Include gdb_assert.h in common-defs.h
[binutils-gdb.git] / gdb / mep-tdep.c
1 /* Target-dependent code for the Toshiba MeP for GDB, the GNU debugger.
2
3 Copyright (C) 2001-2014 Free Software Foundation, Inc.
4
5 Contributed by Red Hat, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "gdbcore.h"
30 #include <string.h>
31 #include "value.h"
32 #include "inferior.h"
33 #include "dis-asm.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "language.h"
37 #include "arch-utils.h"
38 #include "regcache.h"
39 #include "remote.h"
40 #include "floatformat.h"
41 #include "sim-regno.h"
42 #include "disasm.h"
43 #include "trad-frame.h"
44 #include "reggroups.h"
45 #include "elf-bfd.h"
46 #include "elf/mep.h"
47 #include "prologue-value.h"
48 #include "cgen/bitset.h"
49 #include "infcall.h"
50
51 /* Get the user's customized MeP coprocessor register names from
52 libopcodes. */
53 #include "opcodes/mep-desc.h"
54 #include "opcodes/mep-opc.h"
55
56 \f
57 /* The gdbarch_tdep structure. */
58
59 /* A quick recap for GDB hackers not familiar with the whole Toshiba
60 Media Processor story:
61
62 The MeP media engine is a configureable processor: users can design
63 their own coprocessors, implement custom instructions, adjust cache
64 sizes, select optional standard facilities like add-and-saturate
65 instructions, and so on. Then, they can build custom versions of
66 the GNU toolchain to support their customized chips. The
67 MeP-Integrator program (see utils/mep) takes a GNU toolchain source
68 tree, and a config file pointing to various files provided by the
69 user describing their customizations, and edits the source tree to
70 produce a compiler that can generate their custom instructions, an
71 assembler that can assemble them and recognize their custom
72 register names, and so on.
73
74 Furthermore, the user can actually specify several of these custom
75 configurations, called 'me_modules', and get a toolchain which can
76 produce code for any of them, given a compiler/assembler switch;
77 you say something like 'gcc -mconfig=mm_max' to generate code for
78 the me_module named 'mm_max'.
79
80 GDB, in particular, needs to:
81
82 - use the coprocessor control register names provided by the user
83 in their hardware description, in expressions, 'info register'
84 output, and disassembly,
85
86 - know the number, names, and types of the coprocessor's
87 general-purpose registers, adjust the 'info all-registers' output
88 accordingly, and print error messages if the user refers to one
89 that doesn't exist
90
91 - allow access to the control bus space only when the configuration
92 actually has a control bus, and recognize which regions of the
93 control bus space are actually populated,
94
95 - disassemble using the user's provided mnemonics for their custom
96 instructions, and
97
98 - recognize whether the $hi and $lo registers are present, and
99 allow access to them only when they are actually there.
100
101 There are three sources of information about what sort of me_module
102 we're actually dealing with:
103
104 - A MeP executable file indicates which me_module it was compiled
105 for, and libopcodes has tables describing each module. So, given
106 an executable file, we can find out about the processor it was
107 compiled for.
108
109 - There are SID command-line options to select a particular
110 me_module, overriding the one specified in the ELF file. SID
111 provides GDB with a fake read-only register, 'module', which
112 indicates which me_module GDB is communicating with an instance
113 of.
114
115 - There are SID command-line options to enable or disable certain
116 optional processor features, overriding the defaults for the
117 selected me_module. The MeP $OPT register indicates which
118 options are present on the current processor. */
119
120
121 struct gdbarch_tdep
122 {
123 /* A CGEN cpu descriptor for this BFD architecture and machine.
124
125 Note: this is *not* customized for any particular me_module; the
126 MeP libopcodes machinery actually puts off module-specific
127 customization until the last minute. So this contains
128 information about all supported me_modules. */
129 CGEN_CPU_DESC cpu_desc;
130
131 /* The me_module index from the ELF file we used to select this
132 architecture, or CONFIG_NONE if there was none.
133
134 Note that we should prefer to use the me_module number available
135 via the 'module' register, whenever we're actually talking to a
136 real target.
137
138 In the absence of live information, we'd like to get the
139 me_module number from the ELF file. But which ELF file: the
140 executable file, the core file, ... ? The answer is, "the last
141 ELF file we used to set the current architecture". Thus, we
142 create a separate instance of the gdbarch structure for each
143 me_module value mep_gdbarch_init sees, and store the me_module
144 value from the ELF file here. */
145 CONFIG_ATTR me_module;
146 };
147
148
149 \f
150 /* Getting me_module information from the CGEN tables. */
151
152
153 /* Find an entry in the DESC's hardware table whose name begins with
154 PREFIX, and whose ISA mask intersects COPRO_ISA_MASK, but does not
155 intersect with GENERIC_ISA_MASK. If there is no matching entry,
156 return zero. */
157 static const CGEN_HW_ENTRY *
158 find_hw_entry_by_prefix_and_isa (CGEN_CPU_DESC desc,
159 const char *prefix,
160 CGEN_BITSET *copro_isa_mask,
161 CGEN_BITSET *generic_isa_mask)
162 {
163 int prefix_len = strlen (prefix);
164 int i;
165
166 for (i = 0; i < desc->hw_table.num_entries; i++)
167 {
168 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
169 if (strncmp (prefix, hw->name, prefix_len) == 0)
170 {
171 CGEN_BITSET *hw_isa_mask
172 = ((CGEN_BITSET *)
173 &CGEN_ATTR_CGEN_HW_ISA_VALUE (CGEN_HW_ATTRS (hw)));
174
175 if (cgen_bitset_intersect_p (hw_isa_mask, copro_isa_mask)
176 && ! cgen_bitset_intersect_p (hw_isa_mask, generic_isa_mask))
177 return hw;
178 }
179 }
180
181 return 0;
182 }
183
184
185 /* Find an entry in DESC's hardware table whose type is TYPE. Return
186 zero if there is none. */
187 static const CGEN_HW_ENTRY *
188 find_hw_entry_by_type (CGEN_CPU_DESC desc, CGEN_HW_TYPE type)
189 {
190 int i;
191
192 for (i = 0; i < desc->hw_table.num_entries; i++)
193 {
194 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
195
196 if (hw->type == type)
197 return hw;
198 }
199
200 return 0;
201 }
202
203
204 /* Return the CGEN hardware table entry for the coprocessor register
205 set for ME_MODULE, whose name prefix is PREFIX. If ME_MODULE has
206 no such register set, return zero. If ME_MODULE is the generic
207 me_module CONFIG_NONE, return the table entry for the register set
208 whose hardware type is GENERIC_TYPE. */
209 static const CGEN_HW_ENTRY *
210 me_module_register_set (CONFIG_ATTR me_module,
211 const char *prefix,
212 CGEN_HW_TYPE generic_type)
213 {
214 /* This is kind of tricky, because the hardware table is constructed
215 in a way that isn't very helpful. Perhaps we can fix that, but
216 here's how it works at the moment:
217
218 The configuration map, `mep_config_map', is indexed by me_module
219 number, and indicates which coprocessor and core ISAs that
220 me_module supports. The 'core_isa' mask includes all the core
221 ISAs, and the 'cop_isa' mask includes all the coprocessor ISAs.
222 The entry for the generic me_module, CONFIG_NONE, has an empty
223 'cop_isa', and its 'core_isa' selects only the standard MeP
224 instruction set.
225
226 The CGEN CPU descriptor's hardware table, desc->hw_table, has
227 entries for all the register sets, for all me_modules. Each
228 entry has a mask indicating which ISAs use that register set.
229 So, if an me_module supports some coprocessor ISA, we can find
230 applicable register sets by scanning the hardware table for
231 register sets whose masks include (at least some of) those ISAs.
232
233 Each hardware table entry also has a name, whose prefix says
234 whether it's a general-purpose ("h-cr") or control ("h-ccr")
235 coprocessor register set. It might be nicer to have an attribute
236 indicating what sort of register set it was, that we could use
237 instead of pattern-matching on the name.
238
239 When there is no hardware table entry whose mask includes a
240 particular coprocessor ISA and whose name starts with a given
241 prefix, then that means that that coprocessor doesn't have any
242 registers of that type. In such cases, this function must return
243 a null pointer.
244
245 Coprocessor register sets' masks may or may not include the core
246 ISA for the me_module they belong to. Those generated by a2cgen
247 do, but the sample me_module included in the unconfigured tree,
248 'ccfx', does not.
249
250 There are generic coprocessor register sets, intended only for
251 use with the generic me_module. Unfortunately, their masks
252 include *all* ISAs --- even those for coprocessors that don't
253 have such register sets. This makes detecting the case where a
254 coprocessor lacks a particular register set more complicated.
255
256 So, here's the approach we take:
257
258 - For CONFIG_NONE, we return the generic coprocessor register set.
259
260 - For any other me_module, we search for a register set whose
261 mask contains any of the me_module's coprocessor ISAs,
262 specifically excluding the generic coprocessor register sets. */
263
264 CGEN_CPU_DESC desc = gdbarch_tdep (target_gdbarch ())->cpu_desc;
265 const CGEN_HW_ENTRY *hw;
266
267 if (me_module == CONFIG_NONE)
268 hw = find_hw_entry_by_type (desc, generic_type);
269 else
270 {
271 CGEN_BITSET *cop = &mep_config_map[me_module].cop_isa;
272 CGEN_BITSET *core = &mep_config_map[me_module].core_isa;
273 CGEN_BITSET *generic = &mep_config_map[CONFIG_NONE].core_isa;
274 CGEN_BITSET *cop_and_core;
275
276 /* The coprocessor ISAs include the ISA for the specific core which
277 has that coprocessor. */
278 cop_and_core = cgen_bitset_copy (cop);
279 cgen_bitset_union (cop, core, cop_and_core);
280 hw = find_hw_entry_by_prefix_and_isa (desc, prefix, cop_and_core, generic);
281 }
282
283 return hw;
284 }
285
286
287 /* Given a hardware table entry HW representing a register set, return
288 a pointer to the keyword table with all the register names. If HW
289 is NULL, return NULL, to propage the "no such register set" info
290 along. */
291 static CGEN_KEYWORD *
292 register_set_keyword_table (const CGEN_HW_ENTRY *hw)
293 {
294 if (! hw)
295 return NULL;
296
297 /* Check that HW is actually a keyword table. */
298 gdb_assert (hw->asm_type == CGEN_ASM_KEYWORD);
299
300 /* The 'asm_data' field of a register set's hardware table entry
301 refers to a keyword table. */
302 return (CGEN_KEYWORD *) hw->asm_data;
303 }
304
305
306 /* Given a keyword table KEYWORD and a register number REGNUM, return
307 the name of the register, or "" if KEYWORD contains no register
308 whose number is REGNUM. */
309 static char *
310 register_name_from_keyword (CGEN_KEYWORD *keyword_table, int regnum)
311 {
312 const CGEN_KEYWORD_ENTRY *entry
313 = cgen_keyword_lookup_value (keyword_table, regnum);
314
315 if (entry)
316 {
317 char *name = entry->name;
318
319 /* The CGEN keyword entries for register names include the
320 leading $, which appears in MeP assembly as well as in GDB.
