2010-05-24 Michael Snyder <msnyder@vmware.com>
[binutils-gdb.git] / gdb / mi / mi-main.c
1 /* MI Command Set.
2
3 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Solutions (a Red Hat company).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* Work in progress. */
24
25 #include "defs.h"
26 #include "arch-utils.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "gdb_string.h"
30 #include "exceptions.h"
31 #include "top.h"
32 #include "gdbthread.h"
33 #include "mi-cmds.h"
34 #include "mi-parse.h"
35 #include "mi-getopt.h"
36 #include "mi-console.h"
37 #include "ui-out.h"
38 #include "mi-out.h"
39 #include "interps.h"
40 #include "event-loop.h"
41 #include "event-top.h"
42 #include "gdbcore.h" /* For write_memory(). */
43 #include "value.h"
44 #include "regcache.h"
45 #include "gdb.h"
46 #include "frame.h"
47 #include "mi-main.h"
48 #include "mi-common.h"
49 #include "language.h"
50 #include "valprint.h"
51 #include "inferior.h"
52 #include "osdata.h"
53 #include "splay-tree.h"
54 #include "tracepoint.h"
55
56 #include <ctype.h>
57 #include <sys/time.h>
58
59 #if defined HAVE_SYS_RESOURCE_H
60 #include <sys/resource.h>
61 #endif
62
63 #ifdef HAVE_GETRUSAGE
64 struct rusage rusage;
65 #endif
66
67 enum
68 {
69 FROM_TTY = 0
70 };
71
72 int mi_debug_p;
73 struct ui_file *raw_stdout;
74
75 /* This is used to pass the current command timestamp
76 down to continuation routines. */
77 static struct mi_timestamp *current_command_ts;
78
79 static int do_timings = 0;
80
81 char *current_token;
82 /* Few commands would like to know if options like --thread-group
83 were explicitly specified. This variable keeps the current
84 parsed command including all option, and make it possible. */
85 static struct mi_parse *current_context;
86
87 int running_result_record_printed = 1;
88
89 /* Flag indicating that the target has proceeded since the last
90 command was issued. */
91 int mi_proceeded;
92
93 extern void _initialize_mi_main (void);
94 static void mi_cmd_execute (struct mi_parse *parse);
95
96 static void mi_execute_cli_command (const char *cmd, int args_p,
97 const char *args);
98 static void mi_execute_async_cli_command (char *cli_command,
99 char **argv, int argc);
100 static int register_changed_p (int regnum, struct regcache *,
101 struct regcache *);
102 static void get_register (struct frame_info *, int regnum, int format);
103
104 /* Command implementations. FIXME: Is this libgdb? No. This is the MI
105 layer that calls libgdb. Any operation used in the below should be
106 formalized. */
107
108 static void timestamp (struct mi_timestamp *tv);
109
110 static void print_diff_now (struct mi_timestamp *start);
111 static void print_diff (struct mi_timestamp *start, struct mi_timestamp *end);
112
113 void
114 mi_cmd_gdb_exit (char *command, char **argv, int argc)
115 {
116 /* We have to print everything right here because we never return. */
117 if (current_token)
118 fputs_unfiltered (current_token, raw_stdout);
119 fputs_unfiltered ("^exit\n", raw_stdout);
120 mi_out_put (uiout, raw_stdout);
121 gdb_flush (raw_stdout);
122 /* FIXME: The function called is not yet a formal libgdb function. */
123 quit_force (NULL, FROM_TTY);
124 }
125
126 void
127 mi_cmd_exec_next (char *command, char **argv, int argc)
128 {
129 /* FIXME: Should call a libgdb function, not a cli wrapper. */
130 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
131 mi_execute_async_cli_command ("reverse-next", argv + 1, argc - 1);
132 else
133 mi_execute_async_cli_command ("next", argv, argc);
134 }
135
136 void
137 mi_cmd_exec_next_instruction (char *command, char **argv, int argc)
138 {
139 /* FIXME: Should call a libgdb function, not a cli wrapper. */
140 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
141 mi_execute_async_cli_command ("reverse-nexti", argv + 1, argc - 1);
142 else
143 mi_execute_async_cli_command ("nexti", argv, argc);
144 }
145
146 void
147 mi_cmd_exec_step (char *command, char **argv, int argc)
148 {
149 /* FIXME: Should call a libgdb function, not a cli wrapper. */
150 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
151 mi_execute_async_cli_command ("reverse-step", argv + 1, argc - 1);
152 else
153 mi_execute_async_cli_command ("step", argv, argc);
154 }
155
156 void
157 mi_cmd_exec_step_instruction (char *command, char **argv, int argc)
158 {
159 /* FIXME: Should call a libgdb function, not a cli wrapper. */
160 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
161 mi_execute_async_cli_command ("reverse-stepi", argv + 1, argc - 1);
162 else
163 mi_execute_async_cli_command ("stepi", argv, argc);
164 }
165
166 void
167 mi_cmd_exec_finish (char *command, char **argv, int argc)
168 {
169 /* FIXME: Should call a libgdb function, not a cli wrapper. */
170 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
171 mi_execute_async_cli_command ("reverse-finish", argv + 1, argc - 1);
172 else
173 mi_execute_async_cli_command ("finish", argv, argc);
174 }
175
176 void
177 mi_cmd_exec_return (char *command, char **argv, int argc)
178 {
179 /* This command doesn't really execute the target, it just pops the
180 specified number of frames. */
181 if (argc)
182 /* Call return_command with from_tty argument equal to 0 so as to
183 avoid being queried. */
184 return_command (*argv, 0);
185 else
186 /* Call return_command with from_tty argument equal to 0 so as to
187 avoid being queried. */
188 return_command (NULL, 0);
189
190 /* Because we have called return_command with from_tty = 0, we need
191 to print the frame here. */
192 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS);
193 }
194
195 void
196 mi_cmd_exec_jump (char *args, char **argv, int argc)
197 {
198 /* FIXME: Should call a libgdb function, not a cli wrapper. */
199 mi_execute_async_cli_command ("jump", argv, argc);
200 }
201
202 static void
203 proceed_thread (struct thread_info *thread, int pid)
204 {
205 if (!is_stopped (thread->ptid))
206 return;
207
208 if (pid != 0 && PIDGET (thread->ptid) != pid)
209 return;
210
211 switch_to_thread (thread->ptid);
212 clear_proceed_status ();
213 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
214 }
215
216
217 static int
218 proceed_thread_callback (struct thread_info *thread, void *arg)
219 {
220 int pid = *(int *)arg;
221
222 proceed_thread (thread, pid);
223 return 0;
224 }
225
226 static void
227 exec_continue (char **argv, int argc)
228 {
229 if (non_stop)
230 {
231 /* In non-stop mode, 'resume' always resumes a single thread. Therefore,
232 to resume all threads of the current inferior, or all threads in all
233 inferiors, we need to iterate over threads.
