6d32f4e519d6e3da5e0e6d7b2e70242123fd3db6
[binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "symtab.h"
31 #include "value.h"
32 #include "gdbcmd.h"
33 #include "language.h"
34 #include "gdbcore.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "gdbtypes.h"
38 #include "target.h"
39 #include "arch-utils.h"
40 #include "regcache.h"
41 #include "osabi.h"
42
43 #include "opcode/mips.h"
44 #include "elf/mips.h"
45 #include "elf-bfd.h"
46 #include "symcat.h"
47
48 /* A useful bit in the CP0 status register (PS_REGNUM). */
49 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
50 #define ST0_FR (1 << 26)
51
52 /* The sizes of floating point registers. */
53
54 enum
55 {
56 MIPS_FPU_SINGLE_REGSIZE = 4,
57 MIPS_FPU_DOUBLE_REGSIZE = 8
58 };
59
60 /* All the possible MIPS ABIs. */
61
62 enum mips_abi
63 {
64 MIPS_ABI_UNKNOWN = 0,
65 MIPS_ABI_N32,
66 MIPS_ABI_O32,
67 MIPS_ABI_N64,
68 MIPS_ABI_O64,
69 MIPS_ABI_EABI32,
70 MIPS_ABI_EABI64,
71 MIPS_ABI_LAST
72 };
73
74 static const char *mips_abi_string;
75
76 static const char *mips_abi_strings[] = {
77 "auto",
78 "n32",
79 "o32",
80 "n64",
81 "o64",
82 "eabi32",
83 "eabi64",
84 NULL
85 };
86
87 struct frame_extra_info
88 {
89 mips_extra_func_info_t proc_desc;
90 int num_args;
91 };
92
93 /* Various MIPS ISA options (related to stack analysis) can be
94 overridden dynamically. Establish an enum/array for managing
95 them. */
96
97 static const char size_auto[] = "auto";
98 static const char size_32[] = "32";
99 static const char size_64[] = "64";
100
101 static const char *size_enums[] = {
102 size_auto,
103 size_32,
104 size_64,
105 0
106 };
107
108 /* Some MIPS boards don't support floating point while others only
109 support single-precision floating-point operations. See also
110 FP_REGISTER_DOUBLE. */
111
112 enum mips_fpu_type
113 {
114 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
115 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
116 MIPS_FPU_NONE /* No floating point. */
117 };
118
119 #ifndef MIPS_DEFAULT_FPU_TYPE
120 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
121 #endif
122 static int mips_fpu_type_auto = 1;
123 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
124
125 static int mips_debug = 0;
126
127 /* MIPS specific per-architecture information */
128 struct gdbarch_tdep
129 {
130 /* from the elf header */
131 int elf_flags;
132
133 /* mips options */
134 enum mips_abi mips_abi;
135 enum mips_abi found_abi;
136 enum mips_fpu_type mips_fpu_type;
137 int mips_last_arg_regnum;
138 int mips_last_fp_arg_regnum;
139 int mips_default_saved_regsize;
140 int mips_fp_register_double;
141 int mips_regs_have_home_p;
142 int mips_default_stack_argsize;
143 int gdb_target_is_mips64;
144 int default_mask_address_p;
145
146 enum gdb_osabi osabi;
147 };
148
149 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
150 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
151
152 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
153
154 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
155
156 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
157
158 /* Return the currently configured (or set) saved register size. */
159
160 #define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
161
162 static const char *mips_saved_regsize_string = size_auto;
163
164 #define MIPS_SAVED_REGSIZE (mips_saved_regsize())
165
166 static unsigned int
167 mips_saved_regsize (void)
168 {
169 if (mips_saved_regsize_string == size_auto)
170 return MIPS_DEFAULT_SAVED_REGSIZE;
171 else if (mips_saved_regsize_string == size_64)
172 return 8;
173 else /* if (mips_saved_regsize_string == size_32) */
174 return 4;
175 }
176
177 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
178 compatiblity mode. A return value of 1 means that we have
179 physical 64-bit registers, but should treat them as 32-bit registers. */
180
181 static int
182 mips2_fp_compat (void)
183 {
184 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
185 meaningful. */
186 if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
187 return 0;
188
189 #if 0
190 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
191 in all the places we deal with FP registers. PR gdb/413. */
192 /* Otherwise check the FR bit in the status register - it controls
193 the FP compatiblity mode. If it is clear we are in compatibility
194 mode. */
195 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
196 return 1;
197 #endif
198
199 return 0;
200 }
201
202 /* Indicate that the ABI makes use of double-precision registers
203 provided by the FPU (rather than combining pairs of registers to
204 form double-precision values). Do not use "TARGET_IS_MIPS64" to
205 determine if the ABI is using double-precision registers. See also
206 MIPS_FPU_TYPE. */
207 #define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
208
209 /* Does the caller allocate a ``home'' for each register used in the
210 function call? The N32 ABI and MIPS_EABI do not, the others do. */
211
212 #define MIPS_REGS_HAVE_HOME_P (gdbarch_tdep (current_gdbarch)->mips_regs_have_home_p)
213
214 /* The amount of space reserved on the stack for registers. This is
215 different to MIPS_SAVED_REGSIZE as it determines the alignment of
216 data allocated after the registers have run out. */
217
218 #define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
219
220 #define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
221
222 static const char *mips_stack_argsize_string = size_auto;
223
224 static unsigned int
225 mips_stack_argsize (void)
226 {
227 if (mips_stack_argsize_string == size_auto)
228 return MIPS_DEFAULT_STACK_ARGSIZE;
229 else if (mips_stack_argsize_string == size_64)
230 return 8;
231 else /* if (mips_stack_argsize_string == size_32) */
232 return 4;
233 }
234
235 #define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
236
237 #define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
238
239 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
240
241 int gdb_print_insn_mips (bfd_vma, disassemble_info *);
242
243 static void mips_print_register (int, int);
244
245 static mips_extra_func_info_t
246 heuristic_proc_desc (CORE_ADDR, CORE_ADDR, struct frame_info *, int);
247
248 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
249
250 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
251
252 int mips_set_processor_type (char *);
253
254 static void mips_show_processor_type_command (char *, int);
255
256 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
257
258 static mips_extra_func_info_t
259 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame);
260
261 static CORE_ADDR after_prologue (CORE_ADDR pc,
262 mips_extra_func_info_t proc_desc);
263
264 static void mips_read_fp_register_single (int regno, char *rare_buffer);
265 static void mips_read_fp_register_double (int regno, char *rare_buffer);
266
267 static struct type *mips_float_register_type (void);
268 static struct type *mips_double_register_type (void);
269
270 /* This value is the model of MIPS in use. It is derived from the value
271 of the PrID register. */
272
273 char *mips_processor_type;
274
275 char *tmp_mips_processor_type;
276
277 /* The list of available "set mips " and "show mips " commands */
278
279 static struct cmd_list_element *setmipscmdlist = NULL;
280 static struct cmd_list_element *showmipscmdlist = NULL;
281
282 /* A set of original names, to be used when restoring back to generic
283 registers from a specific set. */
284
285 char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
286 char **mips_processor_reg_names = mips_generic_reg_names;
287
288 const char *
289 mips_register_name (int i)
290 {
291 return mips_processor_reg_names[i];
292 }
293 /* *INDENT-OFF* */
294 /* Names of IDT R3041 registers. */
295
296 char *mips_r3041_reg_names[] = {
297 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
298 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
299 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
300 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
301 "sr", "lo", "hi", "bad", "cause","pc",
302 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
303 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
304 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
305 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
306 "fsr", "fir", "fp", "",
307 "", "", "bus", "ccfg", "", "", "", "",
308 "", "", "port", "cmp", "", "", "epc", "prid",
309 };
310
311 /* Names of IDT R3051 registers. */
312
313 char *mips_r3051_reg_names[] = {
314 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
315 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
316 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
317 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
318 "sr", "lo", "hi", "bad", "cause","pc",
319 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
320 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
321 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
322 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
323 "fsr", "fir", "fp", "",
324 "inx", "rand", "elo", "", "ctxt", "", "", "",
325 "", "", "ehi", "", "", "", "epc", "prid",
326 };
327
328 /* Names of IDT R3081 registers. */
329
330 char *mips_r3081_reg_names[] = {
331 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
332 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
333 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
334 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
335 "sr", "lo", "hi", "bad", "cause","pc",
336 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
337 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
338 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
339 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
340 "fsr", "fir", "fp", "",
341 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
342 "", "", "ehi", "", "", "", "epc", "prid",
343 };
344
345 /* Names of LSI 33k registers. */
346
347 char *mips_lsi33k_reg_names[] = {
348 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
349 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
350 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
351 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
352 "epc", "hi", "lo", "sr", "cause","badvaddr",
353 "dcic", "bpc", "bda", "", "", "", "", "",
354 "", "", "", "", "", "", "", "",
355 "", "", "", "", "", "", "", "",
356 "", "", "", "", "", "", "", "",
357 "", "", "", "",
358 "", "", "", "", "", "", "", "",
359 "", "", "", "", "", "", "", "",
360 };
361
362 struct {
363 char *name;
364 char **regnames;
365 } mips_processor_type_table[] = {
366 { "generic", mips_generic_reg_names },
367 { "r3041", mips_r3041_reg_names },
368 { "r3051", mips_r3051_reg_names },
369 { "r3071", mips_r3081_reg_names },
370 { "r3081", mips_r3081_reg_names },
371 { "lsi33k", mips_lsi33k_reg_names },
372 { NULL, NULL }
373 };
374 /* *INDENT-ON* */
375
376
377
378
379 /* Table to translate MIPS16 register field to actual register number. */
380 static int mips16_to_32_reg[8] =
381 {16, 17, 2, 3, 4, 5, 6, 7};
382
383 /* Heuristic_proc_start may hunt through the text section for a long
384 time across a 2400 baud serial line. Allows the user to limit this
385 search. */
386
387 static unsigned int heuristic_fence_post = 0;
388
389 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
390 #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
391 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
392 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
393 #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
394 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
395 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
396 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
397 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
398 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
399 /* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
400 this will corrupt pdr.iline. Fortunately we don't use it. */
401 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
402 #define _PROC_MAGIC_ 0x0F0F0F0F
403 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
404 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
405
406 struct linked_proc_info
407 {
408 struct mips_extra_func_info info;
409 struct linked_proc_info *next;
410 }
411 *linked_proc_desc_table = NULL;
412
413 void
414 mips_print_extra_frame_info (struct frame_info *fi)
415 {
416 if (fi
417 && fi->extra_info
418 && fi->extra_info->proc_desc
419 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
420 printf_filtered (" frame pointer is at %s+%s\n",
421 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
422 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
423 }
424
425 /* Number of bytes of storage in the actual machine representation for
426 register N. NOTE: This indirectly defines the register size
427 transfered by the GDB protocol. */
428
429 static int mips64_transfers_32bit_regs_p = 0;
430
431 int
432 mips_register_raw_size (int reg_nr)
433 {
434 if (mips64_transfers_32bit_regs_p)
435 return REGISTER_VIRTUAL_SIZE (reg_nr);
436 else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32
437 && FP_REGISTER_DOUBLE)
438 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
439 registers. */
440 return 8;
441 else
442 return MIPS_REGSIZE;
443 }
444
445 /* Convert between RAW and VIRTUAL registers. The RAW register size
446 defines the remote-gdb packet. */
447
448 int
449 mips_register_convertible (int reg_nr)
450 {
451 if (mips64_transfers_32bit_regs_p)
452 return 0;
453 else
454 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
455 }
456
457 void
458 mips_register_convert_to_virtual (int n, struct type *virtual_type,
459 char *raw_buf, char *virt_buf)
460 {
461 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
462 memcpy (virt_buf,
463 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
464 TYPE_LENGTH (virtual_type));
465 else
466 memcpy (virt_buf,
467 raw_buf,
468 TYPE_LENGTH (virtual_type));
469 }
470
471 void
472 mips_register_convert_to_raw (struct type *virtual_type, int n,
473 char *virt_buf, char *raw_buf)
474 {
475 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
476 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
477 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
478 virt_buf,
479 TYPE_LENGTH (virtual_type));
480 else
481 memcpy (raw_buf,
482 virt_buf,
483 TYPE_LENGTH (virtual_type));
484 }
485
486 /* Should the upper word of 64-bit addresses be zeroed? */
487 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
488
489 static int
490 mips_mask_address_p (void)
491 {
492 switch (mask_address_var)
493 {
494 case AUTO_BOOLEAN_TRUE:
495 return 1;
496 case AUTO_BOOLEAN_FALSE:
497 return 0;
498 break;
499 case AUTO_BOOLEAN_AUTO:
500 return MIPS_DEFAULT_MASK_ADDRESS_P;
501 default:
502 internal_error (__FILE__, __LINE__,
503 "mips_mask_address_p: bad switch");
504 return -1;
505 }
506 }
507
508 static void
509 show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
510 {
511 switch (mask_address_var)
512 {
513 case AUTO_BOOLEAN_TRUE:
514 printf_filtered ("The 32 bit mips address mask is enabled\n");
515 break;
516 case AUTO_BOOLEAN_FALSE:
517 printf_filtered ("The 32 bit mips address mask is disabled\n");
518 break;
519 case AUTO_BOOLEAN_AUTO:
520 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
521 mips_mask_address_p () ? "enabled" : "disabled");
522 break;
523 default:
524 internal_error (__FILE__, __LINE__,
525 "show_mask_address: bad switch");
526 break;
527 }
528 }
529
530 /* Should call_function allocate stack space for a struct return? */
531 int
532 mips_use_struct_convention (int gcc_p, struct type *type)
533 {
534 if (MIPS_EABI)
535 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
536 else
537 return 1; /* Structures are returned by ref in extra arg0 */
538 }
539
540 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
541
542 static int
543 pc_is_mips16 (bfd_vma memaddr)
544 {
545 struct minimal_symbol *sym;
546
547 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
548 if (IS_MIPS16_ADDR (memaddr))
549 return 1;
550
551 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
552 the high bit of the info field. Use this to decide if the function is
553 MIPS16 or normal MIPS. */
554 sym = lookup_minimal_symbol_by_pc (memaddr);
555 if (sym)
556 return MSYMBOL_IS_SPECIAL (sym);
557 else
558 return 0;
559 }
560
561 /* MIPS believes that the PC has a sign extended value. Perhaphs the
562 all registers should be sign extended for simplicity? */
563
564 static CORE_ADDR
565 mips_read_pc (ptid_t ptid)
566 {
567 return read_signed_register_pid (PC_REGNUM, ptid);
568 }
569
570 /* This returns the PC of the first inst after the prologue. If we can't
571 find the prologue, then return 0. */
572
573 static CORE_ADDR
574 after_prologue (CORE_ADDR pc,
575 mips_extra_func_info_t proc_desc)
576 {
577 struct symtab_and_line sal;
578 CORE_ADDR func_addr, func_end;
579
580 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
581 to read the stack pointer from the current machine state, because
582 the current machine state has nothing to do with the information
583 we need from the proc_desc; and the process may or may not exist
584 right now. */
585 if (!proc_desc)
586 proc_desc = find_proc_desc (pc, NULL, 0);
587
588 if (proc_desc)
589 {
590 /* If function is frameless, then we need to do it the hard way. I
591 strongly suspect that frameless always means prologueless... */
592 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
593 && PROC_FRAME_OFFSET (proc_desc) == 0)
594 return 0;
595 }
596
597 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
598 return 0; /* Unknown */
599
600 sal = find_pc_line (func_addr, 0);
601
602 if (sal.end < func_end)
603 return sal.end;
604
605 /* The line after the prologue is after the end of the function. In this
606 case, tell the caller to find the prologue the hard way. */
607
608 return 0;
609 }
610
611 /* Decode a MIPS32 instruction that saves a register in the stack, and
612 set the appropriate bit in the general register mask or float register mask
613 to indicate which register is saved. This is a helper function
614 for mips_find_saved_regs. */
615
616 static void
617 mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
618 unsigned long *float_mask)
619 {
620 int reg;
621
622 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
623 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
624 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
625 {
626 /* It might be possible to use the instruction to
627 find the offset, rather than the code below which
628 is based on things being in a certain order in the
629 frame, but figuring out what the instruction's offset
630 is relative to might be a little tricky. */
631 reg = (inst & 0x001f0000) >> 16;
632 *gen_mask |= (1 << reg);
633 }
634 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
635 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
636 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
637
638 {
639 reg = ((inst & 0x001f0000) >> 16);
640 *float_mask |= (1 << reg);
641 }
642 }
643
644 /* Decode a MIPS16 instruction that saves a register in the stack, and
645 set the appropriate bit in the general register or float register mask
646 to indicate which register is saved. This is a helper function
647 for mips_find_saved_regs. */
648
649 static void
650 mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
651 {
652 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
653 {
654 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
655 *gen_mask |= (1 << reg);
656 }
657 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
658 {
659 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
660 *gen_mask |= (1 << reg);
661 }
662 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
663 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
664 *gen_mask |= (1 << RA_REGNUM);
665 }
666
667
668 /* Fetch and return instruction from the specified location. If the PC
669 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
670
671 static t_inst
672 mips_fetch_instruction (CORE_ADDR addr)
673 {
674 char buf[MIPS_INSTLEN];
675 int instlen;
676 int status;
677
678 if (pc_is_mips16 (addr))
679 {
680 instlen = MIPS16_INSTLEN;
681 addr = UNMAKE_MIPS16_ADDR (addr);
682 }
683 else
684 instlen = MIPS_INSTLEN;
685 status = read_memory_nobpt (addr, buf, instlen);
686 if (status)
687 memory_error (status, addr);
688 return extract_unsigned_integer (buf, instlen);
689 }
690
691
692 /* These the fields of 32 bit mips instructions */
693 #define mips32_op(x) (x >> 26)
694 #define itype_op(x) (x >> 26)
695 #define itype_rs(x) ((x >> 21) & 0x1f)
696 #define itype_rt(x) ((x >> 16) & 0x1f)
697 #define itype_immediate(x) (x & 0xffff)
698
699 #define jtype_op(x) (x >> 26)
700 #define jtype_target(x) (x & 0x03ffffff)
701
702 #define rtype_op(x) (x >> 26)
703 #define rtype_rs(x) ((x >> 21) & 0x1f)
704 #define rtype_rt(x) ((x >> 16) & 0x1f)
705 #define rtype_rd(x) ((x >> 11) & 0x1f)
706 #define rtype_shamt(x) ((x >> 6) & 0x1f)
707 #define rtype_funct(x) (x & 0x3f)
708
709 static CORE_ADDR
710 mips32_relative_offset (unsigned long inst)
711 {
712 long x;
713 x = itype_immediate (inst);
714 if (x & 0x8000) /* sign bit set */
715 {
716 x |= 0xffff0000; /* sign extension */
717 }
718 x = x << 2;
719 return x;
720 }
721
722 /* Determine whate to set a single step breakpoint while considering
723 branch prediction */
724 CORE_ADDR
725 mips32_next_pc (CORE_ADDR pc)
726 {
727 unsigned long inst;
728 int op;
729 inst = mips_fetch_instruction (pc);
730 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
731 {
732 if (itype_op (inst) >> 2 == 5)
733 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
734 {
735 op = (itype_op (inst) & 0x03);
736 switch (op)
737 {
738 case 0: /* BEQL */
739 goto equal_branch;
740 case 1: /* BNEL */
741 goto neq_branch;
742 case 2: /* BLEZL */
743 goto less_branch;
744 case 3: /* BGTZ */
745 goto greater_branch;
746 default:
747 pc += 4;
748 }
749 }
750 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
751 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
752 {
753 int tf = itype_rt (inst) & 0x01;
754 int cnum = itype_rt (inst) >> 2;
755 int fcrcs = read_signed_register (FCRCS_REGNUM);
756 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
757
758 if (((cond >> cnum) & 0x01) == tf)
759 pc += mips32_relative_offset (inst) + 4;
760 else
761 pc += 8;
762 }
763 else
764 pc += 4; /* Not a branch, next instruction is easy */
765 }
766 else
767 { /* This gets way messy */
768
769 /* Further subdivide into SPECIAL, REGIMM and other */
770 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
771 {
772 case 0: /* SPECIAL */
773 op = rtype_funct (inst);
774 switch (op)
775 {
776 case 8: /* JR */
777 case 9: /* JALR */
778 /* Set PC to that address */
779 pc = read_signed_register (rtype_rs (inst));
780 break;
781 default:
782 pc += 4;
783 }
784
785 break; /* end SPECIAL */
786 case 1: /* REGIMM */
787 {
788 op = itype_rt (inst); /* branch condition */
789 switch (op)
790 {
791 case 0: /* BLTZ */
792 case 2: /* BLTZL */
793 case 16: /* BLTZAL */
794 case 18: /* BLTZALL */
795 less_branch:
796 if (read_signed_register (itype_rs (inst)) < 0)
797 pc += mips32_relative_offset (inst) + 4;
798 else
799 pc += 8; /* after the delay slot */
800 break;
801 case 1: /* BGEZ */
802 case 3: /* BGEZL */
803 case 17: /* BGEZAL */
804 case 19: /* BGEZALL */
805 greater_equal_branch:
806 if (read_signed_register (itype_rs (inst)) >= 0)
807 pc += mips32_relative_offset (inst) + 4;
808 else
809 pc += 8; /* after the delay slot */
810 break;
811 /* All of the other instructions in the REGIMM category */
812 default:
813 pc += 4;
814 }
815 }
816 break; /* end REGIMM */
817 case 2: /* J */
818 case 3: /* JAL */
819 {
820 unsigned long reg;
821 reg = jtype_target (inst) << 2;
822 /* Upper four bits get never changed... */
823 pc = reg + ((pc + 4) & 0xf0000000);
824 }
825 break;
826 /* FIXME case JALX : */
827 {
828 unsigned long reg;
829 reg = jtype_target (inst) << 2;
830 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
831 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
832 }
833 break; /* The new PC will be alternate mode */
834 case 4: /* BEQ, BEQL */
835 equal_branch:
836 if (read_signed_register (itype_rs (inst)) ==
837 read_signed_register (itype_rt (inst)))
838 pc += mips32_relative_offset (inst) + 4;
839 else
840 pc += 8;
841 break;
842 case 5: /* BNE, BNEL */
843 neq_branch:
844 if (read_signed_register (itype_rs (inst)) !=
845 read_signed_register (itype_rt (inst)))
846 pc += mips32_relative_offset (inst) + 4;
847 else
848 pc += 8;
849 break;
850 case 6: /* BLEZ, BLEZL */
851 less_zero_branch:
852 if (read_signed_register (itype_rs (inst) <= 0))
853 pc += mips32_relative_offset (inst) + 4;
854 else
855 pc += 8;
856 break;
857 case 7:
858 default:
859 greater_branch: /* BGTZ, BGTZL */
860 if (read_signed_register (itype_rs (inst) > 0))
861 pc += mips32_relative_offset (inst) + 4;
862 else
863 pc += 8;
864 break;
865 } /* switch */
866 } /* else */
867 return pc;
868 } /* mips32_next_pc */
869
870 /* Decoding the next place to set a breakpoint is irregular for the
871 mips 16 variant, but fortunately, there fewer instructions. We have to cope
872 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
873 We dont want to set a single step instruction on the extend instruction
874 either.
