aarch64: Make "info address" resolve TLS variables
[binutils-gdb.git] / gdb / minsyms.c
1 /* GDB routines for manipulating the minimal symbol tables.
2 Copyright (C) 1992-2018 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying minimal symbol tables.
23
24 Minimal symbol tables are used to hold some very basic information about
25 all defined global symbols (text, data, bss, abs, etc). The only two
26 required pieces of information are the symbol's name and the address
27 associated with that symbol.
28
29 In many cases, even if a file was compiled with no special options for
30 debugging at all, as long as was not stripped it will contain sufficient
31 information to build useful minimal symbol tables using this structure.
32
33 Even when a file contains enough debugging information to build a full
34 symbol table, these minimal symbols are still useful for quickly mapping
35 between names and addresses, and vice versa. They are also sometimes used
36 to figure out what full symbol table entries need to be read in. */
37
38
39 #include "defs.h"
40 #include <ctype.h>
41 #include "symtab.h"
42 #include "bfd.h"
43 #include "filenames.h"
44 #include "symfile.h"
45 #include "objfiles.h"
46 #include "demangle.h"
47 #include "value.h"
48 #include "cp-abi.h"
49 #include "target.h"
50 #include "cp-support.h"
51 #include "language.h"
52 #include "cli/cli-utils.h"
53 #include "symbol.h"
54 #include <algorithm>
55 #include "safe-ctype.h"
56
57 /* See minsyms.h. */
58
59 bool
60 msymbol_is_function (struct objfile *objfile, minimal_symbol *minsym,
61 CORE_ADDR *func_address_p)
62 {
63 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
64
65 switch (minsym->type)
66 {
67 case mst_slot_got_plt:
68 case mst_data:
69 case mst_bss:
70 case mst_abs:
71 case mst_file_data:
72 case mst_file_bss:
73 {
74 struct gdbarch *gdbarch = get_objfile_arch (objfile);
75 CORE_ADDR pc = gdbarch_convert_from_func_ptr_addr (gdbarch, msym_addr,
76 &current_target);
77 if (pc != msym_addr)
78 {
79 if (func_address_p != NULL)
80 *func_address_p = pc;
81 return true;
82 }
83 return false;
84 }
85 default:
86 if (func_address_p != NULL)
87 *func_address_p = msym_addr;
88 return true;
89 }
90 }
91
92 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
93 At the end, copy them all into one newly allocated location on an objfile's
94 per-BFD storage obstack. */
95
96 #define BUNCH_SIZE 127
97
98 struct msym_bunch
99 {
100 struct msym_bunch *next;
101 struct minimal_symbol contents[BUNCH_SIZE];
102 };
103
104 /* See minsyms.h. */
105
106 unsigned int
107 msymbol_hash_iw (const char *string)
108 {
109 unsigned int hash = 0;
110
111 while (*string && *string != '(')
112 {
113 string = skip_spaces (string);
114 if (*string && *string != '(')
115 {
116 hash = SYMBOL_HASH_NEXT (hash, *string);
117 ++string;
118 }
119 }
120 return hash;
121 }
122
123 /* See minsyms.h. */
124
125 unsigned int
126 msymbol_hash (const char *string)
127 {
128 unsigned int hash = 0;
129
130 for (; *string; ++string)
131 hash = SYMBOL_HASH_NEXT (hash, *string);
132 return hash;
133 }
134
135 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */
136 static void
137 add_minsym_to_hash_table (struct minimal_symbol *sym,
138 struct minimal_symbol **table)
139 {
140 if (sym->hash_next == NULL)
141 {
142 unsigned int hash
143 = msymbol_hash (MSYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
144
145 sym->hash_next = table[hash];
146 table[hash] = sym;
147 }
148 }
149
150 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
151 TABLE. */
152 static void
153 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
154 struct objfile *objfile)
155 {
156 if (sym->demangled_hash_next == NULL)
157 {
158 unsigned int hash = search_name_hash (MSYMBOL_LANGUAGE (sym),
159 MSYMBOL_SEARCH_NAME (sym));
160
161 auto &vec = objfile->per_bfd->demangled_hash_languages;
162 auto it = std::lower_bound (vec.begin (), vec.end (),
163 MSYMBOL_LANGUAGE (sym));
164 if (it == vec.end () || *it != MSYMBOL_LANGUAGE (sym))
165 vec.insert (it, MSYMBOL_LANGUAGE (sym));
166
167 struct minimal_symbol **table
168 = objfile->per_bfd->msymbol_demangled_hash;
169 unsigned int hash_index = hash % MINIMAL_SYMBOL_HASH_SIZE;
170 sym->demangled_hash_next = table[hash_index];
171 table[hash_index] = sym;
172 }
173 }
174
175 /* Worker object for lookup_minimal_symbol. Stores temporary results
176 while walking the symbol tables. */
177
178 struct found_minimal_symbols
179 {
180 /* External symbols are best. */
181 bound_minimal_symbol external_symbol {};
182
183 /* File-local symbols are next best. */
184 bound_minimal_symbol file_symbol {};
185
186 /* Symbols for shared library trampolines are next best. */
187 bound_minimal_symbol trampoline_symbol {};
188
189 /* Called when a symbol name matches. Check if the minsym is a
190 better type than what we had already found, and record it in one
191 of the members fields if so. Returns true if we collected the
192 real symbol, in which case we can stop searching. */
193 bool maybe_collect (const char *sfile, objfile *objf,
194 minimal_symbol *msymbol);
195 };
196
197 /* See declaration above. */
198
199 bool
200 found_minimal_symbols::maybe_collect (const char *sfile,
201 struct objfile *objfile,
202 minimal_symbol *msymbol)
203 {
204 switch (MSYMBOL_TYPE (msymbol))
205 {
206 case mst_file_text:
207 case mst_file_data:
208 case mst_file_bss:
209 if (sfile == NULL
210 || filename_cmp (msymbol->filename, sfile) == 0)
211 {
212 file_symbol.minsym = msymbol;
213 file_symbol.objfile = objfile;
214 }
215 break;
216
217 case mst_solib_trampoline:
218
219 /* If a trampoline symbol is found, we prefer to keep
220 looking for the *real* symbol. If the actual symbol
221 is not found, then we'll use the trampoline
222 entry. */
223 if (trampoline_symbol.minsym == NULL)
224 {
225 trampoline_symbol.minsym = msymbol;
226 trampoline_symbol.objfile = objfile;
227 }
228 break;
229
230 case mst_unknown:
231 default:
232 external_symbol.minsym = msymbol;
233 external_symbol.objfile = objfile;
234 /* We have the real symbol. No use looking further. */
235 return true;
236 }
237
238 /* Keep looking. */
239 return false;
240 }
241
242 /* Walk the mangled name hash table, and pass each symbol whose name
