Fri Jun 27 19:19:12 1997 Michael Snyder (msnyder@cleaver.cygnus.com)
[binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996
3 Free Software Foundation, Inc.
4 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
5 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "value.h"
29 #include "gdbcmd.h"
30 #include "language.h"
31 #include "gdbcore.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdbtypes.h"
35 #include "target.h"
36
37 #include "opcode/mips.h"
38
39 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
40
41 /* FIXME: Put this declaration in frame.h. */
42 extern struct obstack frame_cache_obstack;
43
44 #if 0
45 static int mips_in_lenient_prologue PARAMS ((CORE_ADDR, CORE_ADDR));
46 #endif
47
48 static int gdb_print_insn_mips PARAMS ((bfd_vma, disassemble_info *));
49
50 static void mips_print_register PARAMS ((int, int));
51
52 static mips_extra_func_info_t
53 heuristic_proc_desc PARAMS ((CORE_ADDR, CORE_ADDR, struct frame_info *));
54
55 static CORE_ADDR heuristic_proc_start PARAMS ((CORE_ADDR));
56
57 static CORE_ADDR read_next_frame_reg PARAMS ((struct frame_info *, int));
58
59 static void mips_set_fpu_command PARAMS ((char *, int,
60 struct cmd_list_element *));
61
62 static void mips_show_fpu_command PARAMS ((char *, int,
63 struct cmd_list_element *));
64
65 void mips_set_processor_type_command PARAMS ((char *, int));
66
67 int mips_set_processor_type PARAMS ((char *));
68
69 static void mips_show_processor_type_command PARAMS ((char *, int));
70
71 static void reinit_frame_cache_sfunc PARAMS ((char *, int,
72 struct cmd_list_element *));
73
74 static mips_extra_func_info_t
75 find_proc_desc PARAMS ((CORE_ADDR pc, struct frame_info *next_frame));
76
77 static CORE_ADDR after_prologue PARAMS ((CORE_ADDR pc,
78 mips_extra_func_info_t proc_desc));
79
80 /* This value is the model of MIPS in use. It is derived from the value
81 of the PrID register. */
82
83 char *mips_processor_type;
84
85 char *tmp_mips_processor_type;
86
87 /* Some MIPS boards don't support floating point, so we permit the
88 user to turn it off. */
89
90 enum mips_fpu_type mips_fpu;
91
92 static char *mips_fpu_string;
93
94 /* A set of original names, to be used when restoring back to generic
95 registers from a specific set. */
96
97 char *mips_generic_reg_names[] = REGISTER_NAMES;
98
99 /* Names of IDT R3041 registers. */
100
101 char *mips_r3041_reg_names[] = {
102 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
103 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
104 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
105 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
106 "sr", "lo", "hi", "bad", "cause","pc",
107 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
108 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
109 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
110 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
111 "fsr", "fir", "fp", "",
112 "", "", "bus", "ccfg", "", "", "", "",
113 "", "", "port", "cmp", "", "", "epc", "prid",
114 };
115
116 /* Names of IDT R3051 registers. */
117
118 char *mips_r3051_reg_names[] = {
119 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
120 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
121 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
122 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
123 "sr", "lo", "hi", "bad", "cause","pc",
124 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
125 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
126 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
127 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
128 "fsr", "fir", "fp", "",
129 "inx", "rand", "elo", "", "ctxt", "", "", "",
130 "", "", "ehi", "", "", "", "epc", "prid",
131 };
132
133 /* Names of IDT R3081 registers. */
134
135 char *mips_r3081_reg_names[] = {
136 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
137 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
138 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
139 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
140 "sr", "lo", "hi", "bad", "cause","pc",
141 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
142 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
143 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
144 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
145 "fsr", "fir", "fp", "",
146 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
147 "", "", "ehi", "", "", "", "epc", "prid",
148 };
149
150 /* Names of LSI 33k registers. */
151
152 char *mips_lsi33k_reg_names[] = {
153 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
154 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
155 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
156 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
157 "epc", "hi", "lo", "sr", "cause","badvaddr",
158 "dcic", "bpc", "bda", "", "", "", "", "",
159 "", "", "", "", "", "", "", "",
160 "", "", "", "", "", "", "", "",
161 "", "", "", "", "", "", "", "",
162 "", "", "", "",
163 "", "", "", "", "", "", "", "",
164 "", "", "", "", "", "", "", "",
165 };
166
167 struct {
168 char *name;
169 char **regnames;
170 } mips_processor_type_table[] = {
171 { "generic", mips_generic_reg_names },
172 { "r3041", mips_r3041_reg_names },
173 { "r3051", mips_r3051_reg_names },
174 { "r3071", mips_r3081_reg_names },
175 { "r3081", mips_r3081_reg_names },
176 { "lsi33k", mips_lsi33k_reg_names },
177 { NULL, NULL }
178 };
179
180 /* Table to translate MIPS16 register field to actual register number. */
181 static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
182
183 /* Heuristic_proc_start may hunt through the text section for a long
184 time across a 2400 baud serial line. Allows the user to limit this
185 search. */
186
187 static unsigned int heuristic_fence_post = 0;
188
189 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
190 #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
191 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
192 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
193 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
194 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
195 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
196 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
197 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
198 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
199 #define _PROC_MAGIC_ 0x0F0F0F0F
200 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
201 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
202
203 struct linked_proc_info
204 {
205 struct mips_extra_func_info info;
206 struct linked_proc_info *next;
207 } *linked_proc_desc_table = NULL;
208
209
210 /* This returns the PC of the first inst after the prologue. If we can't
211 find the prologue, then return 0. */
212
213 static CORE_ADDR
214 after_prologue (pc, proc_desc)
215 CORE_ADDR pc;
216 mips_extra_func_info_t proc_desc;
217 {
218 struct symtab_and_line sal;
219 CORE_ADDR func_addr, func_end;
220
221 if (!proc_desc)
222 proc_desc = find_proc_desc (pc, NULL);
223
224 if (proc_desc)
225 {
226 /* If function is frameless, then we need to do it the hard way. I
227 strongly suspect that frameless always means prologueless... */
228 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
229 && PROC_FRAME_OFFSET (proc_desc) == 0)
230 return 0;
231 }
232
233 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
234 return 0; /* Unknown */
235
236 sal = find_pc_line (func_addr, 0);
237
238 if (sal.end < func_end)
239 return sal.end;
240
241 /* The line after the prologue is after the end of the function. In this
242 case, tell the caller to find the prologue the hard way. */
243
244 return 0;
245 }
246
247 /* Decode a MIPS32 instruction that saves a register in the stack, and
248 set the appropriate bit in the general register mask or float register mask
249 to indicate which register is saved. This is a helper function
250 for mips_find_saved_regs. */
251
252 static void
253 mips32_decode_reg_save (inst, gen_mask, float_mask)
254 t_inst inst;
255 unsigned long *gen_mask;
256 unsigned long *float_mask;
257 {
258 int reg;
259
260 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
261 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
262 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
263 {
264 /* It might be possible to use the instruction to
265 find the offset, rather than the code below which
266 is based on things being in a certain order in the
267 frame, but figuring out what the instruction's offset
268 is relative to might be a little tricky. */
269 reg = (inst & 0x001f0000) >> 16;
270 *gen_mask |= (1 << reg);
271 }
272 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
273 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
274 || (inst & 0xffe00000) == 0xf7a00000)/* sdc1 freg,n($sp) */
275
276 {
277 reg = ((inst & 0x001f0000) >> 16);
278 *float_mask |= (1 << reg);
279 }
280 }
281
282 /* Decode a MIPS16 instruction that saves a register in the stack, and
283 set the appropriate bit in the general register or float register mask
284 to indicate which register is saved. This is a helper function
285 for mips_find_saved_regs. */
286
287 static void
288 mips16_decode_reg_save (inst, gen_mask)
289 t_inst inst;
290 unsigned long *gen_mask;
291 {
292 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
293 {
294 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
295 *gen_mask |= (1 << reg);
296 }
297 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
298 {
299 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
300 *gen_mask |= (1 << reg);
301 }
302 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
303 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
304 *gen_mask |= (1 << 31);
305 }
306
307
308 /* Fetch and return instruction from the specified location. If the PC
309 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
310
311 static t_inst
312 mips_fetch_instruction (addr)
313 CORE_ADDR addr;
314 {
315 char buf[MIPS_INSTLEN];
316 int instlen;
317 int status;
318
319 if (IS_MIPS16_ADDR (addr))
320 {
321 instlen = MIPS16_INSTLEN;
322 addr = UNMAKE_MIPS16_ADDR (addr);
323 }
324 else
325 instlen = MIPS_INSTLEN;
326 status = read_memory_nobpt (addr, buf, instlen);
327 if (status)
328 memory_error (status, addr);
329 return extract_unsigned_integer (buf, instlen);
330 }
331
332
333 /* Guaranteed to set fci->saved_regs to some values (it never leaves it
334 NULL). */
335
336 void
337 mips_find_saved_regs (fci)
338 struct frame_info *fci;
339 {
340 int ireg;
341 CORE_ADDR reg_position;
342 /* r0 bit means kernel trap */
343 int kernel_trap;
344 /* What registers have been saved? Bitmasks. */
345 unsigned long gen_mask, float_mask;
346 mips_extra_func_info_t proc_desc;
347 t_inst inst;
348
349 fci->saved_regs = (struct frame_saved_regs *)
350 obstack_alloc (&frame_cache_obstack, sizeof(struct frame_saved_regs));
351 memset (fci->saved_regs, 0, sizeof (struct frame_saved_regs));
352
353 /* If it is the frame for sigtramp, the saved registers are located
354 in a sigcontext structure somewhere on the stack.
355 If the stack layout for sigtramp changes we might have to change these
356 constants and the companion fixup_sigtramp in mdebugread.c */
357 #ifndef SIGFRAME_BASE
358 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
359 above the sigtramp frame. */
360 #define SIGFRAME_BASE MIPS_REGSIZE
361 /* FIXME! Are these correct?? */
362 #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
363 #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
364 #define SIGFRAME_FPREGSAVE_OFF \
365 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
366 #endif
367 #ifndef SIGFRAME_REG_SIZE
368 /* FIXME! Is this correct?? */
369 #define SIGFRAME_REG_SIZE MIPS_REGSIZE
370 #endif
371 if (fci->signal_handler_caller)
372 {
373 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
374 {
375 reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
376 + ireg * SIGFRAME_REG_SIZE;
377 fci->saved_regs->regs[ireg] = reg_position;
378 }
379 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
380 {
381 reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
382 + ireg * SIGFRAME_REG_SIZE;
383 fci->saved_regs->regs[FP0_REGNUM + ireg] = reg_position;
384 }
385 fci->saved_regs->regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
386 return;
387 }
388
389 proc_desc = fci->proc_desc;
390 if (proc_desc == NULL)
391 /* I'm not sure how/whether this can happen. Normally when we can't
392 find a proc_desc, we "synthesize" one using heuristic_proc_desc
393 and set the saved_regs right away. */
394 return;
395
396 kernel_trap = PROC_REG_MASK(proc_desc) & 1;
397 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK(proc_desc);
398 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK(proc_desc);
399
400 if (/* In any frame other than the innermost or a frame interrupted by
401 a signal, we assume that all registers have been saved.