234
235 See comment on infcmd.c:proceed_thread_callback for rationale. */
236 if (current_context->all || current_context->thread_group != -1)
237 {
238 int pid = 0;
239 struct cleanup *back_to = make_cleanup_restore_current_thread ();
240
241 if (!current_context->all)
242 {
243 struct inferior *inf = find_inferior_id (current_context->thread_group);
244 pid = inf->pid;
245 }
246 iterate_over_threads (proceed_thread_callback, &pid);
247 do_cleanups (back_to);
248 }
249 else
250 {
251 continue_1 (0);
252 }
253 }
254 else
255 {
256 struct cleanup *back_to = make_cleanup_restore_integer (&sched_multi);
257
258 if (current_context->all)
259 {
260 sched_multi = 1;
261 continue_1 (0);
262 }
263 else
264 {
265 /* In all-stop mode, -exec-continue traditionally resumed either
266 all threads, or one thread, depending on the 'scheduler-locking'
267 variable. Let's continue to do the same. */
268 continue_1 (1);
269 }
270 do_cleanups (back_to);
271 }
272 }
273
274 static void
275 exec_direction_forward (void *notused)
276 {
277 execution_direction = EXEC_FORWARD;
278 }
279
280 static void
281 exec_reverse_continue (char **argv, int argc)
282 {
283 enum exec_direction_kind dir = execution_direction;
284 struct cleanup *old_chain;
285
286 if (dir == EXEC_ERROR)
287 error (_("Target %s does not support this command."), target_shortname);
288
289 if (dir == EXEC_REVERSE)
290 error (_("Already in reverse mode."));
291
292 if (!target_can_execute_reverse)
293 error (_("Target %s does not support this command."), target_shortname);
294
295 old_chain = make_cleanup (exec_direction_forward, NULL);
296 execution_direction = EXEC_REVERSE;
297 exec_continue (argv, argc);
298 do_cleanups (old_chain);
299 }
300
301 void
302 mi_cmd_exec_continue (char *command, char **argv, int argc)
303 {
304 if (argc > 0 && strcmp (argv[0], "--reverse") == 0)
305 exec_reverse_continue (argv + 1, argc - 1);
306 else
307 exec_continue (argv, argc);
308 }
309
310 static int
311 interrupt_thread_callback (struct thread_info *thread, void *arg)
312 {
313 int pid = *(int *)arg;
314
315 if (!is_running (thread->ptid))
316 return 0;
317
318 if (PIDGET (thread->ptid) != pid)
319 return 0;
320
321 target_stop (thread->ptid);
322 return 0;
323 }
324
325 /* Interrupt the execution of the target. Note how we must play around
326 with the token variables, in order to display the current token in
327 the result of the interrupt command, and the previous execution
328 token when the target finally stops. See comments in
329 mi_cmd_execute. */
330 void
331 mi_cmd_exec_interrupt (char *command, char **argv, int argc)
332 {
333 /* In all-stop mode, everything stops, so we don't need to try
334 anything specific. */
335 if (!non_stop)
336 {
337 interrupt_target_1 (0);
338 return;
339 }
340
341 if (current_context->all)
342 {
343 /* This will interrupt all threads in all inferiors. */
344 interrupt_target_1 (1);
345 }
346 else if (current_context->thread_group != -1)
347 {
348 struct inferior *inf = find_inferior_id (current_context->thread_group);
349
350 iterate_over_threads (interrupt_thread_callback, &inf->pid);
351 }
352 else
353 {
354 /* Interrupt just the current thread -- either explicitly
355 specified via --thread or whatever was current before
356 MI command was sent. */
357 interrupt_target_1 (0);
358 }
359 }
360
361 static int
362 run_one_inferior (struct inferior *inf, void *arg)
363 {
364 if (inf->pid != 0)
365 {
366 if (inf->pid != ptid_get_pid (inferior_ptid))
367 {
368 struct thread_info *tp;
369
370 tp = any_thread_of_process (inf->pid);
371 if (!tp)
372 error (_("Inferior has no threads."));
373
374 switch_to_thread (tp->ptid);
375 }
376 }
377 else
378 {
379 set_current_inferior (inf);
380 switch_to_thread (null_ptid);
381 set_current_program_space (inf->pspace);
382 }
383 mi_execute_cli_command ("run", target_can_async_p (),
384 target_can_async_p () ? "&" : NULL);
385 return 0;
386 }
387
388 void
389 mi_cmd_exec_run (char *command, char **argv, int argc)
390 {
391 if (current_context->all)
392 {
393 struct cleanup *back_to = save_current_space_and_thread ();
394
395 iterate_over_inferiors (run_one_inferior, NULL);
396 do_cleanups (back_to);
397 }
398 else
399 {
400 mi_execute_cli_command ("run", target_can_async_p (),
401 target_can_async_p () ? "&" : NULL);
402 }
403 }
404
405
406 static int
407 find_thread_of_process (struct thread_info *ti, void *p)
408 {
409 int pid = *(int *)p;
410
411 if (PIDGET (ti->ptid) == pid && !is_exited (ti->ptid))
412 return 1;
413
414 return 0;
415 }
416
417 void
418 mi_cmd_target_detach (char *command, char **argv, int argc)
419 {
420 if (argc != 0 && argc != 1)
421 error ("Usage: -target-detach [thread-group]");
422
423 if (argc == 1)
424 {
425 struct thread_info *tp;
426 char *end = argv[0];
427 int pid = strtol (argv[0], &end, 10);
428
429 if (*end != '\0')
430 error (_("Cannot parse thread group id '%s'"), argv[0]);
431
432 /* Pick any thread in the desired process. Current
433 target_detach deteches from the parent of inferior_ptid. */
434 tp = iterate_over_threads (find_thread_of_process, &pid);
435 if (!tp)
436 error (_("Thread group is empty"));
437
438 switch_to_thread (tp->ptid);
439 }
440
441 detach_command (NULL, 0);
442 }
443
444 void
445 mi_cmd_thread_select (char *command, char **argv, int argc)
446 {
447 enum gdb_rc rc;
448 char *mi_error_message;
449
450 if (argc != 1)
451 error ("mi_cmd_thread_select: USAGE: threadnum.");
452
453 rc = gdb_thread_select (uiout, argv[0], &mi_error_message);
454
455 if (rc == GDB_RC_FAIL)
456 {
457 make_cleanup (xfree, mi_error_message);
458 error ("%s", mi_error_message);
459 }
460 }
461
462 void
463 mi_cmd_thread_list_ids (char *command, char **argv, int argc)
464 {
465 enum gdb_rc rc;
466 char *mi_error_message;
467
468 if (argc != 0)
469 error ("mi_cmd_thread_list_ids: No arguments required.");
470
471 rc = gdb_list_thread_ids (uiout, &mi_error_message);
472
473 if (rc == GDB_RC_FAIL)
474 {
475 make_cleanup (xfree, mi_error_message);
476 error ("%s", mi_error_message);
477 }
478 }
479
480 void
481 mi_cmd_thread_info (char *command, char **argv, int argc)
482 {
483 int thread = -1;
484
485 if (argc != 0 && argc != 1)
486 error ("Invalid MI command");
487
488 if (argc == 1)
489 thread = atoi (argv[0]);
490
491 print_thread_info (uiout, thread, -1);
492 }
493
494 struct collect_cores_data
495 {
496 int pid;
497
498 VEC (int) *cores;
499 };
500
501 static int
502 collect_cores (struct thread_info *ti, void *xdata)
503 {
504 struct collect_cores_data *data = xdata;
505
506 if (ptid_get_pid (ti->ptid) == data->pid)
507 {
508 int core = target_core_of_thread (ti->ptid);
509
510 if (core != -1)
511 VEC_safe_push (int, data->cores, core);
512 }
513
514 return 0;
515 }
516
517 static int *
518 unique (int *b, int *e)
519 {
520 int *d = b;
521
522 while (++b != e)
523 if (*d != *b)
524 *++d = *b;
525 return ++d;
526 }
527
528 struct print_one_inferior_data
529 {
530 int recurse;
531 VEC (int) *inferiors;
532 };
533
534 static int
535 print_one_inferior (struct inferior *inferior, void *xdata)
536 {
537 struct print_one_inferior_data *top_data = xdata;
538
539 if (VEC_empty (int, top_data->inferiors)
540 || bsearch (&(inferior->pid), VEC_address (int, top_data->inferiors),
541 VEC_length (int, top_data->inferiors), sizeof (int),
542 compare_positive_ints))
543 {
544 struct collect_cores_data data;
545 struct cleanup *back_to
546 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
547
548 ui_out_field_fmt (uiout, "id", "i%d", inferior->num);
549 ui_out_field_string (uiout, "type", "process");
550 if (inferior->pid != 0)
551 ui_out_field_int (uiout, "pid", inferior->pid);
552
553 if (inferior->pspace->ebfd)
554 {
555 ui_out_field_string (uiout, "executable",
556 bfd_get_filename (inferior->pspace->ebfd));
557 }
558
559 data.cores = 0;
560 if (inferior->pid != 0)
561 {
562 data.pid = inferior->pid;
563 iterate_over_threads (collect_cores, &data);
564 }
565
566 if (!VEC_empty (int, data.cores))
567 {
568 int *b, *e;
569 struct cleanup *back_to_2 =
570 make_cleanup_ui_out_list_begin_end (uiout, "cores");
571
572 qsort (VEC_address (int, data.cores),
573 VEC_length (int, data.cores), sizeof (int),
574 compare_positive_ints);
575
576 b = VEC_address (int, data.cores);
577 e = b + VEC_length (int, data.cores);
578 e = unique (b, e);
579
580 for (; b != e; ++b)
581 ui_out_field_int (uiout, NULL, *b);
582
583 do_cleanups (back_to_2);
584 }
585
586 if (top_data->recurse)
587 print_thread_info (uiout, -1, inferior->pid);
588
589 do_cleanups (back_to);
590 }
591
592 return 0;
593 }
594
595 /* Output a field named 'cores' with a list as the value. The elements of
596 the list are obtained by splitting 'cores' on comma. */
597
598 static void
599 output_cores (struct ui_out *uiout, const char *field_name, const char *xcores)
600 {
601 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end (uiout,
602 field_name);
603 char *cores = xstrdup (xcores);
604 char *p = cores;
605
606 make_cleanup (xfree, cores);
607
608 for (p = strtok (p, ","); p; p = strtok (NULL, ","))
609 ui_out_field_string (uiout, NULL, p);
610
611 do_cleanups (back_to);
612 }
613
614 static void
615 free_vector_of_ints (void *xvector)
616 {
617 VEC (int) **vector = xvector;
618
619 VEC_free (int, *vector);
620 }
621
622 static void
623 do_nothing (splay_tree_key k)
624 {
625 }
626
627 static void
628 free_vector_of_osdata_items (splay_tree_value xvalue)
629 {
630 VEC (osdata_item_s) *value = (VEC (osdata_item_s) *) xvalue;
631
632 /* We don't free the items itself, it will be done separately. */
633 VEC_free (osdata_item_s, value);
634 }
635
636 static int
637 splay_tree_int_comparator (splay_tree_key xa, splay_tree_key xb)
638 {
639 int a = xa;
640 int b = xb;
641
642 return a - b;
643 }
644
645 static void
646 free_splay_tree (void *xt)
647 {
648 splay_tree t = xt;
649 splay_tree_delete (t);
650 }
651
652 static void
653 list_available_thread_groups (VEC (int) *ids, int recurse)
654 {
655 struct osdata *data;
656 struct osdata_item *item;
657 int ix_items;
