gdb: Add maint set ignore-prologue-end-flag
[binutils-gdb.git] / gdb / mep-tdep.c
1 /* Target-dependent code for the Toshiba MeP for GDB, the GNU debugger.
2
3 Copyright (C) 2001-2022 Free Software Foundation, Inc.
4
5 Contributed by Red Hat, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "gdbcore.h"
30 #include "value.h"
31 #include "inferior.h"
32 #include "dis-asm.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "language.h"
36 #include "arch-utils.h"
37 #include "regcache.h"
38 #include "remote.h"
39 #include "sim-regno.h"
40 #include "disasm.h"
41 #include "trad-frame.h"
42 #include "reggroups.h"
43 #include "elf-bfd.h"
44 #include "elf/mep.h"
45 #include "prologue-value.h"
46 #include "cgen/bitset.h"
47 #include "infcall.h"
48 #include "gdbarch.h"
49
50 /* Get the user's customized MeP coprocessor register names from
51 libopcodes. */
52 #include "opcodes/mep-desc.h"
53 #include "opcodes/mep-opc.h"
54
55 \f
56 /* The gdbarch_tdep structure. */
57
58 /* A quick recap for GDB hackers not familiar with the whole Toshiba
59 Media Processor story:
60
61 The MeP media engine is a configureable processor: users can design
62 their own coprocessors, implement custom instructions, adjust cache
63 sizes, select optional standard facilities like add-and-saturate
64 instructions, and so on. Then, they can build custom versions of
65 the GNU toolchain to support their customized chips. The
66 MeP-Integrator program (see utils/mep) takes a GNU toolchain source
67 tree, and a config file pointing to various files provided by the
68 user describing their customizations, and edits the source tree to
69 produce a compiler that can generate their custom instructions, an
70 assembler that can assemble them and recognize their custom
71 register names, and so on.
72
73 Furthermore, the user can actually specify several of these custom
74 configurations, called 'me_modules', and get a toolchain which can
75 produce code for any of them, given a compiler/assembler switch;
76 you say something like 'gcc -mconfig=mm_max' to generate code for
77 the me_module named 'mm_max'.
78
79 GDB, in particular, needs to:
80
81 - use the coprocessor control register names provided by the user
82 in their hardware description, in expressions, 'info register'
83 output, and disassembly,
84
85 - know the number, names, and types of the coprocessor's
86 general-purpose registers, adjust the 'info all-registers' output
87 accordingly, and print error messages if the user refers to one
88 that doesn't exist
89
90 - allow access to the control bus space only when the configuration
91 actually has a control bus, and recognize which regions of the
92 control bus space are actually populated,
93
94 - disassemble using the user's provided mnemonics for their custom
95 instructions, and
96
97 - recognize whether the $hi and $lo registers are present, and
98 allow access to them only when they are actually there.
99
100 There are three sources of information about what sort of me_module
101 we're actually dealing with:
102
103 - A MeP executable file indicates which me_module it was compiled
104 for, and libopcodes has tables describing each module. So, given
105 an executable file, we can find out about the processor it was
106 compiled for.
107
108 - There are SID command-line options to select a particular
109 me_module, overriding the one specified in the ELF file. SID
110 provides GDB with a fake read-only register, 'module', which
111 indicates which me_module GDB is communicating with an instance
112 of.
113
114 - There are SID command-line options to enable or disable certain
115 optional processor features, overriding the defaults for the
116 selected me_module. The MeP $OPT register indicates which
117 options are present on the current processor. */
118
119
120 struct mep_gdbarch_tdep : gdbarch_tdep
121 {
122 /* A CGEN cpu descriptor for this BFD architecture and machine.
123
124 Note: this is *not* customized for any particular me_module; the
125 MeP libopcodes machinery actually puts off module-specific
126 customization until the last minute. So this contains
127 information about all supported me_modules. */
128 CGEN_CPU_DESC cpu_desc = nullptr;
129
130 /* The me_module index from the ELF file we used to select this
131 architecture, or CONFIG_NONE if there was none.
132
133 Note that we should prefer to use the me_module number available
134 via the 'module' register, whenever we're actually talking to a
135 real target.
136
137 In the absence of live information, we'd like to get the
138 me_module number from the ELF file. But which ELF file: the
139 executable file, the core file, ... ? The answer is, "the last
140 ELF file we used to set the current architecture". Thus, we
141 create a separate instance of the gdbarch structure for each
142 me_module value mep_gdbarch_init sees, and store the me_module
143 value from the ELF file here. */
144 CONFIG_ATTR me_module {};
145 };
146
147
148 \f
149 /* Getting me_module information from the CGEN tables. */
150
151
152 /* Find an entry in the DESC's hardware table whose name begins with
153 PREFIX, and whose ISA mask intersects COPRO_ISA_MASK, but does not
154 intersect with GENERIC_ISA_MASK. If there is no matching entry,
155 return zero. */
156 static const CGEN_HW_ENTRY *
157 find_hw_entry_by_prefix_and_isa (CGEN_CPU_DESC desc,
158 const char *prefix,
159 CGEN_BITSET *copro_isa_mask,
160 CGEN_BITSET *generic_isa_mask)
161 {
162 int prefix_len = strlen (prefix);
163 int i;
164
165 for (i = 0; i < desc->hw_table.num_entries; i++)
166 {
167 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
168 if (strncmp (prefix, hw->name, prefix_len) == 0)
169 {
170 CGEN_BITSET *hw_isa_mask
171 = ((CGEN_BITSET *)
172 &CGEN_ATTR_CGEN_HW_ISA_VALUE (CGEN_HW_ATTRS (hw)));
173
174 if (cgen_bitset_intersect_p (hw_isa_mask, copro_isa_mask)
175 && ! cgen_bitset_intersect_p (hw_isa_mask, generic_isa_mask))
176 return hw;
177 }
178 }
179
180 return 0;
181 }
182
183
184 /* Find an entry in DESC's hardware table whose type is TYPE. Return
185 zero if there is none. */
186 static const CGEN_HW_ENTRY *
187 find_hw_entry_by_type (CGEN_CPU_DESC desc, CGEN_HW_TYPE type)
188 {
189 int i;
190
191 for (i = 0; i < desc->hw_table.num_entries; i++)
192 {
193 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
194
195 if (hw->type == type)
196 return hw;
197 }
198
199 return 0;
200 }
201
202
203 /* Return the CGEN hardware table entry for the coprocessor register
204 set for ME_MODULE, whose name prefix is PREFIX. If ME_MODULE has
205 no such register set, return zero. If ME_MODULE is the generic
206 me_module CONFIG_NONE, return the table entry for the register set
207 whose hardware type is GENERIC_TYPE. */
208 static const CGEN_HW_ENTRY *
209 me_module_register_set (CONFIG_ATTR me_module,
210 const char *prefix,
211 CGEN_HW_TYPE generic_type)
212 {
213 /* This is kind of tricky, because the hardware table is constructed
214 in a way that isn't very helpful. Perhaps we can fix that, but
215 here's how it works at the moment:
216
217 The configuration map, `mep_config_map', is indexed by me_module
218 number, and indicates which coprocessor and core ISAs that
219 me_module supports. The 'core_isa' mask includes all the core
220 ISAs, and the 'cop_isa' mask includes all the coprocessor ISAs.
221 The entry for the generic me_module, CONFIG_NONE, has an empty
222 'cop_isa', and its 'core_isa' selects only the standard MeP
223 instruction set.
224
225 The CGEN CPU descriptor's hardware table, desc->hw_table, has
226 entries for all the register sets, for all me_modules. Each
227 entry has a mask indicating which ISAs use that register set.
228 So, if an me_module supports some coprocessor ISA, we can find
229 applicable register sets by scanning the hardware table for
230 register sets whose masks include (at least some of) those ISAs.
231
232 Each hardware table entry also has a name, whose prefix says
233 whether it's a general-purpose ("h-cr") or control ("h-ccr")
234 coprocessor register set. It might be nicer to have an attribute
235 indicating what sort of register set it was, that we could use
236 instead of pattern-matching on the name.
237
238 When there is no hardware table entry whose mask includes a
239 particular coprocessor ISA and whose name starts with a given
240 prefix, then that means that that coprocessor doesn't have any
241 registers of that type. In such cases, this function must return
242 a null pointer.
243
244 Coprocessor register sets' masks may or may not include the core
245 ISA for the me_module they belong to. Those generated by a2cgen
246 do, but the sample me_module included in the unconfigured tree,
247 'ccfx', does not.
248
249 There are generic coprocessor register sets, intended only for
250 use with the generic me_module. Unfortunately, their masks
251 include *all* ISAs --- even those for coprocessors that don't
252 have such register sets. This makes detecting the case where a
253 coprocessor lacks a particular register set more complicated.
254
255 So, here's the approach we take:
256
257 - For CONFIG_NONE, we return the generic coprocessor register set.
258
259 - For any other me_module, we search for a register set whose
260 mask contains any of the me_module's coprocessor ISAs,
261 specifically excluding the generic coprocessor register sets. */
262
263 mep_gdbarch_tdep *tdep
264 = (mep_gdbarch_tdep *) gdbarch_tdep (target_gdbarch ());
265 CGEN_CPU_DESC desc = tdep->cpu_desc;
266 const CGEN_HW_ENTRY *hw;
267
268 if (me_module == CONFIG_NONE)
269 hw = find_hw_entry_by_type (desc, generic_type);
270 else
271 {
272 CGEN_BITSET *cop = &mep_config_map[me_module].cop_isa;
273 CGEN_BITSET *core = &mep_config_map[me_module].core_isa;
274 CGEN_BITSET *generic = &mep_config_map[CONFIG_NONE].core_isa;
275 CGEN_BITSET *cop_and_core;
276
277 /* The coprocessor ISAs include the ISA for the specific core which
278 has that coprocessor. */
279 cop_and_core = cgen_bitset_copy (cop);
280 cgen_bitset_union (cop, core, cop_and_core);
281 hw = find_hw_entry_by_prefix_and_isa (desc, prefix, cop_and_core, generic);
282 }
283
284 return hw;
285 }
286
287
288 /* Given a hardware table entry HW representing a register set, return
289 a pointer to the keyword table with all the register names. If HW
290 is NULL, return NULL, to propagate the "no such register set" info
291 along. */
292 static CGEN_KEYWORD *
293 register_set_keyword_table (const CGEN_HW_ENTRY *hw)
294 {
295 if (! hw)
296 return NULL;
297
298 /* Check that HW is actually a keyword table. */
299 gdb_assert (hw->asm_type == CGEN_ASM_KEYWORD);
300
301 /* The 'asm_data' field of a register set's hardware table entry
302 refers to a keyword table. */
303 return (CGEN_KEYWORD *) hw->asm_data;
304 }
305
306
307 /* Given a keyword table KEYWORD and a register number REGNUM, return
308 the name of the register, or "" if KEYWORD contains no register
309 whose number is REGNUM. */
310 static const char *
311 register_name_from_keyword (CGEN_KEYWORD *keyword_table, int regnum)
312 {
313 const CGEN_KEYWORD_ENTRY *entry
314 = cgen_keyword_lookup_value (keyword_table, regnum);
315
316 if (entry)
317 {
318 char *name = entry->name;
319
320 /* The CGEN keyword entries for register names include the
321 leading $, which appears in MeP assembly as well as in GDB.
