Remove unnecessary function prototypes.
[binutils-gdb.git] / gdb / mep-tdep.c
1 /* Target-dependent code for the Toshiba MeP for GDB, the GNU debugger.
2
3 Copyright (C) 2001-2017 Free Software Foundation, Inc.
4
5 Contributed by Red Hat, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "gdbcore.h"
30 #include "value.h"
31 #include "inferior.h"
32 #include "dis-asm.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "language.h"
36 #include "arch-utils.h"
37 #include "regcache.h"
38 #include "remote.h"
39 #include "floatformat.h"
40 #include "sim-regno.h"
41 #include "disasm.h"
42 #include "trad-frame.h"
43 #include "reggroups.h"
44 #include "elf-bfd.h"
45 #include "elf/mep.h"
46 #include "prologue-value.h"
47 #include "cgen/bitset.h"
48 #include "infcall.h"
49
50 /* Get the user's customized MeP coprocessor register names from
51 libopcodes. */
52 #include "opcodes/mep-desc.h"
53 #include "opcodes/mep-opc.h"
54
55 \f
56 /* The gdbarch_tdep structure. */
57
58 /* A quick recap for GDB hackers not familiar with the whole Toshiba
59 Media Processor story:
60
61 The MeP media engine is a configureable processor: users can design
62 their own coprocessors, implement custom instructions, adjust cache
63 sizes, select optional standard facilities like add-and-saturate
64 instructions, and so on. Then, they can build custom versions of
65 the GNU toolchain to support their customized chips. The
66 MeP-Integrator program (see utils/mep) takes a GNU toolchain source
67 tree, and a config file pointing to various files provided by the
68 user describing their customizations, and edits the source tree to
69 produce a compiler that can generate their custom instructions, an
70 assembler that can assemble them and recognize their custom
71 register names, and so on.
72
73 Furthermore, the user can actually specify several of these custom
74 configurations, called 'me_modules', and get a toolchain which can
75 produce code for any of them, given a compiler/assembler switch;
76 you say something like 'gcc -mconfig=mm_max' to generate code for
77 the me_module named 'mm_max'.
78
79 GDB, in particular, needs to:
80
81 - use the coprocessor control register names provided by the user
82 in their hardware description, in expressions, 'info register'
83 output, and disassembly,
84
85 - know the number, names, and types of the coprocessor's
86 general-purpose registers, adjust the 'info all-registers' output
87 accordingly, and print error messages if the user refers to one
88 that doesn't exist
89
90 - allow access to the control bus space only when the configuration
91 actually has a control bus, and recognize which regions of the
92 control bus space are actually populated,
93
94 - disassemble using the user's provided mnemonics for their custom
95 instructions, and
96
97 - recognize whether the $hi and $lo registers are present, and
98 allow access to them only when they are actually there.
99
100 There are three sources of information about what sort of me_module
101 we're actually dealing with:
102
103 - A MeP executable file indicates which me_module it was compiled
104 for, and libopcodes has tables describing each module. So, given
105 an executable file, we can find out about the processor it was
106 compiled for.
107
108 - There are SID command-line options to select a particular
109 me_module, overriding the one specified in the ELF file. SID
110 provides GDB with a fake read-only register, 'module', which
111 indicates which me_module GDB is communicating with an instance
112 of.
113
114 - There are SID command-line options to enable or disable certain
115 optional processor features, overriding the defaults for the
116 selected me_module. The MeP $OPT register indicates which
117 options are present on the current processor. */
118
119
120 struct gdbarch_tdep
121 {
122 /* A CGEN cpu descriptor for this BFD architecture and machine.
123
124 Note: this is *not* customized for any particular me_module; the
125 MeP libopcodes machinery actually puts off module-specific
126 customization until the last minute. So this contains
127 information about all supported me_modules. */
128 CGEN_CPU_DESC cpu_desc;
129
130 /* The me_module index from the ELF file we used to select this
131 architecture, or CONFIG_NONE if there was none.
132
133 Note that we should prefer to use the me_module number available
134 via the 'module' register, whenever we're actually talking to a
135 real target.
136
137 In the absence of live information, we'd like to get the
138 me_module number from the ELF file. But which ELF file: the
139 executable file, the core file, ... ? The answer is, "the last
140 ELF file we used to set the current architecture". Thus, we
141 create a separate instance of the gdbarch structure for each
142 me_module value mep_gdbarch_init sees, and store the me_module
143 value from the ELF file here. */
144 CONFIG_ATTR me_module;
145 };
146
147
148 \f
149 /* Getting me_module information from the CGEN tables. */
150
151
152 /* Find an entry in the DESC's hardware table whose name begins with
153 PREFIX, and whose ISA mask intersects COPRO_ISA_MASK, but does not
154 intersect with GENERIC_ISA_MASK. If there is no matching entry,
155 return zero. */
156 static const CGEN_HW_ENTRY *
157 find_hw_entry_by_prefix_and_isa (CGEN_CPU_DESC desc,
158 const char *prefix,
159 CGEN_BITSET *copro_isa_mask,
160 CGEN_BITSET *generic_isa_mask)
161 {
162 int prefix_len = strlen (prefix);
163 int i;
164
165 for (i = 0; i < desc->hw_table.num_entries; i++)
166 {
167 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
168 if (strncmp (prefix, hw->name, prefix_len) == 0)
169 {
170 CGEN_BITSET *hw_isa_mask
171 = ((CGEN_BITSET *)
172 &CGEN_ATTR_CGEN_HW_ISA_VALUE (CGEN_HW_ATTRS (hw)));
173
174 if (cgen_bitset_intersect_p (hw_isa_mask, copro_isa_mask)
175 && ! cgen_bitset_intersect_p (hw_isa_mask, generic_isa_mask))
176 return hw;
177 }
178 }
179
180 return 0;
181 }
182
183
184 /* Find an entry in DESC's hardware table whose type is TYPE. Return
185 zero if there is none. */
186 static const CGEN_HW_ENTRY *
187 find_hw_entry_by_type (CGEN_CPU_DESC desc, CGEN_HW_TYPE type)
188 {
189 int i;
190
191 for (i = 0; i < desc->hw_table.num_entries; i++)
192 {
193 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
194
195 if (hw->type == type)
196 return hw;
197 }
198
199 return 0;
200 }
201
202
203 /* Return the CGEN hardware table entry for the coprocessor register
204 set for ME_MODULE, whose name prefix is PREFIX. If ME_MODULE has
205 no such register set, return zero. If ME_MODULE is the generic
206 me_module CONFIG_NONE, return the table entry for the register set
207 whose hardware type is GENERIC_TYPE. */
208 static const CGEN_HW_ENTRY *
209 me_module_register_set (CONFIG_ATTR me_module,
210 const char *prefix,
211 CGEN_HW_TYPE generic_type)
212 {
213 /* This is kind of tricky, because the hardware table is constructed
214 in a way that isn't very helpful. Perhaps we can fix that, but
215 here's how it works at the moment:
216
217 The configuration map, `mep_config_map', is indexed by me_module
218 number, and indicates which coprocessor and core ISAs that
219 me_module supports. The 'core_isa' mask includes all the core
220 ISAs, and the 'cop_isa' mask includes all the coprocessor ISAs.
221 The entry for the generic me_module, CONFIG_NONE, has an empty
222 'cop_isa', and its 'core_isa' selects only the standard MeP
223 instruction set.
224
225 The CGEN CPU descriptor's hardware table, desc->hw_table, has
226 entries for all the register sets, for all me_modules. Each
227 entry has a mask indicating which ISAs use that register set.
228 So, if an me_module supports some coprocessor ISA, we can find
229 applicable register sets by scanning the hardware table for
230 register sets whose masks include (at least some of) those ISAs.
231
232 Each hardware table entry also has a name, whose prefix says
233 whether it's a general-purpose ("h-cr") or control ("h-ccr")
234 coprocessor register set. It might be nicer to have an attribute
235 indicating what sort of register set it was, that we could use
236 instead of pattern-matching on the name.
237
238 When there is no hardware table entry whose mask includes a
239 particular coprocessor ISA and whose name starts with a given
240 prefix, then that means that that coprocessor doesn't have any
241 registers of that type. In such cases, this function must return
242 a null pointer.
243
244 Coprocessor register sets' masks may or may not include the core
245 ISA for the me_module they belong to. Those generated by a2cgen
246 do, but the sample me_module included in the unconfigured tree,
247 'ccfx', does not.
248
249 There are generic coprocessor register sets, intended only for
250 use with the generic me_module. Unfortunately, their masks
251 include *all* ISAs --- even those for coprocessors that don't
252 have such register sets. This makes detecting the case where a
253 coprocessor lacks a particular register set more complicated.
254
255 So, here's the approach we take:
256
257 - For CONFIG_NONE, we return the generic coprocessor register set.
258
259 - For any other me_module, we search for a register set whose
260 mask contains any of the me_module's coprocessor ISAs,
261 specifically excluding the generic coprocessor register sets. */
262
263 CGEN_CPU_DESC desc = gdbarch_tdep (target_gdbarch ())->cpu_desc;
264 const CGEN_HW_ENTRY *hw;
265
266 if (me_module == CONFIG_NONE)
267 hw = find_hw_entry_by_type (desc, generic_type);
268 else
269 {
270 CGEN_BITSET *cop = &mep_config_map[me_module].cop_isa;
271 CGEN_BITSET *core = &mep_config_map[me_module].core_isa;
272 CGEN_BITSET *generic = &mep_config_map[CONFIG_NONE].core_isa;
273 CGEN_BITSET *cop_and_core;
274
275 /* The coprocessor ISAs include the ISA for the specific core which
276 has that coprocessor. */
277 cop_and_core = cgen_bitset_copy (cop);
278 cgen_bitset_union (cop, core, cop_and_core);
279 hw = find_hw_entry_by_prefix_and_isa (desc, prefix, cop_and_core, generic);
280 }
281
282 return hw;
283 }
284
285
286 /* Given a hardware table entry HW representing a register set, return
287 a pointer to the keyword table with all the register names. If HW
288 is NULL, return NULL, to propage the "no such register set" info
289 along. */
290 static CGEN_KEYWORD *
291 register_set_keyword_table (const CGEN_HW_ENTRY *hw)
292 {
293 if (! hw)
294 return NULL;
295
296 /* Check that HW is actually a keyword table. */
297 gdb_assert (hw->asm_type == CGEN_ASM_KEYWORD);
298
299 /* The 'asm_data' field of a register set's hardware table entry
300 refers to a keyword table. */
301 return (CGEN_KEYWORD *) hw->asm_data;
302 }
303
304
305 /* Given a keyword table KEYWORD and a register number REGNUM, return
306 the name of the register, or "" if KEYWORD contains no register
307 whose number is REGNUM. */
308 static const char *
309 register_name_from_keyword (CGEN_KEYWORD *keyword_table, int regnum)
310 {
311 const CGEN_KEYWORD_ENTRY *entry
312 = cgen_keyword_lookup_value (keyword_table, regnum);
313
314 if (entry)
315 {
316 char *name = entry->name;
317
318 /* The CGEN keyword entries for register names include the
319 leading $, which appears in MeP assembly as well as in GDB.
