2003-11-16 Andrew Cagney <cagney@redhat.com>
[binutils-gdb.git] / gdb / mips-linux-tdep.c
1 /* Target-dependent code for GNU/Linux on MIPS processors.
2
3 Copyright 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "gdbcore.h"
24 #include "target.h"
25 #include "solib-svr4.h"
26 #include "osabi.h"
27 #include "mips-tdep.h"
28 #include "gdb_string.h"
29 #include "gdb_assert.h"
30
31 /* Copied from <asm/elf.h>. */
32 #define ELF_NGREG 45
33 #define ELF_NFPREG 33
34
35 typedef unsigned char elf_greg_t[4];
36 typedef elf_greg_t elf_gregset_t[ELF_NGREG];
37
38 typedef unsigned char elf_fpreg_t[8];
39 typedef elf_fpreg_t elf_fpregset_t[ELF_NFPREG];
40
41 /* 0 - 31 are integer registers, 32 - 63 are fp registers. */
42 #define FPR_BASE 32
43 #define PC 64
44 #define CAUSE 65
45 #define BADVADDR 66
46 #define MMHI 67
47 #define MMLO 68
48 #define FPC_CSR 69
49 #define FPC_EIR 70
50
51 #define EF_REG0 6
52 #define EF_REG31 37
53 #define EF_LO 38
54 #define EF_HI 39
55 #define EF_CP0_EPC 40
56 #define EF_CP0_BADVADDR 41
57 #define EF_CP0_STATUS 42
58 #define EF_CP0_CAUSE 43
59
60 #define EF_SIZE 180
61
62 /* Figure out where the longjmp will land.
63 We expect the first arg to be a pointer to the jmp_buf structure from
64 which we extract the pc (MIPS_LINUX_JB_PC) that we will land at. The pc
65 is copied into PC. This routine returns 1 on success. */
66
67 #define MIPS_LINUX_JB_ELEMENT_SIZE 4
68 #define MIPS_LINUX_JB_PC 0
69
70 static int
71 mips_linux_get_longjmp_target (CORE_ADDR *pc)
72 {
73 CORE_ADDR jb_addr;
74 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
75
76 jb_addr = read_register (A0_REGNUM);
77
78 if (target_read_memory (jb_addr
79 + MIPS_LINUX_JB_PC * MIPS_LINUX_JB_ELEMENT_SIZE,
80 buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
81 return 0;
82
83 *pc = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
84
85 return 1;
86 }
87
88 /* Transform the bits comprising a 32-bit register to the right size
89 for supply_register(). This is needed when mips_regsize() is 8. */
90
91 static void
92 supply_32bit_reg (int regnum, const void *addr)
93 {
94 char buf[MAX_REGISTER_SIZE];
95 store_signed_integer (buf, DEPRECATED_REGISTER_RAW_SIZE (regnum),
96 extract_signed_integer (addr, 4));
97 supply_register (regnum, buf);
98 }
99
100 /* Unpack an elf_gregset_t into GDB's register cache. */
101
102 void
103 supply_gregset (elf_gregset_t *gregsetp)
104 {
105 int regi;
106 elf_greg_t *regp = *gregsetp;
107 char zerobuf[MAX_REGISTER_SIZE];
108
109 memset (zerobuf, 0, MAX_REGISTER_SIZE);
110
111 for (regi = EF_REG0; regi <= EF_REG31; regi++)
112 supply_32bit_reg ((regi - EF_REG0), (char *)(regp + regi));
113
114 supply_32bit_reg (mips_regnum (current_gdbarch)->lo,
115 (char *)(regp + EF_LO));
116 supply_32bit_reg (mips_regnum (current_gdbarch)->hi,
117 (char *)(regp + EF_HI));
118
119 supply_32bit_reg (mips_regnum (current_gdbarch)->pc,
120 (char *)(regp + EF_CP0_EPC));
121 supply_32bit_reg (mips_regnum (current_gdbarch)->badvaddr,
122 (char *)(regp + EF_CP0_BADVADDR));
123 supply_32bit_reg (PS_REGNUM, (char *)(regp + EF_CP0_STATUS));
124 supply_32bit_reg (mips_regnum (current_gdbarch)->cause,
125 (char *)(regp + EF_CP0_CAUSE));
126
127 /* Fill inaccessible registers with zero. */