321 But we don't want to return that; GDB core code adds that
322 itself. */
323 if (name[0] == '$')
324 name++;
325
326 return name;
327 }
328 else
329 return "";
330 }
331
332
333 /* Masks for option bits in the OPT special-purpose register. */
334 enum {
335 MEP_OPT_DIV = 1 << 25, /* 32-bit divide instruction option */
336 MEP_OPT_MUL = 1 << 24, /* 32-bit multiply instruction option */
337 MEP_OPT_BIT = 1 << 23, /* bit manipulation instruction option */
338 MEP_OPT_SAT = 1 << 22, /* saturation instruction option */
339 MEP_OPT_CLP = 1 << 21, /* clip instruction option */
340 MEP_OPT_MIN = 1 << 20, /* min/max instruction option */
341 MEP_OPT_AVE = 1 << 19, /* average instruction option */
342 MEP_OPT_ABS = 1 << 18, /* absolute difference instruction option */
343 MEP_OPT_LDZ = 1 << 16, /* leading zero instruction option */
344 MEP_OPT_VL64 = 1 << 6, /* 64-bit VLIW operation mode option */
345 MEP_OPT_VL32 = 1 << 5, /* 32-bit VLIW operation mode option */
346 MEP_OPT_COP = 1 << 4, /* coprocessor option */
347 MEP_OPT_DSP = 1 << 2, /* DSP option */
348 MEP_OPT_UCI = 1 << 1, /* UCI option */
349 MEP_OPT_DBG = 1 << 0, /* DBG function option */
350 };
351
352
353 /* Given the option_mask value for a particular entry in
354 mep_config_map, produce the value the processor's OPT register
355 would use to represent the same set of options. */
356 static unsigned int
357 opt_from_option_mask (unsigned int option_mask)
358 {
359 /* A table mapping OPT register bits onto CGEN config map option
360 bits. */
361 struct {
362 unsigned int opt_bit, option_mask_bit;
363 } bits[] = {
364 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
365 { MEP_OPT_MUL, 1 << CGEN_INSN_OPTIONAL_MUL_INSN },
366 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
367 { MEP_OPT_DBG, 1 << CGEN_INSN_OPTIONAL_DEBUG_INSN },
368 { MEP_OPT_LDZ, 1 << CGEN_INSN_OPTIONAL_LDZ_INSN },
369 { MEP_OPT_ABS, 1 << CGEN_INSN_OPTIONAL_ABS_INSN },
370 { MEP_OPT_AVE, 1 << CGEN_INSN_OPTIONAL_AVE_INSN },
371 { MEP_OPT_MIN, 1 << CGEN_INSN_OPTIONAL_MINMAX_INSN },
372 { MEP_OPT_CLP, 1 << CGEN_INSN_OPTIONAL_CLIP_INSN },
373 { MEP_OPT_SAT, 1 << CGEN_INSN_OPTIONAL_SAT_INSN },
374 { MEP_OPT_UCI, 1 << CGEN_INSN_OPTIONAL_UCI_INSN },
375 { MEP_OPT_DSP, 1 << CGEN_INSN_OPTIONAL_DSP_INSN },
376 { MEP_OPT_COP, 1 << CGEN_INSN_OPTIONAL_CP_INSN },
377 };
378
379 int i;
380 unsigned int opt = 0;
381
382 for (i = 0; i < (sizeof (bits) / sizeof (bits[0])); i++)
383 if (option_mask & bits[i].option_mask_bit)
384 opt |= bits[i].opt_bit;
385
386 return opt;
387 }
388
389
390 /* Return the value the $OPT register would use to represent the set
391 of options for ME_MODULE. */
392 static unsigned int
393 me_module_opt (CONFIG_ATTR me_module)
394 {
395 return opt_from_option_mask (mep_config_map[me_module].option_mask);
396 }
397
398
399 /* Return the width of ME_MODULE's coprocessor data bus, in bits.
400 This is either 32 or 64. */
401 static int
402 me_module_cop_data_bus_width (CONFIG_ATTR me_module)
403 {
404 if (mep_config_map[me_module].option_mask
405 & (1 << CGEN_INSN_OPTIONAL_CP64_INSN))
406 return 64;
407 else
408 return 32;
409 }
410
411
412 /* Return true if ME_MODULE is big-endian, false otherwise. */
413 static int
414 me_module_big_endian (CONFIG_ATTR me_module)
415 {
416 return mep_config_map[me_module].big_endian;
417 }
418
419
420 /* Return the name of ME_MODULE, or NULL if it has no name. */
421 static const char *
422 me_module_name (CONFIG_ATTR me_module)
423 {
424 /* The default me_module has "" as its name, but it's easier for our
425 callers to test for NULL. */
426 if (! mep_config_map[me_module].name
427 || mep_config_map[me_module].name[0] == '\0')
428 return NULL;
429 else
430 return mep_config_map[me_module].name;
431 }
432 \f
433 /* Register set. */
434
435
436 /* The MeP spec defines the following registers:
437 16 general purpose registers (r0-r15)
438 32 control/special registers (csr0-csr31)
439 32 coprocessor general-purpose registers (c0 -- c31)
440 64 coprocessor control registers (ccr0 -- ccr63)
441
442 For the raw registers, we assign numbers here explicitly, instead
443 of letting the enum assign them for us; the numbers are a matter of
444 external protocol, and shouldn't shift around as things are edited.
445
446 We access the control/special registers via pseudoregisters, to
447 enforce read-only portions that some registers have.
448
449 We access the coprocessor general purpose and control registers via
450 pseudoregisters, to make sure they appear in the proper order in
451 the 'info all-registers' command (which uses the register number
452 ordering), and also to allow them to be renamed and resized
453 depending on the me_module in use.
454
455 The MeP allows coprocessor general-purpose registers to be either
456 32 or 64 bits long, depending on the configuration. Since we don't
457 want the format of the 'g' packet to vary from one core to another,
458 the raw coprocessor GPRs are always 64 bits. GDB doesn't allow the
459 types of registers to change (see the implementation of
460 register_type), so we have four banks of pseudoregisters for the
461 coprocessor gprs --- 32-bit vs. 64-bit, and integer
462 vs. floating-point --- and we show or hide them depending on the
463 configuration. */
464 enum
465 {
466 MEP_FIRST_RAW_REGNUM = 0,
467
468 MEP_FIRST_GPR_REGNUM = 0,
469 MEP_R0_REGNUM = 0,
470 MEP_R1_REGNUM = 1,
471 MEP_R2_REGNUM = 2,
472 MEP_R3_REGNUM = 3,
473 MEP_R4_REGNUM = 4,
474 MEP_R5_REGNUM = 5,
475 MEP_R6_REGNUM = 6,
476 MEP_R7_REGNUM = 7,
477 MEP_R8_REGNUM = 8,
478 MEP_R9_REGNUM = 9,
479 MEP_R10_REGNUM = 10,
480 MEP_R11_REGNUM = 11,
481 MEP_R12_REGNUM = 12,
482 MEP_FP_REGNUM = MEP_R8_REGNUM,
483 MEP_R13_REGNUM = 13,
484 MEP_TP_REGNUM = MEP_R13_REGNUM, /* (r13) Tiny data pointer */
485 MEP_R14_REGNUM = 14,
486 MEP_GP_REGNUM = MEP_R14_REGNUM, /* (r14) Global pointer */
487 MEP_R15_REGNUM = 15,
488 MEP_SP_REGNUM = MEP_R15_REGNUM, /* (r15) Stack pointer */
489 MEP_LAST_GPR_REGNUM = MEP_R15_REGNUM,
490
491 /* The raw control registers. These are the values as received via
492 the remote protocol, directly from the target; we only let user
493 code touch the via the pseudoregisters, which enforce read-only
494 bits. */
495 MEP_FIRST_RAW_CSR_REGNUM = 16,
496 MEP_RAW_PC_REGNUM = 16, /* Program counter */
497 MEP_RAW_LP_REGNUM = 17, /* Link pointer */
498 MEP_RAW_SAR_REGNUM = 18, /* Raw shift amount */
499 MEP_RAW_CSR3_REGNUM = 19, /* csr3: reserved */
500 MEP_RAW_RPB_REGNUM = 20, /* Raw repeat begin address */
501 MEP_RAW_RPE_REGNUM = 21, /* Repeat end address */
502 MEP_RAW_RPC_REGNUM = 22, /* Repeat count */
503 MEP_RAW_HI_REGNUM = 23, /* Upper 32 bits of result of 64 bit mult/div */
504 MEP_RAW_LO_REGNUM = 24, /* Lower 32 bits of result of 64 bit mult/div */
505 MEP_RAW_CSR9_REGNUM = 25, /* csr3: reserved */
506 MEP_RAW_CSR10_REGNUM = 26, /* csr3: reserved */
507 MEP_RAW_CSR11_REGNUM = 27, /* csr3: reserved */
508 MEP_RAW_MB0_REGNUM = 28, /* Raw modulo begin address 0 */
509 MEP_RAW_ME0_REGNUM = 29, /* Raw modulo end address 0 */
510 MEP_RAW_MB1_REGNUM = 30, /* Raw modulo begin address 1 */
511 MEP_RAW_ME1_REGNUM = 31, /* Raw modulo end address 1 */
512 MEP_RAW_PSW_REGNUM = 32, /* Raw program status word */
513 MEP_RAW_ID_REGNUM = 33, /* Raw processor ID/revision */
514 MEP_RAW_TMP_REGNUM = 34, /* Temporary */
515 MEP_RAW_EPC_REGNUM = 35, /* Exception program counter */
516 MEP_RAW_EXC_REGNUM = 36, /* Raw exception cause */
517 MEP_RAW_CFG_REGNUM = 37, /* Raw processor configuration*/
518 MEP_RAW_CSR22_REGNUM = 38, /* csr3: reserved */
519 MEP_RAW_NPC_REGNUM = 39, /* Nonmaskable interrupt PC */
520 MEP_RAW_DBG_REGNUM = 40, /* Raw debug */
521 MEP_RAW_DEPC_REGNUM = 41, /* Debug exception PC */
522 MEP_RAW_OPT_REGNUM = 42, /* Raw options */
523 MEP_RAW_RCFG_REGNUM = 43, /* Raw local ram config */
524 MEP_RAW_CCFG_REGNUM = 44, /* Raw cache config */
525 MEP_RAW_CSR29_REGNUM = 45, /* csr3: reserved */
526 MEP_RAW_CSR30_REGNUM = 46, /* csr3: reserved */
527 MEP_RAW_CSR31_REGNUM = 47, /* csr3: reserved */
528 MEP_LAST_RAW_CSR_REGNUM = MEP_RAW_CSR31_REGNUM,
529
530 /* The raw coprocessor general-purpose registers. These are all 64
531 bits wide. */
532 MEP_FIRST_RAW_CR_REGNUM = 48,
533 MEP_LAST_RAW_CR_REGNUM = MEP_FIRST_RAW_CR_REGNUM + 31,
534
535 MEP_FIRST_RAW_CCR_REGNUM = 80,
536 MEP_LAST_RAW_CCR_REGNUM = MEP_FIRST_RAW_CCR_REGNUM + 63,
537
538 /* The module number register. This is the index of the me_module
539 of which the current target is an instance. (This is not a real
540 MeP-specified register; it's provided by SID.) */
541 MEP_MODULE_REGNUM,
542
543 MEP_LAST_RAW_REGNUM = MEP_MODULE_REGNUM,
544
545 MEP_NUM_RAW_REGS = MEP_LAST_RAW_REGNUM + 1,
546
547 /* Pseudoregisters. See mep_pseudo_register_read and
548 mep_pseudo_register_write. */
549 MEP_FIRST_PSEUDO_REGNUM = MEP_NUM_RAW_REGS,
550
551 /* We have a pseudoregister for every control/special register, to
552 implement registers with read-only bits. */
553 MEP_FIRST_CSR_REGNUM = MEP_FIRST_PSEUDO_REGNUM,
554 MEP_PC_REGNUM = MEP_FIRST_CSR_REGNUM, /* Program counter */
555 MEP_LP_REGNUM, /* Link pointer */
556 MEP_SAR_REGNUM, /* shift amount */
557 MEP_CSR3_REGNUM, /* csr3: reserved */
558 MEP_RPB_REGNUM, /* repeat begin address */
559 MEP_RPE_REGNUM, /* Repeat end address */
560 MEP_RPC_REGNUM, /* Repeat count */
561 MEP_HI_REGNUM, /* Upper 32 bits of the result of 64 bit mult/div */
562 MEP_LO_REGNUM, /* Lower 32 bits of the result of 64 bit mult/div */
563 MEP_CSR9_REGNUM, /* csr3: reserved */
564 MEP_CSR10_REGNUM, /* csr3: reserved */
565 MEP_CSR11_REGNUM, /* csr3: reserved */
566 MEP_MB0_REGNUM, /* modulo begin address 0 */
567 MEP_ME0_REGNUM, /* modulo end address 0 */
568 MEP_MB1_REGNUM, /* modulo begin address 1 */
569 MEP_ME1_REGNUM, /* modulo end address 1 */
570 MEP_PSW_REGNUM, /* program status word */
571 MEP_ID_REGNUM, /* processor ID/revision */
572 MEP_TMP_REGNUM, /* Temporary */
573 MEP_EPC_REGNUM, /* Exception program counter */
574 MEP_EXC_REGNUM, /* exception cause */
575 MEP_CFG_REGNUM, /* processor configuration*/
576 MEP_CSR22_REGNUM, /* csr3: reserved */
577 MEP_NPC_REGNUM, /* Nonmaskable interrupt PC */
578 MEP_DBG_REGNUM, /* debug */
579 MEP_DEPC_REGNUM, /* Debug exception PC */
580 MEP_OPT_REGNUM, /* options */
581 MEP_RCFG_REGNUM, /* local ram config */
582 MEP_CCFG_REGNUM, /* cache config */
583 MEP_CSR29_REGNUM, /* csr3: reserved */
584 MEP_CSR30_REGNUM, /* csr3: reserved */
585 MEP_CSR31_REGNUM, /* csr3: reserved */
586 MEP_LAST_CSR_REGNUM = MEP_CSR31_REGNUM,
587
588 /* The 32-bit integer view of the coprocessor GPR's. */
589 MEP_FIRST_CR32_REGNUM,
590 MEP_LAST_CR32_REGNUM = MEP_FIRST_CR32_REGNUM + 31,
591
592 /* The 32-bit floating-point view of the coprocessor GPR's. */
593 MEP_FIRST_FP_CR32_REGNUM,
594 MEP_LAST_FP_CR32_REGNUM = MEP_FIRST_FP_CR32_REGNUM + 31,
595
596 /* The 64-bit integer view of the coprocessor GPR's. */
597 MEP_FIRST_CR64_REGNUM,
598 MEP_LAST_CR64_REGNUM = MEP_FIRST_CR64_REGNUM + 31,
599
600 /* The 64-bit floating-point view of the coprocessor GPR's. */
601 MEP_FIRST_FP_CR64_REGNUM,
602 MEP_LAST_FP_CR64_REGNUM = MEP_FIRST_FP_CR64_REGNUM + 31,
603
604 MEP_FIRST_CCR_REGNUM,
605 MEP_LAST_CCR_REGNUM = MEP_FIRST_CCR_REGNUM + 63,
606
607 MEP_LAST_PSEUDO_REGNUM = MEP_LAST_CCR_REGNUM,
608
609 MEP_NUM_PSEUDO_REGS = (MEP_LAST_PSEUDO_REGNUM - MEP_LAST_RAW_REGNUM),
610
611 MEP_NUM_REGS = MEP_NUM_RAW_REGS + MEP_NUM_PSEUDO_REGS
612 };
613
614
615 #define IN_SET(set, n) \
616 (MEP_FIRST_ ## set ## _REGNUM <= (n) && (n) <= MEP_LAST_ ## set ## _REGNUM)
617
618 #define IS_GPR_REGNUM(n) (IN_SET (GPR, (n)))
619 #define IS_RAW_CSR_REGNUM(n) (IN_SET (RAW_CSR, (n)))
620 #define IS_RAW_CR_REGNUM(n) (IN_SET (RAW_CR, (n)))
621 #define IS_RAW_CCR_REGNUM(n) (IN_SET (RAW_CCR, (n)))
622
623 #define IS_CSR_REGNUM(n) (IN_SET (CSR, (n)))
624 #define IS_CR32_REGNUM(n) (IN_SET (CR32, (n)))
625 #define IS_FP_CR32_REGNUM(n) (IN_SET (FP_CR32, (n)))
626 #define IS_CR64_REGNUM(n) (IN_SET (CR64, (n)))
627 #define IS_FP_CR64_REGNUM(n) (IN_SET (FP_CR64, (n)))
628 #define IS_CR_REGNUM(n) (IS_CR32_REGNUM (n) || IS_FP_CR32_REGNUM (n) \
629 || IS_CR64_REGNUM (n) || IS_FP_CR64_REGNUM (n))
630 #define IS_CCR_REGNUM(n) (IN_SET (CCR, (n)))
631
632 #define IS_RAW_REGNUM(n) (IN_SET (RAW, (n)))
633 #define IS_PSEUDO_REGNUM(n) (IN_SET (PSEUDO, (n)))
634
635 #define NUM_REGS_IN_SET(set) \
636 (MEP_LAST_ ## set ## _REGNUM - MEP_FIRST_ ## set ## _REGNUM + 1)
637
638 #define MEP_GPR_SIZE (4) /* Size of a MeP general-purpose register. */
639 #define MEP_PSW_SIZE (4) /* Size of the PSW register. */
640 #define MEP_LP_SIZE (4) /* Size of the LP register. */
641
642
643 /* Many of the control/special registers contain bits that cannot be
644 written to; some are entirely read-only. So we present them all as
645 pseudoregisters.
