* config/m88k/{tm-delta88.h,tm-delta88v4.h}, m88k-tdep.c:
[binutils-gdb.git] / gdb / m88k-tdep.c
1 /* Target-machine dependent code for Motorola 88000 series, for GDB.
2 Copyright (C) 1988, 1990, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "value.h"
24 #include "gdbcore.h"
25
26 #include "symtab.h"
27 #include "setjmp.h"
28 #include "value.h"
29 #include "ieee-float.h" /* for ext_format & friends */
30
31 /* Size of an instruction */
32 #define BYTES_PER_88K_INSN 4
33
34 void frame_find_saved_regs ();
35
36 /* is this target an m88110? Otherwise assume m88100. This has
37 relevance for the ways in which we screw with instruction pointers. */
38 int target_is_m88110 = 0;
39
40 /* FIXME: this is really just a guess based on m88110 being big
41 endian. */
42 const struct ext_format ext_format_m88110 = {
43 /* tot sbyte smask expbyte manbyte */
44 10, 0, 0x80, 0,1, 4,8 /* m88110 */
45 };
46
47 /* Given a GDB frame, determine the address of the calling function's frame.
48 This will be used to create a new GDB frame struct, and then
49 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
50
51 For us, the frame address is its stack pointer value, so we look up
52 the function prologue to determine the caller's sp value, and return it. */
53
54 FRAME_ADDR
55 frame_chain (thisframe)
56 FRAME thisframe;
57 {
58
59 frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
60 /* NOTE: this depends on frame_find_saved_regs returning the VALUE, not
61 the ADDRESS, of SP_REGNUM. It also depends on the cache of
62 frame_find_saved_regs results. */
63 if (thisframe->fsr->regs[SP_REGNUM])
64 return thisframe->fsr->regs[SP_REGNUM];
65 else
66 return thisframe->frame; /* Leaf fn -- next frame up has same SP. */
67 }
68
69 int
70 frameless_function_invocation (frame)
71 FRAME frame;
72 {
73
74 frame_find_saved_regs (frame, (struct frame_saved_regs *) 0);
75 /* NOTE: this depends on frame_find_saved_regs returning the VALUE, not
76 the ADDRESS, of SP_REGNUM. It also depends on the cache of
77 frame_find_saved_regs results. */
78 if (frame->fsr->regs[SP_REGNUM])
79 return 0; /* Frameful -- return addr saved somewhere */
80 else
81 return 1; /* Frameless -- no saved return address */
82 }
83
84 void
85 init_extra_frame_info (fromleaf, fi)
86 int fromleaf;
87 struct frame_info *fi;
88 {
89 fi->fsr = 0; /* Not yet allocated */
90 fi->args_pointer = 0; /* Unknown */
91 fi->locals_pointer = 0; /* Unknown */
92 }
93 \f
94 /* Examine an m88k function prologue, recording the addresses at which
95 registers are saved explicitly by the prologue code, and returning
96 the address of the first instruction after the prologue (but not
97 after the instruction at address LIMIT, as explained below).
98
99 LIMIT places an upper bound on addresses of the instructions to be
100 examined. If the prologue code scan reaches LIMIT, the scan is
101 aborted and LIMIT is returned. This is used, when examining the
102 prologue for the current frame, to keep examine_prologue () from
103 claiming that a given register has been saved when in fact the
104 instruction that saves it has not yet been executed. LIMIT is used
105 at other times to stop the scan when we hit code after the true
106 function prologue (e.g. for the first source line) which might
107 otherwise be mistaken for function prologue.
108
109 The format of the function prologue matched by this routine is
110 derived from examination of the source to gcc 1.95, particularly
111 the routine output_prologue () in config/out-m88k.c.
112
113 subu r31,r31,n # stack pointer update
114
115 (st rn,r31,offset)? # save incoming regs
116 (st.d rn,r31,offset)?