322 But we don't want to return that; GDB core code adds that
323 itself. */
324 if (name[0] == '$')
325 name++;
326
327 return name;
328 }
329 else
330 return "";
331 }
332
333
334 /* Masks for option bits in the OPT special-purpose register. */
335 enum {
336 MEP_OPT_DIV = 1 << 25, /* 32-bit divide instruction option */
337 MEP_OPT_MUL = 1 << 24, /* 32-bit multiply instruction option */
338 MEP_OPT_BIT = 1 << 23, /* bit manipulation instruction option */
339 MEP_OPT_SAT = 1 << 22, /* saturation instruction option */
340 MEP_OPT_CLP = 1 << 21, /* clip instruction option */
341 MEP_OPT_MIN = 1 << 20, /* min/max instruction option */
342 MEP_OPT_AVE = 1 << 19, /* average instruction option */
343 MEP_OPT_ABS = 1 << 18, /* absolute difference instruction option */
344 MEP_OPT_LDZ = 1 << 16, /* leading zero instruction option */
345 MEP_OPT_VL64 = 1 << 6, /* 64-bit VLIW operation mode option */
346 MEP_OPT_VL32 = 1 << 5, /* 32-bit VLIW operation mode option */
347 MEP_OPT_COP = 1 << 4, /* coprocessor option */
348 MEP_OPT_DSP = 1 << 2, /* DSP option */
349 MEP_OPT_UCI = 1 << 1, /* UCI option */
350 MEP_OPT_DBG = 1 << 0, /* DBG function option */
351 };
352
353
354 /* Given the option_mask value for a particular entry in
355 mep_config_map, produce the value the processor's OPT register
356 would use to represent the same set of options. */
357 static unsigned int
358 opt_from_option_mask (unsigned int option_mask)
359 {
360 /* A table mapping OPT register bits onto CGEN config map option
361 bits. */
362 struct {
363 unsigned int opt_bit, option_mask_bit;
364 } bits[] = {
365 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
366 { MEP_OPT_MUL, 1 << CGEN_INSN_OPTIONAL_MUL_INSN },
367 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
368 { MEP_OPT_DBG, 1 << CGEN_INSN_OPTIONAL_DEBUG_INSN },
369 { MEP_OPT_LDZ, 1 << CGEN_INSN_OPTIONAL_LDZ_INSN },
370 { MEP_OPT_ABS, 1 << CGEN_INSN_OPTIONAL_ABS_INSN },
371 { MEP_OPT_AVE, 1 << CGEN_INSN_OPTIONAL_AVE_INSN },
372 { MEP_OPT_MIN, 1 << CGEN_INSN_OPTIONAL_MINMAX_INSN },
373 { MEP_OPT_CLP, 1 << CGEN_INSN_OPTIONAL_CLIP_INSN },
374 { MEP_OPT_SAT, 1 << CGEN_INSN_OPTIONAL_SAT_INSN },
375 { MEP_OPT_UCI, 1 << CGEN_INSN_OPTIONAL_UCI_INSN },
376 { MEP_OPT_DSP, 1 << CGEN_INSN_OPTIONAL_DSP_INSN },
377 { MEP_OPT_COP, 1 << CGEN_INSN_OPTIONAL_CP_INSN },
378 };
379
380 int i;
381 unsigned int opt = 0;
382
383 for (i = 0; i < (sizeof (bits) / sizeof (bits[0])); i++)
384 if (option_mask & bits[i].option_mask_bit)
385 opt |= bits[i].opt_bit;
386
387 return opt;
388 }
389
390
391 /* Return the value the $OPT register would use to represent the set
392 of options for ME_MODULE. */
393 static unsigned int
394 me_module_opt (CONFIG_ATTR me_module)
395 {
396 return opt_from_option_mask (mep_config_map[me_module].option_mask);
397 }
398
399
400 /* Return the width of ME_MODULE's coprocessor data bus, in bits.
401 This is either 32 or 64. */
402 static int
403 me_module_cop_data_bus_width (CONFIG_ATTR me_module)
404 {
405 if (mep_config_map[me_module].option_mask
406 & (1 << CGEN_INSN_OPTIONAL_CP64_INSN))
407 return 64;
408 else
409 return 32;
410 }
411
412
413 /* Return true if ME_MODULE is big-endian, false otherwise. */
414 static int
415 me_module_big_endian (CONFIG_ATTR me_module)
416 {
417 return mep_config_map[me_module].big_endian;
418 }
419
420
421 /* Return the name of ME_MODULE, or NULL if it has no name. */
422 static const char *
423 me_module_name (CONFIG_ATTR me_module)
424 {
425 /* The default me_module has "" as its name, but it's easier for our
426 callers to test for NULL. */
427 if (! mep_config_map[me_module].name
428 || mep_config_map[me_module].name[0] == '\0')
429 return NULL;
430 else
431 return mep_config_map[me_module].name;
432 }
433 \f
434 /* Register set. */
435
436
437 /* The MeP spec defines the following registers:
438 16 general purpose registers (r0-r15)
439 32 control/special registers (csr0-csr31)
440 32 coprocessor general-purpose registers (c0 -- c31)
441 64 coprocessor control registers (ccr0 -- ccr63)
442
443 For the raw registers, we assign numbers here explicitly, instead
444 of letting the enum assign them for us; the numbers are a matter of
445 external protocol, and shouldn't shift around as things are edited.
446
447 We access the control/special registers via pseudoregisters, to
448 enforce read-only portions that some registers have.
449
450 We access the coprocessor general purpose and control registers via
451 pseudoregisters, to make sure they appear in the proper order in
452 the 'info all-registers' command (which uses the register number
453 ordering), and also to allow them to be renamed and resized
454 depending on the me_module in use.
455
456 The MeP allows coprocessor general-purpose registers to be either
457 32 or 64 bits long, depending on the configuration. Since we don't
458 want the format of the 'g' packet to vary from one core to another,
459 the raw coprocessor GPRs are always 64 bits. GDB doesn't allow the
460 types of registers to change (see the implementation of
461 register_type), so we have four banks of pseudoregisters for the
462 coprocessor gprs --- 32-bit vs. 64-bit, and integer
463 vs. floating-point --- and we show or hide them depending on the
464 configuration. */
465 enum
466 {
467 MEP_FIRST_RAW_REGNUM = 0,
468
469 MEP_FIRST_GPR_REGNUM = 0,
470 MEP_R0_REGNUM = 0,
471 MEP_R1_REGNUM = 1,
472 MEP_R2_REGNUM = 2,
473 MEP_R3_REGNUM = 3,
474 MEP_R4_REGNUM = 4,
475 MEP_R5_REGNUM = 5,
476 MEP_R6_REGNUM = 6,
477 MEP_R7_REGNUM = 7,
478 MEP_R8_REGNUM = 8,
479 MEP_R9_REGNUM = 9,
480 MEP_R10_REGNUM = 10,
481 MEP_R11_REGNUM = 11,
482 MEP_R12_REGNUM = 12,
483 MEP_FP_REGNUM = MEP_R8_REGNUM,
484 MEP_R13_REGNUM = 13,
485 MEP_TP_REGNUM = MEP_R13_REGNUM, /* (r13) Tiny data pointer */
486 MEP_R14_REGNUM = 14,
487 MEP_GP_REGNUM = MEP_R14_REGNUM, /* (r14) Global pointer */
488 MEP_R15_REGNUM = 15,
489 MEP_SP_REGNUM = MEP_R15_REGNUM, /* (r15) Stack pointer */
490 MEP_LAST_GPR_REGNUM = MEP_R15_REGNUM,
491
492 /* The raw control registers. These are the values as received via
493 the remote protocol, directly from the target; we only let user
494 code touch the via the pseudoregisters, which enforce read-only
495 bits. */
496 MEP_FIRST_RAW_CSR_REGNUM = 16,
497 MEP_RAW_PC_REGNUM = 16, /* Program counter */
498 MEP_RAW_LP_REGNUM = 17, /* Link pointer */
499 MEP_RAW_SAR_REGNUM = 18, /* Raw shift amount */
500 MEP_RAW_CSR3_REGNUM = 19, /* csr3: reserved */
501 MEP_RAW_RPB_REGNUM = 20, /* Raw repeat begin address */
502 MEP_RAW_RPE_REGNUM = 21, /* Repeat end address */
503 MEP_RAW_RPC_REGNUM = 22, /* Repeat count */
504 MEP_RAW_HI_REGNUM = 23, /* Upper 32 bits of result of 64 bit mult/div */
505 MEP_RAW_LO_REGNUM = 24, /* Lower 32 bits of result of 64 bit mult/div */
506 MEP_RAW_CSR9_REGNUM = 25, /* csr3: reserved */
507 MEP_RAW_CSR10_REGNUM = 26, /* csr3: reserved */
508 MEP_RAW_CSR11_REGNUM = 27, /* csr3: reserved */
509 MEP_RAW_MB0_REGNUM = 28, /* Raw modulo begin address 0 */
510 MEP_RAW_ME0_REGNUM = 29, /* Raw modulo end address 0 */
511 MEP_RAW_MB1_REGNUM = 30, /* Raw modulo begin address 1 */
512 MEP_RAW_ME1_REGNUM = 31, /* Raw modulo end address 1 */
513 MEP_RAW_PSW_REGNUM = 32, /* Raw program status word */
514 MEP_RAW_ID_REGNUM = 33, /* Raw processor ID/revision */
515 MEP_RAW_TMP_REGNUM = 34, /* Temporary */
516 MEP_RAW_EPC_REGNUM = 35, /* Exception program counter */
517 MEP_RAW_EXC_REGNUM = 36, /* Raw exception cause */
518 MEP_RAW_CFG_REGNUM = 37, /* Raw processor configuration*/
519 MEP_RAW_CSR22_REGNUM = 38, /* csr3: reserved */
520 MEP_RAW_NPC_REGNUM = 39, /* Nonmaskable interrupt PC */
521 MEP_RAW_DBG_REGNUM = 40, /* Raw debug */
522 MEP_RAW_DEPC_REGNUM = 41, /* Debug exception PC */
523 MEP_RAW_OPT_REGNUM = 42, /* Raw options */
524 MEP_RAW_RCFG_REGNUM = 43, /* Raw local ram config */
525 MEP_RAW_CCFG_REGNUM = 44, /* Raw cache config */
526 MEP_RAW_CSR29_REGNUM = 45, /* csr3: reserved */
527 MEP_RAW_CSR30_REGNUM = 46, /* csr3: reserved */
528 MEP_RAW_CSR31_REGNUM = 47, /* csr3: reserved */
529 MEP_LAST_RAW_CSR_REGNUM = MEP_RAW_CSR31_REGNUM,
530
531 /* The raw coprocessor general-purpose registers. These are all 64
532 bits wide. */
533 MEP_FIRST_RAW_CR_REGNUM = 48,
534 MEP_LAST_RAW_CR_REGNUM = MEP_FIRST_RAW_CR_REGNUM + 31,
535
536 MEP_FIRST_RAW_CCR_REGNUM = 80,
537 MEP_LAST_RAW_CCR_REGNUM = MEP_FIRST_RAW_CCR_REGNUM + 63,
538
539 /* The module number register. This is the index of the me_module
540 of which the current target is an instance. (This is not a real
541 MeP-specified register; it's provided by SID.) */
542 MEP_MODULE_REGNUM,
543
544 MEP_LAST_RAW_REGNUM = MEP_MODULE_REGNUM,
545
546 MEP_NUM_RAW_REGS = MEP_LAST_RAW_REGNUM + 1,
547
548 /* Pseudoregisters. See mep_pseudo_register_read and
549 mep_pseudo_register_write. */
550 MEP_FIRST_PSEUDO_REGNUM = MEP_NUM_RAW_REGS,
551
552 /* We have a pseudoregister for every control/special register, to
553 implement registers with read-only bits. */
554 MEP_FIRST_CSR_REGNUM = MEP_FIRST_PSEUDO_REGNUM,
555 MEP_PC_REGNUM = MEP_FIRST_CSR_REGNUM, /* Program counter */
556 MEP_LP_REGNUM, /* Link pointer */
557 MEP_SAR_REGNUM, /* shift amount */
558 MEP_CSR3_REGNUM, /* csr3: reserved */
559 MEP_RPB_REGNUM, /* repeat begin address */
560 MEP_RPE_REGNUM, /* Repeat end address */
561 MEP_RPC_REGNUM, /* Repeat count */
562 MEP_HI_REGNUM, /* Upper 32 bits of the result of 64 bit mult/div */
563 MEP_LO_REGNUM, /* Lower 32 bits of the result of 64 bit mult/div */
564 MEP_CSR9_REGNUM, /* csr3: reserved */
565 MEP_CSR10_REGNUM, /* csr3: reserved */
566 MEP_CSR11_REGNUM, /* csr3: reserved */
567 MEP_MB0_REGNUM, /* modulo begin address 0 */
568 MEP_ME0_REGNUM, /* modulo end address 0 */
569 MEP_MB1_REGNUM, /* modulo begin address 1 */
570 MEP_ME1_REGNUM, /* modulo end address 1 */
571 MEP_PSW_REGNUM, /* program status word */
572 MEP_ID_REGNUM, /* processor ID/revision */
573 MEP_TMP_REGNUM, /* Temporary */
574 MEP_EPC_REGNUM, /* Exception program counter */
575 MEP_EXC_REGNUM, /* exception cause */
576 MEP_CFG_REGNUM, /* processor configuration*/
577 MEP_CSR22_REGNUM, /* csr3: reserved */
578 MEP_NPC_REGNUM, /* Nonmaskable interrupt PC */
579 MEP_DBG_REGNUM, /* debug */
580 MEP_DEPC_REGNUM, /* Debug exception PC */
581 MEP_OPT_REGNUM, /* options */
582 MEP_RCFG_REGNUM, /* local ram config */
583 MEP_CCFG_REGNUM, /* cache config */
584 MEP_CSR29_REGNUM, /* csr3: reserved */
585 MEP_CSR30_REGNUM, /* csr3: reserved */
586 MEP_CSR31_REGNUM, /* csr3: reserved */
587 MEP_LAST_CSR_REGNUM = MEP_CSR31_REGNUM,
588
589 /* The 32-bit integer view of the coprocessor GPR's. */
590 MEP_FIRST_CR32_REGNUM,
591 MEP_LAST_CR32_REGNUM = MEP_FIRST_CR32_REGNUM + 31,
592
593 /* The 32-bit floating-point view of the coprocessor GPR's. */
594 MEP_FIRST_FP_CR32_REGNUM,
595 MEP_LAST_FP_CR32_REGNUM = MEP_FIRST_FP_CR32_REGNUM + 31,
596
597 /* The 64-bit integer view of the coprocessor GPR's. */
598 MEP_FIRST_CR64_REGNUM,
599 MEP_LAST_CR64_REGNUM = MEP_FIRST_CR64_REGNUM + 31,
600
601 /* The 64-bit floating-point view of the coprocessor GPR's. */
602 MEP_FIRST_FP_CR64_REGNUM,
603 MEP_LAST_FP_CR64_REGNUM = MEP_FIRST_FP_CR64_REGNUM + 31,
604
605 MEP_FIRST_CCR_REGNUM,
606 MEP_LAST_CCR_REGNUM = MEP_FIRST_CCR_REGNUM + 63,
607
608 MEP_LAST_PSEUDO_REGNUM = MEP_LAST_CCR_REGNUM,
609
610 MEP_NUM_PSEUDO_REGS = (MEP_LAST_PSEUDO_REGNUM - MEP_LAST_RAW_REGNUM),
611
612 MEP_NUM_REGS = MEP_NUM_RAW_REGS + MEP_NUM_PSEUDO_REGS
613 };
614
615
616 #define IN_SET(set, n) \
617 (MEP_FIRST_ ## set ## _REGNUM <= (n) && (n) <= MEP_LAST_ ## set ## _REGNUM)
618
619 #define IS_GPR_REGNUM(n) (IN_SET (GPR, (n)))
620 #define IS_RAW_CSR_REGNUM(n) (IN_SET (RAW_CSR, (n)))
621 #define IS_RAW_CR_REGNUM(n) (IN_SET (RAW_CR, (n)))
622 #define IS_RAW_CCR_REGNUM(n) (IN_SET (RAW_CCR, (n)))
623
624 #define IS_CSR_REGNUM(n) (IN_SET (CSR, (n)))
625 #define IS_CR32_REGNUM(n) (IN_SET (CR32, (n)))
626 #define IS_FP_CR32_REGNUM(n) (IN_SET (FP_CR32, (n)))
627 #define IS_CR64_REGNUM(n) (IN_SET (CR64, (n)))
628 #define IS_FP_CR64_REGNUM(n) (IN_SET (FP_CR64, (n)))
629 #define IS_CR_REGNUM(n) (IS_CR32_REGNUM (n) || IS_FP_CR32_REGNUM (n) \
630 || IS_CR64_REGNUM (n) || IS_FP_CR64_REGNUM (n))
631 #define IS_CCR_REGNUM(n) (IN_SET (CCR, (n)))
632
633 #define IS_RAW_REGNUM(n) (IN_SET (RAW, (n)))
634 #define IS_PSEUDO_REGNUM(n) (IN_SET (PSEUDO, (n)))
635
636 #define NUM_REGS_IN_SET(set) \
637 (MEP_LAST_ ## set ## _REGNUM - MEP_FIRST_ ## set ## _REGNUM + 1)
638
639 #define MEP_GPR_SIZE (4) /* Size of a MeP general-purpose register. */
640 #define MEP_PSW_SIZE (4) /* Size of the PSW register. */
641 #define MEP_LP_SIZE (4) /* Size of the LP register. */
642
643
644 /* Many of the control/special registers contain bits that cannot be
645 written to; some are entirely read-only. So we present them all as
646 pseudoregisters.