402 This assumes that all register saves in a function happen before
403 the first function call. */
404 (fci->next == NULL || fci->next->signal_handler_caller)
405
406 /* In a dummy frame we know exactly where things are saved. */
407 && !PROC_DESC_IS_DUMMY (proc_desc)
408
409 /* Don't bother unless we are inside a function prologue. Outside the
410 prologue, we know where everything is. */
411
412 && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc))
413
414 /* Not sure exactly what kernel_trap means, but if it means
415 the kernel saves the registers without a prologue doing it,
416 we better not examine the prologue to see whether registers
417 have been saved yet. */
418 && !kernel_trap)
419 {
420 /* We need to figure out whether the registers that the proc_desc
421 claims are saved have been saved yet. */
422
423 CORE_ADDR addr;
424
425 /* Bitmasks; set if we have found a save for the register. */
426 unsigned long gen_save_found = 0;
427 unsigned long float_save_found = 0;
428 int instlen;
429
430 /* If the address is odd, assume this is MIPS16 code. */
431 addr = PROC_LOW_ADDR (proc_desc);
432 instlen = IS_MIPS16_ADDR (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
433
434 /* Scan through this function's instructions preceding the current
435 PC, and look for those that save registers. */
436 while (addr < fci->pc)
437 {
438 inst = mips_fetch_instruction (addr);
439 if (IS_MIPS16_ADDR (addr))
440 mips16_decode_reg_save (inst, &gen_save_found);
441 else
442 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
443 addr += instlen;
444 }
445 gen_mask = gen_save_found;
446 float_mask = float_save_found;
447 }
448
449 /* Fill in the offsets for the registers which gen_mask says
450 were saved. */
451 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
452 for (ireg= MIPS_NUMREGS-1; gen_mask; --ireg, gen_mask <<= 1)
453 if (gen_mask & 0x80000000)
454 {
455 fci->saved_regs->regs[ireg] = reg_position;
456 reg_position -= MIPS_REGSIZE;
457 }
458
459 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
460 of that normally used by gcc. Therefore, we have to fetch the first
461 instruction of the function, and if it's an entry instruction that
462 saves $s0 or $s1, correct their saved addresses. */
463 if (IS_MIPS16_ADDR (PROC_LOW_ADDR (proc_desc)))
464 {
465 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
466 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
467 {
468 int reg;
469 int sreg_count = (inst >> 6) & 3;
470
471 /* Check if the ra register was pushed on the stack. */
472 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
473 if (inst & 0x20)
474 reg_position -= MIPS_REGSIZE;
475
476 /* Check if the s0 and s1 registers were pushed on the stack. */
477 for (reg = 16; reg < sreg_count+16; reg++)
478 {
479 fci->saved_regs->regs[reg] = reg_position;
480 reg_position -= MIPS_REGSIZE;
481 }
482 }
483 }
484
485 /* Fill in the offsets for the registers which float_mask says
486 were saved. */
487 reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
488
489 /* The freg_offset points to where the first *double* register
490 is saved. So skip to the high-order word. */
491 if (! GDB_TARGET_IS_MIPS64)
492 reg_position += MIPS_REGSIZE;
493
494 /* Fill in the offsets for the float registers which float_mask says
495 were saved. */
496 for (ireg = MIPS_NUMREGS-1; float_mask; --ireg, float_mask <<= 1)
497 if (float_mask & 0x80000000)
498 {
499 fci->saved_regs->regs[FP0_REGNUM+ireg] = reg_position;
500 reg_position -= MIPS_REGSIZE;
501 }
502
503 fci->saved_regs->regs[PC_REGNUM] = fci->saved_regs->regs[RA_REGNUM];
504 }
505
506 static CORE_ADDR
507 read_next_frame_reg(fi, regno)
508 struct frame_info *fi;
509 int regno;
510 {
511 for (; fi; fi = fi->next)
512 {
513 /* We have to get the saved sp from the sigcontext
514 if it is a signal handler frame. */
515 if (regno == SP_REGNUM && !fi->signal_handler_caller)
516 return fi->frame;
517 else
518 {
519 if (fi->saved_regs == NULL)
520 mips_find_saved_regs (fi);
521 if (fi->saved_regs->regs[regno])
522 return read_memory_integer(fi->saved_regs->regs[regno], MIPS_REGSIZE);
523 }
524 }
525 return read_register (regno);
526 }
527
528 /* mips_addr_bits_remove - remove useless address bits */
529
530 CORE_ADDR
531 mips_addr_bits_remove (addr)
532 CORE_ADDR addr;
533 {
534 #if GDB_TARGET_IS_MIPS64
535 if ((addr >> 32 == (CORE_ADDR)0xffffffff)
536 && (strcmp (target_shortname,"pmon")==0
537 || strcmp (target_shortname,"ddb")==0
538 || strcmp (target_shortname,"sim")==0))
539 {
540 /* This hack is a work-around for existing boards using PMON,
541 the simulator, and any other 64-bit targets that doesn't have
542 true 64-bit addressing. On these targets, the upper 32 bits
543 of addresses are ignored by the hardware. Thus, the PC or SP
544 are likely to have been sign extended to all 1s by instruction
545 sequences that load 32-bit addresses. For example, a typical
546 piece of code that loads an address is this:
547 lui $r2, <upper 16 bits>
548 ori $r2, <lower 16 bits>
549 But the lui sign-extends the value such that the upper 32 bits
550 may be all 1s. The workaround is simply to mask off these bits.
551 In the future, gcc may be changed to support true 64-bit
552 addressing, and this masking will have to be disabled. */
553 addr &= (CORE_ADDR)0xffffffff;
554 }
555 #else
556 /* Even when GDB is configured for some 32-bit targets (e.g. mips-elf),
557 BFD is configured to handle 64-bit targets, so CORE_ADDR is 64 bits.
558 So we still have to mask off useless bits from addresses. */
559 addr &= (CORE_ADDR)0xffffffff;
560 #endif
561
562 return addr;
563 }
564
565 void
566 mips_init_frame_pc_first (fromleaf, prev)
567 int fromleaf;
568 struct frame_info *prev;
569 {
570 CORE_ADDR pc, tmp;
571
572 pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
573 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
574 tmp = mips_skip_stub (pc);
575 prev->pc = tmp ? tmp : pc;
576 }
577
578
579 CORE_ADDR
580 mips_frame_saved_pc(frame)
581 struct frame_info *frame;
582 {
583 CORE_ADDR saved_pc;
584 mips_extra_func_info_t proc_desc = frame->proc_desc;
585 /* We have to get the saved pc from the sigcontext
586 if it is a signal handler frame. */
587 int pcreg = frame->signal_handler_caller ? PC_REGNUM
588 : (proc_desc ? PROC_PC_REG(proc_desc) : RA_REGNUM);
589
590 if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc))
591 saved_pc = read_memory_integer(frame->frame - MIPS_REGSIZE, MIPS_REGSIZE);
592 else
593 saved_pc = read_next_frame_reg(frame, pcreg);
594
595 return ADDR_BITS_REMOVE (saved_pc);
596 }
597
598 static struct mips_extra_func_info temp_proc_desc;
599 static struct frame_saved_regs temp_saved_regs;
600
601 /* This fencepost looks highly suspicious to me. Removing it also
602 seems suspicious as it could affect remote debugging across serial
603 lines. */
604
605 static CORE_ADDR
606 heuristic_proc_start(pc)
607 CORE_ADDR pc;
608 {
609 CORE_ADDR start_pc;
610 CORE_ADDR fence;
611 int instlen;
612 int seen_adjsp = 0;
613
614 pc = ADDR_BITS_REMOVE (pc);
615 start_pc = pc;
616 fence = start_pc - heuristic_fence_post;
617 if (start_pc == 0) return 0;
618
619 if (heuristic_fence_post == UINT_MAX
620 || fence < VM_MIN_ADDRESS)
621 fence = VM_MIN_ADDRESS;
622
623 instlen = IS_MIPS16_ADDR (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
624
625 /* search back for previous return */
626 for (start_pc -= instlen; ; start_pc -= instlen)
627 if (start_pc < fence)
628 {
629 /* It's not clear to me why we reach this point when
630 stop_soon_quietly, but with this test, at least we
631 don't print out warnings for every child forked (eg, on
632 decstation). 22apr93 rich@cygnus.com. */
633 if (!stop_soon_quietly)
634 {
635 static int blurb_printed = 0;
636
637 if (fence == VM_MIN_ADDRESS)
638 warning("Hit beginning of text section without finding");
639 else
640 warning("Hit heuristic-fence-post without finding");
641
642 warning("enclosing function for address 0x%s", paddr_nz (pc));
643 if (!blurb_printed)
644 {
645 printf_filtered ("\
646 This warning occurs if you are debugging a function without any symbols\n\
647 (for example, in a stripped executable). In that case, you may wish to\n\
648 increase the size of the search with the `set heuristic-fence-post' command.\n\
649 \n\
650 Otherwise, you told GDB there was a function where there isn't one, or\n\
651 (more likely) you have encountered a bug in GDB.\n");
652 blurb_printed = 1;
653 }
654 }
655
656 return 0;
657 }
658 else if (IS_MIPS16_ADDR (start_pc))
659 {
660 unsigned short inst;
661
662 /* On MIPS16, any one of the following is likely to be the
663 start of a function:
664 entry
665 addiu sp,-n
666 daddiu sp,-n
667 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
668 inst = mips_fetch_instruction (start_pc);
669 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
670 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
671 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
672 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
673 break;
674 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
675 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
676 seen_adjsp = 1;
677 else
678 seen_adjsp = 0;
679 }
680 else if (ABOUT_TO_RETURN(start_pc))
681 {
682 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
683 break;
684 }
685
686 #if 0
687 /* skip nops (usually 1) 0 - is this */
688 while (start_pc < pc && read_memory_integer (start_pc, MIPS_INSTLEN) == 0)
689 start_pc += MIPS_INSTLEN;
690 #endif
691 return start_pc;
692 }
693
694 /* Fetch the immediate value from a MIPS16 instruction.
