update copyright year range in GDB files
[binutils-gdb.git] / gdb / mep-tdep.c
1 /* Target-dependent code for the Toshiba MeP for GDB, the GNU debugger.
2
3 Copyright (C) 2001-2017 Free Software Foundation, Inc.
4
5 Contributed by Red Hat, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "gdbcore.h"
30 #include "value.h"
31 #include "inferior.h"
32 #include "dis-asm.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "language.h"
36 #include "arch-utils.h"
37 #include "regcache.h"
38 #include "remote.h"
39 #include "floatformat.h"
40 #include "sim-regno.h"
41 #include "disasm.h"
42 #include "trad-frame.h"
43 #include "reggroups.h"
44 #include "elf-bfd.h"
45 #include "elf/mep.h"
46 #include "prologue-value.h"
47 #include "cgen/bitset.h"
48 #include "infcall.h"
49
50 /* Get the user's customized MeP coprocessor register names from
51 libopcodes. */
52 #include "opcodes/mep-desc.h"
53 #include "opcodes/mep-opc.h"
54
55 \f
56 /* The gdbarch_tdep structure. */
57
58 /* A quick recap for GDB hackers not familiar with the whole Toshiba
59 Media Processor story:
60
61 The MeP media engine is a configureable processor: users can design
62 their own coprocessors, implement custom instructions, adjust cache
63 sizes, select optional standard facilities like add-and-saturate
64 instructions, and so on. Then, they can build custom versions of
65 the GNU toolchain to support their customized chips. The
66 MeP-Integrator program (see utils/mep) takes a GNU toolchain source
67 tree, and a config file pointing to various files provided by the
68 user describing their customizations, and edits the source tree to
69 produce a compiler that can generate their custom instructions, an
70 assembler that can assemble them and recognize their custom
71 register names, and so on.
72
73 Furthermore, the user can actually specify several of these custom
74 configurations, called 'me_modules', and get a toolchain which can
75 produce code for any of them, given a compiler/assembler switch;
76 you say something like 'gcc -mconfig=mm_max' to generate code for
77 the me_module named 'mm_max'.
78
79 GDB, in particular, needs to:
80
81 - use the coprocessor control register names provided by the user
82 in their hardware description, in expressions, 'info register'
83 output, and disassembly,
84
85 - know the number, names, and types of the coprocessor's
86 general-purpose registers, adjust the 'info all-registers' output
87 accordingly, and print error messages if the user refers to one
88 that doesn't exist
89
90 - allow access to the control bus space only when the configuration
91 actually has a control bus, and recognize which regions of the
92 control bus space are actually populated,
93
94 - disassemble using the user's provided mnemonics for their custom
95 instructions, and
96
97 - recognize whether the $hi and $lo registers are present, and
98 allow access to them only when they are actually there.
99
100 There are three sources of information about what sort of me_module
101 we're actually dealing with:
102
103 - A MeP executable file indicates which me_module it was compiled
104 for, and libopcodes has tables describing each module. So, given
105 an executable file, we can find out about the processor it was
106 compiled for.
107
108 - There are SID command-line options to select a particular
109 me_module, overriding the one specified in the ELF file. SID
110 provides GDB with a fake read-only register, 'module', which
111 indicates which me_module GDB is communicating with an instance
112 of.
113
114 - There are SID command-line options to enable or disable certain
115 optional processor features, overriding the defaults for the
116 selected me_module. The MeP $OPT register indicates which
117 options are present on the current processor. */
118
119
120 struct gdbarch_tdep
121 {
122 /* A CGEN cpu descriptor for this BFD architecture and machine.
123
124 Note: this is *not* customized for any particular me_module; the
125 MeP libopcodes machinery actually puts off module-specific
126 customization until the last minute. So this contains
127 information about all supported me_modules. */
128 CGEN_CPU_DESC cpu_desc;
129
130 /* The me_module index from the ELF file we used to select this
131 architecture, or CONFIG_NONE if there was none.
132
133 Note that we should prefer to use the me_module number available
134 via the 'module' register, whenever we're actually talking to a
135 real target.
136
137 In the absence of live information, we'd like to get the
138 me_module number from the ELF file. But which ELF file: the
139 executable file, the core file, ... ? The answer is, "the last
140 ELF file we used to set the current architecture". Thus, we
141 create a separate instance of the gdbarch structure for each
142 me_module value mep_gdbarch_init sees, and store the me_module
143 value from the ELF file here. */
144 CONFIG_ATTR me_module;
145 };
146
147
148 \f
149 /* Getting me_module information from the CGEN tables. */
150
151
152 /* Find an entry in the DESC's hardware table whose name begins with
153 PREFIX, and whose ISA mask intersects COPRO_ISA_MASK, but does not
154 intersect with GENERIC_ISA_MASK. If there is no matching entry,
155 return zero. */
156 static const CGEN_HW_ENTRY *
157 find_hw_entry_by_prefix_and_isa (CGEN_CPU_DESC desc,
158 const char *prefix,
159 CGEN_BITSET *copro_isa_mask,
160 CGEN_BITSET *generic_isa_mask)
161 {
162 int prefix_len = strlen (prefix);
163 int i;
164
165 for (i = 0; i < desc->hw_table.num_entries; i++)
166 {
167 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
168 if (strncmp (prefix, hw->name, prefix_len) == 0)
169 {
170 CGEN_BITSET *hw_isa_mask
171 = ((CGEN_BITSET *)
172 &CGEN_ATTR_CGEN_HW_ISA_VALUE (CGEN_HW_ATTRS (hw)));
173
174 if (cgen_bitset_intersect_p (hw_isa_mask, copro_isa_mask)
175 && ! cgen_bitset_intersect_p (hw_isa_mask, generic_isa_mask))
176 return hw;
177 }
178 }
179
180 return 0;
181 }
182
183
184 /* Find an entry in DESC's hardware table whose type is TYPE. Return
185 zero if there is none. */
186 static const CGEN_HW_ENTRY *
187 find_hw_entry_by_type (CGEN_CPU_DESC desc, CGEN_HW_TYPE type)
188 {
189 int i;
190
191 for (i = 0; i < desc->hw_table.num_entries; i++)
192 {
193 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
194
195 if (hw->type == type)
196 return hw;
197 }
198
199 return 0;
200 }
201
202
203 /* Return the CGEN hardware table entry for the coprocessor register
204 set for ME_MODULE, whose name prefix is PREFIX. If ME_MODULE has
205 no such register set, return zero. If ME_MODULE is the generic
206 me_module CONFIG_NONE, return the table entry for the register set
207 whose hardware type is GENERIC_TYPE. */
208 static const CGEN_HW_ENTRY *
209 me_module_register_set (CONFIG_ATTR me_module,
210 const char *prefix,
211 CGEN_HW_TYPE generic_type)
212 {
213 /* This is kind of tricky, because the hardware table is constructed
214 in a way that isn't very helpful. Perhaps we can fix that, but
215 here's how it works at the moment:
216
217 The configuration map, `mep_config_map', is indexed by me_module
218 number, and indicates which coprocessor and core ISAs that
219 me_module supports. The 'core_isa' mask includes all the core
220 ISAs, and the 'cop_isa' mask includes all the coprocessor ISAs.
221 The entry for the generic me_module, CONFIG_NONE, has an empty
222 'cop_isa', and its 'core_isa' selects only the standard MeP
223 instruction set.
224
225 The CGEN CPU descriptor's hardware table, desc->hw_table, has
226 entries for all the register sets, for all me_modules. Each
227 entry has a mask indicating which ISAs use that register set.
228 So, if an me_module supports some coprocessor ISA, we can find
229 applicable register sets by scanning the hardware table for
230 register sets whose masks include (at least some of) those ISAs.
231
232 Each hardware table entry also has a name, whose prefix says
233 whether it's a general-purpose ("h-cr") or control ("h-ccr")
234 coprocessor register set. It might be nicer to have an attribute
235 indicating what sort of register set it was, that we could use
236 instead of pattern-matching on the name.
237
238 When there is no hardware table entry whose mask includes a
239 particular coprocessor ISA and whose name starts with a given
240 prefix, then that means that that coprocessor doesn't have any
241 registers of that type. In such cases, this function must return
242 a null pointer.
243
244 Coprocessor register sets' masks may or may not include the core
245 ISA for the me_module they belong to. Those generated by a2cgen
246 do, but the sample me_module included in the unconfigured tree,
247 'ccfx', does not.
248
249 There are generic coprocessor register sets, intended only for
250 use with the generic me_module. Unfortunately, their masks
251 include *all* ISAs --- even those for coprocessors that don't
252 have such register sets. This makes detecting the case where a
253 coprocessor lacks a particular register set more complicated.
254
255 So, here's the approach we take:
256
257 - For CONFIG_NONE, we return the generic coprocessor register set.
258
259 - For any other me_module, we search for a register set whose
260 mask contains any of the me_module's coprocessor ISAs,
261 specifically excluding the generic coprocessor register sets. */
262
263 CGEN_CPU_DESC desc = gdbarch_tdep (target_gdbarch ())->cpu_desc;
264 const CGEN_HW_ENTRY *hw;
265
266 if (me_module == CONFIG_NONE)
267 hw = find_hw_entry_by_type (desc, generic_type);
268 else
269 {
270 CGEN_BITSET *cop = &mep_config_map[me_module].cop_isa;
271 CGEN_BITSET *core = &mep_config_map[me_module].core_isa;
272 CGEN_BITSET *generic = &mep_config_map[CONFIG_NONE].core_isa;
273 CGEN_BITSET *cop_and_core;
274
275 /* The coprocessor ISAs include the ISA for the specific core which
276 has that coprocessor. */
277 cop_and_core = cgen_bitset_copy (cop);
278 cgen_bitset_union (cop, core, cop_and_core);
279 hw = find_hw_entry_by_prefix_and_isa (desc, prefix, cop_and_core, generic);
280 }
281
282 return hw;
283 }
284
285
286 /* Given a hardware table entry HW representing a register set, return
287 a pointer to the keyword table with all the register names. If HW
288 is NULL, return NULL, to propage the "no such register set" info
289 along. */
290 static CGEN_KEYWORD *
291 register_set_keyword_table (const CGEN_HW_ENTRY *hw)
292 {
293 if (! hw)
294 return NULL;
295
296 /* Check that HW is actually a keyword table. */
297 gdb_assert (hw->asm_type == CGEN_ASM_KEYWORD);
298
299 /* The 'asm_data' field of a register set's hardware table entry
300 refers to a keyword table. */
301 return (CGEN_KEYWORD *) hw->asm_data;
302 }
303
304
305 /* Given a keyword table KEYWORD and a register number REGNUM, return
306 the name of the register, or "" if KEYWORD contains no register
307 whose number is REGNUM. */
308 static char *
309 register_name_from_keyword (CGEN_KEYWORD *keyword_table, int regnum)
310 {
311 const CGEN_KEYWORD_ENTRY *entry
312 = cgen_keyword_lookup_value (keyword_table, regnum);
313
314 if (entry)
315 {
316 char *name = entry->name;
317
318 /* The CGEN keyword entries for register names include the
319 leading $, which appears in MeP assembly as well as in GDB.