658
659 /* This keeps a map from integer (pid) to VEC (struct osdata_item *)*
660 The vector contains information about all threads for the given pid.
661 This is assigned an initial value to avoid "may be used uninitialized"
662 warning from gcc. */
663 splay_tree tree = NULL;
664
665 /* get_osdata will throw if it cannot return data. */
666 data = get_osdata ("processes");
667 make_cleanup_osdata_free (data);
668
669 if (recurse)
670 {
671 struct osdata *threads = get_osdata ("threads");
672
673 make_cleanup_osdata_free (threads);
674 tree = splay_tree_new (splay_tree_int_comparator,
675 do_nothing,
676 free_vector_of_osdata_items);
677 make_cleanup (free_splay_tree, tree);
678
679 for (ix_items = 0;
680 VEC_iterate (osdata_item_s, threads->items,
681 ix_items, item);
682 ix_items++)
683 {
684 const char *pid = get_osdata_column (item, "pid");
685 int pid_i = strtoul (pid, NULL, 0);
686 VEC (osdata_item_s) *vec = 0;
687
688 splay_tree_node n = splay_tree_lookup (tree, pid_i);
689 if (!n)
690 {
691 VEC_safe_push (osdata_item_s, vec, item);
692 splay_tree_insert (tree, pid_i, (splay_tree_value)vec);
693 }
694 else
695 {
696 vec = (VEC (osdata_item_s) *) n->value;
697 VEC_safe_push (osdata_item_s, vec, item);
698 n->value = (splay_tree_value) vec;
699 }
700 }
701 }
702
703 make_cleanup_ui_out_list_begin_end (uiout, "groups");
704
705 for (ix_items = 0;
706 VEC_iterate (osdata_item_s, data->items,
707 ix_items, item);
708 ix_items++)
709 {
710 struct cleanup *back_to;
711
712 const char *pid = get_osdata_column (item, "pid");
713 const char *cmd = get_osdata_column (item, "command");
714 const char *user = get_osdata_column (item, "user");
715 const char *cores = get_osdata_column (item, "cores");
716
717 int pid_i = strtoul (pid, NULL, 0);
718
719 /* At present, the target will return all available processes
720 and if information about specific ones was required, we filter
721 undesired processes here. */
722 if (ids && bsearch (&pid_i, VEC_address (int, ids),
723 VEC_length (int, ids),
724 sizeof (int), compare_positive_ints) == NULL)
725 continue;
726
727
728 back_to = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
729
730 ui_out_field_fmt (uiout, "id", "%s", pid);
731 ui_out_field_string (uiout, "type", "process");
732 if (cmd)
733 ui_out_field_string (uiout, "description", cmd);
734 if (user)
735 ui_out_field_string (uiout, "user", user);
736 if (cores)
737 output_cores (uiout, "cores", cores);
738
739 if (recurse)
740 {
741 splay_tree_node n = splay_tree_lookup (tree, pid_i);
742 if (n)
743 {
744 VEC (osdata_item_s) *children = (VEC (osdata_item_s) *) n->value;
745 struct osdata_item *child;
746 int ix_child;
747
748 make_cleanup_ui_out_list_begin_end (uiout, "threads");
749
750 for (ix_child = 0;
751 VEC_iterate (osdata_item_s, children, ix_child, child);
752 ++ix_child)
753 {
754 struct cleanup *back_to_2 =
755 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
756 const char *tid = get_osdata_column (child, "tid");
757 const char *tcore = get_osdata_column (child, "core");
758
759 ui_out_field_string (uiout, "id", tid);
760 if (tcore)
761 ui_out_field_string (uiout, "core", tcore);
762
763 do_cleanups (back_to_2);
764 }
765 }
766 }
767
768 do_cleanups (back_to);
769 }
770 }
771
772 void
773 mi_cmd_list_thread_groups (char *command, char **argv, int argc)
774 {
775 struct cleanup *back_to;
776 int available = 0;
777 int recurse = 0;
778 VEC (int) *ids = 0;
779
780 enum opt
781 {
782 AVAILABLE_OPT, RECURSE_OPT
783 };
784 static struct mi_opt opts[] =
785 {
786 {"-available", AVAILABLE_OPT, 0},
787 {"-recurse", RECURSE_OPT, 1},
788 { 0, 0, 0 }
789 };
790
791 int optind = 0;
792 char *optarg;
793
794 while (1)
795 {
796 int opt = mi_getopt ("-list-thread-groups", argc, argv, opts,
797 &optind, &optarg);
798
799 if (opt < 0)
800 break;
801 switch ((enum opt) opt)
802 {
803 case AVAILABLE_OPT:
804 available = 1;
805 break;
806 case RECURSE_OPT:
807 if (strcmp (optarg, "0") == 0)
808 ;
809 else if (strcmp (optarg, "1") == 0)
810 recurse = 1;
811 else
812 error ("only '0' and '1' are valid values for the '--recurse' option");
813 break;
814 }
815 }
816
817 for (; optind < argc; ++optind)
818 {
819 char *end;
820 int inf = strtoul (argv[optind], &end, 0);
821
822 if (*end != '\0')
823 error ("invalid group id '%s'", argv[optind]);
824 VEC_safe_push (int, ids, inf);
825 }
826 if (VEC_length (int, ids) > 1)
827 qsort (VEC_address (int, ids),
828 VEC_length (int, ids),
829 sizeof (int), compare_positive_ints);
830
831 back_to = make_cleanup (free_vector_of_ints, &ids);
832
833 if (available)
834 {
835 list_available_thread_groups (ids, recurse);
836 }
837 else if (VEC_length (int, ids) == 1)
838 {
839 /* Local thread groups, single id. */
840 int pid = *VEC_address (int, ids);
841
842 if (!in_inferior_list (pid))
843 error ("Invalid thread group id '%d'", pid);
844 print_thread_info (uiout, -1, pid);
845 }
846 else
847 {
848 struct print_one_inferior_data data;
849
850 data.recurse = recurse;
851 data.inferiors = ids;
852
853 /* Local thread groups. Either no explicit ids -- and we
854 print everything, or several explicit ids. In both cases,
855 we print more than one group, and have to use 'groups'
856 as the top-level element. */
857 make_cleanup_ui_out_list_begin_end (uiout, "groups");
858 update_thread_list ();
859 iterate_over_inferiors (print_one_inferior, &data);
860 }
861
862 do_cleanups (back_to);
863 }
864
865 void
866 mi_cmd_data_list_register_names (char *command, char **argv, int argc)
867 {
868 struct gdbarch *gdbarch;
869 int regnum, numregs;
870 int i;
871 struct cleanup *cleanup;
872
873 /* Note that the test for a valid register must include checking the
874 gdbarch_register_name because gdbarch_num_regs may be allocated for
875 the union of the register sets within a family of related processors.
876 In this case, some entries of gdbarch_register_name will change depending
877 upon the particular processor being debugged. */
878
879 gdbarch = get_current_arch ();
880 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
881
882 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-names");
883
884 if (argc == 0) /* No args, just do all the regs. */
885 {
886 for (regnum = 0;
887 regnum < numregs;
888 regnum++)
889 {
890 if (gdbarch_register_name (gdbarch, regnum) == NULL
891 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
892 ui_out_field_string (uiout, NULL, "");
893 else
894 ui_out_field_string (uiout, NULL,
895 gdbarch_register_name (gdbarch, regnum));
896 }
897 }
898
899 /* Else, list of register #s, just do listed regs. */
900 for (i = 0; i < argc; i++)
901 {
902 regnum = atoi (argv[i]);
903 if (regnum < 0 || regnum >= numregs)
904 error ("bad register number");
905
906 if (gdbarch_register_name (gdbarch, regnum) == NULL
907 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
908 ui_out_field_string (uiout, NULL, "");
909 else
910 ui_out_field_string (uiout, NULL,
911 gdbarch_register_name (gdbarch, regnum));
912 }
913 do_cleanups (cleanup);
914 }
915
916 void
917 mi_cmd_data_list_changed_registers (char *command, char **argv, int argc)
918 {
919 static struct regcache *this_regs = NULL;
920 struct regcache *prev_regs;
921 struct gdbarch *gdbarch;
922 int regnum, numregs, changed;
923 int i;
924 struct cleanup *cleanup;
925
926 /* The last time we visited this function, the current frame's register
927 contents were saved in THIS_REGS. Move THIS_REGS over to PREV_REGS,
928 and refresh THIS_REGS with the now-current register contents. */
929
930 prev_regs = this_regs;
931 this_regs = frame_save_as_regcache (get_selected_frame (NULL));
932 cleanup = make_cleanup_regcache_xfree (prev_regs);
933
934 /* Note that the test for a valid register must include checking the
935 gdbarch_register_name because gdbarch_num_regs may be allocated for
936 the union of the register sets within a family of related processors.