117
118 (addu r30,r31,n)? # frame pointer update
119
120 (pic sequence)? # PIC code prologue
121
122 (or rn,rm,0)? # Move parameters to other regs
123 */
124
125 /* Macros for extracting fields from instructions. */
126
127 #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
128 #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
129
130 /* Prologue code that handles position-independent-code setup. */
131
132 struct pic_prologue_code {
133 unsigned long insn, mask;
134 };
135
136 static struct pic_prologue_code pic_prologue_code [] = {
137 /* FIXME -- until this is translated to hex, we won't match it... */
138 { 0xffffffff, 0 },
139 /* or r10,r1,0 (if not saved) */
140 /* bsr.n LabN */
141 /* or.u r25,r0,const */
142 /*LabN: or r25,r25,const2 */
143 /* addu r25,r25,1 */
144 /* or r1,r10,0 (if not saved) */
145 };
146
147 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
148 is not the address of a valid instruction, the address of the next
149 instruction beyond ADDR otherwise. *PWORD1 receives the first word
150 of the instruction. PWORD2 is ignored -- a remnant of the original
151 i960 version. */
152
153 #define NEXT_PROLOGUE_INSN(addr, lim, pword1) \
154 (((addr) < (lim)) ? next_insn (addr, pword1) : 0)
155
156 /* Read the m88k instruction at 'memaddr' and return the address of
157 the next instruction after that, or 0 if 'memaddr' is not the
158 address of a valid instruction. The instruction
159 is stored at 'pword1'. */
160
161 CORE_ADDR
162 next_insn (memaddr, pword1)
163 unsigned long *pword1;
164 CORE_ADDR memaddr;
165 {
166 *pword1 = read_memory_integer (memaddr, BYTES_PER_88K_INSN);
167 return memaddr + BYTES_PER_88K_INSN;
168 }
169
170 /* Read a register from frames called by us (or from the hardware regs). */
171
172 static int
173 read_next_frame_reg(fi, regno)
174 FRAME fi;
175 int regno;
176 {
177 for (; fi; fi = fi->next) {
178 if (regno == SP_REGNUM) return fi->frame;
179 else if (fi->fsr->regs[regno])
180 return read_memory_integer(fi->fsr->regs[regno], 4);
181 }
182 return read_register(regno);
183 }
184
185 /* Examine the prologue of a function. `ip' points to the first instruction.
186 `limit' is the limit of the prologue (e.g. the addr of the first
187 linenumber, or perhaps the program counter if we're stepping through).
188 `frame_sp' is the stack pointer value in use in this frame.
189 `fsr' is a pointer to a frame_saved_regs structure into which we put
190 info about the registers saved by this frame.
191 `fi' is a struct frame_info pointer; we fill in various fields in it
192 to reflect the offsets of the arg pointer and the locals pointer. */
193
194 static CORE_ADDR
195 examine_prologue (ip, limit, frame_sp, fsr, fi)
196 register CORE_ADDR ip;
197 register CORE_ADDR limit;
198 FRAME_ADDR frame_sp;
199 struct frame_saved_regs *fsr;
200 struct frame_info *fi;
201 {
202 register CORE_ADDR next_ip;
203 register int src;
204 register struct pic_prologue_code *pcode;
205 unsigned int insn;
206 int size, offset;
207 char must_adjust[32]; /* If set, must adjust offsets in fsr */
208 int sp_offset = -1; /* -1 means not set (valid must be mult of 8) */
209 int fp_offset = -1; /* -1 means not set */
210 CORE_ADDR frame_fp;
211
212 memset (must_adjust, '\0', sizeof (must_adjust));
213 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
214
215 /* Accept move of incoming registers to other registers, using
216 "or rd,rs,0" or "or.u rd,rs,0" or "or rd,r0,rs" or "or rd,rs,r0".
217 We don't have to worry about walking into the first lines of code,
218 since the first line number will stop us (assuming we have symbols).