243 matches LOOKUP_NAME according to NAMECMP to FOUND. */
244
245 static void
246 lookup_minimal_symbol_mangled (const char *lookup_name,
247 const char *sfile,
248 struct objfile *objfile,
249 struct minimal_symbol **table,
250 unsigned int hash,
251 int (*namecmp) (const char *, const char *),
252 found_minimal_symbols &found)
253 {
254 for (minimal_symbol *msymbol = table[hash];
255 msymbol != NULL;
256 msymbol = msymbol->hash_next)
257 {
258 const char *symbol_name = MSYMBOL_LINKAGE_NAME (msymbol);
259
260 if (namecmp (symbol_name, lookup_name) == 0
261 && found.maybe_collect (sfile, objfile, msymbol))
262 return;
263 }
264 }
265
266 /* Walk the demangled name hash table, and pass each symbol whose name
267 matches LOOKUP_NAME according to MATCHER to FOUND. */
268
269 static void
270 lookup_minimal_symbol_demangled (const lookup_name_info &lookup_name,
271 const char *sfile,
272 struct objfile *objfile,
273 struct minimal_symbol **table,
274 unsigned int hash,
275 symbol_name_matcher_ftype *matcher,
276 found_minimal_symbols &found)
277 {
278 for (minimal_symbol *msymbol = table[hash];
279 msymbol != NULL;
280 msymbol = msymbol->demangled_hash_next)
281 {
282 const char *symbol_name = MSYMBOL_SEARCH_NAME (msymbol);
283
284 if (matcher (symbol_name, lookup_name, NULL)
285 && found.maybe_collect (sfile, objfile, msymbol))
286 return;
287 }
288 }
289
290 /* Look through all the current minimal symbol tables and find the
291 first minimal symbol that matches NAME. If OBJF is non-NULL, limit
292 the search to that objfile. If SFILE is non-NULL, the only file-scope
293 symbols considered will be from that source file (global symbols are
294 still preferred). Returns a pointer to the minimal symbol that
295 matches, or NULL if no match is found.
296
297 Note: One instance where there may be duplicate minimal symbols with
298 the same name is when the symbol tables for a shared library and the
299 symbol tables for an executable contain global symbols with the same
300 names (the dynamic linker deals with the duplication).
301
302 It's also possible to have minimal symbols with different mangled
303 names, but identical demangled names. For example, the GNU C++ v3
304 ABI requires the generation of two (or perhaps three) copies of
305 constructor functions --- "in-charge", "not-in-charge", and
306 "allocate" copies; destructors may be duplicated as well.
307 Obviously, there must be distinct mangled names for each of these,
308 but the demangled names are all the same: S::S or S::~S. */
309
310 struct bound_minimal_symbol
311 lookup_minimal_symbol (const char *name, const char *sfile,
312 struct objfile *objf)
313 {
314 struct objfile *objfile;
315 found_minimal_symbols found;
316
317 unsigned int mangled_hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
318
319 auto *mangled_cmp
320 = (case_sensitivity == case_sensitive_on
321 ? strcmp
322 : strcasecmp);
323
324 if (sfile != NULL)
325 sfile = lbasename (sfile);
326
327 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
328
329 for (objfile = object_files;
330 objfile != NULL && found.external_symbol.minsym == NULL;
331 objfile = objfile->next)
332 {
333 if (objf == NULL || objf == objfile
334 || objf == objfile->separate_debug_objfile_backlink)
335 {
336 if (symbol_lookup_debug)
337 {
338 fprintf_unfiltered (gdb_stdlog,
339 "lookup_minimal_symbol (%s, %s, %s)\n",
340 name, sfile != NULL ? sfile : "NULL",
341 objfile_debug_name (objfile));
342 }
343
344 /* Do two passes: the first over the ordinary hash table,
345 and the second over the demangled hash table. */
346 lookup_minimal_symbol_mangled (name, sfile, objfile,
347 objfile->per_bfd->msymbol_hash,
348 mangled_hash, mangled_cmp, found);
349
350 /* If not found, try the demangled hash table. */
351 if (found.external_symbol.minsym == NULL)
352 {
353 /* Once for each language in the demangled hash names
354 table (usually just zero or one languages). */
355 for (auto lang : objfile->per_bfd->demangled_hash_languages)
356 {
357 unsigned int hash
358 = (lookup_name.search_name_hash (lang)
359 % MINIMAL_SYMBOL_HASH_SIZE);
360
361 symbol_name_matcher_ftype *match
362 = get_symbol_name_matcher (language_def (lang),
363 lookup_name);
364 struct minimal_symbol **msymbol_demangled_hash
365 = objfile->per_bfd->msymbol_demangled_hash;
366
367 lookup_minimal_symbol_demangled (lookup_name, sfile, objfile,
368 msymbol_demangled_hash,
369 hash, match, found);
370
371 if (found.external_symbol.minsym != NULL)
372 break;
373 }
374 }
375 }
376 }
377
378 /* External symbols are best. */
379 if (found.external_symbol.minsym != NULL)
380 {
381 if (symbol_lookup_debug)
382 {
383 minimal_symbol *minsym = found.external_symbol.minsym;
384
385 fprintf_unfiltered (gdb_stdlog,
386 "lookup_minimal_symbol (...) = %s (external)\n",
387 host_address_to_string (minsym));
388 }
389 return found.external_symbol;
390 }
391
392 /* File-local symbols are next best. */
393 if (found.file_symbol.minsym != NULL)
394 {
395 if (symbol_lookup_debug)
396 {
397 minimal_symbol *minsym = found.file_symbol.minsym;
398
399 fprintf_unfiltered (gdb_stdlog,
400 "lookup_minimal_symbol (...) = %s (file-local)\n",
401 host_address_to_string (minsym));
402 }
403 return found.file_symbol;
404 }
405
406 /* Symbols for shared library trampolines are next best. */
407 if (found.trampoline_symbol.minsym != NULL)
408 {
409 if (symbol_lookup_debug)
410 {
411 minimal_symbol *minsym = found.trampoline_symbol.minsym;
412
413 fprintf_unfiltered (gdb_stdlog,
414 "lookup_minimal_symbol (...) = %s (trampoline)\n",
415 host_address_to_string (minsym));
416 }
417
418 return found.trampoline_symbol;
419 }
420
421 /* Not found. */
422 if (symbol_lookup_debug)
423 fprintf_unfiltered (gdb_stdlog, "lookup_minimal_symbol (...) = NULL\n");
424 return {};
425 }
426
427 /* See minsyms.h. */
428
429 struct bound_minimal_symbol
430 lookup_bound_minimal_symbol (const char *name)
431 {
432 return lookup_minimal_symbol (name, NULL, NULL);
433 }
434
435 /* See common/symbol.h. */
436
437 int
438 find_minimal_symbol_address (const char *name, CORE_ADDR *addr,
439 struct objfile *objfile)
440 {
441 struct bound_minimal_symbol sym
442 = lookup_minimal_symbol (name, NULL, objfile);
443