937 In this case, some entries of gdbarch_register_name will change depending
938 upon the particular processor being debugged. */
939
940 gdbarch = get_regcache_arch (this_regs);
941 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
942
943 make_cleanup_ui_out_list_begin_end (uiout, "changed-registers");
944
945 if (argc == 0) /* No args, just do all the regs. */
946 {
947 for (regnum = 0;
948 regnum < numregs;
949 regnum++)
950 {
951 if (gdbarch_register_name (gdbarch, regnum) == NULL
952 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
953 continue;
954 changed = register_changed_p (regnum, prev_regs, this_regs);
955 if (changed < 0)
956 error ("mi_cmd_data_list_changed_registers: Unable to read register contents.");
957 else if (changed)
958 ui_out_field_int (uiout, NULL, regnum);
959 }
960 }
961
962 /* Else, list of register #s, just do listed regs. */
963 for (i = 0; i < argc; i++)
964 {
965 regnum = atoi (argv[i]);
966
967 if (regnum >= 0
968 && regnum < numregs
969 && gdbarch_register_name (gdbarch, regnum) != NULL
970 && *gdbarch_register_name (gdbarch, regnum) != '\000')
971 {
972 changed = register_changed_p (regnum, prev_regs, this_regs);
973 if (changed < 0)
974 error ("mi_cmd_data_list_register_change: Unable to read register contents.");
975 else if (changed)
976 ui_out_field_int (uiout, NULL, regnum);
977 }
978 else
979 error ("bad register number");
980 }
981 do_cleanups (cleanup);
982 }
983
984 static int
985 register_changed_p (int regnum, struct regcache *prev_regs,
986 struct regcache *this_regs)
987 {
988 struct gdbarch *gdbarch = get_regcache_arch (this_regs);
989 gdb_byte prev_buffer[MAX_REGISTER_SIZE];
990 gdb_byte this_buffer[MAX_REGISTER_SIZE];
991
992 /* Registers not valid in this frame return count as unchanged. */
993 if (!regcache_valid_p (this_regs, regnum))
994 return 0;
995
996 /* First time through or after gdbarch change consider all registers as
997 changed. Same for registers not valid in the previous frame. */
998 if (!prev_regs || get_regcache_arch (prev_regs) != gdbarch
999 || !regcache_valid_p (prev_regs, regnum))
1000 return 1;
1001
1002 /* Get register contents and compare. */
1003 regcache_cooked_read (prev_regs, regnum, prev_buffer);
1004 regcache_cooked_read (this_regs, regnum, this_buffer);
1005
1006 return memcmp (prev_buffer, this_buffer,
1007 register_size (gdbarch, regnum)) != 0;
1008 }
1009
1010 /* Return a list of register number and value pairs. The valid
1011 arguments expected are: a letter indicating the format in which to
1012 display the registers contents. This can be one of: x (hexadecimal), d
1013 (decimal), N (natural), t (binary), o (octal), r (raw). After the
1014 format argumetn there can be a sequence of numbers, indicating which
1015 registers to fetch the content of. If the format is the only argument,
1016 a list of all the registers with their values is returned. */
1017 void
1018 mi_cmd_data_list_register_values (char *command, char **argv, int argc)
1019 {
1020 struct frame_info *frame;
1021 struct gdbarch *gdbarch;
1022 int regnum, numregs, format;
1023 int i;
1024 struct cleanup *list_cleanup, *tuple_cleanup;
1025
1026 /* Note that the test for a valid register must include checking the
1027 gdbarch_register_name because gdbarch_num_regs may be allocated for
1028 the union of the register sets within a family of related processors.
1029 In this case, some entries of gdbarch_register_name will change depending
1030 upon the particular processor being debugged. */
1031
1032 if (argc == 0)
1033 error ("mi_cmd_data_list_register_values: Usage: -data-list-register-values <format> [<regnum1>...<regnumN>]");
1034
1035 format = (int) argv[0][0];
1036
1037 frame = get_selected_frame (NULL);
1038 gdbarch = get_frame_arch (frame);
1039 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1040
1041 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-values");
1042
1043 if (argc == 1) /* No args, beside the format: do all the regs. */
1044 {
1045 for (regnum = 0;
1046 regnum < numregs;
1047 regnum++)
1048 {
1049 if (gdbarch_register_name (gdbarch, regnum) == NULL
1050 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1051 continue;
1052 tuple_cleanup = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1053 ui_out_field_int (uiout, "number", regnum);
1054 get_register (frame, regnum, format);
1055 do_cleanups (tuple_cleanup);
1056 }
1057 }
1058
1059 /* Else, list of register #s, just do listed regs. */
1060 for (i = 1; i < argc; i++)
1061 {
1062 regnum = atoi (argv[i]);
1063
1064 if (regnum >= 0
1065 && regnum < numregs
1066 && gdbarch_register_name (gdbarch, regnum) != NULL
1067 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1068 {
1069 tuple_cleanup = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1070 ui_out_field_int (uiout, "number", regnum);
1071 get_register (frame, regnum, format);
1072 do_cleanups (tuple_cleanup);
1073 }
1074 else
1075 error ("bad register number");
1076 }
1077 do_cleanups (list_cleanup);
1078 }
1079
1080 /* Output one register's contents in the desired format. */
1081 static void
1082 get_register (struct frame_info *frame, int regnum, int format)
1083 {
1084 struct gdbarch *gdbarch = get_frame_arch (frame);
1085 gdb_byte buffer[MAX_REGISTER_SIZE];
1086 int optim;
1087 int realnum;
1088 CORE_ADDR addr;
1089 enum lval_type lval;
1090 static struct ui_stream *stb = NULL;
1091
1092 stb = ui_out_stream_new (uiout);
1093
1094 if (format == 'N')
1095 format = 0;
1096
1097 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, buffer);
1098
1099 if (optim)
1100 error ("Optimized out");
1101
1102 if (format == 'r')
1103 {
1104 int j;
1105 char *ptr, buf[1024];
1106
1107 strcpy (buf, "0x");
1108 ptr = buf + 2;
1109 for (j = 0; j < register_size (gdbarch, regnum); j++)
1110 {
1111 int idx = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ?
1112 j : register_size (gdbarch, regnum) - 1 - j;
1113
1114 sprintf (ptr, "%02x", (unsigned char) buffer[idx]);
1115 ptr += 2;
1116 }
1117 ui_out_field_string (uiout, "value", buf);
1118 /*fputs_filtered (buf, gdb_stdout); */
1119 }
1120 else
1121 {
1122 struct value_print_options opts;
1123
1124 get_formatted_print_options (&opts, format);
1125 opts.deref_ref = 1;
1126 val_print (register_type (gdbarch, regnum), buffer, 0, 0,
1127 stb->stream, 0, &opts, current_language);
1128 ui_out_field_stream (uiout, "value", stb);
1129 ui_out_stream_delete (stb);
1130 }
1131 }
1132
1133 /* Write given values into registers. The registers and values are
1134 given as pairs. The corresponding MI command is
1135 -data-write-register-values <format> [<regnum1> <value1>...<regnumN> <valueN>]*/
1136 void
1137 mi_cmd_data_write_register_values (char *command, char **argv, int argc)
1138 {
1139 struct regcache *regcache;
1140 struct gdbarch *gdbarch;
1141 int numregs, i;
1142 char format;
1143
1144 /* Note that the test for a valid register must include checking the
1145 gdbarch_register_name because gdbarch_num_regs may be allocated for
1146 the union of the register sets within a family of related processors.
1147 In this case, some entries of gdbarch_register_name will change depending
1148 upon the particular processor being debugged. */
1149
1150 regcache = get_current_regcache ();
1151 gdbarch = get_regcache_arch (regcache);
1152 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1153
1154 if (argc == 0)
1155 error ("mi_cmd_data_write_register_values: Usage: -data-write-register-values <format> [<regnum1> <value1>...<regnumN> <valueN>]");
1156
1157 format = (int) argv[0][0];
1158
1159 if (!target_has_registers)
1160 error ("mi_cmd_data_write_register_values: No registers.");
1161
1162 if (!(argc - 1))
1163 error ("mi_cmd_data_write_register_values: No regs and values specified.");
1164
1165 if ((argc - 1) % 2)
1166 error ("mi_cmd_data_write_register_values: Regs and vals are not in pairs.");
1167
1168 for (i = 1; i < argc; i = i + 2)
1169 {
1170 int regnum = atoi (argv[i]);
1171
1172 if (regnum >= 0 && regnum < numregs
1173 && gdbarch_register_name (gdbarch, regnum)
1174 && *gdbarch_register_name (gdbarch, regnum))
1175 {
1176 LONGEST value;
1177
1178 /* Get the value as a number. */
1179 value = parse_and_eval_address (argv[i + 1]);
1180
1181 /* Write it down. */
1182 regcache_cooked_write_signed (regcache, regnum, value);
1183 }
1184 else
1185 error ("bad register number");
1186 }
1187 }
1188
1189 /* Evaluate the value of the argument. The argument is an
1190 expression. If the expression contains spaces it needs to be
1191 included in double quotes. */
1192 void
1193 mi_cmd_data_evaluate_expression (char *command, char **argv, int argc)
1194 {
1195 struct expression *expr;
1196 struct cleanup *old_chain = NULL;
1197 struct value *val;
1198 struct ui_stream *stb = NULL;
1199 struct value_print_options opts;
1200
1201 stb = ui_out_stream_new (uiout);
1202
1203 if (argc != 1)
1204 {
1205 ui_out_stream_delete (stb);
1206 error ("mi_cmd_data_evaluate_expression: Usage: -data-evaluate-expression expression");
1207 }
1208
1209 expr = parse_expression (argv[0]);
1210
1211 old_chain = make_cleanup (free_current_contents, &expr);
1212
1213 val = evaluate_expression (expr);
1214
1215 /* Print the result of the expression evaluation. */
1216 get_user_print_options (&opts);
1217 opts.deref_ref = 0;
1218 val_print (value_type (val), value_contents (val),
1219 value_embedded_offset (val), value_address (val),
1220 stb->stream, 0, &opts, current_language);
1221
1222 ui_out_field_stream (uiout, "value", stb);
1223 ui_out_stream_delete (stb);
1224
1225 do_cleanups (old_chain);
1226 }
1227
1228 /* DATA-MEMORY-READ:
1229
1230 ADDR: start address of data to be dumped.
1231 WORD-FORMAT: a char indicating format for the ``word''. See
1232 the ``x'' command.