646
647 The following table describes the special properties of each CSR. */
648 struct mep_csr_register
649 {
650 /* The number of this CSR's raw register. */
651 int raw;
652
653 /* The number of this CSR's pseudoregister. */
654 int pseudo;
655
656 /* A mask of the bits that are writeable: if a bit is set here, then
657 it can be modified; if the bit is clear, then it cannot. */
658 LONGEST writeable_bits;
659 };
660
661
662 /* mep_csr_registers[i] describes the i'th CSR.
663 We just list the register numbers here explicitly to help catch
664 typos. */
665 #define CSR(name) MEP_RAW_ ## name ## _REGNUM, MEP_ ## name ## _REGNUM
666 struct mep_csr_register mep_csr_registers[] = {
667 { CSR(PC), 0xffffffff }, /* manual says r/o, but we can write it */
668 { CSR(LP), 0xffffffff },
669 { CSR(SAR), 0x0000003f },
670 { CSR(CSR3), 0xffffffff },
671 { CSR(RPB), 0xfffffffe },
672 { CSR(RPE), 0xffffffff },
673 { CSR(RPC), 0xffffffff },
674 { CSR(HI), 0xffffffff },
675 { CSR(LO), 0xffffffff },
676 { CSR(CSR9), 0xffffffff },
677 { CSR(CSR10), 0xffffffff },
678 { CSR(CSR11), 0xffffffff },
679 { CSR(MB0), 0x0000ffff },
680 { CSR(ME0), 0x0000ffff },
681 { CSR(MB1), 0x0000ffff },
682 { CSR(ME1), 0x0000ffff },
683 { CSR(PSW), 0x000003ff },
684 { CSR(ID), 0x00000000 },
685 { CSR(TMP), 0xffffffff },
686 { CSR(EPC), 0xffffffff },
687 { CSR(EXC), 0x000030f0 },
688 { CSR(CFG), 0x00c0001b },
689 { CSR(CSR22), 0xffffffff },
690 { CSR(NPC), 0xffffffff },
691 { CSR(DBG), 0x00000580 },
692 { CSR(DEPC), 0xffffffff },
693 { CSR(OPT), 0x00000000 },
694 { CSR(RCFG), 0x00000000 },
695 { CSR(CCFG), 0x00000000 },
696 { CSR(CSR29), 0xffffffff },
697 { CSR(CSR30), 0xffffffff },
698 { CSR(CSR31), 0xffffffff },
699 };
700
701
702 /* If R is the number of a raw register, then mep_raw_to_pseudo[R] is
703 the number of the corresponding pseudoregister. Otherwise,
704 mep_raw_to_pseudo[R] == R. */
705 static int mep_raw_to_pseudo[MEP_NUM_REGS];
706
707 /* If R is the number of a pseudoregister, then mep_pseudo_to_raw[R]
708 is the number of the underlying raw register. Otherwise
709 mep_pseudo_to_raw[R] == R. */
710 static int mep_pseudo_to_raw[MEP_NUM_REGS];
711
712 static void
713 mep_init_pseudoregister_maps (void)
714 {
715 int i;
716
717 /* Verify that mep_csr_registers covers all the CSRs, in order. */
718 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (CSR));
719 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (RAW_CSR));
720
721 /* Verify that the raw and pseudo ranges have matching sizes. */
722 gdb_assert (NUM_REGS_IN_SET (RAW_CSR) == NUM_REGS_IN_SET (CSR));
723 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR32));
724 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR64));
725 gdb_assert (NUM_REGS_IN_SET (RAW_CCR) == NUM_REGS_IN_SET (CCR));
726
727 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
728 {
729 struct mep_csr_register *r = &mep_csr_registers[i];
730
731 gdb_assert (r->pseudo == MEP_FIRST_CSR_REGNUM + i);
732 gdb_assert (r->raw == MEP_FIRST_RAW_CSR_REGNUM + i);
733 }
734
735 /* Set up the initial raw<->pseudo mappings. */
736 for (i = 0; i < MEP_NUM_REGS; i++)
737 {
738 mep_raw_to_pseudo[i] = i;
739 mep_pseudo_to_raw[i] = i;
740 }
741
742 /* Add the CSR raw<->pseudo mappings. */
743 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
744 {
745 struct mep_csr_register *r = &mep_csr_registers[i];
746
747 mep_raw_to_pseudo[r->raw] = r->pseudo;
748 mep_pseudo_to_raw[r->pseudo] = r->raw;
749 }
750
751 /* Add the CR raw<->pseudo mappings. */
752 for (i = 0; i < NUM_REGS_IN_SET (RAW_CR); i++)
753 {
754 int raw = MEP_FIRST_RAW_CR_REGNUM + i;
755 int pseudo32 = MEP_FIRST_CR32_REGNUM + i;
756 int pseudofp32 = MEP_FIRST_FP_CR32_REGNUM + i;
757 int pseudo64 = MEP_FIRST_CR64_REGNUM + i;
758 int pseudofp64 = MEP_FIRST_FP_CR64_REGNUM + i;
759
760 /* Truly, the raw->pseudo mapping depends on the current module.
761 But we use the raw->pseudo mapping when we read the debugging
762 info; at that point, we don't know what module we'll actually
763 be running yet. So, we always supply the 64-bit register
764 numbers; GDB knows how to pick a smaller value out of a
765 larger register properly. */
766 mep_raw_to_pseudo[raw] = pseudo64;
767 mep_pseudo_to_raw[pseudo32] = raw;
768 mep_pseudo_to_raw[pseudofp32] = raw;
769 mep_pseudo_to_raw[pseudo64] = raw;
770 mep_pseudo_to_raw[pseudofp64] = raw;
771 }
772
773 /* Add the CCR raw<->pseudo mappings. */
774 for (i = 0; i < NUM_REGS_IN_SET (CCR); i++)
775 {
776 int raw = MEP_FIRST_RAW_CCR_REGNUM + i;
777 int pseudo = MEP_FIRST_CCR_REGNUM + i;
778 mep_raw_to_pseudo[raw] = pseudo;
779 mep_pseudo_to_raw[pseudo] = raw;
780 }
781 }
782
783
784 static int
785 mep_debug_reg_to_regnum (struct gdbarch *gdbarch, int debug_reg)
786 {
787 /* The debug info uses the raw register numbers. */
788 return mep_raw_to_pseudo[debug_reg];
789 }
790
791
792 /* Return the size, in bits, of the coprocessor pseudoregister
793 numbered PSEUDO. */
794 static int
795 mep_pseudo_cr_size (int pseudo)
796 {
797 if (IS_CR32_REGNUM (pseudo)
798 || IS_FP_CR32_REGNUM (pseudo))
799 return 32;
800 else if (IS_CR64_REGNUM (pseudo)
801 || IS_FP_CR64_REGNUM (pseudo))
802 return 64;
803 else
804 gdb_assert_not_reached ("unexpected coprocessor pseudo register");
805 }
806
807
808 /* If the coprocessor pseudoregister numbered PSEUDO is a
809 floating-point register, return non-zero; if it is an integer
810 register, return zero. */
811 static int
812 mep_pseudo_cr_is_float (int pseudo)
813 {
814 return (IS_FP_CR32_REGNUM (pseudo)
815 || IS_FP_CR64_REGNUM (pseudo));
816 }
817
818
819 /* Given a coprocessor GPR pseudoregister number, return its index
820 within that register bank. */
821 static int
822 mep_pseudo_cr_index (int pseudo)
823 {
824 if (IS_CR32_REGNUM (pseudo))
825 return pseudo - MEP_FIRST_CR32_REGNUM;
826 else if (IS_FP_CR32_REGNUM (pseudo))
827 return pseudo - MEP_FIRST_FP_CR32_REGNUM;
828 else if (IS_CR64_REGNUM (pseudo))
829 return pseudo - MEP_FIRST_CR64_REGNUM;
830 else if (IS_FP_CR64_REGNUM (pseudo))
831 return pseudo - MEP_FIRST_FP_CR64_REGNUM;
832 else
833 gdb_assert_not_reached ("unexpected coprocessor pseudo register");
834 }
835
836
837 /* Return the me_module index describing the current target.
838
839 If the current target has registers (e.g., simulator, remote
840 target), then this uses the value of the 'module' register, raw
841 register MEP_MODULE_REGNUM. Otherwise, this retrieves the value
842 from the ELF header's e_flags field of the current executable
843 file. */
844 static CONFIG_ATTR
845 current_me_module (void)
846 {
847 if (target_has_registers)
848 {
849 ULONGEST regval;
850 regcache_cooked_read_unsigned (get_current_regcache (),
851 MEP_MODULE_REGNUM, &regval);
852 return regval;
853 }
854 else
855 return gdbarch_tdep (target_gdbarch ())->me_module;
856 }
857
858
859 /* Return the set of options for the current target, in the form that
860 the OPT register would use.