444 if (sym.minsym != NULL)
445 *addr = BMSYMBOL_VALUE_ADDRESS (sym);
446
447 return sym.minsym == NULL;
448 }
449
450 /* Get the lookup name form best suitable for linkage name
451 matching. */
452
453 static const char *
454 linkage_name_str (const lookup_name_info &lookup_name)
455 {
456 /* Unlike most languages (including C++), Ada uses the
457 encoded/linkage name as the search name recorded in symbols. So
458 if debugging in Ada mode, prefer the Ada-encoded name. This also
459 makes Ada's verbatim match syntax ("<...>") work, because
460 "lookup_name.name()" includes the "<>"s, while
461 "lookup_name.ada().lookup_name()" is the encoded name with "<>"s
462 stripped. */
463 if (current_language->la_language == language_ada)
464 return lookup_name.ada ().lookup_name ().c_str ();
465
466 return lookup_name.name ().c_str ();
467 }
468
469 /* See minsyms.h. */
470
471 void
472 iterate_over_minimal_symbols (struct objfile *objf,
473 const lookup_name_info &lookup_name,
474 void (*callback) (struct minimal_symbol *,
475 void *),
476 void *user_data)
477 {
478
479 /* The first pass is over the ordinary hash table. */
480 {
481 const char *name = linkage_name_str (lookup_name);
482 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
483 auto *mangled_cmp
484 = (case_sensitivity == case_sensitive_on
485 ? strcmp
486 : strcasecmp);
487
488 for (minimal_symbol *iter = objf->per_bfd->msymbol_hash[hash];
489 iter != NULL;
490 iter = iter->hash_next)
491 {
492 if (mangled_cmp (MSYMBOL_LINKAGE_NAME (iter), name) == 0)
493 (*callback) (iter, user_data);
494 }
495 }
496
497 /* The second pass is over the demangled table. Once for each
498 language in the demangled hash names table (usually just zero or
499 one). */
500 for (auto lang : objf->per_bfd->demangled_hash_languages)
501 {
502 const language_defn *lang_def = language_def (lang);
503 symbol_name_matcher_ftype *name_match
504 = get_symbol_name_matcher (lang_def, lookup_name);
505
506 unsigned int hash
507 = lookup_name.search_name_hash (lang) % MINIMAL_SYMBOL_HASH_SIZE;
508 for (minimal_symbol *iter = objf->per_bfd->msymbol_demangled_hash[hash];
509 iter != NULL;
510 iter = iter->demangled_hash_next)
511 if (name_match (MSYMBOL_SEARCH_NAME (iter), lookup_name, NULL))
512 (*callback) (iter, user_data);
513 }
514 }
515
516 /* See minsyms.h. */
517
518 struct bound_minimal_symbol
519 lookup_minimal_symbol_text (const char *name, struct objfile *objf)
520 {
521 struct objfile *objfile;
522 struct minimal_symbol *msymbol;
523 struct bound_minimal_symbol found_symbol = { NULL, NULL };
524 struct bound_minimal_symbol found_file_symbol = { NULL, NULL };
525
526 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
527
528 for (objfile = object_files;
529 objfile != NULL && found_symbol.minsym == NULL;
530 objfile = objfile->next)
531 {
532 if (objf == NULL || objf == objfile
533 || objf == objfile->separate_debug_objfile_backlink)
534 {
535 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
536 msymbol != NULL && found_symbol.minsym == NULL;
537 msymbol = msymbol->hash_next)
538 {
539 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
540 (MSYMBOL_TYPE (msymbol) == mst_text
541 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc
542 || MSYMBOL_TYPE (msymbol) == mst_file_text))
543 {
544 switch (MSYMBOL_TYPE (msymbol))
545 {
546 case mst_file_text:
547 found_file_symbol.minsym = msymbol;
548 found_file_symbol.objfile = objfile;
549 break;
550 default:
551 found_symbol.minsym = msymbol;
552 found_symbol.objfile = objfile;
553 break;
554 }
555 }
556 }
557 }
558 }
559 /* External symbols are best. */
560 if (found_symbol.minsym)
561 return found_symbol;
562
563 /* File-local symbols are next best. */
564 return found_file_symbol;
565 }
566
567 /* See minsyms.h. */
568
569 struct minimal_symbol *
570 lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name,
571 struct objfile *objf)
572 {
573 struct objfile *objfile;
574 struct minimal_symbol *msymbol;
575
576 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
577
578 for (objfile = object_files;
579 objfile != NULL;
580 objfile = objfile->next)
581 {
582 if (objf == NULL || objf == objfile
583 || objf == objfile->separate_debug_objfile_backlink)
584 {
585 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
586 msymbol != NULL;
587 msymbol = msymbol->hash_next)
588 {
589 if (MSYMBOL_VALUE_ADDRESS (objfile, msymbol) == pc
590 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0)
591 return msymbol;
592 }
593 }
594 }
595
596 return NULL;
597 }
598
599 /* See minsyms.h. */
600
601 struct bound_minimal_symbol
602 lookup_minimal_symbol_solib_trampoline (const char *name,
603 struct objfile *objf)
604 {
605 struct objfile *objfile;
606 struct minimal_symbol *msymbol;
607 struct bound_minimal_symbol found_symbol = { NULL, NULL };
608
609 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
610
611 for (objfile = object_files;
612 objfile != NULL;
613 objfile = objfile->next)
614 {
615 if (objf == NULL || objf == objfile
616 || objf == objfile->separate_debug_objfile_backlink)
617 {
618 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
619 msymbol != NULL;
620 msymbol = msymbol->hash_next)
621 {
622 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
623 MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
624 {
625 found_symbol.objfile = objfile;
626 found_symbol.minsym = msymbol;
627 return found_symbol;
628 }
629 }
630 }
631 }
632
633 return found_symbol;
634 }
635
636 /* A helper function that makes *PC section-relative. This searches
637 the sections of OBJFILE and if *PC is in a section, it subtracts
638 the section offset and returns true. Otherwise it returns
639 false. */
640
641 static int
642 frob_address (struct objfile *objfile, CORE_ADDR *pc)
643 {
644 struct obj_section *iter;
645
646 ALL_OBJFILE_OSECTIONS (objfile, iter)
647 {
648 if (*pc >= obj_section_addr (iter) && *pc < obj_section_endaddr (iter))
649 {
650 *pc -= obj_section_offset (iter);
651 return 1;
652 }
653 }
654
655 return 0;
656 }
657
658 /* Search through the minimal symbol table for each objfile and find
659 the symbol whose address is the largest address that is still less
660 than or equal to PC, and matches SECTION (which is not NULL).