1233 WORD-SIZE: size of each ``word''; 1,2,4, or 8 bytes.
1234 NR_ROW: Number of rows.
1235 NR_COL: The number of colums (words per row).
1236 ASCHAR: (OPTIONAL) Append an ascii character dump to each row. Use
1237 ASCHAR for unprintable characters.
1238
1239 Reads SIZE*NR_ROW*NR_COL bytes starting at ADDR from memory and
1240 displayes them. Returns:
1241
1242 {addr="...",rowN={wordN="..." ,... [,ascii="..."]}, ...}
1243
1244 Returns:
1245 The number of bytes read is SIZE*ROW*COL. */
1246
1247 void
1248 mi_cmd_data_read_memory (char *command, char **argv, int argc)
1249 {
1250 struct gdbarch *gdbarch = get_current_arch ();
1251 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
1252 CORE_ADDR addr;
1253 long total_bytes;
1254 long nr_cols;
1255 long nr_rows;
1256 char word_format;
1257 struct type *word_type;
1258 long word_size;
1259 char word_asize;
1260 char aschar;
1261 gdb_byte *mbuf;
1262 int nr_bytes;
1263 long offset = 0;
1264 int optind = 0;
1265 char *optarg;
1266 enum opt
1267 {
1268 OFFSET_OPT
1269 };
1270 static struct mi_opt opts[] =
1271 {
1272 {"o", OFFSET_OPT, 1},
1273 { 0, 0, 0 }
1274 };
1275
1276 while (1)
1277 {
1278 int opt = mi_getopt ("mi_cmd_data_read_memory", argc, argv, opts,
1279 &optind, &optarg);
1280
1281 if (opt < 0)
1282 break;
1283 switch ((enum opt) opt)
1284 {
1285 case OFFSET_OPT:
1286 offset = atol (optarg);
1287 break;
1288 }
1289 }
1290 argv += optind;
1291 argc -= optind;
1292
1293 if (argc < 5 || argc > 6)
1294 error ("mi_cmd_data_read_memory: Usage: ADDR WORD-FORMAT WORD-SIZE NR-ROWS NR-COLS [ASCHAR].");
1295
1296 /* Extract all the arguments. */
1297
1298 /* Start address of the memory dump. */
1299 addr = parse_and_eval_address (argv[0]) + offset;
1300 /* The format character to use when displaying a memory word. See
1301 the ``x'' command. */
1302 word_format = argv[1][0];
1303 /* The size of the memory word. */
1304 word_size = atol (argv[2]);
1305 switch (word_size)
1306 {
1307 case 1:
1308 word_type = builtin_type (gdbarch)->builtin_int8;
1309 word_asize = 'b';
1310 break;
1311 case 2:
1312 word_type = builtin_type (gdbarch)->builtin_int16;
1313 word_asize = 'h';
1314 break;
1315 case 4:
1316 word_type = builtin_type (gdbarch)->builtin_int32;
1317 word_asize = 'w';
1318 break;
1319 case 8:
1320 word_type = builtin_type (gdbarch)->builtin_int64;
1321 word_asize = 'g';
1322 break;
1323 default:
1324 word_type = builtin_type (gdbarch)->builtin_int8;
1325 word_asize = 'b';
1326 }
1327 /* The number of rows. */
1328 nr_rows = atol (argv[3]);
1329 if (nr_rows <= 0)
1330 error ("mi_cmd_data_read_memory: invalid number of rows.");
1331
1332 /* Number of bytes per row. */
1333 nr_cols = atol (argv[4]);
1334 if (nr_cols <= 0)
1335 error ("mi_cmd_data_read_memory: invalid number of columns.");
1336
1337 /* The un-printable character when printing ascii. */
1338 if (argc == 6)
1339 aschar = *argv[5];
1340 else
1341 aschar = 0;
1342
1343 /* Create a buffer and read it in. */
1344 total_bytes = word_size * nr_rows * nr_cols;
1345 mbuf = xcalloc (total_bytes, 1);
1346 make_cleanup (xfree, mbuf);
1347
1348 /* Dispatch memory reads to the topmost target, not the flattened
1349 current_target. */
1350 nr_bytes = target_read_until_error (current_target.beneath,
1351 TARGET_OBJECT_MEMORY, NULL, mbuf,
1352 addr, total_bytes);
1353 if (nr_bytes <= 0)
1354 error ("Unable to read memory.");
1355
1356 /* Output the header information. */
1357 ui_out_field_core_addr (uiout, "addr", gdbarch, addr);
1358 ui_out_field_int (uiout, "nr-bytes", nr_bytes);
1359 ui_out_field_int (uiout, "total-bytes", total_bytes);
1360 ui_out_field_core_addr (uiout, "next-row",
1361 gdbarch, addr + word_size * nr_cols);
1362 ui_out_field_core_addr (uiout, "prev-row",
1363 gdbarch, addr - word_size * nr_cols);
1364 ui_out_field_core_addr (uiout, "next-page", gdbarch, addr + total_bytes);
1365 ui_out_field_core_addr (uiout, "prev-page", gdbarch, addr - total_bytes);
1366
1367 /* Build the result as a two dimentional table. */
1368 {
1369 struct ui_stream *stream = ui_out_stream_new (uiout);
1370 struct cleanup *cleanup_list_memory;
1371 int row;
1372 int row_byte;
1373
1374 cleanup_list_memory = make_cleanup_ui_out_list_begin_end (uiout, "memory");
1375 for (row = 0, row_byte = 0;
1376 row < nr_rows;
1377 row++, row_byte += nr_cols * word_size)
1378 {
1379 int col;
1380 int col_byte;
1381 struct cleanup *cleanup_tuple;
1382 struct cleanup *cleanup_list_data;
1383 struct value_print_options opts;
1384
1385 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1386 ui_out_field_core_addr (uiout, "addr", gdbarch, addr + row_byte);
1387 /* ui_out_field_core_addr_symbolic (uiout, "saddr", addr + row_byte); */
1388 cleanup_list_data = make_cleanup_ui_out_list_begin_end (uiout, "data");
1389 get_formatted_print_options (&opts, word_format);
1390 for (col = 0, col_byte = row_byte;
1391 col < nr_cols;
1392 col++, col_byte += word_size)
1393 {
1394 if (col_byte + word_size > nr_bytes)
1395 {
1396 ui_out_field_string (uiout, NULL, "N/A");
1397 }
1398 else
1399 {
1400 ui_file_rewind (stream->stream);
1401 print_scalar_formatted (mbuf + col_byte, word_type, &opts,
1402 word_asize, stream->stream);
1403 ui_out_field_stream (uiout, NULL, stream);
1404 }
1405 }
1406 do_cleanups (cleanup_list_data);
1407 if (aschar)
1408 {
1409 int byte;
1410
1411 ui_file_rewind (stream->stream);
1412 for (byte = row_byte; byte < row_byte + word_size * nr_cols; byte++)
1413 {
1414 if (byte >= nr_bytes)
1415 {
1416 fputc_unfiltered ('X', stream->stream);
1417 }
1418 else if (mbuf[byte] < 32 || mbuf[byte] > 126)
1419 {
1420 fputc_unfiltered (aschar, stream->stream);
1421 }
1422 else
1423 fputc_unfiltered (mbuf[byte], stream->stream);
1424 }
1425 ui_out_field_stream (uiout, "ascii", stream);
1426 }
1427 do_cleanups (cleanup_tuple);
1428 }
1429 ui_out_stream_delete (stream);
1430 do_cleanups (cleanup_list_memory);
1431 }
1432 do_cleanups (cleanups);
1433 }
1434
1435 /* DATA-MEMORY-WRITE:
1436
1437 COLUMN_OFFSET: optional argument. Must be preceeded by '-o'. The
1438 offset from the beginning of the memory grid row where the cell to
1439 be written is.
1440 ADDR: start address of the row in the memory grid where the memory
1441 cell is, if OFFSET_COLUMN is specified. Otherwise, the address of
1442 the location to write to.
1443 FORMAT: a char indicating format for the ``word''. See
1444 the ``x'' command.