647
648 The following table describes the special properties of each CSR. */
649 struct mep_csr_register
650 {
651 /* The number of this CSR's raw register. */
652 int raw;
653
654 /* The number of this CSR's pseudoregister. */
655 int pseudo;
656
657 /* A mask of the bits that are writeable: if a bit is set here, then
658 it can be modified; if the bit is clear, then it cannot. */
659 LONGEST writeable_bits;
660 };
661
662
663 /* mep_csr_registers[i] describes the i'th CSR.
664 We just list the register numbers here explicitly to help catch
665 typos. */
666 #define CSR(name) MEP_RAW_ ## name ## _REGNUM, MEP_ ## name ## _REGNUM
667 static mep_csr_register mep_csr_registers[] = {
668 { CSR(PC), 0xffffffff }, /* manual says r/o, but we can write it */
669 { CSR(LP), 0xffffffff },
670 { CSR(SAR), 0x0000003f },
671 { CSR(CSR3), 0xffffffff },
672 { CSR(RPB), 0xfffffffe },
673 { CSR(RPE), 0xffffffff },
674 { CSR(RPC), 0xffffffff },
675 { CSR(HI), 0xffffffff },
676 { CSR(LO), 0xffffffff },
677 { CSR(CSR9), 0xffffffff },
678 { CSR(CSR10), 0xffffffff },
679 { CSR(CSR11), 0xffffffff },
680 { CSR(MB0), 0x0000ffff },
681 { CSR(ME0), 0x0000ffff },
682 { CSR(MB1), 0x0000ffff },
683 { CSR(ME1), 0x0000ffff },
684 { CSR(PSW), 0x000003ff },
685 { CSR(ID), 0x00000000 },
686 { CSR(TMP), 0xffffffff },
687 { CSR(EPC), 0xffffffff },
688 { CSR(EXC), 0x000030f0 },
689 { CSR(CFG), 0x00c0001b },
690 { CSR(CSR22), 0xffffffff },
691 { CSR(NPC), 0xffffffff },
692 { CSR(DBG), 0x00000580 },
693 { CSR(DEPC), 0xffffffff },
694 { CSR(OPT), 0x00000000 },
695 { CSR(RCFG), 0x00000000 },
696 { CSR(CCFG), 0x00000000 },
697 { CSR(CSR29), 0xffffffff },
698 { CSR(CSR30), 0xffffffff },
699 { CSR(CSR31), 0xffffffff },
700 };
701
702
703 /* If R is the number of a raw register, then mep_raw_to_pseudo[R] is
704 the number of the corresponding pseudoregister. Otherwise,
705 mep_raw_to_pseudo[R] == R. */
706 static int mep_raw_to_pseudo[MEP_NUM_REGS];
707
708 /* If R is the number of a pseudoregister, then mep_pseudo_to_raw[R]
709 is the number of the underlying raw register. Otherwise
710 mep_pseudo_to_raw[R] == R. */
711 static int mep_pseudo_to_raw[MEP_NUM_REGS];
712
713 static void
714 mep_init_pseudoregister_maps (void)
715 {
716 int i;
717
718 /* Verify that mep_csr_registers covers all the CSRs, in order. */
719 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (CSR));
720 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (RAW_CSR));
721
722 /* Verify that the raw and pseudo ranges have matching sizes. */
723 gdb_assert (NUM_REGS_IN_SET (RAW_CSR) == NUM_REGS_IN_SET (CSR));
724 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR32));
725 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR64));
726 gdb_assert (NUM_REGS_IN_SET (RAW_CCR) == NUM_REGS_IN_SET (CCR));
727
728 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
729 {
730 struct mep_csr_register *r = &mep_csr_registers[i];
731
732 gdb_assert (r->pseudo == MEP_FIRST_CSR_REGNUM + i);
733 gdb_assert (r->raw == MEP_FIRST_RAW_CSR_REGNUM + i);
734 }
735
736 /* Set up the initial raw<->pseudo mappings. */
737 for (i = 0; i < MEP_NUM_REGS; i++)
738 {
739 mep_raw_to_pseudo[i] = i;
740 mep_pseudo_to_raw[i] = i;
741 }
742
743 /* Add the CSR raw<->pseudo mappings. */
744 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
745 {
746 struct mep_csr_register *r = &mep_csr_registers[i];
747
748 mep_raw_to_pseudo[r->raw] = r->pseudo;
749 mep_pseudo_to_raw[r->pseudo] = r->raw;
750 }
751
752 /* Add the CR raw<->pseudo mappings. */
753 for (i = 0; i < NUM_REGS_IN_SET (RAW_CR); i++)
754 {
755 int raw = MEP_FIRST_RAW_CR_REGNUM + i;
756 int pseudo32 = MEP_FIRST_CR32_REGNUM + i;
757 int pseudofp32 = MEP_FIRST_FP_CR32_REGNUM + i;
758 int pseudo64 = MEP_FIRST_CR64_REGNUM + i;
759 int pseudofp64 = MEP_FIRST_FP_CR64_REGNUM + i;
760
761 /* Truly, the raw->pseudo mapping depends on the current module.
762 But we use the raw->pseudo mapping when we read the debugging
763 info; at that point, we don't know what module we'll actually
764 be running yet. So, we always supply the 64-bit register
765 numbers; GDB knows how to pick a smaller value out of a
766 larger register properly. */
767 mep_raw_to_pseudo[raw] = pseudo64;
768 mep_pseudo_to_raw[pseudo32] = raw;
769 mep_pseudo_to_raw[pseudofp32] = raw;
770 mep_pseudo_to_raw[pseudo64] = raw;
771 mep_pseudo_to_raw[pseudofp64] = raw;
772 }
773
774 /* Add the CCR raw<->pseudo mappings. */
775 for (i = 0; i < NUM_REGS_IN_SET (CCR); i++)
776 {
777 int raw = MEP_FIRST_RAW_CCR_REGNUM + i;
778 int pseudo = MEP_FIRST_CCR_REGNUM + i;
779 mep_raw_to_pseudo[raw] = pseudo;
780 mep_pseudo_to_raw[pseudo] = raw;
781 }
782 }
783
784
785 static int
786 mep_debug_reg_to_regnum (struct gdbarch *gdbarch, int debug_reg)
787 {
788 /* The debug info uses the raw register numbers. */
789 if (debug_reg >= 0 && debug_reg < ARRAY_SIZE (mep_raw_to_pseudo))
790 return mep_raw_to_pseudo[debug_reg];
791 return -1;
792 }
793
794
795 /* Return the size, in bits, of the coprocessor pseudoregister
796 numbered PSEUDO. */
797 static int
798 mep_pseudo_cr_size (int pseudo)
799 {
800 if (IS_CR32_REGNUM (pseudo)
801 || IS_FP_CR32_REGNUM (pseudo))
802 return 32;
803 else if (IS_CR64_REGNUM (pseudo)
804 || IS_FP_CR64_REGNUM (pseudo))
805 return 64;
806 else
807 gdb_assert_not_reached ("unexpected coprocessor pseudo register");
808 }
809
810
811 /* If the coprocessor pseudoregister numbered PSEUDO is a
812 floating-point register, return non-zero; if it is an integer
813 register, return zero. */
814 static int
815 mep_pseudo_cr_is_float (int pseudo)
816 {
817 return (IS_FP_CR32_REGNUM (pseudo)
818 || IS_FP_CR64_REGNUM (pseudo));
819 }
820
821
822 /* Given a coprocessor GPR pseudoregister number, return its index
823 within that register bank. */
824 static int
825 mep_pseudo_cr_index (int pseudo)
826 {
827 if (IS_CR32_REGNUM (pseudo))
828 return pseudo - MEP_FIRST_CR32_REGNUM;
829 else if (IS_FP_CR32_REGNUM (pseudo))
830 return pseudo - MEP_FIRST_FP_CR32_REGNUM;
831 else if (IS_CR64_REGNUM (pseudo))
832 return pseudo - MEP_FIRST_CR64_REGNUM;
833 else if (IS_FP_CR64_REGNUM (pseudo))
834 return pseudo - MEP_FIRST_FP_CR64_REGNUM;
835 else
836 gdb_assert_not_reached ("unexpected coprocessor pseudo register");
837 }
838
839
840 /* Return the me_module index describing the current target.
841
842 If the current target has registers (e.g., simulator, remote
843 target), then this uses the value of the 'module' register, raw
844 register MEP_MODULE_REGNUM. Otherwise, this retrieves the value
845 from the ELF header's e_flags field of the current executable
846 file. */
847 static CONFIG_ATTR
848 current_me_module (void)
849 {
850 if (target_has_registers ())
851 {
852 ULONGEST regval;
853 regcache_cooked_read_unsigned (get_current_regcache (),
854 MEP_MODULE_REGNUM, &regval);
855 return (CONFIG_ATTR) regval;
856 }
857 else
858 {
859 mep_gdbarch_tdep *tdep
860 = (mep_gdbarch_tdep *) gdbarch_tdep (target_gdbarch ());
861 return tdep->me_module;
862 }
863 }
864
865
866 /* Return the set of options for the current target, in the form that
867 the OPT register would use.