661 Returns a pointer to the minimal symbol if such a symbol is found,
662 or NULL if PC is not in a suitable range.
663 Note that we need to look through ALL the minimal symbol tables
664 before deciding on the symbol that comes closest to the specified PC.
665 This is because objfiles can overlap, for example objfile A has .text
666 at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and
667 .data at 0x40048.
668
669 If WANT_TRAMPOLINE is set, prefer mst_solib_trampoline symbols when
670 there are text and trampoline symbols at the same address.
671 Otherwise prefer mst_text symbols. */
672
673 static struct bound_minimal_symbol
674 lookup_minimal_symbol_by_pc_section_1 (CORE_ADDR pc_in,
675 struct obj_section *section,
676 int want_trampoline)
677 {
678 int lo;
679 int hi;
680 int newobj;
681 struct objfile *objfile;
682 struct minimal_symbol *msymbol;
683 struct minimal_symbol *best_symbol = NULL;
684 struct objfile *best_objfile = NULL;
685 struct bound_minimal_symbol result;
686 enum minimal_symbol_type want_type, other_type;
687
688 want_type = want_trampoline ? mst_solib_trampoline : mst_text;
689 other_type = want_trampoline ? mst_text : mst_solib_trampoline;
690
691 /* We can not require the symbol found to be in section, because
692 e.g. IRIX 6.5 mdebug relies on this code returning an absolute
693 symbol - but find_pc_section won't return an absolute section and
694 hence the code below would skip over absolute symbols. We can
695 still take advantage of the call to find_pc_section, though - the
696 object file still must match. In case we have separate debug
697 files, search both the file and its separate debug file. There's
698 no telling which one will have the minimal symbols. */
699
700 gdb_assert (section != NULL);
701
702 for (objfile = section->objfile;
703 objfile != NULL;
704 objfile = objfile_separate_debug_iterate (section->objfile, objfile))
705 {
706 CORE_ADDR pc = pc_in;
707
708 /* If this objfile has a minimal symbol table, go search it using
709 a binary search. Note that a minimal symbol table always consists
710 of at least two symbols, a "real" symbol and the terminating
711 "null symbol". If there are no real symbols, then there is no
712 minimal symbol table at all. */
713
714 if (objfile->per_bfd->minimal_symbol_count > 0)
715 {
716 int best_zero_sized = -1;
717
718 msymbol = objfile->per_bfd->msymbols;
719 lo = 0;
720 hi = objfile->per_bfd->minimal_symbol_count - 1;
721
722 /* This code assumes that the minimal symbols are sorted by
723 ascending address values. If the pc value is greater than or
724 equal to the first symbol's address, then some symbol in this
725 minimal symbol table is a suitable candidate for being the
726 "best" symbol. This includes the last real symbol, for cases
727 where the pc value is larger than any address in this vector.
728
729 By iterating until the address associated with the current
730 hi index (the endpoint of the test interval) is less than
731 or equal to the desired pc value, we accomplish two things:
732 (1) the case where the pc value is larger than any minimal
733 symbol address is trivially solved, (2) the address associated
734 with the hi index is always the one we want when the interation
735 terminates. In essence, we are iterating the test interval
736 down until the pc value is pushed out of it from the high end.
737
738 Warning: this code is trickier than it would appear at first. */
739
740 if (frob_address (objfile, &pc)
741 && pc >= MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[lo]))
742 {
743 while (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]) > pc)
744 {
745 /* pc is still strictly less than highest address. */
746 /* Note "new" will always be >= lo. */
747 newobj = (lo + hi) / 2;
748 if ((MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[newobj]) >= pc)
749 || (lo == newobj))
750 {
751 hi = newobj;
752 }
753 else
754 {
755 lo = newobj;
756 }
757 }
758
759 /* If we have multiple symbols at the same address, we want
760 hi to point to the last one. That way we can find the
761 right symbol if it has an index greater than hi. */
762 while (hi < objfile->per_bfd->minimal_symbol_count - 1
763 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
764 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi + 1])))
765 hi++;
766
767 /* Skip various undesirable symbols. */
768 while (hi >= 0)
769 {
770 /* Skip any absolute symbols. This is apparently
771 what adb and dbx do, and is needed for the CM-5.
772 There are two known possible problems: (1) on
773 ELF, apparently end, edata, etc. are absolute.
774 Not sure ignoring them here is a big deal, but if
775 we want to use them, the fix would go in
776 elfread.c. (2) I think shared library entry
777 points on the NeXT are absolute. If we want
778 special handling for this it probably should be
779 triggered by a special mst_abs_or_lib or some
780 such. */
781
782 if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs)
783 {
784 hi--;
785 continue;
786 }
787
788 /* If SECTION was specified, skip any symbol from
789 wrong section. */
790 if (section
791 /* Some types of debug info, such as COFF,
792 don't fill the bfd_section member, so don't
793 throw away symbols on those platforms. */
794 && MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi]) != NULL
795 && (!matching_obj_sections
796 (MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi]),
797 section)))
798 {
799 hi--;
800 continue;
801 }
802
803 /* If we are looking for a trampoline and this is a
804 text symbol, or the other way around, check the
805 preceding symbol too. If they are otherwise
806 identical prefer that one. */
807 if (hi > 0
808 && MSYMBOL_TYPE (&msymbol[hi]) == other_type
809 && MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type
810 && (MSYMBOL_SIZE (&msymbol[hi])
811 == MSYMBOL_SIZE (&msymbol[hi - 1]))
812 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
813 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1]))
814 && (MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi])
815 == MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi - 1])))
816 {
817 hi--;
818 continue;
819 }
820
821 /* If the minimal symbol has a zero size, save it
822 but keep scanning backwards looking for one with
823 a non-zero size. A zero size may mean that the
824 symbol isn't an object or function (e.g. a
825 label), or it may just mean that the size was not
826 specified. */
827 if (MSYMBOL_SIZE (&msymbol[hi]) == 0)
828 {
829 if (best_zero_sized == -1)