861
862 If the current target has registers (e.g., simulator, remote
863 target), then this is the actual value of the OPT register. If the
864 current target does not have registers (e.g., an executable file),
865 then use the 'module_opt' field we computed when we build the
866 gdbarch object for this module. */
867 static unsigned int
868 current_options (void)
869 {
870 if (target_has_registers)
871 {
872 ULONGEST regval;
873 regcache_cooked_read_unsigned (get_current_regcache (),
874 MEP_OPT_REGNUM, &regval);
875 return regval;
876 }
877 else
878 return me_module_opt (current_me_module ());
879 }
880
881
882 /* Return the width of the current me_module's coprocessor data bus,
883 in bits. This is either 32 or 64. */
884 static int
885 current_cop_data_bus_width (void)
886 {
887 return me_module_cop_data_bus_width (current_me_module ());
888 }
889
890
891 /* Return the keyword table of coprocessor general-purpose register
892 names appropriate for the me_module we're dealing with. */
893 static CGEN_KEYWORD *
894 current_cr_names (void)
895 {
896 const CGEN_HW_ENTRY *hw
897 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
898
899 return register_set_keyword_table (hw);
900 }
901
902
903 /* Return non-zero if the coprocessor general-purpose registers are
904 floating-point values, zero otherwise. */
905 static int
906 current_cr_is_float (void)
907 {
908 const CGEN_HW_ENTRY *hw
909 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
910
911 return CGEN_ATTR_CGEN_HW_IS_FLOAT_VALUE (CGEN_HW_ATTRS (hw));
912 }
913
914
915 /* Return the keyword table of coprocessor control register names
916 appropriate for the me_module we're dealing with. */
917 static CGEN_KEYWORD *
918 current_ccr_names (void)
919 {
920 const CGEN_HW_ENTRY *hw
921 = me_module_register_set (current_me_module (), "h-ccr-", HW_H_CCR);
922
923 return register_set_keyword_table (hw);
924 }
925
926
927 static const char *
928 mep_register_name (struct gdbarch *gdbarch, int regnr)
929 {
930 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
931
932 /* General-purpose registers. */
933 static const char *gpr_names[] = {
934 "r0", "r1", "r2", "r3", /* 0 */
935 "r4", "r5", "r6", "r7", /* 4 */
936 "fp", "r9", "r10", "r11", /* 8 */
937 "r12", "tp", "gp", "sp" /* 12 */
938 };
939
940 /* Special-purpose registers. */
941 static const char *csr_names[] = {
942 "pc", "lp", "sar", "", /* 0 csr3: reserved */
943 "rpb", "rpe", "rpc", "hi", /* 4 */
944 "lo", "", "", "", /* 8 csr9-csr11: reserved */
945 "mb0", "me0", "mb1", "me1", /* 12 */
946
947 "psw", "id", "tmp", "epc", /* 16 */
948 "exc", "cfg", "", "npc", /* 20 csr22: reserved */
949 "dbg", "depc", "opt", "rcfg", /* 24 */
950 "ccfg", "", "", "" /* 28 csr29-csr31: reserved */
951 };
952
953 if (IS_GPR_REGNUM (regnr))
954 return gpr_names[regnr - MEP_R0_REGNUM];
955 else if (IS_CSR_REGNUM (regnr))
956 {
957 /* The 'hi' and 'lo' registers are only present on processors
958 that have the 'MUL' or 'DIV' instructions enabled. */
959 if ((regnr == MEP_HI_REGNUM || regnr == MEP_LO_REGNUM)
960 && (! (current_options () & (MEP_OPT_MUL | MEP_OPT_DIV))))
961 return "";
962
963 return csr_names[regnr - MEP_FIRST_CSR_REGNUM];
964 }
965 else if (IS_CR_REGNUM (regnr))
966 {
967 CGEN_KEYWORD *names;
968 int cr_size;
969 int cr_is_float;
970
971 /* Does this module have a coprocessor at all? */
972 if (! (current_options () & MEP_OPT_COP))
973 return "";
974
975 names = current_cr_names ();
976 if (! names)
977 /* This module's coprocessor has no general-purpose registers. */
978 return "";
979
980 cr_size = current_cop_data_bus_width ();
981 if (cr_size != mep_pseudo_cr_size (regnr))
982 /* This module's coprocessor's GPR's are of a different size. */
983 return "";
984
985 cr_is_float = current_cr_is_float ();
986 /* The extra ! operators ensure we get boolean equality, not
987 numeric equality. */
988 if (! cr_is_float != ! mep_pseudo_cr_is_float (regnr))
989 /* This module's coprocessor's GPR's are of a different type. */
990 return "";
991
992 return register_name_from_keyword (names, mep_pseudo_cr_index (regnr));
993 }
994 else if (IS_CCR_REGNUM (regnr))
995 {
996 /* Does this module have a coprocessor at all? */
997 if (! (current_options () & MEP_OPT_COP))
998 return "";
999
1000 {
1001 CGEN_KEYWORD *names = current_ccr_names ();
1002
1003 if (! names)
1004 /* This me_module's coprocessor has no control registers. */
1005 return "";
1006
1007 return register_name_from_keyword (names, regnr-MEP_FIRST_CCR_REGNUM);
1008 }
1009 }
1010
1011 /* It might be nice to give the 'module' register a name, but that
1012 would affect the output of 'info all-registers', which would
1013 disturb the test suites. So we leave it invisible. */
1014 else
1015 return NULL;
1016 }
1017
1018
1019 /* Custom register groups for the MeP. */
1020 static struct reggroup *mep_csr_reggroup; /* control/special */
1021 static struct reggroup *mep_cr_reggroup; /* coprocessor general-purpose */
1022 static struct reggroup *mep_ccr_reggroup; /* coprocessor control */
1023
1024
1025 static int
1026 mep_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1027 struct reggroup *group)
1028 {
1029 /* Filter reserved or unused register numbers. */
1030 {
1031 const char *name = mep_register_name (gdbarch, regnum);
1032
1033 if (! name || name[0] == '\0')
1034 return 0;
1035 }
1036
1037 /* We could separate the GPRs and the CSRs. Toshiba has approved of
1038 the existing behavior, so we'd want to run that by them. */
1039 if (group == general_reggroup)
1040 return (IS_GPR_REGNUM (regnum)
1041 || IS_CSR_REGNUM (regnum));
1042
1043 /* Everything is in the 'all' reggroup, except for the raw CSR's. */
1044 else if (group == all_reggroup)
1045 return (IS_GPR_REGNUM (regnum)
1046 || IS_CSR_REGNUM (regnum)
1047 || IS_CR_REGNUM (regnum)
1048 || IS_CCR_REGNUM (regnum));
1049
1050 /* All registers should be saved and restored, except for the raw
1051 CSR's.
1052
1053 This is probably right if the coprocessor is something like a
1054 floating-point unit, but would be wrong if the coprocessor is
1055 something that does I/O, where register accesses actually cause
1056 externally-visible actions. But I get the impression that the
1057 coprocessor isn't supposed to do things like that --- you'd use a
1058 hardware engine, perhaps. */
1059 else if (group == save_reggroup || group == restore_reggroup)
1060 return (IS_GPR_REGNUM (regnum)
1061 || IS_CSR_REGNUM (regnum)
1062 || IS_CR_REGNUM (regnum)
1063 || IS_CCR_REGNUM (regnum));
1064
1065 else if (group == mep_csr_reggroup)
1066 return IS_CSR_REGNUM (regnum);
1067 else if (group == mep_cr_reggroup)
1068 return IS_CR_REGNUM (regnum);
1069 else if (group == mep_ccr_reggroup)
1070 return IS_CCR_REGNUM (regnum);
1071 else
1072 return 0;
1073 }
1074
1075
1076 static struct type *
1077 mep_register_type (struct gdbarch *gdbarch, int reg_nr)
1078 {
1079 /* Coprocessor general-purpose registers may be either 32 or 64 bits
1080 long. So for them, the raw registers are always 64 bits long (to
1081 keep the 'g' packet format fixed), and the pseudoregisters vary
1082 in length. */
1083 if (IS_RAW_CR_REGNUM (reg_nr))
1084 return builtin_type (gdbarch)->builtin_uint64;
1085
1086 /* Since GDB doesn't allow registers to change type, we have two
1087 banks of pseudoregisters for the coprocessor general-purpose
1088 registers: one that gives a 32-bit view, and one that gives a
1089 64-bit view. We hide or show one or the other depending on the
1090 current module. */
1091 if (IS_CR_REGNUM (reg_nr))
1092 {
1093 int size = mep_pseudo_cr_size (reg_nr);
1094 if (size == 32)
1095 {
1096 if (mep_pseudo_cr_is_float (reg_nr))
1097 return builtin_type (gdbarch)->builtin_float;
1098 else
1099 return builtin_type (gdbarch)->builtin_uint32;
1100 }
1101 else if (size == 64)
1102 {
1103 if (mep_pseudo_cr_is_float (reg_nr))
1104 return builtin_type (gdbarch)->builtin_double;
1105 else
1106 return builtin_type (gdbarch)->builtin_uint64;
1107 }
1108 else
1109 gdb_assert_not_reached ("unexpected cr size");
1110 }
1111
1112 /* All other registers are 32 bits long. */
1113 else
1114 return builtin_type (gdbarch)->builtin_uint32;
1115 }
1116
1117
1118 static CORE_ADDR
1119 mep_read_pc (struct regcache *regcache)
1120 {
1121 ULONGEST pc;
1122 regcache_cooked_read_unsigned (regcache, MEP_PC_REGNUM, &pc);
1123 return pc;
1124 }
1125
1126 static enum register_status
1127 mep_pseudo_cr32_read (struct gdbarch *gdbarch,
1128 struct regcache *regcache,
1129 int cookednum,
1130 void *buf)
1131 {
1132 enum register_status status;
1133 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1134 /* Read the raw register into a 64-bit buffer, and then return the
1135 appropriate end of that buffer. */
1136 int rawnum = mep_pseudo_to_raw[cookednum];
1137 gdb_byte buf64[8];
1138
1139 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1140 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1141 status = regcache_raw_read (regcache, rawnum, buf64);
1142 if (status == REG_VALID)
1143 {
1144 /* Slow, but legible. */
1145 store_unsigned_integer (buf, 4, byte_order,
1146 extract_unsigned_integer (buf64, 8, byte_order));
1147 }
1148 return status;
1149 }
1150
1151
1152 static enum register_status
1153 mep_pseudo_cr64_read (struct gdbarch *gdbarch,
1154 struct regcache *regcache,
1155 int cookednum,
1156 void *buf)
1157 {
1158 return regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1159 }
1160
1161
1162 static enum register_status
1163 mep_pseudo_register_read (struct gdbarch *gdbarch,
1164 struct regcache *regcache,
1165 int cookednum,
1166 gdb_byte *buf)
1167 {
1168 if (IS_CSR_REGNUM (cookednum)
1169 || IS_CCR_REGNUM (cookednum))
1170 return regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1171 else if (IS_CR32_REGNUM (cookednum)
1172 || IS_FP_CR32_REGNUM (cookednum))
1173 return mep_pseudo_cr32_read (gdbarch, regcache, cookednum, buf);
1174 else if (IS_CR64_REGNUM (cookednum)
1175 || IS_FP_CR64_REGNUM (cookednum))
1176 return mep_pseudo_cr64_read (gdbarch, regcache, cookednum, buf);
1177 else
1178 gdb_assert_not_reached ("unexpected pseudo register");
1179 }
1180
1181
1182 static void
1183 mep_pseudo_csr_write (struct gdbarch *gdbarch,
1184 struct regcache *regcache,
1185 int cookednum,
1186 const void *buf)
1187 {
1188 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1189 int size = register_size (gdbarch, cookednum);
1190 struct mep_csr_register *r
1191 = &mep_csr_registers[cookednum - MEP_FIRST_CSR_REGNUM];
1192
1193 if (r->writeable_bits == 0)
1194 /* A completely read-only register; avoid the read-modify-
1195 write cycle, and juts ignore the entire write. */
1196 ;
1197 else
1198 {
1199 /* A partially writeable register; do a read-modify-write cycle. */
1200 ULONGEST old_bits;
1201 ULONGEST new_bits;
1202 ULONGEST mixed_bits;
1203
1204 regcache_raw_read_unsigned (regcache, r->raw, &old_bits);
1205 new_bits = extract_unsigned_integer (buf, size, byte_order);
1206 mixed_bits = ((r->writeable_bits & new_bits)
1207 | (~r->writeable_bits & old_bits));
1208 regcache_raw_write_unsigned (regcache, r->raw, mixed_bits);
1209 }
1210 }
1211
1212
1213 static void
1214 mep_pseudo_cr32_write (struct gdbarch *gdbarch,
1215 struct regcache *regcache,
1216 int cookednum,
1217 const void *buf)
1218 {
1219 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1220 /* Expand the 32-bit value into a 64-bit value, and write that to
1221 the pseudoregister. */
1222 int rawnum = mep_pseudo_to_raw[cookednum];
1223 gdb_byte buf64[8];
1224
1225 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1226 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1227 /* Slow, but legible. */
1228 store_unsigned_integer (buf64, 8, byte_order,
1229 extract_unsigned_integer (buf, 4, byte_order));
1230 regcache_raw_write (regcache, rawnum, buf64);
1231 }
1232
1233
1234 static void
1235 mep_pseudo_cr64_write (struct gdbarch *gdbarch,
1236 struct regcache *regcache,
1237 int cookednum,
1238 const void *buf)
1239 {
1240 regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1241 }
1242
1243
1244 static void
1245 mep_pseudo_register_write (struct gdbarch *gdbarch,
1246 struct regcache *regcache,
1247 int cookednum,
1248 const gdb_byte *buf)
1249 {
1250 if (IS_CSR_REGNUM (cookednum))
1251 mep_pseudo_csr_write (gdbarch, regcache, cookednum, buf);
1252 else if (IS_CR32_REGNUM (cookednum)
1253 || IS_FP_CR32_REGNUM (cookednum))
1254 mep_pseudo_cr32_write (gdbarch, regcache, cookednum, buf);
1255 else if (IS_CR64_REGNUM (cookednum)
1256 || IS_FP_CR64_REGNUM (cookednum))
1257 mep_pseudo_cr64_write (gdbarch, regcache, cookednum, buf);
1258 else if (IS_CCR_REGNUM (cookednum))
1259 regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1260 else
1261 gdb_assert_not_reached ("unexpected pseudo register");
1262 }
1263
1264
1265 \f
1266 /* Disassembly. */
1267
1268 /* The mep disassembler needs to know about the section in order to
1269 work correctly. */
1270 static int
1271 mep_gdb_print_insn (bfd_vma pc, disassemble_info * info)
1272 {
1273 struct obj_section * s = find_pc_section (pc);
1274
1275 if (s)
1276 {
1277 /* The libopcodes disassembly code uses the section to find the
1278 BFD, the BFD to find the ELF header, the ELF header to find
1279 the me_module index, and the me_module index to select the
1280 right instructions to print. */
1281 info->section = s->the_bfd_section;
1282 info->arch = bfd_arch_mep;
1283
1284 return print_insn_mep (pc, info);
1285 }
1286
1287 return 0;
1288 }
1289
1290 \f
1291 /* Prologue analysis. */
1292
1293
1294 /* The MeP has two classes of instructions: "core" instructions, which
1295 are pretty normal RISC chip stuff, and "coprocessor" instructions,
1296 which are mostly concerned with moving data in and out of
1297 coprocessor registers, and branching on coprocessor condition
1298 codes. There's space in the instruction set for custom coprocessor
1299 instructions, too.