868
869 If the current target has registers (e.g., simulator, remote
870 target), then this is the actual value of the OPT register. If the
871 current target does not have registers (e.g., an executable file),
872 then use the 'module_opt' field we computed when we build the
873 gdbarch object for this module. */
874 static unsigned int
875 current_options (void)
876 {
877 if (target_has_registers ())
878 {
879 ULONGEST regval;
880 regcache_cooked_read_unsigned (get_current_regcache (),
881 MEP_OPT_REGNUM, &regval);
882 return regval;
883 }
884 else
885 return me_module_opt (current_me_module ());
886 }
887
888
889 /* Return the width of the current me_module's coprocessor data bus,
890 in bits. This is either 32 or 64. */
891 static int
892 current_cop_data_bus_width (void)
893 {
894 return me_module_cop_data_bus_width (current_me_module ());
895 }
896
897
898 /* Return the keyword table of coprocessor general-purpose register
899 names appropriate for the me_module we're dealing with. */
900 static CGEN_KEYWORD *
901 current_cr_names (void)
902 {
903 const CGEN_HW_ENTRY *hw
904 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
905
906 return register_set_keyword_table (hw);
907 }
908
909
910 /* Return non-zero if the coprocessor general-purpose registers are
911 floating-point values, zero otherwise. */
912 static int
913 current_cr_is_float (void)
914 {
915 const CGEN_HW_ENTRY *hw
916 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
917
918 return CGEN_ATTR_CGEN_HW_IS_FLOAT_VALUE (CGEN_HW_ATTRS (hw));
919 }
920
921
922 /* Return the keyword table of coprocessor control register names
923 appropriate for the me_module we're dealing with. */
924 static CGEN_KEYWORD *
925 current_ccr_names (void)
926 {
927 const CGEN_HW_ENTRY *hw
928 = me_module_register_set (current_me_module (), "h-ccr-", HW_H_CCR);
929
930 return register_set_keyword_table (hw);
931 }
932
933
934 static const char *
935 mep_register_name (struct gdbarch *gdbarch, int regnr)
936 {
937 /* General-purpose registers. */
938 static const char *gpr_names[] = {
939 "r0", "r1", "r2", "r3", /* 0 */
940 "r4", "r5", "r6", "r7", /* 4 */
941 "fp", "r9", "r10", "r11", /* 8 */
942 "r12", "tp", "gp", "sp" /* 12 */
943 };
944
945 /* Special-purpose registers. */
946 static const char *csr_names[] = {
947 "pc", "lp", "sar", "", /* 0 csr3: reserved */
948 "rpb", "rpe", "rpc", "hi", /* 4 */
949 "lo", "", "", "", /* 8 csr9-csr11: reserved */
950 "mb0", "me0", "mb1", "me1", /* 12 */
951
952 "psw", "id", "tmp", "epc", /* 16 */
953 "exc", "cfg", "", "npc", /* 20 csr22: reserved */
954 "dbg", "depc", "opt", "rcfg", /* 24 */
955 "ccfg", "", "", "" /* 28 csr29-csr31: reserved */
956 };
957
958 if (IS_GPR_REGNUM (regnr))
959 return gpr_names[regnr - MEP_R0_REGNUM];
960 else if (IS_CSR_REGNUM (regnr))
961 {
962 /* The 'hi' and 'lo' registers are only present on processors
963 that have the 'MUL' or 'DIV' instructions enabled. */
964 if ((regnr == MEP_HI_REGNUM || regnr == MEP_LO_REGNUM)
965 && (! (current_options () & (MEP_OPT_MUL | MEP_OPT_DIV))))
966 return "";
967
968 return csr_names[regnr - MEP_FIRST_CSR_REGNUM];
969 }
970 else if (IS_CR_REGNUM (regnr))
971 {
972 CGEN_KEYWORD *names;
973 int cr_size;
974 int cr_is_float;
975
976 /* Does this module have a coprocessor at all? */
977 if (! (current_options () & MEP_OPT_COP))
978 return "";
979
980 names = current_cr_names ();
981 if (! names)
982 /* This module's coprocessor has no general-purpose registers. */
983 return "";
984
985 cr_size = current_cop_data_bus_width ();
986 if (cr_size != mep_pseudo_cr_size (regnr))
987 /* This module's coprocessor's GPR's are of a different size. */
988 return "";
989
990 cr_is_float = current_cr_is_float ();
991 /* The extra ! operators ensure we get boolean equality, not
992 numeric equality. */
993 if (! cr_is_float != ! mep_pseudo_cr_is_float (regnr))
994 /* This module's coprocessor's GPR's are of a different type. */
995 return "";
996
997 return register_name_from_keyword (names, mep_pseudo_cr_index (regnr));
998 }
999 else if (IS_CCR_REGNUM (regnr))
1000 {
1001 /* Does this module have a coprocessor at all? */
1002 if (! (current_options () & MEP_OPT_COP))
1003 return "";
1004
1005 {
1006 CGEN_KEYWORD *names = current_ccr_names ();
1007
1008 if (! names)
1009 /* This me_module's coprocessor has no control registers. */
1010 return "";
1011
1012 return register_name_from_keyword (names, regnr-MEP_FIRST_CCR_REGNUM);
1013 }
1014 }
1015
1016 /* It might be nice to give the 'module' register a name, but that
1017 would affect the output of 'info all-registers', which would
1018 disturb the test suites. So we leave it invisible. */
1019 else
1020 return NULL;
1021 }
1022
1023
1024 /* Custom register groups for the MeP. */
1025 static struct reggroup *mep_csr_reggroup; /* control/special */
1026 static struct reggroup *mep_cr_reggroup; /* coprocessor general-purpose */
1027 static struct reggroup *mep_ccr_reggroup; /* coprocessor control */
1028
1029
1030 static int
1031 mep_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1032 struct reggroup *group)
1033 {
1034 /* Filter reserved or unused register numbers. */
1035 {
1036 const char *name = mep_register_name (gdbarch, regnum);
1037
1038 if (! name || name[0] == '\0')
1039 return 0;
1040 }
1041
1042 /* We could separate the GPRs and the CSRs. Toshiba has approved of
1043 the existing behavior, so we'd want to run that by them. */
1044 if (group == general_reggroup)
1045 return (IS_GPR_REGNUM (regnum)
1046 || IS_CSR_REGNUM (regnum));
1047
1048 /* Everything is in the 'all' reggroup, except for the raw CSR's. */
1049 else if (group == all_reggroup)
1050 return (IS_GPR_REGNUM (regnum)
1051 || IS_CSR_REGNUM (regnum)
1052 || IS_CR_REGNUM (regnum)
1053 || IS_CCR_REGNUM (regnum));
1054
1055 /* All registers should be saved and restored, except for the raw
1056 CSR's.
1057
1058 This is probably right if the coprocessor is something like a
1059 floating-point unit, but would be wrong if the coprocessor is
1060 something that does I/O, where register accesses actually cause
1061 externally-visible actions. But I get the impression that the
1062 coprocessor isn't supposed to do things like that --- you'd use a
1063 hardware engine, perhaps. */
1064 else if (group == save_reggroup || group == restore_reggroup)
1065 return (IS_GPR_REGNUM (regnum)
1066 || IS_CSR_REGNUM (regnum)
1067 || IS_CR_REGNUM (regnum)
1068 || IS_CCR_REGNUM (regnum));
1069
1070 else if (group == mep_csr_reggroup)
1071 return IS_CSR_REGNUM (regnum);
1072 else if (group == mep_cr_reggroup)
1073 return IS_CR_REGNUM (regnum);
1074 else if (group == mep_ccr_reggroup)
1075 return IS_CCR_REGNUM (regnum);
1076 else
1077 return 0;
1078 }
1079
1080
1081 static struct type *
1082 mep_register_type (struct gdbarch *gdbarch, int reg_nr)
1083 {
1084 /* Coprocessor general-purpose registers may be either 32 or 64 bits
1085 long. So for them, the raw registers are always 64 bits long (to
1086 keep the 'g' packet format fixed), and the pseudoregisters vary
1087 in length. */
1088 if (IS_RAW_CR_REGNUM (reg_nr))
1089 return builtin_type (gdbarch)->builtin_uint64;
1090
1091 /* Since GDB doesn't allow registers to change type, we have two
1092 banks of pseudoregisters for the coprocessor general-purpose
1093 registers: one that gives a 32-bit view, and one that gives a
1094 64-bit view. We hide or show one or the other depending on the
1095 current module. */
1096 if (IS_CR_REGNUM (reg_nr))
1097 {
1098 int size = mep_pseudo_cr_size (reg_nr);
1099 if (size == 32)
1100 {
1101 if (mep_pseudo_cr_is_float (reg_nr))
1102 return builtin_type (gdbarch)->builtin_float;
1103 else
1104 return builtin_type (gdbarch)->builtin_uint32;
1105 }
1106 else if (size == 64)
1107 {
1108 if (mep_pseudo_cr_is_float (reg_nr))
1109 return builtin_type (gdbarch)->builtin_double;
1110 else
1111 return builtin_type (gdbarch)->builtin_uint64;
1112 }
1113 else
1114 gdb_assert_not_reached ("unexpected cr size");
1115 }
1116
1117 /* All other registers are 32 bits long. */
1118 else
1119 return builtin_type (gdbarch)->builtin_uint32;
1120 }
1121
1122 static enum register_status
1123 mep_pseudo_cr32_read (struct gdbarch *gdbarch,
1124 readable_regcache *regcache,
1125 int cookednum,
1126 gdb_byte *buf)
1127 {
1128 enum register_status status;
1129 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1130 /* Read the raw register into a 64-bit buffer, and then return the
1131 appropriate end of that buffer. */
1132 int rawnum = mep_pseudo_to_raw[cookednum];
1133 gdb_byte buf64[8];
1134
1135 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1136 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1137 status = regcache->raw_read (rawnum, buf64);
1138 if (status == REG_VALID)
1139 {
1140 /* Slow, but legible. */
1141 store_unsigned_integer (buf, 4, byte_order,
1142 extract_unsigned_integer (buf64, 8, byte_order));
1143 }
1144 return status;
1145 }
1146
1147
1148 static enum register_status
1149 mep_pseudo_cr64_read (struct gdbarch *gdbarch,
1150 readable_regcache *regcache,
1151 int cookednum,
1152 gdb_byte *buf)
1153 {
1154 return regcache->raw_read (mep_pseudo_to_raw[cookednum], buf);
1155 }
1156
1157
1158 static enum register_status
1159 mep_pseudo_register_read (struct gdbarch *gdbarch,
1160 readable_regcache *regcache,
1161 int cookednum,
1162 gdb_byte *buf)
1163 {
1164 if (IS_CSR_REGNUM (cookednum)
1165 || IS_CCR_REGNUM (cookednum))
1166 return regcache->raw_read (mep_pseudo_to_raw[cookednum], buf);
1167 else if (IS_CR32_REGNUM (cookednum)
1168 || IS_FP_CR32_REGNUM (cookednum))
1169 return mep_pseudo_cr32_read (gdbarch, regcache, cookednum, buf);
1170 else if (IS_CR64_REGNUM (cookednum)
1171 || IS_FP_CR64_REGNUM (cookednum))
1172 return mep_pseudo_cr64_read (gdbarch, regcache, cookednum, buf);
1173 else
1174 gdb_assert_not_reached ("unexpected pseudo register");
1175 }
1176
1177
1178 static void
1179 mep_pseudo_csr_write (struct gdbarch *gdbarch,
1180 struct regcache *regcache,
1181 int cookednum,
1182 const gdb_byte *buf)
1183 {
1184 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1185 int size = register_size (gdbarch, cookednum);
1186 struct mep_csr_register *r
1187 = &mep_csr_registers[cookednum - MEP_FIRST_CSR_REGNUM];
1188
1189 if (r->writeable_bits == 0)
1190 /* A completely read-only register; avoid the read-modify-
1191 write cycle, and juts ignore the entire write. */
1192 ;
1193 else
1194 {
1195 /* A partially writeable register; do a read-modify-write cycle. */
1196 ULONGEST old_bits;
1197 ULONGEST new_bits;
1198 ULONGEST mixed_bits;
1199
1200 regcache_raw_read_unsigned (regcache, r->raw, &old_bits);
1201 new_bits = extract_unsigned_integer (buf, size, byte_order);
1202 mixed_bits = ((r->writeable_bits & new_bits)
1203 | (~r->writeable_bits & old_bits));
1204 regcache_raw_write_unsigned (regcache, r->raw, mixed_bits);
1205 }
1206 }
1207
1208
1209 static void
1210 mep_pseudo_cr32_write (struct gdbarch *gdbarch,
1211 struct regcache *regcache,
1212 int cookednum,
1213 const gdb_byte *buf)
1214 {
1215 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1216 /* Expand the 32-bit value into a 64-bit value, and write that to
1217 the pseudoregister. */
1218 int rawnum = mep_pseudo_to_raw[cookednum];
1219 gdb_byte buf64[8];
1220
1221 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1222 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1223 /* Slow, but legible. */
1224 store_unsigned_integer (buf64, 8, byte_order,
1225 extract_unsigned_integer (buf, 4, byte_order));
1226 regcache->raw_write (rawnum, buf64);
1227 }
1228
1229
1230 static void
1231 mep_pseudo_cr64_write (struct gdbarch *gdbarch,
1232 struct regcache *regcache,
1233 int cookednum,
1234 const gdb_byte *buf)
1235 {
1236 regcache->raw_write (mep_pseudo_to_raw[cookednum], buf);
1237 }
1238
1239
1240 static void
1241 mep_pseudo_register_write (struct gdbarch *gdbarch,
1242 struct regcache *regcache,
1243 int cookednum,
1244 const gdb_byte *buf)
1245 {
1246 if (IS_CSR_REGNUM (cookednum))
1247 mep_pseudo_csr_write (gdbarch, regcache, cookednum, buf);
1248 else if (IS_CR32_REGNUM (cookednum)
1249 || IS_FP_CR32_REGNUM (cookednum))
1250 mep_pseudo_cr32_write (gdbarch, regcache, cookednum, buf);
1251 else if (IS_CR64_REGNUM (cookednum)
1252 || IS_FP_CR64_REGNUM (cookednum))
1253 mep_pseudo_cr64_write (gdbarch, regcache, cookednum, buf);
1254 else if (IS_CCR_REGNUM (cookednum))
1255 regcache->raw_write (mep_pseudo_to_raw[cookednum], buf);
1256 else
1257 gdb_assert_not_reached ("unexpected pseudo register");
1258 }
1259
1260
1261 \f
1262 /* Disassembly. */
1263
1264 static int
1265 mep_gdb_print_insn (bfd_vma pc, disassemble_info * info)
1266 {
1267 struct obj_section * s = find_pc_section (pc);
1268
1269 info->arch = bfd_arch_mep;
1270 if (s)
1271 {
1272 /* The libopcodes disassembly code uses the section to find the
1273 BFD, the BFD to find the ELF header, the ELF header to find
1274 the me_module index, and the me_module index to select the
1275 right instructions to print. */
1276 info->section = s->the_bfd_section;
1277 }
1278
1279 return print_insn_mep (pc, info);
1280 }
1281
1282 \f
1283 /* Prologue analysis. */
1284
1285
1286 /* The MeP has two classes of instructions: "core" instructions, which
1287 are pretty normal RISC chip stuff, and "coprocessor" instructions,
1288 which are mostly concerned with moving data in and out of
1289 coprocessor registers, and branching on coprocessor condition
1290 codes. There's space in the instruction set for custom coprocessor
1291 instructions, too.