830 best_zero_sized = hi;
831 hi--;
832 continue;
833 }
834
835 /* If we are past the end of the current symbol, try
836 the previous symbol if it has a larger overlapping
837 size. This happens on i686-pc-linux-gnu with glibc;
838 the nocancel variants of system calls are inside
839 the cancellable variants, but both have sizes. */
840 if (hi > 0
841 && MSYMBOL_SIZE (&msymbol[hi]) != 0
842 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
843 + MSYMBOL_SIZE (&msymbol[hi]))
844 && pc < (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1])
845 + MSYMBOL_SIZE (&msymbol[hi - 1])))
846 {
847 hi--;
848 continue;
849 }
850
851 /* Otherwise, this symbol must be as good as we're going
852 to get. */
853 break;
854 }
855
856 /* If HI has a zero size, and best_zero_sized is set,
857 then we had two or more zero-sized symbols; prefer
858 the first one we found (which may have a higher
859 address). Also, if we ran off the end, be sure
860 to back up. */
861 if (best_zero_sized != -1
862 && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0))
863 hi = best_zero_sized;
864
865 /* If the minimal symbol has a non-zero size, and this
866 PC appears to be outside the symbol's contents, then
867 refuse to use this symbol. If we found a zero-sized
868 symbol with an address greater than this symbol's,
869 use that instead. We assume that if symbols have
870 specified sizes, they do not overlap. */
871
872 if (hi >= 0
873 && MSYMBOL_SIZE (&msymbol[hi]) != 0
874 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
875 + MSYMBOL_SIZE (&msymbol[hi])))
876 {
877 if (best_zero_sized != -1)
878 hi = best_zero_sized;
879 else
880 /* Go on to the next object file. */
881 continue;
882 }
883
884 /* The minimal symbol indexed by hi now is the best one in this
885 objfile's minimal symbol table. See if it is the best one
886 overall. */
887
888 if (hi >= 0
889 && ((best_symbol == NULL) ||
890 (MSYMBOL_VALUE_RAW_ADDRESS (best_symbol) <
891 MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]))))
892 {
893 best_symbol = &msymbol[hi];
894 best_objfile = objfile;
895 }
896 }
897 }
898 }
899
900 result.minsym = best_symbol;
901 result.objfile = best_objfile;
902 return result;
903 }
904
905 struct bound_minimal_symbol
906 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, struct obj_section *section)
907 {
908 if (section == NULL)
909 {
910 /* NOTE: cagney/2004-01-27: This was using find_pc_mapped_section to
911 force the section but that (well unless you're doing overlay
912 debugging) always returns NULL making the call somewhat useless. */
913 section = find_pc_section (pc);
914 if (section == NULL)
915 {
916 struct bound_minimal_symbol result;
917
918 memset (&result, 0, sizeof (result));
919 return result;
920 }
921 }
922 return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
923 }
924
925 /* See minsyms.h. */
926
927 struct bound_minimal_symbol
928 lookup_minimal_symbol_by_pc (CORE_ADDR pc)
929 {
930 struct obj_section *section = find_pc_section (pc);
931
932 if (section == NULL)
933 {
934 struct bound_minimal_symbol result;
935
936 memset (&result, 0, sizeof (result));
937 return result;
938 }
939 return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
940 }
941
942 /* Return non-zero iff PC is in an STT_GNU_IFUNC function resolver. */
943
944 int
945 in_gnu_ifunc_stub (CORE_ADDR pc)
946 {
947 struct bound_minimal_symbol msymbol = lookup_minimal_symbol_by_pc (pc);
948
949 return msymbol.minsym && MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc;
950 }
951
952 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
953
954 static CORE_ADDR
955 stub_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
956 {
957 error (_("GDB cannot resolve STT_GNU_IFUNC symbol at address %s without "
958 "the ELF support compiled in."),
959 paddress (gdbarch, pc));
960 }
961
962 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
963
964 static int
965 stub_gnu_ifunc_resolve_name (const char *function_name,
966 CORE_ADDR *function_address_p)
967 {
968 error (_("GDB cannot resolve STT_GNU_IFUNC symbol \"%s\" without "
969 "the ELF support compiled in."),
970 function_name);
971 }
972
973 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
974
975 static void
976 stub_gnu_ifunc_resolver_stop (struct breakpoint *b)
977 {
978 internal_error (__FILE__, __LINE__,
979 _("elf_gnu_ifunc_resolver_stop cannot be reached."));
980 }
981
982 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
983
984 static void
985 stub_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
986 {
987 internal_error (__FILE__, __LINE__,
988 _("elf_gnu_ifunc_resolver_return_stop cannot be reached."));
989 }
990
991 /* See elf_gnu_ifunc_fns for its real implementation. */
992
993 static const struct gnu_ifunc_fns stub_gnu_ifunc_fns =
994 {
995 stub_gnu_ifunc_resolve_addr,
996 stub_gnu_ifunc_resolve_name,
997 stub_gnu_ifunc_resolver_stop,
998 stub_gnu_ifunc_resolver_return_stop,
999 };
1000
1001 /* A placeholder for &elf_gnu_ifunc_fns. */
1002
1003 const struct gnu_ifunc_fns *gnu_ifunc_fns_p = &stub_gnu_ifunc_fns;
1004
1005 /* See minsyms.h. */
1006
1007 struct bound_minimal_symbol
1008 lookup_minimal_symbol_and_objfile (const char *name)
1009 {
1010 struct bound_minimal_symbol result;
1011 struct objfile *objfile;
1012
1013 ALL_OBJFILES (objfile)
1014 {
1015 result = lookup_minimal_symbol (name, NULL, objfile);
1016 if (result.minsym != NULL)
1017 return result;
1018 }
1019
1020 memset (&result, 0, sizeof (result));
1021 return result;
1022 }
1023 \f
1024
1025 /* Return leading symbol character for a BFD. If BFD is NULL,
1026 return the leading symbol character from the main objfile. */
1027
1028 static int
1029 get_symbol_leading_char (bfd *abfd)
1030 {
1031 if (abfd != NULL)
1032 return bfd_get_symbol_leading_char (abfd);
1033 if (symfile_objfile != NULL && symfile_objfile->obfd != NULL)
1034 return bfd_get_symbol_leading_char (symfile_objfile->obfd);
1035 return 0;
1036 }
1037
1038 /* See minsyms.h. */
1039
1040 minimal_symbol_reader::minimal_symbol_reader (struct objfile *obj)
1041 : m_objfile (obj),
1042 m_msym_bunch (NULL),
1043 /* Note that presetting m_msym_bunch_index to BUNCH_SIZE causes the
1044 first call to save a minimal symbol to allocate the memory for
1045 the first bunch. */
1046 m_msym_bunch_index (BUNCH_SIZE),
1047 m_msym_count (0)
1048 {
1049 }
1050
1051 /* Discard the currently collected minimal symbols, if any. If we wish
1052 to save them for later use, we must have already copied them somewhere
1053 else before calling this function.