695 If the previous instruction was an EXTEND, use it to extend
696 the upper bits of the immediate value. This is a helper function
697 for mips16_heuristic_proc_desc. */
698
699 static int
700 mips16_get_imm (prev_inst, inst, nbits, scale, is_signed)
701 unsigned short prev_inst; /* previous instruction */
702 unsigned short inst; /* current current instruction */
703 int nbits; /* number of bits in imm field */
704 int scale; /* scale factor to be applied to imm */
705 int is_signed; /* is the imm field signed? */
706 {
707 int offset;
708
709 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
710 {
711 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
712 if (offset & 0x8000) /* check for negative extend */
713 offset = 0 - (0x10000 - (offset & 0xffff));
714 return offset | (inst & 0x1f);
715 }
716 else
717 {
718 int max_imm = 1 << nbits;
719 int mask = max_imm - 1;
720 int sign_bit = max_imm >> 1;
721
722 offset = inst & mask;
723 if (is_signed && (offset & sign_bit))
724 offset = 0 - (max_imm - offset);
725 return offset * scale;
726 }
727 }
728
729
730 /* Fill in values in temp_proc_desc based on the MIPS16 instruction
731 stream from start_pc to limit_pc. */
732
733 static void
734 mips16_heuristic_proc_desc(start_pc, limit_pc, next_frame, sp)
735 CORE_ADDR start_pc, limit_pc;
736 struct frame_info *next_frame;
737 CORE_ADDR sp;
738 {
739 CORE_ADDR cur_pc;
740 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
741 unsigned short prev_inst = 0; /* saved copy of previous instruction */
742 unsigned inst = 0; /* current instruction */
743
744 PROC_FRAME_OFFSET(&temp_proc_desc) = 0;
745
746 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
747 {
748 int reg, offset;
749
750 /* Save the previous instruction. If it's an EXTEND, we'll extract
751 the immediate offset extension from it in mips16_get_imm. */
752 prev_inst = inst;
753
754 /* Fetch and decode the instruction. */
755 inst = (unsigned short) mips_fetch_instruction (cur_pc);
756 if ((inst & 0xff00) == 0x6300 /* addiu sp */
757 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
758 {
759 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
760 if (offset < 0) /* negative stack adjustment? */
761 PROC_FRAME_OFFSET(&temp_proc_desc) -= offset;
762 else
763 /* Exit loop if a positive stack adjustment is found, which
764 usually means that the stack cleanup code in the function
765 epilogue is reached. */
766 break;
767 }
768 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
769 {
770 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
771 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
772 PROC_REG_MASK(&temp_proc_desc) |= (1 << reg);
773 temp_saved_regs.regs[reg] = sp + offset;
774 }
775 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
776 {
777 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
778 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
779 PROC_REG_MASK(&temp_proc_desc) |= (1 << reg);
780 temp_saved_regs.regs[reg] = sp + offset;
781 }
782 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
783 {
784 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
785 PROC_REG_MASK(&temp_proc_desc) |= (1 << 31);
786 temp_saved_regs.regs[31] = sp + offset;
787 }
788 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
789 {
790 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
791 PROC_REG_MASK(&temp_proc_desc) |= (1 << 31);
792 temp_saved_regs.regs[31] = sp + offset;
793 }
794 else if (inst == 0x673d) /* move $s1, $sp */
795 {
796 frame_addr = read_next_frame_reg(next_frame, 30);
797 PROC_FRAME_REG (&temp_proc_desc) = 17;
798 }
799 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
800 {
801 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
802 frame_addr = sp + offset;
803 PROC_FRAME_REG (&temp_proc_desc) = 17;
804 }
805 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
806 {
807 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
808 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
809 PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
810 temp_saved_regs.regs[reg] = frame_addr + offset;
811 }
812 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
813 {
814 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
815 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
816 PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
817 temp_saved_regs.regs[reg] = frame_addr + offset;
818 }
819 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
820 {
821 int areg_count = (inst >> 8) & 7;
822 int sreg_count = (inst >> 6) & 3;
823
824 /* The entry instruction always subtracts 32 from the SP. */
825 PROC_FRAME_OFFSET(&temp_proc_desc) += 32;
826
827 /* Check if a0-a3 were saved in the caller's argument save area. */
828 for (reg = 4, offset = 32; reg < areg_count+4; reg++)
829 {
830 PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
831 temp_saved_regs.regs[reg] = sp + offset;
832 offset -= MIPS_REGSIZE;
833 }
834
835 /* Check if the ra register was pushed on the stack. */
836 offset = 28;
837 if (inst & 0x20)
838 {
839 PROC_REG_MASK(&temp_proc_desc) |= 1 << 31;
840 temp_saved_regs.regs[31] = sp + offset;
841 offset -= MIPS_REGSIZE;
842 }
843
844 /* Check if the s0 and s1 registers were pushed on the stack. */
845 for (reg = 16; reg < sreg_count+16; reg++)
846 {
847 PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
848 temp_saved_regs.regs[reg] = sp + offset;
849 offset -= MIPS_REGSIZE;
850 }
851 }
852 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
853 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
854 }
855 }
856
857 static void
858 mips32_heuristic_proc_desc(start_pc, limit_pc, next_frame, sp)
859 CORE_ADDR start_pc, limit_pc;
860 struct frame_info *next_frame;
861 CORE_ADDR sp;
862 {
863 CORE_ADDR cur_pc;
864 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
865 restart:
866 PROC_FRAME_OFFSET(&temp_proc_desc) = 0;
867 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
868 {
869 unsigned long inst, high_word, low_word;
870 int reg;
871
872 /* Fetch the instruction. */
873 inst = (unsigned long) mips_fetch_instruction (cur_pc);
874
875 /* Save some code by pre-extracting some useful fields. */
876 high_word = (inst >> 16) & 0xffff;
877 low_word = inst & 0xffff;
878 reg = high_word & 0x1f;
879
880 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
881 || high_word == 0x23bd /* addi $sp,$sp,-i */
882 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
883 {
884 if (low_word & 0x8000) /* negative stack adjustment? */
885 PROC_FRAME_OFFSET(&temp_proc_desc) += 0x10000 - low_word;
886 else
887 /* Exit loop if a positive stack adjustment is found, which
888 usually means that the stack cleanup code in the function
889 epilogue is reached. */
890 break;
891 }
892 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
893 {
894 PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
895 temp_saved_regs.regs[reg] = sp + low_word;
896 }
897 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
898 {
899 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
900 but the register size used is only 32 bits. Make the address
901 for the saved register point to the lower 32 bits. */
902 PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
903 temp_saved_regs.regs[reg] = sp + low_word + 8 - MIPS_REGSIZE;
904 }
905 else if (high_word == 0x27be) /* addiu $30,$sp,size */
906 {
907 /* Old gcc frame, r30 is virtual frame pointer. */
908 if ((long)low_word != PROC_FRAME_OFFSET(&temp_proc_desc))
909 frame_addr = sp + low_word;
910 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
911 {
912 unsigned alloca_adjust;
913 PROC_FRAME_REG (&temp_proc_desc) = 30;
914 frame_addr = read_next_frame_reg(next_frame, 30);
915 alloca_adjust = (unsigned)(frame_addr - (sp + low_word));
916 if (alloca_adjust > 0)
917 {
918 /* FP > SP + frame_size. This may be because
919 * of an alloca or somethings similar.
920 * Fix sp to "pre-alloca" value, and try again.
921 */
922 sp += alloca_adjust;
923 goto restart;
924 }
925 }
926 }
927 /* move $30,$sp. With different versions of gas this will be either
928 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
929 Accept any one of these. */
930 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
931 {
932 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
933 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
934 {
935 unsigned alloca_adjust;
936 PROC_FRAME_REG (&temp_proc_desc) = 30;
937 frame_addr = read_next_frame_reg(next_frame, 30);
938 alloca_adjust = (unsigned)(frame_addr - sp);
939 if (alloca_adjust > 0)
940 {
941 /* FP > SP + frame_size. This may be because
942 * of an alloca or somethings similar.
943 * Fix sp to "pre-alloca" value, and try again.
944 */
945 sp += alloca_adjust;
946 goto restart;
947 }
948 }
949 }
950 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
951 {
952 PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
953 temp_saved_regs.regs[reg] = frame_addr + low_word;
954 }
955 }
956 }
957
958 static mips_extra_func_info_t
959 heuristic_proc_desc(start_pc, limit_pc, next_frame)
960 CORE_ADDR start_pc, limit_pc;
961 struct frame_info *next_frame;
962 {
963 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
964
965 if (start_pc == 0) return NULL;
966 memset (&temp_proc_desc, '\0', sizeof(temp_proc_desc));
967 memset (&temp_saved_regs, '\0', sizeof(struct frame_saved_regs));
968 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
969 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
970 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
971
972 if (start_pc + 200 < limit_pc)
973 limit_pc = start_pc + 200;
974 if (IS_MIPS16_ADDR (start_pc))
975 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
976 else
977 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
978 return &temp_proc_desc;
979 }
980
981 static mips_extra_func_info_t
982 non_heuristic_proc_desc (pc, addrptr)
983 CORE_ADDR pc;
984 CORE_ADDR *addrptr;
985 {
986 CORE_ADDR startaddr;
987 mips_extra_func_info_t proc_desc;
988 struct block *b = block_for_pc(pc);
989 struct symbol *sym;
990
991 find_pc_partial_function (pc, NULL, &startaddr, NULL);
992 if (addrptr)
993 *addrptr = startaddr;
994 if (b == NULL || PC_IN_CALL_DUMMY (pc, 0, 0))
995 sym = NULL;
996 else
997 {
998 if (startaddr > BLOCK_START (b))
999 /* This is the "pathological" case referred to in a comment in
1000 print_frame_info. It might be better to move this check into
1001 symbol reading. */
1002 sym = NULL;
1003 else
1004 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
1005 }
1006
1007 /* If we never found a PDR for this function in symbol reading, then
1008 examine prologues to find the information. */
1009 if (sym)
1010 {
1011 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
1012 if (PROC_FRAME_REG (proc_desc) == -1)
1013 return NULL;
1014 else
1015 return proc_desc;
1016 }
1017 else
1018 return NULL;
1019 }
1020
1021
1022 static mips_extra_func_info_t
1023 find_proc_desc (pc, next_frame)
1024 CORE_ADDR pc;
1025 struct frame_info *next_frame;
1026 {
1027 mips_extra_func_info_t proc_desc;
1028 CORE_ADDR startaddr;
1029
1030 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
1031
1032 if (proc_desc)
1033 {
1034 /* IF this is the topmost frame AND
1035 * (this proc does not have debugging information OR
1036 * the PC is in the procedure prologue)
1037 * THEN create a "heuristic" proc_desc (by analyzing
1038 * the actual code) to replace the "official" proc_desc.