320 But we don't want to return that; GDB core code adds that
321 itself. */
322 if (name[0] == '$')
323 name++;
324
325 return name;
326 }
327 else
328 return "";
329 }
330
331
332 /* Masks for option bits in the OPT special-purpose register. */
333 enum {
334 MEP_OPT_DIV = 1 << 25, /* 32-bit divide instruction option */
335 MEP_OPT_MUL = 1 << 24, /* 32-bit multiply instruction option */
336 MEP_OPT_BIT = 1 << 23, /* bit manipulation instruction option */
337 MEP_OPT_SAT = 1 << 22, /* saturation instruction option */
338 MEP_OPT_CLP = 1 << 21, /* clip instruction option */
339 MEP_OPT_MIN = 1 << 20, /* min/max instruction option */
340 MEP_OPT_AVE = 1 << 19, /* average instruction option */
341 MEP_OPT_ABS = 1 << 18, /* absolute difference instruction option */
342 MEP_OPT_LDZ = 1 << 16, /* leading zero instruction option */
343 MEP_OPT_VL64 = 1 << 6, /* 64-bit VLIW operation mode option */
344 MEP_OPT_VL32 = 1 << 5, /* 32-bit VLIW operation mode option */
345 MEP_OPT_COP = 1 << 4, /* coprocessor option */
346 MEP_OPT_DSP = 1 << 2, /* DSP option */
347 MEP_OPT_UCI = 1 << 1, /* UCI option */
348 MEP_OPT_DBG = 1 << 0, /* DBG function option */
349 };
350
351
352 /* Given the option_mask value for a particular entry in
353 mep_config_map, produce the value the processor's OPT register
354 would use to represent the same set of options. */
355 static unsigned int
356 opt_from_option_mask (unsigned int option_mask)
357 {
358 /* A table mapping OPT register bits onto CGEN config map option
359 bits. */
360 struct {
361 unsigned int opt_bit, option_mask_bit;
362 } bits[] = {
363 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
364 { MEP_OPT_MUL, 1 << CGEN_INSN_OPTIONAL_MUL_INSN },
365 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
366 { MEP_OPT_DBG, 1 << CGEN_INSN_OPTIONAL_DEBUG_INSN },
367 { MEP_OPT_LDZ, 1 << CGEN_INSN_OPTIONAL_LDZ_INSN },
368 { MEP_OPT_ABS, 1 << CGEN_INSN_OPTIONAL_ABS_INSN },
369 { MEP_OPT_AVE, 1 << CGEN_INSN_OPTIONAL_AVE_INSN },
370 { MEP_OPT_MIN, 1 << CGEN_INSN_OPTIONAL_MINMAX_INSN },
371 { MEP_OPT_CLP, 1 << CGEN_INSN_OPTIONAL_CLIP_INSN },
372 { MEP_OPT_SAT, 1 << CGEN_INSN_OPTIONAL_SAT_INSN },
373 { MEP_OPT_UCI, 1 << CGEN_INSN_OPTIONAL_UCI_INSN },
374 { MEP_OPT_DSP, 1 << CGEN_INSN_OPTIONAL_DSP_INSN },
375 { MEP_OPT_COP, 1 << CGEN_INSN_OPTIONAL_CP_INSN },
376 };
377
378 int i;
379 unsigned int opt = 0;
380
381 for (i = 0; i < (sizeof (bits) / sizeof (bits[0])); i++)
382 if (option_mask & bits[i].option_mask_bit)
383 opt |= bits[i].opt_bit;
384
385 return opt;
386 }
387
388
389 /* Return the value the $OPT register would use to represent the set
390 of options for ME_MODULE. */
391 static unsigned int
392 me_module_opt (CONFIG_ATTR me_module)
393 {
394 return opt_from_option_mask (mep_config_map[me_module].option_mask);
395 }
396
397
398 /* Return the width of ME_MODULE's coprocessor data bus, in bits.
399 This is either 32 or 64. */
400 static int
401 me_module_cop_data_bus_width (CONFIG_ATTR me_module)
402 {
403 if (mep_config_map[me_module].option_mask
404 & (1 << CGEN_INSN_OPTIONAL_CP64_INSN))
405 return 64;
406 else
407 return 32;
408 }
409
410
411 /* Return true if ME_MODULE is big-endian, false otherwise. */
412 static int
413 me_module_big_endian (CONFIG_ATTR me_module)
414 {
415 return mep_config_map[me_module].big_endian;
416 }
417
418
419 /* Return the name of ME_MODULE, or NULL if it has no name. */
420 static const char *
421 me_module_name (CONFIG_ATTR me_module)
422 {
423 /* The default me_module has "" as its name, but it's easier for our
424 callers to test for NULL. */
425 if (! mep_config_map[me_module].name
426 || mep_config_map[me_module].name[0] == '\0')
427 return NULL;
428 else
429 return mep_config_map[me_module].name;
430 }
431 \f
432 /* Register set. */
433
434
435 /* The MeP spec defines the following registers:
436 16 general purpose registers (r0-r15)
437 32 control/special registers (csr0-csr31)
438 32 coprocessor general-purpose registers (c0 -- c31)
439 64 coprocessor control registers (ccr0 -- ccr63)
440
441 For the raw registers, we assign numbers here explicitly, instead
442 of letting the enum assign them for us; the numbers are a matter of
443 external protocol, and shouldn't shift around as things are edited.
444
445 We access the control/special registers via pseudoregisters, to
446 enforce read-only portions that some registers have.
447
448 We access the coprocessor general purpose and control registers via
449 pseudoregisters, to make sure they appear in the proper order in
450 the 'info all-registers' command (which uses the register number
451 ordering), and also to allow them to be renamed and resized
452 depending on the me_module in use.
453
454 The MeP allows coprocessor general-purpose registers to be either
455 32 or 64 bits long, depending on the configuration. Since we don't
456 want the format of the 'g' packet to vary from one core to another,
457 the raw coprocessor GPRs are always 64 bits. GDB doesn't allow the
458 types of registers to change (see the implementation of
459 register_type), so we have four banks of pseudoregisters for the
460 coprocessor gprs --- 32-bit vs. 64-bit, and integer
461 vs. floating-point --- and we show or hide them depending on the
462 configuration. */
463 enum
464 {
465 MEP_FIRST_RAW_REGNUM = 0,
466
467 MEP_FIRST_GPR_REGNUM = 0,
468 MEP_R0_REGNUM = 0,
469 MEP_R1_REGNUM = 1,
470 MEP_R2_REGNUM = 2,
471 MEP_R3_REGNUM = 3,
472 MEP_R4_REGNUM = 4,
473 MEP_R5_REGNUM = 5,
474 MEP_R6_REGNUM = 6,
475 MEP_R7_REGNUM = 7,
476 MEP_R8_REGNUM = 8,
477 MEP_R9_REGNUM = 9,
478 MEP_R10_REGNUM = 10,
479 MEP_R11_REGNUM = 11,
480 MEP_R12_REGNUM = 12,
481 MEP_FP_REGNUM = MEP_R8_REGNUM,
482 MEP_R13_REGNUM = 13,
483 MEP_TP_REGNUM = MEP_R13_REGNUM, /* (r13) Tiny data pointer */
484 MEP_R14_REGNUM = 14,
485 MEP_GP_REGNUM = MEP_R14_REGNUM, /* (r14) Global pointer */
486 MEP_R15_REGNUM = 15,
487 MEP_SP_REGNUM = MEP_R15_REGNUM, /* (r15) Stack pointer */
488 MEP_LAST_GPR_REGNUM = MEP_R15_REGNUM,
489
490 /* The raw control registers. These are the values as received via
491 the remote protocol, directly from the target; we only let user
492 code touch the via the pseudoregisters, which enforce read-only
493 bits. */
494 MEP_FIRST_RAW_CSR_REGNUM = 16,
495 MEP_RAW_PC_REGNUM = 16, /* Program counter */
496 MEP_RAW_LP_REGNUM = 17, /* Link pointer */
497 MEP_RAW_SAR_REGNUM = 18, /* Raw shift amount */
498 MEP_RAW_CSR3_REGNUM = 19, /* csr3: reserved */
499 MEP_RAW_RPB_REGNUM = 20, /* Raw repeat begin address */
500 MEP_RAW_RPE_REGNUM = 21, /* Repeat end address */
501 MEP_RAW_RPC_REGNUM = 22, /* Repeat count */
502 MEP_RAW_HI_REGNUM = 23, /* Upper 32 bits of result of 64 bit mult/div */
503 MEP_RAW_LO_REGNUM = 24, /* Lower 32 bits of result of 64 bit mult/div */
504 MEP_RAW_CSR9_REGNUM = 25, /* csr3: reserved */
505 MEP_RAW_CSR10_REGNUM = 26, /* csr3: reserved */
506 MEP_RAW_CSR11_REGNUM = 27, /* csr3: reserved */
507 MEP_RAW_MB0_REGNUM = 28, /* Raw modulo begin address 0 */
508 MEP_RAW_ME0_REGNUM = 29, /* Raw modulo end address 0 */
509 MEP_RAW_MB1_REGNUM = 30, /* Raw modulo begin address 1 */
510 MEP_RAW_ME1_REGNUM = 31, /* Raw modulo end address 1 */
511 MEP_RAW_PSW_REGNUM = 32, /* Raw program status word */
512 MEP_RAW_ID_REGNUM = 33, /* Raw processor ID/revision */
513 MEP_RAW_TMP_REGNUM = 34, /* Temporary */
514 MEP_RAW_EPC_REGNUM = 35, /* Exception program counter */
515 MEP_RAW_EXC_REGNUM = 36, /* Raw exception cause */
516 MEP_RAW_CFG_REGNUM = 37, /* Raw processor configuration*/
517 MEP_RAW_CSR22_REGNUM = 38, /* csr3: reserved */
518 MEP_RAW_NPC_REGNUM = 39, /* Nonmaskable interrupt PC */
519 MEP_RAW_DBG_REGNUM = 40, /* Raw debug */
520 MEP_RAW_DEPC_REGNUM = 41, /* Debug exception PC */
521 MEP_RAW_OPT_REGNUM = 42, /* Raw options */
522 MEP_RAW_RCFG_REGNUM = 43, /* Raw local ram config */
523 MEP_RAW_CCFG_REGNUM = 44, /* Raw cache config */
524 MEP_RAW_CSR29_REGNUM = 45, /* csr3: reserved */
525 MEP_RAW_CSR30_REGNUM = 46, /* csr3: reserved */
526 MEP_RAW_CSR31_REGNUM = 47, /* csr3: reserved */
527 MEP_LAST_RAW_CSR_REGNUM = MEP_RAW_CSR31_REGNUM,
528
529 /* The raw coprocessor general-purpose registers. These are all 64
530 bits wide. */
531 MEP_FIRST_RAW_CR_REGNUM = 48,
532 MEP_LAST_RAW_CR_REGNUM = MEP_FIRST_RAW_CR_REGNUM + 31,
533
534 MEP_FIRST_RAW_CCR_REGNUM = 80,
535 MEP_LAST_RAW_CCR_REGNUM = MEP_FIRST_RAW_CCR_REGNUM + 63,
536
537 /* The module number register. This is the index of the me_module
538 of which the current target is an instance. (This is not a real
539 MeP-specified register; it's provided by SID.) */
540 MEP_MODULE_REGNUM,
541
542 MEP_LAST_RAW_REGNUM = MEP_MODULE_REGNUM,
543
544 MEP_NUM_RAW_REGS = MEP_LAST_RAW_REGNUM + 1,
545
546 /* Pseudoregisters. See mep_pseudo_register_read and
547 mep_pseudo_register_write. */
548 MEP_FIRST_PSEUDO_REGNUM = MEP_NUM_RAW_REGS,
549
550 /* We have a pseudoregister for every control/special register, to
551 implement registers with read-only bits. */
552 MEP_FIRST_CSR_REGNUM = MEP_FIRST_PSEUDO_REGNUM,
553 MEP_PC_REGNUM = MEP_FIRST_CSR_REGNUM, /* Program counter */
554 MEP_LP_REGNUM, /* Link pointer */
555 MEP_SAR_REGNUM, /* shift amount */
556 MEP_CSR3_REGNUM, /* csr3: reserved */
557 MEP_RPB_REGNUM, /* repeat begin address */
558 MEP_RPE_REGNUM, /* Repeat end address */
559 MEP_RPC_REGNUM, /* Repeat count */
560 MEP_HI_REGNUM, /* Upper 32 bits of the result of 64 bit mult/div */
561 MEP_LO_REGNUM, /* Lower 32 bits of the result of 64 bit mult/div */
562 MEP_CSR9_REGNUM, /* csr3: reserved */
563 MEP_CSR10_REGNUM, /* csr3: reserved */
564 MEP_CSR11_REGNUM, /* csr3: reserved */
565 MEP_MB0_REGNUM, /* modulo begin address 0 */
566 MEP_ME0_REGNUM, /* modulo end address 0 */
567 MEP_MB1_REGNUM, /* modulo begin address 1 */
568 MEP_ME1_REGNUM, /* modulo end address 1 */
569 MEP_PSW_REGNUM, /* program status word */
570 MEP_ID_REGNUM, /* processor ID/revision */
571 MEP_TMP_REGNUM, /* Temporary */
572 MEP_EPC_REGNUM, /* Exception program counter */
573 MEP_EXC_REGNUM, /* exception cause */
574 MEP_CFG_REGNUM, /* processor configuration*/
575 MEP_CSR22_REGNUM, /* csr3: reserved */
576 MEP_NPC_REGNUM, /* Nonmaskable interrupt PC */
577 MEP_DBG_REGNUM, /* debug */
578 MEP_DEPC_REGNUM, /* Debug exception PC */
579 MEP_OPT_REGNUM, /* options */
580 MEP_RCFG_REGNUM, /* local ram config */
581 MEP_CCFG_REGNUM, /* cache config */
582 MEP_CSR29_REGNUM, /* csr3: reserved */
583 MEP_CSR30_REGNUM, /* csr3: reserved */
584 MEP_CSR31_REGNUM, /* csr3: reserved */
585 MEP_LAST_CSR_REGNUM = MEP_CSR31_REGNUM,
586
587 /* The 32-bit integer view of the coprocessor GPR's. */
588 MEP_FIRST_CR32_REGNUM,
589 MEP_LAST_CR32_REGNUM = MEP_FIRST_CR32_REGNUM + 31,
590
591 /* The 32-bit floating-point view of the coprocessor GPR's. */
592 MEP_FIRST_FP_CR32_REGNUM,
593 MEP_LAST_FP_CR32_REGNUM = MEP_FIRST_FP_CR32_REGNUM + 31,
594
595 /* The 64-bit integer view of the coprocessor GPR's. */
596 MEP_FIRST_CR64_REGNUM,
597 MEP_LAST_CR64_REGNUM = MEP_FIRST_CR64_REGNUM + 31,
598
599 /* The 64-bit floating-point view of the coprocessor GPR's. */
600 MEP_FIRST_FP_CR64_REGNUM,
601 MEP_LAST_FP_CR64_REGNUM = MEP_FIRST_FP_CR64_REGNUM + 31,
602
603 MEP_FIRST_CCR_REGNUM,
604 MEP_LAST_CCR_REGNUM = MEP_FIRST_CCR_REGNUM + 63,
605
606 MEP_LAST_PSEUDO_REGNUM = MEP_LAST_CCR_REGNUM,
607
608 MEP_NUM_PSEUDO_REGS = (MEP_LAST_PSEUDO_REGNUM - MEP_LAST_RAW_REGNUM),
609
610 MEP_NUM_REGS = MEP_NUM_RAW_REGS + MEP_NUM_PSEUDO_REGS
611 };
612
613
614 #define IN_SET(set, n) \
615 (MEP_FIRST_ ## set ## _REGNUM <= (n) && (n) <= MEP_LAST_ ## set ## _REGNUM)
616
617 #define IS_GPR_REGNUM(n) (IN_SET (GPR, (n)))
618 #define IS_RAW_CSR_REGNUM(n) (IN_SET (RAW_CSR, (n)))
619 #define IS_RAW_CR_REGNUM(n) (IN_SET (RAW_CR, (n)))
620 #define IS_RAW_CCR_REGNUM(n) (IN_SET (RAW_CCR, (n)))
621
622 #define IS_CSR_REGNUM(n) (IN_SET (CSR, (n)))
623 #define IS_CR32_REGNUM(n) (IN_SET (CR32, (n)))
624 #define IS_FP_CR32_REGNUM(n) (IN_SET (FP_CR32, (n)))
625 #define IS_CR64_REGNUM(n) (IN_SET (CR64, (n)))
626 #define IS_FP_CR64_REGNUM(n) (IN_SET (FP_CR64, (n)))
627 #define IS_CR_REGNUM(n) (IS_CR32_REGNUM (n) || IS_FP_CR32_REGNUM (n) \
628 || IS_CR64_REGNUM (n) || IS_FP_CR64_REGNUM (n))
629 #define IS_CCR_REGNUM(n) (IN_SET (CCR, (n)))
630
631 #define IS_RAW_REGNUM(n) (IN_SET (RAW, (n)))
632 #define IS_PSEUDO_REGNUM(n) (IN_SET (PSEUDO, (n)))
633
634 #define NUM_REGS_IN_SET(set) \
635 (MEP_LAST_ ## set ## _REGNUM - MEP_FIRST_ ## set ## _REGNUM + 1)
636
637 #define MEP_GPR_SIZE (4) /* Size of a MeP general-purpose register. */
638 #define MEP_PSW_SIZE (4) /* Size of the PSW register. */
639 #define MEP_LP_SIZE (4) /* Size of the LP register. */
640
641
642 /* Many of the control/special registers contain bits that cannot be
643 written to; some are entirely read-only. So we present them all as
644 pseudoregisters.