1445 WORD_SIZE: size of each ``word''; 1,2,4, or 8 bytes
1446 VALUE: value to be written into the memory address.
1447
1448 Writes VALUE into ADDR + (COLUMN_OFFSET * WORD_SIZE).
1449
1450 Prints nothing. */
1451 void
1452 mi_cmd_data_write_memory (char *command, char **argv, int argc)
1453 {
1454 struct gdbarch *gdbarch = get_current_arch ();
1455 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1456 CORE_ADDR addr;
1457 char word_format;
1458 long word_size;
1459 /* FIXME: ezannoni 2000-02-17 LONGEST could possibly not be big
1460 enough when using a compiler other than GCC. */
1461 LONGEST value;
1462 void *buffer;
1463 struct cleanup *old_chain;
1464 long offset = 0;
1465 int optind = 0;
1466 char *optarg;
1467 enum opt
1468 {
1469 OFFSET_OPT
1470 };
1471 static struct mi_opt opts[] =
1472 {
1473 {"o", OFFSET_OPT, 1},
1474 { 0, 0, 0 }
1475 };
1476
1477 while (1)
1478 {
1479 int opt = mi_getopt ("mi_cmd_data_write_memory", argc, argv, opts,
1480 &optind, &optarg);
1481
1482 if (opt < 0)
1483 break;
1484 switch ((enum opt) opt)
1485 {
1486 case OFFSET_OPT:
1487 offset = atol (optarg);
1488 break;
1489 }
1490 }
1491 argv += optind;
1492 argc -= optind;
1493
1494 if (argc != 4)
1495 error ("mi_cmd_data_write_memory: Usage: [-o COLUMN_OFFSET] ADDR FORMAT WORD-SIZE VALUE.");
1496
1497 /* Extract all the arguments. */
1498 /* Start address of the memory dump. */
1499 addr = parse_and_eval_address (argv[0]);
1500 /* The format character to use when displaying a memory word. See
1501 the ``x'' command. */
1502 word_format = argv[1][0];
1503 /* The size of the memory word. */
1504 word_size = atol (argv[2]);
1505
1506 /* Calculate the real address of the write destination. */
1507 addr += (offset * word_size);
1508
1509 /* Get the value as a number. */
1510 value = parse_and_eval_address (argv[3]);
1511 /* Get the value into an array. */
1512 buffer = xmalloc (word_size);
1513 old_chain = make_cleanup (xfree, buffer);
1514 store_signed_integer (buffer, word_size, byte_order, value);
1515 /* Write it down to memory. */
1516 write_memory (addr, buffer, word_size);
1517 /* Free the buffer. */
1518 do_cleanups (old_chain);
1519 }
1520
1521 void
1522 mi_cmd_enable_timings (char *command, char **argv, int argc)
1523 {
1524 if (argc == 0)
1525 do_timings = 1;
1526 else if (argc == 1)
1527 {
1528 if (strcmp (argv[0], "yes") == 0)
1529 do_timings = 1;
1530 else if (strcmp (argv[0], "no") == 0)
1531 do_timings = 0;
1532 else
1533 goto usage_error;
1534 }
1535 else
1536 goto usage_error;
1537
1538 return;
1539
1540 usage_error:
1541 error ("mi_cmd_enable_timings: Usage: %s {yes|no}", command);
1542 }
1543
1544 void
1545 mi_cmd_list_features (char *command, char **argv, int argc)
1546 {
1547 if (argc == 0)
1548 {
1549 struct cleanup *cleanup = NULL;
1550
1551 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features");
1552 ui_out_field_string (uiout, NULL, "frozen-varobjs");
1553 ui_out_field_string (uiout, NULL, "pending-breakpoints");
1554 ui_out_field_string (uiout, NULL, "thread-info");
1555
1556 #if HAVE_PYTHON
1557 ui_out_field_string (uiout, NULL, "python");
1558 #endif
1559
1560 do_cleanups (cleanup);
1561 return;
1562 }
1563
1564 error ("-list-features should be passed no arguments");
1565 }
1566
1567 void
1568 mi_cmd_list_target_features (char *command, char **argv, int argc)
1569 {
1570 if (argc == 0)
1571 {
1572 struct cleanup *cleanup = NULL;
1573
1574 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features");
1575 if (target_can_async_p ())
1576 ui_out_field_string (uiout, NULL, "async");
1577
1578 do_cleanups (cleanup);
1579 return;
1580 }
1581
1582 error ("-list-target-features should be passed no arguments");
1583 }
1584
1585 void
1586 mi_cmd_add_inferior (char *command, char **argv, int argc)
1587 {
1588 struct inferior *inf;
1589
1590 if (argc != 0)
1591 error (_("-add-inferior should be passed no arguments"));
1592
1593 inf = add_inferior_with_spaces ();
1594
1595 ui_out_field_fmt (uiout, "inferior", "i%d", inf->num);
1596 }
1597
1598 void
1599 mi_cmd_remove_inferior (char *command, char **argv, int argc)
1600 {
1601 int id;
1602 struct inferior *inf;
1603
1604 if (argc != 1)
1605 error ("-remove-inferior should be passed a single argument");
1606
1607 if (sscanf (argv[1], "i%d", &id) != 1)
1608 error ("the thread group id is syntactically invalid");
1609
1610 inf = find_inferior_id (id);
1611 if (!inf)
1612 error ("the specified thread group does not exist");
1613
1614 delete_inferior_1 (inf, 1 /* silent */);
1615 }
1616
1617 \f
1618
1619 /* Execute a command within a safe environment.
1620 Return <0 for error; >=0 for ok.
1621
1622 args->action will tell mi_execute_command what action
1623 to perfrom after the given command has executed (display/suppress
1624 prompt, display error). */
1625
1626 static void
1627 captured_mi_execute_command (struct ui_out *uiout, void *data)
1628 {
1629 struct cleanup *cleanup;
1630 struct mi_parse *context = (struct mi_parse *) data;
1631
1632 if (do_timings)
1633 current_command_ts = context->cmd_start;
1634
1635 current_token = xstrdup (context->token);
1636 cleanup = make_cleanup (free_current_contents, &current_token);
1637
1638 running_result_record_printed = 0;
1639 mi_proceeded = 0;
1640 switch (context->op)
1641 {
1642 case MI_COMMAND:
1643 /* A MI command was read from the input stream. */
1644 if (mi_debug_p)
1645 /* FIXME: gdb_???? */
1646 fprintf_unfiltered (raw_stdout, " token=`%s' command=`%s' args=`%s'\n",
1647 context->token, context->command, context->args);
1648
1649
1650 mi_cmd_execute (context);
1651
1652 /* Print the result if there were no errors.
1653
1654 Remember that on the way out of executing a command, you have
1655 to directly use the mi_interp's uiout, since the command could
1656 have reset the interpreter, in which case the current uiout
1657 will most likely crash in the mi_out_* routines. */
1658 if (!running_result_record_printed)
1659 {
1660 fputs_unfiltered (context->token, raw_stdout);
1661 /* There's no particularly good reason why target-connect results
1662 in not ^done. Should kill ^connected for MI3. */
1663 fputs_unfiltered (strcmp (context->command, "target-select") == 0
1664 ? "^connected" : "^done", raw_stdout);
1665 mi_out_put (uiout, raw_stdout);
1666 mi_out_rewind (uiout);
1667 mi_print_timing_maybe ();
1668 fputs_unfiltered ("\n", raw_stdout);
1669 }
1670 else
1671 /* The command does not want anything to be printed. In that
1672 case, the command probably should not have written anything
1673 to uiout, but in case it has written something, discard it. */
1674 mi_out_rewind (uiout);
1675 break;
1676
1677 case CLI_COMMAND:
1678 {
1679 char *argv[2];
1680
1681 /* A CLI command was read from the input stream. */
1682 /* This "feature" will be removed as soon as we have a
1683 complete set of mi commands. */
1684 /* Echo the command on the console. */
1685 fprintf_unfiltered (gdb_stdlog, "%s\n", context->command);
1686 /* Call the "console" interpreter. */
1687 argv[0] = "console";
1688 argv[1] = context->command;
1689 mi_cmd_interpreter_exec ("-interpreter-exec", argv, 2);
1690
1691 /* If we changed interpreters, DON'T print out anything. */
1692 if (current_interp_named_p (INTERP_MI)
1693 || current_interp_named_p (INTERP_MI1)
1694 || current_interp_named_p (INTERP_MI2)
1695 || current_interp_named_p (INTERP_MI3))
1696 {
1697 if (!running_result_record_printed)
1698 {
1699 fputs_unfiltered (context->token, raw_stdout);
1700 fputs_unfiltered ("^done", raw_stdout);
1701 mi_out_put (uiout, raw_stdout);
1702 mi_out_rewind (uiout);
1703 mi_print_timing_maybe ();
1704 fputs_unfiltered ("\n", raw_stdout);
1705 }
1706 else
1707 mi_out_rewind (uiout);
1708 }
1709 break;
1710 }
1711
1712 }
1713
1714 do_cleanups (cleanup);
1715
1716 return;
1717 }
1718
1719
1720 void
1721 mi_execute_command (char *cmd, int from_tty)
1722 {
1723 struct mi_parse *command;
1724
1725 /* This is to handle EOF (^D). We just quit gdb. */
1726 /* FIXME: we should call some API function here. */
1727 if (cmd == 0)
1728 quit_force (NULL, from_tty);
1729
1730 target_log_command (cmd);
1731
1732 command = mi_parse (cmd);
