* mips-tdep.c (show_mipsfpu_command): Do not crash if called when
[binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include "gdb_assert.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "symtab.h"
31 #include "value.h"
32 #include "gdbcmd.h"
33 #include "language.h"
34 #include "gdbcore.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "gdbtypes.h"
38 #include "target.h"
39 #include "arch-utils.h"
40 #include "regcache.h"
41 #include "osabi.h"
42 #include "mips-tdep.h"
43 #include "block.h"
44 #include "reggroups.h"
45 #include "opcode/mips.h"
46 #include "elf/mips.h"
47 #include "elf-bfd.h"
48 #include "symcat.h"
49 #include "sim-regno.h"
50 #include "dis-asm.h"
51 #include "frame-unwind.h"
52 #include "frame-base.h"
53 #include "trad-frame.h"
54 #include "infcall.h"
55 #include "floatformat.h"
56 #include "remote.h"
57 #include "target-descriptions.h"
58 #include "dwarf2-frame.h"
59 #include "user-regs.h"
60
61 static const struct objfile_data *mips_pdr_data;
62
63 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
64
65 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
66 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
67 #define ST0_FR (1 << 26)
68
69 /* The sizes of floating point registers. */
70
71 enum
72 {
73 MIPS_FPU_SINGLE_REGSIZE = 4,
74 MIPS_FPU_DOUBLE_REGSIZE = 8
75 };
76
77 enum
78 {
79 MIPS32_REGSIZE = 4,
80 MIPS64_REGSIZE = 8
81 };
82
83 static const char *mips_abi_string;
84
85 static const char *mips_abi_strings[] = {
86 "auto",
87 "n32",
88 "o32",
89 "n64",
90 "o64",
91 "eabi32",
92 "eabi64",
93 NULL
94 };
95
96 /* The standard register names, and all the valid aliases for them. */
97 struct register_alias
98 {
99 const char *name;
100 int regnum;
101 };
102
103 /* Aliases for o32 and most other ABIs. */
104 const struct register_alias mips_o32_aliases[] = {
105 { "ta0", 12 },
106 { "ta1", 13 },
107 { "ta2", 14 },
108 { "ta3", 15 }
109 };
110
111 /* Aliases for n32 and n64. */
112 const struct register_alias mips_n32_n64_aliases[] = {
113 { "ta0", 8 },
114 { "ta1", 9 },
115 { "ta2", 10 },
116 { "ta3", 11 }
117 };
118
119 /* Aliases for ABI-independent registers. */
120 const struct register_alias mips_register_aliases[] = {
121 /* The architecture manuals specify these ABI-independent names for
122 the GPRs. */
123 #define R(n) { "r" #n, n }
124 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
125 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
126 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
127 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
128 #undef R
129
130 /* k0 and k1 are sometimes called these instead (for "kernel
131 temp"). */
132 { "kt0", 26 },
133 { "kt1", 27 },
134
135 /* This is the traditional GDB name for the CP0 status register. */
136 { "sr", MIPS_PS_REGNUM },
137
138 /* This is the traditional GDB name for the CP0 BadVAddr register. */
139 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
140
141 /* This is the traditional GDB name for the FCSR. */
142 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
143 };
144
145 /* Some MIPS boards don't support floating point while others only
146 support single-precision floating-point operations. */
147
148 enum mips_fpu_type
149 {
150 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
151 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
152 MIPS_FPU_NONE /* No floating point. */
153 };
154
155 #ifndef MIPS_DEFAULT_FPU_TYPE
156 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
157 #endif
158 static int mips_fpu_type_auto = 1;
159 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
160
161 static int mips_debug = 0;
162
163 /* Properties (for struct target_desc) describing the g/G packet
164 layout. */
165 #define PROPERTY_GP32 "internal: transfers-32bit-registers"
166 #define PROPERTY_GP64 "internal: transfers-64bit-registers"
167
168 struct target_desc *mips_tdesc_gp32;
169 struct target_desc *mips_tdesc_gp64;
170
171 /* MIPS specific per-architecture information */
172 struct gdbarch_tdep
173 {
174 /* from the elf header */
175 int elf_flags;
176
177 /* mips options */
178 enum mips_abi mips_abi;
179 enum mips_abi found_abi;
180 enum mips_fpu_type mips_fpu_type;
181 int mips_last_arg_regnum;
182 int mips_last_fp_arg_regnum;
183 int default_mask_address_p;
184 /* Is the target using 64-bit raw integer registers but only
185 storing a left-aligned 32-bit value in each? */
186 int mips64_transfers_32bit_regs_p;
187 /* Indexes for various registers. IRIX and embedded have
188 different values. This contains the "public" fields. Don't
189 add any that do not need to be public. */
190 const struct mips_regnum *regnum;
191 /* Register names table for the current register set. */
192 const char **mips_processor_reg_names;
193
194 /* The size of register data available from the target, if known.
195 This doesn't quite obsolete the manual
196 mips64_transfers_32bit_regs_p, since that is documented to force
197 left alignment even for big endian (very strange). */
198 int register_size_valid_p;
199 int register_size;
200 };
201
202 const struct mips_regnum *
203 mips_regnum (struct gdbarch *gdbarch)
204 {
205 return gdbarch_tdep (gdbarch)->regnum;
206 }
207
208 static int
209 mips_fpa0_regnum (struct gdbarch *gdbarch)
210 {
211 return mips_regnum (gdbarch)->fp0 + 12;
212 }
213
214 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
215 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
216
217 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
218
219 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
220
221 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
222
223 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
224 functions to test, set, or clear bit 0 of addresses. */
225
226 static CORE_ADDR
227 is_mips16_addr (CORE_ADDR addr)
228 {
229 return ((addr) & 1);
230 }
231
232 static CORE_ADDR
233 unmake_mips16_addr (CORE_ADDR addr)
234 {
235 return ((addr) & ~(CORE_ADDR) 1);
236 }
237
238 /* Return the MIPS ABI associated with GDBARCH. */
239 enum mips_abi
240 mips_abi (struct gdbarch *gdbarch)
241 {
242 return gdbarch_tdep (gdbarch)->mips_abi;
243 }
244
245 int
246 mips_isa_regsize (struct gdbarch *gdbarch)
247 {
248 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
249
250 /* If we know how big the registers are, use that size. */
251 if (tdep->register_size_valid_p)
252 return tdep->register_size;
253
254 /* Fall back to the previous behavior. */
255 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
256 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
257 }
258
259 /* Return the currently configured (or set) saved register size. */
260
261 unsigned int
262 mips_abi_regsize (struct gdbarch *gdbarch)
263 {
264 switch (mips_abi (gdbarch))
265 {
266 case MIPS_ABI_EABI32:
267 case MIPS_ABI_O32:
268 return 4;
269 case MIPS_ABI_N32:
270 case MIPS_ABI_N64:
271 case MIPS_ABI_O64:
272 case MIPS_ABI_EABI64:
273 return 8;
274 case MIPS_ABI_UNKNOWN:
275 case MIPS_ABI_LAST:
276 default:
277 internal_error (__FILE__, __LINE__, _("bad switch"));
278 }
279 }
280
281 /* Functions for setting and testing a bit in a minimal symbol that
282 marks it as 16-bit function. The MSB of the minimal symbol's
283 "info" field is used for this purpose.
284
285 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
286 i.e. refers to a 16-bit function, and sets a "special" bit in a
287 minimal symbol to mark it as a 16-bit function
288
289 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
290
291 static void
292 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
293 {
294 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
295 {
296 MSYMBOL_INFO (msym) = (char *)
297 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
298 SYMBOL_VALUE_ADDRESS (msym) |= 1;
299 }
300 }
301
302 static int
303 msymbol_is_special (struct minimal_symbol *msym)
304 {
305 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
306 }
307
308 /* XFER a value from the big/little/left end of the register.