645
646 The following table describes the special properties of each CSR. */
647 struct mep_csr_register
648 {
649 /* The number of this CSR's raw register. */
650 int raw;
651
652 /* The number of this CSR's pseudoregister. */
653 int pseudo;
654
655 /* A mask of the bits that are writeable: if a bit is set here, then
656 it can be modified; if the bit is clear, then it cannot. */
657 LONGEST writeable_bits;
658 };
659
660
661 /* mep_csr_registers[i] describes the i'th CSR.
662 We just list the register numbers here explicitly to help catch
663 typos. */
664 #define CSR(name) MEP_RAW_ ## name ## _REGNUM, MEP_ ## name ## _REGNUM
665 struct mep_csr_register mep_csr_registers[] = {
666 { CSR(PC), 0xffffffff }, /* manual says r/o, but we can write it */
667 { CSR(LP), 0xffffffff },
668 { CSR(SAR), 0x0000003f },
669 { CSR(CSR3), 0xffffffff },
670 { CSR(RPB), 0xfffffffe },
671 { CSR(RPE), 0xffffffff },
672 { CSR(RPC), 0xffffffff },
673 { CSR(HI), 0xffffffff },
674 { CSR(LO), 0xffffffff },
675 { CSR(CSR9), 0xffffffff },
676 { CSR(CSR10), 0xffffffff },
677 { CSR(CSR11), 0xffffffff },
678 { CSR(MB0), 0x0000ffff },
679 { CSR(ME0), 0x0000ffff },
680 { CSR(MB1), 0x0000ffff },
681 { CSR(ME1), 0x0000ffff },
682 { CSR(PSW), 0x000003ff },
683 { CSR(ID), 0x00000000 },
684 { CSR(TMP), 0xffffffff },
685 { CSR(EPC), 0xffffffff },
686 { CSR(EXC), 0x000030f0 },
687 { CSR(CFG), 0x00c0001b },
688 { CSR(CSR22), 0xffffffff },
689 { CSR(NPC), 0xffffffff },
690 { CSR(DBG), 0x00000580 },
691 { CSR(DEPC), 0xffffffff },
692 { CSR(OPT), 0x00000000 },
693 { CSR(RCFG), 0x00000000 },
694 { CSR(CCFG), 0x00000000 },
695 { CSR(CSR29), 0xffffffff },
696 { CSR(CSR30), 0xffffffff },
697 { CSR(CSR31), 0xffffffff },
698 };
699
700
701 /* If R is the number of a raw register, then mep_raw_to_pseudo[R] is
702 the number of the corresponding pseudoregister. Otherwise,
703 mep_raw_to_pseudo[R] == R. */
704 static int mep_raw_to_pseudo[MEP_NUM_REGS];
705
706 /* If R is the number of a pseudoregister, then mep_pseudo_to_raw[R]
707 is the number of the underlying raw register. Otherwise
708 mep_pseudo_to_raw[R] == R. */
709 static int mep_pseudo_to_raw[MEP_NUM_REGS];
710
711 static void
712 mep_init_pseudoregister_maps (void)
713 {
714 int i;
715
716 /* Verify that mep_csr_registers covers all the CSRs, in order. */
717 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (CSR));
718 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (RAW_CSR));
719
720 /* Verify that the raw and pseudo ranges have matching sizes. */
721 gdb_assert (NUM_REGS_IN_SET (RAW_CSR) == NUM_REGS_IN_SET (CSR));
722 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR32));
723 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR64));
724 gdb_assert (NUM_REGS_IN_SET (RAW_CCR) == NUM_REGS_IN_SET (CCR));
725
726 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
727 {
728 struct mep_csr_register *r = &mep_csr_registers[i];
729
730 gdb_assert (r->pseudo == MEP_FIRST_CSR_REGNUM + i);
731 gdb_assert (r->raw == MEP_FIRST_RAW_CSR_REGNUM + i);
732 }
733
734 /* Set up the initial raw<->pseudo mappings. */
735 for (i = 0; i < MEP_NUM_REGS; i++)
736 {
737 mep_raw_to_pseudo[i] = i;
738 mep_pseudo_to_raw[i] = i;
739 }
740
741 /* Add the CSR raw<->pseudo mappings. */
742 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
743 {
744 struct mep_csr_register *r = &mep_csr_registers[i];
745
746 mep_raw_to_pseudo[r->raw] = r->pseudo;
747 mep_pseudo_to_raw[r->pseudo] = r->raw;
748 }
749
750 /* Add the CR raw<->pseudo mappings. */
751 for (i = 0; i < NUM_REGS_IN_SET (RAW_CR); i++)
752 {
753 int raw = MEP_FIRST_RAW_CR_REGNUM + i;
754 int pseudo32 = MEP_FIRST_CR32_REGNUM + i;
755 int pseudofp32 = MEP_FIRST_FP_CR32_REGNUM + i;
756 int pseudo64 = MEP_FIRST_CR64_REGNUM + i;
757 int pseudofp64 = MEP_FIRST_FP_CR64_REGNUM + i;
758
759 /* Truly, the raw->pseudo mapping depends on the current module.
760 But we use the raw->pseudo mapping when we read the debugging
761 info; at that point, we don't know what module we'll actually
762 be running yet. So, we always supply the 64-bit register
763 numbers; GDB knows how to pick a smaller value out of a
764 larger register properly. */
765 mep_raw_to_pseudo[raw] = pseudo64;
766 mep_pseudo_to_raw[pseudo32] = raw;
767 mep_pseudo_to_raw[pseudofp32] = raw;
768 mep_pseudo_to_raw[pseudo64] = raw;
769 mep_pseudo_to_raw[pseudofp64] = raw;
770 }
771
772 /* Add the CCR raw<->pseudo mappings. */
773 for (i = 0; i < NUM_REGS_IN_SET (CCR); i++)
774 {
775 int raw = MEP_FIRST_RAW_CCR_REGNUM + i;
776 int pseudo = MEP_FIRST_CCR_REGNUM + i;
777 mep_raw_to_pseudo[raw] = pseudo;
778 mep_pseudo_to_raw[pseudo] = raw;
779 }
780 }
781
782
783 static int
784 mep_debug_reg_to_regnum (struct gdbarch *gdbarch, int debug_reg)
785 {
786 /* The debug info uses the raw register numbers. */
787 if (debug_reg >= 0 && debug_reg < ARRAY_SIZE (mep_raw_to_pseudo))
788 return mep_raw_to_pseudo[debug_reg];
789 return -1;
790 }
791
792
793 /* Return the size, in bits, of the coprocessor pseudoregister
794 numbered PSEUDO. */
795 static int
796 mep_pseudo_cr_size (int pseudo)
797 {
798 if (IS_CR32_REGNUM (pseudo)
799 || IS_FP_CR32_REGNUM (pseudo))
800 return 32;
801 else if (IS_CR64_REGNUM (pseudo)
802 || IS_FP_CR64_REGNUM (pseudo))
803 return 64;
804 else
805 gdb_assert_not_reached ("unexpected coprocessor pseudo register");
806 }
807
808
809 /* If the coprocessor pseudoregister numbered PSEUDO is a
810 floating-point register, return non-zero; if it is an integer
811 register, return zero. */
812 static int
813 mep_pseudo_cr_is_float (int pseudo)
814 {
815 return (IS_FP_CR32_REGNUM (pseudo)
816 || IS_FP_CR64_REGNUM (pseudo));
817 }
818
819
820 /* Given a coprocessor GPR pseudoregister number, return its index
821 within that register bank. */
822 static int
823 mep_pseudo_cr_index (int pseudo)
824 {
825 if (IS_CR32_REGNUM (pseudo))
826 return pseudo - MEP_FIRST_CR32_REGNUM;
827 else if (IS_FP_CR32_REGNUM (pseudo))
828 return pseudo - MEP_FIRST_FP_CR32_REGNUM;
829 else if (IS_CR64_REGNUM (pseudo))
830 return pseudo - MEP_FIRST_CR64_REGNUM;
831 else if (IS_FP_CR64_REGNUM (pseudo))
832 return pseudo - MEP_FIRST_FP_CR64_REGNUM;
833 else
834 gdb_assert_not_reached ("unexpected coprocessor pseudo register");
835 }
836
837
838 /* Return the me_module index describing the current target.
839
840 If the current target has registers (e.g., simulator, remote
841 target), then this uses the value of the 'module' register, raw
842 register MEP_MODULE_REGNUM. Otherwise, this retrieves the value
843 from the ELF header's e_flags field of the current executable
844 file. */
845 static CONFIG_ATTR
846 current_me_module (void)
847 {
848 if (target_has_registers)
849 {
850 ULONGEST regval;
851 regcache_cooked_read_unsigned (get_current_regcache (),
852 MEP_MODULE_REGNUM, &regval);
853 return (CONFIG_ATTR) regval;
854 }
855 else
856 return gdbarch_tdep (target_gdbarch ())->me_module;
857 }
858
859
860 /* Return the set of options for the current target, in the form that
861 the OPT register would use.