1733
1734 if (command != NULL)
1735 {
1736 struct gdb_exception result;
1737 ptid_t previous_ptid = inferior_ptid;
1738
1739 if (do_timings)
1740 {
1741 command->cmd_start = (struct mi_timestamp *)
1742 xmalloc (sizeof (struct mi_timestamp));
1743 timestamp (command->cmd_start);
1744 }
1745
1746 result = catch_exception (uiout, captured_mi_execute_command, command,
1747 RETURN_MASK_ALL);
1748 if (result.reason < 0)
1749 {
1750 /* The command execution failed and error() was called
1751 somewhere. */
1752 fputs_unfiltered (command->token, raw_stdout);
1753 fputs_unfiltered ("^error,msg=\"", raw_stdout);
1754 if (result.message == NULL)
1755 fputs_unfiltered ("unknown error", raw_stdout);
1756 else
1757 fputstr_unfiltered (result.message, '"', raw_stdout);
1758 fputs_unfiltered ("\"\n", raw_stdout);
1759 mi_out_rewind (uiout);
1760 }
1761
1762 bpstat_do_actions ();
1763
1764 if (/* The notifications are only output when the top-level
1765 interpreter (specified on the command line) is MI. */
1766 ui_out_is_mi_like_p (interp_ui_out (top_level_interpreter ()))
1767 /* Don't try report anything if there are no threads --
1768 the program is dead. */
1769 && thread_count () != 0
1770 /* -thread-select explicitly changes thread. If frontend uses that
1771 internally, we don't want to emit =thread-selected, since
1772 =thread-selected is supposed to indicate user's intentions. */
1773 && strcmp (command->command, "thread-select") != 0)
1774 {
1775 struct mi_interp *mi = top_level_interpreter_data ();
1776 int report_change = 0;
1777
1778 if (command->thread == -1)
1779 {
1780 report_change = (!ptid_equal (previous_ptid, null_ptid)
1781 && !ptid_equal (inferior_ptid, previous_ptid)
1782 && !ptid_equal (inferior_ptid, null_ptid));
1783 }
1784 else if (!ptid_equal (inferior_ptid, null_ptid))
1785 {
1786 struct thread_info *ti = inferior_thread ();
1787
1788 report_change = (ti->num != command->thread);
1789 }
1790
1791 if (report_change)
1792 {
1793 struct thread_info *ti = inferior_thread ();
1794
1795 target_terminal_ours ();
1796 fprintf_unfiltered (mi->event_channel,
1797 "thread-selected,id=\"%d\"",
1798 ti->num);
1799 gdb_flush (mi->event_channel);
1800 }
1801 }
1802
1803 mi_parse_free (command);
1804 }
1805
1806 fputs_unfiltered ("(gdb) \n", raw_stdout);
1807 gdb_flush (raw_stdout);
1808 /* Print any buffered hook code. */
1809 /* ..... */
1810 }
1811
1812 static void
1813 mi_cmd_execute (struct mi_parse *parse)
1814 {
1815 struct cleanup *cleanup;
1816
1817 prepare_execute_command ();
1818
1819 cleanup = make_cleanup (null_cleanup, NULL);
1820
1821 if (parse->all && parse->thread_group != -1)
1822 error (_("Cannot specify --thread-group together with --all"));
1823
1824 if (parse->all && parse->thread != -1)
1825 error (_("Cannot specify --thread together with --all"));
1826
1827 if (parse->thread_group != -1 && parse->thread != -1)
1828 error (_("Cannot specify --thread together with --thread-group"));
1829
1830 if (parse->frame != -1 && parse->thread == -1)
1831 error (_("Cannot specify --frame without --thread"));
1832
1833 if (parse->thread_group != -1)
1834 {
1835 struct inferior *inf = find_inferior_id (parse->thread_group);
1836 struct thread_info *tp = 0;
1837
1838 if (!inf)
1839 error (_("Invalid thread group for the --thread-group option"));
1840
1841 set_current_inferior (inf);
1842 /* This behaviour means that if --thread-group option identifies
1843 an inferior with multiple threads, then a random one will be picked.
1844 This is not a problem -- frontend should always provide --thread if
1845 it wishes to operate on a specific thread. */
1846 if (inf->pid != 0)
1847 tp = any_thread_of_process (inf->pid);
1848 switch_to_thread (tp ? tp->ptid : null_ptid);
1849 set_current_program_space (inf->pspace);
1850 }
1851
1852 if (parse->thread != -1)
1853 {
1854 struct thread_info *tp = find_thread_id (parse->thread);
1855
1856 if (!tp)
1857 error (_("Invalid thread id: %d"), parse->thread);
1858
1859 if (is_exited (tp->ptid))
1860 error (_("Thread id: %d has terminated"), parse->thread);
1861
1862 switch_to_thread (tp->ptid);
1863 }
1864
1865 if (parse->frame != -1)
1866 {
1867 struct frame_info *fid;
1868 int frame = parse->frame;
1869
1870 fid = find_relative_frame (get_current_frame (), &frame);
1871 if (frame == 0)
1872 /* find_relative_frame was successful */
1873 select_frame (fid);
1874 else
1875 error (_("Invalid frame id: %d"), frame);
1876 }
1877
1878 current_context = parse;
1879
1880 if (parse->cmd->argv_func != NULL)
1881 parse->cmd->argv_func (parse->command, parse->argv, parse->argc);
1882 else if (parse->cmd->cli.cmd != 0)
1883 {
1884 /* FIXME: DELETE THIS. */
1885 /* The operation is still implemented by a cli command. */
1886 /* Must be a synchronous one. */
1887 mi_execute_cli_command (parse->cmd->cli.cmd, parse->cmd->cli.args_p,
1888 parse->args);
1889 }
1890 else
1891 {
1892 /* FIXME: DELETE THIS. */
1893 struct ui_file *stb;
1894
1895 stb = mem_fileopen ();
1896
1897 fputs_unfiltered ("Undefined mi command: ", stb);
1898 fputstr_unfiltered (parse->command, '"', stb);
1899 fputs_unfiltered (" (missing implementation)", stb);
1900
1901 make_cleanup_ui_file_delete (stb);
1902 error_stream (stb);
1903 }
1904 do_cleanups (cleanup);
1905 }
1906
1907 /* FIXME: This is just a hack so we can get some extra commands going.
1908 We don't want to channel things through the CLI, but call libgdb directly.
1909 Use only for synchronous commands. */
1910
1911 void
1912 mi_execute_cli_command (const char *cmd, int args_p, const char *args)
1913 {
1914 if (cmd != 0)
1915 {
1916 struct cleanup *old_cleanups;
1917 char *run;
1918
1919 if (args_p)
1920 run = xstrprintf ("%s %s", cmd, args);
1921 else
1922 run = xstrdup (cmd);
1923 if (mi_debug_p)
1924 /* FIXME: gdb_???? */
1925 fprintf_unfiltered (gdb_stdout, "cli=%s run=%s\n",
1926 cmd, run);
1927 old_cleanups = make_cleanup (xfree, run);
1928 execute_command ( /*ui */ run, 0 /*from_tty */ );
1929 do_cleanups (old_cleanups);
1930 return;
1931 }
1932 }
1933
1934 void
1935 mi_execute_async_cli_command (char *cli_command, char **argv, int argc)
1936 {
1937 struct cleanup *old_cleanups;
1938 char *run;
1939
1940 if (target_can_async_p ())
1941 run = xstrprintf ("%s %s&", cli_command, argc ? *argv : "");
1942 else
1943 run = xstrprintf ("%s %s", cli_command, argc ? *argv : "");
1944 old_cleanups = make_cleanup (xfree, run);
1945
1946 execute_command ( /*ui */ run, 0 /*from_tty */ );
1947
1948 if (target_can_async_p ())
1949 {
1950 /* If we're not executing, an exception should have been throw. */
1951 gdb_assert (is_running (inferior_ptid));
1952 do_cleanups (old_cleanups);
1953 }
1954 else
1955 {
1956 /* Do this before doing any printing. It would appear that some
1957 print code leaves garbage around in the buffer. */
1958 do_cleanups (old_cleanups);
1959 }
1960 }
1961
1962 void
1963 mi_load_progress (const char *section_name,
1964 unsigned long sent_so_far,
1965 unsigned long total_section,
1966 unsigned long total_sent,
1967 unsigned long grand_total)
1968 {
1969 struct timeval time_now, delta, update_threshold;
1970 static struct timeval last_update;
1971 static char *previous_sect_name = NULL;
1972 int new_section;
1973 struct ui_out *saved_uiout;
1974
1975 /* This function is called through deprecated_show_load_progress
1976 which means uiout may not be correct. Fix it for the duration
1977 of this function. */
1978 saved_uiout = uiout;
1979
1980 if (current_interp_named_p (INTERP_MI)
1981 || current_interp_named_p (INTERP_MI2))
1982 uiout = mi_out_new (2);
1983 else if (current_interp_named_p (INTERP_MI1))
1984 uiout = mi_out_new (1);
1985 else if (current_interp_named_p (INTERP_MI3))
1986 uiout = mi_out_new (3);
1987 else
1988 return;
1989
1990 update_threshold.tv_sec = 0;
1991 update_threshold.tv_usec = 500000;
1992 gettimeofday (&time_now, NULL);
1993
1994 delta.tv_usec = time_now.tv_usec - last_update.tv_usec;
1995 delta.tv_sec = time_now.tv_sec - last_update.tv_sec;
1996
1997 if (delta.tv_usec < 0)
1998 {
1999 delta.tv_sec -= 1;
2000 delta.tv_usec += 1000000L;
2001 }
2002
2003 new_section = (previous_sect_name ?