1292
1293 Instructions can be 16 or 32 bits long; the top two bits of the
1294 first byte indicate the length. The coprocessor instructions are
1295 mixed in with the core instructions, and there's no easy way to
1296 distinguish them; you have to completely decode them to tell one
1297 from the other.
1298
1299 The MeP also supports a "VLIW" operation mode, where instructions
1300 always occur in fixed-width bundles. The bundles are either 32
1301 bits or 64 bits long, depending on a fixed configuration flag. You
1302 decode the first part of the bundle as normal; if it's a core
1303 instruction, and there's any space left in the bundle, the
1304 remainder of the bundle is a coprocessor instruction, which will
1305 execute in parallel with the core instruction. If the first part
1306 of the bundle is a coprocessor instruction, it occupies the entire
1307 bundle.
1308
1309 So, here are all the cases:
1310
1311 - 32-bit VLIW mode:
1312 Every bundle is four bytes long, and naturally aligned, and can hold
1313 one or two instructions:
1314 - 16-bit core instruction; 16-bit coprocessor instruction
1315 These execute in parallel.
1316 - 32-bit core instruction
1317 - 32-bit coprocessor instruction
1318
1319 - 64-bit VLIW mode:
1320 Every bundle is eight bytes long, and naturally aligned, and can hold
1321 one or two instructions:
1322 - 16-bit core instruction; 48-bit (!) coprocessor instruction
1323 These execute in parallel.
1324 - 32-bit core instruction; 32-bit coprocessor instruction
1325 These execute in parallel.
1326 - 64-bit coprocessor instruction
1327
1328 Now, the MeP manual doesn't define any 48- or 64-bit coprocessor
1329 instruction, so I don't really know what's up there; perhaps these
1330 are always the user-defined coprocessor instructions. */
1331
1332
1333 /* Return non-zero if PC is in a VLIW code section, zero
1334 otherwise. */
1335 static int
1336 mep_pc_in_vliw_section (CORE_ADDR pc)
1337 {
1338 struct obj_section *s = find_pc_section (pc);
1339 if (s)
1340 return (s->the_bfd_section->flags & SEC_MEP_VLIW);
1341 return 0;
1342 }
1343
1344
1345 /* Set *INSN to the next core instruction at PC, and return the
1346 address of the next instruction.
1347
1348 The MeP instruction encoding is endian-dependent. 16- and 32-bit
1349 instructions are encoded as one or two two-byte parts, and each
1350 part is byte-swapped independently. Thus:
1351
1352 void
1353 foo (void)
1354 {
1355 asm ("movu $1, 0x123456");
1356 asm ("sb $1,0x5678($2)");
1357 asm ("clip $1, 19");
1358 }
1359
1360 compiles to this big-endian code:
1361
1362 0: d1 56 12 34 movu $1,0x123456
1363 4: c1 28 56 78 sb $1,22136($2)
1364 8: f1 01 10 98 clip $1,0x13
1365 c: 70 02 ret
1366
1367 and this little-endian code:
1368
1369 0: 56 d1 34 12 movu $1,0x123456
1370 4: 28 c1 78 56 sb $1,22136($2)
1371 8: 01 f1 98 10 clip $1,0x13
1372 c: 02 70 ret
1373
1374 Instructions are returned in *INSN in an endian-independent form: a
1375 given instruction always appears in *INSN the same way, regardless
1376 of whether the instruction stream is big-endian or little-endian.
1377
1378 *INSN's most significant 16 bits are the first (i.e., at lower
1379 addresses) 16 bit part of the instruction. Its least significant
1380 16 bits are the second (i.e., higher-addressed) 16 bit part of the
1381 instruction, or zero for a 16-bit instruction. Both 16-bit parts
1382 are fetched using the current endianness.
1383
1384 So, the *INSN values for the instruction sequence above would be
1385 the following, in either endianness:
1386
1387 0xd1561234 movu $1,0x123456
1388 0xc1285678 sb $1,22136($2)
1389 0xf1011098 clip $1,0x13
1390 0x70020000 ret
1391
1392 (In a sense, it would be more natural to return 16-bit instructions
1393 in the least significant 16 bits of *INSN, but that would be
1394 ambiguous. In order to tell whether you're looking at a 16- or a
1395 32-bit instruction, you have to consult the major opcode field ---
1396 the most significant four bits of the instruction's first 16-bit
1397 part. But if we put 16-bit instructions at the least significant
1398 end of *INSN, then you don't know where to find the major opcode
1399 field until you know if it's a 16- or a 32-bit instruction ---
1400 which is where we started.)
1401
1402 If PC points to a core / coprocessor bundle in a VLIW section, set
1403 *INSN to the core instruction, and return the address of the next
1404 bundle. This has the effect of skipping the bundled coprocessor
1405 instruction. That's okay, since coprocessor instructions aren't
1406 significant to prologue analysis --- for the time being,
1407 anyway. */
1408
1409 static CORE_ADDR
1410 mep_get_insn (struct gdbarch *gdbarch, CORE_ADDR pc, unsigned long *insn)
1411 {
1412 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1413 int pc_in_vliw_section;
1414 int vliw_mode;
1415 int insn_len;
1416 gdb_byte buf[2];
1417
1418 *insn = 0;
1419
1420 /* Are we in a VLIW section? */
1421 pc_in_vliw_section = mep_pc_in_vliw_section (pc);
1422 if (pc_in_vliw_section)
1423 {
1424 /* Yes, find out which bundle size. */
1425 vliw_mode = current_options () & (MEP_OPT_VL32 | MEP_OPT_VL64);
1426
1427 /* If PC is in a VLIW section, but the current core doesn't say
1428 that it supports either VLIW mode, then we don't have enough
1429 information to parse the instruction stream it contains.
1430 Since the "undifferentiated" standard core doesn't have
1431 either VLIW mode bit set, this could happen.
1432
1433 But it shouldn't be an error to (say) set a breakpoint in a
1434 VLIW section, if you know you'll never reach it. (Perhaps
1435 you have a script that sets a bunch of standard breakpoints.)
1436
1437 So we'll just return zero here, and hope for the best. */
1438 if (! (vliw_mode & (MEP_OPT_VL32 | MEP_OPT_VL64)))
1439 return 0;
1440
1441 /* If both VL32 and VL64 are set, that's bogus, too. */
1442 if (vliw_mode == (MEP_OPT_VL32 | MEP_OPT_VL64))
1443 return 0;
1444 }
1445 else
1446 vliw_mode = 0;
1447
1448 read_memory (pc, buf, sizeof (buf));
1449 *insn = extract_unsigned_integer (buf, 2, byte_order) << 16;
1450
1451 /* The major opcode --- the top four bits of the first 16-bit
1452 part --- indicates whether this instruction is 16 or 32 bits
1453 long. All 32-bit instructions have a major opcode whose top
1454 two bits are 11; all the rest are 16-bit instructions. */
1455 if ((*insn & 0xc0000000) == 0xc0000000)
1456 {
1457 /* Fetch the second 16-bit part of the instruction. */
1458 read_memory (pc + 2, buf, sizeof (buf));
1459 *insn = *insn | extract_unsigned_integer (buf, 2, byte_order);
1460 }
1461
1462 /* If we're in VLIW code, then the VLIW width determines the address
1463 of the next instruction. */
1464 if (vliw_mode)
1465 {
1466 /* In 32-bit VLIW code, all bundles are 32 bits long. We ignore the
1467 coprocessor half of a core / copro bundle. */
1468 if (vliw_mode == MEP_OPT_VL32)
1469 insn_len = 4;
1470
1471 /* In 64-bit VLIW code, all bundles are 64 bits long. We ignore the
1472 coprocessor half of a core / copro bundle. */
1473 else if (vliw_mode == MEP_OPT_VL64)
1474 insn_len = 8;
1475
1476 /* We'd better be in either core, 32-bit VLIW, or 64-bit VLIW mode. */
1477 else
1478 gdb_assert_not_reached ("unexpected vliw mode");
1479 }
1480
1481 /* Otherwise, the top two bits of the major opcode are (again) what
1482 we need to check. */
1483 else if ((*insn & 0xc0000000) == 0xc0000000)
1484 insn_len = 4;
1485 else
1486 insn_len = 2;
1487
1488 return pc + insn_len;
1489 }
1490
1491
1492 /* Sign-extend the LEN-bit value N. */
1493 #define SEXT(n, len) ((((int) (n)) ^ (1 << ((len) - 1))) - (1 << ((len) - 1)))
1494
1495 /* Return the LEN-bit field at POS from I. */
1496 #define FIELD(i, pos, len) (((i) >> (pos)) & ((1 << (len)) - 1))
1497
1498 /* Like FIELD, but sign-extend the field's value. */
1499 #define SFIELD(i, pos, len) (SEXT (FIELD ((i), (pos), (len)), (len)))
1500
1501
1502 /* Macros for decoding instructions.