219 What we have actually seen is "or r10,r0,r12". */
220
221 #define OR_MOVE_INSN 0x58000000 /* or/or.u with immed of 0 */
222 #define OR_MOVE_MASK 0xF800FFFF
223 #define OR_REG_MOVE1_INSN 0xF4005800 /* or rd,r0,rs */
224 #define OR_REG_MOVE1_MASK 0xFC1FFFE0
225 #define OR_REG_MOVE2_INSN 0xF4005800 /* or rd,rs,r0 */
226 #define OR_REG_MOVE2_MASK 0xFC00FFFF
227 while (next_ip &&
228 ((insn & OR_MOVE_MASK) == OR_MOVE_INSN ||
229 (insn & OR_REG_MOVE1_MASK) == OR_REG_MOVE1_INSN ||
230 (insn & OR_REG_MOVE2_MASK) == OR_REG_MOVE2_INSN
231 )
232 )
233 {
234 /* We don't care what moves to where. The result of the moves
235 has already been reflected in what the compiler tells us is the
236 location of these parameters. */
237 ip = next_ip;
238 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
239 }
240
241 /* Accept an optional "subu sp,sp,n" to set up the stack pointer. */
242
243 #define SUBU_SP_INSN 0x67ff0000
244 #define SUBU_SP_MASK 0xffff0007 /* Note offset must be mult. of 8 */
245 #define SUBU_OFFSET(x) ((unsigned)(x & 0xFFFF))
246 if (next_ip &&
247 ((insn & SUBU_SP_MASK) == SUBU_SP_INSN)) /* subu r31, r31, N */
248 {
249 sp_offset = -SUBU_OFFSET (insn);
250 ip = next_ip;
251 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
252 }
253
254 /* The function must start with a stack-pointer adjustment, or
255 we don't know WHAT'S going on... */
256 if (sp_offset == -1)
257 return ip;
258
259 /* Accept zero or more instances of "st rx,sp,n" or "st.d rx,sp,n".
260 This may cause us to mistake the copying of a register
261 parameter to the frame for the saving of a callee-saved
262 register, but that can't be helped, since with the
263 "-fcall-saved" flag, any register can be made callee-saved.
264 This probably doesn't matter, since the ``saved'' caller's values of
265 non-callee-saved registers are not relevant anyway. */
266
267 #define STD_STACK_INSN 0x201f0000
268 #define STD_STACK_MASK 0xfc1f0000
269 #define ST_STACK_INSN 0x241f0000
270 #define ST_STACK_MASK 0xfc1f0000
271 #define ST_OFFSET(x) ((unsigned)((x) & 0xFFFF))
272 #define ST_SRC(x) EXTRACT_FIELD ((x), 21, 5)
273
274 while (next_ip)
275 {
276 if ((insn & ST_STACK_MASK) == ST_STACK_INSN)
277 size = 1;
278 else if ((insn & STD_STACK_MASK) == STD_STACK_INSN)
279 size = 2;
280 else
281 break;
282
283 src = ST_SRC (insn);
284 offset = ST_OFFSET (insn);
285 while (size--)
286 {
287 must_adjust[src] = 1;
288 fsr->regs[src++] = offset; /* Will be adjusted later */
289 offset += 4;
290 }
291 ip = next_ip;
292 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
293 }
294
295 /* Accept an optional "addu r30,r31,n" to set up the frame pointer. */
296
297 #define ADDU_FP_INSN 0x63df0000
298 #define ADDU_FP_MASK 0xffff0000
299 #define ADDU_OFFSET(x) ((unsigned)(x & 0xFFFF))
300 if (next_ip &&
301 ((insn & ADDU_FP_MASK) == ADDU_FP_INSN)) /* addu r30, r31, N */
302 {
303 fp_offset = ADDU_OFFSET (insn);
304 ip = next_ip;
305 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
306 }
307
308 /* Accept the PIC prologue code if present. */
309
310 pcode = pic_prologue_code;
311 size = sizeof (pic_prologue_code) / sizeof (*pic_prologue_code);
312 /* If return addr is saved, we don't use first or last insn of PICstuff. */
313 if (fsr->regs[SRP_REGNUM]) {
314 pcode++;
315 size-=2;
316 }
317
318 while (size-- && next_ip && (pcode->insn == (pcode->mask & insn)))
319 {
320 pcode++;
321 ip = next_ip;
322 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
323 }
324
325 /* Accept moves of parameter registers to other registers, using
326 "or rd,rs,0" or "or.u rd,rs,0" or "or rd,r0,rs" or "or rd,rs,r0".
