bzero -> memset
[binutils-gdb.git] / gdb / m88k-tdep.c
1 /* Target-machine dependent code for Motorola 88000 series, for GDB.
2 Copyright (C) 1988, 1990, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "value.h"
24
25 #ifdef USG
26 #include <sys/types.h>
27 #endif
28
29 #include <sys/param.h>
30 #include <signal.h>
31 #include "gdbcore.h"
32 #include <sys/user.h>
33 #ifndef USER /* added to support BCS ptrace_user */
34
35 #define USER ptrace_user
36 #endif
37 #include <sys/ioctl.h>
38 #include <fcntl.h>
39
40 #include <sys/file.h>
41 #include <sys/stat.h>
42
43 #include "symtab.h"
44 #include "setjmp.h"
45 #include "value.h"
46
47 /* Size of an instruction */
48 #define BYTES_PER_88K_INSN 4
49
50 void frame_find_saved_regs ();
51
52
53 /* Given a GDB frame, determine the address of the calling function's frame.
54 This will be used to create a new GDB frame struct, and then
55 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
56
57 For us, the frame address is its stack pointer value, so we look up
58 the function prologue to determine the caller's sp value, and return it. */
59
60 FRAME_ADDR
61 frame_chain (thisframe)
62 FRAME thisframe;
63 {
64
65 frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
66 /* NOTE: this depends on frame_find_saved_regs returning the VALUE, not
67 the ADDRESS, of SP_REGNUM. It also depends on the cache of
68 frame_find_saved_regs results. */
69 if (thisframe->fsr->regs[SP_REGNUM])
70 return thisframe->fsr->regs[SP_REGNUM];
71 else
72 return thisframe->frame; /* Leaf fn -- next frame up has same SP. */
73 }
74
75 int
76 frameless_function_invocation (frame)
77 FRAME frame;
78 {
79
80 frame_find_saved_regs (frame, (struct frame_saved_regs *) 0);
81 /* NOTE: this depends on frame_find_saved_regs returning the VALUE, not
82 the ADDRESS, of SP_REGNUM. It also depends on the cache of
83 frame_find_saved_regs results. */
84 if (frame->fsr->regs[SP_REGNUM])
85 return 0; /* Frameful -- return addr saved somewhere */
86 else
87 return 1; /* Frameless -- no saved return address */
88 }
89
90 void
91 init_extra_frame_info (fromleaf, fi)
92 int fromleaf;
93 struct frame_info *fi;
94 {
95 fi->fsr = 0; /* Not yet allocated */
96 fi->args_pointer = 0; /* Unknown */
97 fi->locals_pointer = 0; /* Unknown */
98 }
99 \f
100 /* Examine an m88k function prologue, recording the addresses at which
101 registers are saved explicitly by the prologue code, and returning
102 the address of the first instruction after the prologue (but not
103 after the instruction at address LIMIT, as explained below).
104
105 LIMIT places an upper bound on addresses of the instructions to be
106 examined. If the prologue code scan reaches LIMIT, the scan is
107 aborted and LIMIT is returned. This is used, when examining the
108 prologue for the current frame, to keep examine_prologue () from
109 claiming that a given register has been saved when in fact the
110 instruction that saves it has not yet been executed. LIMIT is used
111 at other times to stop the scan when we hit code after the true
112 function prologue (e.g. for the first source line) which might
113 otherwise be mistaken for function prologue.
114
115 The format of the function prologue matched by this routine is
116 derived from examination of the source to gcc 1.95, particularly
117 the routine output_prologue () in config/out-m88k.c.
118
119 subu r31,r31,n # stack pointer update
120
121 (st rn,r31,offset)? # save incoming regs
122 (st.d rn,r31,offset)?
