* config/mips/tm-linux.h (REALTIME_LO, REALTIME_HI): Define
[binutils-gdb.git] / gdb / mips-linux-tdep.c
1 /* Target-dependent code for GNU/Linux on MIPS processors.
2 Copyright 2001 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "gdbcore.h"
23 #include "target.h"
24 #include "solib-svr4.h"
25
26 /* Copied from <asm/elf.h>. */
27 #define ELF_NGREG 45
28 #define ELF_NFPREG 33
29
30 typedef unsigned char elf_greg_t[4];
31 typedef elf_greg_t elf_gregset_t[ELF_NGREG];
32
33 typedef unsigned char elf_fpreg_t[8];
34 typedef elf_fpreg_t elf_fpregset_t[ELF_NFPREG];
35
36 /* 0 - 31 are integer registers, 32 - 63 are fp registers. */
37 #define FPR_BASE 32
38 #define PC 64
39 #define CAUSE 65
40 #define BADVADDR 66
41 #define MMHI 67
42 #define MMLO 68
43 #define FPC_CSR 69
44 #define FPC_EIR 70
45
46 #define EF_REG0 6
47 #define EF_REG31 37
48 #define EF_LO 38
49 #define EF_HI 39
50 #define EF_CP0_EPC 40
51 #define EF_CP0_BADVADDR 41
52 #define EF_CP0_STATUS 42
53 #define EF_CP0_CAUSE 43
54
55 #define EF_SIZE 180
56
57 /* Figure out where the longjmp will land.
58 We expect the first arg to be a pointer to the jmp_buf structure from
59 which we extract the pc (MIPS_LINUX_JB_PC) that we will land at. The pc
60 is copied into PC. This routine returns 1 on success. */
61
62 int
63 mips_linux_get_longjmp_target (CORE_ADDR *pc)
64 {
65 CORE_ADDR jb_addr;
66 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
67
68 jb_addr = read_register (A0_REGNUM);
69
70 if (target_read_memory (jb_addr
71 + MIPS_LINUX_JB_PC * MIPS_LINUX_JB_ELEMENT_SIZE,
72 buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
73 return 0;
74
75 *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
76
77 return 1;
78 }
79
80 /* Unpack an elf_gregset_t into GDB's register cache. */
81
82 void
83 supply_gregset (elf_gregset_t *gregsetp)
84 {
85 int regi;
86 elf_greg_t *regp = *gregsetp;
87 char *zerobuf = alloca (MAX_REGISTER_RAW_SIZE);
88
89 memset (zerobuf, 0, MAX_REGISTER_RAW_SIZE);
90
91 for (regi = EF_REG0; regi <= EF_REG31; regi++)
92 supply_register ((regi - EF_REG0), (char *)(regp + regi));
93
94 supply_register (LO_REGNUM, (char *)(regp + EF_LO));
95 supply_register (HI_REGNUM, (char *)(regp + EF_HI));
96
97 supply_register (PC_REGNUM, (char *)(regp + EF_CP0_EPC));
98 supply_register (BADVADDR_REGNUM, (char *)(regp + EF_CP0_BADVADDR));
99 supply_register (PS_REGNUM, (char *)(regp + EF_CP0_STATUS));
100 supply_register (CAUSE_REGNUM, (char *)(regp + EF_CP0_CAUSE));
101
102 /* Fill inaccessible registers with zero. */
103 supply_register (FP_REGNUM, zerobuf);
104 supply_register (UNUSED_REGNUM, zerobuf);
105 for (regi = FIRST_EMBED_REGNUM; regi < LAST_EMBED_REGNUM; regi++)
106 supply_register (regi, zerobuf);
107 }
108
109 /* Pack our registers (or one register) into an elf_gregset_t. */
110
111 void
112 fill_gregset (elf_gregset_t *gregsetp, int regno)
113 {
114 int regaddr, regi;
115 elf_greg_t *regp = *gregsetp;
116 void *src, *dst;
117
118 if (regno == -1)
119 {
120 memset (regp, 0, sizeof (elf_gregset_t));
121 for (regi = 0; regi < 32; regi++)
122 fill_gregset (gregsetp, regi);
123 fill_gregset (gregsetp, LO_REGNUM);
124 fill_gregset (gregsetp, HI_REGNUM);
125 fill_gregset (gregsetp, PC_REGNUM);
126 fill_gregset (gregsetp, BADVADDR_REGNUM);
127 fill_gregset (gregsetp, PS_REGNUM);
128 fill_gregset (gregsetp, CAUSE_REGNUM);
129
130 return;
131 }
132
133 if (regno < 32)
134 {
135 src = &registers[REGISTER_BYTE (regno)];
136 dst = regp + regno + EF_REG0;
137 memcpy (dst, src, sizeof (elf_greg_t));
138 return;
139 }
140
141 regaddr = -1;
142 switch (regno)
143 {
144 case LO_REGNUM:
145 regaddr = EF_LO;
146 break;
147 case HI_REGNUM:
148 regaddr = EF_HI;
149 break;
150 case PC_REGNUM:
151 regaddr = EF_CP0_EPC;
152 break;
153 case BADVADDR_REGNUM:
154 regaddr = EF_CP0_BADVADDR;
155 break;
156 case PS_REGNUM:
157 regaddr = EF_CP0_STATUS;
158 break;
159 case CAUSE_REGNUM:
160 regaddr = EF_CP0_CAUSE;
161 break;
162 }
163
164 if (regaddr != -1)
165 {
166 src = &registers[REGISTER_BYTE (regno)];
167 dst = regp + regaddr;
168 memcpy (dst, src, sizeof (elf_greg_t));
169 }
170 }
171
172 /* Likewise, unpack an elf_fpregset_t. */
173
174 void
175 supply_fpregset (elf_fpregset_t *fpregsetp)
176 {
177 register int regi;
178 char *zerobuf = alloca (MAX_REGISTER_RAW_SIZE);
179
180 memset (zerobuf, 0, MAX_REGISTER_RAW_SIZE);
181
182 for (regi = 0; regi < 32; regi++)