1039 */
1040 if (next_frame == NULL)
1041 {
1042 struct symtab_and_line val;
1043 struct symbol *proc_symbol =
1044 PROC_DESC_IS_DUMMY(proc_desc) ? 0 : PROC_SYMBOL(proc_desc);
1045
1046 if (proc_symbol)
1047 {
1048 val = find_pc_line (BLOCK_START
1049 (SYMBOL_BLOCK_VALUE(proc_symbol)),
1050 0);
1051 val.pc = val.end ? val.end : pc;
1052 }
1053 if (!proc_symbol || pc < val.pc)
1054 {
1055 mips_extra_func_info_t found_heuristic =
1056 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
1057 pc, next_frame);
1058 if (found_heuristic)
1059 proc_desc = found_heuristic;
1060 }
1061 }
1062 }
1063 else
1064 {
1065 /* Is linked_proc_desc_table really necessary? It only seems to be used
1066 by procedure call dummys. However, the procedures being called ought
1067 to have their own proc_descs, and even if they don't,
1068 heuristic_proc_desc knows how to create them! */
1069
1070 register struct linked_proc_info *link;
1071
1072 for (link = linked_proc_desc_table; link; link = link->next)
1073 if (PROC_LOW_ADDR(&link->info) <= pc
1074 && PROC_HIGH_ADDR(&link->info) > pc)
1075 return &link->info;
1076
1077 if (startaddr == 0)
1078 startaddr = heuristic_proc_start (pc);
1079
1080 proc_desc =
1081 heuristic_proc_desc (startaddr, pc, next_frame);
1082 }
1083 return proc_desc;
1084 }
1085
1086 static CORE_ADDR
1087 get_frame_pointer(frame, proc_desc)
1088 struct frame_info *frame;
1089 mips_extra_func_info_t proc_desc;
1090 {
1091 return ADDR_BITS_REMOVE (read_next_frame_reg (frame,
1092 PROC_FRAME_REG(proc_desc)) + PROC_FRAME_OFFSET(proc_desc));
1093 }
1094
1095 mips_extra_func_info_t cached_proc_desc;
1096
1097 CORE_ADDR
1098 mips_frame_chain(frame)
1099 struct frame_info *frame;
1100 {
1101 mips_extra_func_info_t proc_desc;
1102 CORE_ADDR tmp;
1103 CORE_ADDR saved_pc = FRAME_SAVED_PC(frame);
1104
1105 if (saved_pc == 0 || inside_entry_file (saved_pc))
1106 return 0;
1107
1108 /* Check if the PC is inside a call stub. If it is, fetch the
1109 PC of the caller of that stub. */
1110 if ((tmp = mips_skip_stub (saved_pc)) != 0)
1111 saved_pc = tmp;
1112
1113 /* Look up the procedure descriptor for this PC. */
1114 proc_desc = find_proc_desc(saved_pc, frame);
1115 if (!proc_desc)
1116 return 0;
1117
1118 cached_proc_desc = proc_desc;
1119
1120 /* If no frame pointer and frame size is zero, we must be at end
1121 of stack (or otherwise hosed). If we don't check frame size,
1122 we loop forever if we see a zero size frame. */
1123 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
1124 && PROC_FRAME_OFFSET (proc_desc) == 0
1125 /* The previous frame from a sigtramp frame might be frameless
1126 and have frame size zero. */
1127 && !frame->signal_handler_caller)
1128 return 0;
1129 else
1130 return get_frame_pointer (frame, proc_desc);
1131 }
1132
1133 void
1134 init_extra_frame_info(fci)
1135 struct frame_info *fci;
1136 {
1137 int regnum;
1138
1139 /* Use proc_desc calculated in frame_chain */
1140 mips_extra_func_info_t proc_desc =
1141 fci->next ? cached_proc_desc : find_proc_desc(fci->pc, fci->next);
1142
1143 fci->saved_regs = NULL;
1144 fci->proc_desc =
1145 proc_desc == &temp_proc_desc ? 0 : proc_desc;
1146 if (proc_desc)
1147 {
1148 /* Fixup frame-pointer - only needed for top frame */
1149 /* This may not be quite right, if proc has a real frame register.
1150 Get the value of the frame relative sp, procedure might have been
1151 interrupted by a signal at it's very start. */
1152 if (fci->pc == PROC_LOW_ADDR (proc_desc)
1153 && !PROC_DESC_IS_DUMMY (proc_desc))
1154 fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
1155 else
1156 fci->frame = get_frame_pointer (fci->next, proc_desc);
1157
1158 if (proc_desc == &temp_proc_desc)
1159 {
1160 char *name;
1161
1162 /* Do not set the saved registers for a sigtramp frame,
1163 mips_find_saved_registers will do that for us.
1164 We can't use fci->signal_handler_caller, it is not yet set. */
1165 find_pc_partial_function (fci->pc, &name,
1166 (CORE_ADDR *)NULL,(CORE_ADDR *)NULL);
1167 if (!IN_SIGTRAMP (fci->pc, name))
1168 {
1169 fci->saved_regs = (struct frame_saved_regs*)
1170 obstack_alloc (&frame_cache_obstack,
1171 sizeof (struct frame_saved_regs));
1172 *fci->saved_regs = temp_saved_regs;
1173 fci->saved_regs->regs[PC_REGNUM]
1174 = fci->saved_regs->regs[RA_REGNUM];
1175 }
1176 }
1177
1178 /* hack: if argument regs are saved, guess these contain args */
1179 fci->num_args = -1; /* assume we can't tell how many args for now */
1180 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
1181 {
1182 if (PROC_REG_MASK(proc_desc) & (1 << regnum))
1183 {
1184 fci->num_args = regnum - A0_REGNUM + 1;
1185 break;
1186 }
1187 }
1188 }
1189 }
1190
1191 /* MIPS stack frames are almost impenetrable. When execution stops,
1192 we basically have to look at symbol information for the function
1193 that we stopped in, which tells us *which* register (if any) is
1194 the base of the frame pointer, and what offset from that register
1195 the frame itself is at.
1196
1197 This presents a problem when trying to examine a stack in memory
1198 (that isn't executing at the moment), using the "frame" command. We
1199 don't have a PC, nor do we have any registers except SP.
1200
1201 This routine takes two arguments, SP and PC, and tries to make the
1202 cached frames look as if these two arguments defined a frame on the
1203 cache. This allows the rest of info frame to extract the important
1204 arguments without difficulty. */
1205
1206 struct frame_info *
1207 setup_arbitrary_frame (argc, argv)
1208 int argc;
1209 CORE_ADDR *argv;
1210 {
1211 if (argc != 2)
1212 error ("MIPS frame specifications require two arguments: sp and pc");
1213
1214 return create_new_frame (argv[0], argv[1]);
1215 }
1216
1217 CORE_ADDR
1218 mips_push_arguments(nargs, args, sp, struct_return, struct_addr)
1219 int nargs;
1220 value_ptr *args;
1221 CORE_ADDR sp;
1222 int struct_return;
1223 CORE_ADDR struct_addr;
1224 {
1225 int argreg;
1226 int float_argreg;
1227 int argnum;
1228 int len = 0;
1229 int stack_offset;
1230
1231 /* Macros to round N up or down to the next A boundary; A must be
1232 a power of two. */
1233 #define ROUND_DOWN(n,a) ((n) & ~((a)-1))
1234 #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
1235
1236 /* First ensure that the stack and structure return address (if any)
1237 are properly aligned. The stack has to be 64-bit aligned even
1238 on 32-bit machines, because doubles must be 64-bit aligned. */
1239 sp = ROUND_DOWN (sp, 8);
1240 struct_addr = ROUND_DOWN (struct_addr, MIPS_REGSIZE);
1241
1242 /* Now make space on the stack for the args. We allocate more
1243 than necessary for EABI, because the first few arguments are
1244 passed in registers, but that's OK. */
1245 for (argnum = 0; argnum < nargs; argnum++)
1246 len += ROUND_UP (TYPE_LENGTH(VALUE_TYPE(args[argnum])), MIPS_REGSIZE);
1247 sp -= ROUND_UP (len, 8);
1248
1249 /* Initialize the integer and float register pointers. */
1250 argreg = A0_REGNUM;
1251 float_argreg = FPA0_REGNUM;
1252
1253 /* the struct_return pointer occupies the first parameter-passing reg */
1254 if (struct_return)
1255 write_register (argreg++, struct_addr);
1256
1257 /* The offset onto the stack at which we will start copying parameters
1258 (after the registers are used up) begins at 16 in the old ABI.
1259 This leaves room for the "home" area for register parameters. */
1260 stack_offset = MIPS_EABI ? 0 : MIPS_REGSIZE * 4;
1261
1262 /* Now load as many as possible of the first arguments into
1263 registers, and push the rest onto the stack. Loop thru args
1264 from first to last. */
1265 for (argnum = 0; argnum < nargs; argnum++)
1266 {
1267 char *val;
1268 char valbuf[REGISTER_RAW_SIZE(A0_REGNUM)];
1269 value_ptr arg = args[argnum];
1270 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1271 int len = TYPE_LENGTH (arg_type);
1272 enum type_code typecode = TYPE_CODE (arg_type);
1273
1274 /* The EABI passes structures that do not fit in a register by
1275 reference. In all other cases, pass the structure by value. */
1276 if (typecode == TYPE_CODE_STRUCT && MIPS_EABI && len > MIPS_REGSIZE)
1277 {
1278 store_address (valbuf, MIPS_REGSIZE, VALUE_ADDRESS (arg));
1279 len = MIPS_REGSIZE;
1280 val = valbuf;
1281 }
1282 else
1283 val = (char *)VALUE_CONTENTS (arg);
1284
1285 /* 32-bit ABIs always start floating point arguments in an
1286 even-numbered floating point register. */
1287 if (!GDB_TARGET_IS_MIPS64 && typecode == TYPE_CODE_FLT
1288 && (float_argreg & 1))
1289 float_argreg++;
1290
1291 /* Floating point arguments passed in registers have to be
1292 treated specially. On 32-bit architectures, doubles
1293 are passed in register pairs; the even register gets
1294 the low word, and the odd register gets the high word.