1300
1301 Instructions can be 16 or 32 bits long; the top two bits of the
1302 first byte indicate the length. The coprocessor instructions are
1303 mixed in with the core instructions, and there's no easy way to
1304 distinguish them; you have to completely decode them to tell one
1305 from the other.
1306
1307 The MeP also supports a "VLIW" operation mode, where instructions
1308 always occur in fixed-width bundles. The bundles are either 32
1309 bits or 64 bits long, depending on a fixed configuration flag. You
1310 decode the first part of the bundle as normal; if it's a core
1311 instruction, and there's any space left in the bundle, the
1312 remainder of the bundle is a coprocessor instruction, which will
1313 execute in parallel with the core instruction. If the first part
1314 of the bundle is a coprocessor instruction, it occupies the entire
1315 bundle.
1316
1317 So, here are all the cases:
1318
1319 - 32-bit VLIW mode:
1320 Every bundle is four bytes long, and naturally aligned, and can hold
1321 one or two instructions:
1322 - 16-bit core instruction; 16-bit coprocessor instruction
1323 These execute in parallel.
1324 - 32-bit core instruction
1325 - 32-bit coprocessor instruction
1326
1327 - 64-bit VLIW mode:
1328 Every bundle is eight bytes long, and naturally aligned, and can hold
1329 one or two instructions:
1330 - 16-bit core instruction; 48-bit (!) coprocessor instruction
1331 These execute in parallel.
1332 - 32-bit core instruction; 32-bit coprocessor instruction
1333 These execute in parallel.
1334 - 64-bit coprocessor instruction
1335
1336 Now, the MeP manual doesn't define any 48- or 64-bit coprocessor
1337 instruction, so I don't really know what's up there; perhaps these
1338 are always the user-defined coprocessor instructions. */
1339
1340
1341 /* Return non-zero if PC is in a VLIW code section, zero
1342 otherwise. */
1343 static int
1344 mep_pc_in_vliw_section (CORE_ADDR pc)
1345 {
1346 struct obj_section *s = find_pc_section (pc);
1347 if (s)
1348 return (s->the_bfd_section->flags & SEC_MEP_VLIW);
1349 return 0;
1350 }
1351
1352
1353 /* Set *INSN to the next core instruction at PC, and return the
1354 address of the next instruction.
1355
1356 The MeP instruction encoding is endian-dependent. 16- and 32-bit
1357 instructions are encoded as one or two two-byte parts, and each
1358 part is byte-swapped independently. Thus:
1359
1360 void
1361 foo (void)
1362 {
1363 asm ("movu $1, 0x123456");
1364 asm ("sb $1,0x5678($2)");
1365 asm ("clip $1, 19");
1366 }
1367
1368 compiles to this big-endian code:
1369
1370 0: d1 56 12 34 movu $1,0x123456
1371 4: c1 28 56 78 sb $1,22136($2)
1372 8: f1 01 10 98 clip $1,0x13
1373 c: 70 02 ret
1374
1375 and this little-endian code:
1376
1377 0: 56 d1 34 12 movu $1,0x123456
1378 4: 28 c1 78 56 sb $1,22136($2)
1379 8: 01 f1 98 10 clip $1,0x13
1380 c: 02 70 ret
1381
1382 Instructions are returned in *INSN in an endian-independent form: a
1383 given instruction always appears in *INSN the same way, regardless
1384 of whether the instruction stream is big-endian or little-endian.
1385
1386 *INSN's most significant 16 bits are the first (i.e., at lower
1387 addresses) 16 bit part of the instruction. Its least significant
1388 16 bits are the second (i.e., higher-addressed) 16 bit part of the
1389 instruction, or zero for a 16-bit instruction. Both 16-bit parts
1390 are fetched using the current endianness.
1391
1392 So, the *INSN values for the instruction sequence above would be
1393 the following, in either endianness:
1394
1395 0xd1561234 movu $1,0x123456
1396 0xc1285678 sb $1,22136($2)
1397 0xf1011098 clip $1,0x13
1398 0x70020000 ret
1399
1400 (In a sense, it would be more natural to return 16-bit instructions
1401 in the least significant 16 bits of *INSN, but that would be
1402 ambiguous. In order to tell whether you're looking at a 16- or a
1403 32-bit instruction, you have to consult the major opcode field ---
1404 the most significant four bits of the instruction's first 16-bit
1405 part. But if we put 16-bit instructions at the least significant
1406 end of *INSN, then you don't know where to find the major opcode
1407 field until you know if it's a 16- or a 32-bit instruction ---
1408 which is where we started.)
1409
1410 If PC points to a core / coprocessor bundle in a VLIW section, set
1411 *INSN to the core instruction, and return the address of the next
1412 bundle. This has the effect of skipping the bundled coprocessor
1413 instruction. That's okay, since coprocessor instructions aren't
1414 significant to prologue analysis --- for the time being,
1415 anyway. */
1416
1417 static CORE_ADDR
1418 mep_get_insn (struct gdbarch *gdbarch, CORE_ADDR pc, unsigned long *insn)
1419 {
1420 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1421 int pc_in_vliw_section;
1422 int vliw_mode;
1423 int insn_len;
1424 gdb_byte buf[2];
1425
1426 *insn = 0;
1427
1428 /* Are we in a VLIW section? */
1429 pc_in_vliw_section = mep_pc_in_vliw_section (pc);
1430 if (pc_in_vliw_section)
1431 {
1432 /* Yes, find out which bundle size. */
1433 vliw_mode = current_options () & (MEP_OPT_VL32 | MEP_OPT_VL64);
1434
1435 /* If PC is in a VLIW section, but the current core doesn't say
1436 that it supports either VLIW mode, then we don't have enough
1437 information to parse the instruction stream it contains.
1438 Since the "undifferentiated" standard core doesn't have
1439 either VLIW mode bit set, this could happen.
1440
1441 But it shouldn't be an error to (say) set a breakpoint in a
1442 VLIW section, if you know you'll never reach it. (Perhaps
1443 you have a script that sets a bunch of standard breakpoints.)
1444
1445 So we'll just return zero here, and hope for the best. */
1446 if (! (vliw_mode & (MEP_OPT_VL32 | MEP_OPT_VL64)))
1447 return 0;
1448
1449 /* If both VL32 and VL64 are set, that's bogus, too. */
1450 if (vliw_mode == (MEP_OPT_VL32 | MEP_OPT_VL64))
1451 return 0;
1452 }
1453 else
1454 vliw_mode = 0;
1455
1456 read_memory (pc, buf, sizeof (buf));
1457 *insn = extract_unsigned_integer (buf, 2, byte_order) << 16;
1458
1459 /* The major opcode --- the top four bits of the first 16-bit
1460 part --- indicates whether this instruction is 16 or 32 bits
1461 long. All 32-bit instructions have a major opcode whose top
1462 two bits are 11; all the rest are 16-bit instructions. */
1463 if ((*insn & 0xc0000000) == 0xc0000000)
1464 {
1465 /* Fetch the second 16-bit part of the instruction. */
1466 read_memory (pc + 2, buf, sizeof (buf));
1467 *insn = *insn | extract_unsigned_integer (buf, 2, byte_order);
1468 }
1469
1470 /* If we're in VLIW code, then the VLIW width determines the address
1471 of the next instruction. */
1472 if (vliw_mode)
1473 {
1474 /* In 32-bit VLIW code, all bundles are 32 bits long. We ignore the
1475 coprocessor half of a core / copro bundle. */
1476 if (vliw_mode == MEP_OPT_VL32)
1477 insn_len = 4;
1478
1479 /* In 64-bit VLIW code, all bundles are 64 bits long. We ignore the
1480 coprocessor half of a core / copro bundle. */
1481 else if (vliw_mode == MEP_OPT_VL64)
1482 insn_len = 8;
1483
1484 /* We'd better be in either core, 32-bit VLIW, or 64-bit VLIW mode. */
1485 else
1486 gdb_assert_not_reached ("unexpected vliw mode");
1487 }
1488
1489 /* Otherwise, the top two bits of the major opcode are (again) what
1490 we need to check. */
1491 else if ((*insn & 0xc0000000) == 0xc0000000)
1492 insn_len = 4;
1493 else
1494 insn_len = 2;
1495
1496 return pc + insn_len;
1497 }
1498
1499
1500 /* Sign-extend the LEN-bit value N. */
1501 #define SEXT(n, len) ((((int) (n)) ^ (1 << ((len) - 1))) - (1 << ((len) - 1)))
1502
1503 /* Return the LEN-bit field at POS from I. */
1504 #define FIELD(i, pos, len) (((i) >> (pos)) & ((1 << (len)) - 1))
1505
1506 /* Like FIELD, but sign-extend the field's value. */
1507 #define SFIELD(i, pos, len) (SEXT (FIELD ((i), (pos), (len)), (len)))
1508
1509
1510 /* Macros for decoding instructions.