327 We don't have to worry about walking into the first lines of code,
328 since the first line number will stop us (assuming we have symbols).
329 What gcc actually seems to produce is "or rd,r0,rs". */
330
331 #define OR_MOVE_INSN 0x58000000 /* or/or.u with immed of 0 */
332 #define OR_MOVE_MASK 0xF800FFFF
333 #define OR_REG_MOVE1_INSN 0xF4005800 /* or rd,r0,rs */
334 #define OR_REG_MOVE1_MASK 0xFC1FFFE0
335 #define OR_REG_MOVE2_INSN 0xF4005800 /* or rd,rs,r0 */
336 #define OR_REG_MOVE2_MASK 0xFC00FFFF
337 while (next_ip &&
338 ((insn & OR_MOVE_MASK) == OR_MOVE_INSN ||
339 (insn & OR_REG_MOVE1_MASK) == OR_REG_MOVE1_INSN ||
340 (insn & OR_REG_MOVE2_MASK) == OR_REG_MOVE2_INSN
341 )
342 )
343 {
344 /* We don't care what moves to where. The result of the moves
345 has already been reflected in what the compiler tells us is the
346 location of these parameters. */
347 ip = next_ip;
348 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
349 }
350
351 /* We're done with the prologue. If we don't care about the stack
352 frame itself, just return. (Note that fsr->regs has been trashed,
353 but the one caller who calls with fi==0 passes a dummy there.) */
354
355 if (fi == 0)
356 return ip;
357
358 /*
359 OK, now we have:
360
361 sp_offset original (before any alloca calls) displacement of SP
362 (will be negative).
363
364 fp_offset displacement from original SP to the FP for this frame
365 or -1.
366
367 fsr->regs[0..31] displacement from original SP to the stack
368 location where reg[0..31] is stored.
369
370 must_adjust[0..31] set if corresponding offset was set.
371
372 If alloca has been called between the function prologue and the current
373 IP, then the current SP (frame_sp) will not be the original SP as set by
374 the function prologue. If the current SP is not the original SP, then the
375 compiler will have allocated an FP for this frame, fp_offset will be set,
376 and we can use it to calculate the original SP.
377
378 Then, we figure out where the arguments and locals are, and relocate the
379 offsets in fsr->regs to absolute addresses. */
380
381 if (fp_offset != -1) {
382 /* We have a frame pointer, so get it, and base our calc's on it. */
383 frame_fp = (CORE_ADDR) read_next_frame_reg (fi->next, ACTUAL_FP_REGNUM);
384 frame_sp = frame_fp - fp_offset;
385 } else {
386 /* We have no frame pointer, therefore frame_sp is still the same value
387 as set by prologue. But where is the frame itself? */
388 if (must_adjust[SRP_REGNUM]) {
389 /* Function header saved SRP (r1), the return address. Frame starts
390 4 bytes down from where it was saved. */
391 frame_fp = frame_sp + fsr->regs[SRP_REGNUM] - 4;
392 fi->locals_pointer = frame_fp;
393 } else {
394 /* Function header didn't save SRP (r1), so we are in a leaf fn or
395 are otherwise confused. */
396 frame_fp = -1;
397 }
398 }
399
400 /* The locals are relative to the FP (whether it exists as an allocated
401 register, or just as an assumed offset from the SP) */
402 fi->locals_pointer = frame_fp;
403
404 /* The arguments are just above the SP as it was before we adjusted it
405 on entry. */
406 fi->args_pointer = frame_sp - sp_offset;
407
408 /* Now that we know the SP value used by the prologue, we know where
409 it saved all the registers. */
410 for (src = 0; src < 32; src++)
411 if (must_adjust[src])
412 fsr->regs[src] += frame_sp;
413
414 /* The saved value of the SP is always known. */
415 /* (we hope...) */
416 if (fsr->regs[SP_REGNUM] != 0
417 && fsr->regs[SP_REGNUM] != frame_sp - sp_offset)
418 fprintf_unfiltered(gdb_stderr, "Bad saved SP value %x != %x, offset %x!\n",
419 fsr->regs[SP_REGNUM],
420 frame_sp - sp_offset, sp_offset);
421
422 fsr->regs[SP_REGNUM] = frame_sp - sp_offset;
423
424 return (ip);
425 }
426
427 /* Given an ip value corresponding to the start of a function,
428 return the ip of the first instruction after the function
429 prologue. */
430
431 CORE_ADDR
432 skip_prologue (ip)
433 CORE_ADDR (ip);
434 {
435 struct frame_saved_regs saved_regs_dummy;
436 struct symtab_and_line sal;
437 CORE_ADDR limit;
438
439 sal = find_pc_line (ip, 0);
440 limit = (sal.end) ? sal.end : 0xffffffff;
441
442 return (examine_prologue (ip, limit, (FRAME_ADDR) 0, &saved_regs_dummy,
443 (struct frame_info *)0 ));
444 }
445
446 /* Put here the code to store, into a struct frame_saved_regs,
447 the addresses of the saved registers of frame described by FRAME_INFO.