1295 On non-EABI processors, the first two floating point arguments are
1296 also copied to general registers, because MIPS16 functions
1297 don't use float registers for arguments. This duplication of
1298 arguments in general registers can't hurt non-MIPS16 functions
1299 because those registers are normally skipped. */
1300 if (typecode == TYPE_CODE_FLT
1301 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM
1302 && mips_fpu != MIPS_FPU_NONE)
1303 {
1304 if (!GDB_TARGET_IS_MIPS64 && len == 8)
1305 {
1306 int low_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0;
1307 unsigned long regval;
1308
1309 /* Write the low word of the double to the even register(s). */
1310 regval = extract_unsigned_integer (val+low_offset, 4);
1311 write_register (float_argreg++, regval);
1312 if (!MIPS_EABI)
1313 write_register (argreg+1, regval);
1314
1315 /* Write the high word of the double to the odd register(s). */
1316 regval = extract_unsigned_integer (val+4-low_offset, 4);
1317 write_register (float_argreg++, regval);
1318 if (!MIPS_EABI)
1319 {
1320 write_register (argreg, regval);
1321 argreg += 2;
1322 }
1323
1324 }
1325 else
1326 {
1327 /* This is a floating point value that fits entirely
1328 in a single register. */
1329 CORE_ADDR regval = extract_address (val, len);
1330 write_register (float_argreg++, regval);
1331 if (!MIPS_EABI)
1332 {
1333 write_register (argreg, regval);
1334 argreg += GDB_TARGET_IS_MIPS64 ? 1 : 2;
1335 }
1336 }
1337 }
1338 else
1339 {
1340 /* Copy the argument to general registers or the stack in
1341 register-sized pieces. Large arguments are split between
1342 registers and stack. */
1343 while (len > 0)
1344 {
1345 int partial_len = len < MIPS_REGSIZE ? len : MIPS_REGSIZE;
1346
1347 if (argreg <= MIPS_LAST_ARG_REGNUM)
1348 {
1349 CORE_ADDR regval = extract_address (val, partial_len);
1350
1351 /* It's a simple argument being passed in a general
1352 register.
1353 If the argument length is smaller than the register size,
1354 we have to adjust the argument on big endian targets.
1355 But don't do this adjustment on EABI targets. */
1356 if (TARGET_BYTE_ORDER == BIG_ENDIAN
1357 && partial_len < MIPS_REGSIZE
1358 && !MIPS_EABI)
1359 regval <<= ((MIPS_REGSIZE - partial_len) * TARGET_CHAR_BIT);
1360 write_register (argreg, regval);
1361 argreg++;
1362
1363 /* If this is the old ABI, prevent subsequent floating
1364 point arguments from being passed in floating point
1365 registers. */
1366 if (!MIPS_EABI)
1367 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
1368 }
1369 else
1370 {
1371 /* Write this portion of the argument to the stack. */
1372 partial_len = len;
1373 write_memory (sp + stack_offset, val, partial_len);
1374 stack_offset += ROUND_UP (partial_len, MIPS_REGSIZE);
1375 }
1376
1377 len -= partial_len;
1378 val += partial_len;
1379 }
1380 }
1381 }
1382
1383 /* Set the return address register to point to the entry
1384 point of the program, where a breakpoint lies in wait. */
1385 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS());
1386
1387 /* Return adjusted stack pointer. */
1388 return sp;
1389 }
1390
1391 static void
1392 mips_push_register(CORE_ADDR *sp, int regno)
1393 {
1394 char buffer[MAX_REGISTER_RAW_SIZE];
1395 int regsize = REGISTER_RAW_SIZE (regno);
1396
1397 *sp -= regsize;
1398 read_register_gen (regno, buffer);
1399 write_memory (*sp, buffer, regsize);
1400 }
1401
1402 /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
1403 #define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
1404
1405 void
1406 mips_push_dummy_frame()
1407 {
1408 int ireg;
1409 struct linked_proc_info *link = (struct linked_proc_info*)
1410 xmalloc(sizeof(struct linked_proc_info));
1411 mips_extra_func_info_t proc_desc = &link->info;
1412 CORE_ADDR sp = ADDR_BITS_REMOVE (read_register (SP_REGNUM));
1413 CORE_ADDR old_sp = sp;
1414 link->next = linked_proc_desc_table;
1415 linked_proc_desc_table = link;
1416
1417 /* FIXME! are these correct ? */
1418 #define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
1419 #define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
1420 #define FLOAT_REG_SAVE_MASK MASK(0,19)
1421 #define FLOAT_SINGLE_REG_SAVE_MASK \
1422 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
1423 /*
1424 * The registers we must save are all those not preserved across
1425 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
1426 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
1427 * and FP Control/Status registers.
1428 *
1429 *
1430 * Dummy frame layout:
1431 * (high memory)
1432 * Saved PC
1433 * Saved MMHI, MMLO, FPC_CSR
1434 * Saved R31
1435 * Saved R28
1436 * ...
1437 * Saved R1
1438 * Saved D18 (i.e. F19, F18)
1439 * ...
1440 * Saved D0 (i.e. F1, F0)
1441 * Argument build area and stack arguments written via mips_push_arguments
1442 * (low memory)
1443 */
1444
1445 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
1446 PROC_FRAME_REG(proc_desc) = PUSH_FP_REGNUM;
1447 PROC_FRAME_OFFSET(proc_desc) = 0;
1448 mips_push_register (&sp, PC_REGNUM);
1449 mips_push_register (&sp, HI_REGNUM);
1450 mips_push_register (&sp, LO_REGNUM);
1451 mips_push_register (&sp, mips_fpu == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
1452
1453 /* Save general CPU registers */
1454 PROC_REG_MASK(proc_desc) = GEN_REG_SAVE_MASK;
1455 PROC_REG_OFFSET(proc_desc) = sp - old_sp; /* offset of (Saved R31) from FP */
1456 for (ireg = 32; --ireg >= 0; )
1457 if (PROC_REG_MASK(proc_desc) & (1 << ireg))
1458 mips_push_register (&sp, ireg);
1459
1460 /* Save floating point registers starting with high order word */
1461 PROC_FREG_MASK(proc_desc) =
1462 mips_fpu == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
1463 : mips_fpu == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
1464 PROC_FREG_OFFSET(proc_desc) = sp - old_sp; /* offset of (Saved D18) from FP */
1465 for (ireg = 32; --ireg >= 0; )
1466 if (PROC_FREG_MASK(proc_desc) & (1 << ireg))
1467 mips_push_register (&sp, ireg + FP0_REGNUM);
1468
1469 /* Update the frame pointer for the call dummy and the stack pointer.
1470 Set the procedure's starting and ending addresses to point to the
1471 call dummy address at the entry point. */
1472 write_register (PUSH_FP_REGNUM, old_sp);
1473 write_register (SP_REGNUM, sp);
1474 PROC_LOW_ADDR(proc_desc) = CALL_DUMMY_ADDRESS();
1475 PROC_HIGH_ADDR(proc_desc) = CALL_DUMMY_ADDRESS() + 4;
1476 SET_PROC_DESC_IS_DUMMY(proc_desc);
1477 PROC_PC_REG(proc_desc) = RA_REGNUM;
1478 }
1479
1480 void
1481 mips_pop_frame()
1482 {
1483 register int regnum;
1484 struct frame_info *frame = get_current_frame ();
1485 CORE_ADDR new_sp = FRAME_FP (frame);
1486
1487 mips_extra_func_info_t proc_desc = frame->proc_desc;
1488
1489 write_register (PC_REGNUM, FRAME_SAVED_PC(frame));
1490 if (frame->saved_regs == NULL)
1491 mips_find_saved_regs (frame);
1492 for (regnum = 0; regnum < NUM_REGS; regnum++)
1493 {
1494 if (regnum != SP_REGNUM && regnum != PC_REGNUM
1495 && frame->saved_regs->regs[regnum])
1496 write_register (regnum,
1497 read_memory_integer (frame->saved_regs->regs[regnum],
1498 MIPS_REGSIZE));
1499 }
1500 write_register (SP_REGNUM, new_sp);
1501 flush_cached_frames ();
1502
1503 if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc))
1504 {
1505 struct linked_proc_info *pi_ptr, *prev_ptr;
1506
1507 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
1508 pi_ptr != NULL;
1509 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
1510 {
1511 if (&pi_ptr->info == proc_desc)
1512 break;
1513 }
1514
1515 if (pi_ptr == NULL)
1516 error ("Can't locate dummy extra frame info\n");
1517
1518 if (prev_ptr != NULL)
1519 prev_ptr->next = pi_ptr->next;
1520 else
1521 linked_proc_desc_table = pi_ptr->next;
1522
1523 free (pi_ptr);
1524
1525 write_register (HI_REGNUM,
1526 read_memory_integer (new_sp - 2*MIPS_REGSIZE, MIPS_REGSIZE));
1527 write_register (LO_REGNUM,
1528 read_memory_integer (new_sp - 3*MIPS_REGSIZE, MIPS_REGSIZE));
1529 if (mips_fpu != MIPS_FPU_NONE)
1530 write_register (FCRCS_REGNUM,
1531 read_memory_integer (new_sp - 4*MIPS_REGSIZE, MIPS_REGSIZE));
1532 }
1533 }
1534
1535 static void
1536 mips_print_register (regnum, all)
1537 int regnum, all;
1538 {
1539 char raw_buffer[MAX_REGISTER_RAW_SIZE];
1540
1541 /* Get the data in raw format. */
1542 if (read_relative_register_raw_bytes (regnum, raw_buffer))
1543 {
1544 printf_filtered ("%s: [Invalid]", reg_names[regnum]);
1545 return;
1546 }
1547
1548 /* If an even floating pointer register, also print as double. */
1549 if (regnum >= FP0_REGNUM && regnum < FP0_REGNUM+MIPS_NUMREGS
1550 && !((regnum-FP0_REGNUM) & 1))
1551 {
1552 char dbuffer[2 * MAX_REGISTER_RAW_SIZE];
1553
1554 read_relative_register_raw_bytes (regnum, dbuffer);
1555 read_relative_register_raw_bytes (regnum+1, dbuffer+MIPS_REGSIZE);
1556 REGISTER_CONVERT_TO_TYPE (regnum, builtin_type_double, dbuffer);
1557
1558 printf_filtered ("(d%d: ", regnum-FP0_REGNUM);
1559 val_print (builtin_type_double, dbuffer, 0,
1560 gdb_stdout, 0, 1, 0, Val_pretty_default);
1561 printf_filtered ("); ");
1562 }
1563 fputs_filtered (reg_names[regnum], gdb_stdout);
1564
1565 /* The problem with printing numeric register names (r26, etc.) is that
1566 the user can't use them on input. Probably the best solution is to
1567 fix it so that either the numeric or the funky (a2, etc.) names
1568 are accepted on input. */
1569 if (regnum < MIPS_NUMREGS)
1570 printf_filtered ("(r%d): ", regnum);
1571 else
1572 printf_filtered (": ");
1573
1574 /* If virtual format is floating, print it that way. */
1575 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
1576 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0,
1577 gdb_stdout, 0, 1, 0, Val_pretty_default);
1578 /* Else print as integer in hex. */
1579 else
1580 print_scalar_formatted (raw_buffer, REGISTER_VIRTUAL_TYPE (regnum),
1581 'x', 0, gdb_stdout);
1582 }
1583
1584 /* Replacement for generic do_registers_info. */
1585
1586 void
1587 mips_do_registers_info (regnum, fpregs)
1588 int regnum;
1589 int fpregs;
1590 {
1591 if (regnum != -1)
1592 {
1593 if (*(reg_names[regnum]) == '\0')
1594 error ("Not a valid register for the current processor type");
1595
1596 mips_print_register (regnum, 0);
1597 printf_filtered ("\n");
1598 }
1599 else
1600 {
1601 int did_newline = 0;
1602
1603 for (regnum = 0; regnum < NUM_REGS; )
1604 {
1605 if (((!fpregs) && regnum >= FP0_REGNUM && regnum <= FCRIR_REGNUM)
1606 || *(reg_names[regnum]) == '\0')
1607 {
1608 regnum++;
1609 continue;
1610 }
1611 mips_print_register (regnum, 1);
1612 regnum++;
1613 printf_filtered ("; ");
1614 did_newline = 0;
1615 if ((regnum & 3) == 0)
1616 {
1617 printf_filtered ("\n");
1618 did_newline = 1;
1619 }
1620 }
1621 if (!did_newline)
1622 printf_filtered ("\n");
1623 }
1624 }
1625
1626 /* Return number of args passed to a frame. described by FIP.