1511
1512 Remember that 16-bit instructions are placed in bits 16..31 of i,
1513 not at the least significant end; this means that the major opcode
1514 field is always in the same place, regardless of the width of the
1515 instruction. As a reminder of this, we show the lower 16 bits of a
1516 16-bit instruction as xxxx_xxxx_xxxx_xxxx. */
1517
1518 /* SB Rn,(Rm) 0000_nnnn_mmmm_1000 */
1519 /* SH Rn,(Rm) 0000_nnnn_mmmm_1001 */
1520 /* SW Rn,(Rm) 0000_nnnn_mmmm_1010 */
1521
1522 /* SW Rn,disp16(Rm) 1100_nnnn_mmmm_1010 dddd_dddd_dddd_dddd */
1523 #define IS_SW(i) (((i) & 0xf00f0000) == 0xc00a0000)
1524 /* SB Rn,disp16(Rm) 1100_nnnn_mmmm_1000 dddd_dddd_dddd_dddd */
1525 #define IS_SB(i) (((i) & 0xf00f0000) == 0xc0080000)
1526 /* SH Rn,disp16(Rm) 1100_nnnn_mmmm_1001 dddd_dddd_dddd_dddd */
1527 #define IS_SH(i) (((i) & 0xf00f0000) == 0xc0090000)
1528 #define SWBH_32_BASE(i) (FIELD (i, 20, 4))
1529 #define SWBH_32_SOURCE(i) (FIELD (i, 24, 4))
1530 #define SWBH_32_OFFSET(i) (SFIELD (i, 0, 16))
1531
1532 /* SW Rn,disp7.align4(SP) 0100_nnnn_0ddd_dd10 xxxx_xxxx_xxxx_xxxx */
1533 #define IS_SW_IMMD(i) (((i) & 0xf0830000) == 0x40020000)
1534 #define SW_IMMD_SOURCE(i) (FIELD (i, 24, 4))
1535 #define SW_IMMD_OFFSET(i) (FIELD (i, 18, 5) << 2)
1536
1537 /* SW Rn,(Rm) 0000_nnnn_mmmm_1010 xxxx_xxxx_xxxx_xxxx */
1538 #define IS_SW_REG(i) (((i) & 0xf00f0000) == 0x000a0000)
1539 #define SW_REG_SOURCE(i) (FIELD (i, 24, 4))
1540 #define SW_REG_BASE(i) (FIELD (i, 20, 4))
1541
1542 /* ADD3 Rl,Rn,Rm 1001_nnnn_mmmm_llll xxxx_xxxx_xxxx_xxxx */
1543 #define IS_ADD3_16_REG(i) (((i) & 0xf0000000) == 0x90000000)
1544 #define ADD3_16_REG_SRC1(i) (FIELD (i, 20, 4)) /* n */
1545 #define ADD3_16_REG_SRC2(i) (FIELD (i, 24, 4)) /* m */
1546
1547 /* ADD3 Rn,Rm,imm16 1100_nnnn_mmmm_0000 iiii_iiii_iiii_iiii */
1548 #define IS_ADD3_32(i) (((i) & 0xf00f0000) == 0xc0000000)
1549 #define ADD3_32_TARGET(i) (FIELD (i, 24, 4))
1550 #define ADD3_32_SOURCE(i) (FIELD (i, 20, 4))
1551 #define ADD3_32_OFFSET(i) (SFIELD (i, 0, 16))
1552
1553 /* ADD3 Rn,SP,imm7.align4 0100_nnnn_0iii_ii00 xxxx_xxxx_xxxx_xxxx */
1554 #define IS_ADD3_16(i) (((i) & 0xf0830000) == 0x40000000)
1555 #define ADD3_16_TARGET(i) (FIELD (i, 24, 4))
1556 #define ADD3_16_OFFSET(i) (FIELD (i, 18, 5) << 2)
1557
1558 /* ADD Rn,imm6 0110_nnnn_iiii_ii00 xxxx_xxxx_xxxx_xxxx */
1559 #define IS_ADD(i) (((i) & 0xf0030000) == 0x60000000)
1560 #define ADD_TARGET(i) (FIELD (i, 24, 4))
1561 #define ADD_OFFSET(i) (SFIELD (i, 18, 6))
1562
1563 /* LDC Rn,imm5 0111_nnnn_iiii_101I xxxx_xxxx_xxxx_xxxx
1564 imm5 = I||i[7:4] */
1565 #define IS_LDC(i) (((i) & 0xf00e0000) == 0x700a0000)
1566 #define LDC_IMM(i) ((FIELD (i, 16, 1) << 4) | FIELD (i, 20, 4))
1567 #define LDC_TARGET(i) (FIELD (i, 24, 4))
1568
1569 /* LW Rn,disp16(Rm) 1100_nnnn_mmmm_1110 dddd_dddd_dddd_dddd */
1570 #define IS_LW(i) (((i) & 0xf00f0000) == 0xc00e0000)
1571 #define LW_TARGET(i) (FIELD (i, 24, 4))
1572 #define LW_BASE(i) (FIELD (i, 20, 4))
1573 #define LW_OFFSET(i) (SFIELD (i, 0, 16))
1574
1575 /* MOV Rn,Rm 0000_nnnn_mmmm_0000 xxxx_xxxx_xxxx_xxxx */
1576 #define IS_MOV(i) (((i) & 0xf00f0000) == 0x00000000)
1577 #define MOV_TARGET(i) (FIELD (i, 24, 4))
1578 #define MOV_SOURCE(i) (FIELD (i, 20, 4))
1579
1580 /* BRA disp12.align2 1011_dddd_dddd_ddd0 xxxx_xxxx_xxxx_xxxx */
1581 #define IS_BRA(i) (((i) & 0xf0010000) == 0xb0000000)
1582 #define BRA_DISP(i) (SFIELD (i, 17, 11) << 1)
1583
1584
1585 /* This structure holds the results of a prologue analysis. */
1586 struct mep_prologue
1587 {
1588 /* The architecture for which we generated this prologue info. */
1589 struct gdbarch *gdbarch;
1590
1591 /* The offset from the frame base to the stack pointer --- always
1592 zero or negative.
1593
1594 Calling this a "size" is a bit misleading, but given that the
1595 stack grows downwards, using offsets for everything keeps one
1596 from going completely sign-crazy: you never change anything's
1597 sign for an ADD instruction; always change the second operand's
1598 sign for a SUB instruction; and everything takes care of
1599 itself. */
1600 int frame_size;
1601
1602 /* Non-zero if this function has initialized the frame pointer from
1603 the stack pointer, zero otherwise. */
1604 int has_frame_ptr;
1605
1606 /* If has_frame_ptr is non-zero, this is the offset from the frame
1607 base to where the frame pointer points. This is always zero or
1608 negative. */
1609 int frame_ptr_offset;
1610
1611 /* The address of the first instruction at which the frame has been
1612 set up and the arguments are where the debug info says they are
1613 --- as best as we can tell. */
1614 CORE_ADDR prologue_end;
1615
1616 /* reg_offset[R] is the offset from the CFA at which register R is
1617 saved, or 1 if register R has not been saved. (Real values are
1618 always zero or negative.) */
1619 int reg_offset[MEP_NUM_REGS];
1620 };
1621
1622 /* Return non-zero if VALUE is an incoming argument register. */
1623
1624 static int
1625 is_arg_reg (pv_t value)
1626 {
1627 return (value.kind == pvk_register
1628 && MEP_R1_REGNUM <= value.reg && value.reg <= MEP_R4_REGNUM
1629 && value.k == 0);
1630 }
1631
1632 /* Return non-zero if a store of REG's current value VALUE to ADDR is
1633 probably spilling an argument register to its stack slot in STACK.
1634 Such instructions should be included in the prologue, if possible.
1635
1636 The store is a spill if:
1637 - the value being stored is REG's original value;
1638 - the value has not already been stored somewhere in STACK; and
1639 - ADDR is a stack slot's address (e.g., relative to the original
1640 value of the SP). */
1641 static int
1642 is_arg_spill (struct gdbarch *gdbarch, pv_t value, pv_t addr,
1643 struct pv_area *stack)
1644 {
1645 return (is_arg_reg (value)
1646 && pv_is_register (addr, MEP_SP_REGNUM)
1647 && ! pv_area_find_reg (stack, gdbarch, value.reg, 0));
1648 }
1649
1650
1651 /* Function for finding saved registers in a 'struct pv_area'; we pass
1652 this to pv_area_scan.
1653
1654 If VALUE is a saved register, ADDR says it was saved at a constant
1655 offset from the frame base, and SIZE indicates that the whole
1656 register was saved, record its offset in RESULT_UNTYPED. */
1657 static void
1658 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1659 {
1660 struct mep_prologue *result = (struct mep_prologue *) result_untyped;
1661
1662 if (value.kind == pvk_register
1663 && value.k == 0
1664 && pv_is_register (addr, MEP_SP_REGNUM)
1665 && size == register_size (result->gdbarch, value.reg))
1666 result->reg_offset[value.reg] = addr.k;
1667 }
1668
1669
1670 /* Analyze a prologue starting at START_PC, going no further than
1671 LIMIT_PC. Fill in RESULT as appropriate. */
1672 static void
1673 mep_analyze_prologue (struct gdbarch *gdbarch,
1674 CORE_ADDR start_pc, CORE_ADDR limit_pc,
1675 struct mep_prologue *result)
1676 {
1677 CORE_ADDR pc;
1678 unsigned long insn;
1679 int rn;
1680 int found_lp = 0;
1681 pv_t reg[MEP_NUM_REGS];
1682 struct pv_area *stack;
1683 struct cleanup *back_to;
1684 CORE_ADDR after_last_frame_setup_insn = start_pc;
1685
1686 memset (result, 0, sizeof (*result));
1687 result->gdbarch = gdbarch;
1688
1689 for (rn = 0; rn < MEP_NUM_REGS; rn++)
1690 {
1691 reg[rn] = pv_register (rn, 0);
1692 result->reg_offset[rn] = 1;
1693 }
1694
1695 stack = make_pv_area (MEP_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1696 back_to = make_cleanup_free_pv_area (stack);
1697
1698 pc = start_pc;
1699 while (pc < limit_pc)
1700 {
1701 CORE_ADDR next_pc;
1702 pv_t pre_insn_fp, pre_insn_sp;
1703
1704 next_pc = mep_get_insn (gdbarch, pc, &insn);
1705
1706 /* A zero return from mep_get_insn means that either we weren't
1707 able to read the instruction from memory, or that we don't
1708 have enough information to be able to reliably decode it. So
1709 we'll store here and hope for the best. */
1710 if (! next_pc)
1711 break;
1712
1713 /* Note the current values of the SP and FP, so we can tell if
1714 this instruction changed them, below. */
1715 pre_insn_fp = reg[MEP_FP_REGNUM];
1716 pre_insn_sp = reg[MEP_SP_REGNUM];
1717
1718 if (IS_ADD (insn))
1719 {
1720 int rn = ADD_TARGET (insn);
1721 CORE_ADDR imm6 = ADD_OFFSET (insn);
1722
1723 reg[rn] = pv_add_constant (reg[rn], imm6);
1724 }
1725 else if (IS_ADD3_16 (insn))
1726 {
1727 int rn = ADD3_16_TARGET (insn);
1728 int imm7 = ADD3_16_OFFSET (insn);
1729
1730 reg[rn] = pv_add_constant (reg[MEP_SP_REGNUM], imm7);
1731 }
1732 else if (IS_ADD3_32 (insn))
1733 {
1734 int rn = ADD3_32_TARGET (insn);
1735 int rm = ADD3_32_SOURCE (insn);
1736 int imm16 = ADD3_32_OFFSET (insn);
1737
1738 reg[rn] = pv_add_constant (reg[rm], imm16);
1739 }
1740 else if (IS_SW_REG (insn))
1741 {
1742 int rn = SW_REG_SOURCE (insn);
1743 int rm = SW_REG_BASE (insn);
1744
1745 /* If simulating this store would require us to forget
1746 everything we know about the stack frame in the name of
1747 accuracy, it would be better to just quit now. */
1748 if (pv_area_store_would_trash (stack, reg[rm]))
1749 break;
1750
1751 if (is_arg_spill (gdbarch, reg[rn], reg[rm], stack))
1752 after_last_frame_setup_insn = next_pc;
1753
1754 pv_area_store (stack, reg[rm], 4, reg[rn]);
1755 }
1756 else if (IS_SW_IMMD (insn))
1757 {
1758 int rn = SW_IMMD_SOURCE (insn);
1759 int offset = SW_IMMD_OFFSET (insn);
1760 pv_t addr = pv_add_constant (reg[MEP_SP_REGNUM], offset);
1761
1762 /* If simulating this store would require us to forget
1763 everything we know about the stack frame in the name of
1764 accuracy, it would be better to just quit now. */
1765 if (pv_area_store_would_trash (stack, addr))
1766 break;
1767
1768 if (is_arg_spill (gdbarch, reg[rn], addr, stack))
1769 after_last_frame_setup_insn = next_pc;
1770
1771 pv_area_store (stack, addr, 4, reg[rn]);
1772 }
1773 else if (IS_MOV (insn))
1774 {
1775 int rn = MOV_TARGET (insn);
1776 int rm = MOV_SOURCE (insn);
1777
1778 reg[rn] = reg[rm];
1779
1780 if (pv_is_register (reg[rm], rm) && is_arg_reg (reg[rm]))
1781 after_last_frame_setup_insn = next_pc;
1782 }
1783 else if (IS_SB (insn) || IS_SH (insn) || IS_SW (insn))
1784 {
1785 int rn = SWBH_32_SOURCE (insn);
1786 int rm = SWBH_32_BASE (insn);
1787 int disp = SWBH_32_OFFSET (insn);
1788 int size = (IS_SB (insn) ? 1
1789 : IS_SH (insn) ? 2
1790 : (gdb_assert (IS_SW (insn)), 4));
1791 pv_t addr = pv_add_constant (reg[rm], disp);
1792
1793 if (pv_area_store_would_trash (stack, addr))
1794 break;
1795
1796 if (is_arg_spill (gdbarch, reg[rn], addr, stack))
1797 after_last_frame_setup_insn = next_pc;
1798
1799 pv_area_store (stack, addr, size, reg[rn]);
1800 }
1801 else if (IS_LDC (insn))
1802 {
1803 int rn = LDC_TARGET (insn);
1804 int cr = LDC_IMM (insn) + MEP_FIRST_CSR_REGNUM;
1805
1806 reg[rn] = reg[cr];
1807 }
1808 else if (IS_LW (insn))
1809 {
1810 int rn = LW_TARGET (insn);
1811 int rm = LW_BASE (insn);
1812 int offset = LW_OFFSET (insn);
1813 pv_t addr = pv_add_constant (reg[rm], offset);
1814
1815 reg[rn] = pv_area_fetch (stack, addr, 4);
1816 }
1817 else if (IS_BRA (insn) && BRA_DISP (insn) > 0)
1818 {
1819 /* When a loop appears as the first statement of a function
1820 body, gcc 4.x will use a BRA instruction to branch to the
1821 loop condition checking code. This BRA instruction is
1822 marked as part of the prologue. We therefore set next_pc
1823 to this branch target and also stop the prologue scan.