309 Depending on the size of the value it might occupy the entire
310 register or just part of it. Make an allowance for this, aligning
311 things accordingly. */
312
313 static void
314 mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
315 int reg_num, int length,
316 enum bfd_endian endian, gdb_byte *in,
317 const gdb_byte *out, int buf_offset)
318 {
319 int reg_offset = 0;
320
321 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
322 /* Need to transfer the left or right part of the register, based on
323 the targets byte order. */
324 switch (endian)
325 {
326 case BFD_ENDIAN_BIG:
327 reg_offset = register_size (gdbarch, reg_num) - length;
328 break;
329 case BFD_ENDIAN_LITTLE:
330 reg_offset = 0;
331 break;
332 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
333 reg_offset = 0;
334 break;
335 default:
336 internal_error (__FILE__, __LINE__, _("bad switch"));
337 }
338 if (mips_debug)
339 fprintf_unfiltered (gdb_stderr,
340 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
341 reg_num, reg_offset, buf_offset, length);
342 if (mips_debug && out != NULL)
343 {
344 int i;
345 fprintf_unfiltered (gdb_stdlog, "out ");
346 for (i = 0; i < length; i++)
347 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
348 }
349 if (in != NULL)
350 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
351 in + buf_offset);
352 if (out != NULL)
353 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
354 out + buf_offset);
355 if (mips_debug && in != NULL)
356 {
357 int i;
358 fprintf_unfiltered (gdb_stdlog, "in ");
359 for (i = 0; i < length; i++)
360 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
361 }
362 if (mips_debug)
363 fprintf_unfiltered (gdb_stdlog, "\n");
364 }
365
366 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
367 compatiblity mode. A return value of 1 means that we have
368 physical 64-bit registers, but should treat them as 32-bit registers. */
369
370 static int
371 mips2_fp_compat (struct frame_info *frame)
372 {
373 struct gdbarch *gdbarch = get_frame_arch (frame);
374 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
375 meaningful. */
376 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
377 return 0;
378
379 #if 0
380 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
381 in all the places we deal with FP registers. PR gdb/413. */
382 /* Otherwise check the FR bit in the status register - it controls
383 the FP compatiblity mode. If it is clear we are in compatibility
384 mode. */
385 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
386 return 1;
387 #endif
388
389 return 0;
390 }
391
392 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
393
394 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
395
396 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
397
398 static struct type *mips_float_register_type (void);
399 static struct type *mips_double_register_type (void);
400
401 /* The list of available "set mips " and "show mips " commands */
402
403 static struct cmd_list_element *setmipscmdlist = NULL;
404 static struct cmd_list_element *showmipscmdlist = NULL;
405
406 /* Integer registers 0 thru 31 are handled explicitly by
407 mips_register_name(). Processor specific registers 32 and above
408 are listed in the following tables. */
409
410 enum
411 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
412
413 /* Generic MIPS. */
414
415 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
416 "sr", "lo", "hi", "bad", "cause", "pc",
417 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
418 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
419 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
420 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
421 "fsr", "fir", "" /*"fp" */ , "",
422 "", "", "", "", "", "", "", "",
423 "", "", "", "", "", "", "", "",
424 };
425
426 /* Names of IDT R3041 registers. */
427
428 static const char *mips_r3041_reg_names[] = {
429 "sr", "lo", "hi", "bad", "cause", "pc",
430 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
431 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
432 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
433 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
434 "fsr", "fir", "", /*"fp" */ "",
435 "", "", "bus", "ccfg", "", "", "", "",
436 "", "", "port", "cmp", "", "", "epc", "prid",
437 };
438
439 /* Names of tx39 registers. */
440
441 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
442 "sr", "lo", "hi", "bad", "cause", "pc",
443 "", "", "", "", "", "", "", "",
444 "", "", "", "", "", "", "", "",
445 "", "", "", "", "", "", "", "",
446 "", "", "", "", "", "", "", "",
447 "", "", "", "",
448 "", "", "", "", "", "", "", "",
449 "", "", "config", "cache", "debug", "depc", "epc", ""
450 };
451
452 /* Names of IRIX registers. */
453 static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
454 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
455 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
456 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
457 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
458 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
459 };
460
461
462 /* Return the name of the register corresponding to REGNO. */
463 static const char *
464 mips_register_name (struct gdbarch *gdbarch, int regno)
465 {
466 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
467 /* GPR names for all ABIs other than n32/n64. */
468 static char *mips_gpr_names[] = {
469 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
470 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
471 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
472 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
473 };
474
475 /* GPR names for n32 and n64 ABIs. */
476 static char *mips_n32_n64_gpr_names[] = {
477 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
478 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
479 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
480 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
481 };
482
483 enum mips_abi abi = mips_abi (gdbarch);
484
485 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
486 but then don't make the raw register names visible. */
487 int rawnum = regno % gdbarch_num_regs (gdbarch);
488 if (regno < gdbarch_num_regs (gdbarch))
489 return "";
490
491 /* The MIPS integer registers are always mapped from 0 to 31. The
492 names of the registers (which reflects the conventions regarding
493 register use) vary depending on the ABI. */
494 if (0 <= rawnum && rawnum < 32)
495 {
496 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
497 return mips_n32_n64_gpr_names[rawnum];
498 else
499 return mips_gpr_names[rawnum];
500 }
501 else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
502 return tdesc_register_name (gdbarch, rawnum);
503 else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
504 {
505 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
506 return tdep->mips_processor_reg_names[rawnum - 32];
507 }
508 else
509 internal_error (__FILE__, __LINE__,
510 _("mips_register_name: bad register number %d"), rawnum);
511 }
512
513 /* Return the groups that a MIPS register can be categorised into. */
514
515 static int
516 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
517 struct reggroup *reggroup)
518 {
519 int vector_p;
520 int float_p;
521 int raw_p;
522 int rawnum = regnum % gdbarch_num_regs (gdbarch);
523 int pseudo = regnum / gdbarch_num_regs (gdbarch);
524 if (reggroup == all_reggroup)
525 return pseudo;
526 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
527 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
528 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
529 (gdbarch), as not all architectures are multi-arch. */
530 raw_p = rawnum < gdbarch_num_regs (gdbarch);
531 if (gdbarch_register_name (gdbarch, regnum) == NULL
532 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
533 return 0;
534 if (reggroup == float_reggroup)
535 return float_p && pseudo;
536 if (reggroup == vector_reggroup)
537 return vector_p && pseudo;
538 if (reggroup == general_reggroup)
539 return (!vector_p && !float_p) && pseudo;
540 /* Save the pseudo registers. Need to make certain that any code
541 extracting register values from a saved register cache also uses
542 pseudo registers. */
543 if (reggroup == save_reggroup)
544 return raw_p && pseudo;
545 /* Restore the same pseudo register. */
546 if (reggroup == restore_reggroup)
547 return raw_p && pseudo;
548 return 0;
549 }
550
551 /* Return the groups that a MIPS register can be categorised into.
552 This version is only used if we have a target description which
553 describes real registers (and their groups). */
554
555 static int
556 mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
557 struct reggroup *reggroup)
558 {
559 int rawnum = regnum % gdbarch_num_regs (gdbarch);
560 int pseudo = regnum / gdbarch_num_regs (gdbarch);
561 int ret;
562
563 /* Only save, restore, and display the pseudo registers. Need to
564 make certain that any code extracting register values from a
565 saved register cache also uses pseudo registers.
566
567 Note: saving and restoring the pseudo registers is slightly
568 strange; if we have 64 bits, we should save and restore all
569 64 bits. But this is hard and has little benefit. */
570 if (!pseudo)
571 return 0;
572
573 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
574 if (ret != -1)
575 return ret;
576
577 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
578 }
579
580 /* Map the symbol table registers which live in the range [1 *
581 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
582 registers. Take care of alignment and size problems. */
583
584 static void
585 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
586 int cookednum, gdb_byte *buf)
587 {
588 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
589 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
590 && cookednum < 2 * gdbarch_num_regs (gdbarch));
591 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
592 regcache_raw_read (regcache, rawnum, buf);
593 else if (register_size (gdbarch, rawnum) >
594 register_size (gdbarch, cookednum))
595 {
596 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
597 || gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
598 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
599 else
600 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
601 }
602 else
603 internal_error (__FILE__, __LINE__, _("bad register size"));
604 }
605
606 static void
607 mips_pseudo_register_write (struct gdbarch *gdbarch,
608 struct regcache *regcache, int cookednum,
609 const gdb_byte *buf)
610 {
611 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
612 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
613 && cookednum < 2 * gdbarch_num_regs (gdbarch));
614 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
615 regcache_raw_write (regcache, rawnum, buf);
616 else if (register_size (gdbarch, rawnum) >
617 register_size (gdbarch, cookednum))
618 {
619 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
620 || gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
621 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
622 else
623 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
624 }
625 else
626 internal_error (__FILE__, __LINE__, _("bad register size"));
627 }
628
629 /* Table to translate MIPS16 register field to actual register number. */
630 static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
631
632 /* Heuristic_proc_start may hunt through the text section for a long
633 time across a 2400 baud serial line. Allows the user to limit this
634 search. */
635
636 static unsigned int heuristic_fence_post = 0;
637
638 /* Number of bytes of storage in the actual machine representation for
639 register N. NOTE: This defines the pseudo register type so need to
640 rebuild the architecture vector. */
641
642 static int mips64_transfers_32bit_regs_p = 0;
643
644 static void
645 set_mips64_transfers_32bit_regs (char *args, int from_tty,
646 struct cmd_list_element *c)
647 {
648 struct gdbarch_info info;
649 gdbarch_info_init (&info);
650 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
651 instead of relying on globals. Doing that would let generic code
652 handle the search for this specific architecture. */
653 if (!gdbarch_update_p (info))
654 {
655 mips64_transfers_32bit_regs_p = 0;
656 error (_("32-bit compatibility mode not supported"));
657 }
658 }
659
660 /* Convert to/from a register and the corresponding memory value. */
661
662 static int
663 mips_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
664 {
665 return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
666 && register_size (gdbarch, regnum) == 4
667 && (regnum % gdbarch_num_regs (gdbarch))
668 >= mips_regnum (gdbarch)->fp0
669 && (regnum % gdbarch_num_regs (gdbarch))
670 < mips_regnum (gdbarch)->fp0 + 32
671 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
672 }
673
674 static void
675 mips_register_to_value (struct frame_info *frame, int regnum,
676 struct type *type, gdb_byte *to)
677 {
678 get_frame_register (frame, regnum + 0, to + 4);
679 get_frame_register (frame, regnum + 1, to + 0);
680 }
681
682 static void
683 mips_value_to_register (struct frame_info *frame, int regnum,
684 struct type *type, const gdb_byte *from)
685 {
686 put_frame_register (frame, regnum + 0, from + 4);
687 put_frame_register (frame, regnum + 1, from + 0);
688 }
689
690 /* Return the GDB type object for the "standard" data type of data in
691 register REG. */
692
693 static struct type *
694 mips_register_type (struct gdbarch *gdbarch, int regnum)
695 {
696 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
697 if ((regnum % gdbarch_num_regs (gdbarch)) >= mips_regnum (gdbarch)->fp0
698 && (regnum % gdbarch_num_regs (gdbarch))
699 < mips_regnum (gdbarch)->fp0 + 32)
700 {
701 /* The floating-point registers raw, or cooked, always match
702 mips_isa_regsize(), and also map 1:1, byte for byte. */
703 if (mips_isa_regsize (gdbarch) == 4)
704 return builtin_type_ieee_single;
705 else
706 return builtin_type_ieee_double;
707 }
708 else if (regnum < gdbarch_num_regs (gdbarch))
709 {
710 /* The raw or ISA registers. These are all sized according to
711 the ISA regsize. */
712 if (mips_isa_regsize (gdbarch) == 4)
713 return builtin_type_int32;
714 else
715 return builtin_type_int64;
716 }
717 else
718 {
719 /* The cooked or ABI registers. These are sized according to
720 the ABI (with a few complications). */
721 if (regnum >= (gdbarch_num_regs (gdbarch)
722 + mips_regnum (gdbarch)->fp_control_status)
723 && regnum <= gdbarch_num_regs (gdbarch) + MIPS_LAST_EMBED_REGNUM)
724 /* The pseudo/cooked view of the embedded registers is always
725 32-bit. The raw view is handled below. */
726 return builtin_type_int32;
727 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
728 /* The target, while possibly using a 64-bit register buffer,
729 is only transfering 32-bits of each integer register.