2004 strcmp (previous_sect_name, section_name) : 1);
2005 if (new_section)
2006 {
2007 struct cleanup *cleanup_tuple;
2008
2009 xfree (previous_sect_name);
2010 previous_sect_name = xstrdup (section_name);
2011
2012 if (current_token)
2013 fputs_unfiltered (current_token, raw_stdout);
2014 fputs_unfiltered ("+download", raw_stdout);
2015 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2016 ui_out_field_string (uiout, "section", section_name);
2017 ui_out_field_int (uiout, "section-size", total_section);
2018 ui_out_field_int (uiout, "total-size", grand_total);
2019 do_cleanups (cleanup_tuple);
2020 mi_out_put (uiout, raw_stdout);
2021 fputs_unfiltered ("\n", raw_stdout);
2022 gdb_flush (raw_stdout);
2023 }
2024
2025 if (delta.tv_sec >= update_threshold.tv_sec &&
2026 delta.tv_usec >= update_threshold.tv_usec)
2027 {
2028 struct cleanup *cleanup_tuple;
2029
2030 last_update.tv_sec = time_now.tv_sec;
2031 last_update.tv_usec = time_now.tv_usec;
2032 if (current_token)
2033 fputs_unfiltered (current_token, raw_stdout);
2034 fputs_unfiltered ("+download", raw_stdout);
2035 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2036 ui_out_field_string (uiout, "section", section_name);
2037 ui_out_field_int (uiout, "section-sent", sent_so_far);
2038 ui_out_field_int (uiout, "section-size", total_section);
2039 ui_out_field_int (uiout, "total-sent", total_sent);
2040 ui_out_field_int (uiout, "total-size", grand_total);
2041 do_cleanups (cleanup_tuple);
2042 mi_out_put (uiout, raw_stdout);
2043 fputs_unfiltered ("\n", raw_stdout);
2044 gdb_flush (raw_stdout);
2045 }
2046
2047 xfree (uiout);
2048 uiout = saved_uiout;
2049 }
2050
2051 static void
2052 timestamp (struct mi_timestamp *tv)
2053 {
2054 gettimeofday (&tv->wallclock, NULL);
2055 #ifdef HAVE_GETRUSAGE
2056 getrusage (RUSAGE_SELF, &rusage);
2057 tv->utime.tv_sec = rusage.ru_utime.tv_sec;
2058 tv->utime.tv_usec = rusage.ru_utime.tv_usec;
2059 tv->stime.tv_sec = rusage.ru_stime.tv_sec;
2060 tv->stime.tv_usec = rusage.ru_stime.tv_usec;
2061 #else
2062 {
2063 long usec = get_run_time ();
2064
2065 tv->utime.tv_sec = usec/1000000L;
2066 tv->utime.tv_usec = usec - 1000000L*tv->utime.tv_sec;
2067 tv->stime.tv_sec = 0;
2068 tv->stime.tv_usec = 0;
2069 }
2070 #endif
2071 }
2072
2073 static void
2074 print_diff_now (struct mi_timestamp *start)
2075 {
2076 struct mi_timestamp now;
2077
2078 timestamp (&now);
2079 print_diff (start, &now);
2080 }
2081
2082 void
2083 mi_print_timing_maybe (void)
2084 {
2085 /* If the command is -enable-timing then do_timings may be
2086 true whilst current_command_ts is not initialized. */
2087 if (do_timings && current_command_ts)
2088 print_diff_now (current_command_ts);
2089 }
2090
2091 static long
2092 timeval_diff (struct timeval start, struct timeval end)
2093 {
2094 return ((end.tv_sec - start.tv_sec) * 1000000L)
2095 + (end.tv_usec - start.tv_usec);
2096 }
2097
2098 static void
2099 print_diff (struct mi_timestamp *start, struct mi_timestamp *end)
2100 {
2101 fprintf_unfiltered
2102 (raw_stdout,
2103 ",time={wallclock=\"%0.5f\",user=\"%0.5f\",system=\"%0.5f\"}",
2104 timeval_diff (start->wallclock, end->wallclock) / 1000000.0,
2105 timeval_diff (start->utime, end->utime) / 1000000.0,
2106 timeval_diff (start->stime, end->stime) / 1000000.0);
2107 }
2108
2109 void
2110 mi_cmd_trace_define_variable (char *command, char **argv, int argc)
2111 {
2112 struct expression *expr;
2113 struct cleanup *back_to;
2114 LONGEST initval = 0;
2115 struct trace_state_variable *tsv;
2116 char *name = 0;
2117
2118 if (argc != 1 && argc != 2)
2119 error (_("Usage: -trace-define-variable VARIABLE [VALUE]"));
2120
2121 expr = parse_expression (argv[0]);
2122 back_to = make_cleanup (xfree, expr);
2123
2124 if (expr->nelts == 3 && expr->elts[0].opcode == OP_INTERNALVAR)
2125 {
2126 struct internalvar *intvar = expr->elts[1].internalvar;
2127
2128 if (intvar)
2129 name = internalvar_name (intvar);
2130 }
2131
2132 if (!name || *name == '\0')
2133 error (_("Invalid name of trace variable"));
2134
2135 tsv = find_trace_state_variable (name);
2136 if (!tsv)
2137 tsv = create_trace_state_variable (name);
2138
2139 if (argc == 2)
2140 initval = value_as_long (parse_and_eval (argv[1]));
2141
2142 tsv->initial_value = initval;
2143
2144 do_cleanups (back_to);
2145 }
2146
2147 void
2148 mi_cmd_trace_list_variables (char *command, char **argv, int argc)
2149 {
2150 if (argc != 0)
2151 error (_("-trace-list-variables: no arguments are allowed"));
2152
2153 tvariables_info_1 ();
2154 }
2155
2156 void
2157 mi_cmd_trace_find (char *command, char **argv, int argc)
2158 {
2159 char *mode;
2160
2161 if (argc == 0)
2162 error (_("trace selection mode is required"));
2163
2164 mode = argv[0];
2165
2166 if (strcmp (mode, "none") == 0)
2167 {
2168 tfind_1 (tfind_number, -1, 0, 0, 0);
2169 return;
2170 }
2171
2172 if (current_trace_status ()->running)
2173 error (_("May not look at trace frames while trace is running."));
2174
2175 if (strcmp (mode, "frame-number") == 0)
2176 {
2177 if (argc != 2)
2178 error (_("frame number is required"));
2179 tfind_1 (tfind_number, atoi (argv[1]), 0, 0, 0);
2180 }
2181 else if (strcmp (mode, "tracepoint-number") == 0)
2182 {
2183 if (argc != 2)
2184 error (_("tracepoint number is required"));
2185 tfind_1 (tfind_tp, atoi (argv[1]), 0, 0, 0);
2186 }
2187 else if (strcmp (mode, "pc") == 0)
2188 {
2189 if (argc != 2)
2190 error (_("PC is required"));
2191 tfind_1 (tfind_pc, 0, parse_and_eval_address (argv[1]), 0, 0);
2192 }
2193 else if (strcmp (mode, "pc-inside-range") == 0)
2194 {
2195 if (argc != 3)
2196 error (_("Start and end PC are required"));
2197 tfind_1 (tfind_range, 0, parse_and_eval_address (argv[1]),
2198 parse_and_eval_address (argv[2]), 0);
2199 }
2200 else if (strcmp (mode, "pc-outside-range") == 0)
2201 {
2202 if (argc != 3)
2203 error (_("Start and end PC are required"));
2204 tfind_1 (tfind_outside, 0, parse_and_eval_address (argv[1]),
2205 parse_and_eval_address (argv[2]), 0);
2206 }
2207 else if (strcmp (mode, "line") == 0)
2208 {
2209 struct symtabs_and_lines sals;
2210 struct symtab_and_line sal;
2211 static CORE_ADDR start_pc, end_pc;
2212 struct cleanup *back_to;
2213
2214 if (argc != 2)
2215 error (_("Line is required"));
2216
2217 sals = decode_line_spec (argv[1], 1);
2218 back_to = make_cleanup (xfree, sals.sals);
2219
2220 sal = sals.sals[0];
2221
2222 if (sal.symtab == 0)
2223 error (_("Could not find the specified line"));
2224
2225 if (sal.line > 0 && find_line_pc_range (sal, &start_pc, &end_pc))
2226 tfind_1 (tfind_range, 0, start_pc, end_pc - 1, 0);
2227 else
2228 error (_("Could not find the specified line"));
2229
2230 do_cleanups (back_to);
2231 }
2232 else
2233 error (_("Invalid mode '%s'"), mode);
2234
2235 if (has_stack_frames () || get_traceframe_number () >= 0)
2236 {
2237 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC);
2238 }
2239 }
2240
2241 void
2242 mi_cmd_trace_save (char *command, char **argv, int argc)
2243 {
2244 int target_saves = 0;
2245 char *filename;
2246
2247 if (argc != 1 && argc != 2)
2248 error (_("Usage: -trace-save [-r] filename"));
2249
2250 if (argc == 2)
2251 {
2252 filename = argv[1];
2253 if (strcmp (argv[0], "-r") == 0)
2254 target_saves = 1;
2255 else
2256 error (_("Invalid option: %s"), argv[0]);
2257 }
2258 else
2259 {
2260 filename = argv[0];
2261 }
2262
2263 trace_save (filename, target_saves);
2264 }
2265
2266
2267 void
2268 mi_cmd_trace_start (char *command, char **argv, int argc)
2269 {
2270 start_tracing ();
2271 }
2272
2273 void
2274 mi_cmd_trace_status (char *command, char **argv, int argc)
2275 {
2276 trace_status_mi (0);
2277 }
2278
2279 void
2280 mi_cmd_trace_stop (char *command, char **argv, int argc)
2281 {
2282 stop_tracing ();
2283 trace_status_mi (1);
2284 }