320 But we don't want to return that; GDB core code adds that
321 itself. */
322 if (name[0] == '$')
323 name++;
324
325 return name;
326 }
327 else
328 return "";
329 }
330
331
332 /* Masks for option bits in the OPT special-purpose register. */
333 enum {
334 MEP_OPT_DIV = 1 << 25, /* 32-bit divide instruction option */
335 MEP_OPT_MUL = 1 << 24, /* 32-bit multiply instruction option */
336 MEP_OPT_BIT = 1 << 23, /* bit manipulation instruction option */
337 MEP_OPT_SAT = 1 << 22, /* saturation instruction option */
338 MEP_OPT_CLP = 1 << 21, /* clip instruction option */
339 MEP_OPT_MIN = 1 << 20, /* min/max instruction option */
340 MEP_OPT_AVE = 1 << 19, /* average instruction option */
341 MEP_OPT_ABS = 1 << 18, /* absolute difference instruction option */
342 MEP_OPT_LDZ = 1 << 16, /* leading zero instruction option */
343 MEP_OPT_VL64 = 1 << 6, /* 64-bit VLIW operation mode option */
344 MEP_OPT_VL32 = 1 << 5, /* 32-bit VLIW operation mode option */
345 MEP_OPT_COP = 1 << 4, /* coprocessor option */
346 MEP_OPT_DSP = 1 << 2, /* DSP option */
347 MEP_OPT_UCI = 1 << 1, /* UCI option */
348 MEP_OPT_DBG = 1 << 0, /* DBG function option */
349 };
350
351
352 /* Given the option_mask value for a particular entry in
353 mep_config_map, produce the value the processor's OPT register
354 would use to represent the same set of options. */
355 static unsigned int
356 opt_from_option_mask (unsigned int option_mask)
357 {
358 /* A table mapping OPT register bits onto CGEN config map option
359 bits. */
360 struct {
361 unsigned int opt_bit, option_mask_bit;
362 } bits[] = {
363 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
364 { MEP_OPT_MUL, 1 << CGEN_INSN_OPTIONAL_MUL_INSN },
365 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
366 { MEP_OPT_DBG, 1 << CGEN_INSN_OPTIONAL_DEBUG_INSN },
367 { MEP_OPT_LDZ, 1 << CGEN_INSN_OPTIONAL_LDZ_INSN },
368 { MEP_OPT_ABS, 1 << CGEN_INSN_OPTIONAL_ABS_INSN },
369 { MEP_OPT_AVE, 1 << CGEN_INSN_OPTIONAL_AVE_INSN },
370 { MEP_OPT_MIN, 1 << CGEN_INSN_OPTIONAL_MINMAX_INSN },
371 { MEP_OPT_CLP, 1 << CGEN_INSN_OPTIONAL_CLIP_INSN },
372 { MEP_OPT_SAT, 1 << CGEN_INSN_OPTIONAL_SAT_INSN },
373 { MEP_OPT_UCI, 1 << CGEN_INSN_OPTIONAL_UCI_INSN },
374 { MEP_OPT_DSP, 1 << CGEN_INSN_OPTIONAL_DSP_INSN },
375 { MEP_OPT_COP, 1 << CGEN_INSN_OPTIONAL_CP_INSN },
376 };
377
378 int i;
379 unsigned int opt = 0;
380
381 for (i = 0; i < (sizeof (bits) / sizeof (bits[0])); i++)
382 if (option_mask & bits[i].option_mask_bit)
383 opt |= bits[i].opt_bit;
384
385 return opt;
386 }
387
388
389 /* Return the value the $OPT register would use to represent the set
390 of options for ME_MODULE. */
391 static unsigned int
392 me_module_opt (CONFIG_ATTR me_module)
393 {
394 return opt_from_option_mask (mep_config_map[me_module].option_mask);
395 }
396
397
398 /* Return the width of ME_MODULE's coprocessor data bus, in bits.
399 This is either 32 or 64. */
400 static int
401 me_module_cop_data_bus_width (CONFIG_ATTR me_module)
402 {
403 if (mep_config_map[me_module].option_mask
404 & (1 << CGEN_INSN_OPTIONAL_CP64_INSN))
405 return 64;
406 else
407 return 32;
408 }
409
410
411 /* Return true if ME_MODULE is big-endian, false otherwise. */
412 static int
413 me_module_big_endian (CONFIG_ATTR me_module)
414 {
415 return mep_config_map[me_module].big_endian;
416 }
417
418
419 /* Return the name of ME_MODULE, or NULL if it has no name. */
420 static const char *
421 me_module_name (CONFIG_ATTR me_module)
422 {
423 /* The default me_module has "" as its name, but it's easier for our
424 callers to test for NULL. */
425 if (! mep_config_map[me_module].name
426 || mep_config_map[me_module].name[0] == '\0')
427 return NULL;
428 else
429 return mep_config_map[me_module].name;
430 }
431 \f
432 /* Register set. */
433
434
435 /* The MeP spec defines the following registers:
436 16 general purpose registers (r0-r15)
437 32 control/special registers (csr0-csr31)
438 32 coprocessor general-purpose registers (c0 -- c31)
439 64 coprocessor control registers (ccr0 -- ccr63)
440
441 For the raw registers, we assign numbers here explicitly, instead
442 of letting the enum assign them for us; the numbers are a matter of
443 external protocol, and shouldn't shift around as things are edited.
444
445 We access the control/special registers via pseudoregisters, to
446 enforce read-only portions that some registers have.
447
448 We access the coprocessor general purpose and control registers via
449 pseudoregisters, to make sure they appear in the proper order in
450 the 'info all-registers' command (which uses the register number
451 ordering), and also to allow them to be renamed and resized
452 depending on the me_module in use.
453
454 The MeP allows coprocessor general-purpose registers to be either
455 32 or 64 bits long, depending on the configuration. Since we don't
456 want the format of the 'g' packet to vary from one core to another,
457 the raw coprocessor GPRs are always 64 bits. GDB doesn't allow the
458 types of registers to change (see the implementation of
459 register_type), so we have four banks of pseudoregisters for the
460 coprocessor gprs --- 32-bit vs. 64-bit, and integer
461 vs. floating-point --- and we show or hide them depending on the
462 configuration. */
463 enum
464 {
465 MEP_FIRST_RAW_REGNUM = 0,
466
467 MEP_FIRST_GPR_REGNUM = 0,
468 MEP_R0_REGNUM = 0,
469 MEP_R1_REGNUM = 1,
470 MEP_R2_REGNUM = 2,
471 MEP_R3_REGNUM = 3,
472 MEP_R4_REGNUM = 4,
473 MEP_R5_REGNUM = 5,
474 MEP_R6_REGNUM = 6,
475 MEP_R7_REGNUM = 7,
476 MEP_R8_REGNUM = 8,
477 MEP_R9_REGNUM = 9,
478 MEP_R10_REGNUM = 10,
479 MEP_R11_REGNUM = 11,
480 MEP_R12_REGNUM = 12,
481 MEP_FP_REGNUM = MEP_R8_REGNUM,
482 MEP_R13_REGNUM = 13,
483 MEP_TP_REGNUM = MEP_R13_REGNUM, /* (r13) Tiny data pointer */
484 MEP_R14_REGNUM = 14,
485 MEP_GP_REGNUM = MEP_R14_REGNUM, /* (r14) Global pointer */
486 MEP_R15_REGNUM = 15,
487 MEP_SP_REGNUM = MEP_R15_REGNUM, /* (r15) Stack pointer */
488 MEP_LAST_GPR_REGNUM = MEP_R15_REGNUM,
489
490 /* The raw control registers. These are the values as received via
491 the remote protocol, directly from the target; we only let user
492 code touch the via the pseudoregisters, which enforce read-only
493 bits. */
494 MEP_FIRST_RAW_CSR_REGNUM = 16,
495 MEP_RAW_PC_REGNUM = 16, /* Program counter */
496 MEP_RAW_LP_REGNUM = 17, /* Link pointer */
497 MEP_RAW_SAR_REGNUM = 18, /* Raw shift amount */
498 MEP_RAW_CSR3_REGNUM = 19, /* csr3: reserved */
499 MEP_RAW_RPB_REGNUM = 20, /* Raw repeat begin address */
500 MEP_RAW_RPE_REGNUM = 21, /* Repeat end address */
501 MEP_RAW_RPC_REGNUM = 22, /* Repeat count */
502 MEP_RAW_HI_REGNUM = 23, /* Upper 32 bits of result of 64 bit mult/div */
503 MEP_RAW_LO_REGNUM = 24, /* Lower 32 bits of result of 64 bit mult/div */
504 MEP_RAW_CSR9_REGNUM = 25, /* csr3: reserved */
505 MEP_RAW_CSR10_REGNUM = 26, /* csr3: reserved */
506 MEP_RAW_CSR11_REGNUM = 27, /* csr3: reserved */
507 MEP_RAW_MB0_REGNUM = 28, /* Raw modulo begin address 0 */
508 MEP_RAW_ME0_REGNUM = 29, /* Raw modulo end address 0 */
509 MEP_RAW_MB1_REGNUM = 30, /* Raw modulo begin address 1 */
510 MEP_RAW_ME1_REGNUM = 31, /* Raw modulo end address 1 */
511 MEP_RAW_PSW_REGNUM = 32, /* Raw program status word */
512 MEP_RAW_ID_REGNUM = 33, /* Raw processor ID/revision */
513 MEP_RAW_TMP_REGNUM = 34, /* Temporary */
514 MEP_RAW_EPC_REGNUM = 35, /* Exception program counter */
515 MEP_RAW_EXC_REGNUM = 36, /* Raw exception cause */
516 MEP_RAW_CFG_REGNUM = 37, /* Raw processor configuration*/
517 MEP_RAW_CSR22_REGNUM = 38, /* csr3: reserved */
518 MEP_RAW_NPC_REGNUM = 39, /* Nonmaskable interrupt PC */
519 MEP_RAW_DBG_REGNUM = 40, /* Raw debug */
520 MEP_RAW_DEPC_REGNUM = 41, /* Debug exception PC */
521 MEP_RAW_OPT_REGNUM = 42, /* Raw options */
522 MEP_RAW_RCFG_REGNUM = 43, /* Raw local ram config */
523 MEP_RAW_CCFG_REGNUM = 44, /* Raw cache config */
524 MEP_RAW_CSR29_REGNUM = 45, /* csr3: reserved */
525 MEP_RAW_CSR30_REGNUM = 46, /* csr3: reserved */
526 MEP_RAW_CSR31_REGNUM = 47, /* csr3: reserved */
527 MEP_LAST_RAW_CSR_REGNUM = MEP_RAW_CSR31_REGNUM,
528
529 /* The raw coprocessor general-purpose registers. These are all 64
530 bits wide. */
531 MEP_FIRST_RAW_CR_REGNUM = 48,
532 MEP_LAST_RAW_CR_REGNUM = MEP_FIRST_RAW_CR_REGNUM + 31,
533
534 MEP_FIRST_RAW_CCR_REGNUM = 80,
535 MEP_LAST_RAW_CCR_REGNUM = MEP_FIRST_RAW_CCR_REGNUM + 63,
536
537 /* The module number register. This is the index of the me_module
538 of which the current target is an instance. (This is not a real
539 MeP-specified register; it's provided by SID.) */
540 MEP_MODULE_REGNUM,
541
542 MEP_LAST_RAW_REGNUM = MEP_MODULE_REGNUM,
543
544 MEP_NUM_RAW_REGS = MEP_LAST_RAW_REGNUM + 1,
545
546 /* Pseudoregisters. See mep_pseudo_register_read and
547 mep_pseudo_register_write. */
548 MEP_FIRST_PSEUDO_REGNUM = MEP_NUM_RAW_REGS,
549
550 /* We have a pseudoregister for every control/special register, to
551 implement registers with read-only bits. */
552 MEP_FIRST_CSR_REGNUM = MEP_FIRST_PSEUDO_REGNUM,
553 MEP_PC_REGNUM = MEP_FIRST_CSR_REGNUM, /* Program counter */
554 MEP_LP_REGNUM, /* Link pointer */
555 MEP_SAR_REGNUM, /* shift amount */
556 MEP_CSR3_REGNUM, /* csr3: reserved */
557 MEP_RPB_REGNUM, /* repeat begin address */
558 MEP_RPE_REGNUM, /* Repeat end address */
559 MEP_RPC_REGNUM, /* Repeat count */
560 MEP_HI_REGNUM, /* Upper 32 bits of the result of 64 bit mult/div */
561 MEP_LO_REGNUM, /* Lower 32 bits of the result of 64 bit mult/div */
562 MEP_CSR9_REGNUM, /* csr3: reserved */
563 MEP_CSR10_REGNUM, /* csr3: reserved */
564 MEP_CSR11_REGNUM, /* csr3: reserved */
565 MEP_MB0_REGNUM, /* modulo begin address 0 */
566 MEP_ME0_REGNUM, /* modulo end address 0 */
567 MEP_MB1_REGNUM, /* modulo begin address 1 */
568 MEP_ME1_REGNUM, /* modulo end address 1 */
569 MEP_PSW_REGNUM, /* program status word */
570 MEP_ID_REGNUM, /* processor ID/revision */
571 MEP_TMP_REGNUM, /* Temporary */
572 MEP_EPC_REGNUM, /* Exception program counter */
573 MEP_EXC_REGNUM, /* exception cause */
574 MEP_CFG_REGNUM, /* processor configuration*/
575 MEP_CSR22_REGNUM, /* csr3: reserved */
576 MEP_NPC_REGNUM, /* Nonmaskable interrupt PC */
577 MEP_DBG_REGNUM, /* debug */
578 MEP_DEPC_REGNUM, /* Debug exception PC */
579 MEP_OPT_REGNUM, /* options */
580 MEP_RCFG_REGNUM, /* local ram config */
581 MEP_CCFG_REGNUM, /* cache config */
582 MEP_CSR29_REGNUM, /* csr3: reserved */
583 MEP_CSR30_REGNUM, /* csr3: reserved */
584 MEP_CSR31_REGNUM, /* csr3: reserved */
585 MEP_LAST_CSR_REGNUM = MEP_CSR31_REGNUM,
586
587 /* The 32-bit integer view of the coprocessor GPR's. */
588 MEP_FIRST_CR32_REGNUM,
589 MEP_LAST_CR32_REGNUM = MEP_FIRST_CR32_REGNUM + 31,
590
591 /* The 32-bit floating-point view of the coprocessor GPR's. */
592 MEP_FIRST_FP_CR32_REGNUM,
593 MEP_LAST_FP_CR32_REGNUM = MEP_FIRST_FP_CR32_REGNUM + 31,
594
595 /* The 64-bit integer view of the coprocessor GPR's. */
596 MEP_FIRST_CR64_REGNUM,
597 MEP_LAST_CR64_REGNUM = MEP_FIRST_CR64_REGNUM + 31,
598
599 /* The 64-bit floating-point view of the coprocessor GPR's. */
600 MEP_FIRST_FP_CR64_REGNUM,
601 MEP_LAST_FP_CR64_REGNUM = MEP_FIRST_FP_CR64_REGNUM + 31,
602
603 MEP_FIRST_CCR_REGNUM,
604 MEP_LAST_CCR_REGNUM = MEP_FIRST_CCR_REGNUM + 63,
605
606 MEP_LAST_PSEUDO_REGNUM = MEP_LAST_CCR_REGNUM,
607
608 MEP_NUM_PSEUDO_REGS = (MEP_LAST_PSEUDO_REGNUM - MEP_LAST_RAW_REGNUM),
609
610 MEP_NUM_REGS = MEP_NUM_RAW_REGS + MEP_NUM_PSEUDO_REGS
611 };
612
613
614 #define IN_SET(set, n) \
615 (MEP_FIRST_ ## set ## _REGNUM <= (n) && (n) <= MEP_LAST_ ## set ## _REGNUM)
616
617 #define IS_GPR_REGNUM(n) (IN_SET (GPR, (n)))
618 #define IS_RAW_CSR_REGNUM(n) (IN_SET (RAW_CSR, (n)))
619 #define IS_RAW_CR_REGNUM(n) (IN_SET (RAW_CR, (n)))
620 #define IS_RAW_CCR_REGNUM(n) (IN_SET (RAW_CCR, (n)))
621
622 #define IS_CSR_REGNUM(n) (IN_SET (CSR, (n)))
623 #define IS_CR32_REGNUM(n) (IN_SET (CR32, (n)))
624 #define IS_FP_CR32_REGNUM(n) (IN_SET (FP_CR32, (n)))
625 #define IS_CR64_REGNUM(n) (IN_SET (CR64, (n)))
626 #define IS_FP_CR64_REGNUM(n) (IN_SET (FP_CR64, (n)))
627 #define IS_CR_REGNUM(n) (IS_CR32_REGNUM (n) || IS_FP_CR32_REGNUM (n) \
628 || IS_CR64_REGNUM (n) || IS_FP_CR64_REGNUM (n))
629 #define IS_CCR_REGNUM(n) (IN_SET (CCR, (n)))
630
631 #define IS_RAW_REGNUM(n) (IN_SET (RAW, (n)))
632 #define IS_PSEUDO_REGNUM(n) (IN_SET (PSEUDO, (n)))
633
634 #define NUM_REGS_IN_SET(set) \
635 (MEP_LAST_ ## set ## _REGNUM - MEP_FIRST_ ## set ## _REGNUM + 1)
636
637 #define MEP_GPR_SIZE (4) /* Size of a MeP general-purpose register. */
638 #define MEP_PSW_SIZE (4) /* Size of the PSW register. */
639 #define MEP_LP_SIZE (4) /* Size of the LP register. */
640
641
642 /* Many of the control/special registers contain bits that cannot be
643 written to; some are entirely read-only. So we present them all as
644 pseudoregisters.