862
863 If the current target has registers (e.g., simulator, remote
864 target), then this is the actual value of the OPT register. If the
865 current target does not have registers (e.g., an executable file),
866 then use the 'module_opt' field we computed when we build the
867 gdbarch object for this module. */
868 static unsigned int
869 current_options (void)
870 {
871 if (target_has_registers)
872 {
873 ULONGEST regval;
874 regcache_cooked_read_unsigned (get_current_regcache (),
875 MEP_OPT_REGNUM, &regval);
876 return regval;
877 }
878 else
879 return me_module_opt (current_me_module ());
880 }
881
882
883 /* Return the width of the current me_module's coprocessor data bus,
884 in bits. This is either 32 or 64. */
885 static int
886 current_cop_data_bus_width (void)
887 {
888 return me_module_cop_data_bus_width (current_me_module ());
889 }
890
891
892 /* Return the keyword table of coprocessor general-purpose register
893 names appropriate for the me_module we're dealing with. */
894 static CGEN_KEYWORD *
895 current_cr_names (void)
896 {
897 const CGEN_HW_ENTRY *hw
898 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
899
900 return register_set_keyword_table (hw);
901 }
902
903
904 /* Return non-zero if the coprocessor general-purpose registers are
905 floating-point values, zero otherwise. */
906 static int
907 current_cr_is_float (void)
908 {
909 const CGEN_HW_ENTRY *hw
910 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
911
912 return CGEN_ATTR_CGEN_HW_IS_FLOAT_VALUE (CGEN_HW_ATTRS (hw));
913 }
914
915
916 /* Return the keyword table of coprocessor control register names
917 appropriate for the me_module we're dealing with. */
918 static CGEN_KEYWORD *
919 current_ccr_names (void)
920 {
921 const CGEN_HW_ENTRY *hw
922 = me_module_register_set (current_me_module (), "h-ccr-", HW_H_CCR);
923
924 return register_set_keyword_table (hw);
925 }
926
927
928 static const char *
929 mep_register_name (struct gdbarch *gdbarch, int regnr)
930 {
931 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
932
933 /* General-purpose registers. */
934 static const char *gpr_names[] = {
935 "r0", "r1", "r2", "r3", /* 0 */
936 "r4", "r5", "r6", "r7", /* 4 */
937 "fp", "r9", "r10", "r11", /* 8 */
938 "r12", "tp", "gp", "sp" /* 12 */
939 };
940
941 /* Special-purpose registers. */
942 static const char *csr_names[] = {
943 "pc", "lp", "sar", "", /* 0 csr3: reserved */
944 "rpb", "rpe", "rpc", "hi", /* 4 */
945 "lo", "", "", "", /* 8 csr9-csr11: reserved */
946 "mb0", "me0", "mb1", "me1", /* 12 */
947
948 "psw", "id", "tmp", "epc", /* 16 */
949 "exc", "cfg", "", "npc", /* 20 csr22: reserved */
950 "dbg", "depc", "opt", "rcfg", /* 24 */
951 "ccfg", "", "", "" /* 28 csr29-csr31: reserved */
952 };
953
954 if (IS_GPR_REGNUM (regnr))
955 return gpr_names[regnr - MEP_R0_REGNUM];
956 else if (IS_CSR_REGNUM (regnr))
957 {
958 /* The 'hi' and 'lo' registers are only present on processors
959 that have the 'MUL' or 'DIV' instructions enabled. */
960 if ((regnr == MEP_HI_REGNUM || regnr == MEP_LO_REGNUM)
961 && (! (current_options () & (MEP_OPT_MUL | MEP_OPT_DIV))))
962 return "";
963
964 return csr_names[regnr - MEP_FIRST_CSR_REGNUM];
965 }
966 else if (IS_CR_REGNUM (regnr))
967 {
968 CGEN_KEYWORD *names;
969 int cr_size;
970 int cr_is_float;
971
972 /* Does this module have a coprocessor at all? */
973 if (! (current_options () & MEP_OPT_COP))
974 return "";
975
976 names = current_cr_names ();
977 if (! names)
978 /* This module's coprocessor has no general-purpose registers. */
979 return "";
980
981 cr_size = current_cop_data_bus_width ();
982 if (cr_size != mep_pseudo_cr_size (regnr))
983 /* This module's coprocessor's GPR's are of a different size. */
984 return "";
985
986 cr_is_float = current_cr_is_float ();
987 /* The extra ! operators ensure we get boolean equality, not
988 numeric equality. */
989 if (! cr_is_float != ! mep_pseudo_cr_is_float (regnr))
990 /* This module's coprocessor's GPR's are of a different type. */
991 return "";
992
993 return register_name_from_keyword (names, mep_pseudo_cr_index (regnr));
994 }
995 else if (IS_CCR_REGNUM (regnr))
996 {
997 /* Does this module have a coprocessor at all? */
998 if (! (current_options () & MEP_OPT_COP))
999 return "";
1000
1001 {
1002 CGEN_KEYWORD *names = current_ccr_names ();
1003
1004 if (! names)
1005 /* This me_module's coprocessor has no control registers. */
1006 return "";
1007
1008 return register_name_from_keyword (names, regnr-MEP_FIRST_CCR_REGNUM);
1009 }
1010 }
1011
1012 /* It might be nice to give the 'module' register a name, but that
1013 would affect the output of 'info all-registers', which would
1014 disturb the test suites. So we leave it invisible. */
1015 else
1016 return NULL;
1017 }
1018
1019
1020 /* Custom register groups for the MeP. */
1021 static struct reggroup *mep_csr_reggroup; /* control/special */
1022 static struct reggroup *mep_cr_reggroup; /* coprocessor general-purpose */
1023 static struct reggroup *mep_ccr_reggroup; /* coprocessor control */
1024
1025
1026 static int
1027 mep_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1028 struct reggroup *group)
1029 {
1030 /* Filter reserved or unused register numbers. */
1031 {
1032 const char *name = mep_register_name (gdbarch, regnum);
1033
1034 if (! name || name[0] == '\0')
1035 return 0;
1036 }
1037
1038 /* We could separate the GPRs and the CSRs. Toshiba has approved of
1039 the existing behavior, so we'd want to run that by them. */
1040 if (group == general_reggroup)
1041 return (IS_GPR_REGNUM (regnum)
1042 || IS_CSR_REGNUM (regnum));
1043
1044 /* Everything is in the 'all' reggroup, except for the raw CSR's. */
1045 else if (group == all_reggroup)
1046 return (IS_GPR_REGNUM (regnum)
1047 || IS_CSR_REGNUM (regnum)
1048 || IS_CR_REGNUM (regnum)
1049 || IS_CCR_REGNUM (regnum));
1050
1051 /* All registers should be saved and restored, except for the raw
1052 CSR's.
1053
1054 This is probably right if the coprocessor is something like a
1055 floating-point unit, but would be wrong if the coprocessor is
1056 something that does I/O, where register accesses actually cause
1057 externally-visible actions. But I get the impression that the
1058 coprocessor isn't supposed to do things like that --- you'd use a
1059 hardware engine, perhaps. */
1060 else if (group == save_reggroup || group == restore_reggroup)
1061 return (IS_GPR_REGNUM (regnum)
1062 || IS_CSR_REGNUM (regnum)
1063 || IS_CR_REGNUM (regnum)
1064 || IS_CCR_REGNUM (regnum));
1065
1066 else if (group == mep_csr_reggroup)
1067 return IS_CSR_REGNUM (regnum);
1068 else if (group == mep_cr_reggroup)
1069 return IS_CR_REGNUM (regnum);
1070 else if (group == mep_ccr_reggroup)
1071 return IS_CCR_REGNUM (regnum);
1072 else
1073 return 0;
1074 }
1075
1076
1077 static struct type *
1078 mep_register_type (struct gdbarch *gdbarch, int reg_nr)
1079 {
1080 /* Coprocessor general-purpose registers may be either 32 or 64 bits
1081 long. So for them, the raw registers are always 64 bits long (to
1082 keep the 'g' packet format fixed), and the pseudoregisters vary
1083 in length. */
1084 if (IS_RAW_CR_REGNUM (reg_nr))
1085 return builtin_type (gdbarch)->builtin_uint64;
1086
1087 /* Since GDB doesn't allow registers to change type, we have two
1088 banks of pseudoregisters for the coprocessor general-purpose
1089 registers: one that gives a 32-bit view, and one that gives a
1090 64-bit view. We hide or show one or the other depending on the
1091 current module. */
1092 if (IS_CR_REGNUM (reg_nr))
1093 {
1094 int size = mep_pseudo_cr_size (reg_nr);
1095 if (size == 32)
1096 {
1097 if (mep_pseudo_cr_is_float (reg_nr))
1098 return builtin_type (gdbarch)->builtin_float;
1099 else
1100 return builtin_type (gdbarch)->builtin_uint32;
1101 }
1102 else if (size == 64)
1103 {
1104 if (mep_pseudo_cr_is_float (reg_nr))
1105 return builtin_type (gdbarch)->builtin_double;
1106 else
1107 return builtin_type (gdbarch)->builtin_uint64;
1108 }
1109 else
1110 gdb_assert_not_reached ("unexpected cr size");
1111 }
1112
1113 /* All other registers are 32 bits long. */
1114 else
1115 return builtin_type (gdbarch)->builtin_uint32;
1116 }
1117
1118
1119 static CORE_ADDR
1120 mep_read_pc (struct regcache *regcache)
1121 {
1122 ULONGEST pc;
1123 regcache_cooked_read_unsigned (regcache, MEP_PC_REGNUM, &pc);
1124 return pc;
1125 }
1126
1127 static enum register_status
1128 mep_pseudo_cr32_read (struct gdbarch *gdbarch,
1129 struct regcache *regcache,
1130 int cookednum,
1131 gdb_byte *buf)
1132 {
1133 enum register_status status;
1134 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1135 /* Read the raw register into a 64-bit buffer, and then return the
1136 appropriate end of that buffer. */
1137 int rawnum = mep_pseudo_to_raw[cookednum];
1138 gdb_byte buf64[8];
1139
1140 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1141 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1142 status = regcache_raw_read (regcache, rawnum, buf64);
1143 if (status == REG_VALID)
1144 {
1145 /* Slow, but legible. */
1146 store_unsigned_integer (buf, 4, byte_order,
1147 extract_unsigned_integer (buf64, 8, byte_order));
1148 }
1149 return status;
1150 }
1151
1152
1153 static enum register_status
1154 mep_pseudo_cr64_read (struct gdbarch *gdbarch,
1155 struct regcache *regcache,
1156 int cookednum,
1157 gdb_byte *buf)
1158 {
1159 return regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1160 }
1161
1162
1163 static enum register_status
1164 mep_pseudo_register_read (struct gdbarch *gdbarch,
1165 struct regcache *regcache,
1166 int cookednum,
1167 gdb_byte *buf)
1168 {
1169 if (IS_CSR_REGNUM (cookednum)
1170 || IS_CCR_REGNUM (cookednum))
1171 return regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1172 else if (IS_CR32_REGNUM (cookednum)
1173 || IS_FP_CR32_REGNUM (cookednum))
1174 return mep_pseudo_cr32_read (gdbarch, regcache, cookednum, buf);
1175 else if (IS_CR64_REGNUM (cookednum)
1176 || IS_FP_CR64_REGNUM (cookednum))
1177 return mep_pseudo_cr64_read (gdbarch, regcache, cookednum, buf);
1178 else
1179 gdb_assert_not_reached ("unexpected pseudo register");
1180 }
1181
1182
1183 static void
1184 mep_pseudo_csr_write (struct gdbarch *gdbarch,
1185 struct regcache *regcache,
1186 int cookednum,
1187 const gdb_byte *buf)
1188 {
1189 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1190 int size = register_size (gdbarch, cookednum);
1191 struct mep_csr_register *r
1192 = &mep_csr_registers[cookednum - MEP_FIRST_CSR_REGNUM];
1193
1194 if (r->writeable_bits == 0)
1195 /* A completely read-only register; avoid the read-modify-
1196 write cycle, and juts ignore the entire write. */
1197 ;
1198 else
1199 {
1200 /* A partially writeable register; do a read-modify-write cycle. */
1201 ULONGEST old_bits;
1202 ULONGEST new_bits;
1203 ULONGEST mixed_bits;
1204
1205 regcache_raw_read_unsigned (regcache, r->raw, &old_bits);
1206 new_bits = extract_unsigned_integer (buf, size, byte_order);
1207 mixed_bits = ((r->writeable_bits & new_bits)
1208 | (~r->writeable_bits & old_bits));
1209 regcache_raw_write_unsigned (regcache, r->raw, mixed_bits);
1210 }
1211 }
1212
1213
1214 static void
1215 mep_pseudo_cr32_write (struct gdbarch *gdbarch,
1216 struct regcache *regcache,
1217 int cookednum,
1218 const gdb_byte *buf)
1219 {
1220 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1221 /* Expand the 32-bit value into a 64-bit value, and write that to
1222 the pseudoregister. */
1223 int rawnum = mep_pseudo_to_raw[cookednum];
1224 gdb_byte buf64[8];
1225
1226 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1227 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1228 /* Slow, but legible. */
1229 store_unsigned_integer (buf64, 8, byte_order,
1230 extract_unsigned_integer (buf, 4, byte_order));
1231 regcache_raw_write (regcache, rawnum, buf64);
1232 }
1233
1234
1235 static void
1236 mep_pseudo_cr64_write (struct gdbarch *gdbarch,
1237 struct regcache *regcache,
1238 int cookednum,
1239 const gdb_byte *buf)
1240 {
1241 regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1242 }
1243
1244
1245 static void
1246 mep_pseudo_register_write (struct gdbarch *gdbarch,
1247 struct regcache *regcache,
1248 int cookednum,
1249 const gdb_byte *buf)
1250 {
1251 if (IS_CSR_REGNUM (cookednum))
1252 mep_pseudo_csr_write (gdbarch, regcache, cookednum, buf);
1253 else if (IS_CR32_REGNUM (cookednum)
1254 || IS_FP_CR32_REGNUM (cookednum))
1255 mep_pseudo_cr32_write (gdbarch, regcache, cookednum, buf);
1256 else if (IS_CR64_REGNUM (cookednum)
1257 || IS_FP_CR64_REGNUM (cookednum))
1258 mep_pseudo_cr64_write (gdbarch, regcache, cookednum, buf);
1259 else if (IS_CCR_REGNUM (cookednum))
1260 regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1261 else
1262 gdb_assert_not_reached ("unexpected pseudo register");
1263 }
1264
1265
1266 \f
1267 /* Disassembly. */
1268
1269 /* The mep disassembler needs to know about the section in order to
1270 work correctly. */
1271 static int
1272 mep_gdb_print_insn (bfd_vma pc, disassemble_info * info)
1273 {
1274 struct obj_section * s = find_pc_section (pc);
1275
1276 if (s)
1277 {
1278 /* The libopcodes disassembly code uses the section to find the
1279 BFD, the BFD to find the ELF header, the ELF header to find
1280 the me_module index, and the me_module index to select the
1281 right instructions to print. */
1282 info->section = s->the_bfd_section;
1283 info->arch = bfd_arch_mep;
1284
1285 return print_insn_mep (pc, info);
1286 }
1287
1288 return 0;
1289 }
1290
1291 \f
1292 /* Prologue analysis. */
1293
1294
1295 /* The MeP has two classes of instructions: "core" instructions, which
1296 are pretty normal RISC chip stuff, and "coprocessor" instructions,
1297 which are mostly concerned with moving data in and out of
1298 coprocessor registers, and branching on coprocessor condition
1299 codes. There's space in the instruction set for custom coprocessor
1300 instructions, too.