875 */
876
877 /* Lots of mips16 instruction formats */
878 /* Predicting jumps requires itype,ritype,i8type
879 and their extensions extItype,extritype,extI8type
880 */
881 enum mips16_inst_fmts
882 {
883 itype, /* 0 immediate 5,10 */
884 ritype, /* 1 5,3,8 */
885 rrtype, /* 2 5,3,3,5 */
886 rritype, /* 3 5,3,3,5 */
887 rrrtype, /* 4 5,3,3,3,2 */
888 rriatype, /* 5 5,3,3,1,4 */
889 shifttype, /* 6 5,3,3,3,2 */
890 i8type, /* 7 5,3,8 */
891 i8movtype, /* 8 5,3,3,5 */
892 i8mov32rtype, /* 9 5,3,5,3 */
893 i64type, /* 10 5,3,8 */
894 ri64type, /* 11 5,3,3,5 */
895 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
896 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
897 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
898 extRRItype, /* 15 5,5,5,5,3,3,5 */
899 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
900 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
901 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
902 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
903 extRi64type, /* 20 5,6,5,5,3,3,5 */
904 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
905 };
906 /* I am heaping all the fields of the formats into one structure and
907 then, only the fields which are involved in instruction extension */
908 struct upk_mips16
909 {
910 CORE_ADDR offset;
911 unsigned int regx; /* Function in i8 type */
912 unsigned int regy;
913 };
914
915
916 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
917 for the bits which make up the immediatate extension. */
918
919 static CORE_ADDR
920 extended_offset (unsigned int extension)
921 {
922 CORE_ADDR value;
923 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
924 value = value << 6;
925 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
926 value = value << 5;
927 value |= extension & 0x01f; /* extract 4:0 */
928 return value;
929 }
930
931 /* Only call this function if you know that this is an extendable
932 instruction, It wont malfunction, but why make excess remote memory references?
933 If the immediate operands get sign extended or somthing, do it after
934 the extension is performed.
935 */
936 /* FIXME: Every one of these cases needs to worry about sign extension
937 when the offset is to be used in relative addressing */
938
939
940 static unsigned int
941 fetch_mips_16 (CORE_ADDR pc)
942 {
943 char buf[8];
944 pc &= 0xfffffffe; /* clear the low order bit */
945 target_read_memory (pc, buf, 2);
946 return extract_unsigned_integer (buf, 2);
947 }
948
949 static void
950 unpack_mips16 (CORE_ADDR pc,
951 unsigned int extension,
952 unsigned int inst,
953 enum mips16_inst_fmts insn_format,
954 struct upk_mips16 *upk)
955 {
956 CORE_ADDR offset;
957 int regx;
958 int regy;
959 switch (insn_format)
960 {
961 case itype:
962 {
963 CORE_ADDR value;
964 if (extension)
965 {
966 value = extended_offset (extension);
967 value = value << 11; /* rom for the original value */
968 value |= inst & 0x7ff; /* eleven bits from instruction */
969 }
970 else
971 {
972 value = inst & 0x7ff;
973 /* FIXME : Consider sign extension */
974 }
975 offset = value;
976 regx = -1;
977 regy = -1;
978 }
979 break;
980 case ritype:
981 case i8type:
982 { /* A register identifier and an offset */
983 /* Most of the fields are the same as I type but the
984 immediate value is of a different length */
985 CORE_ADDR value;
986 if (extension)
987 {
988 value = extended_offset (extension);
989 value = value << 8; /* from the original instruction */
990 value |= inst & 0xff; /* eleven bits from instruction */
991 regx = (extension >> 8) & 0x07; /* or i8 funct */
992 if (value & 0x4000) /* test the sign bit , bit 26 */
993 {
994 value &= ~0x3fff; /* remove the sign bit */
995 value = -value;
996 }
997 }
998 else
999 {
1000 value = inst & 0xff; /* 8 bits */
1001 regx = (inst >> 8) & 0x07; /* or i8 funct */
1002 /* FIXME: Do sign extension , this format needs it */
1003 if (value & 0x80) /* THIS CONFUSES ME */
1004 {
1005 value &= 0xef; /* remove the sign bit */
1006 value = -value;
1007 }
1008 }
1009 offset = value;
1010 regy = -1;
1011 break;
1012 }
1013 case jalxtype:
1014 {
1015 unsigned long value;
1016 unsigned int nexthalf;
1017 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1018 value = value << 16;
1019 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1020 value |= nexthalf;
1021 offset = value;
1022 regx = -1;
1023 regy = -1;
1024 break;
1025 }
1026 default:
1027 internal_error (__FILE__, __LINE__,
1028 "bad switch");
1029 }
1030 upk->offset = offset;
1031 upk->regx = regx;
1032 upk->regy = regy;
1033 }
1034
1035
1036 static CORE_ADDR
1037 add_offset_16 (CORE_ADDR pc, int offset)
1038 {
1039 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1040
1041 }
1042
1043 static CORE_ADDR
1044 extended_mips16_next_pc (CORE_ADDR pc,
1045 unsigned int extension,
1046 unsigned int insn)
1047 {
1048 int op = (insn >> 11);
1049 switch (op)
1050 {
1051 case 2: /* Branch */
1052 {
1053 CORE_ADDR offset;
1054 struct upk_mips16 upk;
1055 unpack_mips16 (pc, extension, insn, itype, &upk);
1056 offset = upk.offset;
1057 if (offset & 0x800)
1058 {
1059 offset &= 0xeff;
1060 offset = -offset;
1061 }
1062 pc += (offset << 1) + 2;
1063 break;
1064 }
1065 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1066 {
1067 struct upk_mips16 upk;
1068 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1069 pc = add_offset_16 (pc, upk.offset);
1070 if ((insn >> 10) & 0x01) /* Exchange mode */
1071 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1072 else
1073 pc |= 0x01;
1074 break;
1075 }
1076 case 4: /* beqz */
1077 {
1078 struct upk_mips16 upk;
1079 int reg;
1080 unpack_mips16 (pc, extension, insn, ritype, &upk);
1081 reg = read_signed_register (upk.regx);
1082 if (reg == 0)
1083 pc += (upk.offset << 1) + 2;
1084 else
1085 pc += 2;
1086 break;
1087 }
1088 case 5: /* bnez */
1089 {
1090 struct upk_mips16 upk;
1091 int reg;
1092 unpack_mips16 (pc, extension, insn, ritype, &upk);
1093 reg = read_signed_register (upk.regx);
1094 if (reg != 0)
1095 pc += (upk.offset << 1) + 2;
1096 else
1097 pc += 2;
1098 break;
1099 }
1100 case 12: /* I8 Formats btez btnez */
1101 {
1102 struct upk_mips16 upk;
1103 int reg;
1104 unpack_mips16 (pc, extension, insn, i8type, &upk);
1105 /* upk.regx contains the opcode */
1106 reg = read_signed_register (24); /* Test register is 24 */
1107 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1108 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1109 /* pc = add_offset_16(pc,upk.offset) ; */
1110 pc += (upk.offset << 1) + 2;
1111 else
1112 pc += 2;
1113 break;
1114 }
1115 case 29: /* RR Formats JR, JALR, JALR-RA */
1116 {
1117 struct upk_mips16 upk;
1118 /* upk.fmt = rrtype; */
1119 op = insn & 0x1f;
1120 if (op == 0)
1121 {
1122 int reg;
1123 upk.regx = (insn >> 8) & 0x07;
1124 upk.regy = (insn >> 5) & 0x07;
1125 switch (upk.regy)
1126 {
1127 case 0:
1128 reg = upk.regx;
1129 break;
1130 case 1:
1131 reg = 31;
1132 break; /* Function return instruction */
1133 case 2:
1134 reg = upk.regx;
1135 break;
1136 default:
1137 reg = 31;
1138 break; /* BOGUS Guess */
1139 }
1140 pc = read_signed_register (reg);
1141 }
1142 else
1143 pc += 2;
1144 break;
1145 }
1146 case 30:
1147 /* This is an instruction extension. Fetch the real instruction
1148 (which follows the extension) and decode things based on
1149 that. */
1150 {
1151 pc += 2;
1152 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1153 break;
1154 }
1155 default:
1156 {
1157 pc += 2;
1158 break;
1159 }
1160 }
1161 return pc;
1162 }
1163
1164 CORE_ADDR
1165 mips16_next_pc (CORE_ADDR pc)
1166 {
1167 unsigned int insn = fetch_mips_16 (pc);
1168 return extended_mips16_next_pc (pc, 0, insn);
1169 }
1170
1171 /* The mips_next_pc function supports single_step when the remote
1172 target monitor or stub is not developed enough to do a single_step.
1173 It works by decoding the current instruction and predicting where a
1174 branch will go. This isnt hard because all the data is available.
1175 The MIPS32 and MIPS16 variants are quite different */
1176 CORE_ADDR
1177 mips_next_pc (CORE_ADDR pc)
1178 {
1179 if (pc & 0x01)
1180 return mips16_next_pc (pc);
1181 else
1182 return mips32_next_pc (pc);
1183 }
1184
1185 /* Guaranteed to set fci->saved_regs to some values (it never leaves it
1186 NULL). */
1187
1188 void
1189 mips_find_saved_regs (struct frame_info *fci)
1190 {
1191 int ireg;
1192 CORE_ADDR reg_position;
1193 /* r0 bit means kernel trap */
1194 int kernel_trap;
1195 /* What registers have been saved? Bitmasks. */
1196 unsigned long gen_mask, float_mask;
1197 mips_extra_func_info_t proc_desc;
1198 t_inst inst;
1199
1200 frame_saved_regs_zalloc (fci);
1201
1202 /* If it is the frame for sigtramp, the saved registers are located
1203 in a sigcontext structure somewhere on the stack.
1204 If the stack layout for sigtramp changes we might have to change these
1205 constants and the companion fixup_sigtramp in mdebugread.c */
1206 #ifndef SIGFRAME_BASE
1207 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1208 above the sigtramp frame. */
1209 #define SIGFRAME_BASE MIPS_REGSIZE
1210 /* FIXME! Are these correct?? */
1211 #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1212 #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1213 #define SIGFRAME_FPREGSAVE_OFF \
1214 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1215 #endif
1216 #ifndef SIGFRAME_REG_SIZE
1217 /* FIXME! Is this correct?? */
1218 #define SIGFRAME_REG_SIZE MIPS_REGSIZE
1219 #endif
1220 if (fci->signal_handler_caller)
1221 {
1222 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1223 {
1224 reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
1225 + ireg * SIGFRAME_REG_SIZE;
1226 fci->saved_regs[ireg] = reg_position;
1227 }
1228 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1229 {
1230 reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
1231 + ireg * SIGFRAME_REG_SIZE;
1232 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
1233 }
1234 fci->saved_regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
1235 return;
1236 }
1237
1238 proc_desc = fci->extra_info->proc_desc;
1239 if (proc_desc == NULL)
1240 /* I'm not sure how/whether this can happen. Normally when we can't
1241 find a proc_desc, we "synthesize" one using heuristic_proc_desc
1242 and set the saved_regs right away. */
1243 return;
1244
1245 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1246 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1247 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
1248
1249 if ( /* In any frame other than the innermost or a frame interrupted by
1250 a signal, we assume that all registers have been saved.
1251 This assumes that all register saves in a function happen before
1252 the first function call. */
1253 (fci->next == NULL || fci->next->signal_handler_caller)
1254
1255 /* In a dummy frame we know exactly where things are saved. */
1256 && !PROC_DESC_IS_DUMMY (proc_desc)
1257
1258 /* Don't bother unless we are inside a function prologue. Outside the
1259 prologue, we know where everything is. */
1260
1261 && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc))
1262
1263 /* Not sure exactly what kernel_trap means, but if it means
1264 the kernel saves the registers without a prologue doing it,
1265 we better not examine the prologue to see whether registers
1266 have been saved yet. */
1267 && !kernel_trap)
1268 {
1269 /* We need to figure out whether the registers that the proc_desc
1270 claims are saved have been saved yet. */
1271
1272 CORE_ADDR addr;
1273
1274 /* Bitmasks; set if we have found a save for the register. */
1275 unsigned long gen_save_found = 0;
1276 unsigned long float_save_found = 0;
1277 int instlen;
1278
1279 /* If the address is odd, assume this is MIPS16 code. */
1280 addr = PROC_LOW_ADDR (proc_desc);
1281 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1282
1283 /* Scan through this function's instructions preceding the current
1284 PC, and look for those that save registers. */
1285 while (addr < fci->pc)
1286 {
1287 inst = mips_fetch_instruction (addr);
1288 if (pc_is_mips16 (addr))
1289 mips16_decode_reg_save (inst, &gen_save_found);
1290 else
1291 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1292 addr += instlen;
1293 }
1294 gen_mask = gen_save_found;
1295 float_mask = float_save_found;
1296 }
1297
1298 /* Fill in the offsets for the registers which gen_mask says
1299 were saved. */
1300 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1301 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1302 if (gen_mask & 0x80000000)
1303 {
1304 fci->saved_regs[ireg] = reg_position;
1305 reg_position -= MIPS_SAVED_REGSIZE;
1306 }
1307
1308 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
1309 of that normally used by gcc. Therefore, we have to fetch the first
1310 instruction of the function, and if it's an entry instruction that
1311 saves $s0 or $s1, correct their saved addresses. */
1312 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1313 {
1314 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
1315 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1316 {
1317 int reg;
1318 int sreg_count = (inst >> 6) & 3;
1319
1320 /* Check if the ra register was pushed on the stack. */
1321 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1322 if (inst & 0x20)
1323 reg_position -= MIPS_SAVED_REGSIZE;
1324
1325 /* Check if the s0 and s1 registers were pushed on the stack. */
1326 for (reg = 16; reg < sreg_count + 16; reg++)
1327 {
1328 fci->saved_regs[reg] = reg_position;
1329 reg_position -= MIPS_SAVED_REGSIZE;
1330 }
1331 }
1332 }
1333
1334 /* Fill in the offsets for the registers which float_mask says
1335 were saved. */
1336 reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
1337
1338 /* The freg_offset points to where the first *double* register
1339 is saved. So skip to the high-order word. */
1340 if (!GDB_TARGET_IS_MIPS64)
1341 reg_position += MIPS_SAVED_REGSIZE;
1342
1343 /* Fill in the offsets for the float registers which float_mask says
1344 were saved. */
1345 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1346 if (float_mask & 0x80000000)
1347 {
1348 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
1349 reg_position -= MIPS_SAVED_REGSIZE;
1350 }
1351
1352 fci->saved_regs[PC_REGNUM] = fci->saved_regs[RA_REGNUM];
1353 }
1354
1355 static CORE_ADDR
1356 read_next_frame_reg (struct frame_info *fi, int regno)
1357 {
1358 for (; fi; fi = fi->next)
1359 {
1360 /* We have to get the saved sp from the sigcontext
1361 if it is a signal handler frame. */
1362 if (regno == SP_REGNUM && !fi->signal_handler_caller)
1363 return fi->frame;
1364 else
1365 {
1366 if (fi->saved_regs == NULL)
1367 mips_find_saved_regs (fi);
1368 if (fi->saved_regs[regno])
1369 return read_memory_integer (ADDR_BITS_REMOVE (fi->saved_regs[regno]), MIPS_SAVED_REGSIZE);
1370 }
1371 }
1372 return read_signed_register (regno);
1373 }
1374
1375 /* mips_addr_bits_remove - remove useless address bits */
1376
1377 static CORE_ADDR
1378 mips_addr_bits_remove (CORE_ADDR addr)
1379 {
1380 if (GDB_TARGET_IS_MIPS64)
1381 {
1382 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
1383 {
1384 /* This hack is a work-around for existing boards using
1385 PMON, the simulator, and any other 64-bit targets that
1386 doesn't have true 64-bit addressing. On these targets,
1387 the upper 32 bits of addresses are ignored by the
1388 hardware. Thus, the PC or SP are likely to have been
1389 sign extended to all 1s by instruction sequences that
1390 load 32-bit addresses. For example, a typical piece of
1391 code that loads an address is this:
1392 lui $r2, <upper 16 bits>
1393 ori $r2, <lower 16 bits>
1394 But the lui sign-extends the value such that the upper 32
1395 bits may be all 1s. The workaround is simply to mask off
1396 these bits. In the future, gcc may be changed to support
1397 true 64-bit addressing, and this masking will have to be
1398 disabled. */
1399 addr &= (CORE_ADDR) 0xffffffff;
1400 }
1401 }
1402 else if (mips_mask_address_p ())
1403 {
1404 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1405 masking off bits, instead, the actual target should be asking
1406 for the address to be converted to a valid pointer. */
1407 /* Even when GDB is configured for some 32-bit targets
1408 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1409 so CORE_ADDR is 64 bits. So we still have to mask off
1410 useless bits from addresses. */
1411 addr &= (CORE_ADDR) 0xffffffff;
1412 }
1413 return addr;
1414 }
1415
1416 /* mips_software_single_step() is called just before we want to resume
1417 the inferior, if we want to single-step it but there is no hardware
1418 or kernel single-step support (MIPS on GNU/Linux for example). We find
1419 the target of the coming instruction and breakpoint it.