128 supply_register (UNUSED_REGNUM, zerobuf);
129 for (regi = FIRST_EMBED_REGNUM; regi < LAST_EMBED_REGNUM; regi++)
130 supply_register (regi, zerobuf);
131 }
132
133 /* Pack our registers (or one register) into an elf_gregset_t. */
134
135 void
136 fill_gregset (elf_gregset_t *gregsetp, int regno)
137 {
138 int regaddr, regi;
139 elf_greg_t *regp = *gregsetp;
140 void *dst;
141
142 if (regno == -1)
143 {
144 memset (regp, 0, sizeof (elf_gregset_t));
145 for (regi = 0; regi < 32; regi++)
146 fill_gregset (gregsetp, regi);
147 fill_gregset (gregsetp, mips_regnum (current_gdbarch)->lo);
148 fill_gregset (gregsetp, mips_regnum (current_gdbarch)->hi);
149 fill_gregset (gregsetp, mips_regnum (current_gdbarch)->pc);
150 fill_gregset (gregsetp, mips_regnum (current_gdbarch)->badvaddr);
151 fill_gregset (gregsetp, PS_REGNUM);
152 fill_gregset (gregsetp, mips_regnum (current_gdbarch)->cause);
153
154 return;
155 }
156
157 if (regno < 32)
158 {
159 dst = regp + regno + EF_REG0;
160 regcache_collect (regno, dst);
161 return;
162 }
163
164 if (regno == mips_regnum (current_gdbarch)->lo)
165 regaddr = EF_LO;
166 else if (regno == mips_regnum (current_gdbarch)->hi)
167 regaddr = EF_HI;
168 else if (regno == mips_regnum (current_gdbarch)->pc)
169 regaddr = EF_CP0_EPC;
170 else if (regno == mips_regnum (current_gdbarch)->badvaddr)
171 regaddr = EF_CP0_BADVADDR;
172 else if (regno == PS_REGNUM)
173 regaddr = EF_CP0_STATUS;
174 else if (regno == mips_regnum (current_gdbarch)->cause)
175 regaddr = EF_CP0_CAUSE;
176 else
177 regaddr = -1;
178
179 if (regaddr != -1)
180 {
181 dst = regp + regaddr;
182 regcache_collect (regno, dst);
183 }
184 }
185
186 /* Likewise, unpack an elf_fpregset_t. */
187
188 void
189 supply_fpregset (elf_fpregset_t *fpregsetp)
190 {
191 int regi;
192 char zerobuf[MAX_REGISTER_SIZE];
193
194 memset (zerobuf, 0, MAX_REGISTER_SIZE);
195
196 for (regi = 0; regi < 32; regi++)
197 supply_register (FP0_REGNUM + regi,
198 (char *)(*fpregsetp + regi));
199
200 supply_register (mips_regnum (current_gdbarch)->fp_control_status,
201 (char *)(*fpregsetp + 32));
202
203 /* FIXME: how can we supply FCRIR? The ABI doesn't tell us. */
204 supply_register (mips_regnum (current_gdbarch)->fp_implementation_revision,
205 zerobuf);
206 }
207
208 /* Likewise, pack one or all floating point registers into an
209 elf_fpregset_t. */
210
211 void
212 fill_fpregset (elf_fpregset_t *fpregsetp, int regno)
213 {
214 char *from, *to;
215
216 if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
217 {
218 from = (char *) &deprecated_registers[DEPRECATED_REGISTER_BYTE (regno)];
219 to = (char *) (*fpregsetp + regno - FP0_REGNUM);
220 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (regno - FP0_REGNUM));
221 }
222 else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
223 {
224 from = (char *) &deprecated_registers[DEPRECATED_REGISTER_BYTE (regno)];
225 to = (char *) (*fpregsetp + 32);
226 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (regno));
227 }
228 else if (regno == -1)
229 {
230 int regi;
231
232 for (regi = 0; regi < 32; regi++)
233 fill_fpregset (fpregsetp, FP0_REGNUM + regi);
234 fill_fpregset(fpregsetp, mips_regnum (current_gdbarch)->fp_control_status);
235 }
236 }
237
238 /* Map gdb internal register number to ptrace ``address''.