1627 Can return -1, meaning no way to tell. */
1628
1629 int
1630 mips_frame_num_args (frame)
1631 struct frame_info *frame;
1632 {
1633 #if 0 /* FIXME Use or lose this! */
1634 struct chain_info_t *p;
1635
1636 p = mips_find_cached_frame (FRAME_FP (frame));
1637 if (p->valid)
1638 return p->the_info.numargs;
1639 #endif
1640 return -1;
1641 }
1642
1643 /* Is this a branch with a delay slot? */
1644
1645 static int is_delayed PARAMS ((unsigned long));
1646
1647 static int
1648 is_delayed (insn)
1649 unsigned long insn;
1650 {
1651 int i;
1652 for (i = 0; i < NUMOPCODES; ++i)
1653 if (mips_opcodes[i].pinfo != INSN_MACRO
1654 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
1655 break;
1656 return (i < NUMOPCODES
1657 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
1658 | INSN_COND_BRANCH_DELAY
1659 | INSN_COND_BRANCH_LIKELY)));
1660 }
1661
1662 int
1663 mips_step_skips_delay (pc)
1664 CORE_ADDR pc;
1665 {
1666 char buf[MIPS_INSTLEN];
1667
1668 /* There is no branch delay slot on MIPS16. */
1669 if (IS_MIPS16_ADDR (pc))
1670 return 0;
1671
1672 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
1673 /* If error reading memory, guess that it is not a delayed branch. */
1674 return 0;
1675 return is_delayed ((unsigned long)extract_unsigned_integer (buf, MIPS_INSTLEN));
1676 }
1677
1678
1679 /* Skip the PC past function prologue instructions (32-bit version).
1680 This is a helper function for mips_skip_prologue. */
1681
1682 static CORE_ADDR
1683 mips32_skip_prologue (pc, lenient)
1684 CORE_ADDR pc; /* starting PC to search from */
1685 int lenient;
1686 {
1687 t_inst inst;
1688 CORE_ADDR end_pc;
1689 int seen_sp_adjust = 0;
1690 int load_immediate_bytes = 0;
1691
1692 /* Skip the typical prologue instructions. These are the stack adjustment
1693 instruction and the instructions that save registers on the stack
1694 or in the gcc frame. */
1695 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
1696 {
1697 unsigned long high_word;
1698
1699 inst = mips_fetch_instruction (pc);
1700 high_word = (inst >> 16) & 0xffff;
1701
1702 #if 0
1703 if (lenient && is_delayed (inst))
1704 continue;
1705 #endif
1706
1707 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
1708 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
1709 seen_sp_adjust = 1;
1710 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
1711 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
1712 seen_sp_adjust = 1;
1713 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
1714 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
1715 && (inst & 0x001F0000)) /* reg != $zero */
1716 continue;
1717
1718 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
1719 continue;
1720 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
1721 /* sx reg,n($s8) */
1722 continue; /* reg != $zero */
1723
1724 /* move $s8,$sp. With different versions of gas this will be either
1725 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
1726 Accept any one of these. */
1727 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1728 continue;
1729
1730 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
1731 continue;
1732 else if (high_word == 0x3c1c) /* lui $gp,n */
1733 continue;
1734 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
1735 continue;
1736 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
1737 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
1738 continue;
1739 /* The following instructions load $at or $t0 with an immediate
1740 value in preparation for a stack adjustment via
1741 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
1742 a local variable, so we accept them only before a stack adjustment
1743 instruction was seen. */
1744 else if (!seen_sp_adjust)
1745 {
1746 if (high_word == 0x3c01 || /* lui $at,n */
1747 high_word == 0x3c08) /* lui $t0,n */
1748 {
1749 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
1750 continue;
1751 }
1752 else if (high_word == 0x3421 || /* ori $at,$at,n */
1753 high_word == 0x3508 || /* ori $t0,$t0,n */
1754 high_word == 0x3401 || /* ori $at,$zero,n */
1755 high_word == 0x3408) /* ori $t0,$zero,n */
1756 {
1757 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
1758 continue;
1759 }
1760 else
1761 break;
1762 }
1763 else
1764 break;
1765 }
1766
1767 /* In a frameless function, we might have incorrectly
1768 skipped some load immediate instructions. Undo the skipping
1769 if the load immediate was not followed by a stack adjustment. */
1770 if (load_immediate_bytes && !seen_sp_adjust)
1771 pc -= load_immediate_bytes;
1772 return pc;
1773 }
1774
1775 /* Skip the PC past function prologue instructions (16-bit version).
1776 This is a helper function for mips_skip_prologue. */
1777
1778 static CORE_ADDR
1779 mips16_skip_prologue (pc, lenient)
1780 CORE_ADDR pc; /* starting PC to search from */
1781 int lenient;
1782 {
1783 CORE_ADDR end_pc;
1784 int extend_bytes = 0;
1785 int prev_extend_bytes;
1786
1787 /* Table of instructions likely to be found in a function prologue. */
1788 static struct
1789 {
1790 unsigned short inst;
1791 unsigned short mask;
1792 } table[] =
1793 {
1794 { 0x6300, 0xff00 }, /* addiu $sp,offset */
1795 { 0xfb00, 0xff00 }, /* daddiu $sp,offset */
1796 { 0xd000, 0xf800 }, /* sw reg,n($sp) */
1797 { 0xf900, 0xff00 }, /* sd reg,n($sp) */
1798 { 0x6200, 0xff00 }, /* sw $ra,n($sp) */
1799 { 0xfa00, 0xff00 }, /* sd $ra,n($sp) */
1800 { 0x673d, 0xffff }, /* move $s1,sp */
1801 { 0xd980, 0xff80 }, /* sw $a0-$a3,n($s1) */
1802 { 0x6704, 0xff1c }, /* move reg,$a0-$a3 */
1803 { 0xe809, 0xf81f }, /* entry pseudo-op */
1804 { 0x0100, 0xff00 }, /* addiu $s1,$sp,n */
1805 { 0, 0 } /* end of table marker */
1806 };
1807
1808 /* Skip the typical prologue instructions. These are the stack adjustment
1809 instruction and the instructions that save registers on the stack
1810 or in the gcc frame. */
1811 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
1812 {
1813 unsigned short inst;
1814 int i;
1815
1816 inst = mips_fetch_instruction (pc);
1817
1818 /* Normally we ignore an extend instruction. However, if it is
1819 not followed by a valid prologue instruction, we must adjust
1820 the pc back over the extend so that it won't be considered
1821 part of the prologue. */
1822 if ((inst & 0xf800) == 0xf000) /* extend */
1823 {
1824 extend_bytes = MIPS16_INSTLEN;
1825 continue;
1826 }
1827 prev_extend_bytes = extend_bytes;
1828 extend_bytes = 0;
1829
1830 /* Check for other valid prologue instructions besides extend. */
1831 for (i = 0; table[i].mask != 0; i++)
1832 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
1833 break;
1834 if (table[i].mask != 0) /* it was in table? */
1835 continue; /* ignore it */
1836 else /* non-prologue */
1837 {
1838 /* Return the current pc, adjusted backwards by 2 if
1839 the previous instruction was an extend. */
1840 return pc - prev_extend_bytes;
1841 }
1842 }
1843 return pc;
1844 }
1845
1846 /* To skip prologues, I use this predicate. Returns either PC itself
1847 if the code at PC does not look like a function prologue; otherwise
1848 returns an address that (if we're lucky) follows the prologue. If
1849 LENIENT, then we must skip everything which is involved in setting
1850 up the frame (it's OK to skip more, just so long as we don't skip
1851 anything which might clobber the registers which are being saved.
1852 We must skip more in the case where part of the prologue is in the
1853 delay slot of a non-prologue instruction). */
1854
1855 CORE_ADDR
1856 mips_skip_prologue (pc, lenient)
1857 CORE_ADDR pc;
1858 int lenient;
1859 {
1860 /* See if we can determine the end of the prologue via the symbol table.