1420
1421 single_step is also called just after the inferior stops. If we had
1422 set up a simulated single-step, we undo our damage. */
1423
1424 void
1425 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1426 {
1427 static CORE_ADDR next_pc;
1428 typedef char binsn_quantum[BREAKPOINT_MAX];
1429 static binsn_quantum break_mem;
1430 CORE_ADDR pc;
1431
1432 if (insert_breakpoints_p)
1433 {
1434 pc = read_register (PC_REGNUM);
1435 next_pc = mips_next_pc (pc);
1436
1437 target_insert_breakpoint (next_pc, break_mem);
1438 }
1439 else
1440 target_remove_breakpoint (next_pc, break_mem);
1441 }
1442
1443 static void
1444 mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
1445 {
1446 CORE_ADDR pc, tmp;
1447
1448 pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
1449 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
1450 tmp = mips_skip_stub (pc);
1451 prev->pc = tmp ? tmp : pc;
1452 }
1453
1454
1455 CORE_ADDR
1456 mips_frame_saved_pc (struct frame_info *frame)
1457 {
1458 CORE_ADDR saved_pc;
1459 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
1460 /* We have to get the saved pc from the sigcontext
1461 if it is a signal handler frame. */
1462 int pcreg = frame->signal_handler_caller ? PC_REGNUM
1463 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1464
1465 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1466 saved_pc = read_memory_integer (frame->frame - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
1467 else
1468 saved_pc = read_next_frame_reg (frame, pcreg);
1469
1470 return ADDR_BITS_REMOVE (saved_pc);
1471 }
1472
1473 static struct mips_extra_func_info temp_proc_desc;
1474 static CORE_ADDR temp_saved_regs[NUM_REGS];
1475
1476 /* Set a register's saved stack address in temp_saved_regs. If an address
1477 has already been set for this register, do nothing; this way we will
1478 only recognize the first save of a given register in a function prologue.
1479 This is a helper function for mips{16,32}_heuristic_proc_desc. */
1480
1481 static void
1482 set_reg_offset (int regno, CORE_ADDR offset)
1483 {
1484 if (temp_saved_regs[regno] == 0)
1485 temp_saved_regs[regno] = offset;
1486 }
1487
1488
1489 /* Test whether the PC points to the return instruction at the
1490 end of a function. */
1491
1492 static int
1493 mips_about_to_return (CORE_ADDR pc)
1494 {
1495 if (pc_is_mips16 (pc))
1496 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1497 generates a "jr $ra"; other times it generates code to load
1498 the return address from the stack to an accessible register (such
1499 as $a3), then a "jr" using that register. This second case
1500 is almost impossible to distinguish from an indirect jump
1501 used for switch statements, so we don't even try. */
1502 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1503 else
1504 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1505 }
1506
1507
1508 /* This fencepost looks highly suspicious to me. Removing it also
1509 seems suspicious as it could affect remote debugging across serial
1510 lines. */
1511
1512 static CORE_ADDR
1513 heuristic_proc_start (CORE_ADDR pc)
1514 {
1515 CORE_ADDR start_pc;
1516 CORE_ADDR fence;
1517 int instlen;
1518 int seen_adjsp = 0;
1519
1520 pc = ADDR_BITS_REMOVE (pc);
1521 start_pc = pc;
1522 fence = start_pc - heuristic_fence_post;
1523 if (start_pc == 0)
1524 return 0;
1525
1526 if (heuristic_fence_post == UINT_MAX
1527 || fence < VM_MIN_ADDRESS)
1528 fence = VM_MIN_ADDRESS;
1529
1530 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1531
1532 /* search back for previous return */
1533 for (start_pc -= instlen;; start_pc -= instlen)
1534 if (start_pc < fence)
1535 {
1536 /* It's not clear to me why we reach this point when
1537 stop_soon_quietly, but with this test, at least we
1538 don't print out warnings for every child forked (eg, on
1539 decstation). 22apr93 rich@cygnus.com. */
1540 if (!stop_soon_quietly)
1541 {
1542 static int blurb_printed = 0;
1543
1544 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1545 paddr_nz (pc));
1546
1547 if (!blurb_printed)
1548 {
1549 /* This actually happens frequently in embedded
1550 development, when you first connect to a board
1551 and your stack pointer and pc are nowhere in
1552 particular. This message needs to give people
1553 in that situation enough information to
1554 determine that it's no big deal. */
1555 printf_filtered ("\n\
1556 GDB is unable to find the start of the function at 0x%s\n\
1557 and thus can't determine the size of that function's stack frame.\n\
1558 This means that GDB may be unable to access that stack frame, or\n\
1559 the frames below it.\n\
1560 This problem is most likely caused by an invalid program counter or\n\
1561 stack pointer.\n\
1562 However, if you think GDB should simply search farther back\n\
1563 from 0x%s for code which looks like the beginning of a\n\
1564 function, you can increase the range of the search using the `set\n\
1565 heuristic-fence-post' command.\n",
1566 paddr_nz (pc), paddr_nz (pc));
1567 blurb_printed = 1;
1568 }
1569 }
1570
1571 return 0;
1572 }
1573 else if (pc_is_mips16 (start_pc))
1574 {
1575 unsigned short inst;
1576
1577 /* On MIPS16, any one of the following is likely to be the
1578 start of a function:
1579 entry
1580 addiu sp,-n
1581 daddiu sp,-n
1582 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1583 inst = mips_fetch_instruction (start_pc);
1584 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1585 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1586 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1587 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1588 break;
1589 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1590 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1591 seen_adjsp = 1;
1592 else
1593 seen_adjsp = 0;
1594 }
1595 else if (mips_about_to_return (start_pc))
1596 {
1597 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1598 break;
1599 }
1600
1601 return start_pc;
1602 }
1603
1604 /* Fetch the immediate value from a MIPS16 instruction.
1605 If the previous instruction was an EXTEND, use it to extend
1606 the upper bits of the immediate value. This is a helper function
1607 for mips16_heuristic_proc_desc. */
1608
1609 static int
1610 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1611 unsigned short inst, /* current instruction */
1612 int nbits, /* number of bits in imm field */
1613 int scale, /* scale factor to be applied to imm */
1614 int is_signed) /* is the imm field signed? */
1615 {
1616 int offset;
1617
1618 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1619 {
1620 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1621 if (offset & 0x8000) /* check for negative extend */
1622 offset = 0 - (0x10000 - (offset & 0xffff));
1623 return offset | (inst & 0x1f);
1624 }
1625 else
1626 {
1627 int max_imm = 1 << nbits;
1628 int mask = max_imm - 1;
1629 int sign_bit = max_imm >> 1;
1630
1631 offset = inst & mask;
1632 if (is_signed && (offset & sign_bit))
1633 offset = 0 - (max_imm - offset);
1634 return offset * scale;
1635 }
1636 }
1637
1638
1639 /* Fill in values in temp_proc_desc based on the MIPS16 instruction
1640 stream from start_pc to limit_pc. */
1641
1642 static void
1643 mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1644 struct frame_info *next_frame, CORE_ADDR sp)
1645 {
1646 CORE_ADDR cur_pc;
1647 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1648 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1649 unsigned inst = 0; /* current instruction */
1650 unsigned entry_inst = 0; /* the entry instruction */
1651 int reg, offset;
1652
1653 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1654 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1655
1656 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1657 {
1658 /* Save the previous instruction. If it's an EXTEND, we'll extract
1659 the immediate offset extension from it in mips16_get_imm. */
1660 prev_inst = inst;
1661
1662 /* Fetch and decode the instruction. */
1663 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1664 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1665 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1666 {
1667 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1668 if (offset < 0) /* negative stack adjustment? */
1669 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
1670 else
1671 /* Exit loop if a positive stack adjustment is found, which
1672 usually means that the stack cleanup code in the function
1673 epilogue is reached. */
1674 break;
1675 }
1676 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1677 {
1678 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1679 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1680 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1681 set_reg_offset (reg, sp + offset);
1682 }
1683 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1684 {
1685 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1686 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1687 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1688 set_reg_offset (reg, sp + offset);
1689 }
1690 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1691 {
1692 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1693 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1694 set_reg_offset (RA_REGNUM, sp + offset);
1695 }
1696 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1697 {
1698 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1699 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1700 set_reg_offset (RA_REGNUM, sp + offset);
1701 }
1702 else if (inst == 0x673d) /* move $s1, $sp */
1703 {
1704 frame_addr = sp;
1705 PROC_FRAME_REG (&temp_proc_desc) = 17;
1706 }
1707 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1708 {
1709 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1710 frame_addr = sp + offset;
1711 PROC_FRAME_REG (&temp_proc_desc) = 17;
1712 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
1713 }
1714 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1715 {
1716 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1717 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1718 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1719 set_reg_offset (reg, frame_addr + offset);
1720 }
1721 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1722 {
1723 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1724 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1725 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1726 set_reg_offset (reg, frame_addr + offset);
1727 }
1728 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1729 entry_inst = inst; /* save for later processing */
1730 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1731 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
1732 }
1733
1734 /* The entry instruction is typically the first instruction in a function,
1735 and it stores registers at offsets relative to the value of the old SP
1736 (before the prologue). But the value of the sp parameter to this
1737 function is the new SP (after the prologue has been executed). So we
1738 can't calculate those offsets until we've seen the entire prologue,
1739 and can calculate what the old SP must have been. */
1740 if (entry_inst != 0)
1741 {
1742 int areg_count = (entry_inst >> 8) & 7;
1743 int sreg_count = (entry_inst >> 6) & 3;
1744
1745 /* The entry instruction always subtracts 32 from the SP. */
1746 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
1747
1748 /* Now we can calculate what the SP must have been at the
1749 start of the function prologue. */
1750 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
1751
1752 /* Check if a0-a3 were saved in the caller's argument save area. */
1753 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1754 {
1755 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1756 set_reg_offset (reg, sp + offset);
1757 offset += MIPS_SAVED_REGSIZE;
1758 }
1759
1760 /* Check if the ra register was pushed on the stack. */
1761 offset = -4;
1762 if (entry_inst & 0x20)
1763 {
1764 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
1765 set_reg_offset (RA_REGNUM, sp + offset);
1766 offset -= MIPS_SAVED_REGSIZE;
1767 }
1768
1769 /* Check if the s0 and s1 registers were pushed on the stack. */
1770 for (reg = 16; reg < sreg_count + 16; reg++)
1771 {
1772 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1773 set_reg_offset (reg, sp + offset);
1774 offset -= MIPS_SAVED_REGSIZE;
1775 }
1776 }
1777 }
1778
1779 static void
1780 mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1781 struct frame_info *next_frame, CORE_ADDR sp)
1782 {
1783 CORE_ADDR cur_pc;
1784 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1785 restart:
1786 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
1787 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
1788 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1789 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
1790 {
1791 unsigned long inst, high_word, low_word;
1792 int reg;
1793
1794 /* Fetch the instruction. */
1795 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1796
1797 /* Save some code by pre-extracting some useful fields. */
1798 high_word = (inst >> 16) & 0xffff;
1799 low_word = inst & 0xffff;
1800 reg = high_word & 0x1f;
1801
1802 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1803 || high_word == 0x23bd /* addi $sp,$sp,-i */
1804 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1805 {
1806 if (low_word & 0x8000) /* negative stack adjustment? */
1807 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
1808 else
1809 /* Exit loop if a positive stack adjustment is found, which
1810 usually means that the stack cleanup code in the function
1811 epilogue is reached. */
1812 break;
1813 }
1814 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1815 {
1816 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1817 set_reg_offset (reg, sp + low_word);
1818 }
1819 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1820 {
1821 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
1822 but the register size used is only 32 bits. Make the address
1823 for the saved register point to the lower 32 bits. */
1824 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1825 set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
1826 }
1827 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1828 {
1829 /* Old gcc frame, r30 is virtual frame pointer. */
1830 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
1831 frame_addr = sp + low_word;
1832 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
1833 {
1834 unsigned alloca_adjust;
1835 PROC_FRAME_REG (&temp_proc_desc) = 30;
1836 frame_addr = read_next_frame_reg (next_frame, 30);
1837 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1838 if (alloca_adjust > 0)
1839 {
1840 /* FP > SP + frame_size. This may be because
1841 * of an alloca or somethings similar.
1842 * Fix sp to "pre-alloca" value, and try again.
1843 */
1844 sp += alloca_adjust;
1845 goto restart;
1846 }
1847 }
1848 }
1849 /* move $30,$sp. With different versions of gas this will be either
1850 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1851 Accept any one of these. */
1852 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1853 {
1854 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1855 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
1856 {
1857 unsigned alloca_adjust;
1858 PROC_FRAME_REG (&temp_proc_desc) = 30;
1859 frame_addr = read_next_frame_reg (next_frame, 30);
1860 alloca_adjust = (unsigned) (frame_addr - sp);
1861 if (alloca_adjust > 0)
1862 {
1863 /* FP > SP + frame_size. This may be because
1864 * of an alloca or somethings similar.
1865 * Fix sp to "pre-alloca" value, and try again.
1866 */
1867 sp += alloca_adjust;
1868 goto restart;
1869 }
1870 }
1871 }
1872 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1873 {
1874 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1875 set_reg_offset (reg, frame_addr + low_word);
1876 }
1877 }
1878 }
1879
1880 static mips_extra_func_info_t
1881 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1882 struct frame_info *next_frame, int cur_frame)
1883 {
1884 CORE_ADDR sp;
1885
1886 if (cur_frame)
1887 sp = read_next_frame_reg (next_frame, SP_REGNUM);
1888 else
1889 sp = 0;
1890
1891 if (start_pc == 0)
1892 return NULL;
1893 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
1894 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
1895 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
1896 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
1897 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
1898
1899 if (start_pc + 200 < limit_pc)
1900 limit_pc = start_pc + 200;
1901 if (pc_is_mips16 (start_pc))
1902 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
1903 else
1904 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
1905 return &temp_proc_desc;
1906 }
1907
1908 struct mips_objfile_private
1909 {
1910 bfd_size_type size;
1911 char *contents;
1912 };
1913
1914 /* Global used to communicate between non_heuristic_proc_desc and
1915 compare_pdr_entries within qsort (). */
1916 static bfd *the_bfd;
1917
1918 static int
1919 compare_pdr_entries (const void *a, const void *b)
1920 {
1921 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
1922 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
1923
1924 if (lhs < rhs)
1925 return -1;
1926 else if (lhs == rhs)
1927 return 0;
1928 else
1929 return 1;
1930 }
1931
1932 static mips_extra_func_info_t
1933 non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
1934 {
1935 CORE_ADDR startaddr;
1936 mips_extra_func_info_t proc_desc;
1937 struct block *b = block_for_pc (pc);
1938 struct symbol *sym;
1939 struct obj_section *sec;
1940 struct mips_objfile_private *priv;
1941
1942 if (PC_IN_CALL_DUMMY (pc, 0, 0))
1943 return NULL;
1944
1945 find_pc_partial_function (pc, NULL, &startaddr, NULL);
1946 if (addrptr)
1947 *addrptr = startaddr;
1948
1949 priv = NULL;
1950
1951 sec = find_pc_section (pc);
1952 if (sec != NULL)
1953 {
1954 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
1955
1956 /* Search the ".pdr" section generated by GAS. This includes most of
1957 the information normally found in ECOFF PDRs. */
1958
1959 the_bfd = sec->objfile->obfd;
1960 if (priv == NULL
1961 && (the_bfd->format == bfd_object
1962 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
1963 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
1964 {
1965 /* Right now GAS only outputs the address as a four-byte sequence.
1966 This means that we should not bother with this method on 64-bit
1967 targets (until that is fixed). */
1968
1969 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
1970 sizeof (struct mips_objfile_private));
1971 priv->size = 0;
1972 sec->objfile->obj_private = priv;
1973 }
1974 else if (priv == NULL)
1975 {
1976 asection *bfdsec;
1977
1978 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
1979 sizeof (struct mips_objfile_private));
1980
1981 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
1982 if (bfdsec != NULL)
1983 {
1984 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
1985 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
1986 priv->size);
1987 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
1988 priv->contents, 0, priv->size);
1989
1990 /* In general, the .pdr section is sorted. However, in the
1991 presence of multiple code sections (and other corner cases)
1992 it can become unsorted. Sort it so that we can use a faster
1993 binary search. */
1994 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
1995 }
1996 else
1997 priv->size = 0;
1998
1999 sec->objfile->obj_private = priv;
2000 }
2001 the_bfd = NULL;
2002
2003 if (priv->size != 0)
2004 {
2005 int low, mid, high;
2006 char *ptr;
2007
2008 low = 0;
2009 high = priv->size / 32;
2010
2011 do
2012 {
2013 CORE_ADDR pdr_pc;
2014
2015 mid = (low + high) / 2;
2016
2017 ptr = priv->contents + mid * 32;
2018 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2019 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2020 SECT_OFF_TEXT (sec->objfile));
2021 if (pdr_pc == startaddr)
2022 break;
2023 if (pdr_pc > startaddr)
2024 high = mid;
2025 else
2026 low = mid + 1;
2027 }
2028 while (low != high);
2029
2030 if (low != high)
2031 {
2032 struct symbol *sym = find_pc_function (pc);
2033
2034 /* Fill in what we need of the proc_desc. */
2035 proc_desc = (mips_extra_func_info_t)
2036 obstack_alloc (&sec->objfile->psymbol_obstack,
2037 sizeof (struct mips_extra_func_info));
2038 PROC_LOW_ADDR (proc_desc) = startaddr;
2039
2040 /* Only used for dummy frames. */
2041 PROC_HIGH_ADDR (proc_desc) = 0;
2042
2043 PROC_FRAME_OFFSET (proc_desc)
2044 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2045 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2046 ptr + 24);
2047 PROC_FRAME_ADJUST (proc_desc) = 0;
2048 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2049 ptr + 4);
2050 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2051 ptr + 12);
2052 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2053 ptr + 8);
2054 PROC_FREG_OFFSET (proc_desc)
2055 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2056 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2057 ptr + 28);
2058 proc_desc->pdr.isym = (long) sym;
2059
2060 return proc_desc;
2061 }
2062 }
2063 }
2064
2065 if (b == NULL)
2066 return NULL;
2067
2068 if (startaddr > BLOCK_START (b))
2069 {
2070 /* This is the "pathological" case referred to in a comment in
2071 print_frame_info. It might be better to move this check into
2072 symbol reading. */
2073 return NULL;
2074 }
2075
2076 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
2077
2078 /* If we never found a PDR for this function in symbol reading, then
2079 examine prologues to find the information. */
2080 if (sym)
2081 {
2082 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2083 if (PROC_FRAME_REG (proc_desc) == -1)
2084 return NULL;
2085 else
2086 return proc_desc;
2087 }
2088 else
2089 return NULL;
2090 }
2091
2092
2093 static mips_extra_func_info_t
2094 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
2095 {
2096 mips_extra_func_info_t proc_desc;
2097 CORE_ADDR startaddr;
2098
2099 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2100
2101 if (proc_desc)
2102 {
2103 /* IF this is the topmost frame AND
2104 * (this proc does not have debugging information OR
2105 * the PC is in the procedure prologue)
2106 * THEN create a "heuristic" proc_desc (by analyzing
2107 * the actual code) to replace the "official" proc_desc.
2108 */
2109 if (next_frame == NULL)
2110 {
2111 struct symtab_and_line val;
2112 struct symbol *proc_symbol =
2113 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
2114
2115 if (proc_symbol)
2116 {
2117 val = find_pc_line (BLOCK_START
2118 (SYMBOL_BLOCK_VALUE (proc_symbol)),
2119 0);
2120 val.pc = val.end ? val.end : pc;
2121 }
2122 if (!proc_symbol || pc < val.pc)
2123 {
2124 mips_extra_func_info_t found_heuristic =
2125 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2126 pc, next_frame, cur_frame);
2127 if (found_heuristic)
2128 proc_desc = found_heuristic;
2129 }
2130 }
2131 }
2132 else
2133 {
2134 /* Is linked_proc_desc_table really necessary? It only seems to be used
2135 by procedure call dummys. However, the procedures being called ought
2136 to have their own proc_descs, and even if they don't,
2137 heuristic_proc_desc knows how to create them! */
2138
2139 register struct linked_proc_info *link;
2140
2141 for (link = linked_proc_desc_table; link; link = link->next)
2142 if (PROC_LOW_ADDR (&link->info) <= pc
2143 && PROC_HIGH_ADDR (&link->info) > pc)
2144 return &link->info;
2145
2146 if (startaddr == 0)
2147 startaddr = heuristic_proc_start (pc);
2148
2149 proc_desc =
2150 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
2151 }
2152 return proc_desc;
2153 }
2154
2155 static CORE_ADDR
2156 get_frame_pointer (struct frame_info *frame,
2157 mips_extra_func_info_t proc_desc)
2158 {
2159 return ADDR_BITS_REMOVE (
2160 read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc)) +
2161 PROC_FRAME_OFFSET (proc_desc) - PROC_FRAME_ADJUST (proc_desc));
2162 }
2163
2164 mips_extra_func_info_t cached_proc_desc;
2165
2166 CORE_ADDR
2167 mips_frame_chain (struct frame_info *frame)
2168 {
2169 mips_extra_func_info_t proc_desc;
2170 CORE_ADDR tmp;
2171 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
2172
2173 if (saved_pc == 0 || inside_entry_file (saved_pc))
2174 return 0;
2175
2176 /* Check if the PC is inside a call stub. If it is, fetch the
2177 PC of the caller of that stub. */
2178 if ((tmp = mips_skip_stub (saved_pc)) != 0)
2179 saved_pc = tmp;
2180
2181 /* Look up the procedure descriptor for this PC. */
2182 proc_desc = find_proc_desc (saved_pc, frame, 1);
2183 if (!proc_desc)
2184 return 0;
2185
2186 cached_proc_desc = proc_desc;
2187
2188 /* If no frame pointer and frame size is zero, we must be at end
2189 of stack (or otherwise hosed). If we don't check frame size,
2190 we loop forever if we see a zero size frame. */
2191 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2192 && PROC_FRAME_OFFSET (proc_desc) == 0
2193 /* The previous frame from a sigtramp frame might be frameless
2194 and have frame size zero. */
2195 && !frame->signal_handler_caller)
2196 return 0;
2197 else
2198 return get_frame_pointer (frame, proc_desc);
2199 }
2200
2201 void
2202 mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
2203 {
2204 int regnum;
2205
2206 /* Use proc_desc calculated in frame_chain */
2207 mips_extra_func_info_t proc_desc =
2208 fci->next ? cached_proc_desc : find_proc_desc (fci->pc, fci->next, 1);
2209
2210 fci->extra_info = (struct frame_extra_info *)
2211 frame_obstack_alloc (sizeof (struct frame_extra_info));
2212
2213 fci->saved_regs = NULL;
2214 fci->extra_info->proc_desc =
2215 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2216 if (proc_desc)
2217 {
2218 /* Fixup frame-pointer - only needed for top frame */
2219 /* This may not be quite right, if proc has a real frame register.