1503
1504 Remember that 16-bit instructions are placed in bits 16..31 of i,
1505 not at the least significant end; this means that the major opcode
1506 field is always in the same place, regardless of the width of the
1507 instruction. As a reminder of this, we show the lower 16 bits of a
1508 16-bit instruction as xxxx_xxxx_xxxx_xxxx. */
1509
1510 /* SB Rn,(Rm) 0000_nnnn_mmmm_1000 */
1511 /* SH Rn,(Rm) 0000_nnnn_mmmm_1001 */
1512 /* SW Rn,(Rm) 0000_nnnn_mmmm_1010 */
1513
1514 /* SW Rn,disp16(Rm) 1100_nnnn_mmmm_1010 dddd_dddd_dddd_dddd */
1515 #define IS_SW(i) (((i) & 0xf00f0000) == 0xc00a0000)
1516 /* SB Rn,disp16(Rm) 1100_nnnn_mmmm_1000 dddd_dddd_dddd_dddd */
1517 #define IS_SB(i) (((i) & 0xf00f0000) == 0xc0080000)
1518 /* SH Rn,disp16(Rm) 1100_nnnn_mmmm_1001 dddd_dddd_dddd_dddd */
1519 #define IS_SH(i) (((i) & 0xf00f0000) == 0xc0090000)
1520 #define SWBH_32_BASE(i) (FIELD (i, 20, 4))
1521 #define SWBH_32_SOURCE(i) (FIELD (i, 24, 4))
1522 #define SWBH_32_OFFSET(i) (SFIELD (i, 0, 16))
1523
1524 /* SW Rn,disp7.align4(SP) 0100_nnnn_0ddd_dd10 xxxx_xxxx_xxxx_xxxx */
1525 #define IS_SW_IMMD(i) (((i) & 0xf0830000) == 0x40020000)
1526 #define SW_IMMD_SOURCE(i) (FIELD (i, 24, 4))
1527 #define SW_IMMD_OFFSET(i) (FIELD (i, 18, 5) << 2)
1528
1529 /* SW Rn,(Rm) 0000_nnnn_mmmm_1010 xxxx_xxxx_xxxx_xxxx */
1530 #define IS_SW_REG(i) (((i) & 0xf00f0000) == 0x000a0000)
1531 #define SW_REG_SOURCE(i) (FIELD (i, 24, 4))
1532 #define SW_REG_BASE(i) (FIELD (i, 20, 4))
1533
1534 /* ADD3 Rl,Rn,Rm 1001_nnnn_mmmm_llll xxxx_xxxx_xxxx_xxxx */
1535 #define IS_ADD3_16_REG(i) (((i) & 0xf0000000) == 0x90000000)
1536 #define ADD3_16_REG_SRC1(i) (FIELD (i, 20, 4)) /* n */
1537 #define ADD3_16_REG_SRC2(i) (FIELD (i, 24, 4)) /* m */
1538
1539 /* ADD3 Rn,Rm,imm16 1100_nnnn_mmmm_0000 iiii_iiii_iiii_iiii */
1540 #define IS_ADD3_32(i) (((i) & 0xf00f0000) == 0xc0000000)
1541 #define ADD3_32_TARGET(i) (FIELD (i, 24, 4))
1542 #define ADD3_32_SOURCE(i) (FIELD (i, 20, 4))
1543 #define ADD3_32_OFFSET(i) (SFIELD (i, 0, 16))
1544
1545 /* ADD3 Rn,SP,imm7.align4 0100_nnnn_0iii_ii00 xxxx_xxxx_xxxx_xxxx */
1546 #define IS_ADD3_16(i) (((i) & 0xf0830000) == 0x40000000)
1547 #define ADD3_16_TARGET(i) (FIELD (i, 24, 4))
1548 #define ADD3_16_OFFSET(i) (FIELD (i, 18, 5) << 2)
1549
1550 /* ADD Rn,imm6 0110_nnnn_iiii_ii00 xxxx_xxxx_xxxx_xxxx */
1551 #define IS_ADD(i) (((i) & 0xf0030000) == 0x60000000)
1552 #define ADD_TARGET(i) (FIELD (i, 24, 4))
1553 #define ADD_OFFSET(i) (SFIELD (i, 18, 6))
1554
1555 /* LDC Rn,imm5 0111_nnnn_iiii_101I xxxx_xxxx_xxxx_xxxx
1556 imm5 = I||i[7:4] */
1557 #define IS_LDC(i) (((i) & 0xf00e0000) == 0x700a0000)
1558 #define LDC_IMM(i) ((FIELD (i, 16, 1) << 4) | FIELD (i, 20, 4))
1559 #define LDC_TARGET(i) (FIELD (i, 24, 4))
1560
1561 /* LW Rn,disp16(Rm) 1100_nnnn_mmmm_1110 dddd_dddd_dddd_dddd */
1562 #define IS_LW(i) (((i) & 0xf00f0000) == 0xc00e0000)
1563 #define LW_TARGET(i) (FIELD (i, 24, 4))
1564 #define LW_BASE(i) (FIELD (i, 20, 4))
1565 #define LW_OFFSET(i) (SFIELD (i, 0, 16))
1566
1567 /* MOV Rn,Rm 0000_nnnn_mmmm_0000 xxxx_xxxx_xxxx_xxxx */
1568 #define IS_MOV(i) (((i) & 0xf00f0000) == 0x00000000)
1569 #define MOV_TARGET(i) (FIELD (i, 24, 4))
1570 #define MOV_SOURCE(i) (FIELD (i, 20, 4))
1571
1572 /* BRA disp12.align2 1011_dddd_dddd_ddd0 xxxx_xxxx_xxxx_xxxx */
1573 #define IS_BRA(i) (((i) & 0xf0010000) == 0xb0000000)
1574 #define BRA_DISP(i) (SFIELD (i, 17, 11) << 1)
1575
1576
1577 /* This structure holds the results of a prologue analysis. */
1578 struct mep_prologue
1579 {
1580 /* The architecture for which we generated this prologue info. */
1581 struct gdbarch *gdbarch;
1582
1583 /* The offset from the frame base to the stack pointer --- always
1584 zero or negative.
1585
1586 Calling this a "size" is a bit misleading, but given that the
1587 stack grows downwards, using offsets for everything keeps one
1588 from going completely sign-crazy: you never change anything's
1589 sign for an ADD instruction; always change the second operand's
1590 sign for a SUB instruction; and everything takes care of
1591 itself. */
1592 int frame_size;
1593
1594 /* Non-zero if this function has initialized the frame pointer from
1595 the stack pointer, zero otherwise. */
1596 int has_frame_ptr;
1597
1598 /* If has_frame_ptr is non-zero, this is the offset from the frame
1599 base to where the frame pointer points. This is always zero or
1600 negative. */
1601 int frame_ptr_offset;
1602
1603 /* The address of the first instruction at which the frame has been
1604 set up and the arguments are where the debug info says they are
1605 --- as best as we can tell. */
1606 CORE_ADDR prologue_end;
1607
1608 /* reg_offset[R] is the offset from the CFA at which register R is
1609 saved, or 1 if register R has not been saved. (Real values are
1610 always zero or negative.) */
1611 int reg_offset[MEP_NUM_REGS];
1612 };
1613
1614 /* Return non-zero if VALUE is an incoming argument register. */
1615
1616 static int
1617 is_arg_reg (pv_t value)
1618 {
1619 return (value.kind == pvk_register
1620 && MEP_R1_REGNUM <= value.reg && value.reg <= MEP_R4_REGNUM
1621 && value.k == 0);
1622 }
1623
1624 /* Return non-zero if a store of REG's current value VALUE to ADDR is
1625 probably spilling an argument register to its stack slot in STACK.
1626 Such instructions should be included in the prologue, if possible.
1627
1628 The store is a spill if:
1629 - the value being stored is REG's original value;
1630 - the value has not already been stored somewhere in STACK; and
1631 - ADDR is a stack slot's address (e.g., relative to the original
1632 value of the SP). */
1633 static int
1634 is_arg_spill (struct gdbarch *gdbarch, pv_t value, pv_t addr,
1635 struct pv_area *stack)
1636 {
1637 return (is_arg_reg (value)
1638 && pv_is_register (addr, MEP_SP_REGNUM)
1639 && ! stack->find_reg (gdbarch, value.reg, 0));
1640 }
1641
1642
1643 /* Function for finding saved registers in a 'struct pv_area'; we pass
1644 this to pv_area::scan.
1645
1646 If VALUE is a saved register, ADDR says it was saved at a constant
1647 offset from the frame base, and SIZE indicates that the whole
1648 register was saved, record its offset in RESULT_UNTYPED. */
1649 static void
1650 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1651 {
1652 struct mep_prologue *result = (struct mep_prologue *) result_untyped;
1653
1654 if (value.kind == pvk_register
1655 && value.k == 0
1656 && pv_is_register (addr, MEP_SP_REGNUM)
1657 && size == register_size (result->gdbarch, value.reg))
1658 result->reg_offset[value.reg] = addr.k;
1659 }
1660
1661
1662 /* Analyze a prologue starting at START_PC, going no further than
1663 LIMIT_PC. Fill in RESULT as appropriate. */
1664 static void
1665 mep_analyze_prologue (struct gdbarch *gdbarch,
1666 CORE_ADDR start_pc, CORE_ADDR limit_pc,
1667 struct mep_prologue *result)
1668 {
1669 CORE_ADDR pc;
1670 unsigned long insn;
1671 pv_t reg[MEP_NUM_REGS];
1672 CORE_ADDR after_last_frame_setup_insn = start_pc;
1673
1674 memset (result, 0, sizeof (*result));
1675 result->gdbarch = gdbarch;
1676
1677 for (int rn = 0; rn < MEP_NUM_REGS; rn++)
1678 {
1679 reg[rn] = pv_register (rn, 0);
1680 result->reg_offset[rn] = 1;
1681 }
1682
1683 pv_area stack (MEP_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1684
1685 pc = start_pc;
1686 while (pc < limit_pc)
1687 {
1688 CORE_ADDR next_pc;
1689 pv_t pre_insn_fp, pre_insn_sp;
1690
1691 next_pc = mep_get_insn (gdbarch, pc, &insn);
1692
1693 /* A zero return from mep_get_insn means that either we weren't
1694 able to read the instruction from memory, or that we don't
1695 have enough information to be able to reliably decode it. So
1696 we'll store here and hope for the best. */
1697 if (! next_pc)
1698 break;
1699
1700 /* Note the current values of the SP and FP, so we can tell if
1701 this instruction changed them, below. */
1702 pre_insn_fp = reg[MEP_FP_REGNUM];
1703 pre_insn_sp = reg[MEP_SP_REGNUM];
1704
1705 if (IS_ADD (insn))
1706 {
1707 int rn = ADD_TARGET (insn);
1708 CORE_ADDR imm6 = ADD_OFFSET (insn);
1709
1710 reg[rn] = pv_add_constant (reg[rn], imm6);
1711 }
1712 else if (IS_ADD3_16 (insn))
1713 {
1714 int rn = ADD3_16_TARGET (insn);
1715 int imm7 = ADD3_16_OFFSET (insn);
1716
1717 reg[rn] = pv_add_constant (reg[MEP_SP_REGNUM], imm7);
1718 }
1719 else if (IS_ADD3_32 (insn))
1720 {
1721 int rn = ADD3_32_TARGET (insn);
1722 int rm = ADD3_32_SOURCE (insn);
1723 int imm16 = ADD3_32_OFFSET (insn);
1724
1725 reg[rn] = pv_add_constant (reg[rm], imm16);
1726 }
1727 else if (IS_SW_REG (insn))
1728 {
1729 int rn = SW_REG_SOURCE (insn);
1730 int rm = SW_REG_BASE (insn);
1731
1732 /* If simulating this store would require us to forget
1733 everything we know about the stack frame in the name of
1734 accuracy, it would be better to just quit now. */
1735 if (stack.store_would_trash (reg[rm]))
1736 break;
1737
1738 if (is_arg_spill (gdbarch, reg[rn], reg[rm], &stack))
1739 after_last_frame_setup_insn = next_pc;
1740
1741 stack.store (reg[rm], 4, reg[rn]);
1742 }
1743 else if (IS_SW_IMMD (insn))
1744 {
1745 int rn = SW_IMMD_SOURCE (insn);
1746 int offset = SW_IMMD_OFFSET (insn);
1747 pv_t addr = pv_add_constant (reg[MEP_SP_REGNUM], offset);
1748
1749 /* If simulating this store would require us to forget
1750 everything we know about the stack frame in the name of
1751 accuracy, it would be better to just quit now. */
1752 if (stack.store_would_trash (addr))
1753 break;
1754
1755 if (is_arg_spill (gdbarch, reg[rn], addr, &stack))
1756 after_last_frame_setup_insn = next_pc;
1757
1758 stack.store (addr, 4, reg[rn]);
1759 }
1760 else if (IS_MOV (insn))
1761 {
1762 int rn = MOV_TARGET (insn);
1763 int rm = MOV_SOURCE (insn);
1764
1765 reg[rn] = reg[rm];
1766
1767 if (pv_is_register (reg[rm], rm) && is_arg_reg (reg[rm]))
1768 after_last_frame_setup_insn = next_pc;
1769 }
1770 else if (IS_SB (insn) || IS_SH (insn) || IS_SW (insn))
1771 {
1772 int rn = SWBH_32_SOURCE (insn);
1773 int rm = SWBH_32_BASE (insn);
1774 int disp = SWBH_32_OFFSET (insn);
1775 int size = (IS_SB (insn) ? 1
1776 : IS_SH (insn) ? 2
1777 : (gdb_assert (IS_SW (insn)), 4));
1778 pv_t addr = pv_add_constant (reg[rm], disp);
1779
1780 if (stack.store_would_trash (addr))
1781 break;
1782
1783 if (is_arg_spill (gdbarch, reg[rn], addr, &stack))
1784 after_last_frame_setup_insn = next_pc;
1785
1786 stack.store (addr, size, reg[rn]);
1787 }
1788 else if (IS_LDC (insn))
1789 {
1790 int rn = LDC_TARGET (insn);
1791 int cr = LDC_IMM (insn) + MEP_FIRST_CSR_REGNUM;
1792
1793 reg[rn] = reg[cr];
1794 }
1795 else if (IS_LW (insn))
1796 {
1797 int rn = LW_TARGET (insn);
1798 int rm = LW_BASE (insn);
1799 int offset = LW_OFFSET (insn);
1800 pv_t addr = pv_add_constant (reg[rm], offset);
1801
1802 reg[rn] = stack.fetch (addr, 4);
1803 }
1804 else if (IS_BRA (insn) && BRA_DISP (insn) > 0)
1805 {
1806 /* When a loop appears as the first statement of a function
1807 body, gcc 4.x will use a BRA instruction to branch to the
1808 loop condition checking code. This BRA instruction is
1809 marked as part of the prologue. We therefore set next_pc
1810 to this branch target and also stop the prologue scan.