1301
1302 Instructions can be 16 or 32 bits long; the top two bits of the
1303 first byte indicate the length. The coprocessor instructions are
1304 mixed in with the core instructions, and there's no easy way to
1305 distinguish them; you have to completely decode them to tell one
1306 from the other.
1307
1308 The MeP also supports a "VLIW" operation mode, where instructions
1309 always occur in fixed-width bundles. The bundles are either 32
1310 bits or 64 bits long, depending on a fixed configuration flag. You
1311 decode the first part of the bundle as normal; if it's a core
1312 instruction, and there's any space left in the bundle, the
1313 remainder of the bundle is a coprocessor instruction, which will
1314 execute in parallel with the core instruction. If the first part
1315 of the bundle is a coprocessor instruction, it occupies the entire
1316 bundle.
1317
1318 So, here are all the cases:
1319
1320 - 32-bit VLIW mode:
1321 Every bundle is four bytes long, and naturally aligned, and can hold
1322 one or two instructions:
1323 - 16-bit core instruction; 16-bit coprocessor instruction
1324 These execute in parallel.
1325 - 32-bit core instruction
1326 - 32-bit coprocessor instruction
1327
1328 - 64-bit VLIW mode:
1329 Every bundle is eight bytes long, and naturally aligned, and can hold
1330 one or two instructions:
1331 - 16-bit core instruction; 48-bit (!) coprocessor instruction
1332 These execute in parallel.
1333 - 32-bit core instruction; 32-bit coprocessor instruction
1334 These execute in parallel.
1335 - 64-bit coprocessor instruction
1336
1337 Now, the MeP manual doesn't define any 48- or 64-bit coprocessor
1338 instruction, so I don't really know what's up there; perhaps these
1339 are always the user-defined coprocessor instructions. */
1340
1341
1342 /* Return non-zero if PC is in a VLIW code section, zero
1343 otherwise. */
1344 static int
1345 mep_pc_in_vliw_section (CORE_ADDR pc)
1346 {
1347 struct obj_section *s = find_pc_section (pc);
1348 if (s)
1349 return (s->the_bfd_section->flags & SEC_MEP_VLIW);
1350 return 0;
1351 }
1352
1353
1354 /* Set *INSN to the next core instruction at PC, and return the
1355 address of the next instruction.
1356
1357 The MeP instruction encoding is endian-dependent. 16- and 32-bit
1358 instructions are encoded as one or two two-byte parts, and each
1359 part is byte-swapped independently. Thus:
1360
1361 void
1362 foo (void)
1363 {
1364 asm ("movu $1, 0x123456");
1365 asm ("sb $1,0x5678($2)");
1366 asm ("clip $1, 19");
1367 }
1368
1369 compiles to this big-endian code:
1370
1371 0: d1 56 12 34 movu $1,0x123456
1372 4: c1 28 56 78 sb $1,22136($2)
1373 8: f1 01 10 98 clip $1,0x13
1374 c: 70 02 ret
1375
1376 and this little-endian code:
1377
1378 0: 56 d1 34 12 movu $1,0x123456
1379 4: 28 c1 78 56 sb $1,22136($2)
1380 8: 01 f1 98 10 clip $1,0x13
1381 c: 02 70 ret
1382
1383 Instructions are returned in *INSN in an endian-independent form: a
1384 given instruction always appears in *INSN the same way, regardless
1385 of whether the instruction stream is big-endian or little-endian.
1386
1387 *INSN's most significant 16 bits are the first (i.e., at lower
1388 addresses) 16 bit part of the instruction. Its least significant
1389 16 bits are the second (i.e., higher-addressed) 16 bit part of the
1390 instruction, or zero for a 16-bit instruction. Both 16-bit parts
1391 are fetched using the current endianness.
1392
1393 So, the *INSN values for the instruction sequence above would be
1394 the following, in either endianness:
1395
1396 0xd1561234 movu $1,0x123456
1397 0xc1285678 sb $1,22136($2)
1398 0xf1011098 clip $1,0x13
1399 0x70020000 ret
1400
1401 (In a sense, it would be more natural to return 16-bit instructions
1402 in the least significant 16 bits of *INSN, but that would be
1403 ambiguous. In order to tell whether you're looking at a 16- or a
1404 32-bit instruction, you have to consult the major opcode field ---
1405 the most significant four bits of the instruction's first 16-bit
1406 part. But if we put 16-bit instructions at the least significant
1407 end of *INSN, then you don't know where to find the major opcode
1408 field until you know if it's a 16- or a 32-bit instruction ---
1409 which is where we started.)
1410
1411 If PC points to a core / coprocessor bundle in a VLIW section, set
1412 *INSN to the core instruction, and return the address of the next
1413 bundle. This has the effect of skipping the bundled coprocessor
1414 instruction. That's okay, since coprocessor instructions aren't
1415 significant to prologue analysis --- for the time being,
1416 anyway. */
1417
1418 static CORE_ADDR
1419 mep_get_insn (struct gdbarch *gdbarch, CORE_ADDR pc, unsigned long *insn)
1420 {
1421 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1422 int pc_in_vliw_section;
1423 int vliw_mode;
1424 int insn_len;
1425 gdb_byte buf[2];
1426
1427 *insn = 0;
1428
1429 /* Are we in a VLIW section? */
1430 pc_in_vliw_section = mep_pc_in_vliw_section (pc);
1431 if (pc_in_vliw_section)
1432 {
1433 /* Yes, find out which bundle size. */
1434 vliw_mode = current_options () & (MEP_OPT_VL32 | MEP_OPT_VL64);
1435
1436 /* If PC is in a VLIW section, but the current core doesn't say
1437 that it supports either VLIW mode, then we don't have enough
1438 information to parse the instruction stream it contains.
1439 Since the "undifferentiated" standard core doesn't have
1440 either VLIW mode bit set, this could happen.
1441
1442 But it shouldn't be an error to (say) set a breakpoint in a
1443 VLIW section, if you know you'll never reach it. (Perhaps
1444 you have a script that sets a bunch of standard breakpoints.)
1445
1446 So we'll just return zero here, and hope for the best. */
1447 if (! (vliw_mode & (MEP_OPT_VL32 | MEP_OPT_VL64)))
1448 return 0;
1449
1450 /* If both VL32 and VL64 are set, that's bogus, too. */
1451 if (vliw_mode == (MEP_OPT_VL32 | MEP_OPT_VL64))
1452 return 0;
1453 }
1454 else
1455 vliw_mode = 0;
1456
1457 read_memory (pc, buf, sizeof (buf));
1458 *insn = extract_unsigned_integer (buf, 2, byte_order) << 16;
1459
1460 /* The major opcode --- the top four bits of the first 16-bit
1461 part --- indicates whether this instruction is 16 or 32 bits
1462 long. All 32-bit instructions have a major opcode whose top
1463 two bits are 11; all the rest are 16-bit instructions. */
1464 if ((*insn & 0xc0000000) == 0xc0000000)
1465 {
1466 /* Fetch the second 16-bit part of the instruction. */
1467 read_memory (pc + 2, buf, sizeof (buf));
1468 *insn = *insn | extract_unsigned_integer (buf, 2, byte_order);
1469 }
1470
1471 /* If we're in VLIW code, then the VLIW width determines the address
1472 of the next instruction. */
1473 if (vliw_mode)
1474 {
1475 /* In 32-bit VLIW code, all bundles are 32 bits long. We ignore the
1476 coprocessor half of a core / copro bundle. */
1477 if (vliw_mode == MEP_OPT_VL32)
1478 insn_len = 4;
1479
1480 /* In 64-bit VLIW code, all bundles are 64 bits long. We ignore the
1481 coprocessor half of a core / copro bundle. */
1482 else if (vliw_mode == MEP_OPT_VL64)
1483 insn_len = 8;
1484
1485 /* We'd better be in either core, 32-bit VLIW, or 64-bit VLIW mode. */
1486 else
1487 gdb_assert_not_reached ("unexpected vliw mode");
1488 }
1489
1490 /* Otherwise, the top two bits of the major opcode are (again) what
1491 we need to check. */
1492 else if ((*insn & 0xc0000000) == 0xc0000000)
1493 insn_len = 4;
1494 else
1495 insn_len = 2;
1496
1497 return pc + insn_len;
1498 }
1499
1500
1501 /* Sign-extend the LEN-bit value N. */
1502 #define SEXT(n, len) ((((int) (n)) ^ (1 << ((len) - 1))) - (1 << ((len) - 1)))
1503
1504 /* Return the LEN-bit field at POS from I. */
1505 #define FIELD(i, pos, len) (((i) >> (pos)) & ((1 << (len)) - 1))
1506
1507 /* Like FIELD, but sign-extend the field's value. */
1508 #define SFIELD(i, pos, len) (SEXT (FIELD ((i), (pos), (len)), (len)))
1509
1510
1511 /* Macros for decoding instructions.