239 These ``addresses'' are normally defined in <asm/ptrace.h>. */
240
241 static CORE_ADDR
242 mips_linux_register_addr (int regno, CORE_ADDR blockend)
243 {
244 int regaddr;
245
246 if (regno < 0 || regno >= NUM_REGS)
247 error ("Bogon register number %d.", regno);
248
249 if (regno < 32)
250 regaddr = regno;
251 else if ((regno >= mips_regnum (current_gdbarch)->fp0)
252 && (regno < mips_regnum (current_gdbarch)->fp0 + 32))
253 regaddr = FPR_BASE + (regno - mips_regnum (current_gdbarch)->fp0);
254 else if (regno == mips_regnum (current_gdbarch)->pc)
255 regaddr = PC;
256 else if (regno == mips_regnum (current_gdbarch)->cause)
257 regaddr = CAUSE;
258 else if (regno == mips_regnum (current_gdbarch)->badvaddr)
259 regaddr = BADVADDR;
260 else if (regno == mips_regnum (current_gdbarch)->lo)
261 regaddr = MMLO;
262 else if (regno == mips_regnum (current_gdbarch)->hi)
263 regaddr = MMHI;
264 else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
265 regaddr = FPC_CSR;
266 else if (regno == mips_regnum (current_gdbarch)->fp_implementation_revision)
267 regaddr = FPC_EIR;
268 else
269 error ("Unknowable register number %d.", regno);
270
271 return regaddr;
272 }
273
274
275 /* Fetch (and possibly build) an appropriate link_map_offsets
276 structure for native GNU/Linux MIPS targets using the struct offsets
277 defined in link.h (but without actual reference to that file).
278
279 This makes it possible to access GNU/Linux MIPS shared libraries from a
280 GDB that was built on a different host platform (for cross debugging). */
281
282 static struct link_map_offsets *
283 mips_linux_svr4_fetch_link_map_offsets (void)
284 {
285 static struct link_map_offsets lmo;
286 static struct link_map_offsets *lmp = NULL;
287
288 if (lmp == NULL)
289 {
290 lmp = &lmo;
291
292 lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
293 this is all we need. */
294 lmo.r_map_offset = 4;
295 lmo.r_map_size = 4;
296
297 lmo.link_map_size = 20;
298
299 lmo.l_addr_offset = 0;
300 lmo.l_addr_size = 4;
301
302 lmo.l_name_offset = 4;
303 lmo.l_name_size = 4;
304
305 lmo.l_next_offset = 12;
306 lmo.l_next_size = 4;
307
308 lmo.l_prev_offset = 16;
309 lmo.l_prev_size = 4;
310 }
311
312 return lmp;
313 }
314
315 /* Support for 64-bit ABIs. */
316
317 /* Copied from <asm/elf.h>. */
318 #define MIPS64_ELF_NGREG 45
319 #define MIPS64_ELF_NFPREG 33
320
321 typedef unsigned char mips64_elf_greg_t[8];
322 typedef mips64_elf_greg_t mips64_elf_gregset_t[MIPS64_ELF_NGREG];
323
324 typedef unsigned char mips64_elf_fpreg_t[8];
325 typedef mips64_elf_fpreg_t mips64_elf_fpregset_t[MIPS64_ELF_NFPREG];
326
327 /* 0 - 31 are integer registers, 32 - 63 are fp registers. */
328 #define MIPS64_FPR_BASE 32
329 #define MIPS64_PC 64
330 #define MIPS64_CAUSE 65
331 #define MIPS64_BADVADDR 66
332 #define MIPS64_MMHI 67
333 #define MIPS64_MMLO 68
334 #define MIPS64_FPC_CSR 69
335 #define MIPS64_FPC_EIR 70
336
337 #define MIPS64_EF_REG0 0
338 #define MIPS64_EF_REG31 31
339 #define MIPS64_EF_LO 32
340 #define MIPS64_EF_HI 33
341 #define MIPS64_EF_CP0_EPC 34
342 #define MIPS64_EF_CP0_BADVADDR 35
343 #define MIPS64_EF_CP0_STATUS 36
344 #define MIPS64_EF_CP0_CAUSE 37
345
346 #define MIPS64_EF_SIZE 304
347
348 /* Figure out where the longjmp will land.