1811 The instructions at and beyond the branch target should
1812 no longer be associated with the prologue.
1813
1814 Note that we only consider forward branches here. We
1815 presume that a forward branch is being used to skip over
1816 a loop body.
1817
1818 A backwards branch is covered by the default case below.
1819 If we were to encounter a backwards branch, that would
1820 most likely mean that we've scanned through a loop body.
1821 We definitely want to stop the prologue scan when this
1822 happens and that is precisely what is done by the default
1823 case below. */
1824 next_pc = pc + BRA_DISP (insn);
1825 after_last_frame_setup_insn = next_pc;
1826 break;
1827 }
1828 else
1829 /* We've hit some instruction we don't know how to simulate.
1830 Strictly speaking, we should set every value we're
1831 tracking to "unknown". But we'll be optimistic, assume
1832 that we have enough information already, and stop
1833 analysis here. */
1834 break;
1835
1836 /* If this instruction changed the FP or decreased the SP (i.e.,
1837 allocated more stack space), then this may be a good place to
1838 declare the prologue finished. However, there are some
1839 exceptions:
1840
1841 - If the instruction just changed the FP back to its original
1842 value, then that's probably a restore instruction. The
1843 prologue should definitely end before that.
1844
1845 - If the instruction increased the value of the SP (that is,
1846 shrunk the frame), then it's probably part of a frame
1847 teardown sequence, and the prologue should end before that. */
1848
1849 if (! pv_is_identical (reg[MEP_FP_REGNUM], pre_insn_fp))
1850 {
1851 if (! pv_is_register_k (reg[MEP_FP_REGNUM], MEP_FP_REGNUM, 0))
1852 after_last_frame_setup_insn = next_pc;
1853 }
1854 else if (! pv_is_identical (reg[MEP_SP_REGNUM], pre_insn_sp))
1855 {
1856 /* The comparison of constants looks odd, there, because .k
1857 is unsigned. All it really means is that the new value
1858 is lower than it was before the instruction. */
1859 if (pv_is_register (pre_insn_sp, MEP_SP_REGNUM)
1860 && pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM)
1861 && ((pre_insn_sp.k - reg[MEP_SP_REGNUM].k)
1862 < (reg[MEP_SP_REGNUM].k - pre_insn_sp.k)))
1863 after_last_frame_setup_insn = next_pc;
1864 }
1865
1866 pc = next_pc;
1867 }
1868
1869 /* Is the frame size (offset, really) a known constant? */
1870 if (pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM))
1871 result->frame_size = reg[MEP_SP_REGNUM].k;
1872
1873 /* Was the frame pointer initialized? */
1874 if (pv_is_register (reg[MEP_FP_REGNUM], MEP_SP_REGNUM))
1875 {
1876 result->has_frame_ptr = 1;
1877 result->frame_ptr_offset = reg[MEP_FP_REGNUM].k;
1878 }
1879
1880 /* Record where all the registers were saved. */
1881 stack.scan (check_for_saved, (void *) result);
1882
1883 result->prologue_end = after_last_frame_setup_insn;
1884 }
1885
1886
1887 static CORE_ADDR
1888 mep_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1889 {
1890 const char *name;
1891 CORE_ADDR func_addr, func_end;
1892 struct mep_prologue p;
1893
1894 /* Try to find the extent of the function that contains PC. */
1895 if (! find_pc_partial_function (pc, &name, &func_addr, &func_end))
1896 return pc;
1897
1898 mep_analyze_prologue (gdbarch, pc, func_end, &p);
1899 return p.prologue_end;
1900 }
1901
1902
1903 \f
1904 /* Breakpoints. */
1905 constexpr gdb_byte mep_break_insn[] = { 0x70, 0x32 };
1906
1907 typedef BP_MANIPULATION (mep_break_insn) mep_breakpoint;
1908
1909 \f
1910 /* Frames and frame unwinding. */
1911
1912
1913 static struct mep_prologue *
1914 mep_analyze_frame_prologue (struct frame_info *this_frame,
1915 void **this_prologue_cache)
1916 {
1917 if (! *this_prologue_cache)
1918 {
1919 CORE_ADDR func_start, stop_addr;
1920
1921 *this_prologue_cache
1922 = FRAME_OBSTACK_ZALLOC (struct mep_prologue);
1923
1924 func_start = get_frame_func (this_frame);
1925 stop_addr = get_frame_pc (this_frame);
1926
1927 /* If we couldn't find any function containing the PC, then
1928 just initialize the prologue cache, but don't do anything. */
1929 if (! func_start)
1930 stop_addr = func_start;
1931
1932 mep_analyze_prologue (get_frame_arch (this_frame),
1933 func_start, stop_addr,
1934 (struct mep_prologue *) *this_prologue_cache);
1935 }
1936
1937 return (struct mep_prologue *) *this_prologue_cache;
1938 }
1939
1940
1941 /* Given the next frame and a prologue cache, return this frame's
1942 base. */
1943 static CORE_ADDR
1944 mep_frame_base (struct frame_info *this_frame,
1945 void **this_prologue_cache)
1946 {
1947 struct mep_prologue *p
1948 = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
1949
1950 /* In functions that use alloca, the distance between the stack
1951 pointer and the frame base varies dynamically, so we can't use
1952 the SP plus static information like prologue analysis to find the
1953 frame base. However, such functions must have a frame pointer,
1954 to be able to restore the SP on exit. So whenever we do have a
1955 frame pointer, use that to find the base. */
1956 if (p->has_frame_ptr)
1957 {
1958 CORE_ADDR fp
1959 = get_frame_register_unsigned (this_frame, MEP_FP_REGNUM);
1960 return fp - p->frame_ptr_offset;
1961 }
1962 else
1963 {
1964 CORE_ADDR sp
1965 = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
1966 return sp - p->frame_size;
1967 }
1968 }
1969
1970
1971 static void
1972 mep_frame_this_id (struct frame_info *this_frame,
1973 void **this_prologue_cache,
1974 struct frame_id *this_id)
1975 {
1976 *this_id = frame_id_build (mep_frame_base (this_frame, this_prologue_cache),
1977 get_frame_func (this_frame));
1978 }
1979
1980
1981 static struct value *
1982 mep_frame_prev_register (struct frame_info *this_frame,
1983 void **this_prologue_cache, int regnum)
1984 {
1985 struct mep_prologue *p
1986 = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
1987
1988 /* There are a number of complications in unwinding registers on the
1989 MeP, having to do with core functions calling VLIW functions and
1990 vice versa.
1991
1992 The least significant bit of the link register, LP.LTOM, is the
1993 VLIW mode toggle bit: it's set if a core function called a VLIW
1994 function, or vice versa, and clear when the caller and callee
1995 were both in the same mode.
1996
1997 So, if we're asked to unwind the PC, then we really want to
1998 unwind the LP and clear the least significant bit. (Real return
1999 addresses are always even.) And if we want to unwind the program
2000 status word (PSW), we need to toggle PSW.OM if LP.LTOM is set.
2001
2002 Tweaking the register values we return in this way means that the
2003 bits in BUFFERP[] are not the same as the bits you'd find at
2004 ADDRP in the inferior, so we make sure lvalp is not_lval when we
2005 do this. */
2006 if (regnum == MEP_PC_REGNUM)
2007 {
2008 struct value *value;
2009 CORE_ADDR lp;
2010 value = mep_frame_prev_register (this_frame, this_prologue_cache,
2011 MEP_LP_REGNUM);
2012 lp = value_as_long (value);
2013 release_value (value);
2014
2015 return frame_unwind_got_constant (this_frame, regnum, lp & ~1);
2016 }
2017 else
2018 {
2019 CORE_ADDR frame_base = mep_frame_base (this_frame, this_prologue_cache);
2020 struct value *value;
2021
2022 /* Our caller's SP is our frame base. */
2023 if (regnum == MEP_SP_REGNUM)
2024 return frame_unwind_got_constant (this_frame, regnum, frame_base);
2025
2026 /* If prologue analysis says we saved this register somewhere,
2027 return a description of the stack slot holding it. */
2028 if (p->reg_offset[regnum] != 1)
2029 value = frame_unwind_got_memory (this_frame, regnum,
2030 frame_base + p->reg_offset[regnum]);
2031
2032 /* Otherwise, presume we haven't changed the value of this
2033 register, and get it from the next frame. */
2034 else
2035 value = frame_unwind_got_register (this_frame, regnum, regnum);
2036
2037 /* If we need to toggle the operating mode, do so. */
2038 if (regnum == MEP_PSW_REGNUM)
2039 {
2040 CORE_ADDR psw, lp;
2041
2042 psw = value_as_long (value);
2043 release_value (value);
2044
2045 /* Get the LP's value, too. */
2046 value = get_frame_register_value (this_frame, MEP_LP_REGNUM);
2047 lp = value_as_long (value);
2048 release_value (value);
2049
2050 /* If LP.LTOM is set, then toggle PSW.OM. */
2051 if (lp & 0x1)
2052 psw ^= 0x1000;
2053
2054 return frame_unwind_got_constant (this_frame, regnum, psw);
2055 }
2056
2057 return value;
2058 }
2059 }
2060
2061
2062 static const struct frame_unwind mep_frame_unwind = {
2063 "mep prologue",
2064 NORMAL_FRAME,
2065 default_frame_unwind_stop_reason,
2066 mep_frame_this_id,
2067 mep_frame_prev_register,
2068 NULL,
2069 default_frame_sniffer
2070 };
2071
2072 \f
2073 /* Return values. */
2074
2075
2076 static int
2077 mep_use_struct_convention (struct type *type)
2078 {
2079 return (TYPE_LENGTH (type) > MEP_GPR_SIZE);
2080 }
2081
2082
2083 static void
2084 mep_extract_return_value (struct gdbarch *arch,
2085 struct type *type,
2086 struct regcache *regcache,
2087 gdb_byte *valbuf)
2088 {
2089 int byte_order = gdbarch_byte_order (arch);
2090
2091 /* Values that don't occupy a full register appear at the less
2092 significant end of the value. This is the offset to where the
2093 value starts. */
2094 int offset;
2095
2096 /* Return values > MEP_GPR_SIZE bytes are returned in memory,
2097 pointed to by R0. */
2098 gdb_assert (TYPE_LENGTH (type) <= MEP_GPR_SIZE);
2099
2100 if (byte_order == BFD_ENDIAN_BIG)
2101 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2102 else
2103 offset = 0;
2104
2105 /* Return values that do fit in a single register are returned in R0. */
2106 regcache->cooked_read_part (MEP_R0_REGNUM, offset, TYPE_LENGTH (type),
2107 valbuf);
2108 }
2109
2110
2111 static void
2112 mep_store_return_value (struct gdbarch *arch,
2113 struct type *type,
2114 struct regcache *regcache,
2115 const gdb_byte *valbuf)
2116 {
2117 int byte_order = gdbarch_byte_order (arch);
2118
2119 /* Values that fit in a single register go in R0. */
2120 if (TYPE_LENGTH (type) <= MEP_GPR_SIZE)
2121 {
2122 /* Values that don't occupy a full register appear at the least
2123 significant end of the value. This is the offset to where the
2124 value starts. */
2125 int offset;
2126
2127 if (byte_order == BFD_ENDIAN_BIG)
2128 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2129 else
2130 offset = 0;
2131
2132 regcache->cooked_write_part (MEP_R0_REGNUM, offset, TYPE_LENGTH (type),
2133 valbuf);
2134 }
2135
2136 /* Return values larger than a single register are returned in
2137 memory, pointed to by R0. Unfortunately, we can't count on R0
2138 pointing to the return buffer, so we raise an error here. */
2139 else
2140 error (_("\
2141 GDB cannot set return values larger than four bytes; the Media Processor's\n\
2142 calling conventions do not provide enough information to do this.\n\
2143 Try using the 'return' command with no argument."));
2144 }
2145
2146 static enum return_value_convention
2147 mep_return_value (struct gdbarch *gdbarch, struct value *function,
2148 struct type *type, struct regcache *regcache,
2149 gdb_byte *readbuf, const gdb_byte *writebuf)
2150 {
2151 if (mep_use_struct_convention (type))
2152 {
2153 if (readbuf)
2154 {
2155 ULONGEST addr;
2156 /* Although the address of the struct buffer gets passed in R1, it's
2157 returned in R0. Fetch R0's value and then read the memory
2158 at that address. */
2159 regcache_raw_read_unsigned (regcache, MEP_R0_REGNUM, &addr);
2160 read_memory (addr, readbuf, TYPE_LENGTH (type));
2161 }
2162 if (writebuf)
2163 {
2164 /* Return values larger than a single register are returned in
2165 memory, pointed to by R0. Unfortunately, we can't count on R0
2166 pointing to the return buffer, so we raise an error here. */
2167 error (_("\
2168 GDB cannot set return values larger than four bytes; the Media Processor's\n\
2169 calling conventions do not provide enough information to do this.\n\
2170 Try using the 'return' command with no argument."));
2171 }
2172 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2173 }
2174
2175 if (readbuf)
2176 mep_extract_return_value (gdbarch, type, regcache, readbuf);
2177 if (writebuf)
2178 mep_store_return_value (gdbarch, type, regcache, writebuf);
2179
2180 return RETURN_VALUE_REGISTER_CONVENTION;
2181 }
2182
2183 \f
2184 /* Inferior calls. */
2185
2186
2187 static CORE_ADDR
2188 mep_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2189 {
2190 /* Require word alignment. */
2191 return sp & -4;
2192 }
2193
2194
2195 /* From "lang_spec2.txt":
2196
2197 4.2 Calling conventions
2198
2199 4.2.1 Core register conventions
2200
2201 - Parameters should be evaluated from left to right, and they
2202 should be held in $1,$2,$3,$4 in order. The fifth parameter or
2203 after should be held in the stack. If the size is larger than 4
2204 bytes in the first four parameters, the pointer should be held in
2205 the registers instead. If the size is larger than 4 bytes in the
2206 fifth parameter or after, the pointer should be held in the stack.