1054
1055 FIXME: We could allocate the minimal symbol bunches on their own
1056 obstack and then simply blow the obstack away when we are done with
1057 it. Is it worth the extra trouble though? */
1058
1059 minimal_symbol_reader::~minimal_symbol_reader ()
1060 {
1061 struct msym_bunch *next;
1062
1063 while (m_msym_bunch != NULL)
1064 {
1065 next = m_msym_bunch->next;
1066 xfree (m_msym_bunch);
1067 m_msym_bunch = next;
1068 }
1069 }
1070
1071 /* See minsyms.h. */
1072
1073 void
1074 minimal_symbol_reader::record (const char *name, CORE_ADDR address,
1075 enum minimal_symbol_type ms_type)
1076 {
1077 int section;
1078
1079 switch (ms_type)
1080 {
1081 case mst_text:
1082 case mst_text_gnu_ifunc:
1083 case mst_file_text:
1084 case mst_solib_trampoline:
1085 section = SECT_OFF_TEXT (m_objfile);
1086 break;
1087 case mst_data:
1088 case mst_file_data:
1089 section = SECT_OFF_DATA (m_objfile);
1090 break;
1091 case mst_bss:
1092 case mst_file_bss:
1093 section = SECT_OFF_BSS (m_objfile);
1094 break;
1095 default:
1096 section = -1;
1097 }
1098
1099 record_with_info (name, address, ms_type, section);
1100 }
1101
1102 /* See minsyms.h. */
1103
1104 struct minimal_symbol *
1105 minimal_symbol_reader::record_full (const char *name, int name_len,
1106 bool copy_name, CORE_ADDR address,
1107 enum minimal_symbol_type ms_type,
1108 int section)
1109 {
1110 struct msym_bunch *newobj;
1111 struct minimal_symbol *msymbol;
1112
1113 /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
1114 the minimal symbols, because if there is also another symbol
1115 at the same address (e.g. the first function of the file),
1116 lookup_minimal_symbol_by_pc would have no way of getting the
1117 right one. */
1118 if (ms_type == mst_file_text && name[0] == 'g'
1119 && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0
1120 || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0))
1121 return (NULL);
1122
1123 /* It's safe to strip the leading char here once, since the name
1124 is also stored stripped in the minimal symbol table. */
1125 if (name[0] == get_symbol_leading_char (m_objfile->obfd))
1126 {
1127 ++name;
1128 --name_len;
1129 }
1130
1131 if (ms_type == mst_file_text && startswith (name, "__gnu_compiled"))
1132 return (NULL);
1133
1134 if (m_msym_bunch_index == BUNCH_SIZE)
1135 {
1136 newobj = XCNEW (struct msym_bunch);
1137 m_msym_bunch_index = 0;
1138 newobj->next = m_msym_bunch;
1139 m_msym_bunch = newobj;
1140 }
1141 msymbol = &m_msym_bunch->contents[m_msym_bunch_index];
1142 MSYMBOL_SET_LANGUAGE (msymbol, language_auto,
1143 &m_objfile->per_bfd->storage_obstack);
1144 MSYMBOL_SET_NAMES (msymbol, name, name_len, copy_name, m_objfile);
1145
1146 SET_MSYMBOL_VALUE_ADDRESS (msymbol, address);
1147 MSYMBOL_SECTION (msymbol) = section;
1148
1149 MSYMBOL_TYPE (msymbol) = ms_type;
1150 MSYMBOL_TARGET_FLAG_1 (msymbol) = 0;
1151 MSYMBOL_TARGET_FLAG_2 (msymbol) = 0;
1152 /* Do not use the SET_MSYMBOL_SIZE macro to initialize the size,
1153 as it would also set the has_size flag. */
1154 msymbol->size = 0;
1155
1156 /* The hash pointers must be cleared! If they're not,
1157 add_minsym_to_hash_table will NOT add this msymbol to the hash table. */
1158 msymbol->hash_next = NULL;
1159 msymbol->demangled_hash_next = NULL;
1160
1161 /* If we already read minimal symbols for this objfile, then don't
1162 ever allocate a new one. */
1163 if (!m_objfile->per_bfd->minsyms_read)
1164 {
1165 m_msym_bunch_index++;
1166 m_objfile->per_bfd->n_minsyms++;
1167 }
1168 m_msym_count++;
1169 return msymbol;
1170 }
1171
1172 /* Compare two minimal symbols by address and return a signed result based
1173 on unsigned comparisons, so that we sort into unsigned numeric order.
1174 Within groups with the same address, sort by name. */
1175
1176 static int
1177 compare_minimal_symbols (const void *fn1p, const void *fn2p)
1178 {
1179 const struct minimal_symbol *fn1;
1180 const struct minimal_symbol *fn2;
1181
1182 fn1 = (const struct minimal_symbol *) fn1p;
1183 fn2 = (const struct minimal_symbol *) fn2p;
1184
1185 if (MSYMBOL_VALUE_RAW_ADDRESS (fn1) < MSYMBOL_VALUE_RAW_ADDRESS (fn2))
1186 {
1187 return (-1); /* addr 1 is less than addr 2. */
1188 }
1189 else if (MSYMBOL_VALUE_RAW_ADDRESS (fn1) > MSYMBOL_VALUE_RAW_ADDRESS (fn2))
1190 {
1191 return (1); /* addr 1 is greater than addr 2. */
1192 }
1193 else
1194 /* addrs are equal: sort by name */
1195 {
1196 const char *name1 = MSYMBOL_LINKAGE_NAME (fn1);
1197 const char *name2 = MSYMBOL_LINKAGE_NAME (fn2);
1198
1199 if (name1 && name2) /* both have names */
1200 return strcmp (name1, name2);
1201 else if (name2)
1202 return 1; /* fn1 has no name, so it is "less". */
1203 else if (name1) /* fn2 has no name, so it is "less". */
1204 return -1;
1205 else
1206 return (0); /* Neither has a name, so they're equal. */
1207 }
1208 }
1209
1210 /* Compact duplicate entries out of a minimal symbol table by walking
1211 through the table and compacting out entries with duplicate addresses
1212 and matching names. Return the number of entries remaining.
1213
1214 On entry, the table resides between msymbol[0] and msymbol[mcount].
1215 On exit, it resides between msymbol[0] and msymbol[result_count].
1216
1217 When files contain multiple sources of symbol information, it is
1218 possible for the minimal symbol table to contain many duplicate entries.
1219 As an example, SVR4 systems use ELF formatted object files, which
1220 usually contain at least two different types of symbol tables (a
1221 standard ELF one and a smaller dynamic linking table), as well as
1222 DWARF debugging information for files compiled with -g.
1223
1224 Without compacting, the minimal symbol table for gdb itself contains
1225 over a 1000 duplicates, about a third of the total table size. Aside
1226 from the potential trap of not noticing that two successive entries
1227 identify the same location, this duplication impacts the time required
1228 to linearly scan the table, which is done in a number of places. So we
1229 just do one linear scan here and toss out the duplicates.
1230
1231 Note that we are not concerned here about recovering the space that
1232 is potentially freed up, because the strings themselves are allocated
1233 on the storage_obstack, and will get automatically freed when the symbol
1234 table is freed. The caller can free up the unused minimal symbols at
1235 the end of the compacted region if their allocation strategy allows it.