349 We expect the first arg to be a pointer to the jmp_buf structure from
350 which we extract the pc (MIPS_LINUX_JB_PC) that we will land at. The pc
351 is copied into PC. This routine returns 1 on success. */
352
353 /* Details about jmp_buf. */
354
355 #define MIPS64_LINUX_JB_PC 0
356
357 static int
358 mips64_linux_get_longjmp_target (CORE_ADDR *pc)
359 {
360 CORE_ADDR jb_addr;
361 void *buf = alloca (TARGET_PTR_BIT / TARGET_CHAR_BIT);
362 int element_size = TARGET_PTR_BIT == 32 ? 4 : 8;
363
364 jb_addr = read_register (A0_REGNUM);
365
366 if (target_read_memory (jb_addr + MIPS64_LINUX_JB_PC * element_size,
367 buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
368 return 0;
369
370 *pc = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
371
372 return 1;
373 }
374
375 /* Unpack an elf_gregset_t into GDB's register cache. */
376
377 static void
378 mips64_supply_gregset (mips64_elf_gregset_t *gregsetp)
379 {
380 int regi;
381 mips64_elf_greg_t *regp = *gregsetp;
382 char zerobuf[MAX_REGISTER_SIZE];
383
384 memset (zerobuf, 0, MAX_REGISTER_SIZE);
385
386 for (regi = MIPS64_EF_REG0; regi <= MIPS64_EF_REG31; regi++)
387 supply_register ((regi - MIPS64_EF_REG0), (char *)(regp + regi));
388
389 supply_register (mips_regnum (current_gdbarch)->lo,
390 (char *)(regp + MIPS64_EF_LO));
391 supply_register (mips_regnum (current_gdbarch)->hi,
392 (char *)(regp + MIPS64_EF_HI));
393
394 supply_register (mips_regnum (current_gdbarch)->pc,
395 (char *)(regp + MIPS64_EF_CP0_EPC));
396 supply_register (mips_regnum (current_gdbarch)->badvaddr,
397 (char *)(regp + MIPS64_EF_CP0_BADVADDR));
398 supply_register (PS_REGNUM, (char *)(regp + MIPS64_EF_CP0_STATUS));
399 supply_register (mips_regnum (current_gdbarch)->cause,
400 (char *)(regp + MIPS64_EF_CP0_CAUSE));
401
402 /* Fill inaccessible registers with zero. */
403 supply_register (UNUSED_REGNUM, zerobuf);
404 for (regi = FIRST_EMBED_REGNUM; regi < LAST_EMBED_REGNUM; regi++)
405 supply_register (regi, zerobuf);
406 }
407
408 /* Pack our registers (or one register) into an elf_gregset_t. */
409
410 static void
411 mips64_fill_gregset (mips64_elf_gregset_t *gregsetp, int regno)
412 {
413 int regaddr, regi;
414 mips64_elf_greg_t *regp = *gregsetp;
415 void *src, *dst;
416
417 if (regno == -1)
418 {
419 memset (regp, 0, sizeof (mips64_elf_gregset_t));
420 for (regi = 0; regi < 32; regi++)
421 mips64_fill_gregset (gregsetp, regi);
422 mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->lo);
423 mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->hi);
424 mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->pc);
425 mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->badvaddr);
426 mips64_fill_gregset (gregsetp, PS_REGNUM);
427 mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->cause);
428
429 return;
430 }
431
432 if (regno < 32)
433 {
434 dst = regp + regno + MIPS64_EF_REG0;
435 regcache_collect (regno, dst);
436 return;
437 }
438
439 if (regno == mips_regnum (current_gdbarch)->lo)
440 regaddr = MIPS64_EF_LO;
441 else if (regno == mips_regnum (current_gdbarch)->hi)
442 regaddr = MIPS64_EF_HI;
443 else if (regno == mips_regnum (current_gdbarch)->pc)
444 regaddr = MIPS64_EF_CP0_EPC;
445 else if (regno == mips_regnum (current_gdbarch)->badvaddr)
446 regaddr = MIPS64_EF_CP0_BADVADDR;
447 else if (regno == PS_REGNUM)
448 regaddr = MIPS64_EF_CP0_STATUS;
449 else if (regno == mips_regnum (current_gdbarch)->cause)
450 regaddr = MIPS64_EF_CP0_CAUSE;
451 else
452 regaddr = -1;
453
454 if (regaddr != -1)
455 {
456 dst = regp + regaddr;
457 regcache_collect (regno, dst);
458 }
459 }
460
461 /* Likewise, unpack an elf_fpregset_t. */
462
463 static void
464 mips64_supply_fpregset (mips64_elf_fpregset_t *fpregsetp)
465 {
466 int regi;
467 char zerobuf[MAX_REGISTER_SIZE];
468
469 memset (zerobuf, 0, MAX_REGISTER_SIZE);
470
471 for (regi = 0; regi < 32; regi++)
472 supply_register (FP0_REGNUM + regi,
473 (char *)(*fpregsetp + regi));
474
475 supply_register (mips_regnum (current_gdbarch)->fp_control_status,
476 (char *)(*fpregsetp + 32));
477
478 /* FIXME: how can we supply FCRIR? The ABI doesn't tell us. */
479 supply_register (mips_regnum (current_gdbarch)->fp_implementation_revision,
480 zerobuf);
481 }
482
483 /* Likewise, pack one or all floating point registers into an
484 elf_fpregset_t. */
485
486 static void
487 mips64_fill_fpregset (mips64_elf_fpregset_t *fpregsetp, int regno)
488 {
489 char *from, *to;
490
491 if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
492 {
493 from = (char *) &deprecated_registers[DEPRECATED_REGISTER_BYTE (regno)];
494 to = (char *) (*fpregsetp + regno - FP0_REGNUM);
495 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (regno - FP0_REGNUM));
496 }
497 else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
498 {
499 from = (char *) &deprecated_registers[DEPRECATED_REGISTER_BYTE (regno)];
500 to = (char *) (*fpregsetp + 32);
501 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (regno));
502 }
503 else if (regno == -1)
504 {
505 int regi;
506
507 for (regi = 0; regi < 32; regi++)
508 mips64_fill_fpregset (fpregsetp, FP0_REGNUM + regi);
509 mips64_fill_fpregset(fpregsetp,
510 mips_regnum (current_gdbarch)->fp_control_status);
511 }
512 }
513
514
515 /* Map gdb internal register number to ptrace ``address''.