645
646 The following table describes the special properties of each CSR. */
647 struct mep_csr_register
648 {
649 /* The number of this CSR's raw register. */
650 int raw;
651
652 /* The number of this CSR's pseudoregister. */
653 int pseudo;
654
655 /* A mask of the bits that are writeable: if a bit is set here, then
656 it can be modified; if the bit is clear, then it cannot. */
657 LONGEST writeable_bits;
658 };
659
660
661 /* mep_csr_registers[i] describes the i'th CSR.
662 We just list the register numbers here explicitly to help catch
663 typos. */
664 #define CSR(name) MEP_RAW_ ## name ## _REGNUM, MEP_ ## name ## _REGNUM
665 struct mep_csr_register mep_csr_registers[] = {
666 { CSR(PC), 0xffffffff }, /* manual says r/o, but we can write it */
667 { CSR(LP), 0xffffffff },
668 { CSR(SAR), 0x0000003f },
669 { CSR(CSR3), 0xffffffff },
670 { CSR(RPB), 0xfffffffe },
671 { CSR(RPE), 0xffffffff },
672 { CSR(RPC), 0xffffffff },
673 { CSR(HI), 0xffffffff },
674 { CSR(LO), 0xffffffff },
675 { CSR(CSR9), 0xffffffff },
676 { CSR(CSR10), 0xffffffff },
677 { CSR(CSR11), 0xffffffff },
678 { CSR(MB0), 0x0000ffff },
679 { CSR(ME0), 0x0000ffff },
680 { CSR(MB1), 0x0000ffff },
681 { CSR(ME1), 0x0000ffff },
682 { CSR(PSW), 0x000003ff },
683 { CSR(ID), 0x00000000 },
684 { CSR(TMP), 0xffffffff },
685 { CSR(EPC), 0xffffffff },
686 { CSR(EXC), 0x000030f0 },
687 { CSR(CFG), 0x00c0001b },
688 { CSR(CSR22), 0xffffffff },
689 { CSR(NPC), 0xffffffff },
690 { CSR(DBG), 0x00000580 },
691 { CSR(DEPC), 0xffffffff },
692 { CSR(OPT), 0x00000000 },
693 { CSR(RCFG), 0x00000000 },
694 { CSR(CCFG), 0x00000000 },
695 { CSR(CSR29), 0xffffffff },
696 { CSR(CSR30), 0xffffffff },
697 { CSR(CSR31), 0xffffffff },
698 };
699
700
701 /* If R is the number of a raw register, then mep_raw_to_pseudo[R] is
702 the number of the corresponding pseudoregister. Otherwise,
703 mep_raw_to_pseudo[R] == R. */
704 static int mep_raw_to_pseudo[MEP_NUM_REGS];
705
706 /* If R is the number of a pseudoregister, then mep_pseudo_to_raw[R]
707 is the number of the underlying raw register. Otherwise
708 mep_pseudo_to_raw[R] == R. */
709 static int mep_pseudo_to_raw[MEP_NUM_REGS];
710
711 static void
712 mep_init_pseudoregister_maps (void)
713 {
714 int i;
715
716 /* Verify that mep_csr_registers covers all the CSRs, in order. */
717 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (CSR));
718 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (RAW_CSR));
719
720 /* Verify that the raw and pseudo ranges have matching sizes. */
721 gdb_assert (NUM_REGS_IN_SET (RAW_CSR) == NUM_REGS_IN_SET (CSR));
722 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR32));
723 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR64));
724 gdb_assert (NUM_REGS_IN_SET (RAW_CCR) == NUM_REGS_IN_SET (CCR));
725
726 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
727 {
728 struct mep_csr_register *r = &mep_csr_registers[i];
729
730 gdb_assert (r->pseudo == MEP_FIRST_CSR_REGNUM + i);
731 gdb_assert (r->raw == MEP_FIRST_RAW_CSR_REGNUM + i);
732 }
733
734 /* Set up the initial raw<->pseudo mappings. */
735 for (i = 0; i < MEP_NUM_REGS; i++)
736 {
737 mep_raw_to_pseudo[i] = i;
738 mep_pseudo_to_raw[i] = i;
739 }
740
741 /* Add the CSR raw<->pseudo mappings. */
742 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
743 {
744 struct mep_csr_register *r = &mep_csr_registers[i];
745
746 mep_raw_to_pseudo[r->raw] = r->pseudo;
747 mep_pseudo_to_raw[r->pseudo] = r->raw;
748 }
749
750 /* Add the CR raw<->pseudo mappings. */
751 for (i = 0; i < NUM_REGS_IN_SET (RAW_CR); i++)
752 {
753 int raw = MEP_FIRST_RAW_CR_REGNUM + i;
754 int pseudo32 = MEP_FIRST_CR32_REGNUM + i;
755 int pseudofp32 = MEP_FIRST_FP_CR32_REGNUM + i;
756 int pseudo64 = MEP_FIRST_CR64_REGNUM + i;
757 int pseudofp64 = MEP_FIRST_FP_CR64_REGNUM + i;
758
759 /* Truly, the raw->pseudo mapping depends on the current module.
760 But we use the raw->pseudo mapping when we read the debugging
761 info; at that point, we don't know what module we'll actually
762 be running yet. So, we always supply the 64-bit register
763 numbers; GDB knows how to pick a smaller value out of a
764 larger register properly. */
765 mep_raw_to_pseudo[raw] = pseudo64;
766 mep_pseudo_to_raw[pseudo32] = raw;
767 mep_pseudo_to_raw[pseudofp32] = raw;
768 mep_pseudo_to_raw[pseudo64] = raw;
769 mep_pseudo_to_raw[pseudofp64] = raw;
770 }
771
772 /* Add the CCR raw<->pseudo mappings. */
773 for (i = 0; i < NUM_REGS_IN_SET (CCR); i++)
774 {
775 int raw = MEP_FIRST_RAW_CCR_REGNUM + i;
776 int pseudo = MEP_FIRST_CCR_REGNUM + i;
777 mep_raw_to_pseudo[raw] = pseudo;
778 mep_pseudo_to_raw[pseudo] = raw;
779 }
780 }
781
782
783 static int
784 mep_debug_reg_to_regnum (struct gdbarch *gdbarch, int debug_reg)
785 {
786 /* The debug info uses the raw register numbers. */
787 if (debug_reg >= 0 && debug_reg < ARRAY_SIZE (mep_raw_to_pseudo))
788 return mep_raw_to_pseudo[debug_reg];
789 return -1;
790 }
791
792
793 /* Return the size, in bits, of the coprocessor pseudoregister
794 numbered PSEUDO. */
795 static int
796 mep_pseudo_cr_size (int pseudo)
797 {
798 if (IS_CR32_REGNUM (pseudo)
799 || IS_FP_CR32_REGNUM (pseudo))
800 return 32;
801 else if (IS_CR64_REGNUM (pseudo)
802 || IS_FP_CR64_REGNUM (pseudo))
803 return 64;
804 else
805 gdb_assert_not_reached ("unexpected coprocessor pseudo register");
806 }
807
808
809 /* If the coprocessor pseudoregister numbered PSEUDO is a
810 floating-point register, return non-zero; if it is an integer
811 register, return zero. */
812 static int
813 mep_pseudo_cr_is_float (int pseudo)
814 {
815 return (IS_FP_CR32_REGNUM (pseudo)
816 || IS_FP_CR64_REGNUM (pseudo));
817 }
818
819
820 /* Given a coprocessor GPR pseudoregister number, return its index
821 within that register bank. */
822 static int
823 mep_pseudo_cr_index (int pseudo)
824 {
825 if (IS_CR32_REGNUM (pseudo))
826 return pseudo - MEP_FIRST_CR32_REGNUM;
827 else if (IS_FP_CR32_REGNUM (pseudo))
828 return pseudo - MEP_FIRST_FP_CR32_REGNUM;
829 else if (IS_CR64_REGNUM (pseudo))
830 return pseudo - MEP_FIRST_CR64_REGNUM;
831 else if (IS_FP_CR64_REGNUM (pseudo))
832 return pseudo - MEP_FIRST_FP_CR64_REGNUM;
833 else
834 gdb_assert_not_reached ("unexpected coprocessor pseudo register");
835 }
836
837
838 /* Return the me_module index describing the current target.
839
840 If the current target has registers (e.g., simulator, remote
841 target), then this uses the value of the 'module' register, raw
842 register MEP_MODULE_REGNUM. Otherwise, this retrieves the value
843 from the ELF header's e_flags field of the current executable
844 file. */
845 static CONFIG_ATTR
846 current_me_module (void)
847 {
848 if (target_has_registers)
849 {
850 ULONGEST regval;
851 regcache_cooked_read_unsigned (get_current_regcache (),
852 MEP_MODULE_REGNUM, &regval);
853 return (CONFIG_ATTR) regval;
854 }
855 else
856 return gdbarch_tdep (target_gdbarch ())->me_module;
857 }
858
859
860 /* Return the set of options for the current target, in the form that
861 the OPT register would use.