730 Reflect this in the cooked/pseudo (ABI) register value. */
731 return builtin_type_int32;
732 else if (mips_abi_regsize (gdbarch) == 4)
733 /* The ABI is restricted to 32-bit registers (the ISA could be
734 32- or 64-bit). */
735 return builtin_type_int32;
736 else
737 /* 64-bit ABI. */
738 return builtin_type_int64;
739 }
740 }
741
742 /* Return the GDB type for the pseudo register REGNUM, which is the
743 ABI-level view. This function is only called if there is a target
744 description which includes registers, so we know precisely the
745 types of hardware registers. */
746
747 static struct type *
748 mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
749 {
750 const int num_regs = gdbarch_num_regs (gdbarch);
751 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
752 int rawnum = regnum % num_regs;
753 struct type *rawtype;
754
755 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
756
757 /* Absent registers are still absent. */
758 rawtype = gdbarch_register_type (gdbarch, rawnum);
759 if (TYPE_LENGTH (rawtype) == 0)
760 return rawtype;
761
762 if (rawnum >= MIPS_EMBED_FP0_REGNUM && rawnum < MIPS_EMBED_FP0_REGNUM + 32)
763 /* Present the floating point registers however the hardware did;
764 do not try to convert between FPU layouts. */
765 return rawtype;
766
767 if (rawnum >= MIPS_EMBED_FP0_REGNUM + 32 && rawnum <= MIPS_LAST_EMBED_REGNUM)
768 {
769 /* The pseudo/cooked view of embedded registers is always
770 32-bit, even if the target transfers 64-bit values for them.
771 New targets relying on XML descriptions should only transfer
772 the necessary 32 bits, but older versions of GDB expected 64,
773 so allow the target to provide 64 bits without interfering
774 with the displayed type. */
775 return builtin_type_int32;
776 }
777
778 /* Use pointer types for registers if we can. For n32 we can not,
779 since we do not have a 64-bit pointer type. */
780 if (mips_abi_regsize (gdbarch) == TYPE_LENGTH (builtin_type_void_data_ptr))
781 {
782 if (rawnum == MIPS_SP_REGNUM || rawnum == MIPS_EMBED_BADVADDR_REGNUM)
783 return builtin_type_void_data_ptr;
784 else if (rawnum == MIPS_EMBED_PC_REGNUM)
785 return builtin_type_void_func_ptr;
786 }
787
788 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
789 && rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_EMBED_PC_REGNUM)
790 return builtin_type_int32;
791
792 /* For all other registers, pass through the hardware type. */
793 return rawtype;
794 }
795
796 /* Should the upper word of 64-bit addresses be zeroed? */
797 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
798
799 static int
800 mips_mask_address_p (struct gdbarch_tdep *tdep)
801 {
802 switch (mask_address_var)
803 {
804 case AUTO_BOOLEAN_TRUE:
805 return 1;
806 case AUTO_BOOLEAN_FALSE:
807 return 0;
808 break;
809 case AUTO_BOOLEAN_AUTO:
810 return tdep->default_mask_address_p;
811 default:
812 internal_error (__FILE__, __LINE__, _("mips_mask_address_p: bad switch"));
813 return -1;
814 }
815 }
816
817 static void
818 show_mask_address (struct ui_file *file, int from_tty,
819 struct cmd_list_element *c, const char *value)
820 {
821 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
822
823 deprecated_show_value_hack (file, from_tty, c, value);
824 switch (mask_address_var)
825 {
826 case AUTO_BOOLEAN_TRUE:
827 printf_filtered ("The 32 bit mips address mask is enabled\n");
828 break;
829 case AUTO_BOOLEAN_FALSE:
830 printf_filtered ("The 32 bit mips address mask is disabled\n");
831 break;
832 case AUTO_BOOLEAN_AUTO:
833 printf_filtered
834 ("The 32 bit address mask is set automatically. Currently %s\n",
835 mips_mask_address_p (tdep) ? "enabled" : "disabled");
836 break;
837 default:
838 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
839 break;
840 }
841 }
842
843 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
844
845 int
846 mips_pc_is_mips16 (CORE_ADDR memaddr)
847 {
848 struct minimal_symbol *sym;
849
850 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
851 if (is_mips16_addr (memaddr))
852 return 1;
853
854 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
855 the high bit of the info field. Use this to decide if the function is
856 MIPS16 or normal MIPS. */
857 sym = lookup_minimal_symbol_by_pc (memaddr);
858 if (sym)
859 return msymbol_is_special (sym);
860 else
861 return 0;
862 }
863
864 /* MIPS believes that the PC has a sign extended value. Perhaps the
865 all registers should be sign extended for simplicity? */
866
867 static CORE_ADDR
868 mips_read_pc (struct regcache *regcache)
869 {
870 ULONGEST pc;
871 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
872 regcache_cooked_read_signed (regcache, regnum, &pc);
873 return pc;
874 }
875
876 static CORE_ADDR
877 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
878 {
879 return frame_unwind_register_signed
880 (next_frame, gdbarch_num_regs (gdbarch) + mips_regnum (gdbarch)->pc);
881 }
882
883 static CORE_ADDR
884 mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
885 {
886 return frame_unwind_register_signed
887 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
888 }
889
890 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
891 dummy frame. The frame ID's base needs to match the TOS value
892 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
893 breakpoint. */
894
895 static struct frame_id
896 mips_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
897 {
898 return frame_id_build
899 (frame_unwind_register_signed (next_frame,
900 gdbarch_num_regs (gdbarch)
901 + MIPS_SP_REGNUM),
902 frame_pc_unwind (next_frame));
903 }
904
905 static void
906 mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
907 {
908 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
909 regcache_cooked_write_unsigned (regcache, regnum, pc);
910 }
911
912 /* Fetch and return instruction from the specified location. If the PC
913 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
914
915 static ULONGEST
916 mips_fetch_instruction (CORE_ADDR addr)
917 {
918 gdb_byte buf[MIPS_INSN32_SIZE];
919 int instlen;
920 int status;
921
922 if (mips_pc_is_mips16 (addr))
923 {
924 instlen = MIPS_INSN16_SIZE;
925 addr = unmake_mips16_addr (addr);
926 }
927 else
928 instlen = MIPS_INSN32_SIZE;
929 status = read_memory_nobpt (addr, buf, instlen);
930 if (status)
931 memory_error (status, addr);
932 return extract_unsigned_integer (buf, instlen);
933 }
934
935 /* These the fields of 32 bit mips instructions */
936 #define mips32_op(x) (x >> 26)
937 #define itype_op(x) (x >> 26)
938 #define itype_rs(x) ((x >> 21) & 0x1f)
939 #define itype_rt(x) ((x >> 16) & 0x1f)
940 #define itype_immediate(x) (x & 0xffff)
941
942 #define jtype_op(x) (x >> 26)
943 #define jtype_target(x) (x & 0x03ffffff)
944
945 #define rtype_op(x) (x >> 26)
946 #define rtype_rs(x) ((x >> 21) & 0x1f)
947 #define rtype_rt(x) ((x >> 16) & 0x1f)
948 #define rtype_rd(x) ((x >> 11) & 0x1f)
949 #define rtype_shamt(x) ((x >> 6) & 0x1f)
950 #define rtype_funct(x) (x & 0x3f)
951
952 static LONGEST
953 mips32_relative_offset (ULONGEST inst)
954 {
955 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
956 }
957
958 /* Determine where to set a single step breakpoint while considering
959 branch prediction. */
960 static CORE_ADDR
961 mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
962 {
963 unsigned long inst;
964 int op;
965 inst = mips_fetch_instruction (pc);
966 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
967 {
968 if (itype_op (inst) >> 2 == 5)
969 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
970 {
971 op = (itype_op (inst) & 0x03);
972 switch (op)
973 {
974 case 0: /* BEQL */
975 goto equal_branch;
976 case 1: /* BNEL */
977 goto neq_branch;
978 case 2: /* BLEZL */
979 goto less_branch;
980 case 3: /* BGTZL */
981 goto greater_branch;
982 default:
983 pc += 4;
984 }
985 }
986 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
987 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
988 {
989 int tf = itype_rt (inst) & 0x01;
990 int cnum = itype_rt (inst) >> 2;
991 int fcrcs =
992 get_frame_register_signed (frame,
993 mips_regnum (get_frame_arch (frame))->
994 fp_control_status);
995 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
996
997 if (((cond >> cnum) & 0x01) == tf)
998 pc += mips32_relative_offset (inst) + 4;
999 else
1000 pc += 8;
1001 }
1002 else
1003 pc += 4; /* Not a branch, next instruction is easy */
1004 }
1005 else
1006 { /* This gets way messy */
1007
1008 /* Further subdivide into SPECIAL, REGIMM and other */
1009 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
1010 {
1011 case 0: /* SPECIAL */
1012 op = rtype_funct (inst);
1013 switch (op)
1014 {
1015 case 8: /* JR */
1016 case 9: /* JALR */
1017 /* Set PC to that address */
1018 pc = get_frame_register_signed (frame, rtype_rs (inst));
1019 break;
1020 default:
1021 pc += 4;
1022 }
1023
1024 break; /* end SPECIAL */
1025 case 1: /* REGIMM */
1026 {
1027 op = itype_rt (inst); /* branch condition */
1028 switch (op)
1029 {
1030 case 0: /* BLTZ */
1031 case 2: /* BLTZL */
1032 case 16: /* BLTZAL */
1033 case 18: /* BLTZALL */
1034 less_branch:
1035 if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
1036 pc += mips32_relative_offset (inst) + 4;
1037 else
1038 pc += 8; /* after the delay slot */
1039 break;
1040 case 1: /* BGEZ */
1041 case 3: /* BGEZL */
1042 case 17: /* BGEZAL */
1043 case 19: /* BGEZALL */
1044 if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
1045 pc += mips32_relative_offset (inst) + 4;
1046 else
1047 pc += 8; /* after the delay slot */
1048 break;
1049 /* All of the other instructions in the REGIMM category */
1050 default:
1051 pc += 4;
1052 }
1053 }
1054 break; /* end REGIMM */
1055 case 2: /* J */
1056 case 3: /* JAL */
1057 {
1058 unsigned long reg;
1059 reg = jtype_target (inst) << 2;
1060 /* Upper four bits get never changed... */
1061 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
1062 }
1063 break;
1064 /* FIXME case JALX : */
1065 {
1066 unsigned long reg;
1067 reg = jtype_target (inst) << 2;
1068 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + 1; /* yes, +1 */
1069 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1070 }
1071 break; /* The new PC will be alternate mode */
1072 case 4: /* BEQ, BEQL */
1073 equal_branch:
1074 if (get_frame_register_signed (frame, itype_rs (inst)) ==
1075 get_frame_register_signed (frame, itype_rt (inst)))
1076 pc += mips32_relative_offset (inst) + 4;
1077 else
1078 pc += 8;
1079 break;
1080 case 5: /* BNE, BNEL */
1081 neq_branch:
1082 if (get_frame_register_signed (frame, itype_rs (inst)) !=
1083 get_frame_register_signed (frame, itype_rt (inst)))
1084 pc += mips32_relative_offset (inst) + 4;
1085 else
1086 pc += 8;
1087 break;
1088 case 6: /* BLEZ, BLEZL */
1089 if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
1090 pc += mips32_relative_offset (inst) + 4;
1091 else
1092 pc += 8;
1093 break;
1094 case 7:
1095 default:
1096 greater_branch: /* BGTZ, BGTZL */
1097 if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
1098 pc += mips32_relative_offset (inst) + 4;
1099 else
1100 pc += 8;
1101 break;
1102 } /* switch */
1103 } /* else */
1104 return pc;
1105 } /* mips32_next_pc */
1106
1107 /* Decoding the next place to set a breakpoint is irregular for the
1108 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1109 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1110 We dont want to set a single step instruction on the extend instruction
1111 either.