1512
1513 Remember that 16-bit instructions are placed in bits 16..31 of i,
1514 not at the least significant end; this means that the major opcode
1515 field is always in the same place, regardless of the width of the
1516 instruction. As a reminder of this, we show the lower 16 bits of a
1517 16-bit instruction as xxxx_xxxx_xxxx_xxxx. */
1518
1519 /* SB Rn,(Rm) 0000_nnnn_mmmm_1000 */
1520 /* SH Rn,(Rm) 0000_nnnn_mmmm_1001 */
1521 /* SW Rn,(Rm) 0000_nnnn_mmmm_1010 */
1522
1523 /* SW Rn,disp16(Rm) 1100_nnnn_mmmm_1010 dddd_dddd_dddd_dddd */
1524 #define IS_SW(i) (((i) & 0xf00f0000) == 0xc00a0000)
1525 /* SB Rn,disp16(Rm) 1100_nnnn_mmmm_1000 dddd_dddd_dddd_dddd */
1526 #define IS_SB(i) (((i) & 0xf00f0000) == 0xc0080000)
1527 /* SH Rn,disp16(Rm) 1100_nnnn_mmmm_1001 dddd_dddd_dddd_dddd */
1528 #define IS_SH(i) (((i) & 0xf00f0000) == 0xc0090000)
1529 #define SWBH_32_BASE(i) (FIELD (i, 20, 4))
1530 #define SWBH_32_SOURCE(i) (FIELD (i, 24, 4))
1531 #define SWBH_32_OFFSET(i) (SFIELD (i, 0, 16))
1532
1533 /* SW Rn,disp7.align4(SP) 0100_nnnn_0ddd_dd10 xxxx_xxxx_xxxx_xxxx */
1534 #define IS_SW_IMMD(i) (((i) & 0xf0830000) == 0x40020000)
1535 #define SW_IMMD_SOURCE(i) (FIELD (i, 24, 4))
1536 #define SW_IMMD_OFFSET(i) (FIELD (i, 18, 5) << 2)
1537
1538 /* SW Rn,(Rm) 0000_nnnn_mmmm_1010 xxxx_xxxx_xxxx_xxxx */
1539 #define IS_SW_REG(i) (((i) & 0xf00f0000) == 0x000a0000)
1540 #define SW_REG_SOURCE(i) (FIELD (i, 24, 4))
1541 #define SW_REG_BASE(i) (FIELD (i, 20, 4))
1542
1543 /* ADD3 Rl,Rn,Rm 1001_nnnn_mmmm_llll xxxx_xxxx_xxxx_xxxx */
1544 #define IS_ADD3_16_REG(i) (((i) & 0xf0000000) == 0x90000000)
1545 #define ADD3_16_REG_SRC1(i) (FIELD (i, 20, 4)) /* n */
1546 #define ADD3_16_REG_SRC2(i) (FIELD (i, 24, 4)) /* m */
1547
1548 /* ADD3 Rn,Rm,imm16 1100_nnnn_mmmm_0000 iiii_iiii_iiii_iiii */
1549 #define IS_ADD3_32(i) (((i) & 0xf00f0000) == 0xc0000000)
1550 #define ADD3_32_TARGET(i) (FIELD (i, 24, 4))
1551 #define ADD3_32_SOURCE(i) (FIELD (i, 20, 4))
1552 #define ADD3_32_OFFSET(i) (SFIELD (i, 0, 16))
1553
1554 /* ADD3 Rn,SP,imm7.align4 0100_nnnn_0iii_ii00 xxxx_xxxx_xxxx_xxxx */
1555 #define IS_ADD3_16(i) (((i) & 0xf0830000) == 0x40000000)
1556 #define ADD3_16_TARGET(i) (FIELD (i, 24, 4))
1557 #define ADD3_16_OFFSET(i) (FIELD (i, 18, 5) << 2)
1558
1559 /* ADD Rn,imm6 0110_nnnn_iiii_ii00 xxxx_xxxx_xxxx_xxxx */
1560 #define IS_ADD(i) (((i) & 0xf0030000) == 0x60000000)
1561 #define ADD_TARGET(i) (FIELD (i, 24, 4))
1562 #define ADD_OFFSET(i) (SFIELD (i, 18, 6))
1563
1564 /* LDC Rn,imm5 0111_nnnn_iiii_101I xxxx_xxxx_xxxx_xxxx
1565 imm5 = I||i[7:4] */
1566 #define IS_LDC(i) (((i) & 0xf00e0000) == 0x700a0000)
1567 #define LDC_IMM(i) ((FIELD (i, 16, 1) << 4) | FIELD (i, 20, 4))
1568 #define LDC_TARGET(i) (FIELD (i, 24, 4))
1569
1570 /* LW Rn,disp16(Rm) 1100_nnnn_mmmm_1110 dddd_dddd_dddd_dddd */
1571 #define IS_LW(i) (((i) & 0xf00f0000) == 0xc00e0000)
1572 #define LW_TARGET(i) (FIELD (i, 24, 4))
1573 #define LW_BASE(i) (FIELD (i, 20, 4))
1574 #define LW_OFFSET(i) (SFIELD (i, 0, 16))
1575
1576 /* MOV Rn,Rm 0000_nnnn_mmmm_0000 xxxx_xxxx_xxxx_xxxx */
1577 #define IS_MOV(i) (((i) & 0xf00f0000) == 0x00000000)
1578 #define MOV_TARGET(i) (FIELD (i, 24, 4))
1579 #define MOV_SOURCE(i) (FIELD (i, 20, 4))
1580
1581 /* BRA disp12.align2 1011_dddd_dddd_ddd0 xxxx_xxxx_xxxx_xxxx */
1582 #define IS_BRA(i) (((i) & 0xf0010000) == 0xb0000000)
1583 #define BRA_DISP(i) (SFIELD (i, 17, 11) << 1)
1584
1585
1586 /* This structure holds the results of a prologue analysis. */
1587 struct mep_prologue
1588 {
1589 /* The architecture for which we generated this prologue info. */
1590 struct gdbarch *gdbarch;
1591
1592 /* The offset from the frame base to the stack pointer --- always
1593 zero or negative.
1594
1595 Calling this a "size" is a bit misleading, but given that the
1596 stack grows downwards, using offsets for everything keeps one
1597 from going completely sign-crazy: you never change anything's
1598 sign for an ADD instruction; always change the second operand's
1599 sign for a SUB instruction; and everything takes care of
1600 itself. */
1601 int frame_size;
1602
1603 /* Non-zero if this function has initialized the frame pointer from
1604 the stack pointer, zero otherwise. */
1605 int has_frame_ptr;
1606
1607 /* If has_frame_ptr is non-zero, this is the offset from the frame
1608 base to where the frame pointer points. This is always zero or
1609 negative. */
1610 int frame_ptr_offset;
1611
1612 /* The address of the first instruction at which the frame has been
1613 set up and the arguments are where the debug info says they are
1614 --- as best as we can tell. */
1615 CORE_ADDR prologue_end;
1616
1617 /* reg_offset[R] is the offset from the CFA at which register R is
1618 saved, or 1 if register R has not been saved. (Real values are
1619 always zero or negative.) */
1620 int reg_offset[MEP_NUM_REGS];
1621 };
1622
1623 /* Return non-zero if VALUE is an incoming argument register. */
1624
1625 static int
1626 is_arg_reg (pv_t value)
1627 {
1628 return (value.kind == pvk_register
1629 && MEP_R1_REGNUM <= value.reg && value.reg <= MEP_R4_REGNUM
1630 && value.k == 0);
1631 }
1632
1633 /* Return non-zero if a store of REG's current value VALUE to ADDR is
1634 probably spilling an argument register to its stack slot in STACK.
1635 Such instructions should be included in the prologue, if possible.
1636
1637 The store is a spill if:
1638 - the value being stored is REG's original value;
1639 - the value has not already been stored somewhere in STACK; and
1640 - ADDR is a stack slot's address (e.g., relative to the original
1641 value of the SP). */
1642 static int
1643 is_arg_spill (struct gdbarch *gdbarch, pv_t value, pv_t addr,
1644 struct pv_area *stack)
1645 {
1646 return (is_arg_reg (value)
1647 && pv_is_register (addr, MEP_SP_REGNUM)
1648 && ! pv_area_find_reg (stack, gdbarch, value.reg, 0));
1649 }
1650
1651
1652 /* Function for finding saved registers in a 'struct pv_area'; we pass
1653 this to pv_area_scan.
1654
1655 If VALUE is a saved register, ADDR says it was saved at a constant
1656 offset from the frame base, and SIZE indicates that the whole
1657 register was saved, record its offset in RESULT_UNTYPED. */
1658 static void
1659 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1660 {
1661 struct mep_prologue *result = (struct mep_prologue *) result_untyped;
1662
1663 if (value.kind == pvk_register
1664 && value.k == 0
1665 && pv_is_register (addr, MEP_SP_REGNUM)
1666 && size == register_size (result->gdbarch, value.reg))
1667 result->reg_offset[value.reg] = addr.k;
1668 }
1669
1670
1671 /* Analyze a prologue starting at START_PC, going no further than
1672 LIMIT_PC. Fill in RESULT as appropriate. */
1673 static void
1674 mep_analyze_prologue (struct gdbarch *gdbarch,
1675 CORE_ADDR start_pc, CORE_ADDR limit_pc,
1676 struct mep_prologue *result)
1677 {
1678 CORE_ADDR pc;
1679 unsigned long insn;
1680 int rn;
1681 int found_lp = 0;
1682 pv_t reg[MEP_NUM_REGS];
1683 struct pv_area *stack;
1684 struct cleanup *back_to;
1685 CORE_ADDR after_last_frame_setup_insn = start_pc;
1686
1687 memset (result, 0, sizeof (*result));
1688 result->gdbarch = gdbarch;
1689
1690 for (rn = 0; rn < MEP_NUM_REGS; rn++)
1691 {
1692 reg[rn] = pv_register (rn, 0);
1693 result->reg_offset[rn] = 1;
1694 }
1695
1696 stack = make_pv_area (MEP_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1697 back_to = make_cleanup_free_pv_area (stack);
1698
1699 pc = start_pc;
1700 while (pc < limit_pc)
1701 {
1702 CORE_ADDR next_pc;
1703 pv_t pre_insn_fp, pre_insn_sp;
1704
1705 next_pc = mep_get_insn (gdbarch, pc, &insn);
1706
1707 /* A zero return from mep_get_insn means that either we weren't
1708 able to read the instruction from memory, or that we don't
1709 have enough information to be able to reliably decode it. So
1710 we'll store here and hope for the best. */
1711 if (! next_pc)
1712 break;
1713
1714 /* Note the current values of the SP and FP, so we can tell if
1715 this instruction changed them, below. */
1716 pre_insn_fp = reg[MEP_FP_REGNUM];
1717 pre_insn_sp = reg[MEP_SP_REGNUM];
1718
1719 if (IS_ADD (insn))
1720 {
1721 int rn = ADD_TARGET (insn);
1722 CORE_ADDR imm6 = ADD_OFFSET (insn);
1723
1724 reg[rn] = pv_add_constant (reg[rn], imm6);
1725 }
1726 else if (IS_ADD3_16 (insn))
1727 {
1728 int rn = ADD3_16_TARGET (insn);
1729 int imm7 = ADD3_16_OFFSET (insn);
1730
1731 reg[rn] = pv_add_constant (reg[MEP_SP_REGNUM], imm7);
1732 }
1733 else if (IS_ADD3_32 (insn))
1734 {
1735 int rn = ADD3_32_TARGET (insn);
1736 int rm = ADD3_32_SOURCE (insn);
1737 int imm16 = ADD3_32_OFFSET (insn);
1738
1739 reg[rn] = pv_add_constant (reg[rm], imm16);
1740 }
1741 else if (IS_SW_REG (insn))
1742 {
1743 int rn = SW_REG_SOURCE (insn);
1744 int rm = SW_REG_BASE (insn);
1745
1746 /* If simulating this store would require us to forget
1747 everything we know about the stack frame in the name of
1748 accuracy, it would be better to just quit now. */
1749 if (pv_area_store_would_trash (stack, reg[rm]))
1750 break;
1751
1752 if (is_arg_spill (gdbarch, reg[rn], reg[rm], stack))
1753 after_last_frame_setup_insn = next_pc;
1754
1755 pv_area_store (stack, reg[rm], 4, reg[rn]);
1756 }
1757 else if (IS_SW_IMMD (insn))
1758 {
1759 int rn = SW_IMMD_SOURCE (insn);
1760 int offset = SW_IMMD_OFFSET (insn);
1761 pv_t addr = pv_add_constant (reg[MEP_SP_REGNUM], offset);
1762
1763 /* If simulating this store would require us to forget
1764 everything we know about the stack frame in the name of
1765 accuracy, it would be better to just quit now. */
1766 if (pv_area_store_would_trash (stack, addr))
1767 break;
1768
1769 if (is_arg_spill (gdbarch, reg[rn], addr, stack))
1770 after_last_frame_setup_insn = next_pc;
1771
1772 pv_area_store (stack, addr, 4, reg[rn]);
1773 }
1774 else if (IS_MOV (insn))
1775 {
1776 int rn = MOV_TARGET (insn);
1777 int rm = MOV_SOURCE (insn);
1778
1779 reg[rn] = reg[rm];
1780
1781 if (pv_is_register (reg[rm], rm) && is_arg_reg (reg[rm]))
1782 after_last_frame_setup_insn = next_pc;
1783 }
1784 else if (IS_SB (insn) || IS_SH (insn) || IS_SW (insn))
1785 {
1786 int rn = SWBH_32_SOURCE (insn);
1787 int rm = SWBH_32_BASE (insn);
1788 int disp = SWBH_32_OFFSET (insn);
1789 int size = (IS_SB (insn) ? 1
1790 : IS_SH (insn) ? 2
1791 : (gdb_assert (IS_SW (insn)), 4));
1792 pv_t addr = pv_add_constant (reg[rm], disp);
1793
1794 if (pv_area_store_would_trash (stack, addr))
1795 break;
1796
1797 if (is_arg_spill (gdbarch, reg[rn], addr, stack))
1798 after_last_frame_setup_insn = next_pc;
1799
1800 pv_area_store (stack, addr, size, reg[rn]);
1801 }
1802 else if (IS_LDC (insn))
1803 {
1804 int rn = LDC_TARGET (insn);
1805 int cr = LDC_IMM (insn) + MEP_FIRST_CSR_REGNUM;
1806
1807 reg[rn] = reg[cr];
1808 }
1809 else if (IS_LW (insn))
1810 {
1811 int rn = LW_TARGET (insn);
1812 int rm = LW_BASE (insn);
1813 int offset = LW_OFFSET (insn);
1814 pv_t addr = pv_add_constant (reg[rm], offset);
1815
1816 reg[rn] = pv_area_fetch (stack, addr, 4);
1817 }
1818 else if (IS_BRA (insn) && BRA_DISP (insn) > 0)
1819 {
1820 /* When a loop appears as the first statement of a function
1821 body, gcc 4.x will use a BRA instruction to branch to the
1822 loop condition checking code. This BRA instruction is
1823 marked as part of the prologue. We therefore set next_pc
1824 to this branch target and also stop the prologue scan.
1825 The instructions at and beyond the branch target should
1826 no longer be associated with the prologue.