183 supply_register (FP0_REGNUM + regi,
184 (char *)(*fpregsetp + regi));
185
186 supply_register (FCRCS_REGNUM, (char *)(*fpregsetp + 32));
187
188 /* FIXME: how can we supply FCRIR_REGNUM? The ABI doesn't tell us. */
189 supply_register (FCRIR_REGNUM, zerobuf);
190 }
191
192 /* Likewise, pack one or all floating point registers into an
193 elf_fpregset_t. */
194
195 void
196 fill_fpregset (elf_fpregset_t *fpregsetp, int regno)
197 {
198 char *from, *to;
199
200 if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
201 {
202 from = (char *) &registers[REGISTER_BYTE (regno)];
203 to = (char *) (*fpregsetp + regno - FP0_REGNUM);
204 memcpy (to, from, REGISTER_RAW_SIZE (regno - FP0_REGNUM));
205 }
206 else if (regno == FCRCS_REGNUM)
207 {
208 from = (char *) &registers[REGISTER_BYTE (regno)];
209 to = (char *) (*fpregsetp + 32);
210 memcpy (to, from, REGISTER_RAW_SIZE (regno));
211 }
212 else if (regno == -1)
213 {
214 int regi;
215
216 for (regi = 0; regi < 32; regi++)
217 fill_fpregset (fpregsetp, FP0_REGNUM + regi);
218 fill_fpregset(fpregsetp, FCRCS_REGNUM);
219 }
220 }
221
222 /* Map gdb internal register number to ptrace ``address''.
223 These ``addresses'' are normally defined in <asm/ptrace.h>. */
224
225 CORE_ADDR
226 register_addr (int regno, CORE_ADDR blockend)
227 {
228 int regaddr;
229
230 if (regno < 0 || regno >= NUM_REGS)
231 error ("Bogon register number %d.", regno);
232
233 if (regno < 32)
234 regaddr = regno;
235 else if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
236 regaddr = FPR_BASE + (regno - FP0_REGNUM);
237 else if (regno == PC_REGNUM)
238 regaddr = PC;
239 else if (regno == CAUSE_REGNUM)
240 regaddr = CAUSE;
241 else if (regno == BADVADDR_REGNUM)
242 regaddr = BADVADDR;
243 else if (regno == LO_REGNUM)
244 regaddr = MMLO;
245 else if (regno == HI_REGNUM)
246 regaddr = MMHI;
247 else if (regno == FCRCS_REGNUM)
248 regaddr = FPC_CSR;
249 else if (regno == FCRIR_REGNUM)
250 regaddr = FPC_EIR;
251 else
252 error ("Unknowable register number %d.", regno);
253
254 return regaddr;
255 }
256
257 /* Use a local version of this function to get the correct types for
258 regsets, until multi-arch core support is ready. */
259
260 static void
261 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
262 int which, CORE_ADDR reg_addr)
263 {
264 elf_gregset_t gregset;
265 elf_fpregset_t fpregset;
266
267 if (which == 0)
268 {
269 if (core_reg_size != sizeof (gregset))
270 {
271 warning ("wrong size gregset struct in core file");
272 }
273 else
274 {
275 memcpy ((char *) &gregset, core_reg_sect, sizeof (gregset));
276 supply_gregset (&gregset);
277 }
278 }
279 else if (which == 2)
280 {
281 if (core_reg_size != sizeof (fpregset))
282 {
283 warning ("wrong size fpregset struct in core file");
284 }
285 else
286 {
287 memcpy ((char *) &fpregset, core_reg_sect, sizeof (fpregset));
288 supply_fpregset (&fpregset);
289 }
290 }
291 }
292
293 /* Register that we are able to handle ELF file formats using standard
294 procfs "regset" structures. */
295
296 static struct core_fns regset_core_fns =
297 {
298 bfd_target_elf_flavour, /* core_flavour */
299 default_check_format, /* check_format */
300 default_core_sniffer, /* core_sniffer */
301 fetch_core_registers, /* core_read_registers */
302 NULL /* next */
303 };
304
305 /* Fetch (and possibly build) an appropriate link_map_offsets
306 structure for native GNU/Linux MIPS targets using the struct offsets
307 defined in link.h (but without actual reference to that file).
308
309 This makes it possible to access GNU/Linux MIPS shared libraries from a
310 GDB that was built on a different host platform (for cross debugging). */
311
312 struct link_map_offsets *
313 mips_linux_svr4_fetch_link_map_offsets (void)
314 {
315 static struct link_map_offsets lmo;
316 static struct link_map_offsets *lmp = NULL;
317
318 if (lmp == NULL)
319 {
320 lmp = &lmo;
321
322 lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
323 this is all we need. */
324 lmo.r_map_offset = 4;
325 lmo.r_map_size = 4;
326
327 lmo.link_map_size = 20;
328
329 lmo.l_addr_offset = 0;
330 lmo.l_addr_size = 4;
331
332 lmo.l_name_offset = 4;
333 lmo.l_name_size = 4;
334
335 lmo.l_next_offset = 12;
336 lmo.l_next_size = 4;
337
338 lmo.l_prev_offset = 16;
339 lmo.l_prev_size = 4;
340 }
341
342 return lmp;
343 }
344
345 void
346 _initialize_mips_linux_tdep (void)
347 {
348 add_core_fns (&regset_core_fns);
349 }