448 This includes special registers such as pc and fp saved in special
449 ways in the stack frame. sp is even more special:
450 the address we return for it IS the sp for the next frame.
451
452 We cache the result of doing this in the frame_cache_obstack, since
453 it is fairly expensive. */
454
455 void
456 frame_find_saved_regs (fi, fsr)
457 struct frame_info *fi;
458 struct frame_saved_regs *fsr;
459 {
460 register struct frame_saved_regs *cache_fsr;
461 extern struct obstack frame_cache_obstack;
462 CORE_ADDR ip;
463 struct symtab_and_line sal;
464 CORE_ADDR limit;
465
466 if (!fi->fsr)
467 {
468 cache_fsr = (struct frame_saved_regs *)
469 obstack_alloc (&frame_cache_obstack,
470 sizeof (struct frame_saved_regs));
471 memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
472 fi->fsr = cache_fsr;
473
474 /* Find the start and end of the function prologue. If the PC
475 is in the function prologue, we only consider the part that
476 has executed already. */
477
478 ip = get_pc_function_start (fi->pc);
479 sal = find_pc_line (ip, 0);
480 limit = (sal.end && sal.end < fi->pc) ? sal.end: fi->pc;
481
482 /* This will fill in fields in *fi as well as in cache_fsr. */
483 #ifdef SIGTRAMP_FRAME_FIXUP
484 if (fi->signal_handler_caller)
485 SIGTRAMP_FRAME_FIXUP(fi->frame);
486 #endif
487 examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
488 #ifdef SIGTRAMP_SP_FIXUP
489 if (fi->signal_handler_caller && fi->fsr->regs[SP_REGNUM])
490 SIGTRAMP_SP_FIXUP(fi->fsr->regs[SP_REGNUM]);
491 #endif
492 }
493
494 if (fsr)
495 *fsr = *fi->fsr;
496 }
497
498 /* Return the address of the locals block for the frame
499 described by FI. Returns 0 if the address is unknown.
500 NOTE! Frame locals are referred to by negative offsets from the
501 argument pointer, so this is the same as frame_args_address(). */
502
503 CORE_ADDR
504 frame_locals_address (fi)
505 struct frame_info *fi;
506 {
507 struct frame_saved_regs fsr;
508
509 if (fi->args_pointer) /* Cached value is likely there. */
510 return fi->args_pointer;
511
512 /* Nope, generate it. */
513
514 get_frame_saved_regs (fi, &fsr);
515
516 return fi->args_pointer;
517 }
518
519 /* Return the address of the argument block for the frame
520 described by FI. Returns 0 if the address is unknown. */
521
522 CORE_ADDR
523 frame_args_address (fi)
524 struct frame_info *fi;
525 {
526 struct frame_saved_regs fsr;
527
528 if (fi->args_pointer) /* Cached value is likely there. */
529 return fi->args_pointer;
530
531 /* Nope, generate it. */
532
533 get_frame_saved_regs (fi, &fsr);
534
535 return fi->args_pointer;
536 }
537
538 /* Return the saved PC from this frame.