123
124 (addu r30,r31,n)? # frame pointer update
125
126 (pic sequence)? # PIC code prologue
127
128 (or rn,rm,0)? # Move parameters to other regs
129 */
130
131 /* Macros for extracting fields from instructions. */
132
133 #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
134 #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
135
136 /* Prologue code that handles position-independent-code setup. */
137
138 struct pic_prologue_code {
139 unsigned long insn, mask;
140 };
141
142 static struct pic_prologue_code pic_prologue_code [] = {
143 /* FIXME -- until this is translated to hex, we won't match it... */
144 0xffffffff, 0,
145 /* or r10,r1,0 (if not saved) */
146 /* bsr.n LabN */
147 /* or.u r25,r0,const */
148 /*LabN: or r25,r25,const2 */
149 /* addu r25,r25,1 */
150 /* or r1,r10,0 (if not saved) */
151 };
152
153 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
154 is not the address of a valid instruction, the address of the next
155 instruction beyond ADDR otherwise. *PWORD1 receives the first word
156 of the instruction. PWORD2 is ignored -- a remnant of the original
157 i960 version. */
158
159 #define NEXT_PROLOGUE_INSN(addr, lim, pword1) \
160 (((addr) < (lim)) ? next_insn (addr, pword1) : 0)
161
162 /* Read the m88k instruction at 'memaddr' and return the address of
163 the next instruction after that, or 0 if 'memaddr' is not the
164 address of a valid instruction. The instruction
165 is stored at 'pword1'. */
166
167 CORE_ADDR
168 next_insn (memaddr, pword1)
169 unsigned long *pword1;
170 CORE_ADDR memaddr;
171 {
172 unsigned long buf[1];
173
174 *pword1 = read_memory_integer (memaddr, BYTES_PER_88K_INSN);
175 return memaddr + BYTES_PER_88K_INSN;
176 }
177
178 /* Read a register from frames called by us (or from the hardware regs). */
179
180 static int
181 read_next_frame_reg(fi, regno)
182 FRAME fi;
183 int regno;
184 {
185 for (; fi; fi = fi->next) {
186 if (regno == SP_REGNUM) return fi->frame;
187 else if (fi->fsr->regs[regno])
188 return read_memory_integer(fi->fsr->regs[regno], 4);
189 }
190 return read_register(regno);
191 }
192
193 /* Examine the prologue of a function. `ip' points to the first instruction.
194 `limit' is the limit of the prologue (e.g. the addr of the first
195 linenumber, or perhaps the program counter if we're stepping through).
196 `frame_sp' is the stack pointer value in use in this frame.
197 `fsr' is a pointer to a frame_saved_regs structure into which we put
198 info about the registers saved by this frame.
199 `fi' is a struct frame_info pointer; we fill in various fields in it
200 to reflect the offsets of the arg pointer and the locals pointer. */
201
202 static CORE_ADDR
203 examine_prologue (ip, limit, frame_sp, fsr, fi)
204 register CORE_ADDR ip;
205 register CORE_ADDR limit;
206 FRAME_ADDR frame_sp;
207 struct frame_saved_regs *fsr;
208 struct frame_info *fi;
209 {
210 register CORE_ADDR next_ip;
211 register int src;
212 register struct pic_prologue_code *pcode;
213 unsigned int insn;
214 int size, offset;
215 char must_adjust[32]; /* If set, must adjust offsets in fsr */
216 int sp_offset = -1; /* -1 means not set (valid must be mult of 8) */
217 int fp_offset = -1; /* -1 means not set */
218 CORE_ADDR frame_fp;
219
220 memset (must_adjust, '\0', sizeof (must_adjust));
221 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
222
223 /* Accept move of incoming registers to other registers, using
224 "or rd,rs,0" or "or.u rd,rs,0" or "or rd,r0,rs" or "or rd,rs,r0".
225 We don't have to worry about walking into the first lines of code,
226 since the first line number will stop us (assuming we have symbols).
227 What we have actually seen is "or r10,r0,r12". */
228
229 #define OR_MOVE_INSN 0x58000000 /* or/or.u with immed of 0 */
230 #define OR_MOVE_MASK 0xF800FFFF
231 #define OR_REG_MOVE1_INSN 0xF4005800 /* or rd,r0,rs */
232 #define OR_REG_MOVE1_MASK 0xFC1FFFE0
233 #define OR_REG_MOVE2_INSN 0xF4005800 /* or rd,rs,r0 */
234 #define OR_REG_MOVE2_MASK 0xFC00FFFF
235 while (next_ip &&
236 ((insn & OR_MOVE_MASK) == OR_MOVE_INSN ||
237 (insn & OR_REG_MOVE1_MASK) == OR_REG_MOVE1_INSN ||
238 (insn & OR_REG_MOVE2_MASK) == OR_REG_MOVE2_INSN
239 )
240 )
241 {
242 /* We don't care what moves to where. The result of the moves
243 has already been reflected in what the compiler tells us is the
244 location of these parameters. */
245 ip = next_ip;
246 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
247 }
248
249 /* Accept an optional "subu sp,sp,n" to set up the stack pointer. */
250
251 #define SUBU_SP_INSN 0x67ff0000
252 #define SUBU_SP_MASK 0xffff0007 /* Note offset must be mult. of 8 */
253 #define SUBU_OFFSET(x) ((unsigned)(x & 0xFFFF))
254 if (next_ip &&
255 ((insn & SUBU_SP_MASK) == SUBU_SP_INSN)) /* subu r31, r31, N */
256 {
257 sp_offset = -SUBU_OFFSET (insn);
258 ip = next_ip;
259 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
260 }
261
262 /* The function must start with a stack-pointer adjustment, or
263 we don't know WHAT'S going on... */
264 if (sp_offset == -1)
265 return ip;
266
267 /* Accept zero or more instances of "st rx,sp,n" or "st.d rx,sp,n".