1112 */
1113
1114 /* Lots of mips16 instruction formats */
1115 /* Predicting jumps requires itype,ritype,i8type
1116 and their extensions extItype,extritype,extI8type
1117 */
1118 enum mips16_inst_fmts
1119 {
1120 itype, /* 0 immediate 5,10 */
1121 ritype, /* 1 5,3,8 */
1122 rrtype, /* 2 5,3,3,5 */
1123 rritype, /* 3 5,3,3,5 */
1124 rrrtype, /* 4 5,3,3,3,2 */
1125 rriatype, /* 5 5,3,3,1,4 */
1126 shifttype, /* 6 5,3,3,3,2 */
1127 i8type, /* 7 5,3,8 */
1128 i8movtype, /* 8 5,3,3,5 */
1129 i8mov32rtype, /* 9 5,3,5,3 */
1130 i64type, /* 10 5,3,8 */
1131 ri64type, /* 11 5,3,3,5 */
1132 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1133 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1134 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1135 extRRItype, /* 15 5,5,5,5,3,3,5 */
1136 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1137 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1138 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1139 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1140 extRi64type, /* 20 5,6,5,5,3,3,5 */
1141 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1142 };
1143 /* I am heaping all the fields of the formats into one structure and
1144 then, only the fields which are involved in instruction extension */
1145 struct upk_mips16
1146 {
1147 CORE_ADDR offset;
1148 unsigned int regx; /* Function in i8 type */
1149 unsigned int regy;
1150 };
1151
1152
1153 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1154 for the bits which make up the immediatate extension. */
1155
1156 static CORE_ADDR
1157 extended_offset (unsigned int extension)
1158 {
1159 CORE_ADDR value;
1160 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1161 value = value << 6;
1162 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1163 value = value << 5;
1164 value |= extension & 0x01f; /* extract 4:0 */
1165 return value;
1166 }
1167
1168 /* Only call this function if you know that this is an extendable
1169 instruction. It won't malfunction, but why make excess remote memory
1170 references? If the immediate operands get sign extended or something,
1171 do it after the extension is performed. */
1172 /* FIXME: Every one of these cases needs to worry about sign extension
1173 when the offset is to be used in relative addressing. */
1174
1175 static unsigned int
1176 fetch_mips_16 (CORE_ADDR pc)
1177 {
1178 gdb_byte buf[8];
1179 pc &= 0xfffffffe; /* clear the low order bit */
1180 target_read_memory (pc, buf, 2);
1181 return extract_unsigned_integer (buf, 2);
1182 }
1183
1184 static void
1185 unpack_mips16 (CORE_ADDR pc,
1186 unsigned int extension,
1187 unsigned int inst,
1188 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
1189 {
1190 CORE_ADDR offset;
1191 int regx;
1192 int regy;
1193 switch (insn_format)
1194 {
1195 case itype:
1196 {
1197 CORE_ADDR value;
1198 if (extension)
1199 {
1200 value = extended_offset (extension);
1201 value = value << 11; /* rom for the original value */
1202 value |= inst & 0x7ff; /* eleven bits from instruction */
1203 }
1204 else
1205 {
1206 value = inst & 0x7ff;
1207 /* FIXME : Consider sign extension */
1208 }
1209 offset = value;
1210 regx = -1;
1211 regy = -1;
1212 }
1213 break;
1214 case ritype:
1215 case i8type:
1216 { /* A register identifier and an offset */
1217 /* Most of the fields are the same as I type but the
1218 immediate value is of a different length */
1219 CORE_ADDR value;
1220 if (extension)
1221 {
1222 value = extended_offset (extension);
1223 value = value << 8; /* from the original instruction */
1224 value |= inst & 0xff; /* eleven bits from instruction */
1225 regx = (extension >> 8) & 0x07; /* or i8 funct */
1226 if (value & 0x4000) /* test the sign bit , bit 26 */
1227 {
1228 value &= ~0x3fff; /* remove the sign bit */
1229 value = -value;
1230 }
1231 }
1232 else
1233 {
1234 value = inst & 0xff; /* 8 bits */
1235 regx = (inst >> 8) & 0x07; /* or i8 funct */
1236 /* FIXME: Do sign extension , this format needs it */
1237 if (value & 0x80) /* THIS CONFUSES ME */
1238 {
1239 value &= 0xef; /* remove the sign bit */
1240 value = -value;
1241 }
1242 }
1243 offset = value;
1244 regy = -1;
1245 break;
1246 }
1247 case jalxtype:
1248 {
1249 unsigned long value;
1250 unsigned int nexthalf;
1251 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1252 value = value << 16;
1253 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1254 value |= nexthalf;
1255 offset = value;
1256 regx = -1;
1257 regy = -1;
1258 break;
1259 }
1260 default:
1261 internal_error (__FILE__, __LINE__, _("bad switch"));
1262 }
1263 upk->offset = offset;
1264 upk->regx = regx;
1265 upk->regy = regy;
1266 }
1267
1268
1269 static CORE_ADDR
1270 add_offset_16 (CORE_ADDR pc, int offset)
1271 {
1272 return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
1273 }
1274
1275 static CORE_ADDR
1276 extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
1277 unsigned int extension, unsigned int insn)
1278 {
1279 int op = (insn >> 11);
1280 switch (op)
1281 {
1282 case 2: /* Branch */
1283 {
1284 CORE_ADDR offset;
1285 struct upk_mips16 upk;
1286 unpack_mips16 (pc, extension, insn, itype, &upk);
1287 offset = upk.offset;
1288 if (offset & 0x800)
1289 {
1290 offset &= 0xeff;
1291 offset = -offset;
1292 }
1293 pc += (offset << 1) + 2;
1294 break;
1295 }
1296 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1297 {
1298 struct upk_mips16 upk;
1299 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1300 pc = add_offset_16 (pc, upk.offset);
1301 if ((insn >> 10) & 0x01) /* Exchange mode */
1302 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1303 else
1304 pc |= 0x01;
1305 break;
1306 }
1307 case 4: /* beqz */
1308 {
1309 struct upk_mips16 upk;
1310 int reg;
1311 unpack_mips16 (pc, extension, insn, ritype, &upk);
1312 reg = get_frame_register_signed (frame, upk.regx);
1313 if (reg == 0)
1314 pc += (upk.offset << 1) + 2;
1315 else
1316 pc += 2;
1317 break;
1318 }
1319 case 5: /* bnez */
1320 {
1321 struct upk_mips16 upk;
1322 int reg;
1323 unpack_mips16 (pc, extension, insn, ritype, &upk);
1324 reg = get_frame_register_signed (frame, upk.regx);
1325 if (reg != 0)
1326 pc += (upk.offset << 1) + 2;
1327 else
1328 pc += 2;
1329 break;
1330 }
1331 case 12: /* I8 Formats btez btnez */
1332 {
1333 struct upk_mips16 upk;
1334 int reg;
1335 unpack_mips16 (pc, extension, insn, i8type, &upk);
1336 /* upk.regx contains the opcode */
1337 reg = get_frame_register_signed (frame, 24); /* Test register is 24 */
1338 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1339 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1340 /* pc = add_offset_16(pc,upk.offset) ; */
1341 pc += (upk.offset << 1) + 2;
1342 else
1343 pc += 2;
1344 break;
1345 }
1346 case 29: /* RR Formats JR, JALR, JALR-RA */
1347 {
1348 struct upk_mips16 upk;
1349 /* upk.fmt = rrtype; */
1350 op = insn & 0x1f;
1351 if (op == 0)
1352 {
1353 int reg;
1354 upk.regx = (insn >> 8) & 0x07;
1355 upk.regy = (insn >> 5) & 0x07;
1356 switch (upk.regy)
1357 {
1358 case 0:
1359 reg = upk.regx;
1360 break;
1361 case 1:
1362 reg = 31;
1363 break; /* Function return instruction */
1364 case 2:
1365 reg = upk.regx;
1366 break;
1367 default:
1368 reg = 31;
1369 break; /* BOGUS Guess */
1370 }
1371 pc = get_frame_register_signed (frame, reg);
1372 }
1373 else
1374 pc += 2;
1375 break;
1376 }
1377 case 30:
1378 /* This is an instruction extension. Fetch the real instruction
1379 (which follows the extension) and decode things based on
1380 that. */
1381 {
1382 pc += 2;
1383 pc = extended_mips16_next_pc (frame, pc, insn, fetch_mips_16 (pc));
1384 break;
1385 }
1386 default:
1387 {
1388 pc += 2;
1389 break;
1390 }
1391 }
1392 return pc;
1393 }
1394
1395 static CORE_ADDR
1396 mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
1397 {
1398 unsigned int insn = fetch_mips_16 (pc);
1399 return extended_mips16_next_pc (frame, pc, 0, insn);
1400 }
1401
1402 /* The mips_next_pc function supports single_step when the remote
1403 target monitor or stub is not developed enough to do a single_step.