539
540 If the frame has a memory copy of SRP_REGNUM, use that. If not,
541 just use the register SRP_REGNUM itself. */
542
543 CORE_ADDR
544 frame_saved_pc (frame)
545 FRAME frame;
546 {
547 return read_next_frame_reg(frame, SRP_REGNUM);
548 }
549
550 #if 0
551 /* I believe this is all obsolete call dummy stuff. */
552 static int
553 pushed_size (prev_words, v)
554 int prev_words;
555 struct value *v;
556 {
557 switch (TYPE_CODE (VALUE_TYPE (v)))
558 {
559 case TYPE_CODE_VOID: /* Void type (values zero length) */
560
561 return 0; /* That was easy! */
562
563 case TYPE_CODE_PTR: /* Pointer type */
564 case TYPE_CODE_ENUM: /* Enumeration type */
565 case TYPE_CODE_INT: /* Integer type */
566 case TYPE_CODE_REF: /* C++ Reference types */
567 case TYPE_CODE_ARRAY: /* Array type, lower & upper bounds */
568
569 return 1;
570
571 case TYPE_CODE_FLT: /* Floating type */
572
573 if (TYPE_LENGTH (VALUE_TYPE (v)) == 4)
574 return 1;
575 else
576 /* Assume that it must be a double. */
577 if (prev_words & 1) /* at an odd-word boundary */
578 return 3; /* round to 8-byte boundary */
579 else
580 return 2;
581
582 case TYPE_CODE_STRUCT: /* C struct or Pascal record */
583 case TYPE_CODE_UNION: /* C union or Pascal variant part */
584
585 return (((TYPE_LENGTH (VALUE_TYPE (v)) + 3) / 4) * 4);
586
587 case TYPE_CODE_FUNC: /* Function type */
588 case TYPE_CODE_SET: /* Pascal sets */
589 case TYPE_CODE_RANGE: /* Range (integers within bounds) */
590 case TYPE_CODE_STRING: /* String type */
591 case TYPE_CODE_MEMBER: /* Member type */
592 case TYPE_CODE_METHOD: /* Method type */
593 /* Don't know how to pass these yet. */
594
595 case TYPE_CODE_UNDEF: /* Not used; catches errors */
596 default:
597 abort ();
598 }
599 }
600
601 static void
602 store_parm_word (address, val)
603 CORE_ADDR address;
604 int val;
605 {
606 write_memory (address, (char *)&val, 4);
607 }
608
609 static int
610 store_parm (prev_words, left_parm_addr, v)
611 unsigned int prev_words;
612 CORE_ADDR left_parm_addr;
613 struct value *v;
614 {
615 CORE_ADDR start = left_parm_addr + (prev_words * 4);
616 int *val_addr = (int *)VALUE_CONTENTS(v);
617
618 switch (TYPE_CODE (VALUE_TYPE (v)))
619 {
620 case TYPE_CODE_VOID: /* Void type (values zero length) */
621
622 return 0;
623
624 case TYPE_CODE_PTR: /* Pointer type */
625 case TYPE_CODE_ENUM: /* Enumeration type */
626 case TYPE_CODE_INT: /* Integer type */
627 case TYPE_CODE_ARRAY: /* Array type, lower & upper bounds */
628 case TYPE_CODE_REF: /* C++ Reference types */
629
630 store_parm_word (start, *val_addr);
631 return 1;
632
633 case TYPE_CODE_FLT: /* Floating type */
634
635 if (TYPE_LENGTH (VALUE_TYPE (v)) == 4)
636 {
637 store_parm_word (start, *val_addr);
638 return 1;
639 }
640 else
641 {
642 store_parm_word (start + ((prev_words & 1) * 4), val_addr[0]);
643 store_parm_word (start + ((prev_words & 1) * 4) + 4, val_addr[1]);
644 return 2 + (prev_words & 1);
645 }
646
647 case TYPE_CODE_STRUCT: /* C struct or Pascal record */
648 case TYPE_CODE_UNION: /* C union or Pascal variant part */
649
650 {
651 unsigned int words = (((TYPE_LENGTH (VALUE_TYPE (v)) + 3) / 4) * 4);
652 unsigned int word;
653
654 for (word = 0; word < words; word++)
655 store_parm_word (start + (word * 4), val_addr[word]);
656 return words;
657 }
658
659 default:
660 abort ();
661 }
662 }
663
664 /* This routine sets up all of the parameter values needed to make a pseudo
665 call. The name "push_parameters" is a misnomer on some archs,