268 This may cause us to mistake the copying of a register
269 parameter to the frame for the saving of a callee-saved
270 register, but that can't be helped, since with the
271 "-fcall-saved" flag, any register can be made callee-saved.
272 This probably doesn't matter, since the ``saved'' caller's values of
273 non-callee-saved registers are not relevant anyway. */
274
275 #define STD_STACK_INSN 0x201f0000
276 #define STD_STACK_MASK 0xfc1f0000
277 #define ST_STACK_INSN 0x241f0000
278 #define ST_STACK_MASK 0xfc1f0000
279 #define ST_OFFSET(x) ((unsigned)((x) & 0xFFFF))
280 #define ST_SRC(x) EXTRACT_FIELD ((x), 21, 5)
281
282 while (next_ip)
283 {
284 if ((insn & ST_STACK_MASK) == ST_STACK_INSN)
285 size = 1;
286 else if ((insn & STD_STACK_MASK) == STD_STACK_INSN)
287 size = 2;
288 else
289 break;
290
291 src = ST_SRC (insn);
292 offset = ST_OFFSET (insn);
293 while (size--)
294 {
295 must_adjust[src] = 1;
296 fsr->regs[src++] = offset; /* Will be adjusted later */
297 offset += 4;
298 }
299 ip = next_ip;
300 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
301 }
302
303 /* Accept an optional "addu r30,r31,n" to set up the frame pointer. */
304
305 #define ADDU_FP_INSN 0x63df0000
306 #define ADDU_FP_MASK 0xffff0000
307 #define ADDU_OFFSET(x) ((unsigned)(x & 0xFFFF))
308 if (next_ip &&
309 ((insn & ADDU_FP_MASK) == ADDU_FP_INSN)) /* addu r30, r31, N */
310 {
311 fp_offset = ADDU_OFFSET (insn);
312 ip = next_ip;
313 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
314 }
315
316 /* Accept the PIC prologue code if present. */
317
318 pcode = pic_prologue_code;
319 size = sizeof (pic_prologue_code) / sizeof (*pic_prologue_code);
320 /* If return addr is saved, we don't use first or last insn of PICstuff. */
321 if (fsr->regs[SRP_REGNUM]) {
322 pcode++;
323 size-=2;
324 }
325
326 while (size-- && next_ip && (pcode->insn == (pcode->mask & insn)))
327 {
328 pcode++;
329 ip = next_ip;
330 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
331 }
332
333 /* Accept moves of parameter registers to other registers, using
334 "or rd,rs,0" or "or.u rd,rs,0" or "or rd,r0,rs" or "or rd,rs,r0".
335 We don't have to worry about walking into the first lines of code,
336 since the first line number will stop us (assuming we have symbols).
337 What gcc actually seems to produce is "or rd,r0,rs". */
338
339 #define OR_MOVE_INSN 0x58000000 /* or/or.u with immed of 0 */
340 #define OR_MOVE_MASK 0xF800FFFF
341 #define OR_REG_MOVE1_INSN 0xF4005800 /* or rd,r0,rs */
342 #define OR_REG_MOVE1_MASK 0xFC1FFFE0
343 #define OR_REG_MOVE2_INSN 0xF4005800 /* or rd,rs,r0 */
344 #define OR_REG_MOVE2_MASK 0xFC00FFFF
345 while (next_ip &&
346 ((insn & OR_MOVE_MASK) == OR_MOVE_INSN ||
347 (insn & OR_REG_MOVE1_MASK) == OR_REG_MOVE1_INSN ||
348 (insn & OR_REG_MOVE2_MASK) == OR_REG_MOVE2_INSN
349 )
350 )
351 {
352 /* We don't care what moves to where. The result of the moves
353 has already been reflected in what the compiler tells us is the
354 location of these parameters. */
355 ip = next_ip;
356 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
357 }
358
359 /* We're done with the prologue. If we don't care about the stack
360 frame itself, just return. (Note that fsr->regs has been trashed,
361 but the one caller who calls with fi==0 passes a dummy there.) */
362
363 if (fi == 0)
364 return ip;
365
366 /*
367 OK, now we have:
368
369 sp_offset original (before any alloca calls) displacement of SP
370 (will be negative).