1404 It works by decoding the current instruction and predicting where a
1405 branch will go. This isnt hard because all the data is available.
1406 The MIPS32 and MIPS16 variants are quite different. */
1407 static CORE_ADDR
1408 mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
1409 {
1410 if (is_mips16_addr (pc))
1411 return mips16_next_pc (frame, pc);
1412 else
1413 return mips32_next_pc (frame, pc);
1414 }
1415
1416 struct mips_frame_cache
1417 {
1418 CORE_ADDR base;
1419 struct trad_frame_saved_reg *saved_regs;
1420 };
1421
1422 /* Set a register's saved stack address in temp_saved_regs. If an
1423 address has already been set for this register, do nothing; this
1424 way we will only recognize the first save of a given register in a
1425 function prologue.
1426
1427 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
1428 [gdbarch_num_regs .. 2*gdbarch_num_regs).
1429 Strictly speaking, only the second range is used as it is only second
1430 range (the ABI instead of ISA registers) that comes into play when finding
1431 saved registers in a frame. */
1432
1433 static void
1434 set_reg_offset (struct mips_frame_cache *this_cache, int regnum,
1435 CORE_ADDR offset)
1436 {
1437 if (this_cache != NULL
1438 && this_cache->saved_regs[regnum].addr == -1)
1439 {
1440 this_cache->saved_regs[regnum
1441 + 0 * gdbarch_num_regs (current_gdbarch)].addr
1442 = offset;
1443 this_cache->saved_regs[regnum
1444 + 1 * gdbarch_num_regs (current_gdbarch)].addr
1445 = offset;
1446 }
1447 }
1448
1449
1450 /* Fetch the immediate value from a MIPS16 instruction.
1451 If the previous instruction was an EXTEND, use it to extend
1452 the upper bits of the immediate value. This is a helper function
1453 for mips16_scan_prologue. */
1454
1455 static int
1456 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1457 unsigned short inst, /* current instruction */
1458 int nbits, /* number of bits in imm field */
1459 int scale, /* scale factor to be applied to imm */
1460 int is_signed) /* is the imm field signed? */
1461 {
1462 int offset;
1463
1464 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1465 {
1466 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1467 if (offset & 0x8000) /* check for negative extend */
1468 offset = 0 - (0x10000 - (offset & 0xffff));
1469 return offset | (inst & 0x1f);
1470 }
1471 else
1472 {
1473 int max_imm = 1 << nbits;
1474 int mask = max_imm - 1;
1475 int sign_bit = max_imm >> 1;
1476
1477 offset = inst & mask;
1478 if (is_signed && (offset & sign_bit))
1479 offset = 0 - (max_imm - offset);
1480 return offset * scale;
1481 }
1482 }
1483
1484
1485 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1486 the associated FRAME_CACHE if not null.
1487 Return the address of the first instruction past the prologue. */
1488
1489 static CORE_ADDR
1490 mips16_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1491 struct frame_info *next_frame,
1492 struct mips_frame_cache *this_cache)
1493 {
1494 CORE_ADDR cur_pc;
1495 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1496 CORE_ADDR sp;
1497 long frame_offset = 0; /* Size of stack frame. */
1498 long frame_adjust = 0; /* Offset of FP from SP. */
1499 int frame_reg = MIPS_SP_REGNUM;
1500 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1501 unsigned inst = 0; /* current instruction */
1502 unsigned entry_inst = 0; /* the entry instruction */
1503 int reg, offset;
1504
1505 int extend_bytes = 0;
1506 int prev_extend_bytes;
1507 CORE_ADDR end_prologue_addr = 0;
1508 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1509
1510 /* Can be called when there's no process, and hence when there's no
1511 NEXT_FRAME. */
1512 if (next_frame != NULL)
1513 sp = frame_unwind_register_signed (next_frame,
1514 gdbarch_num_regs (gdbarch)
1515 + MIPS_SP_REGNUM);
1516 else
1517 sp = 0;
1518
1519 if (limit_pc > start_pc + 200)
1520 limit_pc = start_pc + 200;
1521
1522 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
1523 {
1524 /* Save the previous instruction. If it's an EXTEND, we'll extract
1525 the immediate offset extension from it in mips16_get_imm. */
1526 prev_inst = inst;
1527
1528 /* Fetch and decode the instruction. */
1529 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1530
1531 /* Normally we ignore extend instructions. However, if it is
1532 not followed by a valid prologue instruction, then this
1533 instruction is not part of the prologue either. We must
1534 remember in this case to adjust the end_prologue_addr back
1535 over the extend. */
1536 if ((inst & 0xf800) == 0xf000) /* extend */
1537 {
1538 extend_bytes = MIPS_INSN16_SIZE;
1539 continue;
1540 }
1541
1542 prev_extend_bytes = extend_bytes;
1543 extend_bytes = 0;
1544
1545 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1546 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1547 {
1548 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1549 if (offset < 0) /* negative stack adjustment? */
1550 frame_offset -= offset;
1551 else
1552 /* Exit loop if a positive stack adjustment is found, which
1553 usually means that the stack cleanup code in the function
1554 epilogue is reached. */
1555 break;
1556 }
1557 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1558 {
1559 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1560 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1561 set_reg_offset (this_cache, reg, sp + offset);
1562 }
1563 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1564 {
1565 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1566 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1567 set_reg_offset (this_cache, reg, sp + offset);
1568 }
1569 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1570 {
1571 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1572 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1573 }
1574 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1575 {
1576 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1577 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1578 }
1579 else if (inst == 0x673d) /* move $s1, $sp */
1580 {
1581 frame_addr = sp;
1582 frame_reg = 17;
1583 }
1584 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1585 {
1586 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1587 frame_addr = sp + offset;
1588 frame_reg = 17;
1589 frame_adjust = offset;
1590 }
1591 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1592 {
1593 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1594 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1595 set_reg_offset (this_cache, reg, frame_addr + offset);
1596 }
1597 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1598 {
1599 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1600 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1601 set_reg_offset (this_cache, reg, frame_addr + offset);
1602 }
1603 else if ((inst & 0xf81f) == 0xe809
1604 && (inst & 0x700) != 0x700) /* entry */
1605 entry_inst = inst; /* save for later processing */
1606 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1607 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
1608 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1609 {
1610 /* This instruction is part of the prologue, but we don't
1611 need to do anything special to handle it. */
1612 }
1613 else
1614 {
1615 /* This instruction is not an instruction typically found
1616 in a prologue, so we must have reached the end of the
1617 prologue. */
1618 if (end_prologue_addr == 0)
1619 end_prologue_addr = cur_pc - prev_extend_bytes;
1620 }
1621 }
1622
1623 /* The entry instruction is typically the first instruction in a function,
1624 and it stores registers at offsets relative to the value of the old SP
1625 (before the prologue). But the value of the sp parameter to this
1626 function is the new SP (after the prologue has been executed). So we
1627 can't calculate those offsets until we've seen the entire prologue,
1628 and can calculate what the old SP must have been. */
1629 if (entry_inst != 0)
1630 {
1631 int areg_count = (entry_inst >> 8) & 7;
1632 int sreg_count = (entry_inst >> 6) & 3;
1633
1634 /* The entry instruction always subtracts 32 from the SP. */
1635 frame_offset += 32;
1636
1637 /* Now we can calculate what the SP must have been at the
1638 start of the function prologue. */
1639 sp += frame_offset;
1640
1641 /* Check if a0-a3 were saved in the caller's argument save area. */
1642 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1643 {
1644 set_reg_offset (this_cache, reg, sp + offset);
1645 offset += mips_abi_regsize (gdbarch);
1646 }
1647
1648 /* Check if the ra register was pushed on the stack. */
1649 offset = -4;
1650 if (entry_inst & 0x20)
1651 {
1652 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1653 offset -= mips_abi_regsize (gdbarch);
1654 }
1655
1656 /* Check if the s0 and s1 registers were pushed on the stack. */
1657 for (reg = 16; reg < sreg_count + 16; reg++)
1658 {
1659 set_reg_offset (this_cache, reg, sp + offset);
1660 offset -= mips_abi_regsize (gdbarch);
1661 }
1662 }
1663
1664 if (this_cache != NULL)
1665 {
1666 this_cache->base =
1667 (frame_unwind_register_signed (next_frame,
1668 gdbarch_num_regs (gdbarch) + frame_reg)
1669 + frame_offset - frame_adjust);
1670 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1671 be able to get rid of the assignment below, evetually. But it's
1672 still needed for now. */
1673 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
1674 + mips_regnum (gdbarch)->pc]
1675 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
1676 }
1677
1678 /* If we didn't reach the end of the prologue when scanning the function
1679 instructions, then set end_prologue_addr to the address of the
1680 instruction immediately after the last one we scanned. */
1681 if (end_prologue_addr == 0)
1682 end_prologue_addr = cur_pc;
1683
1684 return end_prologue_addr;
1685 }
1686
1687 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1688 Procedures that use the 32-bit instruction set are handled by the
1689 mips_insn32 unwinder. */
1690
1691 static struct mips_frame_cache *
1692 mips_insn16_frame_cache (struct frame_info *next_frame, void **this_cache)
1693 {
1694 struct mips_frame_cache *cache;
1695
1696 if ((*this_cache) != NULL)