516 These ``addresses'' are normally defined in <asm/ptrace.h>. */
517
518 static CORE_ADDR
519 mips64_linux_register_addr (int regno, CORE_ADDR blockend)
520 {
521 int regaddr;
522
523 if (regno < 0 || regno >= NUM_REGS)
524 error ("Bogon register number %d.", regno);
525
526 if (regno < 32)
527 regaddr = regno;
528 else if ((regno >= mips_regnum (current_gdbarch)->fp0)
529 && (regno < mips_regnum (current_gdbarch)->fp0 + 32))
530 regaddr = MIPS64_FPR_BASE + (regno - FP0_REGNUM);
531 else if (regno == mips_regnum (current_gdbarch)->pc)
532 regaddr = MIPS64_PC;
533 else if (regno == mips_regnum (current_gdbarch)->cause)
534 regaddr = MIPS64_CAUSE;
535 else if (regno == mips_regnum (current_gdbarch)->badvaddr)
536 regaddr = MIPS64_BADVADDR;
537 else if (regno == mips_regnum (current_gdbarch)->lo)
538 regaddr = MIPS64_MMLO;
539 else if (regno == mips_regnum (current_gdbarch)->hi)
540 regaddr = MIPS64_MMHI;
541 else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
542 regaddr = MIPS64_FPC_CSR;
543 else if (regno == mips_regnum (current_gdbarch)->fp_implementation_revision)
544 regaddr = MIPS64_FPC_EIR;
545 else
546 error ("Unknowable register number %d.", regno);
547
548 return regaddr;
549 }
550
551 /* Use a local version of this function to get the correct types for
552 regsets, until multi-arch core support is ready. */
553
554 static void
555 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
556 int which, CORE_ADDR reg_addr)
557 {
558 elf_gregset_t gregset;
559 elf_fpregset_t fpregset;
560 mips64_elf_gregset_t gregset64;
561 mips64_elf_fpregset_t fpregset64;
562
563 if (which == 0)
564 {
565 if (core_reg_size == sizeof (gregset))
566 {
567 memcpy ((char *) &gregset, core_reg_sect, sizeof (gregset));
568 supply_gregset (&gregset);
569 }
570 else if (core_reg_size == sizeof (gregset64))
571 {
572 memcpy ((char *) &gregset64, core_reg_sect, sizeof (gregset64));
573 mips64_supply_gregset (&gregset64);
574 }
575 else
576 {
577 warning ("wrong size gregset struct in core file");
578 }
579 }
580 else if (which == 2)
581 {
582 if (core_reg_size == sizeof (fpregset))
583 {
584 memcpy ((char *) &fpregset, core_reg_sect, sizeof (fpregset));
585 supply_fpregset (&fpregset);
586 }
587 else if (core_reg_size == sizeof (fpregset64))
588 {
589 memcpy ((char *) &fpregset64, core_reg_sect, sizeof (fpregset64));
590 mips64_supply_fpregset (&fpregset64);
591 }
592 else
593 {
594 warning ("wrong size fpregset struct in core file");
595 }
596 }
597 }
598
599 /* Register that we are able to handle ELF file formats using standard
600 procfs "regset" structures. */
601
602 static struct core_fns regset_core_fns =
603 {
604 bfd_target_elf_flavour, /* core_flavour */
605 default_check_format, /* check_format */
606 default_core_sniffer, /* core_sniffer */
607 fetch_core_registers, /* core_read_registers */
608 NULL /* next */
609 };
610
611 /* Fetch (and possibly build) an appropriate link_map_offsets
612 structure for native GNU/Linux MIPS targets using the struct offsets
613 defined in link.h (but without actual reference to that file).