1236
1237 Also note we only go up to the next to last entry within the loop
1238 and then copy the last entry explicitly after the loop terminates.
1239
1240 Since the different sources of information for each symbol may
1241 have different levels of "completeness", we may have duplicates
1242 that have one entry with type "mst_unknown" and the other with a
1243 known type. So if the one we are leaving alone has type mst_unknown,
1244 overwrite its type with the type from the one we are compacting out. */
1245
1246 static int
1247 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
1248 struct objfile *objfile)
1249 {
1250 struct minimal_symbol *copyfrom;
1251 struct minimal_symbol *copyto;
1252
1253 if (mcount > 0)
1254 {
1255 copyfrom = copyto = msymbol;
1256 while (copyfrom < msymbol + mcount - 1)
1257 {
1258 if (MSYMBOL_VALUE_RAW_ADDRESS (copyfrom)
1259 == MSYMBOL_VALUE_RAW_ADDRESS ((copyfrom + 1))
1260 && MSYMBOL_SECTION (copyfrom) == MSYMBOL_SECTION (copyfrom + 1)
1261 && strcmp (MSYMBOL_LINKAGE_NAME (copyfrom),
1262 MSYMBOL_LINKAGE_NAME ((copyfrom + 1))) == 0)
1263 {
1264 if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
1265 {
1266 MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
1267 }
1268 copyfrom++;
1269 }
1270 else
1271 *copyto++ = *copyfrom++;
1272 }
1273 *copyto++ = *copyfrom++;
1274 mcount = copyto - msymbol;
1275 }
1276 return (mcount);
1277 }
1278
1279 /* Build (or rebuild) the minimal symbol hash tables. This is necessary
1280 after compacting or sorting the table since the entries move around
1281 thus causing the internal minimal_symbol pointers to become jumbled. */
1282
1283 static void
1284 build_minimal_symbol_hash_tables (struct objfile *objfile)
1285 {
1286 int i;
1287 struct minimal_symbol *msym;
1288
1289 /* Clear the hash tables. */
1290 for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
1291 {
1292 objfile->per_bfd->msymbol_hash[i] = 0;
1293 objfile->per_bfd->msymbol_demangled_hash[i] = 0;
1294 }
1295
1296 /* Now, (re)insert the actual entries. */
1297 for ((i = objfile->per_bfd->minimal_symbol_count,
1298 msym = objfile->per_bfd->msymbols);
1299 i > 0;
1300 i--, msym++)
1301 {
1302 msym->hash_next = 0;
1303 add_minsym_to_hash_table (msym, objfile->per_bfd->msymbol_hash);
1304
1305 msym->demangled_hash_next = 0;
1306 if (MSYMBOL_SEARCH_NAME (msym) != MSYMBOL_LINKAGE_NAME (msym))
1307 add_minsym_to_demangled_hash_table (msym, objfile);
1308 }
1309 }
1310
1311 /* Add the minimal symbols in the existing bunches to the objfile's official
1312 minimal symbol table. In most cases there is no minimal symbol table yet
1313 for this objfile, and the existing bunches are used to create one. Once
1314 in a while (for shared libraries for example), we add symbols (e.g. common
1315 symbols) to an existing objfile.
1316
1317 Because of the way minimal symbols are collected, we generally have no way
1318 of knowing what source language applies to any particular minimal symbol.
1319 Specifically, we have no way of knowing if the minimal symbol comes from a
1320 C++ compilation unit or not. So for the sake of supporting cached
1321 demangled C++ names, we have no choice but to try and demangle each new one
1322 that comes in. If the demangling succeeds, then we assume it is a C++
1323 symbol and set the symbol's language and demangled name fields
1324 appropriately. Note that in order to avoid unnecessary demanglings, and
1325 allocating obstack space that subsequently can't be freed for the demangled
1326 names, we mark all newly added symbols with language_auto. After
1327 compaction of the minimal symbols, we go back and scan the entire minimal
1328 symbol table looking for these new symbols. For each new symbol we attempt
1329 to demangle it, and if successful, record it as a language_cplus symbol
1330 and cache the demangled form on the symbol obstack. Symbols which don't
1331 demangle are marked as language_unknown symbols, which inhibits future
1332 attempts to demangle them if we later add more minimal symbols. */
1333
1334 void
1335 minimal_symbol_reader::install ()
1336 {
1337 int bindex;
1338 int mcount;
1339 struct msym_bunch *bunch;
1340 struct minimal_symbol *msymbols;
1341 int alloc_count;
1342
1343 if (m_objfile->per_bfd->minsyms_read)
1344 return;
1345
1346 if (m_msym_count > 0)
1347 {
1348 if (symtab_create_debug)
1349 {
1350 fprintf_unfiltered (gdb_stdlog,
1351 "Installing %d minimal symbols of objfile %s.\n",
1352 m_msym_count, objfile_name (m_objfile));
1353 }
1354
1355 /* Allocate enough space in the obstack, into which we will gather the
1356 bunches of new and existing minimal symbols, sort them, and then
1357 compact out the duplicate entries. Once we have a final table,
1358 we will give back the excess space. */
1359
1360 alloc_count = m_msym_count + m_objfile->per_bfd->minimal_symbol_count + 1;
1361 obstack_blank (&m_objfile->per_bfd->storage_obstack,
1362 alloc_count * sizeof (struct minimal_symbol));
1363 msymbols = (struct minimal_symbol *)
1364 obstack_base (&m_objfile->per_bfd->storage_obstack);
1365
1366 /* Copy in the existing minimal symbols, if there are any. */
1367
1368 if (m_objfile->per_bfd->minimal_symbol_count)
1369 memcpy ((char *) msymbols, (char *) m_objfile->per_bfd->msymbols,
1370 m_objfile->per_bfd->minimal_symbol_count * sizeof (struct minimal_symbol));
1371
1372 /* Walk through the list of minimal symbol bunches, adding each symbol
1373 to the new contiguous array of symbols. Note that we start with the
1374 current, possibly partially filled bunch (thus we use the current
1375 msym_bunch_index for the first bunch we copy over), and thereafter
1376 each bunch is full. */
1377
1378 mcount = m_objfile->per_bfd->minimal_symbol_count;
1379
1380 for (bunch = m_msym_bunch; bunch != NULL; bunch = bunch->next)
1381 {
1382 for (bindex = 0; bindex < m_msym_bunch_index; bindex++, mcount++)
1383 msymbols[mcount] = bunch->contents[bindex];
1384 m_msym_bunch_index = BUNCH_SIZE;
1385 }
1386
1387 /* Sort the minimal symbols by address. */
1388
1389 qsort (msymbols, mcount, sizeof (struct minimal_symbol),
1390 compare_minimal_symbols);
1391
1392 /* Compact out any duplicates, and free up whatever space we are
1393 no longer using. */
1394
1395 mcount = compact_minimal_symbols (msymbols, mcount, m_objfile);
1396
1397 obstack_blank_fast (&m_objfile->per_bfd->storage_obstack,
1398 (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol));
1399 msymbols = (struct minimal_symbol *)
1400 obstack_finish (&m_objfile->per_bfd->storage_obstack);
1401
1402 /* We also terminate the minimal symbol table with a "null symbol",
1403 which is *not* included in the size of the table. This makes it
1404 easier to find the end of the table when we are handed a pointer
1405 to some symbol in the middle of it. Zero out the fields in the
1406 "null symbol" allocated at the end of the array. Note that the
1407 symbol count does *not* include this null symbol, which is why it
1408 is indexed by mcount and not mcount-1. */
1409
1410 memset (&msymbols[mcount], 0, sizeof (struct minimal_symbol));
1411
1412 /* Attach the minimal symbol table to the specified objfile.