371
372 fp_offset displacement from original SP to the FP for this frame
373 or -1.
374
375 fsr->regs[0..31] displacement from original SP to the stack
376 location where reg[0..31] is stored.
377
378 must_adjust[0..31] set if corresponding offset was set.
379
380 If alloca has been called between the function prologue and the current
381 IP, then the current SP (frame_sp) will not be the original SP as set by
382 the function prologue. If the current SP is not the original SP, then the
383 compiler will have allocated an FP for this frame, fp_offset will be set,
384 and we can use it to calculate the original SP.
385
386 Then, we figure out where the arguments and locals are, and relocate the
387 offsets in fsr->regs to absolute addresses. */
388
389 if (fp_offset != -1) {
390 /* We have a frame pointer, so get it, and base our calc's on it. */
391 frame_fp = (CORE_ADDR) read_next_frame_reg (fi->next, ACTUAL_FP_REGNUM);
392 frame_sp = frame_fp - fp_offset;
393 } else {
394 /* We have no frame pointer, therefore frame_sp is still the same value
395 as set by prologue. But where is the frame itself? */
396 if (must_adjust[SRP_REGNUM]) {
397 /* Function header saved SRP (r1), the return address. Frame starts
398 4 bytes down from where it was saved. */
399 frame_fp = frame_sp + fsr->regs[SRP_REGNUM] - 4;
400 fi->locals_pointer = frame_fp;
401 } else {
402 /* Function header didn't save SRP (r1), so we are in a leaf fn or
403 are otherwise confused. */
404 frame_fp = -1;
405 }
406 }
407
408 /* The locals are relative to the FP (whether it exists as an allocated
409 register, or just as an assumed offset from the SP) */
410 fi->locals_pointer = frame_fp;
411
412 /* The arguments are just above the SP as it was before we adjusted it
413 on entry. */
414 fi->args_pointer = frame_sp - sp_offset;
415
416 /* Now that we know the SP value used by the prologue, we know where
417 it saved all the registers. */
418 for (src = 0; src < 32; src++)
419 if (must_adjust[src])
420 fsr->regs[src] += frame_sp;
421
422 /* The saved value of the SP is always known. */
423 /* (we hope...) */
424 if (fsr->regs[SP_REGNUM] != 0
425 && fsr->regs[SP_REGNUM] != frame_sp - sp_offset)
426 fprintf(stderr, "Bad saved SP value %x != %x, offset %x!\n",
427 fsr->regs[SP_REGNUM],
428 frame_sp - sp_offset, sp_offset);
429
430 fsr->regs[SP_REGNUM] = frame_sp - sp_offset;
431
432 return (ip);
433 }
434
435 /* Given an ip value corresponding to the start of a function,
436 return the ip of the first instruction after the function
437 prologue. */
438
439 CORE_ADDR
440 skip_prologue (ip)
441 CORE_ADDR (ip);
442 {
443 struct frame_saved_regs saved_regs_dummy;
444 struct symtab_and_line sal;
445 CORE_ADDR limit;
446
447 sal = find_pc_line (ip, 0);
448 limit = (sal.end) ? sal.end : 0xffffffff;
449
450 return (examine_prologue (ip, limit, (FRAME_ADDR) 0, &saved_regs_dummy,
451 (struct frame_info *)0 ));
452 }
453
454 /* Put here the code to store, into a struct frame_saved_regs,
455 the addresses of the saved registers of frame described by FRAME_INFO.
456 This includes special registers such as pc and fp saved in special
457 ways in the stack frame. sp is even more special:
458 the address we return for it IS the sp for the next frame.