1697 return (*this_cache);
1698 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1699 (*this_cache) = cache;
1700 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1701
1702 /* Analyze the function prologue. */
1703 {
1704 const CORE_ADDR pc =
1705 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
1706 CORE_ADDR start_addr;
1707
1708 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1709 if (start_addr == 0)
1710 start_addr = heuristic_proc_start (pc);
1711 /* We can't analyze the prologue if we couldn't find the begining
1712 of the function. */
1713 if (start_addr == 0)
1714 return cache;
1715
1716 mips16_scan_prologue (start_addr, pc, next_frame, *this_cache);
1717 }
1718
1719 /* gdbarch_sp_regnum contains the value and not the address. */
1720 trad_frame_set_value (cache->saved_regs,
1721 gdbarch_num_regs (get_frame_arch (next_frame))
1722 + MIPS_SP_REGNUM,
1723 cache->base);
1724
1725 return (*this_cache);
1726 }
1727
1728 static void
1729 mips_insn16_frame_this_id (struct frame_info *next_frame, void **this_cache,
1730 struct frame_id *this_id)
1731 {
1732 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1733 this_cache);
1734 (*this_id) = frame_id_build (info->base,
1735 frame_func_unwind (next_frame, NORMAL_FRAME));
1736 }
1737
1738 static void
1739 mips_insn16_frame_prev_register (struct frame_info *next_frame,
1740 void **this_cache,
1741 int regnum, int *optimizedp,
1742 enum lval_type *lvalp, CORE_ADDR *addrp,
1743 int *realnump, gdb_byte *valuep)
1744 {
1745 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1746 this_cache);
1747 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1748 optimizedp, lvalp, addrp, realnump, valuep);
1749 }
1750
1751 static const struct frame_unwind mips_insn16_frame_unwind =
1752 {
1753 NORMAL_FRAME,
1754 mips_insn16_frame_this_id,
1755 mips_insn16_frame_prev_register
1756 };
1757
1758 static const struct frame_unwind *
1759 mips_insn16_frame_sniffer (struct frame_info *next_frame)
1760 {
1761 CORE_ADDR pc = frame_pc_unwind (next_frame);
1762 if (mips_pc_is_mips16 (pc))
1763 return &mips_insn16_frame_unwind;
1764 return NULL;
1765 }
1766
1767 static CORE_ADDR
1768 mips_insn16_frame_base_address (struct frame_info *next_frame,
1769 void **this_cache)
1770 {
1771 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1772 this_cache);
1773 return info->base;
1774 }
1775
1776 static const struct frame_base mips_insn16_frame_base =
1777 {
1778 &mips_insn16_frame_unwind,
1779 mips_insn16_frame_base_address,
1780 mips_insn16_frame_base_address,
1781 mips_insn16_frame_base_address
1782 };
1783
1784 static const struct frame_base *
1785 mips_insn16_frame_base_sniffer (struct frame_info *next_frame)
1786 {
1787 if (mips_insn16_frame_sniffer (next_frame) != NULL)
1788 return &mips_insn16_frame_base;
1789 else
1790 return NULL;
1791 }
1792
1793 /* Mark all the registers as unset in the saved_regs array
1794 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
1795
1796 void
1797 reset_saved_regs (struct mips_frame_cache *this_cache)
1798 {
1799 if (this_cache == NULL || this_cache->saved_regs == NULL)
1800 return;
1801
1802 {
1803 const int num_regs = gdbarch_num_regs (current_gdbarch);
1804 int i;
1805
1806 for (i = 0; i < num_regs; i++)
1807 {
1808 this_cache->saved_regs[i].addr = -1;
1809 }
1810 }
1811 }
1812
1813 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1814 the associated FRAME_CACHE if not null.
1815 Return the address of the first instruction past the prologue. */
1816
1817 static CORE_ADDR
1818 mips32_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1819 struct frame_info *next_frame,
1820 struct mips_frame_cache *this_cache)
1821 {
1822 CORE_ADDR cur_pc;
1823 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1824 CORE_ADDR sp;
1825 long frame_offset;
1826 int frame_reg = MIPS_SP_REGNUM;
1827
1828 CORE_ADDR end_prologue_addr = 0;
1829 int seen_sp_adjust = 0;
1830 int load_immediate_bytes = 0;
1831 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1832
1833 /* Can be called when there's no process, and hence when there's no
1834 NEXT_FRAME. */
1835 if (next_frame != NULL)
1836 sp = frame_unwind_register_signed (next_frame,
1837 gdbarch_num_regs (gdbarch)
1838 + MIPS_SP_REGNUM);
1839 else
1840 sp = 0;
1841
1842 if (limit_pc > start_pc + 200)
1843 limit_pc = start_pc + 200;
1844
1845 restart:
1846
1847 frame_offset = 0;
1848 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
1849 {
1850 unsigned long inst, high_word, low_word;
1851 int reg;
1852
1853 /* Fetch the instruction. */
1854 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1855
1856 /* Save some code by pre-extracting some useful fields. */
1857 high_word = (inst >> 16) & 0xffff;
1858 low_word = inst & 0xffff;
1859 reg = high_word & 0x1f;
1860
1861 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1862 || high_word == 0x23bd /* addi $sp,$sp,-i */
1863 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1864 {
1865 if (low_word & 0x8000) /* negative stack adjustment? */
1866 frame_offset += 0x10000 - low_word;
1867 else
1868 /* Exit loop if a positive stack adjustment is found, which
1869 usually means that the stack cleanup code in the function
1870 epilogue is reached. */
1871 break;
1872 seen_sp_adjust = 1;
1873 }
1874 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1875 {
1876 set_reg_offset (this_cache, reg, sp + low_word);
1877 }
1878 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1879 {
1880 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
1881 set_reg_offset (this_cache, reg, sp + low_word);
1882 }
1883 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1884 {
1885 /* Old gcc frame, r30 is virtual frame pointer. */
1886 if ((long) low_word != frame_offset)
1887 frame_addr = sp + low_word;
1888 else if (next_frame && frame_reg == MIPS_SP_REGNUM)
1889 {
1890 unsigned alloca_adjust;
1891
1892 frame_reg = 30;
1893 frame_addr = frame_unwind_register_signed
1894 (next_frame, gdbarch_num_regs (gdbarch) + 30);
1895
1896 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1897 if (alloca_adjust > 0)
1898 {
1899 /* FP > SP + frame_size. This may be because of
1900 an alloca or somethings similar. Fix sp to
1901 "pre-alloca" value, and try again. */
1902 sp += alloca_adjust;
1903 /* Need to reset the status of all registers. Otherwise,
1904 we will hit a guard that prevents the new address
1905 for each register to be recomputed during the second
1906 pass. */
1907 reset_saved_regs (this_cache);
1908 goto restart;
1909 }
1910 }
1911 }
1912 /* move $30,$sp. With different versions of gas this will be either
1913 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1914 Accept any one of these. */
1915 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1916 {
1917 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1918 if (next_frame && frame_reg == MIPS_SP_REGNUM)
1919 {
1920 unsigned alloca_adjust;
1921
1922 frame_reg = 30;
1923 frame_addr = frame_unwind_register_signed
1924 (next_frame, gdbarch_num_regs (gdbarch) + 30);
1925
1926 alloca_adjust = (unsigned) (frame_addr - sp);
1927 if (alloca_adjust > 0)
1928 {
1929 /* FP > SP + frame_size. This may be because of
1930 an alloca or somethings similar. Fix sp to
1931 "pre-alloca" value, and try again. */
1932 sp = frame_addr;
1933 /* Need to reset the status of all registers. Otherwise,
1934 we will hit a guard that prevents the new address
1935 for each register to be recomputed during the second
1936 pass. */
1937 reset_saved_regs (this_cache);
1938 goto restart;
1939 }
1940 }
1941 }
1942 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1943 {
1944 set_reg_offset (this_cache, reg, frame_addr + low_word);
1945 }
1946 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
1947 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
1948 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
1949 || high_word == 0x3c1c /* lui $gp,n */
1950 || high_word == 0x279c /* addiu $gp,$gp,n */
1951 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
1952 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
1953 )
1954 {
1955 /* These instructions are part of the prologue, but we don't
1956 need to do anything special to handle them. */
1957 }
1958 /* The instructions below load $at or $t0 with an immediate
1959 value in preparation for a stack adjustment via
1960 subu $sp,$sp,[$at,$t0]. These instructions could also
1961 initialize a local variable, so we accept them only before
1962 a stack adjustment instruction was seen. */
1963 else if (!seen_sp_adjust
1964 && (high_word == 0x3c01 /* lui $at,n */
1965 || high_word == 0x3c08 /* lui $t0,n */
1966 || high_word == 0x3421 /* ori $at,$at,n */
1967 || high_word == 0x3508 /* ori $t0,$t0,n */
1968 || high_word == 0x3401 /* ori $at,$zero,n */
1969 || high_word == 0x3408 /* ori $t0,$zero,n */
1970 ))
1971 {
1972 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
1973 }
1974 else
1975 {
1976 /* This instruction is not an instruction typically found
1977 in a prologue, so we must have reached the end of the
1978 prologue. */
1979 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
1980 loop now? Why would we need to continue scanning the function
1981 instructions? */
1982 if (end_prologue_addr == 0)
1983 end_prologue_addr = cur_pc;
1984 }
1985 }
1986
1987 if (this_cache != NULL)
1988 {
1989 this_cache->base =
1990 (frame_unwind_register_signed (next_frame,
1991 gdbarch_num_regs (gdbarch) + frame_reg)
1992 + frame_offset);
1993 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
1994 this assignment below, eventually. But it's still needed
1995 for now. */
1996 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
1997 + mips_regnum (gdbarch)->pc]
1998 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
1999 + MIPS_RA_REGNUM];
2000 }
2001
2002 /* If we didn't reach the end of the prologue when scanning the function
2003 instructions, then set end_prologue_addr to the address of the
2004 instruction immediately after the last one we scanned. */
2005 /* brobecker/2004-10-10: I don't think this would ever happen, but
2006 we may as well be careful and do our best if we have a null
2007 end_prologue_addr. */
2008 if (end_prologue_addr == 0)
2009 end_prologue_addr = cur_pc;