2220 Get the value of the frame relative sp, procedure might have been
2221 interrupted by a signal at it's very start. */
2222 if (fci->pc == PROC_LOW_ADDR (proc_desc)
2223 && !PROC_DESC_IS_DUMMY (proc_desc))
2224 fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
2225 else
2226 fci->frame = get_frame_pointer (fci->next, proc_desc);
2227
2228 if (proc_desc == &temp_proc_desc)
2229 {
2230 char *name;
2231
2232 /* Do not set the saved registers for a sigtramp frame,
2233 mips_find_saved_registers will do that for us.
2234 We can't use fci->signal_handler_caller, it is not yet set. */
2235 find_pc_partial_function (fci->pc, &name,
2236 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
2237 if (!PC_IN_SIGTRAMP (fci->pc, name))
2238 {
2239 frame_saved_regs_zalloc (fci);
2240 memcpy (fci->saved_regs, temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2241 fci->saved_regs[PC_REGNUM]
2242 = fci->saved_regs[RA_REGNUM];
2243 }
2244 }
2245
2246 /* hack: if argument regs are saved, guess these contain args */
2247 /* assume we can't tell how many args for now */
2248 fci->extra_info->num_args = -1;
2249 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2250 {
2251 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
2252 {
2253 fci->extra_info->num_args = regnum - A0_REGNUM + 1;
2254 break;
2255 }
2256 }
2257 }
2258 }
2259
2260 /* MIPS stack frames are almost impenetrable. When execution stops,
2261 we basically have to look at symbol information for the function
2262 that we stopped in, which tells us *which* register (if any) is
2263 the base of the frame pointer, and what offset from that register
2264 the frame itself is at.
2265
2266 This presents a problem when trying to examine a stack in memory
2267 (that isn't executing at the moment), using the "frame" command. We
2268 don't have a PC, nor do we have any registers except SP.
2269
2270 This routine takes two arguments, SP and PC, and tries to make the
2271 cached frames look as if these two arguments defined a frame on the
2272 cache. This allows the rest of info frame to extract the important
2273 arguments without difficulty. */
2274
2275 struct frame_info *
2276 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
2277 {
2278 if (argc != 2)
2279 error ("MIPS frame specifications require two arguments: sp and pc");
2280
2281 return create_new_frame (argv[0], argv[1]);
2282 }
2283
2284 /* According to the current ABI, should the type be passed in a
2285 floating-point register (assuming that there is space)? When there
2286 is no FPU, FP are not even considered as possibile candidates for
2287 FP registers and, consequently this returns false - forces FP
2288 arguments into integer registers. */
2289
2290 static int
2291 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2292 {
2293 return ((typecode == TYPE_CODE_FLT
2294 || (MIPS_EABI
2295 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2296 && TYPE_NFIELDS (arg_type) == 1
2297 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2298 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2299 }
2300
2301 /* On o32, argument passing in GPRs depends on the alignment of the type being
2302 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2303
2304 static int
2305 mips_type_needs_double_align (struct type *type)
2306 {
2307 enum type_code typecode = TYPE_CODE (type);
2308
2309 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2310 return 1;
2311 else if (typecode == TYPE_CODE_STRUCT)
2312 {
2313 if (TYPE_NFIELDS (type) < 1)
2314 return 0;
2315 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2316 }
2317 else if (typecode == TYPE_CODE_UNION)
2318 {
2319 int i, n;
2320
2321 n = TYPE_NFIELDS (type);
2322 for (i = 0; i < n; i++)
2323 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2324 return 1;
2325 return 0;
2326 }
2327 return 0;
2328 }
2329
2330 CORE_ADDR
2331 mips_push_arguments (int nargs,
2332 struct value **args,
2333 CORE_ADDR sp,
2334 int struct_return,
2335 CORE_ADDR struct_addr)
2336 {
2337 int argreg;
2338 int float_argreg;
2339 int argnum;
2340 int len = 0;
2341 int stack_offset = 0;
2342
2343 /* Macros to round N up or down to the next A boundary; A must be
2344 a power of two. */
2345 #define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2346 #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2347
2348 /* First ensure that the stack and structure return address (if any)
2349 are properly aligned. The stack has to be at least 64-bit aligned
2350 even on 32-bit machines, because doubles must be 64-bit aligned.
2351 On at least one MIPS variant, stack frames need to be 128-bit
2352 aligned, so we round to this widest known alignment. */
2353 sp = ROUND_DOWN (sp, 16);
2354 struct_addr = ROUND_DOWN (struct_addr, 16);
2355
2356 /* Now make space on the stack for the args. We allocate more
2357 than necessary for EABI, because the first few arguments are
2358 passed in registers, but that's OK. */
2359 for (argnum = 0; argnum < nargs; argnum++)
2360 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])), MIPS_STACK_ARGSIZE);
2361 sp -= ROUND_UP (len, 16);
2362
2363 if (mips_debug)
2364 fprintf_unfiltered (gdb_stdlog, "mips_push_arguments: sp=0x%lx allocated %d\n",
2365 (long) sp, ROUND_UP (len, 16));
2366
2367 /* Initialize the integer and float register pointers. */
2368 argreg = A0_REGNUM;
2369 float_argreg = FPA0_REGNUM;
2370
2371 /* the struct_return pointer occupies the first parameter-passing reg */
2372 if (struct_return)
2373 {
2374 if (mips_debug)
2375 fprintf_unfiltered (gdb_stdlog,
2376 "mips_push_arguments: struct_return reg=%d 0x%lx\n",
2377 argreg, (long) struct_addr);
2378 write_register (argreg++, struct_addr);
2379 if (MIPS_REGS_HAVE_HOME_P)
2380 stack_offset += MIPS_STACK_ARGSIZE;
2381 }
2382
2383 /* Now load as many as possible of the first arguments into
2384 registers, and push the rest onto the stack. Loop thru args
2385 from first to last. */
2386 for (argnum = 0; argnum < nargs; argnum++)
2387 {
2388 char *val;
2389 char valbuf[MAX_REGISTER_RAW_SIZE];
2390 struct value *arg = args[argnum];
2391 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2392 int len = TYPE_LENGTH (arg_type);
2393 enum type_code typecode = TYPE_CODE (arg_type);
2394
2395 if (mips_debug)
2396 fprintf_unfiltered (gdb_stdlog,
2397 "mips_push_arguments: %d len=%d type=%d",
2398 argnum + 1, len, (int) typecode);
2399
2400 /* The EABI passes structures that do not fit in a register by
2401 reference. In all other cases, pass the structure by value. */
2402 if (MIPS_EABI
2403 && len > MIPS_SAVED_REGSIZE
2404 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2405 {
2406 store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
2407 typecode = TYPE_CODE_PTR;
2408 len = MIPS_SAVED_REGSIZE;
2409 val = valbuf;
2410 if (mips_debug)
2411 fprintf_unfiltered (gdb_stdlog, " push");
2412 }
2413 else
2414 val = (char *) VALUE_CONTENTS (arg);
2415
2416 /* 32-bit ABIs always start floating point arguments in an
2417 even-numbered floating point register. Round the FP register
2418 up before the check to see if there are any FP registers
2419 left. Non MIPS_EABI targets also pass the FP in the integer
2420 registers so also round up normal registers. */
2421 if (!FP_REGISTER_DOUBLE
2422 && fp_register_arg_p (typecode, arg_type))
2423 {
2424 if ((float_argreg & 1))
2425 float_argreg++;
2426 }
2427
2428 /* Floating point arguments passed in registers have to be
2429 treated specially. On 32-bit architectures, doubles
2430 are passed in register pairs; the even register gets
2431 the low word, and the odd register gets the high word.
2432 On non-EABI processors, the first two floating point arguments are
2433 also copied to general registers, because MIPS16 functions
2434 don't use float registers for arguments. This duplication of
2435 arguments in general registers can't hurt non-MIPS16 functions
2436 because those registers are normally skipped. */
2437 /* MIPS_EABI squeezes a struct that contains a single floating
2438 point value into an FP register instead of pushing it onto the
2439 stack. */
2440 if (fp_register_arg_p (typecode, arg_type)
2441 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2442 {
2443 if (!FP_REGISTER_DOUBLE && len == 8)
2444 {
2445 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2446 unsigned long regval;
2447
2448 /* Write the low word of the double to the even register(s). */
2449 regval = extract_unsigned_integer (val + low_offset, 4);
2450 if (mips_debug)
2451 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2452 float_argreg, phex (regval, 4));
2453 write_register (float_argreg++, regval);
2454 if (!MIPS_EABI)
2455 {
2456 if (mips_debug)
2457 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2458 argreg, phex (regval, 4));
2459 write_register (argreg++, regval);
2460 }
2461
2462 /* Write the high word of the double to the odd register(s). */
2463 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2464 if (mips_debug)
2465 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2466 float_argreg, phex (regval, 4));
2467 write_register (float_argreg++, regval);
2468 if (!MIPS_EABI)
2469 {
2470 if (mips_debug)
2471 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2472 argreg, phex (regval, 4));
2473 write_register (argreg++, regval);
2474 }
2475
2476 }
2477 else
2478 {
2479 /* This is a floating point value that fits entirely
2480 in a single register. */
2481 /* On 32 bit ABI's the float_argreg is further adjusted
2482 above to ensure that it is even register aligned. */
2483 LONGEST regval = extract_unsigned_integer (val, len);
2484 if (mips_debug)
2485 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2486 float_argreg, phex (regval, len));
2487 write_register (float_argreg++, regval);
2488 if (!MIPS_EABI)
2489 {
2490 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
2491 registers for each argument. The below is (my
2492 guess) to ensure that the corresponding integer
2493 register has reserved the same space. */
2494 if (mips_debug)
2495 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2496 argreg, phex (regval, len));
2497 write_register (argreg, regval);
2498 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
2499 }
2500 }
2501 /* Reserve space for the FP register. */
2502 if (MIPS_REGS_HAVE_HOME_P)
2503 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
2504 }
2505 else
2506 {
2507 /* Copy the argument to general registers or the stack in
2508 register-sized pieces. Large arguments are split between
2509 registers and stack. */
2510 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2511 are treated specially: Irix cc passes them in registers
2512 where gcc sometimes puts them on the stack. For maximum
2513 compatibility, we will put them in both places. */
2514 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2515 (len % MIPS_SAVED_REGSIZE != 0));
2516 /* Structures should be aligned to eight bytes (even arg registers)
2517 on MIPS_ABI_O32 if their first member has double precision. */
2518 if (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_O32
2519 && mips_type_needs_double_align (arg_type))
2520 {
2521 if ((argreg & 1))
2522 argreg++;
2523 }
2524 /* Note: Floating-point values that didn't fit into an FP
2525 register are only written to memory. */
2526 while (len > 0)
2527 {
2528 /* Rememer if the argument was written to the stack. */
2529 int stack_used_p = 0;
2530 int partial_len = len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
2531
2532 if (mips_debug)
2533 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2534 partial_len);
2535
2536 /* Write this portion of the argument to the stack. */
2537 if (argreg > MIPS_LAST_ARG_REGNUM
2538 || odd_sized_struct
2539 || fp_register_arg_p (typecode, arg_type))
2540 {
2541 /* Should shorter than int integer values be
2542 promoted to int before being stored? */
2543 int longword_offset = 0;
2544 CORE_ADDR addr;
2545 stack_used_p = 1;
2546 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2547 {
2548 if (MIPS_STACK_ARGSIZE == 8 &&
2549 (typecode == TYPE_CODE_INT ||
2550 typecode == TYPE_CODE_PTR ||
2551 typecode == TYPE_CODE_FLT) && len <= 4)
2552 longword_offset = MIPS_STACK_ARGSIZE - len;
2553 else if ((typecode == TYPE_CODE_STRUCT ||
2554 typecode == TYPE_CODE_UNION) &&
2555 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2556 longword_offset = MIPS_STACK_ARGSIZE - len;
2557 }
2558
2559 if (mips_debug)
2560 {
2561 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%lx",
2562 (long) stack_offset);
2563 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%lx",
2564 (long) longword_offset);
2565 }
2566
2567 addr = sp + stack_offset + longword_offset;
2568
2569 if (mips_debug)
2570 {
2571 int i;
2572 fprintf_unfiltered (gdb_stdlog, " @0x%lx ", (long) addr);
2573 for (i = 0; i < partial_len; i++)
2574 {
2575 fprintf_unfiltered (gdb_stdlog, "%02x", val[i] & 0xff);
2576 }
2577 }
2578 write_memory (addr, val, partial_len);
2579 }
2580
2581 /* Note!!! This is NOT an else clause. Odd sized
2582 structs may go thru BOTH paths. Floating point
2583 arguments will not. */
2584 /* Write this portion of the argument to a general
2585 purpose register. */
2586 if (argreg <= MIPS_LAST_ARG_REGNUM
2587 && !fp_register_arg_p (typecode, arg_type))
2588 {
2589 LONGEST regval = extract_unsigned_integer (val, partial_len);
2590
2591 /* A non-floating-point argument being passed in a
2592 general register. If a struct or union, and if
2593 the remaining length is smaller than the register
2594 size, we have to adjust the register value on
2595 big endian targets.
2596
2597 It does not seem to be necessary to do the
2598 same for integral types.
2599
2600 Also don't do this adjustment on EABI and O64
2601 binaries.
2602
2603 cagney/2001-07-23: gdb/179: Also, GCC, when
2604 outputting LE O32 with sizeof (struct) <
2605 MIPS_SAVED_REGSIZE, generates a left shift as
2606 part of storing the argument in a register a
2607 register (the left shift isn't generated when
2608 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
2609 is quite possible that this is GCC contradicting
2610 the LE/O32 ABI, GDB has not been adjusted to
2611 accommodate this. Either someone needs to
2612 demonstrate that the LE/O32 ABI specifies such a
2613 left shift OR this new ABI gets identified as
2614 such and GDB gets tweaked accordingly. */
2615
2616 if (!MIPS_EABI
2617 && MIPS_SAVED_REGSIZE < 8
2618 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
2619 && partial_len < MIPS_SAVED_REGSIZE
2620 && (typecode == TYPE_CODE_STRUCT ||
2621 typecode == TYPE_CODE_UNION))
2622 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
2623 TARGET_CHAR_BIT);
2624
2625 if (mips_debug)
2626 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2627 argreg,
2628 phex (regval, MIPS_SAVED_REGSIZE));
2629 write_register (argreg, regval);
2630 argreg++;
2631
2632 /* If this is the old ABI, prevent subsequent floating
2633 point arguments from being passed in floating point
2634 registers. */
2635 if (!MIPS_EABI)
2636 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
2637 }
2638
2639 len -= partial_len;
2640 val += partial_len;
2641
2642 /* Compute the the offset into the stack at which we
2643 will copy the next parameter.
2644
2645 In older ABIs, the caller reserved space for
2646 registers that contained arguments. This was loosely
2647 refered to as their "home". Consequently, space is
2648 always allocated.
2649
2650 In the new EABI (and the NABI32), the stack_offset
2651 only needs to be adjusted when it has been used.. */
2652
2653 if (MIPS_REGS_HAVE_HOME_P || stack_used_p)
2654 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
2655 }
2656 }
2657 if (mips_debug)
2658 fprintf_unfiltered (gdb_stdlog, "\n");
2659 }
2660
2661 /* Return adjusted stack pointer. */
2662 return sp;
2663 }
2664
2665 CORE_ADDR
2666 mips_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
2667 {
2668 /* Set the return address register to point to the entry
2669 point of the program, where a breakpoint lies in wait. */
2670 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
2671 return sp;
2672 }
2673
2674 static void
2675 mips_push_register (CORE_ADDR * sp, int regno)
2676 {
2677 char buffer[MAX_REGISTER_RAW_SIZE];
2678 int regsize;
2679 int offset;
2680 if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno))
2681 {
2682 regsize = MIPS_SAVED_REGSIZE;
2683 offset = (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
2684 ? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE
2685 : 0);
2686 }
2687 else
2688 {
2689 regsize = REGISTER_RAW_SIZE (regno);
2690 offset = 0;
2691 }
2692 *sp -= regsize;
2693 read_register_gen (regno, buffer);
2694 write_memory (*sp, buffer + offset, regsize);
2695 }
2696
2697 /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
2698 #define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
2699
2700 void
2701 mips_push_dummy_frame (void)
2702 {
2703 int ireg;
2704 struct linked_proc_info *link = (struct linked_proc_info *)
2705 xmalloc (sizeof (struct linked_proc_info));
2706 mips_extra_func_info_t proc_desc = &link->info;
2707 CORE_ADDR sp = ADDR_BITS_REMOVE (read_signed_register (SP_REGNUM));
2708 CORE_ADDR old_sp = sp;
2709 link->next = linked_proc_desc_table;
2710 linked_proc_desc_table = link;
2711
2712 /* FIXME! are these correct ? */
2713 #define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
2714 #define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
2715 #define FLOAT_REG_SAVE_MASK MASK(0,19)
2716 #define FLOAT_SINGLE_REG_SAVE_MASK \
2717 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
2718 /*
2719 * The registers we must save are all those not preserved across
2720 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
2721 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
2722 * and FP Control/Status registers.
2723 *
2724 *
2725 * Dummy frame layout:
2726 * (high memory)
2727 * Saved PC
2728 * Saved MMHI, MMLO, FPC_CSR
2729 * Saved R31
2730 * Saved R28
2731 * ...
2732 * Saved R1
2733 * Saved D18 (i.e. F19, F18)
2734 * ...
2735 * Saved D0 (i.e. F1, F0)
2736 * Argument build area and stack arguments written via mips_push_arguments
2737 * (low memory)
2738 */
2739
2740 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
2741 PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM;
2742 PROC_FRAME_OFFSET (proc_desc) = 0;
2743 PROC_FRAME_ADJUST (proc_desc) = 0;
2744 mips_push_register (&sp, PC_REGNUM);
2745 mips_push_register (&sp, HI_REGNUM);
2746 mips_push_register (&sp, LO_REGNUM);
2747 mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
2748
2749 /* Save general CPU registers */
2750 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
2751 /* PROC_REG_OFFSET is the offset of the first saved register from FP. */
2752 PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE;
2753 for (ireg = 32; --ireg >= 0;)
2754 if (PROC_REG_MASK (proc_desc) & (1 << ireg))
2755 mips_push_register (&sp, ireg);
2756
2757 /* Save floating point registers starting with high order word */
2758 PROC_FREG_MASK (proc_desc) =
2759 MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
2760 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
2761 /* PROC_FREG_OFFSET is the offset of the first saved *double* register
2762 from FP. */
2763 PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8;
2764 for (ireg = 32; --ireg >= 0;)
2765 if (PROC_FREG_MASK (proc_desc) & (1 << ireg))
2766 mips_push_register (&sp, ireg + FP0_REGNUM);
2767
2768 /* Update the frame pointer for the call dummy and the stack pointer.