459
460 We cache the result of doing this in the frame_cache_obstack, since
461 it is fairly expensive. */
462
463 void
464 frame_find_saved_regs (fi, fsr)
465 struct frame_info *fi;
466 struct frame_saved_regs *fsr;
467 {
468 register CORE_ADDR next_addr;
469 register CORE_ADDR *saved_regs;
470 register int regnum;
471 register struct frame_saved_regs *cache_fsr;
472 extern struct obstack frame_cache_obstack;
473 CORE_ADDR ip;
474 struct symtab_and_line sal;
475 CORE_ADDR limit;
476
477 if (!fi->fsr)
478 {
479 cache_fsr = (struct frame_saved_regs *)
480 obstack_alloc (&frame_cache_obstack,
481 sizeof (struct frame_saved_regs));
482 memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
483 fi->fsr = cache_fsr;
484
485 /* Find the start and end of the function prologue. If the PC
486 is in the function prologue, we only consider the part that
487 has executed already. */
488
489 ip = get_pc_function_start (fi->pc);
490 sal = find_pc_line (ip, 0);
491 limit = (sal.end && sal.end < fi->pc) ? sal.end: fi->pc;
492
493 /* This will fill in fields in *fi as well as in cache_fsr. */
494 examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
495 }
496
497 if (fsr)
498 *fsr = *fi->fsr;
499 }
500
501 /* Return the address of the locals block for the frame
502 described by FI. Returns 0 if the address is unknown.
503 NOTE! Frame locals are referred to by negative offsets from the
504 argument pointer, so this is the same as frame_args_address(). */
505
506 CORE_ADDR
507 frame_locals_address (fi)
508 struct frame_info *fi;
509 {
510 register FRAME frame;
511 struct frame_saved_regs fsr;
512 CORE_ADDR ap;
513
514 if (fi->args_pointer) /* Cached value is likely there. */
515 return fi->args_pointer;
516
517 /* Nope, generate it. */
518
519 get_frame_saved_regs (fi, &fsr);
520
521 return fi->args_pointer;
522 }
523
524 /* Return the address of the argument block for the frame
525 described by FI. Returns 0 if the address is unknown. */
526
527 CORE_ADDR
528 frame_args_address (fi)
529 struct frame_info *fi;
530 {
531 register FRAME frame;
532 struct frame_saved_regs fsr;
533 CORE_ADDR ap;
534
535 if (fi->args_pointer) /* Cached value is likely there. */
536 return fi->args_pointer;
537
538 /* Nope, generate it. */
539
540 get_frame_saved_regs (fi, &fsr);
541
542 return fi->args_pointer;
543 }
544
545 /* Return the saved PC from this frame.
546
547 If the frame has a memory copy of SRP_REGNUM, use that. If not,
548 just use the register SRP_REGNUM itself. */
549
550 CORE_ADDR
551 frame_saved_pc (frame)
552 FRAME frame;
553 {
554 return read_next_frame_reg(frame, SRP_REGNUM);
555 }
556
557
558 static int
559 pushed_size (prev_words, v)
560 int prev_words;
561 struct value *v;
562 {
563 switch (TYPE_CODE (VALUE_TYPE (v)))
564 {
565 case TYPE_CODE_VOID: /* Void type (values zero length) */
566
567 return 0; /* That was easy! */
568
569 case TYPE_CODE_PTR: /* Pointer type */
570 case TYPE_CODE_ENUM: /* Enumeration type */
571 case TYPE_CODE_INT: /* Integer type */
572 case TYPE_CODE_REF: /* C++ Reference types */
573 case TYPE_CODE_ARRAY: /* Array type, lower & upper bounds */
574
575 return 1;
576
577 case TYPE_CODE_FLT: /* Floating type */
578
579 if (TYPE_LENGTH (VALUE_TYPE (v)) == 4)
580 return 1;
581 else
582 /* Assume that it must be a double. */
583 if (prev_words & 1) /* at an odd-word boundary */
584 return 3; /* round to 8-byte boundary */