1824 The instructions at and beyond the branch target should
1825 no longer be associated with the prologue.
1826
1827 Note that we only consider forward branches here. We
1828 presume that a forward branch is being used to skip over
1829 a loop body.
1830
1831 A backwards branch is covered by the default case below.
1832 If we were to encounter a backwards branch, that would
1833 most likely mean that we've scanned through a loop body.
1834 We definitely want to stop the prologue scan when this
1835 happens and that is precisely what is done by the default
1836 case below. */
1837 next_pc = pc + BRA_DISP (insn);
1838 after_last_frame_setup_insn = next_pc;
1839 break;
1840 }
1841 else
1842 /* We've hit some instruction we don't know how to simulate.
1843 Strictly speaking, we should set every value we're
1844 tracking to "unknown". But we'll be optimistic, assume
1845 that we have enough information already, and stop
1846 analysis here. */
1847 break;
1848
1849 /* If this instruction changed the FP or decreased the SP (i.e.,
1850 allocated more stack space), then this may be a good place to
1851 declare the prologue finished. However, there are some
1852 exceptions:
1853
1854 - If the instruction just changed the FP back to its original
1855 value, then that's probably a restore instruction. The
1856 prologue should definitely end before that.
1857
1858 - If the instruction increased the value of the SP (that is,
1859 shrunk the frame), then it's probably part of a frame
1860 teardown sequence, and the prologue should end before that. */
1861
1862 if (! pv_is_identical (reg[MEP_FP_REGNUM], pre_insn_fp))
1863 {
1864 if (! pv_is_register_k (reg[MEP_FP_REGNUM], MEP_FP_REGNUM, 0))
1865 after_last_frame_setup_insn = next_pc;
1866 }
1867 else if (! pv_is_identical (reg[MEP_SP_REGNUM], pre_insn_sp))
1868 {
1869 /* The comparison of constants looks odd, there, because .k
1870 is unsigned. All it really means is that the new value
1871 is lower than it was before the instruction. */
1872 if (pv_is_register (pre_insn_sp, MEP_SP_REGNUM)
1873 && pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM)
1874 && ((pre_insn_sp.k - reg[MEP_SP_REGNUM].k)
1875 < (reg[MEP_SP_REGNUM].k - pre_insn_sp.k)))
1876 after_last_frame_setup_insn = next_pc;
1877 }
1878
1879 pc = next_pc;
1880 }
1881
1882 /* Is the frame size (offset, really) a known constant? */
1883 if (pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM))
1884 result->frame_size = reg[MEP_SP_REGNUM].k;
1885
1886 /* Was the frame pointer initialized? */
1887 if (pv_is_register (reg[MEP_FP_REGNUM], MEP_SP_REGNUM))
1888 {
1889 result->has_frame_ptr = 1;
1890 result->frame_ptr_offset = reg[MEP_FP_REGNUM].k;
1891 }
1892
1893 /* Record where all the registers were saved. */
1894 pv_area_scan (stack, check_for_saved, (void *) result);
1895
1896 result->prologue_end = after_last_frame_setup_insn;
1897
1898 do_cleanups (back_to);
1899 }
1900
1901
1902 static CORE_ADDR
1903 mep_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1904 {
1905 const char *name;
1906 CORE_ADDR func_addr, func_end;
1907 struct mep_prologue p;
1908
1909 /* Try to find the extent of the function that contains PC. */
1910 if (! find_pc_partial_function (pc, &name, &func_addr, &func_end))
1911 return pc;
1912
1913 mep_analyze_prologue (gdbarch, pc, func_end, &p);
1914 return p.prologue_end;
1915 }
1916
1917
1918 \f
1919 /* Breakpoints. */
1920
1921 static const unsigned char *
1922 mep_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR * pcptr, int *lenptr)
1923 {
1924 static unsigned char breakpoint[] = { 0x70, 0x32 };
1925 *lenptr = sizeof (breakpoint);
1926 return breakpoint;
1927 }
1928
1929
1930 \f
1931 /* Frames and frame unwinding. */
1932
1933
1934 static struct mep_prologue *
1935 mep_analyze_frame_prologue (struct frame_info *this_frame,
1936 void **this_prologue_cache)
1937 {
1938 if (! *this_prologue_cache)
1939 {
1940 CORE_ADDR func_start, stop_addr;
1941
1942 *this_prologue_cache
1943 = FRAME_OBSTACK_ZALLOC (struct mep_prologue);
1944
1945 func_start = get_frame_func (this_frame);
1946 stop_addr = get_frame_pc (this_frame);
1947
1948 /* If we couldn't find any function containing the PC, then
1949 just initialize the prologue cache, but don't do anything. */
1950 if (! func_start)
1951 stop_addr = func_start;
1952
1953 mep_analyze_prologue (get_frame_arch (this_frame),
1954 func_start, stop_addr, *this_prologue_cache);
1955 }
1956
1957 return *this_prologue_cache;
1958 }
1959
1960
1961 /* Given the next frame and a prologue cache, return this frame's
1962 base. */
1963 static CORE_ADDR
1964 mep_frame_base (struct frame_info *this_frame,
1965 void **this_prologue_cache)
1966 {
1967 struct mep_prologue *p
1968 = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
1969
1970 /* In functions that use alloca, the distance between the stack
1971 pointer and the frame base varies dynamically, so we can't use
1972 the SP plus static information like prologue analysis to find the
1973 frame base. However, such functions must have a frame pointer,
1974 to be able to restore the SP on exit. So whenever we do have a
1975 frame pointer, use that to find the base. */
1976 if (p->has_frame_ptr)
1977 {
1978 CORE_ADDR fp
1979 = get_frame_register_unsigned (this_frame, MEP_FP_REGNUM);
1980 return fp - p->frame_ptr_offset;
1981 }
1982 else
1983 {
1984 CORE_ADDR sp
1985 = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
1986 return sp - p->frame_size;
1987 }
1988 }
1989
1990
1991 static void
1992 mep_frame_this_id (struct frame_info *this_frame,
1993 void **this_prologue_cache,
1994 struct frame_id *this_id)
1995 {
1996 *this_id = frame_id_build (mep_frame_base (this_frame, this_prologue_cache),
1997 get_frame_func (this_frame));
1998 }
1999
2000
2001 static struct value *
2002 mep_frame_prev_register (struct frame_info *this_frame,
2003 void **this_prologue_cache, int regnum)
2004 {
2005 struct mep_prologue *p
2006 = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
2007
2008 /* There are a number of complications in unwinding registers on the
2009 MeP, having to do with core functions calling VLIW functions and
2010 vice versa.
2011
2012 The least significant bit of the link register, LP.LTOM, is the
2013 VLIW mode toggle bit: it's set if a core function called a VLIW
2014 function, or vice versa, and clear when the caller and callee
2015 were both in the same mode.
2016
2017 So, if we're asked to unwind the PC, then we really want to
2018 unwind the LP and clear the least significant bit. (Real return
2019 addresses are always even.) And if we want to unwind the program
2020 status word (PSW), we need to toggle PSW.OM if LP.LTOM is set.
2021
2022 Tweaking the register values we return in this way means that the
2023 bits in BUFFERP[] are not the same as the bits you'd find at
2024 ADDRP in the inferior, so we make sure lvalp is not_lval when we
2025 do this. */
2026 if (regnum == MEP_PC_REGNUM)
2027 {
2028 struct value *value;
2029 CORE_ADDR lp;
2030 value = mep_frame_prev_register (this_frame, this_prologue_cache,
2031 MEP_LP_REGNUM);
2032 lp = value_as_long (value);
2033 release_value (value);
2034 value_free (value);
2035
2036 return frame_unwind_got_constant (this_frame, regnum, lp & ~1);
2037 }
2038 else
2039 {
2040 CORE_ADDR frame_base = mep_frame_base (this_frame, this_prologue_cache);
2041 struct value *value;
2042
2043 /* Our caller's SP is our frame base. */
2044 if (regnum == MEP_SP_REGNUM)
2045 return frame_unwind_got_constant (this_frame, regnum, frame_base);
2046
2047 /* If prologue analysis says we saved this register somewhere,
2048 return a description of the stack slot holding it. */
2049 if (p->reg_offset[regnum] != 1)
2050 value = frame_unwind_got_memory (this_frame, regnum,
2051 frame_base + p->reg_offset[regnum]);
2052
2053 /* Otherwise, presume we haven't changed the value of this
2054 register, and get it from the next frame. */
2055 else
2056 value = frame_unwind_got_register (this_frame, regnum, regnum);
2057
2058 /* If we need to toggle the operating mode, do so. */
2059 if (regnum == MEP_PSW_REGNUM)
2060 {
2061 CORE_ADDR psw, lp;
2062
2063 psw = value_as_long (value);
2064 release_value (value);
2065 value_free (value);
2066
2067 /* Get the LP's value, too. */
2068 value = get_frame_register_value (this_frame, MEP_LP_REGNUM);
2069 lp = value_as_long (value);
2070 release_value (value);
2071 value_free (value);
2072
2073 /* If LP.LTOM is set, then toggle PSW.OM. */
2074 if (lp & 0x1)
2075 psw ^= 0x1000;
2076
2077 return frame_unwind_got_constant (this_frame, regnum, psw);
2078 }
2079
2080 return value;
2081 }
2082 }
2083
2084
2085 static const struct frame_unwind mep_frame_unwind = {
2086 NORMAL_FRAME,
2087 default_frame_unwind_stop_reason,
2088 mep_frame_this_id,
2089 mep_frame_prev_register,
2090 NULL,
2091 default_frame_sniffer
2092 };
2093
2094
2095 /* Our general unwinding function can handle unwinding the PC. */
2096 static CORE_ADDR
2097 mep_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2098 {
2099 return frame_unwind_register_unsigned (next_frame, MEP_PC_REGNUM);
2100 }
2101
2102
2103 /* Our general unwinding function can handle unwinding the SP. */
2104 static CORE_ADDR
2105 mep_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2106 {
2107 return frame_unwind_register_unsigned (next_frame, MEP_SP_REGNUM);
2108 }
2109
2110
2111 \f
2112 /* Return values. */
2113
2114
2115 static int
2116 mep_use_struct_convention (struct type *type)
2117 {
2118 return (TYPE_LENGTH (type) > MEP_GPR_SIZE);
2119 }
2120
2121
2122 static void
2123 mep_extract_return_value (struct gdbarch *arch,
2124 struct type *type,
2125 struct regcache *regcache,
2126 gdb_byte *valbuf)
2127 {
2128 int byte_order = gdbarch_byte_order (arch);
2129
2130 /* Values that don't occupy a full register appear at the less
2131 significant end of the value. This is the offset to where the
2132 value starts. */
2133 int offset;
2134
2135 /* Return values > MEP_GPR_SIZE bytes are returned in memory,
2136 pointed to by R0. */
2137 gdb_assert (TYPE_LENGTH (type) <= MEP_GPR_SIZE);
2138
2139 if (byte_order == BFD_ENDIAN_BIG)
2140 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2141 else
2142 offset = 0;
2143
2144 /* Return values that do fit in a single register are returned in R0. */
2145 regcache_cooked_read_part (regcache, MEP_R0_REGNUM,
2146 offset, TYPE_LENGTH (type),
2147 valbuf);
2148 }
2149
2150
2151 static void
2152 mep_store_return_value (struct gdbarch *arch,
2153 struct type *type,
2154 struct regcache *regcache,
2155 const gdb_byte *valbuf)
2156 {
2157 int byte_order = gdbarch_byte_order (arch);
2158
2159 /* Values that fit in a single register go in R0. */
2160 if (TYPE_LENGTH (type) <= MEP_GPR_SIZE)
2161 {
2162 /* Values that don't occupy a full register appear at the least
2163 significant end of the value. This is the offset to where the
2164 value starts. */
2165 int offset;
2166
2167 if (byte_order == BFD_ENDIAN_BIG)
2168 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2169 else
2170 offset = 0;
2171
2172 regcache_cooked_write_part (regcache, MEP_R0_REGNUM,
2173 offset, TYPE_LENGTH (type),
2174 valbuf);
2175 }
2176
2177 /* Return values larger than a single register are returned in
2178 memory, pointed to by R0. Unfortunately, we can't count on R0
2179 pointing to the return buffer, so we raise an error here. */
2180 else
2181 error (_("\
2182 GDB cannot set return values larger than four bytes; the Media Processor's\n\
2183 calling conventions do not provide enough information to do this.\n\
2184 Try using the 'return' command with no argument."));
2185 }
2186
2187 static enum return_value_convention
2188 mep_return_value (struct gdbarch *gdbarch, struct value *function,
2189 struct type *type, struct regcache *regcache,
2190 gdb_byte *readbuf, const gdb_byte *writebuf)
2191 {
2192 if (mep_use_struct_convention (type))
2193 {
2194 if (readbuf)
2195 {
2196 ULONGEST addr;
2197 /* Although the address of the struct buffer gets passed in R1, it's
2198 returned in R0. Fetch R0's value and then read the memory
2199 at that address. */
2200 regcache_raw_read_unsigned (regcache, MEP_R0_REGNUM, &addr);
2201 read_memory (addr, readbuf, TYPE_LENGTH (type));
2202 }
2203 if (writebuf)
2204 {
2205 /* Return values larger than a single register are returned in
2206 memory, pointed to by R0. Unfortunately, we can't count on R0
2207 pointing to the return buffer, so we raise an error here. */
2208 error (_("\
2209 GDB cannot set return values larger than four bytes; the Media Processor's\n\
2210 calling conventions do not provide enough information to do this.\n\
2211 Try using the 'return' command with no argument."));
2212 }
2213 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2214 }
2215
2216 if (readbuf)
2217 mep_extract_return_value (gdbarch, type, regcache, readbuf);
2218 if (writebuf)
2219 mep_store_return_value (gdbarch, type, regcache, writebuf);
2220
2221 return RETURN_VALUE_REGISTER_CONVENTION;
2222 }
2223
2224 \f
2225 /* Inferior calls. */
2226
2227
2228 static CORE_ADDR
2229 mep_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2230 {
2231 /* Require word alignment. */
2232 return sp & -4;
2233 }
2234
2235
2236 /* From "lang_spec2.txt":
2237
2238 4.2 Calling conventions
2239
2240 4.2.1 Core register conventions
2241
2242 - Parameters should be evaluated from left to right, and they
2243 should be held in $1,$2,$3,$4 in order. The fifth parameter or
2244 after should be held in the stack. If the size is larger than 4
2245 bytes in the first four parameters, the pointer should be held in
2246 the registers instead. If the size is larger than 4 bytes in the
2247 fifth parameter or after, the pointer should be held in the stack.