862
863 If the current target has registers (e.g., simulator, remote
864 target), then this is the actual value of the OPT register. If the
865 current target does not have registers (e.g., an executable file),
866 then use the 'module_opt' field we computed when we build the
867 gdbarch object for this module. */
868 static unsigned int
869 current_options (void)
870 {
871 if (target_has_registers)
872 {
873 ULONGEST regval;
874 regcache_cooked_read_unsigned (get_current_regcache (),
875 MEP_OPT_REGNUM, &regval);
876 return regval;
877 }
878 else
879 return me_module_opt (current_me_module ());
880 }
881
882
883 /* Return the width of the current me_module's coprocessor data bus,
884 in bits. This is either 32 or 64. */
885 static int
886 current_cop_data_bus_width (void)
887 {
888 return me_module_cop_data_bus_width (current_me_module ());
889 }
890
891
892 /* Return the keyword table of coprocessor general-purpose register
893 names appropriate for the me_module we're dealing with. */
894 static CGEN_KEYWORD *
895 current_cr_names (void)
896 {
897 const CGEN_HW_ENTRY *hw
898 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
899
900 return register_set_keyword_table (hw);
901 }
902
903
904 /* Return non-zero if the coprocessor general-purpose registers are
905 floating-point values, zero otherwise. */
906 static int
907 current_cr_is_float (void)
908 {
909 const CGEN_HW_ENTRY *hw
910 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
911
912 return CGEN_ATTR_CGEN_HW_IS_FLOAT_VALUE (CGEN_HW_ATTRS (hw));
913 }
914
915
916 /* Return the keyword table of coprocessor control register names
917 appropriate for the me_module we're dealing with. */
918 static CGEN_KEYWORD *
919 current_ccr_names (void)
920 {
921 const CGEN_HW_ENTRY *hw
922 = me_module_register_set (current_me_module (), "h-ccr-", HW_H_CCR);
923
924 return register_set_keyword_table (hw);
925 }
926
927
928 static const char *
929 mep_register_name (struct gdbarch *gdbarch, int regnr)
930 {
931 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
932
933 /* General-purpose registers. */
934 static const char *gpr_names[] = {
935 "r0", "r1", "r2", "r3", /* 0 */
936 "r4", "r5", "r6", "r7", /* 4 */
937 "fp", "r9", "r10", "r11", /* 8 */
938 "r12", "tp", "gp", "sp" /* 12 */
939 };
940
941 /* Special-purpose registers. */
942 static const char *csr_names[] = {
943 "pc", "lp", "sar", "", /* 0 csr3: reserved */
944 "rpb", "rpe", "rpc", "hi", /* 4 */
945 "lo", "", "", "", /* 8 csr9-csr11: reserved */
946 "mb0", "me0", "mb1", "me1", /* 12 */
947
948 "psw", "id", "tmp", "epc", /* 16 */
949 "exc", "cfg", "", "npc", /* 20 csr22: reserved */
950 "dbg", "depc", "opt", "rcfg", /* 24 */
951 "ccfg", "", "", "" /* 28 csr29-csr31: reserved */
952 };
953
954 if (IS_GPR_REGNUM (regnr))
955 return gpr_names[regnr - MEP_R0_REGNUM];
956 else if (IS_CSR_REGNUM (regnr))
957 {
958 /* The 'hi' and 'lo' registers are only present on processors
959 that have the 'MUL' or 'DIV' instructions enabled. */
960 if ((regnr == MEP_HI_REGNUM || regnr == MEP_LO_REGNUM)
961 && (! (current_options () & (MEP_OPT_MUL | MEP_OPT_DIV))))
962 return "";
963
964 return csr_names[regnr - MEP_FIRST_CSR_REGNUM];
965 }
966 else if (IS_CR_REGNUM (regnr))
967 {
968 CGEN_KEYWORD *names;
969 int cr_size;
970 int cr_is_float;
971
972 /* Does this module have a coprocessor at all? */
973 if (! (current_options () & MEP_OPT_COP))
974 return "";
975
976 names = current_cr_names ();
977 if (! names)
978 /* This module's coprocessor has no general-purpose registers. */
979 return "";
980
981 cr_size = current_cop_data_bus_width ();
982 if (cr_size != mep_pseudo_cr_size (regnr))
983 /* This module's coprocessor's GPR's are of a different size. */
984 return "";
985
986 cr_is_float = current_cr_is_float ();
987 /* The extra ! operators ensure we get boolean equality, not
988 numeric equality. */
989 if (! cr_is_float != ! mep_pseudo_cr_is_float (regnr))
990 /* This module's coprocessor's GPR's are of a different type. */
991 return "";
992
993 return register_name_from_keyword (names, mep_pseudo_cr_index (regnr));
994 }
995 else if (IS_CCR_REGNUM (regnr))
996 {
997 /* Does this module have a coprocessor at all? */
998 if (! (current_options () & MEP_OPT_COP))
999 return "";
1000
1001 {
1002 CGEN_KEYWORD *names = current_ccr_names ();
1003
1004 if (! names)
1005 /* This me_module's coprocessor has no control registers. */
1006 return "";
1007
1008 return register_name_from_keyword (names, regnr-MEP_FIRST_CCR_REGNUM);
1009 }
1010 }
1011
1012 /* It might be nice to give the 'module' register a name, but that
1013 would affect the output of 'info all-registers', which would
1014 disturb the test suites. So we leave it invisible. */
1015 else
1016 return NULL;
1017 }
1018
1019
1020 /* Custom register groups for the MeP. */
1021 static struct reggroup *mep_csr_reggroup; /* control/special */
1022 static struct reggroup *mep_cr_reggroup; /* coprocessor general-purpose */
1023 static struct reggroup *mep_ccr_reggroup; /* coprocessor control */
1024
1025
1026 static int
1027 mep_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1028 struct reggroup *group)
1029 {
1030 /* Filter reserved or unused register numbers. */
1031 {
1032 const char *name = mep_register_name (gdbarch, regnum);
1033
1034 if (! name || name[0] == '\0')
1035 return 0;
1036 }
1037
1038 /* We could separate the GPRs and the CSRs. Toshiba has approved of
1039 the existing behavior, so we'd want to run that by them. */
1040 if (group == general_reggroup)
1041 return (IS_GPR_REGNUM (regnum)
1042 || IS_CSR_REGNUM (regnum));
1043
1044 /* Everything is in the 'all' reggroup, except for the raw CSR's. */
1045 else if (group == all_reggroup)
1046 return (IS_GPR_REGNUM (regnum)
1047 || IS_CSR_REGNUM (regnum)
1048 || IS_CR_REGNUM (regnum)
1049 || IS_CCR_REGNUM (regnum));
1050
1051 /* All registers should be saved and restored, except for the raw
1052 CSR's.
1053
1054 This is probably right if the coprocessor is something like a
1055 floating-point unit, but would be wrong if the coprocessor is
1056 something that does I/O, where register accesses actually cause
1057 externally-visible actions. But I get the impression that the
1058 coprocessor isn't supposed to do things like that --- you'd use a
1059 hardware engine, perhaps. */
1060 else if (group == save_reggroup || group == restore_reggroup)
1061 return (IS_GPR_REGNUM (regnum)
1062 || IS_CSR_REGNUM (regnum)
1063 || IS_CR_REGNUM (regnum)
1064 || IS_CCR_REGNUM (regnum));
1065
1066 else if (group == mep_csr_reggroup)
1067 return IS_CSR_REGNUM (regnum);
1068 else if (group == mep_cr_reggroup)
1069 return IS_CR_REGNUM (regnum);
1070 else if (group == mep_ccr_reggroup)
1071 return IS_CCR_REGNUM (regnum);
1072 else
1073 return 0;
1074 }
1075
1076
1077 static struct type *
1078 mep_register_type (struct gdbarch *gdbarch, int reg_nr)
1079 {
1080 /* Coprocessor general-purpose registers may be either 32 or 64 bits
1081 long. So for them, the raw registers are always 64 bits long (to
1082 keep the 'g' packet format fixed), and the pseudoregisters vary
1083 in length. */
1084 if (IS_RAW_CR_REGNUM (reg_nr))
1085 return builtin_type (gdbarch)->builtin_uint64;
1086
1087 /* Since GDB doesn't allow registers to change type, we have two
1088 banks of pseudoregisters for the coprocessor general-purpose
1089 registers: one that gives a 32-bit view, and one that gives a
1090 64-bit view. We hide or show one or the other depending on the
1091 current module. */
1092 if (IS_CR_REGNUM (reg_nr))
1093 {
1094 int size = mep_pseudo_cr_size (reg_nr);
1095 if (size == 32)
1096 {
1097 if (mep_pseudo_cr_is_float (reg_nr))
1098 return builtin_type (gdbarch)->builtin_float;
1099 else
1100 return builtin_type (gdbarch)->builtin_uint32;
1101 }
1102 else if (size == 64)
1103 {
1104 if (mep_pseudo_cr_is_float (reg_nr))
1105 return builtin_type (gdbarch)->builtin_double;
1106 else
1107 return builtin_type (gdbarch)->builtin_uint64;
1108 }
1109 else
1110 gdb_assert_not_reached ("unexpected cr size");
1111 }
1112
1113 /* All other registers are 32 bits long. */
1114 else
1115 return builtin_type (gdbarch)->builtin_uint32;
1116 }
1117
1118
1119 static CORE_ADDR
1120 mep_read_pc (struct regcache *regcache)
1121 {
1122 ULONGEST pc;
1123 regcache_cooked_read_unsigned (regcache, MEP_PC_REGNUM, &pc);
1124 return pc;
1125 }
1126
1127 static enum register_status
1128 mep_pseudo_cr32_read (struct gdbarch *gdbarch,
1129 struct regcache *regcache,
1130 int cookednum,
1131 gdb_byte *buf)
1132 {
1133 enum register_status status;
1134 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1135 /* Read the raw register into a 64-bit buffer, and then return the
1136 appropriate end of that buffer. */
1137 int rawnum = mep_pseudo_to_raw[cookednum];
1138 gdb_byte buf64[8];
1139
1140 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1141 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1142 status = regcache_raw_read (regcache, rawnum, buf64);
1143 if (status == REG_VALID)
1144 {
1145 /* Slow, but legible. */
1146 store_unsigned_integer (buf, 4, byte_order,
1147 extract_unsigned_integer (buf64, 8, byte_order));
1148 }
1149 return status;
1150 }
1151
1152
1153 static enum register_status
1154 mep_pseudo_cr64_read (struct gdbarch *gdbarch,
1155 struct regcache *regcache,
1156 int cookednum,
1157 gdb_byte *buf)
1158 {
1159 return regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1160 }
1161
1162
1163 static enum register_status
1164 mep_pseudo_register_read (struct gdbarch *gdbarch,
1165 struct regcache *regcache,
1166 int cookednum,
1167 gdb_byte *buf)
1168 {
1169 if (IS_CSR_REGNUM (cookednum)
1170 || IS_CCR_REGNUM (cookednum))
1171 return regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1172 else if (IS_CR32_REGNUM (cookednum)
1173 || IS_FP_CR32_REGNUM (cookednum))
1174 return mep_pseudo_cr32_read (gdbarch, regcache, cookednum, buf);
1175 else if (IS_CR64_REGNUM (cookednum)
1176 || IS_FP_CR64_REGNUM (cookednum))
1177 return mep_pseudo_cr64_read (gdbarch, regcache, cookednum, buf);
1178 else
1179 gdb_assert_not_reached ("unexpected pseudo register");
1180 }
1181
1182
1183 static void
1184 mep_pseudo_csr_write (struct gdbarch *gdbarch,
1185 struct regcache *regcache,
1186 int cookednum,
1187 const gdb_byte *buf)
1188 {
1189 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1190 int size = register_size (gdbarch, cookednum);
1191 struct mep_csr_register *r
1192 = &mep_csr_registers[cookednum - MEP_FIRST_CSR_REGNUM];
1193
1194 if (r->writeable_bits == 0)
1195 /* A completely read-only register; avoid the read-modify-
1196 write cycle, and juts ignore the entire write. */
1197 ;
1198 else
1199 {
1200 /* A partially writeable register; do a read-modify-write cycle. */
1201 ULONGEST old_bits;
1202 ULONGEST new_bits;
1203 ULONGEST mixed_bits;
1204
1205 regcache_raw_read_unsigned (regcache, r->raw, &old_bits);
1206 new_bits = extract_unsigned_integer (buf, size, byte_order);
1207 mixed_bits = ((r->writeable_bits & new_bits)
1208 | (~r->writeable_bits & old_bits));
1209 regcache_raw_write_unsigned (regcache, r->raw, mixed_bits);
1210 }
1211 }
1212
1213
1214 static void
1215 mep_pseudo_cr32_write (struct gdbarch *gdbarch,
1216 struct regcache *regcache,
1217 int cookednum,
1218 const gdb_byte *buf)
1219 {
1220 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1221 /* Expand the 32-bit value into a 64-bit value, and write that to
1222 the pseudoregister. */
1223 int rawnum = mep_pseudo_to_raw[cookednum];
1224 gdb_byte buf64[8];
1225
1226 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1227 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1228 /* Slow, but legible. */
1229 store_unsigned_integer (buf64, 8, byte_order,
1230 extract_unsigned_integer (buf, 4, byte_order));
1231 regcache_raw_write (regcache, rawnum, buf64);
1232 }
1233
1234
1235 static void
1236 mep_pseudo_cr64_write (struct gdbarch *gdbarch,
1237 struct regcache *regcache,
1238 int cookednum,
1239 const gdb_byte *buf)
1240 {
1241 regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1242 }
1243
1244
1245 static void
1246 mep_pseudo_register_write (struct gdbarch *gdbarch,
1247 struct regcache *regcache,
1248 int cookednum,
1249 const gdb_byte *buf)
1250 {
1251 if (IS_CSR_REGNUM (cookednum))
1252 mep_pseudo_csr_write (gdbarch, regcache, cookednum, buf);
1253 else if (IS_CR32_REGNUM (cookednum)
1254 || IS_FP_CR32_REGNUM (cookednum))
1255 mep_pseudo_cr32_write (gdbarch, regcache, cookednum, buf);
1256 else if (IS_CR64_REGNUM (cookednum)
1257 || IS_FP_CR64_REGNUM (cookednum))
1258 mep_pseudo_cr64_write (gdbarch, regcache, cookednum, buf);
1259 else if (IS_CCR_REGNUM (cookednum))
1260 regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1261 else
1262 gdb_assert_not_reached ("unexpected pseudo register");
1263 }
1264
1265
1266 \f
1267 /* Disassembly. */
1268
1269 static int
1270 mep_gdb_print_insn (bfd_vma pc, disassemble_info * info)
1271 {
1272 struct obj_section * s = find_pc_section (pc);
1273
1274 info->arch = bfd_arch_mep;
1275 if (s)
1276 {
1277 /* The libopcodes disassembly code uses the section to find the
1278 BFD, the BFD to find the ELF header, the ELF header to find
1279 the me_module index, and the me_module index to select the
1280 right instructions to print. */
1281 info->section = s->the_bfd_section;
1282 }
1283
1284 return print_insn_mep (pc, info);
1285 }
1286
1287 \f
1288 /* Prologue analysis. */
1289
1290
1291 /* The MeP has two classes of instructions: "core" instructions, which
1292 are pretty normal RISC chip stuff, and "coprocessor" instructions,
1293 which are mostly concerned with moving data in and out of
1294 coprocessor registers, and branching on coprocessor condition
1295 codes. There's space in the instruction set for custom coprocessor
1296 instructions, too.