585 else
586 return 2;
587
588 case TYPE_CODE_STRUCT: /* C struct or Pascal record */
589 case TYPE_CODE_UNION: /* C union or Pascal variant part */
590
591 return (((TYPE_LENGTH (VALUE_TYPE (v)) + 3) / 4) * 4);
592
593 case TYPE_CODE_FUNC: /* Function type */
594 case TYPE_CODE_SET: /* Pascal sets */
595 case TYPE_CODE_RANGE: /* Range (integers within bounds) */
596 case TYPE_CODE_STRING: /* String type */
597 case TYPE_CODE_MEMBER: /* Member type */
598 case TYPE_CODE_METHOD: /* Method type */
599 /* Don't know how to pass these yet. */
600
601 case TYPE_CODE_UNDEF: /* Not used; catches errors */
602 default:
603 abort ();
604 }
605 }
606
607 static void
608 store_parm_word (address, val)
609 CORE_ADDR address;
610 int val;
611 {
612 write_memory (address, (char *)&val, 4);
613 }
614
615 static int
616 store_parm (prev_words, left_parm_addr, v)
617 unsigned int prev_words;
618 CORE_ADDR left_parm_addr;
619 struct value *v;
620 {
621 CORE_ADDR start = left_parm_addr + (prev_words * 4);
622 int *val_addr = (int *)VALUE_CONTENTS(v);
623
624 switch (TYPE_CODE (VALUE_TYPE (v)))
625 {
626 case TYPE_CODE_VOID: /* Void type (values zero length) */
627
628 return 0;
629
630 case TYPE_CODE_PTR: /* Pointer type */
631 case TYPE_CODE_ENUM: /* Enumeration type */
632 case TYPE_CODE_INT: /* Integer type */
633 case TYPE_CODE_ARRAY: /* Array type, lower & upper bounds */
634 case TYPE_CODE_REF: /* C++ Reference types */
635
636 store_parm_word (start, *val_addr);
637 return 1;
638
639 case TYPE_CODE_FLT: /* Floating type */
640
641 if (TYPE_LENGTH (VALUE_TYPE (v)) == 4)
642 {
643 store_parm_word (start, *val_addr);
644 return 1;
645 }
646 else
647 {
648 store_parm_word (start + ((prev_words & 1) * 4), val_addr[0]);
649 store_parm_word (start + ((prev_words & 1) * 4) + 4, val_addr[1]);
650 return 2 + (prev_words & 1);
651 }
652
653 case TYPE_CODE_STRUCT: /* C struct or Pascal record */
654 case TYPE_CODE_UNION: /* C union or Pascal variant part */
655
656 {
657 unsigned int words = (((TYPE_LENGTH (VALUE_TYPE (v)) + 3) / 4) * 4);
658 unsigned int word;
659
660 for (word = 0; word < words; word++)
661 store_parm_word (start + (word * 4), val_addr[word]);
662 return words;
663 }
664
665 default:
666 abort ();
667 }
668 }
669
670 /* This routine sets up all of the parameter values needed to make a pseudo
671 call. The name "push_parameters" is a misnomer on some archs,
672 because (on the m88k) most parameters generally end up being passed in
673 registers rather than on the stack. In this routine however, we do
674 end up storing *all* parameter values onto the stack (even if we will
675 realize later that some of these stores were unnecessary). */
676
677 #define FIRST_PARM_REGNUM 2
678
679 void
680 push_parameters (return_type, struct_conv, nargs, args)
681 struct type *return_type;
682 int struct_conv;
683 int nargs;
684 value *args;
685 {
686 int parm_num;
687 unsigned int p_words = 0;
688 CORE_ADDR left_parm_addr;
689
690 /* Start out by creating a space for the return value (if need be). We
691 only need to do this if the return value is a struct or union. If we
692 do make a space for a struct or union return value, then we must also
693 arrange for the base address of that space to go into r12, which is the
694 standard place to pass the address of the return value area to the
695 callee. Note that only structs and unions are returned in this fashion.