1861 If so, then return either PC, or the PC after the prologue, whichever
1862 is greater. */
1863
1864 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
1865
1866 if (post_prologue_pc != 0)
1867 return max (pc, post_prologue_pc);
1868
1869 /* Can't determine prologue from the symbol table, need to examine
1870 instructions. */
1871
1872 if (IS_MIPS16_ADDR (pc))
1873 return mips16_skip_prologue (pc, lenient);
1874 else
1875 return mips32_skip_prologue (pc, lenient);
1876 }
1877
1878 #if 0
1879 /* The lenient prologue stuff should be superseded by the code in
1880 init_extra_frame_info which looks to see whether the stores mentioned
1881 in the proc_desc have actually taken place. */
1882
1883 /* Is address PC in the prologue (loosely defined) for function at
1884 STARTADDR? */
1885
1886 static int
1887 mips_in_lenient_prologue (startaddr, pc)
1888 CORE_ADDR startaddr;
1889 CORE_ADDR pc;
1890 {
1891 CORE_ADDR end_prologue = mips_skip_prologue (startaddr, 1);
1892 return pc >= startaddr && pc < end_prologue;
1893 }
1894 #endif
1895
1896 /* Given a return value in `regbuf' with a type `valtype',
1897 extract and copy its value into `valbuf'. */
1898 void
1899 mips_extract_return_value (valtype, regbuf, valbuf)
1900 struct type *valtype;
1901 char regbuf[REGISTER_BYTES];
1902 char *valbuf;
1903 {
1904 int regnum;
1905 int offset = 0;
1906 int len = TYPE_LENGTH (valtype);
1907
1908 regnum = 2;
1909 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
1910 && (mips_fpu == MIPS_FPU_DOUBLE
1911 || (mips_fpu == MIPS_FPU_SINGLE && len <= MIPS_REGSIZE)))
1912 regnum = FP0_REGNUM;
1913
1914 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1915 { /* "un-left-justify" the value from the register */
1916 if (len < REGISTER_RAW_SIZE (regnum) &&
1917 TYPE_CODE (valtype) != TYPE_CODE_FLT)
1918 offset = REGISTER_RAW_SIZE (regnum) - len;
1919 if (len > REGISTER_RAW_SIZE (regnum) && /* odd-size structs */
1920 len < REGISTER_RAW_SIZE (regnum) * 2 &&
1921 (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
1922 TYPE_CODE (valtype) == TYPE_CODE_UNION))
1923 offset = 2 * REGISTER_RAW_SIZE (regnum) - len;
1924 }
1925 memcpy (valbuf, regbuf + REGISTER_BYTE (regnum) + offset, len);
1926 REGISTER_CONVERT_TO_TYPE (regnum, valtype, valbuf);
1927 }
1928
1929 /* Given a return value in `regbuf' with a type `valtype',
1930 write it's value into the appropriate register. */
1931 void
1932 mips_store_return_value (valtype, valbuf)
1933 struct type *valtype;
1934 char *valbuf;
1935 {
1936 int regnum;
1937 int offset = 0;
1938 int len = TYPE_LENGTH (valtype);
1939 char raw_buffer[MAX_REGISTER_RAW_SIZE];
1940
1941 regnum = 2;
1942 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
1943 && (mips_fpu == MIPS_FPU_DOUBLE
1944 || (mips_fpu == MIPS_FPU_SINGLE && len <= MIPS_REGSIZE)))
1945 regnum = FP0_REGNUM;
1946
1947 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1948 { /* "left-justify" the value in the register */
1949 if (len < REGISTER_RAW_SIZE (regnum))
1950 offset = REGISTER_RAW_SIZE (regnum) - len;
1951 if (len > REGISTER_RAW_SIZE (regnum) && /* odd-size structs */
1952 len < REGISTER_RAW_SIZE (regnum) * 2 &&
1953 (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
1954 TYPE_CODE (valtype) == TYPE_CODE_UNION))
1955 offset = 2 * REGISTER_RAW_SIZE (regnum) - len;
1956 }
1957 memcpy(raw_buffer + offset, valbuf, len);
1958 REGISTER_CONVERT_FROM_TYPE(regnum, valtype, raw_buffer);
1959 write_register_bytes(REGISTER_BYTE (regnum), raw_buffer,
1960 len > REGISTER_RAW_SIZE (regnum) ?
1961 len : REGISTER_RAW_SIZE (regnum));
1962 }
1963
1964 /* Exported procedure: Is PC in the signal trampoline code */
1965
1966 int
1967 in_sigtramp (pc, ignore)
1968 CORE_ADDR pc;
1969 char *ignore; /* function name */
1970 {
1971 if (sigtramp_address == 0)
1972 fixup_sigtramp ();
1973 return (pc >= sigtramp_address && pc < sigtramp_end);
1974 }
1975
1976 /* Command to set FPU type. mips_fpu_string will have been set to the
1977 user's argument. Set mips_fpu based on mips_fpu_string, and then
1978 canonicalize mips_fpu_string. */
1979
1980 /*ARGSUSED*/
1981 static void
1982 mips_set_fpu_command (args, from_tty, c)
1983 char *args;
1984 int from_tty;
1985 struct cmd_list_element *c;
1986 {
1987 char *err = NULL;
1988
1989 if (mips_fpu_string == NULL || *mips_fpu_string == '\0')
1990 mips_fpu = MIPS_FPU_DOUBLE;
1991 else if (strcasecmp (mips_fpu_string, "double") == 0
1992 || strcasecmp (mips_fpu_string, "on") == 0
1993 || strcasecmp (mips_fpu_string, "1") == 0
1994 || strcasecmp (mips_fpu_string, "yes") == 0)
1995 mips_fpu = MIPS_FPU_DOUBLE;
1996 else if (strcasecmp (mips_fpu_string, "none") == 0
1997 || strcasecmp (mips_fpu_string, "off") == 0
1998 || strcasecmp (mips_fpu_string, "0") == 0
1999 || strcasecmp (mips_fpu_string, "no") == 0)
2000 mips_fpu = MIPS_FPU_NONE;
2001 else if (strcasecmp (mips_fpu_string, "single") == 0)
2002 mips_fpu = MIPS_FPU_SINGLE;
2003 else
2004 err = strsave (mips_fpu_string);
2005
2006 if (mips_fpu_string != NULL)
2007 free (mips_fpu_string);
2008
2009 switch (mips_fpu)
2010 {
2011 case MIPS_FPU_DOUBLE:
2012 mips_fpu_string = strsave ("double");
2013 break;
2014 case MIPS_FPU_SINGLE:
2015 mips_fpu_string = strsave ("single");
2016 break;
2017 case MIPS_FPU_NONE:
2018 mips_fpu_string = strsave ("none");
2019 break;
2020 }
2021
2022 if (err != NULL)
2023 {
2024 struct cleanup *cleanups = make_cleanup (free, err);
2025 error ("Unknown FPU type `%s'. Use `double', `none', or `single'.",
2026 err);
2027 do_cleanups (cleanups);
2028 }
2029 }
2030
2031 static void
2032 mips_show_fpu_command (args, from_tty, c)
2033 char *args;
2034 int from_tty;
2035 struct cmd_list_element *c;
2036 {
2037 }
2038
2039 /* Command to set the processor type. */
2040
2041 void
2042 mips_set_processor_type_command (args, from_tty)
2043 char *args;
2044 int from_tty;
2045 {
2046 int i;
2047
2048 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
2049 {
2050 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
2051 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
2052 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
2053
2054 /* Restore the value. */
2055 tmp_mips_processor_type = strsave (mips_processor_type);
2056
2057 return;
2058 }
2059
2060 if (!mips_set_processor_type (tmp_mips_processor_type))
2061 {
2062 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
2063 /* Restore its value. */
2064 tmp_mips_processor_type = strsave (mips_processor_type);
2065 }
2066 }
2067
2068 static void
2069 mips_show_processor_type_command (args, from_tty)
2070 char *args;
2071 int from_tty;
2072 {
2073 }
2074
2075 /* Modify the actual processor type. */
2076
2077 int
2078 mips_set_processor_type (str)
2079 char *str;
2080 {
2081 int i, j;
2082
2083 if (str == NULL)
2084 return 0;
2085
2086 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
2087 {
2088 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
2089 {
2090 mips_processor_type = str;
2091
2092 for (j = 0; j < NUM_REGS; ++j)
2093 reg_names[j] = mips_processor_type_table[i].regnames[j];
2094
2095 return 1;
2096
2097 /* FIXME tweak fpu flag too */
2098 }
2099 }
2100
2101 return 0;
2102 }
2103
2104 /* Attempt to identify the particular processor model by reading the
2105 processor id. */
2106
2107 char *
2108 mips_read_processor_type ()
2109 {
2110 CORE_ADDR prid;
2111
2112 prid = read_register (PRID_REGNUM);
2113
2114 if ((prid & ~0xf) == 0x700)
2115 return savestring ("r3041", strlen("r3041"));
2116
2117 return NULL;
2118 }
2119
2120 /* Just like reinit_frame_cache, but with the right arguments to be
2121 callable as an sfunc. */
2122
2123 static void
2124 reinit_frame_cache_sfunc (args, from_tty, c)
2125 char *args;
2126 int from_tty;
2127 struct cmd_list_element *c;
2128 {
2129 reinit_frame_cache ();
2130 }
2131
2132 static int
2133 gdb_print_insn_mips (memaddr, info)
2134 bfd_vma memaddr;
2135 disassemble_info *info;
2136 {
2137 mips_extra_func_info_t proc_desc;
2138
2139 /* Search for the function containing this address. Set the low bit
2140 of the address when searching, in case we were given an even address
2141 that is the start of a 16-bit function. If we didn't do this,
2142 the search would fail because the symbol table says the function
2143 starts at an odd address, i.e. 1 byte past the given address. */
2144 memaddr = ADDR_BITS_REMOVE (memaddr);
2145 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
2146
2147 /* Make an attempt to determine if this is a 16-bit function. If
2148 the procedure descriptor exists and the address therein is odd,
2149 it's definitely a 16-bit function. Otherwise, we have to just
2150 guess that if the address passed in is odd, it's 16-bits. */
2151 if (proc_desc)
2152 info->mach = IS_MIPS16_ADDR (PROC_LOW_ADDR (proc_desc)) ? 16 : 0;
2153 else
2154 info->mach = IS_MIPS16_ADDR (memaddr) ? 16 : 0;
2155
2156 /* Round down the instruction address to the appropriate boundary. */
2157 memaddr &= (info->mach == 16 ? ~1 : ~3);
2158
2159 /* Call the appropriate disassembler based on the target endian-ness. */
2160 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2161 return print_insn_big_mips (memaddr, info);
2162 else
2163 return print_insn_little_mips (memaddr, info);
2164 }
2165
2166 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
2167 counter value to determine whether a 16- or 32-bit breakpoint should be
2168 used. It returns a pointer to a string of bytes that encode a breakpoint
2169 instruction, stores the length of the string to *lenptr, and adjusts pc
2170 (if necessary) to point to the actual memory location where the
2171 breakpoint should be inserted. */
2172
2173 unsigned char *mips_breakpoint_from_pc (pcptr, lenptr)
2174 CORE_ADDR *pcptr;
2175 int *lenptr;
2176 {
2177 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2178 {
2179 if (IS_MIPS16_ADDR (*pcptr))
2180 {
2181 static char mips16_big_breakpoint[] = MIPS16_BIG_BREAKPOINT;
2182 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
2183 *lenptr = sizeof(mips16_big_breakpoint);
2184 return mips16_big_breakpoint;
2185 }
2186 else
2187 {
2188 static char big_breakpoint[] = BIG_BREAKPOINT;
2189 static char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
2190 static char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
2191
2192 *lenptr = sizeof(big_breakpoint);
2193
2194 if (strcmp (target_shortname, "mips") == 0)
2195 return idt_big_breakpoint;
2196 else if (strcmp (target_shortname, "ddb") == 0
2197 || strcmp (target_shortname, "pmon") == 0
2198 || strcmp (target_shortname, "lsi") == 0)
2199 return pmon_big_breakpoint;
2200 else
2201 return big_breakpoint;
2202 }
2203 }
2204 else
2205 {
2206 if (IS_MIPS16_ADDR (*pcptr))
2207 {
2208 static char mips16_little_breakpoint[] = MIPS16_LITTLE_BREAKPOINT;
2209 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
2210 *lenptr = sizeof(mips16_little_breakpoint);
2211 return mips16_little_breakpoint;
2212 }
2213 else
2214 {
2215 static char little_breakpoint[] = LITTLE_BREAKPOINT;
2216 static char pmon_little_breakpoint[] = PMON_LITTLE_BREAKPOINT;
2217 static char idt_little_breakpoint[] = IDT_LITTLE_BREAKPOINT;
2218
2219 *lenptr = sizeof(little_breakpoint);
2220
2221 if (strcmp (target_shortname, "mips") == 0)
2222 return idt_little_breakpoint;
2223 else if (strcmp (target_shortname, "ddb") == 0
2224 || strcmp (target_shortname, "pmon") == 0
2225 || strcmp (target_shortname, "lsi") == 0)
2226 return pmon_little_breakpoint;
2227 else
2228 return little_breakpoint;
2229 }
2230 }
2231 }
2232
2233 /* Test whether the PC points to the return instruction at the
2234 end of a function. This implements the ABOUT_TO_RETURN macro. */
2235
2236 int
2237 mips_about_to_return (pc)
2238 CORE_ADDR pc;
2239 {
2240 if (IS_MIPS16_ADDR (pc))
2241 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2242 generates a "jr $ra"; other times it generates code to load
2243 the return address from the stack to an accessible register (such
2244 as $a3), then a "jr" using that register. This second case
2245 is almost impossible to distinguish from an indirect jump
2246 used for switch statements, so we don't even try. */
2247 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
2248 else
2249 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
2250 }
2251
2252
2253 /* If PC is in a mips16 call or return stub, return the address of the target
2254 PC, which is either the callee or the caller. There are several
2255 cases which must be handled:
2256
2257 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
2258 target PC is in $31 ($ra).