1297
1298 Instructions can be 16 or 32 bits long; the top two bits of the
1299 first byte indicate the length. The coprocessor instructions are
1300 mixed in with the core instructions, and there's no easy way to
1301 distinguish them; you have to completely decode them to tell one
1302 from the other.
1303
1304 The MeP also supports a "VLIW" operation mode, where instructions
1305 always occur in fixed-width bundles. The bundles are either 32
1306 bits or 64 bits long, depending on a fixed configuration flag. You
1307 decode the first part of the bundle as normal; if it's a core
1308 instruction, and there's any space left in the bundle, the
1309 remainder of the bundle is a coprocessor instruction, which will
1310 execute in parallel with the core instruction. If the first part
1311 of the bundle is a coprocessor instruction, it occupies the entire
1312 bundle.
1313
1314 So, here are all the cases:
1315
1316 - 32-bit VLIW mode:
1317 Every bundle is four bytes long, and naturally aligned, and can hold
1318 one or two instructions:
1319 - 16-bit core instruction; 16-bit coprocessor instruction
1320 These execute in parallel.
1321 - 32-bit core instruction
1322 - 32-bit coprocessor instruction
1323
1324 - 64-bit VLIW mode:
1325 Every bundle is eight bytes long, and naturally aligned, and can hold
1326 one or two instructions:
1327 - 16-bit core instruction; 48-bit (!) coprocessor instruction
1328 These execute in parallel.
1329 - 32-bit core instruction; 32-bit coprocessor instruction
1330 These execute in parallel.
1331 - 64-bit coprocessor instruction
1332
1333 Now, the MeP manual doesn't define any 48- or 64-bit coprocessor
1334 instruction, so I don't really know what's up there; perhaps these
1335 are always the user-defined coprocessor instructions. */
1336
1337
1338 /* Return non-zero if PC is in a VLIW code section, zero
1339 otherwise. */
1340 static int
1341 mep_pc_in_vliw_section (CORE_ADDR pc)
1342 {
1343 struct obj_section *s = find_pc_section (pc);
1344 if (s)
1345 return (s->the_bfd_section->flags & SEC_MEP_VLIW);
1346 return 0;
1347 }
1348
1349
1350 /* Set *INSN to the next core instruction at PC, and return the
1351 address of the next instruction.
1352
1353 The MeP instruction encoding is endian-dependent. 16- and 32-bit
1354 instructions are encoded as one or two two-byte parts, and each
1355 part is byte-swapped independently. Thus:
1356
1357 void
1358 foo (void)
1359 {
1360 asm ("movu $1, 0x123456");
1361 asm ("sb $1,0x5678($2)");
1362 asm ("clip $1, 19");
1363 }
1364
1365 compiles to this big-endian code:
1366
1367 0: d1 56 12 34 movu $1,0x123456
1368 4: c1 28 56 78 sb $1,22136($2)
1369 8: f1 01 10 98 clip $1,0x13
1370 c: 70 02 ret
1371
1372 and this little-endian code:
1373
1374 0: 56 d1 34 12 movu $1,0x123456
1375 4: 28 c1 78 56 sb $1,22136($2)
1376 8: 01 f1 98 10 clip $1,0x13
1377 c: 02 70 ret
1378
1379 Instructions are returned in *INSN in an endian-independent form: a
1380 given instruction always appears in *INSN the same way, regardless
1381 of whether the instruction stream is big-endian or little-endian.
1382
1383 *INSN's most significant 16 bits are the first (i.e., at lower
1384 addresses) 16 bit part of the instruction. Its least significant
1385 16 bits are the second (i.e., higher-addressed) 16 bit part of the
1386 instruction, or zero for a 16-bit instruction. Both 16-bit parts
1387 are fetched using the current endianness.
1388
1389 So, the *INSN values for the instruction sequence above would be
1390 the following, in either endianness:
1391
1392 0xd1561234 movu $1,0x123456
1393 0xc1285678 sb $1,22136($2)
1394 0xf1011098 clip $1,0x13
1395 0x70020000 ret
1396
1397 (In a sense, it would be more natural to return 16-bit instructions
1398 in the least significant 16 bits of *INSN, but that would be
1399 ambiguous. In order to tell whether you're looking at a 16- or a
1400 32-bit instruction, you have to consult the major opcode field ---
1401 the most significant four bits of the instruction's first 16-bit
1402 part. But if we put 16-bit instructions at the least significant
1403 end of *INSN, then you don't know where to find the major opcode
1404 field until you know if it's a 16- or a 32-bit instruction ---
1405 which is where we started.)
1406
1407 If PC points to a core / coprocessor bundle in a VLIW section, set
1408 *INSN to the core instruction, and return the address of the next
1409 bundle. This has the effect of skipping the bundled coprocessor
1410 instruction. That's okay, since coprocessor instructions aren't
1411 significant to prologue analysis --- for the time being,
1412 anyway. */
1413
1414 static CORE_ADDR
1415 mep_get_insn (struct gdbarch *gdbarch, CORE_ADDR pc, unsigned long *insn)
1416 {
1417 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1418 int pc_in_vliw_section;
1419 int vliw_mode;
1420 int insn_len;
1421 gdb_byte buf[2];
1422
1423 *insn = 0;
1424
1425 /* Are we in a VLIW section? */
1426 pc_in_vliw_section = mep_pc_in_vliw_section (pc);
1427 if (pc_in_vliw_section)
1428 {
1429 /* Yes, find out which bundle size. */
1430 vliw_mode = current_options () & (MEP_OPT_VL32 | MEP_OPT_VL64);
1431
1432 /* If PC is in a VLIW section, but the current core doesn't say
1433 that it supports either VLIW mode, then we don't have enough
1434 information to parse the instruction stream it contains.
1435 Since the "undifferentiated" standard core doesn't have
1436 either VLIW mode bit set, this could happen.
1437
1438 But it shouldn't be an error to (say) set a breakpoint in a
1439 VLIW section, if you know you'll never reach it. (Perhaps
1440 you have a script that sets a bunch of standard breakpoints.)
1441
1442 So we'll just return zero here, and hope for the best. */
1443 if (! (vliw_mode & (MEP_OPT_VL32 | MEP_OPT_VL64)))
1444 return 0;
1445
1446 /* If both VL32 and VL64 are set, that's bogus, too. */
1447 if (vliw_mode == (MEP_OPT_VL32 | MEP_OPT_VL64))
1448 return 0;
1449 }
1450 else
1451 vliw_mode = 0;
1452
1453 read_memory (pc, buf, sizeof (buf));
1454 *insn = extract_unsigned_integer (buf, 2, byte_order) << 16;
1455
1456 /* The major opcode --- the top four bits of the first 16-bit
1457 part --- indicates whether this instruction is 16 or 32 bits
1458 long. All 32-bit instructions have a major opcode whose top
1459 two bits are 11; all the rest are 16-bit instructions. */
1460 if ((*insn & 0xc0000000) == 0xc0000000)
1461 {
1462 /* Fetch the second 16-bit part of the instruction. */
1463 read_memory (pc + 2, buf, sizeof (buf));
1464 *insn = *insn | extract_unsigned_integer (buf, 2, byte_order);
1465 }
1466
1467 /* If we're in VLIW code, then the VLIW width determines the address
1468 of the next instruction. */
1469 if (vliw_mode)
1470 {
1471 /* In 32-bit VLIW code, all bundles are 32 bits long. We ignore the
1472 coprocessor half of a core / copro bundle. */
1473 if (vliw_mode == MEP_OPT_VL32)
1474 insn_len = 4;
1475
1476 /* In 64-bit VLIW code, all bundles are 64 bits long. We ignore the
1477 coprocessor half of a core / copro bundle. */
1478 else if (vliw_mode == MEP_OPT_VL64)
1479 insn_len = 8;
1480
1481 /* We'd better be in either core, 32-bit VLIW, or 64-bit VLIW mode. */
1482 else
1483 gdb_assert_not_reached ("unexpected vliw mode");
1484 }
1485
1486 /* Otherwise, the top two bits of the major opcode are (again) what
1487 we need to check. */
1488 else if ((*insn & 0xc0000000) == 0xc0000000)
1489 insn_len = 4;
1490 else
1491 insn_len = 2;
1492
1493 return pc + insn_len;
1494 }
1495
1496
1497 /* Sign-extend the LEN-bit value N. */
1498 #define SEXT(n, len) ((((int) (n)) ^ (1 << ((len) - 1))) - (1 << ((len) - 1)))
1499
1500 /* Return the LEN-bit field at POS from I. */
1501 #define FIELD(i, pos, len) (((i) >> (pos)) & ((1 << (len)) - 1))
1502
1503 /* Like FIELD, but sign-extend the field's value. */
1504 #define SFIELD(i, pos, len) (SEXT (FIELD ((i), (pos), (len)), (len)))
1505
1506
1507 /* Macros for decoding instructions.