2769 Set the procedure's starting and ending addresses to point to the
2770 call dummy address at the entry point. */
2771 write_register (PUSH_FP_REGNUM, old_sp);
2772 write_register (SP_REGNUM, sp);
2773 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
2774 PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4;
2775 SET_PROC_DESC_IS_DUMMY (proc_desc);
2776 PROC_PC_REG (proc_desc) = RA_REGNUM;
2777 }
2778
2779 void
2780 mips_pop_frame (void)
2781 {
2782 register int regnum;
2783 struct frame_info *frame = get_current_frame ();
2784 CORE_ADDR new_sp = FRAME_FP (frame);
2785
2786 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
2787
2788 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
2789 if (frame->saved_regs == NULL)
2790 mips_find_saved_regs (frame);
2791 for (regnum = 0; regnum < NUM_REGS; regnum++)
2792 {
2793 if (regnum != SP_REGNUM && regnum != PC_REGNUM
2794 && frame->saved_regs[regnum])
2795 write_register (regnum,
2796 read_memory_integer (frame->saved_regs[regnum],
2797 MIPS_SAVED_REGSIZE));
2798 }
2799 write_register (SP_REGNUM, new_sp);
2800 flush_cached_frames ();
2801
2802 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
2803 {
2804 struct linked_proc_info *pi_ptr, *prev_ptr;
2805
2806 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
2807 pi_ptr != NULL;
2808 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
2809 {
2810 if (&pi_ptr->info == proc_desc)
2811 break;
2812 }
2813
2814 if (pi_ptr == NULL)
2815 error ("Can't locate dummy extra frame info\n");
2816
2817 if (prev_ptr != NULL)
2818 prev_ptr->next = pi_ptr->next;
2819 else
2820 linked_proc_desc_table = pi_ptr->next;
2821
2822 xfree (pi_ptr);
2823
2824 write_register (HI_REGNUM,
2825 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
2826 MIPS_SAVED_REGSIZE));
2827 write_register (LO_REGNUM,
2828 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
2829 MIPS_SAVED_REGSIZE));
2830 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
2831 write_register (FCRCS_REGNUM,
2832 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
2833 MIPS_SAVED_REGSIZE));
2834 }
2835 }
2836
2837 /* Floating point register management.
2838
2839 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
2840 64bit operations, these early MIPS cpus treat fp register pairs
2841 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
2842 registers and offer a compatibility mode that emulates the MIPS2 fp
2843 model. When operating in MIPS2 fp compat mode, later cpu's split
2844 double precision floats into two 32-bit chunks and store them in
2845 consecutive fp regs. To display 64-bit floats stored in this
2846 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
2847 Throw in user-configurable endianness and you have a real mess.
2848
2849 The way this works is:
2850 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
2851 double-precision value will be split across two logical registers.
2852 The lower-numbered logical register will hold the low-order bits,
2853 regardless of the processor's endianness.
2854 - If we are on a 64-bit processor, and we are looking for a
2855 single-precision value, it will be in the low ordered bits
2856 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
2857 save slot in memory.
2858 - If we are in 64-bit mode, everything is straightforward.
2859
2860 Note that this code only deals with "live" registers at the top of the
2861 stack. We will attempt to deal with saved registers later, when
2862 the raw/cooked register interface is in place. (We need a general
2863 interface that can deal with dynamic saved register sizes -- fp
2864 regs could be 32 bits wide in one frame and 64 on the frame above
2865 and below). */
2866
2867 static struct type *
2868 mips_float_register_type (void)
2869 {
2870 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2871 return builtin_type_ieee_single_big;
2872 else
2873 return builtin_type_ieee_single_little;
2874 }
2875
2876 static struct type *
2877 mips_double_register_type (void)
2878 {
2879 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2880 return builtin_type_ieee_double_big;
2881 else
2882 return builtin_type_ieee_double_little;
2883 }
2884
2885 /* Copy a 32-bit single-precision value from the current frame
2886 into rare_buffer. */
2887
2888 static void
2889 mips_read_fp_register_single (int regno, char *rare_buffer)
2890 {
2891 int raw_size = REGISTER_RAW_SIZE (regno);
2892 char *raw_buffer = alloca (raw_size);
2893
2894 if (!frame_register_read (selected_frame, regno, raw_buffer))
2895 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
2896 if (raw_size == 8)
2897 {
2898 /* We have a 64-bit value for this register. Find the low-order
2899 32 bits. */
2900 int offset;
2901
2902 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2903 offset = 4;
2904 else
2905 offset = 0;
2906
2907 memcpy (rare_buffer, raw_buffer + offset, 4);
2908 }
2909 else
2910 {
2911 memcpy (rare_buffer, raw_buffer, 4);
2912 }
2913 }
2914
2915 /* Copy a 64-bit double-precision value from the current frame into
2916 rare_buffer. This may include getting half of it from the next
2917 register. */
2918
2919 static void
2920 mips_read_fp_register_double (int regno, char *rare_buffer)
2921 {
2922 int raw_size = REGISTER_RAW_SIZE (regno);
2923
2924 if (raw_size == 8 && !mips2_fp_compat ())
2925 {
2926 /* We have a 64-bit value for this register, and we should use
2927 all 64 bits. */
2928 if (!frame_register_read (selected_frame, regno, rare_buffer))
2929 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
2930 }
2931 else
2932 {
2933 if ((regno - FP0_REGNUM) & 1)
2934 internal_error (__FILE__, __LINE__,
2935 "mips_read_fp_register_double: bad access to "
2936 "odd-numbered FP register");
2937
2938 /* mips_read_fp_register_single will find the correct 32 bits from
2939 each register. */
2940 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2941 {
2942 mips_read_fp_register_single (regno, rare_buffer + 4);
2943 mips_read_fp_register_single (regno + 1, rare_buffer);
2944 }
2945 else
2946 {
2947 mips_read_fp_register_single (regno, rare_buffer);
2948 mips_read_fp_register_single (regno + 1, rare_buffer + 4);
2949 }
2950 }
2951 }
2952
2953 static void
2954 mips_print_register (int regnum, int all)
2955 {
2956 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2957
2958 /* Get the data in raw format. */
2959 if (!frame_register_read (selected_frame, regnum, raw_buffer))
2960 {
2961 printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
2962 return;
2963 }
2964
2965 /* If we have a actual 32-bit floating point register (or we are in
2966 32-bit compatibility mode), and the register is even-numbered,
2967 also print it as a double (spanning two registers). */
2968 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
2969 && (REGISTER_RAW_SIZE (regnum) == 4
2970 || mips2_fp_compat ())
2971 && !((regnum - FP0_REGNUM) & 1))
2972 {
2973 char dbuffer[2 * MAX_REGISTER_RAW_SIZE];
2974
2975 mips_read_fp_register_double (regnum, dbuffer);
2976
2977 printf_filtered ("(d%d: ", regnum - FP0_REGNUM);
2978 val_print (mips_double_register_type (), dbuffer, 0, 0,
2979 gdb_stdout, 0, 1, 0, Val_pretty_default);
2980 printf_filtered ("); ");
2981 }
2982 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
2983
2984 /* The problem with printing numeric register names (r26, etc.) is that
2985 the user can't use them on input. Probably the best solution is to
2986 fix it so that either the numeric or the funky (a2, etc.) names
2987 are accepted on input. */
2988 if (regnum < MIPS_NUMREGS)
2989 printf_filtered ("(r%d): ", regnum);
2990 else
2991 printf_filtered (": ");
2992
2993 /* If virtual format is floating, print it that way. */
2994 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2995 if (REGISTER_RAW_SIZE (regnum) == 8 && !mips2_fp_compat ())
2996 {
2997 /* We have a meaningful 64-bit value in this register. Show
2998 it as a 32-bit float and a 64-bit double. */
2999 int offset = 4 * (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG);
3000
3001 printf_filtered (" (float) ");
3002 val_print (mips_float_register_type (), raw_buffer + offset, 0, 0,
3003 gdb_stdout, 0, 1, 0, Val_pretty_default);
3004 printf_filtered (", (double) ");
3005 val_print (mips_double_register_type (), raw_buffer, 0, 0,
3006 gdb_stdout, 0, 1, 0, Val_pretty_default);
3007 }
3008 else
3009 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
3010 gdb_stdout, 0, 1, 0, Val_pretty_default);
3011 /* Else print as integer in hex. */
3012 else
3013 {
3014 int offset;
3015
3016 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3017 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
3018 else
3019 offset = 0;
3020
3021 print_scalar_formatted (raw_buffer + offset,
3022 REGISTER_VIRTUAL_TYPE (regnum),
3023 'x', 0, gdb_stdout);
3024 }
3025 }
3026
3027 /* Replacement for generic do_registers_info.
3028 Print regs in pretty columns. */
3029
3030 static int
3031 do_fp_register_row (int regnum)
3032 { /* do values for FP (float) regs */
3033 char *raw_buffer;
3034 double doub, flt1, flt2; /* doubles extracted from raw hex data */
3035 int inv1, inv2, inv3;
3036
3037 raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
3038
3039 if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
3040 {
3041 /* 4-byte registers: we can fit two registers per row. */
3042 /* Also print every pair of 4-byte regs as an 8-byte double. */
3043 mips_read_fp_register_single (regnum, raw_buffer);
3044 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
3045
3046 mips_read_fp_register_single (regnum + 1, raw_buffer);
3047 flt2 = unpack_double (mips_float_register_type (), raw_buffer, &inv2);
3048
3049 mips_read_fp_register_double (regnum, raw_buffer);
3050 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
3051
3052 printf_filtered (" %-5s", REGISTER_NAME (regnum));
3053 if (inv1)
3054 printf_filtered (": <invalid float>");
3055 else
3056 printf_filtered ("%-17.9g", flt1);
3057
3058 printf_filtered (" %-5s", REGISTER_NAME (regnum + 1));
3059 if (inv2)
3060 printf_filtered (": <invalid float>");
3061 else
3062 printf_filtered ("%-17.9g", flt2);
3063
3064 printf_filtered (" dbl: ");
3065 if (inv3)
3066 printf_filtered ("<invalid double>");
3067 else
3068 printf_filtered ("%-24.17g", doub);
3069 printf_filtered ("\n");
3070
3071 /* may want to do hex display here (future enhancement) */
3072 regnum += 2;
3073 }
3074 else
3075 {
3076 /* Eight byte registers: print each one as float AND as double. */
3077 mips_read_fp_register_single (regnum, raw_buffer);
3078 flt1 = unpack_double (mips_double_register_type (), raw_buffer, &inv1);
3079
3080 mips_read_fp_register_double (regnum, raw_buffer);
3081 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
3082
3083 printf_filtered (" %-5s: ", REGISTER_NAME (regnum));
3084 if (inv1)
3085 printf_filtered ("<invalid float>");
3086 else
3087 printf_filtered ("flt: %-17.9g", flt1);
3088
3089 printf_filtered (" dbl: ");
3090 if (inv3)
3091 printf_filtered ("<invalid double>");
3092 else
3093 printf_filtered ("%-24.17g", doub);
3094
3095 printf_filtered ("\n");
3096 /* may want to do hex display here (future enhancement) */
3097 regnum++;
3098 }
3099 return regnum;
3100 }
3101
3102 /* Print a row's worth of GP (int) registers, with name labels above */
3103
3104 static int
3105 do_gp_register_row (int regnum)
3106 {
3107 /* do values for GP (int) regs */
3108 char raw_buffer[MAX_REGISTER_RAW_SIZE];
3109 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
3110 int col, byte;
3111 int start_regnum = regnum;
3112 int numregs = NUM_REGS;
3113
3114
3115 /* For GP registers, we print a separate row of names above the vals */
3116 printf_filtered (" ");
3117 for (col = 0; col < ncols && regnum < numregs; regnum++)
3118 {
3119 if (*REGISTER_NAME (regnum) == '\0')
3120 continue; /* unused register */
3121 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
3122 break; /* end the row: reached FP register */
3123 printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
3124 REGISTER_NAME (regnum));
3125 col++;
3126 }
3127 printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
3128 start_regnum); /* print the R0 to R31 names */
3129
3130 regnum = start_regnum; /* go back to start of row */
3131 /* now print the values in hex, 4 or 8 to the row */
3132 for (col = 0; col < ncols && regnum < numregs; regnum++)
3133 {
3134 if (*REGISTER_NAME (regnum) == '\0')
3135 continue; /* unused register */
3136 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
3137 break; /* end row: reached FP register */
3138 /* OK: get the data in raw format. */
3139 if (!frame_register_read (selected_frame, regnum, raw_buffer))
3140 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
3141 /* pad small registers */
3142 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
3143 printf_filtered (" ");
3144 /* Now print the register value in hex, endian order. */
3145 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3146 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
3147 byte < REGISTER_RAW_SIZE (regnum);
3148 byte++)
3149 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
3150 else
3151 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
3152 byte >= 0;
3153 byte--)
3154 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
3155 printf_filtered (" ");
3156 col++;
3157 }
3158 if (col > 0) /* ie. if we actually printed anything... */
3159 printf_filtered ("\n");
3160
3161 return regnum;
3162 }
3163
3164 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
3165
3166 void
3167 mips_do_registers_info (int regnum, int fpregs)
3168 {
3169 if (regnum != -1) /* do one specified register */
3170 {
3171 if (*(REGISTER_NAME (regnum)) == '\0')
3172 error ("Not a valid register for the current processor type");
3173
3174 mips_print_register (regnum, 0);
3175 printf_filtered ("\n");
3176 }
3177 else
3178 /* do all (or most) registers */
3179 {
3180 regnum = 0;
3181 while (regnum < NUM_REGS)
3182 {
3183 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
3184 if (fpregs) /* true for "INFO ALL-REGISTERS" command */
3185 regnum = do_fp_register_row (regnum); /* FP regs */
3186 else
3187 regnum += MIPS_NUMREGS; /* skip floating point regs */
3188 else
3189 regnum = do_gp_register_row (regnum); /* GP (int) regs */
3190 }
3191 }
3192 }
3193
3194 /* Return number of args passed to a frame. described by FIP.
3195 Can return -1, meaning no way to tell. */
3196
3197 int
3198 mips_frame_num_args (struct frame_info *frame)
3199 {
3200 return -1;
3201 }
3202
3203 /* Is this a branch with a delay slot? */
3204
3205 static int is_delayed (unsigned long);
3206
3207 static int
3208 is_delayed (unsigned long insn)
3209 {
3210 int i;
3211 for (i = 0; i < NUMOPCODES; ++i)
3212 if (mips_opcodes[i].pinfo != INSN_MACRO
3213 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
3214 break;
3215 return (i < NUMOPCODES
3216 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
3217 | INSN_COND_BRANCH_DELAY
3218 | INSN_COND_BRANCH_LIKELY)));
3219 }
3220
3221 int
3222 mips_step_skips_delay (CORE_ADDR pc)
3223 {
3224 char buf[MIPS_INSTLEN];
3225
3226 /* There is no branch delay slot on MIPS16. */
3227 if (pc_is_mips16 (pc))
3228 return 0;
3229
3230 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
3231 /* If error reading memory, guess that it is not a delayed branch. */
3232 return 0;
3233 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
3234 }
3235
3236
3237 /* Skip the PC past function prologue instructions (32-bit version).
3238 This is a helper function for mips_skip_prologue. */
3239
3240 static CORE_ADDR
3241 mips32_skip_prologue (CORE_ADDR pc)
3242 {
3243 t_inst inst;
3244 CORE_ADDR end_pc;
3245 int seen_sp_adjust = 0;
3246 int load_immediate_bytes = 0;
3247
3248 /* Skip the typical prologue instructions. These are the stack adjustment
3249 instruction and the instructions that save registers on the stack
3250 or in the gcc frame. */
3251 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
3252 {
3253 unsigned long high_word;
3254
3255 inst = mips_fetch_instruction (pc);
3256 high_word = (inst >> 16) & 0xffff;
3257
3258 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
3259 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
3260 seen_sp_adjust = 1;
3261 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
3262 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
3263 seen_sp_adjust = 1;
3264 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
3265 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
3266 && (inst & 0x001F0000)) /* reg != $zero */
3267 continue;
3268
3269 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
3270 continue;
3271 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
3272 /* sx reg,n($s8) */
3273 continue; /* reg != $zero */
3274
3275 /* move $s8,$sp. With different versions of gas this will be either
3276 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
3277 Accept any one of these. */
3278 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
3279 continue;
3280
3281 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
3282 continue;
3283 else if (high_word == 0x3c1c) /* lui $gp,n */
3284 continue;
3285 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
3286 continue;
3287 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
3288 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
3289 continue;
3290 /* The following instructions load $at or $t0 with an immediate
3291 value in preparation for a stack adjustment via
3292 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
3293 a local variable, so we accept them only before a stack adjustment
3294 instruction was seen. */
3295 else if (!seen_sp_adjust)
3296 {
3297 if (high_word == 0x3c01 || /* lui $at,n */
3298 high_word == 0x3c08) /* lui $t0,n */
3299 {
3300 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
3301 continue;
3302 }
3303 else if (high_word == 0x3421 || /* ori $at,$at,n */
3304 high_word == 0x3508 || /* ori $t0,$t0,n */
3305 high_word == 0x3401 || /* ori $at,$zero,n */
3306 high_word == 0x3408) /* ori $t0,$zero,n */
3307 {
3308 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
3309 continue;
3310 }
3311 else
3312 break;
3313 }
3314 else
3315 break;
3316 }
3317
3318 /* In a frameless function, we might have incorrectly
3319 skipped some load immediate instructions. Undo the skipping
3320 if the load immediate was not followed by a stack adjustment. */
3321 if (load_immediate_bytes && !seen_sp_adjust)
3322 pc -= load_immediate_bytes;
3323 return pc;
3324 }
3325
3326 /* Skip the PC past function prologue instructions (16-bit version).
3327 This is a helper function for mips_skip_prologue. */
3328
3329 static CORE_ADDR
3330 mips16_skip_prologue (CORE_ADDR pc)
3331 {
3332 CORE_ADDR end_pc;
3333 int extend_bytes = 0;
3334 int prev_extend_bytes;
3335
3336 /* Table of instructions likely to be found in a function prologue. */
3337 static struct
3338 {
3339 unsigned short inst;
3340 unsigned short mask;
3341 }
3342 table[] =
3343 {
3344 {
3345 0x6300, 0xff00
3346 }
3347 , /* addiu $sp,offset */
3348 {
3349 0xfb00, 0xff00
3350 }
3351 , /* daddiu $sp,offset */
3352 {
3353 0xd000, 0xf800
3354 }
3355 , /* sw reg,n($sp) */
3356 {
3357 0xf900, 0xff00
3358 }
3359 , /* sd reg,n($sp) */
3360 {
3361 0x6200, 0xff00
3362 }
3363 , /* sw $ra,n($sp) */
3364 {
3365 0xfa00, 0xff00
3366 }
3367 , /* sd $ra,n($sp) */
3368 {
3369 0x673d, 0xffff
3370 }
3371 , /* move $s1,sp */
3372 {
3373 0xd980, 0xff80
3374 }
3375 , /* sw $a0-$a3,n($s1) */
3376 {
3377 0x6704, 0xff1c
3378 }
3379 , /* move reg,$a0-$a3 */
3380 {
3381 0xe809, 0xf81f
3382 }
3383 , /* entry pseudo-op */
3384 {
3385 0x0100, 0xff00
3386 }
3387 , /* addiu $s1,$sp,n */
3388 {
3389 0, 0
3390 } /* end of table marker */
3391 };
3392
3393 /* Skip the typical prologue instructions. These are the stack adjustment
3394 instruction and the instructions that save registers on the stack
3395 or in the gcc frame. */
3396 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
3397 {
3398 unsigned short inst;
3399 int i;
3400
3401 inst = mips_fetch_instruction (pc);
3402
3403 /* Normally we ignore an extend instruction. However, if it is
3404 not followed by a valid prologue instruction, we must adjust
3405 the pc back over the extend so that it won't be considered
3406 part of the prologue. */
3407 if ((inst & 0xf800) == 0xf000) /* extend */
3408 {
3409 extend_bytes = MIPS16_INSTLEN;
3410 continue;
3411 }
3412 prev_extend_bytes = extend_bytes;
3413 extend_bytes = 0;
3414
3415 /* Check for other valid prologue instructions besides extend. */
3416 for (i = 0; table[i].mask != 0; i++)
3417 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
3418 break;
3419 if (table[i].mask != 0) /* it was in table? */
3420 continue; /* ignore it */
3421 else
3422 /* non-prologue */
3423 {
3424 /* Return the current pc, adjusted backwards by 2 if
3425 the previous instruction was an extend. */
3426 return pc - prev_extend_bytes;
3427 }
3428 }
3429 return pc;
3430 }
3431
3432 /* To skip prologues, I use this predicate. Returns either PC itself
3433 if the code at PC does not look like a function prologue; otherwise
3434 returns an address that (if we're lucky) follows the prologue. If
3435 LENIENT, then we must skip everything which is involved in setting
3436 up the frame (it's OK to skip more, just so long as we don't skip
3437 anything which might clobber the registers which are being saved.