1827
1828 Note that we only consider forward branches here. We
1829 presume that a forward branch is being used to skip over
1830 a loop body.
1831
1832 A backwards branch is covered by the default case below.
1833 If we were to encounter a backwards branch, that would
1834 most likely mean that we've scanned through a loop body.
1835 We definitely want to stop the prologue scan when this
1836 happens and that is precisely what is done by the default
1837 case below. */
1838 next_pc = pc + BRA_DISP (insn);
1839 after_last_frame_setup_insn = next_pc;
1840 break;
1841 }
1842 else
1843 /* We've hit some instruction we don't know how to simulate.
1844 Strictly speaking, we should set every value we're
1845 tracking to "unknown". But we'll be optimistic, assume
1846 that we have enough information already, and stop
1847 analysis here. */
1848 break;
1849
1850 /* If this instruction changed the FP or decreased the SP (i.e.,
1851 allocated more stack space), then this may be a good place to
1852 declare the prologue finished. However, there are some
1853 exceptions:
1854
1855 - If the instruction just changed the FP back to its original
1856 value, then that's probably a restore instruction. The
1857 prologue should definitely end before that.
1858
1859 - If the instruction increased the value of the SP (that is,
1860 shrunk the frame), then it's probably part of a frame
1861 teardown sequence, and the prologue should end before that. */
1862
1863 if (! pv_is_identical (reg[MEP_FP_REGNUM], pre_insn_fp))
1864 {
1865 if (! pv_is_register_k (reg[MEP_FP_REGNUM], MEP_FP_REGNUM, 0))
1866 after_last_frame_setup_insn = next_pc;
1867 }
1868 else if (! pv_is_identical (reg[MEP_SP_REGNUM], pre_insn_sp))
1869 {
1870 /* The comparison of constants looks odd, there, because .k
1871 is unsigned. All it really means is that the new value
1872 is lower than it was before the instruction. */
1873 if (pv_is_register (pre_insn_sp, MEP_SP_REGNUM)
1874 && pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM)
1875 && ((pre_insn_sp.k - reg[MEP_SP_REGNUM].k)
1876 < (reg[MEP_SP_REGNUM].k - pre_insn_sp.k)))
1877 after_last_frame_setup_insn = next_pc;
1878 }
1879
1880 pc = next_pc;
1881 }
1882
1883 /* Is the frame size (offset, really) a known constant? */
1884 if (pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM))
1885 result->frame_size = reg[MEP_SP_REGNUM].k;
1886
1887 /* Was the frame pointer initialized? */
1888 if (pv_is_register (reg[MEP_FP_REGNUM], MEP_SP_REGNUM))
1889 {
1890 result->has_frame_ptr = 1;
1891 result->frame_ptr_offset = reg[MEP_FP_REGNUM].k;
1892 }
1893
1894 /* Record where all the registers were saved. */
1895 pv_area_scan (stack, check_for_saved, (void *) result);
1896
1897 result->prologue_end = after_last_frame_setup_insn;
1898
1899 do_cleanups (back_to);
1900 }
1901
1902
1903 static CORE_ADDR
1904 mep_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1905 {
1906 const char *name;
1907 CORE_ADDR func_addr, func_end;
1908 struct mep_prologue p;
1909
1910 /* Try to find the extent of the function that contains PC. */
1911 if (! find_pc_partial_function (pc, &name, &func_addr, &func_end))
1912 return pc;
1913
1914 mep_analyze_prologue (gdbarch, pc, func_end, &p);
1915 return p.prologue_end;
1916 }
1917
1918
1919 \f
1920 /* Breakpoints. */
1921 constexpr gdb_byte mep_break_insn[] = { 0x70, 0x32 };
1922
1923 typedef BP_MANIPULATION (mep_break_insn) mep_breakpoint;
1924
1925 \f
1926 /* Frames and frame unwinding. */
1927
1928
1929 static struct mep_prologue *
1930 mep_analyze_frame_prologue (struct frame_info *this_frame,
1931 void **this_prologue_cache)
1932 {
1933 if (! *this_prologue_cache)
1934 {
1935 CORE_ADDR func_start, stop_addr;
1936
1937 *this_prologue_cache
1938 = FRAME_OBSTACK_ZALLOC (struct mep_prologue);
1939
1940 func_start = get_frame_func (this_frame);
1941 stop_addr = get_frame_pc (this_frame);
1942
1943 /* If we couldn't find any function containing the PC, then
1944 just initialize the prologue cache, but don't do anything. */
1945 if (! func_start)
1946 stop_addr = func_start;
1947
1948 mep_analyze_prologue (get_frame_arch (this_frame),
1949 func_start, stop_addr,
1950 (struct mep_prologue *) *this_prologue_cache);
1951 }
1952
1953 return (struct mep_prologue *) *this_prologue_cache;
1954 }
1955
1956
1957 /* Given the next frame and a prologue cache, return this frame's
1958 base. */
1959 static CORE_ADDR
1960 mep_frame_base (struct frame_info *this_frame,
1961 void **this_prologue_cache)
1962 {
1963 struct mep_prologue *p
1964 = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
1965
1966 /* In functions that use alloca, the distance between the stack
1967 pointer and the frame base varies dynamically, so we can't use
1968 the SP plus static information like prologue analysis to find the
1969 frame base. However, such functions must have a frame pointer,
1970 to be able to restore the SP on exit. So whenever we do have a
1971 frame pointer, use that to find the base. */
1972 if (p->has_frame_ptr)
1973 {
1974 CORE_ADDR fp
1975 = get_frame_register_unsigned (this_frame, MEP_FP_REGNUM);
1976 return fp - p->frame_ptr_offset;
1977 }
1978 else
1979 {
1980 CORE_ADDR sp
1981 = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
1982 return sp - p->frame_size;
1983 }
1984 }
1985
1986
1987 static void
1988 mep_frame_this_id (struct frame_info *this_frame,
1989 void **this_prologue_cache,
1990 struct frame_id *this_id)
1991 {
1992 *this_id = frame_id_build (mep_frame_base (this_frame, this_prologue_cache),
1993 get_frame_func (this_frame));
1994 }
1995
1996
1997 static struct value *
1998 mep_frame_prev_register (struct frame_info *this_frame,
1999 void **this_prologue_cache, int regnum)
2000 {
2001 struct mep_prologue *p
2002 = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
2003
2004 /* There are a number of complications in unwinding registers on the
2005 MeP, having to do with core functions calling VLIW functions and
2006 vice versa.
2007
2008 The least significant bit of the link register, LP.LTOM, is the
2009 VLIW mode toggle bit: it's set if a core function called a VLIW
2010 function, or vice versa, and clear when the caller and callee
2011 were both in the same mode.
2012
2013 So, if we're asked to unwind the PC, then we really want to
2014 unwind the LP and clear the least significant bit. (Real return
2015 addresses are always even.) And if we want to unwind the program
2016 status word (PSW), we need to toggle PSW.OM if LP.LTOM is set.
2017
2018 Tweaking the register values we return in this way means that the
2019 bits in BUFFERP[] are not the same as the bits you'd find at
2020 ADDRP in the inferior, so we make sure lvalp is not_lval when we
2021 do this. */
2022 if (regnum == MEP_PC_REGNUM)
2023 {
2024 struct value *value;
2025 CORE_ADDR lp;
2026 value = mep_frame_prev_register (this_frame, this_prologue_cache,
2027 MEP_LP_REGNUM);
2028 lp = value_as_long (value);
2029 release_value (value);
2030 value_free (value);
2031
2032 return frame_unwind_got_constant (this_frame, regnum, lp & ~1);
2033 }
2034 else
2035 {
2036 CORE_ADDR frame_base = mep_frame_base (this_frame, this_prologue_cache);
2037 struct value *value;
2038
2039 /* Our caller's SP is our frame base. */
2040 if (regnum == MEP_SP_REGNUM)
2041 return frame_unwind_got_constant (this_frame, regnum, frame_base);
2042
2043 /* If prologue analysis says we saved this register somewhere,
2044 return a description of the stack slot holding it. */
2045 if (p->reg_offset[regnum] != 1)
2046 value = frame_unwind_got_memory (this_frame, regnum,
2047 frame_base + p->reg_offset[regnum]);
2048
2049 /* Otherwise, presume we haven't changed the value of this
2050 register, and get it from the next frame. */
2051 else
2052 value = frame_unwind_got_register (this_frame, regnum, regnum);
2053
2054 /* If we need to toggle the operating mode, do so. */
2055 if (regnum == MEP_PSW_REGNUM)
2056 {
2057 CORE_ADDR psw, lp;
2058
2059 psw = value_as_long (value);
2060 release_value (value);
2061 value_free (value);
2062
2063 /* Get the LP's value, too. */
2064 value = get_frame_register_value (this_frame, MEP_LP_REGNUM);
2065 lp = value_as_long (value);
2066 release_value (value);
2067 value_free (value);
2068
2069 /* If LP.LTOM is set, then toggle PSW.OM. */
2070 if (lp & 0x1)
2071 psw ^= 0x1000;
2072
2073 return frame_unwind_got_constant (this_frame, regnum, psw);
2074 }
2075
2076 return value;
2077 }
2078 }
2079
2080
2081 static const struct frame_unwind mep_frame_unwind = {
2082 NORMAL_FRAME,
2083 default_frame_unwind_stop_reason,
2084 mep_frame_this_id,
2085 mep_frame_prev_register,
2086 NULL,
2087 default_frame_sniffer
2088 };
2089
2090
2091 /* Our general unwinding function can handle unwinding the PC. */
2092 static CORE_ADDR
2093 mep_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2094 {
2095 return frame_unwind_register_unsigned (next_frame, MEP_PC_REGNUM);
2096 }
2097
2098
2099 /* Our general unwinding function can handle unwinding the SP. */
2100 static CORE_ADDR
2101 mep_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2102 {
2103 return frame_unwind_register_unsigned (next_frame, MEP_SP_REGNUM);
2104 }
2105
2106
2107 \f
2108 /* Return values. */
2109
2110
2111 static int
2112 mep_use_struct_convention (struct type *type)
2113 {
2114 return (TYPE_LENGTH (type) > MEP_GPR_SIZE);
2115 }
2116
2117
2118 static void
2119 mep_extract_return_value (struct gdbarch *arch,
2120 struct type *type,
2121 struct regcache *regcache,
2122 gdb_byte *valbuf)
2123 {
2124 int byte_order = gdbarch_byte_order (arch);
2125
2126 /* Values that don't occupy a full register appear at the less
2127 significant end of the value. This is the offset to where the
2128 value starts. */
2129 int offset;
2130
2131 /* Return values > MEP_GPR_SIZE bytes are returned in memory,
2132 pointed to by R0. */
2133 gdb_assert (TYPE_LENGTH (type) <= MEP_GPR_SIZE);
2134
2135 if (byte_order == BFD_ENDIAN_BIG)
2136 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2137 else
2138 offset = 0;
2139
2140 /* Return values that do fit in a single register are returned in R0. */
2141 regcache_cooked_read_part (regcache, MEP_R0_REGNUM,
2142 offset, TYPE_LENGTH (type),
2143 valbuf);
2144 }
2145
2146
2147 static void
2148 mep_store_return_value (struct gdbarch *arch,
2149 struct type *type,
2150 struct regcache *regcache,
2151 const gdb_byte *valbuf)
2152 {
2153 int byte_order = gdbarch_byte_order (arch);
2154
2155 /* Values that fit in a single register go in R0. */
2156 if (TYPE_LENGTH (type) <= MEP_GPR_SIZE)
2157 {
2158 /* Values that don't occupy a full register appear at the least
2159 significant end of the value. This is the offset to where the
2160 value starts. */
2161 int offset;
2162
2163 if (byte_order == BFD_ENDIAN_BIG)
2164 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2165 else
2166 offset = 0;
2167
2168 regcache_cooked_write_part (regcache, MEP_R0_REGNUM,
2169 offset, TYPE_LENGTH (type),
2170 valbuf);
2171 }
2172
2173 /* Return values larger than a single register are returned in
2174 memory, pointed to by R0. Unfortunately, we can't count on R0
2175 pointing to the return buffer, so we raise an error here. */
2176 else
2177 error (_("\
2178 GDB cannot set return values larger than four bytes; the Media Processor's\n\
2179 calling conventions do not provide enough information to do this.\n\
2180 Try using the 'return' command with no argument."));
2181 }
2182
2183 static enum return_value_convention
2184 mep_return_value (struct gdbarch *gdbarch, struct value *function,
2185 struct type *type, struct regcache *regcache,
2186 gdb_byte *readbuf, const gdb_byte *writebuf)
2187 {
2188 if (mep_use_struct_convention (type))
2189 {
2190 if (readbuf)
2191 {
2192 ULONGEST addr;
2193 /* Although the address of the struct buffer gets passed in R1, it's
2194 returned in R0. Fetch R0's value and then read the memory
2195 at that address. */
2196 regcache_raw_read_unsigned (regcache, MEP_R0_REGNUM, &addr);
2197 read_memory (addr, readbuf, TYPE_LENGTH (type));
2198 }
2199 if (writebuf)
2200 {
2201 /* Return values larger than a single register are returned in
2202 memory, pointed to by R0. Unfortunately, we can't count on R0
2203 pointing to the return buffer, so we raise an error here. */
2204 error (_("\
2205 GDB cannot set return values larger than four bytes; the Media Processor's\n\
2206 calling conventions do not provide enough information to do this.\n\
2207 Try using the 'return' command with no argument."));
2208 }
2209 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2210 }
2211
2212 if (readbuf)
2213 mep_extract_return_value (gdbarch, type, regcache, readbuf);
2214 if (writebuf)
2215 mep_store_return_value (gdbarch, type, regcache, writebuf);
2216
2217 return RETURN_VALUE_REGISTER_CONVENTION;
2218 }
2219
2220 \f
2221 /* Inferior calls. */
2222
2223
2224 static CORE_ADDR
2225 mep_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2226 {
2227 /* Require word alignment. */
2228 return sp & -4;
2229 }
2230
2231
2232 /* From "lang_spec2.txt":
2233
2234 4.2 Calling conventions
2235
2236 4.2.1 Core register conventions
2237
2238 - Parameters should be evaluated from left to right, and they
2239 should be held in $1,$2,$3,$4 in order. The fifth parameter or
2240 after should be held in the stack. If the size is larger than 4
2241 bytes in the first four parameters, the pointer should be held in
2242 the registers instead. If the size is larger than 4 bytes in the
2243 fifth parameter or after, the pointer should be held in the stack.