2259 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
2260 and the target PC is in $2.
2261 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
2262 before the jal instruction, this is effectively a call stub
2263 and the the target PC is in $2. Otherwise this is effectively
2264 a return stub and the target PC is in $18.
2265
2266 See the source code for the stubs in gcc/config/mips/mips16.S for
2267 gory details.
2268
2269 This function implements the SKIP_TRAMPOLINE_CODE macro.
2270 */
2271
2272 CORE_ADDR
2273 mips_skip_stub (pc)
2274 CORE_ADDR pc;
2275 {
2276 char *name;
2277 CORE_ADDR start_addr;
2278
2279 /* Find the starting address and name of the function containing the PC. */
2280 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2281 return 0;
2282
2283 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
2284 target PC is in $31 ($ra). */
2285 if (strcmp (name, "__mips16_ret_sf") == 0
2286 || strcmp (name, "__mips16_ret_df") == 0)
2287 return read_register (RA_REGNUM);
2288
2289 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
2290 {
2291 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
2292 and the target PC is in $2. */
2293 if (name[19] >= '0' && name[19] <= '9')
2294 return read_register (2);
2295
2296 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
2297 before the jal instruction, this is effectively a call stub
2298 and the the target PC is in $2. Otherwise this is effectively
2299 a return stub and the target PC is in $18. */
2300 else if (name[19] == 's' || name[19] == 'd')
2301 {
2302 if (pc == start_addr)
2303 {
2304 /* Check if the target of the stub is a compiler-generated
2305 stub. Such a stub for a function bar might have a name
2306 like __fn_stub_bar, and might look like this:
2307 mfc1 $4,$f13
2308 mfc1 $5,$f12
2309 mfc1 $6,$f15
2310 mfc1 $7,$f14
2311 la $1,bar (becomes a lui/addiu pair)
2312 jr $1
2313 So scan down to the lui/addi and extract the target
2314 address from those two instructions. */
2315
2316 CORE_ADDR target_pc = read_register (2);
2317 t_inst inst;
2318 int i;
2319
2320 /* See if the name of the target function is __fn_stub_*. */
2321 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
2322 return target_pc;
2323 if (strncmp (name, "__fn_stub_", 10) != 0
2324 && strcmp (name, "etext") != 0
2325 && strcmp (name, "_etext") != 0)
2326 return target_pc;
2327
2328 /* Scan through this _fn_stub_ code for the lui/addiu pair.
2329 The limit on the search is arbitrarily set to 20
2330 instructions. FIXME. */
2331 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
2332 {
2333 inst = mips_fetch_instruction (target_pc);
2334 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
2335 pc = (inst << 16) & 0xffff0000; /* high word */
2336 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
2337 return pc | (inst & 0xffff); /* low word */
2338 }
2339
2340 /* Couldn't find the lui/addui pair, so return stub address. */
2341 return target_pc;
2342 }
2343 else
2344 /* This is the 'return' part of a call stub. The return
2345 address is in $r18. */
2346 return read_register (18);
2347 }
2348 }
2349 return 0; /* not a stub */
2350 }
2351
2352
2353 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
2354 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
2355
2356 int
2357 mips_in_call_stub (pc, name)
2358 CORE_ADDR pc;
2359 char *name;
2360 {
2361 CORE_ADDR start_addr;
2362
2363 /* Find the starting address of the function containing the PC. If the
2364 caller didn't give us a name, look it up at the same time. */
2365 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
2366 return 0;
2367
2368 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
2369 {
2370 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
2371 if (name[19] >= '0' && name[19] <= '9')
2372 return 1;
2373 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
2374 before the jal instruction, this is effectively a call stub. */
2375 else if (name[19] == 's' || name[19] == 'd')
2376 return pc == start_addr;
2377 }
2378
2379 return 0; /* not a stub */
2380 }
2381
2382
2383 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
2384 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
2385
2386 int
2387 mips_in_return_stub (pc, name)
2388 CORE_ADDR pc;
2389 char *name;
2390 {
2391 CORE_ADDR start_addr;
2392
2393 /* Find the starting address of the function containing the PC. */
2394 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
2395 return 0;
2396
2397 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
2398 if (strcmp (name, "__mips16_ret_sf") == 0
2399 || strcmp (name, "__mips16_ret_df") == 0)
2400 return 1;
2401
2402 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
2403 i.e. after the jal instruction, this is effectively a return stub. */
2404 if (strncmp (name, "__mips16_call_stub_", 19) == 0
2405 && (name[19] == 's' || name[19] == 'd')
2406 && pc != start_addr)
2407 return 1;
2408
2409 return 0; /* not a stub */
2410 }
2411
2412
2413 /* Return non-zero if the PC is in a library helper function that should
2414 be ignored. This implements the IGNORE_HELPER_CALL macro. */
2415
2416 int
2417 mips_ignore_helper (pc)
2418 CORE_ADDR pc;
2419 {
2420 char *name;
2421
2422 /* Find the starting address and name of the function containing the PC. */
2423 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
2424 return 0;
2425
2426 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
2427 that we want to ignore. */
2428 return (strcmp (name, "__mips16_ret_sf") == 0
2429 || strcmp (name, "__mips16_ret_df") == 0);
2430 }
2431
2432
2433 void
2434 _initialize_mips_tdep ()
2435 {
2436 struct cmd_list_element *c;
2437
2438 tm_print_insn = gdb_print_insn_mips;
2439
2440 /* Let the user turn off floating point and set the fence post for
2441 heuristic_proc_start. */
2442
2443 c = add_set_cmd ("mipsfpu", class_support, var_string_noescape,
2444 (char *) &mips_fpu_string,
2445 "Set use of floating point coprocessor.\n\
2446 Set to `none' to avoid using floating point instructions when calling\n\
2447 functions or dealing with return values. Set to `single' to use only\n\
2448 single precision floating point as on the R4650. Set to `double' for\n\
2449 normal floating point support.",
2450 &setlist);
2451 c->function.sfunc = mips_set_fpu_command;
2452 c = add_show_from_set (c, &showlist);
2453 c->function.sfunc = mips_show_fpu_command;
2454
2455 mips_fpu = MIPS_FPU_DOUBLE;
2456 mips_fpu_string = strsave ("double");
2457
2458 c = add_set_cmd ("processor", class_support, var_string_noescape,
2459 (char *) &tmp_mips_processor_type,
2460 "Set the type of MIPS processor in use.\n\
2461 Set this to be able to access processor-type-specific registers.\n\
2462 ",
2463 &setlist);
2464 c->function.cfunc = mips_set_processor_type_command;
2465 c = add_show_from_set (c, &showlist);
2466 c->function.cfunc = mips_show_processor_type_command;
2467
2468 tmp_mips_processor_type = strsave (DEFAULT_MIPS_TYPE);
2469 mips_set_processor_type_command (strsave (DEFAULT_MIPS_TYPE), 0);
2470
2471 /* We really would like to have both "0" and "unlimited" work, but
2472 command.c doesn't deal with that. So make it a var_zinteger
2473 because the user can always use "999999" or some such for unlimited. */
2474 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
2475 (char *) &heuristic_fence_post,
2476 "\
2477 Set the distance searched for the start of a function.\n\
2478 If you are debugging a stripped executable, GDB needs to search through the\n\
2479 program for the start of a function. This command sets the distance of the\n\
2480 search. The only need to set it is when debugging a stripped executable.",
2481 &setlist);
2482 /* We need to throw away the frame cache when we set this, since it
2483 might change our ability to get backtraces. */
2484 c->function.sfunc = reinit_frame_cache_sfunc;
2485 add_show_from_set (c, &showlist);
2486 }