696 Ints, enums, pointers, and floats are returned into r2. Doubles are
697 returned into the register pair {r2,r3}. Note also that the space
698 reserved for a struct or union return value only has to be word aligned
699 (not double-word) but it is double-word aligned here anyway (just in
700 case that becomes important someday). */
701
702 switch (TYPE_CODE (return_type))
703 {
704 case TYPE_CODE_STRUCT:
705 case TYPE_CODE_UNION:
706 {
707 int return_bytes = ((TYPE_LENGTH (return_type) + 7) / 8) * 8;
708 CORE_ADDR rv_addr;
709
710 rv_addr = read_register (SP_REGNUM) - return_bytes;
711
712 write_register (SP_REGNUM, rv_addr); /* push space onto the stack */
713 write_register (SRA_REGNUM, rv_addr);/* set return value register */
714 }
715 }
716
717 /* Here we make a pre-pass on the whole parameter list to figure out exactly
718 how many words worth of stuff we are going to pass. */
719
720 for (p_words = 0, parm_num = 0; parm_num < nargs; parm_num++)
721 p_words += pushed_size (p_words, value_arg_coerce (args[parm_num]));
722
723 /* Now, check to see if we have to round up the number of parameter words
724 to get up to the next 8-bytes boundary. This may be necessary because
725 of the software convention to always keep the stack aligned on an 8-byte
726 boundary. */
727
728 if (p_words & 1)
729 p_words++; /* round to 8-byte boundary */
730
731 /* Now figure out the absolute address of the leftmost parameter, and update
732 the stack pointer to point at that address. */
733
734 left_parm_addr = read_register (SP_REGNUM) - (p_words * 4);
735 write_register (SP_REGNUM, left_parm_addr);
736
737 /* Now we can go through all of the parameters (in left-to-right order)
738 and write them to their parameter stack slots. Note that we are not
739 really "pushing" the parameter values. The stack space for these values
740 was already allocated above. Now we are just filling it up. */
741
742 for (p_words = 0, parm_num = 0; parm_num < nargs; parm_num++)
743 p_words +=
744 store_parm (p_words, left_parm_addr, value_arg_coerce (args[parm_num]));
745
746 /* Now that we are all done storing the parameter values into the stack, we
747 must go back and load up the parameter registers with the values from the
748 corresponding stack slots. Note that in the two cases of (a) gaps in the
749 parameter word sequence causes by (otherwise) misaligned doubles, and (b)
750 slots correcponding to structs or unions, the work we do here in loading
751 some parameter registers may be unnecessary, but who cares? */
752
753 for (p_words = 0; p_words < 8; p_words++)
754 {
755 write_register (FIRST_PARM_REGNUM + p_words,
756 read_memory_integer (left_parm_addr + (p_words * 4), 4));
757 }
758 }
759
760 void
761 pop_frame ()
762 {
763 error ("Feature not implemented for the m88k yet.");
764 return;
765 }
766
767 void
768 collect_returned_value (rval, value_type, struct_return, nargs, args)
769 value *rval;
770 struct type *value_type;
771 int struct_return;
772 int nargs;
773 value *args;
774 {
775 char retbuf[REGISTER_BYTES];
776
777 memcpy (retbuf, registers, REGISTER_BYTES);
778 *rval = value_being_returned (value_type, retbuf, struct_return);
779 return;
780 }
781
782 #if 0
783 /* Now handled in a machine independent way with CALL_DUMMY_LOCATION. */
784 /* Stuff a breakpoint instruction onto the stack (or elsewhere if the stack
785 is not a good place for it). Return the address at which the instruction
786 got stuffed, or zero if we were unable to stuff it anywhere. */
787
788 CORE_ADDR
789 push_breakpoint ()
790 {
791 static char breakpoint_insn[] = BREAKPOINT;
792 extern CORE_ADDR text_end; /* of inferior */
793 static char readback_buffer[] = BREAKPOINT;
794 int i;
795
796 /* With a little bit of luck, we can just stash the breakpoint instruction
797 in the word just beyond the end of normal text space. For systems on
798 which the hardware will not allow us to execute out of the stack segment,
799 we have to hope that we *are* at least allowed to effectively extend the
800 text segment by one word. If the actual end of user's the text segment
801 happens to fall right at a page boundary this trick may fail. Note that
802 we check for this by reading after writing, and comparing in order to
803 be sure that the write worked. */
804
805 write_memory (text_end, &breakpoint_insn, 4);
806
807 /* Fill the readback buffer with some garbage which is certain to be
808 unequal to the breakpoint insn. That way we can tell if the
809 following read doesn't actually succeed. */
810
811 for (i = 0; i < sizeof (readback_buffer); i++)
812 readback_buffer[i] = ~ readback_buffer[i]; /* Invert the bits */
813
814 /* Now check that the breakpoint insn was successfully installed. */
815
816 read_memory (text_end, readback_buffer, sizeof (readback_buffer));
817 for (i = 0; i < sizeof (readback_buffer); i++)
818 if (readback_buffer[i] != breakpoint_insn[i])
819 return 0; /* Failed to install! */
820
821 return text_end;
822 }
823 #endif