666 because (on the m88k) most parameters generally end up being passed in
667 registers rather than on the stack. In this routine however, we do
668 end up storing *all* parameter values onto the stack (even if we will
669 realize later that some of these stores were unnecessary). */
670
671 #define FIRST_PARM_REGNUM 2
672
673 void
674 push_parameters (return_type, struct_conv, nargs, args)
675 struct type *return_type;
676 int struct_conv;
677 int nargs;
678 value *args;
679 {
680 int parm_num;
681 unsigned int p_words = 0;
682 CORE_ADDR left_parm_addr;
683
684 /* Start out by creating a space for the return value (if need be). We
685 only need to do this if the return value is a struct or union. If we
686 do make a space for a struct or union return value, then we must also
687 arrange for the base address of that space to go into r12, which is the
688 standard place to pass the address of the return value area to the
689 callee. Note that only structs and unions are returned in this fashion.
690 Ints, enums, pointers, and floats are returned into r2. Doubles are
691 returned into the register pair {r2,r3}. Note also that the space
692 reserved for a struct or union return value only has to be word aligned
693 (not double-word) but it is double-word aligned here anyway (just in
694 case that becomes important someday). */
695
696 switch (TYPE_CODE (return_type))
697 {
698 case TYPE_CODE_STRUCT:
699 case TYPE_CODE_UNION:
700 {
701 int return_bytes = ((TYPE_LENGTH (return_type) + 7) / 8) * 8;
702 CORE_ADDR rv_addr;
703
704 rv_addr = read_register (SP_REGNUM) - return_bytes;
705
706 write_register (SP_REGNUM, rv_addr); /* push space onto the stack */
707 write_register (SRA_REGNUM, rv_addr);/* set return value register */
708 break;
709 }
710 default: break;
711 }
712
713 /* Here we make a pre-pass on the whole parameter list to figure out exactly
714 how many words worth of stuff we are going to pass. */
715
716 for (p_words = 0, parm_num = 0; parm_num < nargs; parm_num++)
717 p_words += pushed_size (p_words, value_arg_coerce (args[parm_num]));
718
719 /* Now, check to see if we have to round up the number of parameter words
720 to get up to the next 8-bytes boundary. This may be necessary because
721 of the software convention to always keep the stack aligned on an 8-byte
722 boundary. */
723
724 if (p_words & 1)
725 p_words++; /* round to 8-byte boundary */
726
727 /* Now figure out the absolute address of the leftmost parameter, and update
728 the stack pointer to point at that address. */
729
730 left_parm_addr = read_register (SP_REGNUM) - (p_words * 4);
731 write_register (SP_REGNUM, left_parm_addr);
732
733 /* Now we can go through all of the parameters (in left-to-right order)
734 and write them to their parameter stack slots. Note that we are not
735 really "pushing" the parameter values. The stack space for these values
736 was already allocated above. Now we are just filling it up. */
737
738 for (p_words = 0, parm_num = 0; parm_num < nargs; parm_num++)
739 p_words +=
740 store_parm (p_words, left_parm_addr, value_arg_coerce (args[parm_num]));
741
742 /* Now that we are all done storing the parameter values into the stack, we
743 must go back and load up the parameter registers with the values from the
744 corresponding stack slots. Note that in the two cases of (a) gaps in the
745 parameter word sequence causes by (otherwise) misaligned doubles, and (b)
746 slots correcponding to structs or unions, the work we do here in loading