3438 We must skip more in the case where part of the prologue is in the
3439 delay slot of a non-prologue instruction). */
3440
3441 CORE_ADDR
3442 mips_skip_prologue (CORE_ADDR pc)
3443 {
3444 /* See if we can determine the end of the prologue via the symbol table.
3445 If so, then return either PC, or the PC after the prologue, whichever
3446 is greater. */
3447
3448 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
3449
3450 if (post_prologue_pc != 0)
3451 return max (pc, post_prologue_pc);
3452
3453 /* Can't determine prologue from the symbol table, need to examine
3454 instructions. */
3455
3456 if (pc_is_mips16 (pc))
3457 return mips16_skip_prologue (pc);
3458 else
3459 return mips32_skip_prologue (pc);
3460 }
3461
3462 /* Determine how a return value is stored within the MIPS register
3463 file, given the return type `valtype'. */
3464
3465 struct return_value_word
3466 {
3467 int len;
3468 int reg;
3469 int reg_offset;
3470 int buf_offset;
3471 };
3472
3473 static void
3474 return_value_location (struct type *valtype,
3475 struct return_value_word *hi,
3476 struct return_value_word *lo)
3477 {
3478 int len = TYPE_LENGTH (valtype);
3479
3480 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
3481 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
3482 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
3483 {
3484 if (!FP_REGISTER_DOUBLE && len == 8)
3485 {
3486 /* We need to break a 64bit float in two 32 bit halves and
3487 spread them across a floating-point register pair. */
3488 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3489 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
3490 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3491 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
3492 ? 4 : 0);
3493 hi->reg_offset = lo->reg_offset;
3494 lo->reg = FP0_REGNUM + 0;
3495 hi->reg = FP0_REGNUM + 1;
3496 lo->len = 4;
3497 hi->len = 4;
3498 }
3499 else
3500 {
3501 /* The floating point value fits in a single floating-point
3502 register. */
3503 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3504 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
3505 && len == 4)
3506 ? 4 : 0);
3507 lo->reg = FP0_REGNUM;
3508 lo->len = len;
3509 lo->buf_offset = 0;
3510 hi->len = 0;
3511 hi->reg_offset = 0;
3512 hi->buf_offset = 0;
3513 hi->reg = 0;
3514 }
3515 }
3516 else
3517 {
3518 /* Locate a result possibly spread across two registers. */
3519 int regnum = 2;
3520 lo->reg = regnum + 0;
3521 hi->reg = regnum + 1;
3522 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3523 && len < MIPS_SAVED_REGSIZE)
3524 {
3525 /* "un-left-justify" the value in the low register */
3526 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
3527 lo->len = len;
3528 hi->reg_offset = 0;
3529 hi->len = 0;
3530 }
3531 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3532 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
3533 && len < MIPS_SAVED_REGSIZE * 2
3534 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
3535 TYPE_CODE (valtype) == TYPE_CODE_UNION))
3536 {
3537 /* "un-left-justify" the value spread across two registers. */
3538 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
3539 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
3540 hi->reg_offset = 0;
3541 hi->len = len - lo->len;
3542 }
3543 else
3544 {
3545 /* Only perform a partial copy of the second register. */
3546 lo->reg_offset = 0;
3547 hi->reg_offset = 0;
3548 if (len > MIPS_SAVED_REGSIZE)
3549 {
3550 lo->len = MIPS_SAVED_REGSIZE;
3551 hi->len = len - MIPS_SAVED_REGSIZE;
3552 }
3553 else
3554 {
3555 lo->len = len;
3556 hi->len = 0;
3557 }
3558 }
3559 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3560 && REGISTER_RAW_SIZE (regnum) == 8
3561 && MIPS_SAVED_REGSIZE == 4)
3562 {
3563 /* Account for the fact that only the least-signficant part
3564 of the register is being used */
3565 lo->reg_offset += 4;
3566 hi->reg_offset += 4;
3567 }
3568 lo->buf_offset = 0;
3569 hi->buf_offset = lo->len;
3570 }
3571 }
3572
3573 /* Given a return value in `regbuf' with a type `valtype', extract and
3574 copy its value into `valbuf'. */
3575
3576 void
3577 mips_extract_return_value (struct type *valtype,
3578 char regbuf[REGISTER_BYTES],
3579 char *valbuf)
3580 {
3581 struct return_value_word lo;
3582 struct return_value_word hi;
3583 return_value_location (valtype, &hi, &lo);
3584
3585 memcpy (valbuf + lo.buf_offset,
3586 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
3587 lo.len);
3588
3589 if (hi.len > 0)
3590 memcpy (valbuf + hi.buf_offset,
3591 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
3592 hi.len);
3593 }
3594
3595 /* Given a return value in `valbuf' with a type `valtype', write it's
3596 value into the appropriate register. */
3597
3598 void
3599 mips_store_return_value (struct type *valtype, char *valbuf)
3600 {
3601 char raw_buffer[MAX_REGISTER_RAW_SIZE];
3602 struct return_value_word lo;
3603 struct return_value_word hi;
3604 return_value_location (valtype, &hi, &lo);
3605
3606 memset (raw_buffer, 0, sizeof (raw_buffer));
3607 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
3608 write_register_bytes (REGISTER_BYTE (lo.reg),
3609 raw_buffer,
3610 REGISTER_RAW_SIZE (lo.reg));
3611
3612 if (hi.len > 0)
3613 {
3614 memset (raw_buffer, 0, sizeof (raw_buffer));
3615 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
3616 write_register_bytes (REGISTER_BYTE (hi.reg),
3617 raw_buffer,
3618 REGISTER_RAW_SIZE (hi.reg));
3619 }
3620 }
3621
3622 /* Exported procedure: Is PC in the signal trampoline code */
3623
3624 int
3625 in_sigtramp (CORE_ADDR pc, char *ignore)
3626 {
3627 if (sigtramp_address == 0)
3628 fixup_sigtramp ();
3629 return (pc >= sigtramp_address && pc < sigtramp_end);
3630 }
3631
3632 /* Root of all "set mips "/"show mips " commands. This will eventually be
3633 used for all MIPS-specific commands. */
3634
3635 static void
3636 show_mips_command (char *args, int from_tty)
3637 {
3638 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
3639 }
3640
3641 static void
3642 set_mips_command (char *args, int from_tty)
3643 {
3644 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
3645 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
3646 }
3647
3648 /* Commands to show/set the MIPS FPU type. */
3649
3650 static void
3651 show_mipsfpu_command (char *args, int from_tty)
3652 {
3653 char *fpu;
3654 switch (MIPS_FPU_TYPE)
3655 {
3656 case MIPS_FPU_SINGLE:
3657 fpu = "single-precision";
3658 break;
3659 case MIPS_FPU_DOUBLE:
3660 fpu = "double-precision";
3661 break;
3662 case MIPS_FPU_NONE:
3663 fpu = "absent (none)";
3664 break;
3665 default:
3666 internal_error (__FILE__, __LINE__, "bad switch");
3667 }
3668 if (mips_fpu_type_auto)
3669 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
3670 fpu);
3671 else
3672 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
3673 fpu);
3674 }
3675
3676
3677 static void
3678 set_mipsfpu_command (char *args, int from_tty)
3679 {
3680 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
3681 show_mipsfpu_command (args, from_tty);
3682 }
3683
3684 static void
3685 set_mipsfpu_single_command (char *args, int from_tty)
3686 {
3687 mips_fpu_type = MIPS_FPU_SINGLE;
3688 mips_fpu_type_auto = 0;
3689 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
3690 }
3691
3692 static void
3693 set_mipsfpu_double_command (char *args, int from_tty)
3694 {
3695 mips_fpu_type = MIPS_FPU_DOUBLE;
3696 mips_fpu_type_auto = 0;
3697 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
3698 }
3699
3700 static void
3701 set_mipsfpu_none_command (char *args, int from_tty)
3702 {
3703 mips_fpu_type = MIPS_FPU_NONE;
3704 mips_fpu_type_auto = 0;
3705 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
3706 }
3707
3708 static void
3709 set_mipsfpu_auto_command (char *args, int from_tty)
3710 {
3711 mips_fpu_type_auto = 1;
3712 }
3713
3714 /* Command to set the processor type. */
3715
3716 void
3717 mips_set_processor_type_command (char *args, int from_tty)
3718 {
3719 int i;
3720
3721 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
3722 {
3723 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
3724 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
3725 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
3726
3727 /* Restore the value. */
3728 tmp_mips_processor_type = xstrdup (mips_processor_type);
3729
3730 return;
3731 }
3732
3733 if (!mips_set_processor_type (tmp_mips_processor_type))
3734 {
3735 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
3736 /* Restore its value. */
3737 tmp_mips_processor_type = xstrdup (mips_processor_type);
3738 }
3739 }
3740
3741 static void
3742 mips_show_processor_type_command (char *args, int from_tty)
3743 {
3744 }
3745
3746 /* Modify the actual processor type. */
3747
3748 int
3749 mips_set_processor_type (char *str)
3750 {
3751 int i;
3752
3753 if (str == NULL)
3754 return 0;
3755
3756 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
3757 {
3758 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
3759 {
3760 mips_processor_type = str;
3761 mips_processor_reg_names = mips_processor_type_table[i].regnames;
3762 return 1;
3763 /* FIXME tweak fpu flag too */
3764 }
3765 }
3766
3767 return 0;
3768 }
3769
3770 /* Attempt to identify the particular processor model by reading the
3771 processor id. */
3772
3773 char *
3774 mips_read_processor_type (void)
3775 {
3776 CORE_ADDR prid;
3777
3778 prid = read_register (PRID_REGNUM);
3779
3780 if ((prid & ~0xf) == 0x700)
3781 return savestring ("r3041", strlen ("r3041"));
3782
3783 return NULL;
3784 }
3785
3786 /* Just like reinit_frame_cache, but with the right arguments to be
3787 callable as an sfunc. */
3788
3789 static void
3790 reinit_frame_cache_sfunc (char *args, int from_tty,
3791 struct cmd_list_element *c)
3792 {
3793 reinit_frame_cache ();
3794 }
3795
3796 int
3797 gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
3798 {
3799 mips_extra_func_info_t proc_desc;
3800
3801 /* Search for the function containing this address. Set the low bit
3802 of the address when searching, in case we were given an even address
3803 that is the start of a 16-bit function. If we didn't do this,
3804 the search would fail because the symbol table says the function
3805 starts at an odd address, i.e. 1 byte past the given address. */
3806 memaddr = ADDR_BITS_REMOVE (memaddr);
3807 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
3808
3809 /* Make an attempt to determine if this is a 16-bit function. If
3810 the procedure descriptor exists and the address therein is odd,
3811 it's definitely a 16-bit function. Otherwise, we have to just
3812 guess that if the address passed in is odd, it's 16-bits. */
3813 if (proc_desc)
3814 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
3815 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
3816 else
3817 info->mach = pc_is_mips16 (memaddr) ?
3818 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
3819
3820 /* Round down the instruction address to the appropriate boundary. */
3821 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
3822
3823 /* Call the appropriate disassembler based on the target endian-ness. */
3824 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3825 return print_insn_big_mips (memaddr, info);
3826 else
3827 return print_insn_little_mips (memaddr, info);
3828 }
3829
3830 /* Old-style breakpoint macros.
3831 The IDT board uses an unusual breakpoint value, and sometimes gets
3832 confused when it sees the usual MIPS breakpoint instruction. */
3833
3834 #define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
3835 #define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
3836 #define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
3837 #define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
3838 #define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
3839 #define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
3840 #define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
3841 #define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
3842
3843 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
3844 counter value to determine whether a 16- or 32-bit breakpoint should be
3845 used. It returns a pointer to a string of bytes that encode a breakpoint
3846 instruction, stores the length of the string to *lenptr, and adjusts pc
3847 (if necessary) to point to the actual memory location where the
3848 breakpoint should be inserted. */
3849
3850 const unsigned char *
3851 mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
3852 {
3853 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3854 {
3855 if (pc_is_mips16 (*pcptr))
3856 {
3857 static unsigned char mips16_big_breakpoint[] =
3858 MIPS16_BIG_BREAKPOINT;
3859 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
3860 *lenptr = sizeof (mips16_big_breakpoint);
3861 return mips16_big_breakpoint;
3862 }
3863 else
3864 {
3865 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
3866 static unsigned char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
3867 static unsigned char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
3868
3869 *lenptr = sizeof (big_breakpoint);
3870
3871 if (strcmp (target_shortname, "mips") == 0)
3872 return idt_big_breakpoint;
3873 else if (strcmp (target_shortname, "ddb") == 0
3874 || strcmp (target_shortname, "pmon") == 0
3875 || strcmp (target_shortname, "lsi") == 0)
3876 return pmon_big_breakpoint;
3877 else
3878 return big_breakpoint;
3879 }
3880 }
3881 else
3882 {
3883 if (pc_is_mips16 (*pcptr))
3884 {
3885 static unsigned char mips16_little_breakpoint[] =
3886 MIPS16_LITTLE_BREAKPOINT;
3887 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
3888 *lenptr = sizeof (mips16_little_breakpoint);
3889 return mips16_little_breakpoint;
3890 }
3891 else
3892 {
3893 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
3894 static unsigned char pmon_little_breakpoint[] =
3895 PMON_LITTLE_BREAKPOINT;
3896 static unsigned char idt_little_breakpoint[] =
3897 IDT_LITTLE_BREAKPOINT;
3898
3899 *lenptr = sizeof (little_breakpoint);
3900
3901 if (strcmp (target_shortname, "mips") == 0)
3902 return idt_little_breakpoint;
3903 else if (strcmp (target_shortname, "ddb") == 0
3904 || strcmp (target_shortname, "pmon") == 0
3905 || strcmp (target_shortname, "lsi") == 0)
3906 return pmon_little_breakpoint;
3907 else
3908 return little_breakpoint;
3909 }
3910 }
3911 }
3912
3913 /* If PC is in a mips16 call or return stub, return the address of the target
3914 PC, which is either the callee or the caller. There are several
3915 cases which must be handled:
3916
3917 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
3918 target PC is in $31 ($ra).
3919 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
3920 and the target PC is in $2.
3921 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
3922 before the jal instruction, this is effectively a call stub
3923 and the the target PC is in $2. Otherwise this is effectively
3924 a return stub and the target PC is in $18.
3925
3926 See the source code for the stubs in gcc/config/mips/mips16.S for
3927 gory details.
3928
3929 This function implements the SKIP_TRAMPOLINE_CODE macro.
3930 */
3931
3932 CORE_ADDR
3933 mips_skip_stub (CORE_ADDR pc)
3934 {
3935 char *name;
3936 CORE_ADDR start_addr;
3937
3938 /* Find the starting address and name of the function containing the PC. */
3939 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
3940 return 0;
3941
3942 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
3943 target PC is in $31 ($ra). */
3944 if (strcmp (name, "__mips16_ret_sf") == 0
3945 || strcmp (name, "__mips16_ret_df") == 0)
3946 return read_signed_register (RA_REGNUM);
3947
3948 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
3949 {
3950 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
3951 and the target PC is in $2. */
3952 if (name[19] >= '0' && name[19] <= '9')
3953 return read_signed_register (2);
3954
3955 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
3956 before the jal instruction, this is effectively a call stub
3957 and the the target PC is in $2. Otherwise this is effectively
3958 a return stub and the target PC is in $18. */
3959 else if (name[19] == 's' || name[19] == 'd')
3960 {
3961 if (pc == start_addr)
3962 {
3963 /* Check if the target of the stub is a compiler-generated
3964 stub. Such a stub for a function bar might have a name
3965 like __fn_stub_bar, and might look like this:
3966 mfc1 $4,$f13
3967 mfc1 $5,$f12
3968 mfc1 $6,$f15
3969 mfc1 $7,$f14
3970 la $1,bar (becomes a lui/addiu pair)
3971 jr $1
3972 So scan down to the lui/addi and extract the target
3973 address from those two instructions. */
3974
3975 CORE_ADDR target_pc = read_signed_register (2);
3976 t_inst inst;
3977 int i;
3978
3979 /* See if the name of the target function is __fn_stub_*. */
3980 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
3981 return target_pc;
3982 if (strncmp (name, "__fn_stub_", 10) != 0
3983 && strcmp (name, "etext") != 0
3984 && strcmp (name, "_etext") != 0)
3985 return target_pc;
3986
3987 /* Scan through this _fn_stub_ code for the lui/addiu pair.
3988 The limit on the search is arbitrarily set to 20
3989 instructions. FIXME. */
3990 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
3991 {
3992 inst = mips_fetch_instruction (target_pc);
3993 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
3994 pc = (inst << 16) & 0xffff0000; /* high word */
3995 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
3996 return pc | (inst & 0xffff); /* low word */
3997 }
3998
3999 /* Couldn't find the lui/addui pair, so return stub address. */
4000 return target_pc;
4001 }
4002 else
4003 /* This is the 'return' part of a call stub. The return
4004 address is in $r18. */
4005 return read_signed_register (18);
4006 }
4007 }
4008 return 0; /* not a stub */
4009 }
4010
4011
4012 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
4013 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
4014
4015 int
4016 mips_in_call_stub (CORE_ADDR pc, char *name)
4017 {
4018 CORE_ADDR start_addr;
4019
4020 /* Find the starting address of the function containing the PC. If the
4021 caller didn't give us a name, look it up at the same time. */
4022 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
4023 return 0;
4024
4025 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
4026 {
4027 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
4028 if (name[19] >= '0' && name[19] <= '9')
4029 return 1;
4030 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4031 before the jal instruction, this is effectively a call stub. */
4032 else if (name[19] == 's' || name[19] == 'd')
4033 return pc == start_addr;
4034 }
4035
4036 return 0; /* not a stub */
4037 }
4038
4039
4040 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
4041 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
4042
4043 int
4044 mips_in_return_stub (CORE_ADDR pc, char *name)
4045 {
4046 CORE_ADDR start_addr;
4047
4048 /* Find the starting address of the function containing the PC. */
4049 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
4050 return 0;
4051
4052 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
4053 if (strcmp (name, "__mips16_ret_sf") == 0
4054 || strcmp (name, "__mips16_ret_df") == 0)
4055 return 1;
4056
4057 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
4058 i.e. after the jal instruction, this is effectively a return stub. */
4059 if (strncmp (name, "__mips16_call_stub_", 19) == 0
4060 && (name[19] == 's' || name[19] == 'd')
4061 && pc != start_addr)
4062 return 1;
4063
4064 return 0; /* not a stub */
4065 }
4066
4067
4068 /* Return non-zero if the PC is in a library helper function that should
4069 be ignored. This implements the IGNORE_HELPER_CALL macro. */
4070
4071 int
4072 mips_ignore_helper (CORE_ADDR pc)
4073 {
4074 char *name;
4075
4076 /* Find the starting address and name of the function containing the PC. */
4077 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
4078 return 0;
4079
4080 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
4081 that we want to ignore. */
4082 return (strcmp (name, "__mips16_ret_sf") == 0
4083 || strcmp (name, "__mips16_ret_df") == 0);
4084 }
4085
4086
4087 /* Return a location where we can set a breakpoint that will be hit
4088 when an inferior function call returns. This is normally the
4089 program's entry point. Executables that don't have an entry
4090 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
4091 whose address is the location where the breakpoint should be placed. */
4092
4093 CORE_ADDR
4094 mips_call_dummy_address (void)
4095 {
4096 struct minimal_symbol *sym;
4097
4098 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
4099 if (sym)
4100 return SYMBOL_VALUE_ADDRESS (sym);
4101 else
4102 return entry_point_address ();
4103 }
4104
4105
4106 /* If the current gcc for this target does not produce correct debugging
4107 information for float parameters, both prototyped and unprototyped, then
4108 define this macro. This forces gdb to always assume that floats are
4109 passed as doubles and then converted in the callee.
