_memory_integer (read_register (SP_REGNUM) + 4, 4);
699 else
700 #endif /* SYSCALL_TRAP */
701 return read_memory_integer (read_register (SP_REGNUM), 4);
702 }
703
704
705 void
706 _initialize_m68k_tdep ()
707 {
708 tm_print_insn = print_insn_m68k;
709 }