2244
2245 - Return value of a function should be held in register $0. If the
2246 size of return value is larger than 4 bytes, $1 should hold the
2247 pointer pointing memory that would hold the return value. In this
2248 case, the first parameter should be held in $2, the second one in
2249 $3, and the third one in $4, and the forth parameter or after
2250 should be held in the stack.
2251
2252 [This doesn't say so, but arguments shorter than four bytes are
2253 passed in the least significant end of a four-byte word when
2254 they're passed on the stack.] */
2255
2256
2257 /* Traverse the list of ARGC arguments ARGV; for every ARGV[i] too
2258 large to fit in a register, save it on the stack, and place its
2259 address in COPY[i]. SP is the initial stack pointer; return the
2260 new stack pointer. */
2261 static CORE_ADDR
2262 push_large_arguments (CORE_ADDR sp, int argc, struct value **argv,
2263 CORE_ADDR copy[])
2264 {
2265 int i;
2266
2267 for (i = 0; i < argc; i++)
2268 {
2269 unsigned arg_len = TYPE_LENGTH (value_type (argv[i]));
2270
2271 if (arg_len > MEP_GPR_SIZE)
2272 {
2273 /* Reserve space for the copy, and then round the SP down, to
2274 make sure it's all aligned properly. */
2275 sp = (sp - arg_len) & -4;
2276 write_memory (sp, value_contents (argv[i]), arg_len);
2277 copy[i] = sp;
2278 }
2279 }
2280
2281 return sp;
2282 }
2283
2284
2285 static CORE_ADDR
2286 mep_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2287 struct regcache *regcache, CORE_ADDR bp_addr,
2288 int argc, struct value **argv, CORE_ADDR sp,
2289 int struct_return,
2290 CORE_ADDR struct_addr)
2291 {
2292 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2293 CORE_ADDR *copy = (CORE_ADDR *) alloca (argc * sizeof (copy[0]));
2294 CORE_ADDR func_addr = find_function_addr (function, NULL);
2295 int i;
2296
2297 /* The number of the next register available to hold an argument. */
2298 int arg_reg;
2299
2300 /* The address of the next stack slot available to hold an argument. */
2301 CORE_ADDR arg_stack;
2302
2303 /* The address of the end of the stack area for arguments. This is
2304 just for error checking. */
2305 CORE_ADDR arg_stack_end;
2306
2307 sp = push_large_arguments (sp, argc, argv, copy);
2308
2309 /* Reserve space for the stack arguments, if any. */
2310 arg_stack_end = sp;
2311 if (argc + (struct_addr ? 1 : 0) > 4)
2312 sp -= ((argc + (struct_addr ? 1 : 0)) - 4) * MEP_GPR_SIZE;
2313
2314 arg_reg = MEP_R1_REGNUM;
2315 arg_stack = sp;
2316
2317 /* If we're returning a structure by value, push the pointer to the
2318 buffer as the first argument. */
2319 if (struct_return)
2320 {
2321 regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
2322 arg_reg++;
2323 }
2324
2325 for (i = 0; i < argc; i++)
2326 {
2327 ULONGEST value;
2328
2329 /* Arguments that fit in a GPR get expanded to fill the GPR. */
2330 if (TYPE_LENGTH (value_type (argv[i])) <= MEP_GPR_SIZE)
2331 value = extract_unsigned_integer (value_contents (argv[i]),
2332 TYPE_LENGTH (value_type (argv[i])),
2333 byte_order);
2334
2335 /* Arguments too large to fit in a GPR get copied to the stack,
2336 and we pass a pointer to the copy. */
2337 else
2338 value = copy[i];
2339
2340 /* We use $1 -- $4 for passing arguments, then use the stack. */
2341 if (arg_reg <= MEP_R4_REGNUM)
2342 {
2343 regcache_cooked_write_unsigned (regcache, arg_reg, value);
2344 arg_reg++;
2345 }
2346 else
2347 {
2348 gdb_byte buf[MEP_GPR_SIZE];
2349 store_unsigned_integer (buf, MEP_GPR_SIZE, byte_order, value);
2350 write_memory (arg_stack, buf, MEP_GPR_SIZE);
2351 arg_stack += MEP_GPR_SIZE;
2352 }
2353 }
2354
2355 gdb_assert (arg_stack <= arg_stack_end);
2356
2357 /* Set the return address. */
2358 regcache_cooked_write_unsigned (regcache, MEP_LP_REGNUM, bp_addr);
2359
2360 /* Update the stack pointer. */
2361 regcache_cooked_write_unsigned (regcache, MEP_SP_REGNUM, sp);
2362
2363 return sp;
2364 }
2365
2366
2367 static struct frame_id
2368 mep_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2369 {
2370 CORE_ADDR sp = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
2371 return frame_id_build (sp, get_frame_pc (this_frame));
2372 }
2373
2374
2375 \f
2376 /* Initialization. */
2377
2378
2379 static struct gdbarch *
2380 mep_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2381 {
2382 struct gdbarch *gdbarch;
2383 struct gdbarch_tdep *tdep;
2384
2385 /* Which me_module are we building a gdbarch object for? */
2386 CONFIG_ATTR me_module;
2387
2388 /* If we have a BFD in hand, figure out which me_module it was built
2389 for. Otherwise, use the no-particular-me_module code. */
2390 if (info.abfd)
2391 {
2392 /* The way to get the me_module code depends on the object file
2393 format. At the moment, we only know how to handle ELF. */
2394 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
2395 {
2396 int flag = elf_elfheader (info.abfd)->e_flags & EF_MEP_INDEX_MASK;
2397 me_module = (CONFIG_ATTR) flag;
2398 }
2399 else
2400 me_module = CONFIG_NONE;
2401 }
2402 else
2403 me_module = CONFIG_NONE;
2404
2405 /* If we're setting the architecture from a file, check the
2406 endianness of the file against that of the me_module. */
2407 if (info.abfd)
2408 {
2409 /* The negations on either side make the comparison treat all
2410 non-zero (true) values as equal. */
2411 if (! bfd_big_endian (info.abfd) != ! me_module_big_endian (me_module))
2412 {
2413 const char *module_name = me_module_name (me_module);
2414 const char *module_endianness
2415 = me_module_big_endian (me_module) ? "big" : "little";
2416 const char *file_name = bfd_get_filename (info.abfd);
2417 const char *file_endianness
2418 = bfd_big_endian (info.abfd) ? "big" : "little";
2419
2420 fputc_unfiltered ('\n', gdb_stderr);
2421 if (module_name)
2422 warning (_("the MeP module '%s' is %s-endian, but the executable\n"
2423 "%s is %s-endian."),
2424 module_name, module_endianness,
2425 file_name, file_endianness);
2426 else
2427 warning (_("the selected MeP module is %s-endian, but the "
2428 "executable\n"
2429 "%s is %s-endian."),
2430 module_endianness, file_name, file_endianness);
2431 }
2432 }
2433
2434 /* Find a candidate among the list of architectures we've created
2435 already. info->bfd_arch_info needs to match, but we also want
2436 the right me_module: the ELF header's e_flags field needs to
2437 match as well. */
2438 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2439 arches != NULL;
2440 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2441 if (gdbarch_tdep (arches->gdbarch)->me_module == me_module)
2442 return arches->gdbarch;
2443
2444 tdep = XNEW (struct gdbarch_tdep);
2445 gdbarch = gdbarch_alloc (&info, tdep);
2446
2447 /* Get a CGEN CPU descriptor for this architecture. */
2448 {
2449 const char *mach_name = info.bfd_arch_info->printable_name;
2450 enum cgen_endian endian = (info.byte_order == BFD_ENDIAN_BIG
2451 ? CGEN_ENDIAN_BIG
2452 : CGEN_ENDIAN_LITTLE);
2453
2454 tdep->cpu_desc = mep_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH, mach_name,
2455 CGEN_CPU_OPEN_ENDIAN, endian,
2456 CGEN_CPU_OPEN_END);
2457 }
2458
2459 tdep->me_module = me_module;
2460
2461 /* Register set. */
2462 set_gdbarch_read_pc (gdbarch, mep_read_pc);
2463 set_gdbarch_num_regs (gdbarch, MEP_NUM_RAW_REGS);
2464 set_gdbarch_pc_regnum (gdbarch, MEP_PC_REGNUM);
2465 set_gdbarch_sp_regnum (gdbarch, MEP_SP_REGNUM);
2466 set_gdbarch_register_name (gdbarch, mep_register_name);
2467 set_gdbarch_register_type (gdbarch, mep_register_type);
2468 set_gdbarch_num_pseudo_regs (gdbarch, MEP_NUM_PSEUDO_REGS);
2469 set_gdbarch_pseudo_register_read (gdbarch, mep_pseudo_register_read);
2470 set_gdbarch_pseudo_register_write (gdbarch, mep_pseudo_register_write);
2471 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2472 set_gdbarch_stab_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2473
2474 set_gdbarch_register_reggroup_p (gdbarch, mep_register_reggroup_p);
2475 reggroup_add (gdbarch, all_reggroup);
2476 reggroup_add (gdbarch, general_reggroup);
2477 reggroup_add (gdbarch, save_reggroup);
2478 reggroup_add (gdbarch, restore_reggroup);
2479 reggroup_add (gdbarch, mep_csr_reggroup);
2480 reggroup_add (gdbarch, mep_cr_reggroup);
2481 reggroup_add (gdbarch, mep_ccr_reggroup);
2482
2483 /* Disassembly. */
2484 set_gdbarch_print_insn (gdbarch, mep_gdb_print_insn);
2485
2486 /* Breakpoints. */
2487 set_gdbarch_breakpoint_kind_from_pc (gdbarch, mep_breakpoint::kind_from_pc);
2488 set_gdbarch_sw_breakpoint_from_kind (gdbarch, mep_breakpoint::bp_from_kind);
2489 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2490 set_gdbarch_skip_prologue (gdbarch, mep_skip_prologue);
2491
2492 /* Frames and frame unwinding. */
2493 frame_unwind_append_unwinder (gdbarch, &mep_frame_unwind);
2494 set_gdbarch_unwind_pc (gdbarch, mep_unwind_pc);
2495 set_gdbarch_unwind_sp (gdbarch, mep_unwind_sp);
2496 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2497 set_gdbarch_frame_args_skip (gdbarch, 0);
2498
2499 /* Return values. */
2500 set_gdbarch_return_value (gdbarch, mep_return_value);
2501
2502 /* Inferior function calls. */
2503 set_gdbarch_frame_align (gdbarch, mep_frame_align);
2504 set_gdbarch_push_dummy_call (gdbarch, mep_push_dummy_call);
2505 set_gdbarch_dummy_id (gdbarch, mep_dummy_id);
2506
2507 return gdbarch;
2508 }
2509
2510 /* Provide a prototype to silence -Wmissing-prototypes. */
2511 extern initialize_file_ftype _initialize_mep_tdep;
2512
2513 void
2514 _initialize_mep_tdep (void)
2515 {
2516 mep_csr_reggroup = reggroup_new ("csr", USER_REGGROUP);
2517 mep_cr_reggroup = reggroup_new ("cr", USER_REGGROUP);
2518 mep_ccr_reggroup = reggroup_new ("ccr", USER_REGGROUP);
2519
2520 register_gdbarch_init (bfd_arch_mep, mep_gdbarch_init);
2521
2522 mep_init_pseudoregister_maps ();
2523 }