4110
4111 For the mips chip, it appears that the debug info marks the parameters as
4112 floats regardless of whether the function is prototyped, but the actual
4113 values are passed as doubles for the non-prototyped case and floats for
4114 the prototyped case. Thus we choose to make the non-prototyped case work
4115 for C and break the prototyped case, since the non-prototyped case is
4116 probably much more common. (FIXME). */
4117
4118 static int
4119 mips_coerce_float_to_double (struct type *formal, struct type *actual)
4120 {
4121 return current_language->la_language == language_c;
4122 }
4123
4124 /* When debugging a 64 MIPS target running a 32 bit ABI, the size of
4125 the register stored on the stack (32) is different to its real raw
4126 size (64). The below ensures that registers are fetched from the
4127 stack using their ABI size and then stored into the RAW_BUFFER
4128 using their raw size.
4129
4130 The alternative to adding this function would be to add an ABI
4131 macro - REGISTER_STACK_SIZE(). */
4132
4133 static void
4134 mips_get_saved_register (char *raw_buffer,
4135 int *optimized,
4136 CORE_ADDR *addrp,
4137 struct frame_info *frame,
4138 int regnum,
4139 enum lval_type *lval)
4140 {
4141 CORE_ADDR addr;
4142
4143 if (!target_has_registers)
4144 error ("No registers.");
4145
4146 /* Normal systems don't optimize out things with register numbers. */
4147 if (optimized != NULL)
4148 *optimized = 0;
4149 addr = find_saved_register (frame, regnum);
4150 if (addr != 0)
4151 {
4152 if (lval != NULL)
4153 *lval = lval_memory;
4154 if (regnum == SP_REGNUM)
4155 {
4156 if (raw_buffer != NULL)
4157 {
4158 /* Put it back in target format. */
4159 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
4160 (LONGEST) addr);
4161 }
4162 if (addrp != NULL)
4163 *addrp = 0;
4164 return;
4165 }
4166 if (raw_buffer != NULL)
4167 {
4168 LONGEST val;
4169 if (regnum < 32)
4170 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
4171 saved. */
4172 val = read_memory_integer (addr, MIPS_SAVED_REGSIZE);
4173 else
4174 val = read_memory_integer (addr, REGISTER_RAW_SIZE (regnum));
4175 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
4176 }
4177 }
4178 else
4179 {
4180 if (lval != NULL)
4181 *lval = lval_register;
4182 addr = REGISTER_BYTE (regnum);
4183 if (raw_buffer != NULL)
4184 read_register_gen (regnum, raw_buffer);
4185 }
4186 if (addrp != NULL)
4187 *addrp = addr;
4188 }
4189
4190 /* Immediately after a function call, return the saved pc.
4191 Can't always go through the frames for this because on some machines
4192 the new frame is not set up until the new function executes
4193 some instructions. */
4194
4195 static CORE_ADDR
4196 mips_saved_pc_after_call (struct frame_info *frame)
4197 {
4198 return read_signed_register (RA_REGNUM);
4199 }
4200
4201
4202 /* Convert a dbx stab register number (from `r' declaration) to a gdb
4203 REGNUM */
4204
4205 static int
4206 mips_stab_reg_to_regnum (int num)
4207 {
4208 if (num < 32)
4209 return num;
4210 else
4211 return num + FP0_REGNUM - 38;
4212 }
4213
4214 /* Convert a ecoff register number to a gdb REGNUM */
4215
4216 static int
4217 mips_ecoff_reg_to_regnum (int num)
4218 {
4219 if (num < 32)
4220 return num;
4221 else
4222 return num + FP0_REGNUM - 32;
4223 }
4224
4225 /* Convert an integer into an address. By first converting the value
4226 into a pointer and then extracting it signed, the address is
4227 guarenteed to be correctly sign extended. */
4228
4229 static CORE_ADDR
4230 mips_integer_to_address (struct type *type, void *buf)
4231 {
4232 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
4233 LONGEST val = unpack_long (type, buf);
4234 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
4235 return extract_signed_integer (tmp,
4236 TYPE_LENGTH (builtin_type_void_data_ptr));
4237 }
4238
4239 static void
4240 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
4241 {
4242 enum mips_abi *abip = (enum mips_abi *) obj;
4243 const char *name = bfd_get_section_name (abfd, sect);
4244
4245 if (*abip != MIPS_ABI_UNKNOWN)
4246 return;
4247
4248 if (strncmp (name, ".mdebug.", 8) != 0)
4249 return;
4250
4251 if (strcmp (name, ".mdebug.abi32") == 0)
4252 *abip = MIPS_ABI_O32;
4253 else if (strcmp (name, ".mdebug.abiN32") == 0)
4254 *abip = MIPS_ABI_N32;
4255 else if (strcmp (name, ".mdebug.abiO64") == 0)
4256 *abip = MIPS_ABI_O64;
4257 else if (strcmp (name, ".mdebug.eabi32") == 0)
4258 *abip = MIPS_ABI_EABI32;
4259 else if (strcmp (name, ".mdebug.eabi64") == 0)
4260 *abip = MIPS_ABI_EABI64;
4261 else
4262 warning ("unsupported ABI %s.", name + 8);
4263 }
4264
4265 static enum mips_abi
4266 global_mips_abi (void)
4267 {
4268 int i;
4269
4270 for (i = 0; mips_abi_strings[i] != NULL; i++)
4271 if (mips_abi_strings[i] == mips_abi_string)
4272 return (enum mips_abi) i;
4273
4274 internal_error (__FILE__, __LINE__,
4275 "unknown ABI string");
4276 }
4277
4278 static struct gdbarch *
4279 mips_gdbarch_init (struct gdbarch_info info,
4280 struct gdbarch_list *arches)
4281 {
4282 static LONGEST mips_call_dummy_words[] =
4283 {0};
4284 struct gdbarch *gdbarch;
4285 struct gdbarch_tdep *tdep;
4286 int elf_flags;
4287 enum mips_abi mips_abi, found_abi, wanted_abi;
4288 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
4289
4290 /* Reset the disassembly info, in case it was set to something
4291 non-default. */
4292 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
4293 tm_print_insn_info.arch = bfd_arch_unknown;
4294 tm_print_insn_info.mach = 0;
4295
4296 elf_flags = 0;
4297
4298 if (info.abfd)
4299 {
4300 /* First of all, extract the elf_flags, if available. */
4301 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
4302 elf_flags = elf_elfheader (info.abfd)->e_flags;
4303
4304 /* Try to determine the OS ABI of the object we are loading. If
4305 we end up with `unknown', just leave it that way. */
4306 osabi = gdbarch_lookup_osabi (info.abfd);
4307 }
4308
4309 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
4310 switch ((elf_flags & EF_MIPS_ABI))
4311 {
4312 case E_MIPS_ABI_O32:
4313 mips_abi = MIPS_ABI_O32;
4314 break;
4315 case E_MIPS_ABI_O64:
4316 mips_abi = MIPS_ABI_O64;
4317 break;
4318 case E_MIPS_ABI_EABI32:
4319 mips_abi = MIPS_ABI_EABI32;
4320 break;
4321 case E_MIPS_ABI_EABI64:
4322 mips_abi = MIPS_ABI_EABI64;
4323 break;
4324 default:
4325 if ((elf_flags & EF_MIPS_ABI2))
4326 mips_abi = MIPS_ABI_N32;
4327 else
4328 mips_abi = MIPS_ABI_UNKNOWN;
4329 break;
4330 }
4331
4332 /* GCC creates a pseudo-section whose name describes the ABI. */
4333 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
4334 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
4335
4336 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
4337 Use the ABI from the last architecture if there is one. */
4338 if (info.abfd == NULL && arches != NULL)
4339 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
4340
4341 /* Try the architecture for any hint of the corect ABI */
4342 if (mips_abi == MIPS_ABI_UNKNOWN
4343 && info.bfd_arch_info != NULL
4344 && info.bfd_arch_info->arch == bfd_arch_mips)
4345 {
4346 switch (info.bfd_arch_info->mach)
4347 {
4348 case bfd_mach_mips3900:
4349 mips_abi = MIPS_ABI_EABI32;
4350 break;
4351 case bfd_mach_mips4100:
4352 case bfd_mach_mips5000:
4353 mips_abi = MIPS_ABI_EABI64;
4354 break;
4355 case bfd_mach_mips8000:
4356 case bfd_mach_mips10000:
4357 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
4358 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
4359 mips_abi = MIPS_ABI_N64;
4360 else
4361 mips_abi = MIPS_ABI_N32;
4362 break;
4363 }
4364 }
4365
4366 #ifdef MIPS_DEFAULT_ABI
4367 if (mips_abi == MIPS_ABI_UNKNOWN)
4368 mips_abi = MIPS_DEFAULT_ABI;
4369 #endif
4370
4371 if (mips_abi == MIPS_ABI_UNKNOWN)
4372 mips_abi = MIPS_ABI_O32;
4373
4374 /* Now that we have found what the ABI for this binary would be,
4375 check whether the user is overriding it. */
4376 found_abi = mips_abi;
4377 wanted_abi = global_mips_abi ();
4378 if (wanted_abi != MIPS_ABI_UNKNOWN)
4379 mips_abi = wanted_abi;
4380
4381 if (gdbarch_debug)
4382 {
4383 fprintf_unfiltered (gdb_stdlog,
4384 "mips_gdbarch_init: elf_flags = 0x%08x\n",
4385 elf_flags);
4386 fprintf_unfiltered (gdb_stdlog,
4387 "mips_gdbarch_init: mips_abi = %d\n",
4388 mips_abi);
4389 fprintf_unfiltered (gdb_stdlog,
4390 "mips_gdbarch_init: found_mips_abi = %d\n",
4391 found_abi);
4392 }
4393
4394 /* try to find a pre-existing architecture */
4395 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4396 arches != NULL;
4397 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4398 {
4399 /* MIPS needs to be pedantic about which ABI the object is
4400 using. */
4401 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
4402 continue;
4403 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
4404 continue;
4405 if (gdbarch_tdep (arches->gdbarch)->osabi == osabi)
4406 return arches->gdbarch;
4407 }
4408
4409 /* Need a new architecture. Fill in a target specific vector. */
4410 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4411 gdbarch = gdbarch_alloc (&info, tdep);
4412 tdep->elf_flags = elf_flags;
4413 tdep->osabi = osabi;
4414
4415 /* Initially set everything according to the default ABI/ISA. */
4416 set_gdbarch_short_bit (gdbarch, 16);
4417 set_gdbarch_int_bit (gdbarch, 32);
4418 set_gdbarch_float_bit (gdbarch, 32);
4419 set_gdbarch_double_bit (gdbarch, 64);
4420 set_gdbarch_long_double_bit (gdbarch, 64);
4421 set_gdbarch_register_raw_size (gdbarch, mips_register_raw_size);
4422 tdep->found_abi = found_abi;
4423 tdep->mips_abi = mips_abi;
4424
4425 switch (mips_abi)
4426 {
4427 case MIPS_ABI_O32:
4428 tdep->mips_default_saved_regsize = 4;
4429 tdep->mips_default_stack_argsize = 4;
4430 tdep->mips_fp_register_double = 0;
4431 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
4432 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
4433 tdep->mips_regs_have_home_p = 1;
4434 tdep->gdb_target_is_mips64 = 0;
4435 tdep->default_mask_address_p = 0;
4436 set_gdbarch_long_bit (gdbarch, 32);
4437 set_gdbarch_ptr_bit (gdbarch, 32);
4438 set_gdbarch_long_long_bit (gdbarch, 64);
4439 break;
4440 case MIPS_ABI_O64:
4441 tdep->mips_default_saved_regsize = 8;
4442 tdep->mips_default_stack_argsize = 8;
4443 tdep->mips_fp_register_double = 1;
4444 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
4445 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
4446 tdep->mips_regs_have_home_p = 1;
4447 tdep->gdb_target_is_mips64 = 1;
4448 tdep->default_mask_address_p = 0;
4449 set_gdbarch_long_bit (gdbarch, 32);
4450 set_gdbarch_ptr_bit (gdbarch, 32);
4451 set_gdbarch_long_long_bit (gdbarch, 64);
4452 break;
4453 case MIPS_ABI_EABI32:
4454 tdep->mips_default_saved_regsize = 4;
4455 tdep->mips_default_stack_argsize = 4;
4456 tdep->mips_fp_register_double = 0;
4457 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
4458 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
4459 tdep->mips_regs_have_home_p = 0;
4460 tdep->gdb_target_is_mips64 = 0;
4461 tdep->default_mask_address_p = 0;
4462 set_gdbarch_long_bit (gdbarch, 32);
4463 set_gdbarch_ptr_bit (gdbarch, 32);
4464 set_gdbarch_long_long_bit (gdbarch, 64);
4465 break;
4466 case MIPS_ABI_EABI64:
4467 tdep->mips_default_saved_regsize = 8;
4468 tdep->mips_default_stack_argsize = 8;
4469 tdep->mips_fp_register_double = 1;
4470 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
4471 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
4472 tdep->mips_regs_have_home_p = 0;
4473 tdep->gdb_target_is_mips64 = 1;
4474 tdep->default_mask_address_p = 0;
4475 set_gdbarch_long_bit (gdbarch, 64);
4476 set_gdbarch_ptr_bit (gdbarch, 64);
4477 set_gdbarch_long_long_bit (gdbarch, 64);
4478 break;
4479 case MIPS_ABI_N32:
4480 tdep->mips_default_saved_regsize = 4;
4481 tdep->mips_default_stack_argsize = 8;
4482 tdep->mips_fp_register_double = 1;
4483 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
4484 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
4485 tdep->mips_regs_have_home_p = 0;
4486 tdep->gdb_target_is_mips64 = 0;
4487 tdep->default_mask_address_p = 0;
4488 set_gdbarch_long_bit (gdbarch, 32);
4489 set_gdbarch_ptr_bit (gdbarch, 32);
4490 set_gdbarch_long_long_bit (gdbarch, 64);
4491
4492 /* Set up the disassembler info, so that we get the right
4493 register names from libopcodes. */
4494 tm_print_insn_info.flavour = bfd_target_elf_flavour;
4495 tm_print_insn_info.arch = bfd_arch_mips;
4496 if (info.bfd_arch_info != NULL
4497 && info.bfd_arch_info->arch == bfd_arch_mips
4498 && info.bfd_arch_info->mach)
4499 tm_print_insn_info.mach = info.bfd_arch_info->mach;
4500 else
4501 tm_print_insn_info.mach = bfd_mach_mips8000;
4502 break;
4503 case MIPS_ABI_N64:
4504 tdep->mips_default_saved_regsize = 8;
4505 tdep->mips_default_stack_argsize = 8;
4506 tdep->mips_fp_register_double = 1;
4507 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
4508 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
4509 tdep->mips_regs_have_home_p = 0;
4510 tdep->gdb_target_is_mips64 = 1;
4511 tdep->default_mask_address_p = 0;
4512 set_gdbarch_long_bit (gdbarch, 64);
4513 set_gdbarch_ptr_bit (gdbarch, 64);
4514 set_gdbarch_long_long_bit (gdbarch, 64);
4515
4516 /* Set up the disassembler info, so that we get the right
4517 register names from libopcodes. */
4518 tm_print_insn_info.flavour = bfd_target_elf_flavour;
4519 tm_print_insn_info.arch = bfd_arch_mips;
4520 if (info.bfd_arch_info != NULL
4521 && info.bfd_arch_info->arch == bfd_arch_mips
4522 && info.bfd_arch_info->mach)
4523 tm_print_insn_info.mach = info.bfd_arch_info->mach;
4524 else
4525 tm_print_insn_info.mach = bfd_mach_mips8000;
4526 break;
4527 default:
4528 internal_error (__FILE__, __LINE__,
4529 "unknown ABI in switch");
4530 }
4531
4532 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
4533 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
4534 comment:
4535
4536 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
4537 flag in object files because to do so would make it impossible to
4538 link with libraries compiled without "-gp32". This is
4539 unnecessarily restrictive.
4540
4541 We could solve this problem by adding "-gp32" multilibs to gcc,
4542 but to set this flag before gcc is built with such multilibs will
4543 break too many systems.''