1508
1509 Remember that 16-bit instructions are placed in bits 16..31 of i,
1510 not at the least significant end; this means that the major opcode
1511 field is always in the same place, regardless of the width of the
1512 instruction. As a reminder of this, we show the lower 16 bits of a
1513 16-bit instruction as xxxx_xxxx_xxxx_xxxx. */
1514
1515 /* SB Rn,(Rm) 0000_nnnn_mmmm_1000 */
1516 /* SH Rn,(Rm) 0000_nnnn_mmmm_1001 */
1517 /* SW Rn,(Rm) 0000_nnnn_mmmm_1010 */
1518
1519 /* SW Rn,disp16(Rm) 1100_nnnn_mmmm_1010 dddd_dddd_dddd_dddd */
1520 #define IS_SW(i) (((i) & 0xf00f0000) == 0xc00a0000)
1521 /* SB Rn,disp16(Rm) 1100_nnnn_mmmm_1000 dddd_dddd_dddd_dddd */
1522 #define IS_SB(i) (((i) & 0xf00f0000) == 0xc0080000)
1523 /* SH Rn,disp16(Rm) 1100_nnnn_mmmm_1001 dddd_dddd_dddd_dddd */
1524 #define IS_SH(i) (((i) & 0xf00f0000) == 0xc0090000)
1525 #define SWBH_32_BASE(i) (FIELD (i, 20, 4))
1526 #define SWBH_32_SOURCE(i) (FIELD (i, 24, 4))
1527 #define SWBH_32_OFFSET(i) (SFIELD (i, 0, 16))
1528
1529 /* SW Rn,disp7.align4(SP) 0100_nnnn_0ddd_dd10 xxxx_xxxx_xxxx_xxxx */
1530 #define IS_SW_IMMD(i) (((i) & 0xf0830000) == 0x40020000)
1531 #define SW_IMMD_SOURCE(i) (FIELD (i, 24, 4))
1532 #define SW_IMMD_OFFSET(i) (FIELD (i, 18, 5) << 2)
1533
1534 /* SW Rn,(Rm) 0000_nnnn_mmmm_1010 xxxx_xxxx_xxxx_xxxx */
1535 #define IS_SW_REG(i) (((i) & 0xf00f0000) == 0x000a0000)
1536 #define SW_REG_SOURCE(i) (FIELD (i, 24, 4))
1537 #define SW_REG_BASE(i) (FIELD (i, 20, 4))
1538
1539 /* ADD3 Rl,Rn,Rm 1001_nnnn_mmmm_llll xxxx_xxxx_xxxx_xxxx */
1540 #define IS_ADD3_16_REG(i) (((i) & 0xf0000000) == 0x90000000)
1541 #define ADD3_16_REG_SRC1(i) (FIELD (i, 20, 4)) /* n */
1542 #define ADD3_16_REG_SRC2(i) (FIELD (i, 24, 4)) /* m */
1543
1544 /* ADD3 Rn,Rm,imm16 1100_nnnn_mmmm_0000 iiii_iiii_iiii_iiii */
1545 #define IS_ADD3_32(i) (((i) & 0xf00f0000) == 0xc0000000)
1546 #define ADD3_32_TARGET(i) (FIELD (i, 24, 4))
1547 #define ADD3_32_SOURCE(i) (FIELD (i, 20, 4))
1548 #define ADD3_32_OFFSET(i) (SFIELD (i, 0, 16))
1549
1550 /* ADD3 Rn,SP,imm7.align4 0100_nnnn_0iii_ii00 xxxx_xxxx_xxxx_xxxx */
1551 #define IS_ADD3_16(i) (((i) & 0xf0830000) == 0x40000000)
1552 #define ADD3_16_TARGET(i) (FIELD (i, 24, 4))
1553 #define ADD3_16_OFFSET(i) (FIELD (i, 18, 5) << 2)
1554
1555 /* ADD Rn,imm6 0110_nnnn_iiii_ii00 xxxx_xxxx_xxxx_xxxx */
1556 #define IS_ADD(i) (((i) & 0xf0030000) == 0x60000000)
1557 #define ADD_TARGET(i) (FIELD (i, 24, 4))
1558 #define ADD_OFFSET(i) (SFIELD (i, 18, 6))
1559
1560 /* LDC Rn,imm5 0111_nnnn_iiii_101I xxxx_xxxx_xxxx_xxxx
1561 imm5 = I||i[7:4] */
1562 #define IS_LDC(i) (((i) & 0xf00e0000) == 0x700a0000)
1563 #define LDC_IMM(i) ((FIELD (i, 16, 1) << 4) | FIELD (i, 20, 4))
1564 #define LDC_TARGET(i) (FIELD (i, 24, 4))
1565
1566 /* LW Rn,disp16(Rm) 1100_nnnn_mmmm_1110 dddd_dddd_dddd_dddd */
1567 #define IS_LW(i) (((i) & 0xf00f0000) == 0xc00e0000)
1568 #define LW_TARGET(i) (FIELD (i, 24, 4))
1569 #define LW_BASE(i) (FIELD (i, 20, 4))
1570 #define LW_OFFSET(i) (SFIELD (i, 0, 16))
1571
1572 /* MOV Rn,Rm 0000_nnnn_mmmm_0000 xxxx_xxxx_xxxx_xxxx */
1573 #define IS_MOV(i) (((i) & 0xf00f0000) == 0x00000000)
1574 #define MOV_TARGET(i) (FIELD (i, 24, 4))
1575 #define MOV_SOURCE(i) (FIELD (i, 20, 4))
1576
1577 /* BRA disp12.align2 1011_dddd_dddd_ddd0 xxxx_xxxx_xxxx_xxxx */
1578 #define IS_BRA(i) (((i) & 0xf0010000) == 0xb0000000)
1579 #define BRA_DISP(i) (SFIELD (i, 17, 11) << 1)
1580
1581
1582 /* This structure holds the results of a prologue analysis. */
1583 struct mep_prologue
1584 {
1585 /* The architecture for which we generated this prologue info. */
1586 struct gdbarch *gdbarch;
1587
1588 /* The offset from the frame base to the stack pointer --- always
1589 zero or negative.
1590
1591 Calling this a "size" is a bit misleading, but given that the
1592 stack grows downwards, using offsets for everything keeps one
1593 from going completely sign-crazy: you never change anything's
1594 sign for an ADD instruction; always change the second operand's
1595 sign for a SUB instruction; and everything takes care of
1596 itself. */
1597 int frame_size;
1598
1599 /* Non-zero if this function has initialized the frame pointer from
1600 the stack pointer, zero otherwise. */
1601 int has_frame_ptr;
1602
1603 /* If has_frame_ptr is non-zero, this is the offset from the frame
1604 base to where the frame pointer points. This is always zero or
1605 negative. */
1606 int frame_ptr_offset;
1607
1608 /* The address of the first instruction at which the frame has been
1609 set up and the arguments are where the debug info says they are
1610 --- as best as we can tell. */
1611 CORE_ADDR prologue_end;
1612
1613 /* reg_offset[R] is the offset from the CFA at which register R is
1614 saved, or 1 if register R has not been saved. (Real values are
1615 always zero or negative.) */
1616 int reg_offset[MEP_NUM_REGS];
1617 };
1618
1619 /* Return non-zero if VALUE is an incoming argument register. */
1620
1621 static int
1622 is_arg_reg (pv_t value)
1623 {
1624 return (value.kind == pvk_register
1625 && MEP_R1_REGNUM <= value.reg && value.reg <= MEP_R4_REGNUM
1626 && value.k == 0);
1627 }
1628
1629 /* Return non-zero if a store of REG's current value VALUE to ADDR is
1630 probably spilling an argument register to its stack slot in STACK.
1631 Such instructions should be included in the prologue, if possible.
1632
1633 The store is a spill if:
1634 - the value being stored is REG's original value;
1635 - the value has not already been stored somewhere in STACK; and
1636 - ADDR is a stack slot's address (e.g., relative to the original
1637 value of the SP). */
1638 static int
1639 is_arg_spill (struct gdbarch *gdbarch, pv_t value, pv_t addr,
1640 struct pv_area *stack)
1641 {
1642 return (is_arg_reg (value)
1643 && pv_is_register (addr, MEP_SP_REGNUM)
1644 && ! pv_area_find_reg (stack, gdbarch, value.reg, 0));
1645 }
1646
1647
1648 /* Function for finding saved registers in a 'struct pv_area'; we pass
1649 this to pv_area_scan.
1650
1651 If VALUE is a saved register, ADDR says it was saved at a constant
1652 offset from the frame base, and SIZE indicates that the whole
1653 register was saved, record its offset in RESULT_UNTYPED. */
1654 static void
1655 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1656 {
1657 struct mep_prologue *result = (struct mep_prologue *) result_untyped;
1658
1659 if (value.kind == pvk_register
1660 && value.k == 0
1661 && pv_is_register (addr, MEP_SP_REGNUM)
1662 && size == register_size (result->gdbarch, value.reg))
1663 result->reg_offset[value.reg] = addr.k;
1664 }
1665
1666
1667 /* Analyze a prologue starting at START_PC, going no further than
1668 LIMIT_PC. Fill in RESULT as appropriate. */
1669 static void
1670 mep_analyze_prologue (struct gdbarch *gdbarch,
1671 CORE_ADDR start_pc, CORE_ADDR limit_pc,
1672 struct mep_prologue *result)
1673 {
1674 CORE_ADDR pc;
1675 unsigned long insn;
1676 int rn;
1677 int found_lp = 0;
1678 pv_t reg[MEP_NUM_REGS];
1679 struct pv_area *stack;
1680 struct cleanup *back_to;
1681 CORE_ADDR after_last_frame_setup_insn = start_pc;
1682
1683 memset (result, 0, sizeof (*result));
1684 result->gdbarch = gdbarch;
1685
1686 for (rn = 0; rn < MEP_NUM_REGS; rn++)
1687 {
1688 reg[rn] = pv_register (rn, 0);
1689 result->reg_offset[rn] = 1;
1690 }
1691
1692 stack = make_pv_area (MEP_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1693 back_to = make_cleanup_free_pv_area (stack);
1694
1695 pc = start_pc;
1696 while (pc < limit_pc)
1697 {
1698 CORE_ADDR next_pc;
1699 pv_t pre_insn_fp, pre_insn_sp;
1700
1701 next_pc = mep_get_insn (gdbarch, pc, &insn);
1702
1703 /* A zero return from mep_get_insn means that either we weren't
1704 able to read the instruction from memory, or that we don't
1705 have enough information to be able to reliably decode it. So
1706 we'll store here and hope for the best. */
1707 if (! next_pc)
1708 break;
1709
1710 /* Note the current values of the SP and FP, so we can tell if
1711 this instruction changed them, below. */
1712 pre_insn_fp = reg[MEP_FP_REGNUM];
1713 pre_insn_sp = reg[MEP_SP_REGNUM];
1714
1715 if (IS_ADD (insn))
1716 {
1717 int rn = ADD_TARGET (insn);
1718 CORE_ADDR imm6 = ADD_OFFSET (insn);
1719
1720 reg[rn] = pv_add_constant (reg[rn], imm6);
1721 }
1722 else if (IS_ADD3_16 (insn))
1723 {
1724 int rn = ADD3_16_TARGET (insn);
1725 int imm7 = ADD3_16_OFFSET (insn);
1726
1727 reg[rn] = pv_add_constant (reg[MEP_SP_REGNUM], imm7);
1728 }
1729 else if (IS_ADD3_32 (insn))
1730 {
1731 int rn = ADD3_32_TARGET (insn);
1732 int rm = ADD3_32_SOURCE (insn);
1733 int imm16 = ADD3_32_OFFSET (insn);
1734
1735 reg[rn] = pv_add_constant (reg[rm], imm16);
1736 }
1737 else if (IS_SW_REG (insn))
1738 {
1739 int rn = SW_REG_SOURCE (insn);
1740 int rm = SW_REG_BASE (insn);
1741
1742 /* If simulating this store would require us to forget
1743 everything we know about the stack frame in the name of
1744 accuracy, it would be better to just quit now. */
1745 if (pv_area_store_would_trash (stack, reg[rm]))
1746 break;
1747
1748 if (is_arg_spill (gdbarch, reg[rn], reg[rm], stack))
1749 after_last_frame_setup_insn = next_pc;
1750
1751 pv_area_store (stack, reg[rm], 4, reg[rn]);
1752 }
1753 else if (IS_SW_IMMD (insn))
1754 {
1755 int rn = SW_IMMD_SOURCE (insn);
1756 int offset = SW_IMMD_OFFSET (insn);
1757 pv_t addr = pv_add_constant (reg[MEP_SP_REGNUM], offset);
1758
1759 /* If simulating this store would require us to forget
1760 everything we know about the stack frame in the name of
1761 accuracy, it would be better to just quit now. */
1762 if (pv_area_store_would_trash (stack, addr))
1763 break;
1764
1765 if (is_arg_spill (gdbarch, reg[rn], addr, stack))
1766 after_last_frame_setup_insn = next_pc;
1767
1768 pv_area_store (stack, addr, 4, reg[rn]);
1769 }
1770 else if (IS_MOV (insn))
1771 {
1772 int rn = MOV_TARGET (insn);
1773 int rm = MOV_SOURCE (insn);
1774
1775 reg[rn] = reg[rm];
1776
1777 if (pv_is_register (reg[rm], rm) && is_arg_reg (reg[rm]))
1778 after_last_frame_setup_insn = next_pc;
1779 }
1780 else if (IS_SB (insn) || IS_SH (insn) || IS_SW (insn))
1781 {
1782 int rn = SWBH_32_SOURCE (insn);
1783 int rm = SWBH_32_BASE (insn);
1784 int disp = SWBH_32_OFFSET (insn);
1785 int size = (IS_SB (insn) ? 1
1786 : IS_SH (insn) ? 2
1787 : (gdb_assert (IS_SW (insn)), 4));
1788 pv_t addr = pv_add_constant (reg[rm], disp);
1789
1790 if (pv_area_store_would_trash (stack, addr))
1791 break;
1792
1793 if (is_arg_spill (gdbarch, reg[rn], addr, stack))
1794 after_last_frame_setup_insn = next_pc;
1795
1796 pv_area_store (stack, addr, size, reg[rn]);
1797 }
1798 else if (IS_LDC (insn))
1799 {
1800 int rn = LDC_TARGET (insn);
1801 int cr = LDC_IMM (insn) + MEP_FIRST_CSR_REGNUM;
1802
1803 reg[rn] = reg[cr];
1804 }
1805 else if (IS_LW (insn))
1806 {
1807 int rn = LW_TARGET (insn);
1808 int rm = LW_BASE (insn);
1809 int offset = LW_OFFSET (insn);
1810 pv_t addr = pv_add_constant (reg[rm], offset);
1811
1812 reg[rn] = pv_area_fetch (stack, addr, 4);
1813 }
1814 else if (IS_BRA (insn) && BRA_DISP (insn) > 0)
1815 {
1816 /* When a loop appears as the first statement of a function
1817 body, gcc 4.x will use a BRA instruction to branch to the
1818 loop condition checking code. This BRA instruction is
1819 marked as part of the prologue. We therefore set next_pc
1820 to this branch target and also stop the prologue scan.