2010
2011 /* In a frameless function, we might have incorrectly
2012 skipped some load immediate instructions. Undo the skipping
2013 if the load immediate was not followed by a stack adjustment. */
2014 if (load_immediate_bytes && !seen_sp_adjust)
2015 end_prologue_addr -= load_immediate_bytes;
2016
2017 return end_prologue_addr;
2018 }
2019
2020 /* Heuristic unwinder for procedures using 32-bit instructions (covers
2021 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
2022 instructions (a.k.a. MIPS16) are handled by the mips_insn16
2023 unwinder. */
2024
2025 static struct mips_frame_cache *
2026 mips_insn32_frame_cache (struct frame_info *next_frame, void **this_cache)
2027 {
2028 struct mips_frame_cache *cache;
2029
2030 if ((*this_cache) != NULL)
2031 return (*this_cache);
2032
2033 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2034 (*this_cache) = cache;
2035 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2036
2037 /* Analyze the function prologue. */
2038 {
2039 const CORE_ADDR pc =
2040 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
2041 CORE_ADDR start_addr;
2042
2043 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2044 if (start_addr == 0)
2045 start_addr = heuristic_proc_start (pc);
2046 /* We can't analyze the prologue if we couldn't find the begining
2047 of the function. */
2048 if (start_addr == 0)
2049 return cache;
2050
2051 mips32_scan_prologue (start_addr, pc, next_frame, *this_cache);
2052 }
2053
2054 /* gdbarch_sp_regnum contains the value and not the address. */
2055 trad_frame_set_value (cache->saved_regs,
2056 gdbarch_num_regs (get_frame_arch (next_frame))
2057 + MIPS_SP_REGNUM,
2058 cache->base);
2059
2060 return (*this_cache);
2061 }
2062
2063 static void
2064 mips_insn32_frame_this_id (struct frame_info *next_frame, void **this_cache,
2065 struct frame_id *this_id)
2066 {
2067 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2068 this_cache);
2069 (*this_id) = frame_id_build (info->base,
2070 frame_func_unwind (next_frame, NORMAL_FRAME));
2071 }
2072
2073 static void
2074 mips_insn32_frame_prev_register (struct frame_info *next_frame,
2075 void **this_cache,
2076 int regnum, int *optimizedp,
2077 enum lval_type *lvalp, CORE_ADDR *addrp,
2078 int *realnump, gdb_byte *valuep)
2079 {
2080 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2081 this_cache);
2082 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
2083 optimizedp, lvalp, addrp, realnump, valuep);
2084 }
2085
2086 static const struct frame_unwind mips_insn32_frame_unwind =
2087 {
2088 NORMAL_FRAME,
2089 mips_insn32_frame_this_id,
2090 mips_insn32_frame_prev_register
2091 };
2092
2093 static const struct frame_unwind *
2094 mips_insn32_frame_sniffer (struct frame_info *next_frame)
2095 {
2096 CORE_ADDR pc = frame_pc_unwind (next_frame);
2097 if (! mips_pc_is_mips16 (pc))
2098 return &mips_insn32_frame_unwind;
2099 return NULL;
2100 }
2101
2102 static CORE_ADDR
2103 mips_insn32_frame_base_address (struct frame_info *next_frame,
2104 void **this_cache)
2105 {
2106 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2107 this_cache);
2108 return info->base;
2109 }
2110
2111 static const struct frame_base mips_insn32_frame_base =
2112 {
2113 &mips_insn32_frame_unwind,
2114 mips_insn32_frame_base_address,
2115 mips_insn32_frame_base_address,
2116 mips_insn32_frame_base_address
2117 };
2118
2119 static const struct frame_base *
2120 mips_insn32_frame_base_sniffer (struct frame_info *next_frame)
2121 {
2122 if (mips_insn32_frame_sniffer (next_frame) != NULL)
2123 return &mips_insn32_frame_base;
2124 else
2125 return NULL;
2126 }
2127
2128 static struct trad_frame_cache *
2129 mips_stub_frame_cache (struct frame_info *next_frame, void **this_cache)
2130 {
2131 CORE_ADDR pc;
2132 CORE_ADDR start_addr;
2133 CORE_ADDR stack_addr;
2134 struct trad_frame_cache *this_trad_cache;
2135 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2136
2137 if ((*this_cache) != NULL)
2138 return (*this_cache);
2139 this_trad_cache = trad_frame_cache_zalloc (next_frame);
2140 (*this_cache) = this_trad_cache;
2141
2142 /* The return address is in the link register. */
2143 trad_frame_set_reg_realreg (this_trad_cache,
2144 gdbarch_pc_regnum (gdbarch),
2145 (gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM));
2146
2147 /* Frame ID, since it's a frameless / stackless function, no stack
2148 space is allocated and SP on entry is the current SP. */
2149 pc = frame_pc_unwind (next_frame);
2150 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2151 stack_addr = frame_unwind_register_signed (next_frame, MIPS_SP_REGNUM);
2152 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
2153
2154 /* Assume that the frame's base is the same as the
2155 stack-pointer. */
2156 trad_frame_set_this_base (this_trad_cache, stack_addr);
2157
2158 return this_trad_cache;
2159 }
2160
2161 static void
2162 mips_stub_frame_this_id (struct frame_info *next_frame, void **this_cache,
2163 struct frame_id *this_id)
2164 {
2165 struct trad_frame_cache *this_trad_cache
2166 = mips_stub_frame_cache (next_frame, this_cache);
2167 trad_frame_get_id (this_trad_cache, this_id);
2168 }
2169
2170 static void
2171 mips_stub_frame_prev_register (struct frame_info *next_frame,
2172 void **this_cache,
2173 int regnum, int *optimizedp,
2174 enum lval_type *lvalp, CORE_ADDR *addrp,
2175 int *realnump, gdb_byte *valuep)
2176 {
2177 struct trad_frame_cache *this_trad_cache
2178 = mips_stub_frame_cache (next_frame, this_cache);
2179 trad_frame_get_register (this_trad_cache, next_frame, regnum, optimizedp,
2180 lvalp, addrp, realnump, valuep);
2181 }
2182
2183 static const struct frame_unwind mips_stub_frame_unwind =
2184 {
2185 NORMAL_FRAME,
2186 mips_stub_frame_this_id,
2187 mips_stub_frame_prev_register
2188 };
2189
2190 static const struct frame_unwind *
2191 mips_stub_frame_sniffer (struct frame_info *next_frame)
2192 {
2193 gdb_byte dummy[4];
2194 struct obj_section *s;
2195 CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
2196
2197 /* Use the stub unwinder for unreadable code. */
2198 if (target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
2199 return &mips_stub_frame_unwind;
2200
2201 if (in_plt_section (pc, NULL))
2202 return &mips_stub_frame_unwind;
2203
2204 /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
2205 s = find_pc_section (pc);
2206
2207 if (s != NULL
2208 && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
2209 ".MIPS.stubs") == 0)
2210 return &mips_stub_frame_unwind;
2211
2212 return NULL;
2213 }
2214
2215 static CORE_ADDR
2216 mips_stub_frame_base_address (struct frame_info *next_frame,
2217 void **this_cache)
2218 {
2219 struct trad_frame_cache *this_trad_cache
2220 = mips_stub_frame_cache (next_frame, this_cache);
2221 return trad_frame_get_this_base (this_trad_cache);
2222 }
2223
2224 static const struct frame_base mips_stub_frame_base =
2225 {
2226 &mips_stub_frame_unwind,
2227 mips_stub_frame_base_address,
2228 mips_stub_frame_base_address,
2229 mips_stub_frame_base_address
2230 };
2231
2232 static const struct frame_base *
2233 mips_stub_frame_base_sniffer (struct frame_info *next_frame)
2234 {
2235 if (mips_stub_frame_sniffer (next_frame) != NULL)
2236 return &mips_stub_frame_base;
2237 else
2238 return NULL;
2239 }
2240
2241 /* mips_addr_bits_remove - remove useless address bits */
2242
2243 static CORE_ADDR
2244 mips_addr_bits_remove (CORE_ADDR addr)
2245 {
2246 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2247 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2248 /* This hack is a work-around for existing boards using PMON, the
2249 simulator, and any other 64-bit targets that doesn't have true
2250 64-bit addressing. On these targets, the upper 32 bits of
2251 addresses are ignored by the hardware. Thus, the PC or SP are
2252 likely to have been sign extended to all 1s by instruction
2253 sequences that load 32-bit addresses. For example, a typical
2254 piece of code that loads an address is this:
2255
2256 lui $r2, <upper 16 bits>
2257 ori $r2, <lower 16 bits>
2258
2259 But the lui sign-extends the value such that the upper 32 bits
2260 may be all 1s. The workaround is simply to mask off these
2261 bits. In the future, gcc may be changed to support true 64-bit
2262 addressing, and this masking will have to be disabled. */
2263 return addr &= 0xffffffffUL;
2264 else
2265 return addr;
2266 }
2267
2268 /* Instructions used during single-stepping of atomic sequences. */
2269 #define LL_OPCODE 0x30
2270 #define LLD_OPCODE 0x34
2271 #define SC_OPCODE 0x38
2272 #define SCD_OPCODE 0x3c
2273
2274 /* Checks for an atomic sequence of instructions beginning with a LL/LLD
2275 instruction and ending with a SC/SCD instruction. If such a sequence
2276 is found, attempt to step through it. A breakpoint is placed at the end of
2277 the sequence. */
2278
2279 static int
2280 deal_with_atomic_sequence (CORE_ADDR pc)
2281 {
2282 CORE_ADDR breaks[2] = {-1, -1};
2283 CORE_ADDR loc = pc;
2284 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
2285 unsigned long insn;
2286 int insn_count;
2287 int index;
2288 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
2289 const int atomic_sequence_length = 16; /* Instruction sequence length. */
2290
2291 if (pc & 0x01)
2292 return 0;
2293
2294 insn = mips_fetch_instruction (loc);
2295 /* Assume all atomic sequences start with a ll/lld instruction. */
2296 if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
2297 return 0;
2298
2299 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
2300 instructions. */
2301 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
2302 {
2303 int is_branch = 0;
2304 loc += MIPS_INSN32_SIZE;
2305 insn = mips_fetch_instruction (loc);
2306
2307 /* Assume that there is at most one branch in the atomic
2308 sequence. If a branch is found, put a breakpoint in its
2309 destination address. */
2310 switch (itype_op (insn))
2311 {
2312 case 0: /* SPECIAL */
2313 if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
2314 return 0; /* fallback to the standard single-step code. */
2315 break;
2316 case 1: /* REGIMM */
2317 is_branch = ((itype_rt (insn) & 0xc0) == 0); /* B{LT,GE}Z* */
2318 break;
2319 case 2: /* J */
2320 case 3: /* JAL */