4544
4545 But even more unhelpfully, the default linker output target for
4546 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
4547 for 64-bit programs - you need to change the ABI to change this,
4548 and not all gcc targets support that currently. Therefore using
4549 this flag to detect 32-bit mode would do the wrong thing given
4550 the current gcc - it would make GDB treat these 64-bit programs
4551 as 32-bit programs by default. */
4552
4553 /* enable/disable the MIPS FPU */
4554 if (!mips_fpu_type_auto)
4555 tdep->mips_fpu_type = mips_fpu_type;
4556 else if (info.bfd_arch_info != NULL
4557 && info.bfd_arch_info->arch == bfd_arch_mips)
4558 switch (info.bfd_arch_info->mach)
4559 {
4560 case bfd_mach_mips3900:
4561 case bfd_mach_mips4100:
4562 case bfd_mach_mips4111:
4563 tdep->mips_fpu_type = MIPS_FPU_NONE;
4564 break;
4565 case bfd_mach_mips4650:
4566 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
4567 break;
4568 default:
4569 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
4570 break;
4571 }
4572 else
4573 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
4574
4575 /* MIPS version of register names. NOTE: At present the MIPS
4576 register name management is part way between the old -
4577 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
4578 Further work on it is required. */
4579 set_gdbarch_register_name (gdbarch, mips_register_name);
4580 set_gdbarch_read_pc (gdbarch, mips_read_pc);
4581 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
4582 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
4583 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
4584 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
4585
4586 /* Add/remove bits from an address. The MIPS needs be careful to
4587 ensure that all 32 bit addresses are sign extended to 64 bits. */
4588 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
4589
4590 /* There's a mess in stack frame creation. See comments in
4591 blockframe.c near reference to INIT_FRAME_PC_FIRST. */
4592 set_gdbarch_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
4593 set_gdbarch_init_frame_pc (gdbarch, init_frame_pc_noop);
4594
4595 /* Map debug register numbers onto internal register numbers. */
4596 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
4597 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_ecoff_reg_to_regnum);
4598
4599 /* Initialize a frame */
4600 set_gdbarch_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
4601
4602 /* MIPS version of CALL_DUMMY */
4603
4604 set_gdbarch_call_dummy_p (gdbarch, 1);
4605 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
4606 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
4607 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
4608 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
4609 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
4610 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
4611 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
4612 set_gdbarch_call_dummy_length (gdbarch, 0);
4613 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
4614 set_gdbarch_call_dummy_words (gdbarch, mips_call_dummy_words);
4615 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
4616 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
4617 set_gdbarch_push_arguments (gdbarch, mips_push_arguments);
4618 set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not);
4619 set_gdbarch_coerce_float_to_double (gdbarch, mips_coerce_float_to_double);
4620
4621 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
4622 set_gdbarch_get_saved_register (gdbarch, mips_get_saved_register);
4623
4624 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4625 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
4626 set_gdbarch_decr_pc_after_break (gdbarch, 0);
4627
4628 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
4629 set_gdbarch_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
4630
4631 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
4632 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
4633 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
4634
4635 /* Hook in OS ABI-specific overrides, if they have been registered. */
4636 gdbarch_init_osabi (info, gdbarch, osabi);
4637
4638 return gdbarch;
4639 }
4640
4641 static void
4642 mips_abi_update (char *ignore_args, int from_tty,
4643 struct cmd_list_element *c)
4644 {
4645 struct gdbarch_info info;
4646
4647 /* Force the architecture to update, and (if it's a MIPS architecture)
4648 mips_gdbarch_init will take care of the rest. */
4649 gdbarch_info_init (&info);
4650 gdbarch_update_p (info);
4651 }
4652
4653 static void
4654 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
4655 {
4656 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4657 if (tdep != NULL)
4658 {
4659 int ef_mips_arch;
4660 int ef_mips_32bitmode;
4661 /* determine the ISA */
4662 switch (tdep->elf_flags & EF_MIPS_ARCH)
4663 {
4664 case E_MIPS_ARCH_1:
4665 ef_mips_arch = 1;
4666 break;
4667 case E_MIPS_ARCH_2:
4668 ef_mips_arch = 2;
4669 break;
4670 case E_MIPS_ARCH_3:
4671 ef_mips_arch = 3;
4672 break;
4673 case E_MIPS_ARCH_4:
4674 ef_mips_arch = 4;
4675 break;
4676 default:
4677 ef_mips_arch = 0;
4678 break;
4679 }
4680 /* determine the size of a pointer */
4681 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4682 fprintf_unfiltered (file,
4683 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
4684 tdep->elf_flags);
4685 fprintf_unfiltered (file,
4686 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
4687 ef_mips_32bitmode);
4688 fprintf_unfiltered (file,
4689 "mips_dump_tdep: ef_mips_arch = %d\n",
4690 ef_mips_arch);
4691 fprintf_unfiltered (file,
4692 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
4693 tdep->mips_abi,
4694 mips_abi_strings[tdep->mips_abi]);
4695 fprintf_unfiltered (file,
4696 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
4697 mips_mask_address_p (),
4698 tdep->default_mask_address_p);
4699 }
4700 fprintf_unfiltered (file,
4701 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
4702 FP_REGISTER_DOUBLE);
4703 fprintf_unfiltered (file,
4704 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
4705 MIPS_DEFAULT_FPU_TYPE,
4706 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
4707 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
4708 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
4709 : "???"));
4710 fprintf_unfiltered (file,
4711 "mips_dump_tdep: MIPS_EABI = %d\n",
4712 MIPS_EABI);
4713 fprintf_unfiltered (file,
4714 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
4715 MIPS_LAST_FP_ARG_REGNUM,
4716 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
4717 fprintf_unfiltered (file,
4718 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
4719 MIPS_FPU_TYPE,
4720 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
4721 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
4722 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
4723 : "???"));
4724 fprintf_unfiltered (file,
4725 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
4726 MIPS_DEFAULT_SAVED_REGSIZE);
4727 fprintf_unfiltered (file,
4728 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
4729 FP_REGISTER_DOUBLE);
4730 fprintf_unfiltered (file,
4731 "mips_dump_tdep: MIPS_REGS_HAVE_HOME_P = %d\n",
4732 MIPS_REGS_HAVE_HOME_P);
4733 fprintf_unfiltered (file,
4734 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
4735 MIPS_DEFAULT_STACK_ARGSIZE);
4736 fprintf_unfiltered (file,
4737 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
4738 MIPS_STACK_ARGSIZE);
4739 fprintf_unfiltered (file,
4740 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
4741 MIPS_REGSIZE);
4742 fprintf_unfiltered (file,
4743 "mips_dump_tdep: A0_REGNUM = %d\n",
4744 A0_REGNUM);
4745 fprintf_unfiltered (file,
4746 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
4747 XSTRING (ADDR_BITS_REMOVE(ADDR)));
4748 fprintf_unfiltered (file,
4749 "mips_dump_tdep: ATTACH_DETACH # %s\n",
4750 XSTRING (ATTACH_DETACH));
4751 fprintf_unfiltered (file,
4752 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
4753 BADVADDR_REGNUM);
4754 fprintf_unfiltered (file,
4755 "mips_dump_tdep: BIG_BREAKPOINT = delete?\n");
4756 fprintf_unfiltered (file,
4757 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
4758 CAUSE_REGNUM);
4759 fprintf_unfiltered (file,
4760 "mips_dump_tdep: CPLUS_MARKER = %c\n",
4761 CPLUS_MARKER);
4762 fprintf_unfiltered (file,
4763 "mips_dump_tdep: DEFAULT_MIPS_TYPE = %s\n",
4764 DEFAULT_MIPS_TYPE);
4765 fprintf_unfiltered (file,
4766 "mips_dump_tdep: DO_REGISTERS_INFO # %s\n",
4767 XSTRING (DO_REGISTERS_INFO));
4768 fprintf_unfiltered (file,
4769 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
4770 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
4771 fprintf_unfiltered (file,
4772 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
4773 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
4774 fprintf_unfiltered (file,
4775 "mips_dump_tdep: ELF_MAKE_MSYMBOL_SPECIAL # %s\n",
4776 XSTRING (ELF_MAKE_MSYMBOL_SPECIAL (SYM, MSYM)));
4777 fprintf_unfiltered (file,
4778 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
4779 FCRCS_REGNUM);
4780 fprintf_unfiltered (file,
4781 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
4782 FCRIR_REGNUM);
4783 fprintf_unfiltered (file,
4784 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
4785 FIRST_EMBED_REGNUM);
4786 fprintf_unfiltered (file,
4787 "mips_dump_tdep: FPA0_REGNUM = %d\n",
4788 FPA0_REGNUM);
4789 fprintf_unfiltered (file,
4790 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
4791 GDB_TARGET_IS_MIPS64);
4792 fprintf_unfiltered (file,
4793 "mips_dump_tdep: GDB_TARGET_MASK_DISAS_PC # %s\n",
4794 XSTRING (GDB_TARGET_MASK_DISAS_PC (PC)));
4795 fprintf_unfiltered (file,
4796 "mips_dump_tdep: GDB_TARGET_UNMASK_DISAS_PC # %s\n",
4797 XSTRING (GDB_TARGET_UNMASK_DISAS_PC (PC)));
4798 fprintf_unfiltered (file,
4799 "mips_dump_tdep: GEN_REG_SAVE_MASK = %d\n",
4800 GEN_REG_SAVE_MASK);
4801 fprintf_unfiltered (file,
4802 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
4803 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
4804 fprintf_unfiltered (file,
4805 "mips_dump_tdep: HI_REGNUM = %d\n",
4806 HI_REGNUM);
4807 fprintf_unfiltered (file,
4808 "mips_dump_tdep: IDT_BIG_BREAKPOINT = delete?\n");
4809 fprintf_unfiltered (file,
4810 "mips_dump_tdep: IDT_LITTLE_BREAKPOINT = delete?\n");
4811 fprintf_unfiltered (file,
4812 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
4813 XSTRING (IGNORE_HELPER_CALL (PC)));
4814 fprintf_unfiltered (file,
4815 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
4816 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
4817 fprintf_unfiltered (file,
4818 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
4819 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
4820 fprintf_unfiltered (file,
4821 "mips_dump_tdep: IS_MIPS16_ADDR = FIXME!\n");
4822 fprintf_unfiltered (file,
4823 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
4824 LAST_EMBED_REGNUM);
4825 fprintf_unfiltered (file,
4826 "mips_dump_tdep: LITTLE_BREAKPOINT = delete?\n");
4827 fprintf_unfiltered (file,
4828 "mips_dump_tdep: LO_REGNUM = %d\n",
4829 LO_REGNUM);
4830 #ifdef MACHINE_CPROC_FP_OFFSET
4831 fprintf_unfiltered (file,
4832 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
4833 MACHINE_CPROC_FP_OFFSET);
4834 #endif
4835 #ifdef MACHINE_CPROC_PC_OFFSET
4836 fprintf_unfiltered (file,
4837 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
4838 MACHINE_CPROC_PC_OFFSET);
4839 #endif
4840 #ifdef MACHINE_CPROC_SP_OFFSET
4841 fprintf_unfiltered (file,
4842 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
4843 MACHINE_CPROC_SP_OFFSET);
4844 #endif
4845 fprintf_unfiltered (file,
4846 "mips_dump_tdep: MAKE_MIPS16_ADDR = FIXME!\n");
4847 fprintf_unfiltered (file,
4848 "mips_dump_tdep: MIPS16_BIG_BREAKPOINT = delete?\n");
4849 fprintf_unfiltered (file,
4850 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
4851 MIPS16_INSTLEN);
4852 fprintf_unfiltered (file,
4853 "mips_dump_tdep: MIPS16_LITTLE_BREAKPOINT = delete?\n");
4854 fprintf_unfiltered (file,
4855 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
4856 fprintf_unfiltered (file,
4857 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
4858 fprintf_unfiltered (file,
4859 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
4860 MIPS_INSTLEN);
4861 fprintf_unfiltered (file,
4862 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
4863 MIPS_LAST_ARG_REGNUM,
4864 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
4865 fprintf_unfiltered (file,
4866 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
4867 MIPS_NUMREGS);
4868 fprintf_unfiltered (file,
4869 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
4870 fprintf_unfiltered (file,
4871 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
4872 MIPS_SAVED_REGSIZE);
4873 fprintf_unfiltered (file,
4874 "mips_dump_tdep: MSYMBOL_IS_SPECIAL = function?\n");
4875 fprintf_unfiltered (file,
4876 "mips_dump_tdep: MSYMBOL_SIZE # %s\n",
4877 XSTRING (MSYMBOL_SIZE (MSYM)));
4878 fprintf_unfiltered (file,
4879 "mips_dump_tdep: OP_LDFPR = used?\n");
4880 fprintf_unfiltered (file,
4881 "mips_dump_tdep: OP_LDGPR = used?\n");
4882 fprintf_unfiltered (file,
4883 "mips_dump_tdep: PMON_BIG_BREAKPOINT = delete?\n");
4884 fprintf_unfiltered (file,
4885 "mips_dump_tdep: PMON_LITTLE_BREAKPOINT = delete?\n");
4886 fprintf_unfiltered (file,
4887 "mips_dump_tdep: PRID_REGNUM = %d\n",
4888 PRID_REGNUM);
4889 fprintf_unfiltered (file,
4890 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
4891 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
4892 fprintf_unfiltered (file,
4893 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
4894 fprintf_unfiltered (file,
4895 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
4896 fprintf_unfiltered (file,
4897 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
4898 fprintf_unfiltered (file,
4899 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
4900 fprintf_unfiltered (file,
4901 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
4902 fprintf_unfiltered (file,
4903 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
4904 fprintf_unfiltered (file,
4905 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
4906 fprintf_unfiltered (file,
4907 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
4908 fprintf_unfiltered (file,
4909 "mips_dump_tdep: PROC_PC_REG = function?\n");
4910 fprintf_unfiltered (file,
4911 "mips_dump_tdep: PROC_REG_MASK = function?\n");
4912 fprintf_unfiltered (file,
4913 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
4914 fprintf_unfiltered (file,
4915 "mips_dump_tdep: PROC_SYMBOL = function?\n");
4916 fprintf_unfiltered (file,
4917 "mips_dump_tdep: PS_REGNUM = %d\n",
4918 PS_REGNUM);
4919 fprintf_unfiltered (file,
4920 "mips_dump_tdep: PUSH_FP_REGNUM = %d\n",
4921 PUSH_FP_REGNUM);
4922 fprintf_unfiltered (file,
4923 "mips_dump_tdep: RA_REGNUM = %d\n",
4924 RA_REGNUM);
4925 fprintf_unfiltered (file,
4926 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
4927 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
4928 fprintf_unfiltered (file,
4929 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
4930 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
4931 fprintf_unfiltered (file,
4932 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
4933 fprintf_unfiltered (file,
4934 "mips_dump_tdep: ROUND_DOWN = function?\n");
4935 fprintf_unfiltered (file,
4936 "mips_dump_tdep: ROUND_UP = function?\n");
4937 #ifdef SAVED_BYTES
4938 fprintf_unfiltered (file,
4939 "mips_dump_tdep: SAVED_BYTES = %d\n",
4940 SAVED_BYTES);
4941 #endif
4942 #ifdef SAVED_FP
4943 fprintf_unfiltered (file,
4944 "mips_dump_tdep: SAVED_FP = %d\n",
4945 SAVED_FP);
4946 #endif
4947 #ifdef SAVED_PC
4948 fprintf_unfiltered (file,
4949 "mips_dump_tdep: SAVED_PC = %d\n",
4950 SAVED_PC);
4951 #endif
4952 fprintf_unfiltered (file,
4953 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
4954 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
4955 fprintf_unfiltered (file,
4956 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
4957 fprintf_unfiltered (file,
4958 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
4959 SIGFRAME_BASE);
4960 fprintf_unfiltered (file,
4961 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
4962 SIGFRAME_FPREGSAVE_OFF);
4963 fprintf_unfiltered (file,
4964 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
4965 SIGFRAME_PC_OFF);
4966 fprintf_unfiltered (file,
4967 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
4968 SIGFRAME_REGSAVE_OFF);
4969 fprintf_unfiltered (file,
4970 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
4971 SIGFRAME_REG_SIZE);
4972 fprintf_unfiltered (file,
4973 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
4974 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
4975 fprintf_unfiltered (file,
4976 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
4977 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
4978 fprintf_unfiltered (file,
4979 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
4980 SOFTWARE_SINGLE_STEP_P ());
4981 fprintf_unfiltered (file,
4982 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
4983 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
4984 #ifdef STACK_END_ADDR
4985 fprintf_unfiltered (file,
4986 "mips_dump_tdep: STACK_END_ADDR = %d\n",
4987 STACK_END_ADDR);
4988 #endif
4989 fprintf_unfiltered (file,
4990 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
4991 XSTRING (STEP_SKIPS_DELAY (PC)));
4992 fprintf_unfiltered (file,
4993 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
4994 STEP_SKIPS_DELAY_P);
4995 fprintf_unfiltered (file,
4996 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
4997 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
4998 fprintf_unfiltered (file,
4999 "mips_dump_tdep: T9_REGNUM = %d\n",
5000 T9_REGNUM);
5001 fprintf_unfiltered (file,
5002 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
5003 fprintf_unfiltered (file,
5004 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
5005 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
5006 fprintf_unfiltered (file,
5007 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
5008 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
5009 fprintf_unfiltered (file,
5010 "mips_dump_tdep: TARGET_MIPS = used?\n");
5011 fprintf_unfiltered (file,
5012 "mips_dump_tdep: TM_PRINT_INSN_MACH # %s\n",
5013 XSTRING (TM_PRINT_INSN_MACH));
5014 #ifdef TRACE_CLEAR
5015 fprintf_unfiltered (file,
5016 "mips_dump_tdep: TRACE_CLEAR # %s\n",
5017 XSTRING (TRACE_CLEAR (THREAD, STATE)));
5018 #endif
5019 #ifdef TRACE_FLAVOR
5020 fprintf_unfiltered (file,
5021 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
5022 TRACE_FLAVOR);
5023 #endif
5024 #ifdef TRACE_FLAVOR_SIZE
5025 fprintf_unfiltered (file,
5026 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
5027 TRACE_FLAVOR_SIZE);
5028 #endif
5029 #ifdef TRACE_SET
5030 fprintf_unfiltered (file,
5031 "mips_dump_tdep: TRACE_SET # %s\n",
5032 XSTRING (TRACE_SET (X,STATE)));
5033 #endif
5034 fprintf_unfiltered (file,
5035 "mips_dump_tdep: UNMAKE_MIPS16_ADDR = function?\n");
5036 #ifdef UNUSED_REGNUM
5037 fprintf_unfiltered (file,
5038 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
5039 UNUSED_REGNUM);
5040 #endif
5041 fprintf_unfiltered (file,
5042 "mips_dump_tdep: V0_REGNUM = %d\n",
5043 V0_REGNUM);
5044 fprintf_unfiltered (file,
5045 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
5046 (long) VM_MIN_ADDRESS);
5047 #ifdef VX_NUM_REGS
5048 fprintf_unfiltered (file,
5049 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
5050 VX_NUM_REGS);
5051 #endif
5052 fprintf_unfiltered (file,
5053 "mips_dump_tdep: ZERO_REGNUM = %d\n",
5054 ZERO_REGNUM);
5055 fprintf_unfiltered (file,
5056 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
5057 _PROC_MAGIC_);
5058
5059 fprintf_unfiltered (file,
5060 "mips_dump_tdep: OS ABI = %s\n",
5061 gdbarch_osabi_name (tdep->osabi));
5062 }
5063
5064 void
5065 _initialize_mips_tdep (void)
5066 {
5067 static struct cmd_list_element *mipsfpulist = NULL;
5068 struct cmd_list_element *c;
5069
5070 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
5071 if (MIPS_ABI_LAST + 1
5072 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
5073 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
5074
5075 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
5076 if (!tm_print_insn) /* Someone may have already set it */
5077 tm_print_insn = gdb_print_insn_mips;
5078
5079 /* Add root prefix command for all "set mips"/"show mips" commands */
5080 add_prefix_cmd ("mips", no_class, set_mips_command,
5081 "Various MIPS specific commands.",
5082 &setmipscmdlist, "set mips ", 0, &setlist);
5083
5084 add_prefix_cmd ("mips", no_class, show_mips_command,
5085 "Various MIPS specific commands.",
5086 &showmipscmdlist, "show mips ", 0, &showlist);
5087
5088 /* Allow the user to override the saved register size. */
5089 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
5090 class_obscure,
5091 size_enums,
5092 &mips_saved_regsize_string, "\
5093 Set size of general purpose registers saved on the stack.\n\
5094 This option can be set to one of:\n\
5095 32 - Force GDB to treat saved GP registers as 32-bit\n\
5096 64 - Force GDB to treat saved GP registers as 64-bit\n\
5097 auto - Allow GDB to use the target's default setting or autodetect the\n\
5098 saved GP register size from information contained in the executable.\n\
5099 (default: auto)",
5100 &setmipscmdlist),
5101 &showmipscmdlist);
5102
5103 /* Allow the user to override the argument stack size. */
5104 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
5105 class_obscure,
5106 size_enums,
5107 &mips_stack_argsize_string, "\
5108 Set the amount of stack space reserved for each argument.\n\
5109 This option can be set to one of:\n\
5110 32 - Force GDB to allocate 32-bit chunks per argument\n\
5111 64 - Force GDB to allocate 64-bit chunks per argument\n\
5112 auto - Allow GDB to determine the correct setting from the current\n\
5113 target and executable (default)",
5114 &setmipscmdlist),
5115 &showmipscmdlist);
5116
5117 /* Allow the user to override the ABI. */
5118 c = add_set_enum_cmd
5119 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
5120 "Set the ABI used by this program.\n"
5121 "This option can be set to one of:\n"
5122 " auto - the default ABI associated with the current binary\n"
5123 " o32\n"
5124 " o64\n"
5125 " n32\n"
5126 " eabi32\n"
5127 " eabi64",
5128 &setmipscmdlist);
5129 add_show_from_set (c, &showmipscmdlist);
5130 set_cmd_sfunc (c, mips_abi_update);
5131
5132 /* Let the user turn off floating point and set the fence post for
5133 heuristic_proc_start. */
5134
5135 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
5136 "Set use of MIPS floating-point coprocessor.",
5137 &mipsfpulist, "set mipsfpu ", 0, &setlist);
5138 add_cmd ("single", class_support, set_mipsfpu_single_command,
5139 "Select single-precision MIPS floating-point coprocessor.",
5140 &mipsfpulist);
5141 add_cmd ("double", class_support, set_mipsfpu_double_command,
5142 "Select double-precision MIPS floating-point coprocessor.",
5143 &mipsfpulist);
5144 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
5145 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
5146 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
5147 add_cmd ("none", class_support, set_mipsfpu_none_command,
5148 "Select no MIPS floating-point coprocessor.",
5149 &mipsfpulist);
5150 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
5151 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
5152 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
5153 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
5154 "Select MIPS floating-point coprocessor automatically.",
5155 &mipsfpulist);
5156 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
5157 "Show current use of MIPS floating-point coprocessor target.",
5158 &showlist);
5159
5160 /* We really would like to have both "0" and "unlimited" work, but
5161 command.c doesn't deal with that. So make it a var_zinteger
5162 because the user can always use "999999" or some such for unlimited. */
5163 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
5164 (char *) &heuristic_fence_post,
5165 "\
5166 Set the distance searched for the start of a function.\n\
5167 If you are debugging a stripped executable, GDB needs to search through the\n\
5168 program for the start of a function. This command sets the distance of the\n\
5169 search. The only need to set it is when debugging a stripped executable.",
5170 &setlist);
5171 /* We need to throw away the frame cache when we set this, since it
5172 might change our ability to get backtraces. */
5173 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
5174 add_show_from_set (c, &showlist);
5175
5176 /* Allow the user to control whether the upper bits of 64-bit
5177 addresses should be zeroed. */
5178 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
5179 Set zeroing of upper 32 bits of 64-bit addresses.\n\
5180 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
5181 allow GDB to determine the correct value.\n", "\
5182 Show zeroing of upper 32 bits of 64-bit addresses.",
5183 NULL, show_mask_address,
5184 &setmipscmdlist, &showmipscmdlist);
5185
5186 /* Allow the user to control the size of 32 bit registers within the
5187 raw remote packet. */
5188 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
5189 class_obscure,
5190 var_boolean,
5191 (char *)&mips64_transfers_32bit_regs_p, "\
5192 Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
5193 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
5194 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
5195 64 bits for others. Use \"off\" to disable compatibility mode",
5196 &setlist),
5197 &showlist);
5198
5199 /* Debug this files internals. */
5200 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
5201 &mips_debug, "Set mips debugging.\n\
5202 When non-zero, mips specific debugging is enabled.", &setdebuglist),
5203 &showdebuglist);
5204 }