1821 The instructions at and beyond the branch target should
1822 no longer be associated with the prologue.
1823
1824 Note that we only consider forward branches here. We
1825 presume that a forward branch is being used to skip over
1826 a loop body.
1827
1828 A backwards branch is covered by the default case below.
1829 If we were to encounter a backwards branch, that would
1830 most likely mean that we've scanned through a loop body.
1831 We definitely want to stop the prologue scan when this
1832 happens and that is precisely what is done by the default
1833 case below. */
1834 next_pc = pc + BRA_DISP (insn);
1835 after_last_frame_setup_insn = next_pc;
1836 break;
1837 }
1838 else
1839 /* We've hit some instruction we don't know how to simulate.
1840 Strictly speaking, we should set every value we're
1841 tracking to "unknown". But we'll be optimistic, assume
1842 that we have enough information already, and stop
1843 analysis here. */
1844 break;
1845
1846 /* If this instruction changed the FP or decreased the SP (i.e.,
1847 allocated more stack space), then this may be a good place to
1848 declare the prologue finished. However, there are some
1849 exceptions:
1850
1851 - If the instruction just changed the FP back to its original
1852 value, then that's probably a restore instruction. The
1853 prologue should definitely end before that.
1854
1855 - If the instruction increased the value of the SP (that is,
1856 shrunk the frame), then it's probably part of a frame
1857 teardown sequence, and the prologue should end before that. */
1858
1859 if (! pv_is_identical (reg[MEP_FP_REGNUM], pre_insn_fp))
1860 {
1861 if (! pv_is_register_k (reg[MEP_FP_REGNUM], MEP_FP_REGNUM, 0))
1862 after_last_frame_setup_insn = next_pc;
1863 }
1864 else if (! pv_is_identical (reg[MEP_SP_REGNUM], pre_insn_sp))
1865 {
1866 /* The comparison of constants looks odd, there, because .k
1867 is unsigned. All it really means is that the new value
1868 is lower than it was before the instruction. */
1869 if (pv_is_register (pre_insn_sp, MEP_SP_REGNUM)
1870 && pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM)
1871 && ((pre_insn_sp.k - reg[MEP_SP_REGNUM].k)
1872 < (reg[MEP_SP_REGNUM].k - pre_insn_sp.k)))
1873 after_last_frame_setup_insn = next_pc;
1874 }
1875
1876 pc = next_pc;
1877 }
1878
1879 /* Is the frame size (offset, really) a known constant? */
1880 if (pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM))
1881 result->frame_size = reg[MEP_SP_REGNUM].k;
1882
1883 /* Was the frame pointer initialized? */
1884 if (pv_is_register (reg[MEP_FP_REGNUM], MEP_SP_REGNUM))
1885 {
1886 result->has_frame_ptr = 1;
1887 result->frame_ptr_offset = reg[MEP_FP_REGNUM].k;
1888 }
1889
1890 /* Record where all the registers were saved. */
1891 pv_area_scan (stack, check_for_saved, (void *) result);
1892
1893 result->prologue_end = after_last_frame_setup_insn;
1894
1895 do_cleanups (back_to);
1896 }
1897
1898
1899 static CORE_ADDR
1900 mep_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1901 {
1902 const char *name;
1903 CORE_ADDR func_addr, func_end;
1904 struct mep_prologue p;
1905
1906 /* Try to find the extent of the function that contains PC. */
1907 if (! find_pc_partial_function (pc, &name, &func_addr, &func_end))
1908 return pc;
1909
1910 mep_analyze_prologue (gdbarch, pc, func_end, &p);
1911 return p.prologue_end;
1912 }
1913
1914
1915 \f
1916 /* Breakpoints. */
1917 constexpr gdb_byte mep_break_insn[] = { 0x70, 0x32 };
1918
1919 typedef BP_MANIPULATION (mep_break_insn) mep_breakpoint;
1920
1921 \f
1922 /* Frames and frame unwinding. */
1923
1924
1925 static struct mep_prologue *
1926 mep_analyze_frame_prologue (struct frame_info *this_frame,
1927 void **this_prologue_cache)
1928 {
1929 if (! *this_prologue_cache)
1930 {
1931 CORE_ADDR func_start, stop_addr;
1932
1933 *this_prologue_cache
1934 = FRAME_OBSTACK_ZALLOC (struct mep_prologue);
1935
1936 func_start = get_frame_func (this_frame);
1937 stop_addr = get_frame_pc (this_frame);
1938
1939 /* If we couldn't find any function containing the PC, then
1940 just initialize the prologue cache, but don't do anything. */
1941 if (! func_start)
1942 stop_addr = func_start;
1943
1944 mep_analyze_prologue (get_frame_arch (this_frame),
1945 func_start, stop_addr,
1946 (struct mep_prologue *) *this_prologue_cache);
1947 }
1948
1949 return (struct mep_prologue *) *this_prologue_cache;
1950 }
1951
1952
1953 /* Given the next frame and a prologue cache, return this frame's
1954 base. */
1955 static CORE_ADDR
1956 mep_frame_base (struct frame_info *this_frame,
1957 void **this_prologue_cache)
1958 {
1959 struct mep_prologue *p
1960 = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
1961
1962 /* In functions that use alloca, the distance between the stack
1963 pointer and the frame base varies dynamically, so we can't use
1964 the SP plus static information like prologue analysis to find the
1965 frame base. However, such functions must have a frame pointer,
1966 to be able to restore the SP on exit. So whenever we do have a
1967 frame pointer, use that to find the base. */
1968 if (p->has_frame_ptr)
1969 {
1970 CORE_ADDR fp
1971 = get_frame_register_unsigned (this_frame, MEP_FP_REGNUM);
1972 return fp - p->frame_ptr_offset;
1973 }
1974 else
1975 {
1976 CORE_ADDR sp
1977 = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
1978 return sp - p->frame_size;
1979 }
1980 }
1981
1982
1983 static void
1984 mep_frame_this_id (struct frame_info *this_frame,
1985 void **this_prologue_cache,
1986 struct frame_id *this_id)
1987 {
1988 *this_id = frame_id_build (mep_frame_base (this_frame, this_prologue_cache),
1989 get_frame_func (this_frame));
1990 }
1991
1992
1993 static struct value *
1994 mep_frame_prev_register (struct frame_info *this_frame,
1995 void **this_prologue_cache, int regnum)
1996 {
1997 struct mep_prologue *p
1998 = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
1999
2000 /* There are a number of complications in unwinding registers on the
2001 MeP, having to do with core functions calling VLIW functions and
2002 vice versa.
2003
2004 The least significant bit of the link register, LP.LTOM, is the
2005 VLIW mode toggle bit: it's set if a core function called a VLIW
2006 function, or vice versa, and clear when the caller and callee
2007 were both in the same mode.
2008
2009 So, if we're asked to unwind the PC, then we really want to
2010 unwind the LP and clear the least significant bit. (Real return
2011 addresses are always even.) And if we want to unwind the program
2012 status word (PSW), we need to toggle PSW.OM if LP.LTOM is set.
2013
2014 Tweaking the register values we return in this way means that the
2015 bits in BUFFERP[] are not the same as the bits you'd find at
2016 ADDRP in the inferior, so we make sure lvalp is not_lval when we
2017 do this. */
2018 if (regnum == MEP_PC_REGNUM)
2019 {
2020 struct value *value;
2021 CORE_ADDR lp;
2022 value = mep_frame_prev_register (this_frame, this_prologue_cache,
2023 MEP_LP_REGNUM);
2024 lp = value_as_long (value);
2025 release_value (value);
2026 value_free (value);
2027
2028 return frame_unwind_got_constant (this_frame, regnum, lp & ~1);
2029 }
2030 else
2031 {
2032 CORE_ADDR frame_base = mep_frame_base (this_frame, this_prologue_cache);
2033 struct value *value;
2034
2035 /* Our caller's SP is our frame base. */
2036 if (regnum == MEP_SP_REGNUM)
2037 return frame_unwind_got_constant (this_frame, regnum, frame_base);
2038
2039 /* If prologue analysis says we saved this register somewhere,
2040 return a description of the stack slot holding it. */
2041 if (p->reg_offset[regnum] != 1)
2042 value = frame_unwind_got_memory (this_frame, regnum,
2043 frame_base + p->reg_offset[regnum]);
2044
2045 /* Otherwise, presume we haven't changed the value of this
2046 register, and get it from the next frame. */
2047 else
2048 value = frame_unwind_got_register (this_frame, regnum, regnum);
2049
2050 /* If we need to toggle the operating mode, do so. */
2051 if (regnum == MEP_PSW_REGNUM)
2052 {
2053 CORE_ADDR psw, lp;
2054
2055 psw = value_as_long (value);
2056 release_value (value);
2057 value_free (value);
2058
2059 /* Get the LP's value, too. */
2060 value = get_frame_register_value (this_frame, MEP_LP_REGNUM);
2061 lp = value_as_long (value);
2062 release_value (value);
2063 value_free (value);
2064
2065 /* If LP.LTOM is set, then toggle PSW.OM. */
2066 if (lp & 0x1)
2067 psw ^= 0x1000;
2068
2069 return frame_unwind_got_constant (this_frame, regnum, psw);
2070 }
2071
2072 return value;
2073 }
2074 }
2075
2076
2077 static const struct frame_unwind mep_frame_unwind = {
2078 NORMAL_FRAME,
2079 default_frame_unwind_stop_reason,
2080 mep_frame_this_id,
2081 mep_frame_prev_register,
2082 NULL,
2083 default_frame_sniffer
2084 };
2085
2086
2087 /* Our general unwinding function can handle unwinding the PC. */
2088 static CORE_ADDR
2089 mep_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2090 {
2091 return frame_unwind_register_unsigned (next_frame, MEP_PC_REGNUM);
2092 }
2093
2094
2095 /* Our general unwinding function can handle unwinding the SP. */
2096 static CORE_ADDR
2097 mep_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2098 {
2099 return frame_unwind_register_unsigned (next_frame, MEP_SP_REGNUM);
2100 }
2101
2102
2103 \f
2104 /* Return values. */
2105
2106
2107 static int
2108 mep_use_struct_convention (struct type *type)
2109 {
2110 return (TYPE_LENGTH (type) > MEP_GPR_SIZE);
2111 }
2112
2113
2114 static void
2115 mep_extract_return_value (struct gdbarch *arch,
2116 struct type *type,
2117 struct regcache *regcache,
2118 gdb_byte *valbuf)
2119 {
2120 int byte_order = gdbarch_byte_order (arch);
2121
2122 /* Values that don't occupy a full register appear at the less
2123 significant end of the value. This is the offset to where the
2124 value starts. */
2125 int offset;
2126
2127 /* Return values > MEP_GPR_SIZE bytes are returned in memory,
2128 pointed to by R0. */
2129 gdb_assert (TYPE_LENGTH (type) <= MEP_GPR_SIZE);
2130
2131 if (byte_order == BFD_ENDIAN_BIG)
2132 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2133 else
2134 offset = 0;
2135
2136 /* Return values that do fit in a single register are returned in R0. */
2137 regcache_cooked_read_part (regcache, MEP_R0_REGNUM,
2138 offset, TYPE_LENGTH (type),
2139 valbuf);
2140 }
2141
2142
2143 static void
2144 mep_store_return_value (struct gdbarch *arch,
2145 struct type *type,
2146 struct regcache *regcache,
2147 const gdb_byte *valbuf)
2148 {
2149 int byte_order = gdbarch_byte_order (arch);
2150
2151 /* Values that fit in a single register go in R0. */
2152 if (TYPE_LENGTH (type) <= MEP_GPR_SIZE)
2153 {
2154 /* Values that don't occupy a full register appear at the least
2155 significant end of the value. This is the offset to where the
2156 value starts. */
2157 int offset;
2158
2159 if (byte_order == BFD_ENDIAN_BIG)
2160 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2161 else
2162 offset = 0;
2163
2164 regcache_cooked_write_part (regcache, MEP_R0_REGNUM,
2165 offset, TYPE_LENGTH (type),
2166 valbuf);
2167 }
2168
2169 /* Return values larger than a single register are returned in
2170 memory, pointed to by R0. Unfortunately, we can't count on R0
2171 pointing to the return buffer, so we raise an error here. */
2172 else
2173 error (_("\
2174 GDB cannot set return values larger than four bytes; the Media Processor's\n\
2175 calling conventions do not provide enough information to do this.\n\
2176 Try using the 'return' command with no argument."));
2177 }
2178
2179 static enum return_value_convention
2180 mep_return_value (struct gdbarch *gdbarch, struct value *function,
2181 struct type *type, struct regcache *regcache,
2182 gdb_byte *readbuf, const gdb_byte *writebuf)
2183 {
2184 if (mep_use_struct_convention (type))
2185 {
2186 if (readbuf)
2187 {
2188 ULONGEST addr;
2189 /* Although the address of the struct buffer gets passed in R1, it's
2190 returned in R0. Fetch R0's value and then read the memory
2191 at that address. */
2192 regcache_raw_read_unsigned (regcache, MEP_R0_REGNUM, &addr);
2193 read_memory (addr, readbuf, TYPE_LENGTH (type));
2194 }
2195 if (writebuf)
2196 {
2197 /* Return values larger than a single register are returned in
2198 memory, pointed to by R0. Unfortunately, we can't count on R0
2199 pointing to the return buffer, so we raise an error here. */
2200 error (_("\
2201 GDB cannot set return values larger than four bytes; the Media Processor's\n\
2202 calling conventions do not provide enough information to do this.\n\
2203 Try using the 'return' command with no argument."));
2204 }
2205 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2206 }
2207
2208 if (readbuf)
2209 mep_extract_return_value (gdbarch, type, regcache, readbuf);
2210 if (writebuf)
2211 mep_store_return_value (gdbarch, type, regcache, writebuf);
2212
2213 return RETURN_VALUE_REGISTER_CONVENTION;
2214 }
2215
2216 \f
2217 /* Inferior calls. */
2218
2219
2220 static CORE_ADDR
2221 mep_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2222 {
2223 /* Require word alignment. */
2224 return sp & -4;
2225 }
2226
2227
2228 /* From "lang_spec2.txt":
2229
2230 4.2 Calling conventions
2231
2232 4.2.1 Core register conventions
2233
2234 - Parameters should be evaluated from left to right, and they
2235 should be held in $1,$2,$3,$4 in order. The fifth parameter or
2236 after should be held in the stack. If the size is larger than 4
2237 bytes in the first four parameters, the pointer should be held in
2238 the registers instead. If the size is larger than 4 bytes in the
2239 fifth parameter or after, the pointer should be held in the stack.