2248
2249 - Return value of a function should be held in register $0. If the
2250 size of return value is larger than 4 bytes, $1 should hold the
2251 pointer pointing memory that would hold the return value. In this
2252 case, the first parameter should be held in $2, the second one in
2253 $3, and the third one in $4, and the forth parameter or after
2254 should be held in the stack.
2255
2256 [This doesn't say so, but arguments shorter than four bytes are
2257 passed in the least significant end of a four-byte word when
2258 they're passed on the stack.] */
2259
2260
2261 /* Traverse the list of ARGC arguments ARGV; for every ARGV[i] too
2262 large to fit in a register, save it on the stack, and place its
2263 address in COPY[i]. SP is the initial stack pointer; return the
2264 new stack pointer. */
2265 static CORE_ADDR
2266 push_large_arguments (CORE_ADDR sp, int argc, struct value **argv,
2267 CORE_ADDR copy[])
2268 {
2269 int i;
2270
2271 for (i = 0; i < argc; i++)
2272 {
2273 unsigned arg_len = TYPE_LENGTH (value_type (argv[i]));
2274
2275 if (arg_len > MEP_GPR_SIZE)
2276 {
2277 /* Reserve space for the copy, and then round the SP down, to
2278 make sure it's all aligned properly. */
2279 sp = (sp - arg_len) & -4;
2280 write_memory (sp, value_contents (argv[i]), arg_len);
2281 copy[i] = sp;
2282 }
2283 }
2284
2285 return sp;
2286 }
2287
2288
2289 static CORE_ADDR
2290 mep_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2291 struct regcache *regcache, CORE_ADDR bp_addr,
2292 int argc, struct value **argv, CORE_ADDR sp,
2293 int struct_return,
2294 CORE_ADDR struct_addr)
2295 {
2296 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2297 CORE_ADDR *copy = (CORE_ADDR *) alloca (argc * sizeof (copy[0]));
2298 CORE_ADDR func_addr = find_function_addr (function, NULL);
2299 int i;
2300
2301 /* The number of the next register available to hold an argument. */
2302 int arg_reg;
2303
2304 /* The address of the next stack slot available to hold an argument. */
2305 CORE_ADDR arg_stack;
2306
2307 /* The address of the end of the stack area for arguments. This is
2308 just for error checking. */
2309 CORE_ADDR arg_stack_end;
2310
2311 sp = push_large_arguments (sp, argc, argv, copy);
2312
2313 /* Reserve space for the stack arguments, if any. */
2314 arg_stack_end = sp;
2315 if (argc + (struct_addr ? 1 : 0) > 4)
2316 sp -= ((argc + (struct_addr ? 1 : 0)) - 4) * MEP_GPR_SIZE;
2317
2318 arg_reg = MEP_R1_REGNUM;
2319 arg_stack = sp;
2320
2321 /* If we're returning a structure by value, push the pointer to the
2322 buffer as the first argument. */
2323 if (struct_return)
2324 {
2325 regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
2326 arg_reg++;
2327 }
2328
2329 for (i = 0; i < argc; i++)
2330 {
2331 ULONGEST value;
2332
2333 /* Arguments that fit in a GPR get expanded to fill the GPR. */
2334 if (TYPE_LENGTH (value_type (argv[i])) <= MEP_GPR_SIZE)
2335 value = extract_unsigned_integer (value_contents (argv[i]),
2336 TYPE_LENGTH (value_type (argv[i])),
2337 byte_order);
2338
2339 /* Arguments too large to fit in a GPR get copied to the stack,
2340 and we pass a pointer to the copy. */
2341 else
2342 value = copy[i];
2343
2344 /* We use $1 -- $4 for passing arguments, then use the stack. */
2345 if (arg_reg <= MEP_R4_REGNUM)
2346 {
2347 regcache_cooked_write_unsigned (regcache, arg_reg, value);
2348 arg_reg++;
2349 }
2350 else
2351 {
2352 gdb_byte buf[MEP_GPR_SIZE];
2353 store_unsigned_integer (buf, MEP_GPR_SIZE, byte_order, value);
2354 write_memory (arg_stack, buf, MEP_GPR_SIZE);
2355 arg_stack += MEP_GPR_SIZE;
2356 }
2357 }
2358
2359 gdb_assert (arg_stack <= arg_stack_end);
2360
2361 /* Set the return address. */
2362 regcache_cooked_write_unsigned (regcache, MEP_LP_REGNUM, bp_addr);
2363
2364 /* Update the stack pointer. */
2365 regcache_cooked_write_unsigned (regcache, MEP_SP_REGNUM, sp);
2366
2367 return sp;
2368 }
2369
2370
2371 static struct frame_id
2372 mep_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2373 {
2374 CORE_ADDR sp = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
2375 return frame_id_build (sp, get_frame_pc (this_frame));
2376 }
2377
2378
2379 \f
2380 /* Initialization. */
2381
2382
2383 static struct gdbarch *
2384 mep_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2385 {
2386 struct gdbarch *gdbarch;
2387 struct gdbarch_tdep *tdep;
2388
2389 /* Which me_module are we building a gdbarch object for? */
2390 CONFIG_ATTR me_module;
2391
2392 /* If we have a BFD in hand, figure out which me_module it was built
2393 for. Otherwise, use the no-particular-me_module code. */
2394 if (info.abfd)
2395 {
2396 /* The way to get the me_module code depends on the object file
2397 format. At the moment, we only know how to handle ELF. */
2398 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
2399 me_module = elf_elfheader (info.abfd)->e_flags & EF_MEP_INDEX_MASK;
2400 else
2401 me_module = CONFIG_NONE;
2402 }
2403 else
2404 me_module = CONFIG_NONE;
2405
2406 /* If we're setting the architecture from a file, check the
2407 endianness of the file against that of the me_module. */
2408 if (info.abfd)
2409 {
2410 /* The negations on either side make the comparison treat all
2411 non-zero (true) values as equal. */
2412 if (! bfd_big_endian (info.abfd) != ! me_module_big_endian (me_module))
2413 {
2414 const char *module_name = me_module_name (me_module);
2415 const char *module_endianness
2416 = me_module_big_endian (me_module) ? "big" : "little";
2417 const char *file_name = bfd_get_filename (info.abfd);
2418 const char *file_endianness
2419 = bfd_big_endian (info.abfd) ? "big" : "little";
2420
2421 fputc_unfiltered ('\n', gdb_stderr);
2422 if (module_name)
2423 warning (_("the MeP module '%s' is %s-endian, but the executable\n"
2424 "%s is %s-endian."),
2425 module_name, module_endianness,
2426 file_name, file_endianness);
2427 else
2428 warning (_("the selected MeP module is %s-endian, but the "
2429 "executable\n"
2430 "%s is %s-endian."),
2431 module_endianness, file_name, file_endianness);
2432 }
2433 }
2434
2435 /* Find a candidate among the list of architectures we've created
2436 already. info->bfd_arch_info needs to match, but we also want
2437 the right me_module: the ELF header's e_flags field needs to
2438 match as well. */
2439 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2440 arches != NULL;
2441 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2442 if (gdbarch_tdep (arches->gdbarch)->me_module == me_module)
2443 return arches->gdbarch;
2444
2445 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
2446 gdbarch = gdbarch_alloc (&info, tdep);
2447
2448 /* Get a CGEN CPU descriptor for this architecture. */
2449 {
2450 const char *mach_name = info.bfd_arch_info->printable_name;
2451 enum cgen_endian endian = (info.byte_order == BFD_ENDIAN_BIG
2452 ? CGEN_ENDIAN_BIG
2453 : CGEN_ENDIAN_LITTLE);
2454
2455 tdep->cpu_desc = mep_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH, mach_name,
2456 CGEN_CPU_OPEN_ENDIAN, endian,
2457 CGEN_CPU_OPEN_END);
2458 }
2459
2460 tdep->me_module = me_module;
2461
2462 /* Register set. */
2463 set_gdbarch_read_pc (gdbarch, mep_read_pc);
2464 set_gdbarch_num_regs (gdbarch, MEP_NUM_RAW_REGS);
2465 set_gdbarch_pc_regnum (gdbarch, MEP_PC_REGNUM);
2466 set_gdbarch_sp_regnum (gdbarch, MEP_SP_REGNUM);
2467 set_gdbarch_register_name (gdbarch, mep_register_name);
2468 set_gdbarch_register_type (gdbarch, mep_register_type);
2469 set_gdbarch_num_pseudo_regs (gdbarch, MEP_NUM_PSEUDO_REGS);
2470 set_gdbarch_pseudo_register_read (gdbarch, mep_pseudo_register_read);
2471 set_gdbarch_pseudo_register_write (gdbarch, mep_pseudo_register_write);
2472 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2473 set_gdbarch_stab_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2474
2475 set_gdbarch_register_reggroup_p (gdbarch, mep_register_reggroup_p);
2476 reggroup_add (gdbarch, all_reggroup);
2477 reggroup_add (gdbarch, general_reggroup);
2478 reggroup_add (gdbarch, save_reggroup);
2479 reggroup_add (gdbarch, restore_reggroup);
2480 reggroup_add (gdbarch, mep_csr_reggroup);
2481 reggroup_add (gdbarch, mep_cr_reggroup);
2482 reggroup_add (gdbarch, mep_ccr_reggroup);
2483
2484 /* Disassembly. */
2485 set_gdbarch_print_insn (gdbarch, mep_gdb_print_insn);
2486
2487 /* Breakpoints. */
2488 set_gdbarch_breakpoint_from_pc (gdbarch, mep_breakpoint_from_pc);
2489 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2490 set_gdbarch_skip_prologue (gdbarch, mep_skip_prologue);
2491
2492 /* Frames and frame unwinding. */
2493 frame_unwind_append_unwinder (gdbarch, &mep_frame_unwind);
2494 set_gdbarch_unwind_pc (gdbarch, mep_unwind_pc);
2495 set_gdbarch_unwind_sp (gdbarch, mep_unwind_sp);
2496 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2497 set_gdbarch_frame_args_skip (gdbarch, 0);
2498
2499 /* Return values. */
2500 set_gdbarch_return_value (gdbarch, mep_return_value);
2501
2502 /* Inferior function calls. */
2503 set_gdbarch_frame_align (gdbarch, mep_frame_align);
2504 set_gdbarch_push_dummy_call (gdbarch, mep_push_dummy_call);
2505 set_gdbarch_dummy_id (gdbarch, mep_dummy_id);
2506
2507 return gdbarch;
2508 }
2509
2510 /* Provide a prototype to silence -Wmissing-prototypes. */
2511 extern initialize_file_ftype _initialize_mep_tdep;
2512
2513 void
2514 _initialize_mep_tdep (void)
2515 {
2516 mep_csr_reggroup = reggroup_new ("csr", USER_REGGROUP);
2517 mep_cr_reggroup = reggroup_new ("cr", USER_REGGROUP);
2518 mep_ccr_reggroup = reggroup_new ("ccr", USER_REGGROUP);
2519
2520 register_gdbarch_init (bfd_arch_mep, mep_gdbarch_init);
2521
2522 mep_init_pseudoregister_maps ();
2523 }