2207
2208 - Return value of a function should be held in register $0. If the
2209 size of return value is larger than 4 bytes, $1 should hold the
2210 pointer pointing memory that would hold the return value. In this
2211 case, the first parameter should be held in $2, the second one in
2212 $3, and the third one in $4, and the forth parameter or after
2213 should be held in the stack.
2214
2215 [This doesn't say so, but arguments shorter than four bytes are
2216 passed in the least significant end of a four-byte word when
2217 they're passed on the stack.] */
2218
2219
2220 /* Traverse the list of ARGC arguments ARGV; for every ARGV[i] too
2221 large to fit in a register, save it on the stack, and place its
2222 address in COPY[i]. SP is the initial stack pointer; return the
2223 new stack pointer. */
2224 static CORE_ADDR
2225 push_large_arguments (CORE_ADDR sp, int argc, struct value **argv,
2226 CORE_ADDR copy[])
2227 {
2228 int i;
2229
2230 for (i = 0; i < argc; i++)
2231 {
2232 unsigned arg_len = TYPE_LENGTH (value_type (argv[i]));
2233
2234 if (arg_len > MEP_GPR_SIZE)
2235 {
2236 /* Reserve space for the copy, and then round the SP down, to
2237 make sure it's all aligned properly. */
2238 sp = (sp - arg_len) & -4;
2239 write_memory (sp, value_contents (argv[i]).data (), arg_len);
2240 copy[i] = sp;
2241 }
2242 }
2243
2244 return sp;
2245 }
2246
2247
2248 static CORE_ADDR
2249 mep_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2250 struct regcache *regcache, CORE_ADDR bp_addr,
2251 int argc, struct value **argv, CORE_ADDR sp,
2252 function_call_return_method return_method,
2253 CORE_ADDR struct_addr)
2254 {
2255 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2256 CORE_ADDR *copy = (CORE_ADDR *) alloca (argc * sizeof (copy[0]));
2257 int i;
2258
2259 /* The number of the next register available to hold an argument. */
2260 int arg_reg;
2261
2262 /* The address of the next stack slot available to hold an argument. */
2263 CORE_ADDR arg_stack;
2264
2265 /* The address of the end of the stack area for arguments. This is
2266 just for error checking. */
2267 CORE_ADDR arg_stack_end;
2268
2269 sp = push_large_arguments (sp, argc, argv, copy);
2270
2271 /* Reserve space for the stack arguments, if any. */
2272 arg_stack_end = sp;
2273 if (argc + (struct_addr ? 1 : 0) > 4)
2274 sp -= ((argc + (struct_addr ? 1 : 0)) - 4) * MEP_GPR_SIZE;
2275
2276 arg_reg = MEP_R1_REGNUM;
2277 arg_stack = sp;
2278
2279 /* If we're returning a structure by value, push the pointer to the
2280 buffer as the first argument. */
2281 if (return_method == return_method_struct)
2282 {
2283 regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
2284 arg_reg++;
2285 }
2286
2287 for (i = 0; i < argc; i++)
2288 {
2289 ULONGEST value;
2290
2291 /* Arguments that fit in a GPR get expanded to fill the GPR. */
2292 if (TYPE_LENGTH (value_type (argv[i])) <= MEP_GPR_SIZE)
2293 value = extract_unsigned_integer (value_contents (argv[i]).data (),
2294 TYPE_LENGTH (value_type (argv[i])),
2295 byte_order);
2296
2297 /* Arguments too large to fit in a GPR get copied to the stack,
2298 and we pass a pointer to the copy. */
2299 else
2300 value = copy[i];
2301
2302 /* We use $1 -- $4 for passing arguments, then use the stack. */
2303 if (arg_reg <= MEP_R4_REGNUM)
2304 {
2305 regcache_cooked_write_unsigned (regcache, arg_reg, value);
2306 arg_reg++;
2307 }
2308 else
2309 {
2310 gdb_byte buf[MEP_GPR_SIZE];
2311 store_unsigned_integer (buf, MEP_GPR_SIZE, byte_order, value);
2312 write_memory (arg_stack, buf, MEP_GPR_SIZE);
2313 arg_stack += MEP_GPR_SIZE;
2314 }
2315 }
2316
2317 gdb_assert (arg_stack <= arg_stack_end);
2318
2319 /* Set the return address. */
2320 regcache_cooked_write_unsigned (regcache, MEP_LP_REGNUM, bp_addr);
2321
2322 /* Update the stack pointer. */
2323 regcache_cooked_write_unsigned (regcache, MEP_SP_REGNUM, sp);
2324
2325 return sp;
2326 }
2327
2328 \f
2329 /* Initialization. */
2330
2331
2332 static struct gdbarch *
2333 mep_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2334 {
2335 struct gdbarch *gdbarch;
2336
2337 /* Which me_module are we building a gdbarch object for? */
2338 CONFIG_ATTR me_module;
2339
2340 /* If we have a BFD in hand, figure out which me_module it was built
2341 for. Otherwise, use the no-particular-me_module code. */
2342 if (info.abfd)
2343 {
2344 /* The way to get the me_module code depends on the object file
2345 format. At the moment, we only know how to handle ELF. */
2346 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
2347 {
2348 int flag = elf_elfheader (info.abfd)->e_flags & EF_MEP_INDEX_MASK;
2349 me_module = (CONFIG_ATTR) flag;
2350 }
2351 else
2352 me_module = CONFIG_NONE;
2353 }
2354 else
2355 me_module = CONFIG_NONE;
2356
2357 /* If we're setting the architecture from a file, check the
2358 endianness of the file against that of the me_module. */
2359 if (info.abfd)
2360 {
2361 /* The negations on either side make the comparison treat all
2362 non-zero (true) values as equal. */
2363 if (! bfd_big_endian (info.abfd) != ! me_module_big_endian (me_module))
2364 {
2365 const char *module_name = me_module_name (me_module);
2366 const char *module_endianness
2367 = me_module_big_endian (me_module) ? "big" : "little";
2368 const char *file_name = bfd_get_filename (info.abfd);
2369 const char *file_endianness
2370 = bfd_big_endian (info.abfd) ? "big" : "little";
2371
2372 gdb_putc ('\n', gdb_stderr);
2373 if (module_name)
2374 warning (_("the MeP module '%s' is %s-endian, but the executable\n"
2375 "%s is %s-endian."),
2376 module_name, module_endianness,
2377 file_name, file_endianness);
2378 else
2379 warning (_("the selected MeP module is %s-endian, but the "
2380 "executable\n"
2381 "%s is %s-endian."),
2382 module_endianness, file_name, file_endianness);
2383 }
2384 }
2385
2386 /* Find a candidate among the list of architectures we've created
2387 already. info->bfd_arch_info needs to match, but we also want
2388 the right me_module: the ELF header's e_flags field needs to
2389 match as well. */
2390 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2391 arches != NULL;
2392 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2393 {
2394 mep_gdbarch_tdep *tdep
2395 = (mep_gdbarch_tdep *) gdbarch_tdep (arches->gdbarch);
2396
2397 if (tdep->me_module == me_module)
2398 return arches->gdbarch;
2399 }
2400
2401 mep_gdbarch_tdep *tdep = new mep_gdbarch_tdep;
2402 gdbarch = gdbarch_alloc (&info, tdep);
2403
2404 /* Get a CGEN CPU descriptor for this architecture. */
2405 {
2406 const char *mach_name = info.bfd_arch_info->printable_name;
2407 enum cgen_endian endian = (info.byte_order == BFD_ENDIAN_BIG
2408 ? CGEN_ENDIAN_BIG
2409 : CGEN_ENDIAN_LITTLE);
2410
2411 tdep->cpu_desc = mep_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH, mach_name,
2412 CGEN_CPU_OPEN_ENDIAN, endian,
2413 CGEN_CPU_OPEN_END);
2414 }
2415
2416 tdep->me_module = me_module;
2417
2418 /* Register set. */
2419 set_gdbarch_num_regs (gdbarch, MEP_NUM_RAW_REGS);
2420 set_gdbarch_pc_regnum (gdbarch, MEP_PC_REGNUM);
2421 set_gdbarch_sp_regnum (gdbarch, MEP_SP_REGNUM);
2422 set_gdbarch_register_name (gdbarch, mep_register_name);
2423 set_gdbarch_register_type (gdbarch, mep_register_type);
2424 set_gdbarch_num_pseudo_regs (gdbarch, MEP_NUM_PSEUDO_REGS);
2425 set_gdbarch_pseudo_register_read (gdbarch, mep_pseudo_register_read);
2426 set_gdbarch_pseudo_register_write (gdbarch, mep_pseudo_register_write);
2427 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2428 set_gdbarch_stab_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2429
2430 set_gdbarch_register_reggroup_p (gdbarch, mep_register_reggroup_p);
2431 reggroup_add (gdbarch, all_reggroup);
2432 reggroup_add (gdbarch, general_reggroup);
2433 reggroup_add (gdbarch, save_reggroup);
2434 reggroup_add (gdbarch, restore_reggroup);
2435 reggroup_add (gdbarch, mep_csr_reggroup);
2436 reggroup_add (gdbarch, mep_cr_reggroup);
2437 reggroup_add (gdbarch, mep_ccr_reggroup);
2438
2439 /* Disassembly. */
2440 set_gdbarch_print_insn (gdbarch, mep_gdb_print_insn);
2441
2442 /* Breakpoints. */
2443 set_gdbarch_breakpoint_kind_from_pc (gdbarch, mep_breakpoint::kind_from_pc);
2444 set_gdbarch_sw_breakpoint_from_kind (gdbarch, mep_breakpoint::bp_from_kind);
2445 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2446 set_gdbarch_skip_prologue (gdbarch, mep_skip_prologue);
2447
2448 /* Frames and frame unwinding. */
2449 frame_unwind_append_unwinder (gdbarch, &mep_frame_unwind);
2450 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2451 set_gdbarch_frame_args_skip (gdbarch, 0);
2452
2453 /* Return values. */
2454 set_gdbarch_return_value (gdbarch, mep_return_value);
2455
2456 /* Inferior function calls. */
2457 set_gdbarch_frame_align (gdbarch, mep_frame_align);
2458 set_gdbarch_push_dummy_call (gdbarch, mep_push_dummy_call);
2459
2460 return gdbarch;
2461 }
2462
2463 void _initialize_mep_tdep ();
2464 void
2465 _initialize_mep_tdep ()
2466 {
2467 mep_csr_reggroup = reggroup_new ("csr", USER_REGGROUP);
2468 mep_cr_reggroup = reggroup_new ("cr", USER_REGGROUP);
2469 mep_ccr_reggroup = reggroup_new ("ccr", USER_REGGROUP);
2470
2471 register_gdbarch_init (bfd_arch_mep, mep_gdbarch_init);
2472
2473 mep_init_pseudoregister_maps ();
2474 }