2240
2241 - Return value of a function should be held in register $0. If the
2242 size of return value is larger than 4 bytes, $1 should hold the
2243 pointer pointing memory that would hold the return value. In this
2244 case, the first parameter should be held in $2, the second one in
2245 $3, and the third one in $4, and the forth parameter or after
2246 should be held in the stack.
2247
2248 [This doesn't say so, but arguments shorter than four bytes are
2249 passed in the least significant end of a four-byte word when
2250 they're passed on the stack.] */
2251
2252
2253 /* Traverse the list of ARGC arguments ARGV; for every ARGV[i] too
2254 large to fit in a register, save it on the stack, and place its
2255 address in COPY[i]. SP is the initial stack pointer; return the
2256 new stack pointer. */
2257 static CORE_ADDR
2258 push_large_arguments (CORE_ADDR sp, int argc, struct value **argv,
2259 CORE_ADDR copy[])
2260 {
2261 int i;
2262
2263 for (i = 0; i < argc; i++)
2264 {
2265 unsigned arg_len = TYPE_LENGTH (value_type (argv[i]));
2266
2267 if (arg_len > MEP_GPR_SIZE)
2268 {
2269 /* Reserve space for the copy, and then round the SP down, to
2270 make sure it's all aligned properly. */
2271 sp = (sp - arg_len) & -4;
2272 write_memory (sp, value_contents (argv[i]), arg_len);
2273 copy[i] = sp;
2274 }
2275 }
2276
2277 return sp;
2278 }
2279
2280
2281 static CORE_ADDR
2282 mep_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2283 struct regcache *regcache, CORE_ADDR bp_addr,
2284 int argc, struct value **argv, CORE_ADDR sp,
2285 int struct_return,
2286 CORE_ADDR struct_addr)
2287 {
2288 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2289 CORE_ADDR *copy = (CORE_ADDR *) alloca (argc * sizeof (copy[0]));
2290 CORE_ADDR func_addr = find_function_addr (function, NULL);
2291 int i;
2292
2293 /* The number of the next register available to hold an argument. */
2294 int arg_reg;
2295
2296 /* The address of the next stack slot available to hold an argument. */
2297 CORE_ADDR arg_stack;
2298
2299 /* The address of the end of the stack area for arguments. This is
2300 just for error checking. */
2301 CORE_ADDR arg_stack_end;
2302
2303 sp = push_large_arguments (sp, argc, argv, copy);
2304
2305 /* Reserve space for the stack arguments, if any. */
2306 arg_stack_end = sp;
2307 if (argc + (struct_addr ? 1 : 0) > 4)
2308 sp -= ((argc + (struct_addr ? 1 : 0)) - 4) * MEP_GPR_SIZE;
2309
2310 arg_reg = MEP_R1_REGNUM;
2311 arg_stack = sp;
2312
2313 /* If we're returning a structure by value, push the pointer to the
2314 buffer as the first argument. */
2315 if (struct_return)
2316 {
2317 regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
2318 arg_reg++;
2319 }
2320
2321 for (i = 0; i < argc; i++)
2322 {
2323 ULONGEST value;
2324
2325 /* Arguments that fit in a GPR get expanded to fill the GPR. */
2326 if (TYPE_LENGTH (value_type (argv[i])) <= MEP_GPR_SIZE)
2327 value = extract_unsigned_integer (value_contents (argv[i]),
2328 TYPE_LENGTH (value_type (argv[i])),
2329 byte_order);
2330
2331 /* Arguments too large to fit in a GPR get copied to the stack,
2332 and we pass a pointer to the copy. */
2333 else
2334 value = copy[i];
2335
2336 /* We use $1 -- $4 for passing arguments, then use the stack. */
2337 if (arg_reg <= MEP_R4_REGNUM)
2338 {
2339 regcache_cooked_write_unsigned (regcache, arg_reg, value);
2340 arg_reg++;
2341 }
2342 else
2343 {
2344 gdb_byte buf[MEP_GPR_SIZE];
2345 store_unsigned_integer (buf, MEP_GPR_SIZE, byte_order, value);
2346 write_memory (arg_stack, buf, MEP_GPR_SIZE);
2347 arg_stack += MEP_GPR_SIZE;
2348 }
2349 }
2350
2351 gdb_assert (arg_stack <= arg_stack_end);
2352
2353 /* Set the return address. */
2354 regcache_cooked_write_unsigned (regcache, MEP_LP_REGNUM, bp_addr);
2355
2356 /* Update the stack pointer. */
2357 regcache_cooked_write_unsigned (regcache, MEP_SP_REGNUM, sp);
2358
2359 return sp;
2360 }
2361
2362
2363 static struct frame_id
2364 mep_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2365 {
2366 CORE_ADDR sp = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
2367 return frame_id_build (sp, get_frame_pc (this_frame));
2368 }
2369
2370
2371 \f
2372 /* Initialization. */
2373
2374
2375 static struct gdbarch *
2376 mep_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2377 {
2378 struct gdbarch *gdbarch;
2379 struct gdbarch_tdep *tdep;
2380
2381 /* Which me_module are we building a gdbarch object for? */
2382 CONFIG_ATTR me_module;
2383
2384 /* If we have a BFD in hand, figure out which me_module it was built
2385 for. Otherwise, use the no-particular-me_module code. */
2386 if (info.abfd)
2387 {
2388 /* The way to get the me_module code depends on the object file
2389 format. At the moment, we only know how to handle ELF. */
2390 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
2391 {
2392 int flag = elf_elfheader (info.abfd)->e_flags & EF_MEP_INDEX_MASK;
2393 me_module = (CONFIG_ATTR) flag;
2394 }
2395 else
2396 me_module = CONFIG_NONE;
2397 }
2398 else
2399 me_module = CONFIG_NONE;
2400
2401 /* If we're setting the architecture from a file, check the
2402 endianness of the file against that of the me_module. */
2403 if (info.abfd)
2404 {
2405 /* The negations on either side make the comparison treat all
2406 non-zero (true) values as equal. */
2407 if (! bfd_big_endian (info.abfd) != ! me_module_big_endian (me_module))
2408 {
2409 const char *module_name = me_module_name (me_module);
2410 const char *module_endianness
2411 = me_module_big_endian (me_module) ? "big" : "little";
2412 const char *file_name = bfd_get_filename (info.abfd);
2413 const char *file_endianness
2414 = bfd_big_endian (info.abfd) ? "big" : "little";
2415
2416 fputc_unfiltered ('\n', gdb_stderr);
2417 if (module_name)
2418 warning (_("the MeP module '%s' is %s-endian, but the executable\n"
2419 "%s is %s-endian."),
2420 module_name, module_endianness,
2421 file_name, file_endianness);
2422 else
2423 warning (_("the selected MeP module is %s-endian, but the "
2424 "executable\n"
2425 "%s is %s-endian."),
2426 module_endianness, file_name, file_endianness);
2427 }
2428 }
2429
2430 /* Find a candidate among the list of architectures we've created
2431 already. info->bfd_arch_info needs to match, but we also want
2432 the right me_module: the ELF header's e_flags field needs to
2433 match as well. */
2434 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2435 arches != NULL;
2436 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2437 if (gdbarch_tdep (arches->gdbarch)->me_module == me_module)
2438 return arches->gdbarch;
2439
2440 tdep = XCNEW (struct gdbarch_tdep);
2441 gdbarch = gdbarch_alloc (&info, tdep);
2442
2443 /* Get a CGEN CPU descriptor for this architecture. */
2444 {
2445 const char *mach_name = info.bfd_arch_info->printable_name;
2446 enum cgen_endian endian = (info.byte_order == BFD_ENDIAN_BIG
2447 ? CGEN_ENDIAN_BIG
2448 : CGEN_ENDIAN_LITTLE);
2449
2450 tdep->cpu_desc = mep_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH, mach_name,
2451 CGEN_CPU_OPEN_ENDIAN, endian,
2452 CGEN_CPU_OPEN_END);
2453 }
2454
2455 tdep->me_module = me_module;
2456
2457 /* Register set. */
2458 set_gdbarch_read_pc (gdbarch, mep_read_pc);
2459 set_gdbarch_num_regs (gdbarch, MEP_NUM_RAW_REGS);
2460 set_gdbarch_pc_regnum (gdbarch, MEP_PC_REGNUM);
2461 set_gdbarch_sp_regnum (gdbarch, MEP_SP_REGNUM);
2462 set_gdbarch_register_name (gdbarch, mep_register_name);
2463 set_gdbarch_register_type (gdbarch, mep_register_type);
2464 set_gdbarch_num_pseudo_regs (gdbarch, MEP_NUM_PSEUDO_REGS);
2465 set_gdbarch_pseudo_register_read (gdbarch, mep_pseudo_register_read);
2466 set_gdbarch_pseudo_register_write (gdbarch, mep_pseudo_register_write);
2467 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2468 set_gdbarch_stab_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2469
2470 set_gdbarch_register_reggroup_p (gdbarch, mep_register_reggroup_p);
2471 reggroup_add (gdbarch, all_reggroup);
2472 reggroup_add (gdbarch, general_reggroup);
2473 reggroup_add (gdbarch, save_reggroup);
2474 reggroup_add (gdbarch, restore_reggroup);
2475 reggroup_add (gdbarch, mep_csr_reggroup);
2476 reggroup_add (gdbarch, mep_cr_reggroup);
2477 reggroup_add (gdbarch, mep_ccr_reggroup);
2478
2479 /* Disassembly. */
2480 set_gdbarch_print_insn (gdbarch, mep_gdb_print_insn);
2481
2482 /* Breakpoints. */
2483 set_gdbarch_breakpoint_kind_from_pc (gdbarch, mep_breakpoint::kind_from_pc);
2484 set_gdbarch_sw_breakpoint_from_kind (gdbarch, mep_breakpoint::bp_from_kind);
2485 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2486 set_gdbarch_skip_prologue (gdbarch, mep_skip_prologue);
2487
2488 /* Frames and frame unwinding. */
2489 frame_unwind_append_unwinder (gdbarch, &mep_frame_unwind);
2490 set_gdbarch_unwind_pc (gdbarch, mep_unwind_pc);
2491 set_gdbarch_unwind_sp (gdbarch, mep_unwind_sp);
2492 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2493 set_gdbarch_frame_args_skip (gdbarch, 0);
2494
2495 /* Return values. */
2496 set_gdbarch_return_value (gdbarch, mep_return_value);
2497
2498 /* Inferior function calls. */
2499 set_gdbarch_frame_align (gdbarch, mep_frame_align);
2500 set_gdbarch_push_dummy_call (gdbarch, mep_push_dummy_call);
2501 set_gdbarch_dummy_id (gdbarch, mep_dummy_id);
2502
2503 return gdbarch;
2504 }
2505
2506 void
2507 _initialize_mep_tdep (void)
2508 {
2509 mep_csr_reggroup = reggroup_new ("csr", USER_REGGROUP);
2510 mep_cr_reggroup = reggroup_new ("cr", USER_REGGROUP);
2511 mep_ccr_reggroup = reggroup_new ("ccr", USER_REGGROUP);
2512
2513 register_gdbarch_init (bfd_arch_mep, mep_gdbarch_init);
2514
2515 mep_init_pseudoregister_maps ();
2516 }