614
615 This makes it possible to access GNU/Linux MIPS shared libraries from a
616 GDB that was built on a different host platform (for cross debugging). */
617
618 static struct link_map_offsets *
619 mips64_linux_svr4_fetch_link_map_offsets (void)
620 {
621 static struct link_map_offsets lmo;
622 static struct link_map_offsets *lmp = NULL;
623
624 if (lmp == NULL)
625 {
626 lmp = &lmo;
627
628 lmo.r_debug_size = 16; /* The actual size is 40 bytes, but
629 this is all we need. */
630 lmo.r_map_offset = 8;
631 lmo.r_map_size = 8;
632
633 lmo.link_map_size = 40;
634
635 lmo.l_addr_offset = 0;
636 lmo.l_addr_size = 8;
637
638 lmo.l_name_offset = 8;
639 lmo.l_name_size = 8;
640
641 lmo.l_next_offset = 24;
642 lmo.l_next_size = 8;
643
644 lmo.l_prev_offset = 32;
645 lmo.l_prev_size = 8;
646 }
647
648 return lmp;
649 }
650
651 /* Handle for obtaining pointer to the current register_addr() function
652 for a given architecture. */
653 static struct gdbarch_data *register_addr_data;
654
655 CORE_ADDR
656 register_addr (int regno, CORE_ADDR blockend)
657 {
658 CORE_ADDR (*register_addr_ptr) (int, CORE_ADDR) =
659 gdbarch_data (current_gdbarch, register_addr_data);
660
661 gdb_assert (register_addr_ptr != 0);
662
663 return register_addr_ptr (regno, blockend);
664 }
665
666 static void
667 set_mips_linux_register_addr (struct gdbarch *gdbarch,
668 CORE_ADDR (*register_addr_ptr) (int, CORE_ADDR))
669 {
670 set_gdbarch_data (gdbarch, register_addr_data, register_addr_ptr);
671 }
672
673 static void *
674 init_register_addr_data (struct gdbarch *gdbarch)
675 {
676 return 0;
677 }
678
679 static void
680 mips_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
681 {
682 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
683 enum mips_abi abi = mips_abi (gdbarch);
684
685 switch (abi)
686 {
687 case MIPS_ABI_O32:
688 set_gdbarch_get_longjmp_target (gdbarch,
689 mips_linux_get_longjmp_target);
690 set_solib_svr4_fetch_link_map_offsets
691 (gdbarch, mips_linux_svr4_fetch_link_map_offsets);
692 set_mips_linux_register_addr (gdbarch, mips_linux_register_addr);
693 break;
694 case MIPS_ABI_N32:
695 set_gdbarch_get_longjmp_target (gdbarch,
696 mips_linux_get_longjmp_target);
697 set_solib_svr4_fetch_link_map_offsets
698 (gdbarch, mips_linux_svr4_fetch_link_map_offsets);
699 set_mips_linux_register_addr (gdbarch, mips64_linux_register_addr);
700 break;
701 case MIPS_ABI_N64:
702 set_gdbarch_get_longjmp_target (gdbarch,
703 mips64_linux_get_longjmp_target);
704 set_solib_svr4_fetch_link_map_offsets
705 (gdbarch, mips64_linux_svr4_fetch_link_map_offsets);
706 set_mips_linux_register_addr (gdbarch, mips64_linux_register_addr);
707 break;
708 default:
709 internal_error (__FILE__, __LINE__, "can't handle ABI");
710 break;
711 }
712 }
713
714 void
715 _initialize_mips_linux_tdep (void)
716 {
717 const struct bfd_arch_info *arch_info;
718
719 register_addr_data =
720 register_gdbarch_data (init_register_addr_data);
721
722 for (arch_info = bfd_lookup_arch (bfd_arch_mips, 0);
723 arch_info != NULL;
724 arch_info = arch_info->next)
725 {
726 gdbarch_register_osabi (bfd_arch_mips, arch_info->mach, GDB_OSABI_LINUX,
727 mips_linux_init_abi);
728 }
729
730 add_core_fns (&regset_core_fns);
731 }