747 some parameter registers may be unnecessary, but who cares? */
748
749 for (p_words = 0; p_words < 8; p_words++)
750 {
751 write_register (FIRST_PARM_REGNUM + p_words,
752 read_memory_integer (left_parm_addr + (p_words * 4), 4));
753 }
754 }
755
756 void
757 collect_returned_value (rval, value_type, struct_return, nargs, args)
758 value *rval;
759 struct type *value_type;
760 int struct_return;
761 int nargs;
762 value *args;
763 {
764 char retbuf[REGISTER_BYTES];
765
766 memcpy (retbuf, registers, REGISTER_BYTES);
767 *rval = value_being_returned (value_type, retbuf, struct_return);
768 return;
769 }
770 #endif /* 0 */
771
772 /*start of lines added by kev*/
773
774 #define DUMMY_FRAME_SIZE 192
775
776 static void
777 write_word (sp, word)
778 CORE_ADDR sp;
779 unsigned LONGEST word;
780 {
781 register int len = REGISTER_SIZE;
782 char buffer[MAX_REGISTER_RAW_SIZE];
783
784 store_unsigned_integer (buffer, len, word);
785 write_memory (sp, buffer, len);
786 }
787
788 void
789 m88k_push_dummy_frame()
790 {
791 register CORE_ADDR sp = read_register (SP_REGNUM);
792 register int rn;
793 int offset;
794
795 sp -= DUMMY_FRAME_SIZE; /* allocate a bunch of space */
796
797 for (rn = 0, offset = 0; rn <= SP_REGNUM; rn++, offset+=4)
798 write_word (sp+offset, read_register(rn));
799
800 write_word (sp+offset, read_register (SXIP_REGNUM));
801 offset += 4;
802
803 write_word (sp+offset, read_register (SNIP_REGNUM));
804 offset += 4;
805
806 write_word (sp+offset, read_register (SFIP_REGNUM));
807 offset += 4;
808
809 write_word (sp+offset, read_register (PSR_REGNUM));
810 offset += 4;
811
812 write_word (sp+offset, read_register (FPSR_REGNUM));
813 offset += 4;
814
815 write_word (sp+offset, read_register (FPCR_REGNUM));
816 offset += 4;
817
818 write_register (SP_REGNUM, sp);
819 write_register (ACTUAL_FP_REGNUM, sp);
820 }
821
822 void
823 pop_frame ()
824 {
825 register FRAME frame = get_current_frame ();
826 register CORE_ADDR fp;
827 register int regnum;
828 struct frame_saved_regs fsr;
829 struct frame_info *fi;
830
831 fi = get_frame_info (frame);
832 fp = fi -> frame;
833 get_frame_saved_regs (fi, &fsr);
834
835 if (PC_IN_CALL_DUMMY (read_pc(), read_register(SP_REGNUM), FRAME_FP(fi)))
836 {
837 /* FIXME: I think get_frame_saved_regs should be handling this so
838 that we can deal with the saved registers properly (e.g. frame
839 1 is a call dummy, the user types "frame 2" and then "print $ps"). */
840 register CORE_ADDR sp = read_register (ACTUAL_FP_REGNUM);
841 int offset;
842
843 for (regnum = 0, offset = 0; regnum <= SP_REGNUM; regnum++, offset+=4)
844 (void) write_register (regnum, read_memory_integer (sp+offset, 4));
845
846 write_register (SXIP_REGNUM, read_memory_integer (sp+offset, 4));
847 offset += 4;
848
849 write_register (SNIP_REGNUM, read_memory_integer (sp+offset, 4));
850 offset += 4;
851
852 write_register (SFIP_REGNUM, read_memory_integer (sp+offset, 4));
853 offset += 4;
854
855 write_register (PSR_REGNUM, read_memory_integer (sp+offset, 4));
856 offset += 4;
857
858 write_register (FPSR_REGNUM, read_memory_integer (sp+offset, 4));
859 offset += 4;
860
861 write_register (FPCR_REGNUM, read_memory_integer (sp+offset, 4));
862 offset += 4;
863
864 }
865 else
866 {
867 for (regnum = FP_REGNUM ; regnum > 0 ; regnum--)
868 if (fsr.regs[regnum])
869 write_register (regnum,
870 read_memory_integer (fsr.regs[regnum], 4));
871 write_pc(frame_saved_pc(frame));
872 }
873 reinit_frame_cache ();
874 }