1413 The strings themselves are also located in the storage_obstack
1414 of this objfile. */
1415
1416 m_objfile->per_bfd->minimal_symbol_count = mcount;
1417 m_objfile->per_bfd->msymbols = msymbols;
1418
1419 /* Now build the hash tables; we can't do this incrementally
1420 at an earlier point since we weren't finished with the obstack
1421 yet. (And if the msymbol obstack gets moved, all the internal
1422 pointers to other msymbols need to be adjusted.) */
1423 build_minimal_symbol_hash_tables (m_objfile);
1424 }
1425 }
1426
1427 /* See minsyms.h. */
1428
1429 void
1430 terminate_minimal_symbol_table (struct objfile *objfile)
1431 {
1432 if (! objfile->per_bfd->msymbols)
1433 objfile->per_bfd->msymbols
1434 = ((struct minimal_symbol *)
1435 obstack_alloc (&objfile->per_bfd->storage_obstack,
1436 sizeof (struct minimal_symbol)));
1437
1438 {
1439 struct minimal_symbol *m
1440 = &objfile->per_bfd->msymbols[objfile->per_bfd->minimal_symbol_count];
1441
1442 memset (m, 0, sizeof (*m));
1443 /* Don't rely on these enumeration values being 0's. */
1444 MSYMBOL_TYPE (m) = mst_unknown;
1445 MSYMBOL_SET_LANGUAGE (m, language_unknown,
1446 &objfile->per_bfd->storage_obstack);
1447 }
1448 }
1449
1450 /* Check if PC is in a shared library trampoline code stub.
1451 Return minimal symbol for the trampoline entry or NULL if PC is not
1452 in a trampoline code stub. */
1453
1454 static struct minimal_symbol *
1455 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
1456 {
1457 struct obj_section *section = find_pc_section (pc);
1458 struct bound_minimal_symbol msymbol;
1459
1460 if (section == NULL)
1461 return NULL;
1462 msymbol = lookup_minimal_symbol_by_pc_section_1 (pc, section, 1);
1463
1464 if (msymbol.minsym != NULL
1465 && MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
1466 return msymbol.minsym;
1467 return NULL;
1468 }
1469
1470 /* If PC is in a shared library trampoline code stub, return the
1471 address of the `real' function belonging to the stub.
1472 Return 0 if PC is not in a trampoline code stub or if the real
1473 function is not found in the minimal symbol table.
1474
1475 We may fail to find the right function if a function with the
1476 same name is defined in more than one shared library, but this
1477 is considered bad programming style. We could return 0 if we find
1478 a duplicate function in case this matters someday. */
1479
1480 CORE_ADDR
1481 find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc)
1482 {
1483 struct objfile *objfile;
1484 struct minimal_symbol *msymbol;
1485 struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
1486
1487 if (tsymbol != NULL)
1488 {
1489 ALL_MSYMBOLS (objfile, msymbol)
1490 {
1491 if ((MSYMBOL_TYPE (msymbol) == mst_text
1492 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc)
1493 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
1494 MSYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1495 return MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1496
1497 /* Also handle minimal symbols pointing to function descriptors. */
1498 if (MSYMBOL_TYPE (msymbol) == mst_data
1499 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
1500 MSYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1501 {
1502 CORE_ADDR func;
1503
1504 func = gdbarch_convert_from_func_ptr_addr
1505 (get_objfile_arch (objfile),
1506 MSYMBOL_VALUE_ADDRESS (objfile, msymbol),
1507 &current_target);
1508
1509 /* Ignore data symbols that are not function descriptors. */
1510 if (func != MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
1511 return func;
1512 }
1513 }
1514 }
1515 return 0;
1516 }
1517
1518 /* See minsyms.h. */
1519
1520 CORE_ADDR
1521 minimal_symbol_upper_bound (struct bound_minimal_symbol minsym)
1522 {
1523 int i;
1524 short section;
1525 struct obj_section *obj_section;
1526 CORE_ADDR result;
1527 struct minimal_symbol *msymbol;
1528
1529 gdb_assert (minsym.minsym != NULL);
1530
1531 /* If the minimal symbol has a size, use it. Otherwise use the
1532 lesser of the next minimal symbol in the same section, or the end
1533 of the section, as the end of the function. */
1534
1535 if (MSYMBOL_SIZE (minsym.minsym) != 0)
1536 return BMSYMBOL_VALUE_ADDRESS (minsym) + MSYMBOL_SIZE (minsym.minsym);
1537
1538 /* Step over other symbols at this same address, and symbols in
1539 other sections, to find the next symbol in this section with a
1540 different address. */
1541
1542 msymbol = minsym.minsym;
1543 section = MSYMBOL_SECTION (msymbol);
1544 for (i = 1; MSYMBOL_LINKAGE_NAME (msymbol + i) != NULL; i++)
1545 {
1546 if ((MSYMBOL_VALUE_RAW_ADDRESS (msymbol + i)
1547 != MSYMBOL_VALUE_RAW_ADDRESS (msymbol))
1548 && MSYMBOL_SECTION (msymbol + i) == section)
1549 break;
1550 }
1551
1552 obj_section = MSYMBOL_OBJ_SECTION (minsym.objfile, minsym.minsym);
1553 if (MSYMBOL_LINKAGE_NAME (msymbol + i) != NULL
1554 && (MSYMBOL_VALUE_ADDRESS (minsym.objfile, msymbol + i)
1555 < obj_section_endaddr (obj_section)))
1556 result = MSYMBOL_VALUE_ADDRESS (minsym.objfile, msymbol + i);
1557 else
1558 /* We got the start address from the last msymbol in the objfile.
1559 So the end address is the end of the section. */
1560 result = obj_section_endaddr (obj_section);
1561
1562 return result;
1563 }