2321 return 0; /* fallback to the standard single-step code. */
2322 case 4: /* BEQ */
2323 case 5: /* BNE */
2324 case 6: /* BLEZ */
2325 case 7: /* BGTZ */
2326 case 20: /* BEQL */
2327 case 21: /* BNEL */
2328 case 22: /* BLEZL */
2329 case 23: /* BGTTL */
2330 is_branch = 1;
2331 break;
2332 case 17: /* COP1 */
2333 case 18: /* COP2 */
2334 case 19: /* COP3 */
2335 is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
2336 break;
2337 }
2338 if (is_branch)
2339 {
2340 branch_bp = loc + mips32_relative_offset (insn) + 4;
2341 if (last_breakpoint >= 1)
2342 return 0; /* More than one branch found, fallback to the
2343 standard single-step code. */
2344 breaks[1] = branch_bp;
2345 last_breakpoint++;
2346 }
2347
2348 if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
2349 break;
2350 }
2351
2352 /* Assume that the atomic sequence ends with a sc/scd instruction. */
2353 if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
2354 return 0;
2355
2356 loc += MIPS_INSN32_SIZE;
2357
2358 /* Insert a breakpoint right after the end of the atomic sequence. */
2359 breaks[0] = loc;
2360
2361 /* Check for duplicated breakpoints. Check also for a breakpoint
2362 placed (branch instruction's destination) in the atomic sequence */
2363 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
2364 last_breakpoint = 0;
2365
2366 /* Effectively inserts the breakpoints. */
2367 for (index = 0; index <= last_breakpoint; index++)
2368 insert_single_step_breakpoint (breaks[index]);
2369
2370 return 1;
2371 }
2372
2373 /* mips_software_single_step() is called just before we want to resume
2374 the inferior, if we want to single-step it but there is no hardware
2375 or kernel single-step support (MIPS on GNU/Linux for example). We find
2376 the target of the coming instruction and breakpoint it. */
2377
2378 int
2379 mips_software_single_step (struct frame_info *frame)
2380 {
2381 CORE_ADDR pc, next_pc;
2382
2383 pc = get_frame_pc (frame);
2384 if (deal_with_atomic_sequence (pc))
2385 return 1;
2386
2387 next_pc = mips_next_pc (frame, pc);
2388
2389 insert_single_step_breakpoint (next_pc);
2390 return 1;
2391 }
2392
2393 /* Test whether the PC points to the return instruction at the
2394 end of a function. */
2395
2396 static int
2397 mips_about_to_return (CORE_ADDR pc)
2398 {
2399 if (mips_pc_is_mips16 (pc))
2400 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2401 generates a "jr $ra"; other times it generates code to load
2402 the return address from the stack to an accessible register (such
2403 as $a3), then a "jr" using that register. This second case
2404 is almost impossible to distinguish from an indirect jump
2405 used for switch statements, so we don't even try. */
2406 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
2407 else
2408 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
2409 }
2410
2411
2412 /* This fencepost looks highly suspicious to me. Removing it also
2413 seems suspicious as it could affect remote debugging across serial
2414 lines. */
2415
2416 static CORE_ADDR
2417 heuristic_proc_start (CORE_ADDR pc)
2418 {
2419 CORE_ADDR start_pc;
2420 CORE_ADDR fence;
2421 int instlen;
2422 int seen_adjsp = 0;
2423
2424 pc = gdbarch_addr_bits_remove (current_gdbarch, pc);
2425 start_pc = pc;
2426 fence = start_pc - heuristic_fence_post;
2427 if (start_pc == 0)
2428 return 0;
2429
2430 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2431 fence = VM_MIN_ADDRESS;
2432
2433 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
2434
2435 /* search back for previous return */
2436 for (start_pc -= instlen;; start_pc -= instlen)
2437 if (start_pc < fence)
2438 {
2439 /* It's not clear to me why we reach this point when
2440 stop_soon, but with this test, at least we
2441 don't print out warnings for every child forked (eg, on
2442 decstation). 22apr93 rich@cygnus.com. */
2443 if (stop_soon == NO_STOP_QUIETLY)
2444 {
2445 static int blurb_printed = 0;
2446
2447 warning (_("GDB can't find the start of the function at 0x%s."),
2448 paddr_nz (pc));
2449
2450 if (!blurb_printed)
2451 {
2452 /* This actually happens frequently in embedded
2453 development, when you first connect to a board
2454 and your stack pointer and pc are nowhere in
2455 particular. This message needs to give people
2456 in that situation enough information to
2457 determine that it's no big deal. */
2458 printf_filtered ("\n\
2459 GDB is unable to find the start of the function at 0x%s\n\
2460 and thus can't determine the size of that function's stack frame.\n\
2461 This means that GDB may be unable to access that stack frame, or\n\
2462 the frames below it.\n\
2463 This problem is most likely caused by an invalid program counter or\n\
2464 stack pointer.\n\
2465 However, if you think GDB should simply search farther back\n\
2466 from 0x%s for code which looks like the beginning of a\n\
2467 function, you can increase the range of the search using the `set\n\
2468 heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc));
2469 blurb_printed = 1;
2470 }
2471 }
2472
2473 return 0;
2474 }
2475 else if (mips_pc_is_mips16 (start_pc))
2476 {
2477 unsigned short inst;
2478
2479 /* On MIPS16, any one of the following is likely to be the
2480 start of a function:
2481 extend save
2482 save
2483 entry
2484 addiu sp,-n
2485 daddiu sp,-n
2486 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2487 inst = mips_fetch_instruction (start_pc);
2488 if ((inst & 0xff80) == 0x6480) /* save */
2489 {
2490 if (start_pc - instlen >= fence)
2491 {
2492 inst = mips_fetch_instruction (start_pc - instlen);
2493 if ((inst & 0xf800) == 0xf000) /* extend */
2494 start_pc -= instlen;
2495 }
2496 break;
2497 }
2498 else if (((inst & 0xf81f) == 0xe809
2499 && (inst & 0x700) != 0x700) /* entry */
2500 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2501 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2502 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2503 break;
2504 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2505 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2506 seen_adjsp = 1;
2507 else
2508 seen_adjsp = 0;
2509 }
2510 else if (mips_about_to_return (start_pc))
2511 {
2512 /* Skip return and its delay slot. */
2513 start_pc += 2 * MIPS_INSN32_SIZE;
2514 break;
2515 }
2516
2517 return start_pc;
2518 }
2519
2520 struct mips_objfile_private
2521 {
2522 bfd_size_type size;
2523 char *contents;
2524 };
2525
2526 /* According to the current ABI, should the type be passed in a
2527 floating-point register (assuming that there is space)? When there
2528 is no FPU, FP are not even considered as possible candidates for
2529 FP registers and, consequently this returns false - forces FP
2530 arguments into integer registers. */
2531
2532 static int
2533 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2534 {
2535 return ((typecode == TYPE_CODE_FLT
2536 || (MIPS_EABI
2537 && (typecode == TYPE_CODE_STRUCT
2538 || typecode == TYPE_CODE_UNION)
2539 && TYPE_NFIELDS (arg_type) == 1
2540 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
2541 == TYPE_CODE_FLT))
2542 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2543 }
2544
2545 /* On o32, argument passing in GPRs depends on the alignment of the type being
2546 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2547
2548 static int
2549 mips_type_needs_double_align (struct type *type)
2550 {
2551 enum type_code typecode = TYPE_CODE (type);
2552
2553 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2554 return 1;
2555 else if (typecode == TYPE_CODE_STRUCT)
2556 {
2557 if (TYPE_NFIELDS (type) < 1)
2558 return 0;
2559 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2560 }
2561 else if (typecode == TYPE_CODE_UNION)
2562 {
2563 int i, n;
2564
2565 n = TYPE_NFIELDS (type);
2566 for (i = 0; i < n; i++)
2567 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2568 return 1;
2569 return 0;
2570 }
2571 return 0;
2572 }
2573
2574 /* Adjust the address downward (direction of stack growth) so that it
2575 is correctly aligned for a new stack frame. */
2576 static CORE_ADDR
2577 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2578 {
2579 return align_down (addr, 16);
2580 }
2581
2582 static CORE_ADDR
2583 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2584 struct regcache *regcache, CORE_ADDR bp_addr,
2585 int nargs, struct value **args, CORE_ADDR sp,
2586 int struct_return, CORE_ADDR struct_addr)
2587 {
2588 int argreg;
2589 int float_argreg;
2590 int argnum;
2591 int len = 0;
2592 int stack_offset = 0;
2593 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2594 CORE_ADDR func_addr = find_function_addr (function, NULL);
2595 int regsize = mips_abi_regsize (gdbarch);
2596
2597 /* For shared libraries, "t9" needs to point at the function
2598 address. */
2599 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2600
2601 /* Set the return address register to point to the entry point of
2602 the program, where a breakpoint lies in wait. */
2603 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2604
2605 /* First ensure that the stack and structure return address (if any)
2606 are properly aligned. The stack has to be at least 64-bit
2607 aligned even on 32-bit machines, because doubles must be 64-bit
2608 aligned. For n32 and n64, stack frames need to be 128-bit
2609 aligned, so we round to this widest known alignment. */
2610
2611 sp = align_down (sp, 16);
2612 struct_addr = align_down (struct_addr, 16);
2613
2614 /* Now make space on the stack for the args. We allocate more
2615 than necessary for EABI, because the first few arguments are
2616 passed in registers, but that's OK. */
2617 for (argnum = 0; argnum < nargs; argnum++)
2618 len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
2619 sp -= align_up (len, 16);
2620
2621 if (mips_debug)
2622 fprintf_unfiltered (gdb_stdlog,
2623 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2624 paddr_nz (sp), (long) align_up (len, 16));
2625
2626 /* Initialize the integer and float register pointers. */
2627 argreg = MIPS_A0_REGNUM;
2628 float_argreg = mips_fpa0_regnum (gdbarch);
2629
2630 /* The struct_return pointer occupies the first parameter-passing reg. */
2631 if (struct_return)
2632 {
2633 if (mips_debug)
2634 fprintf_unfiltered (gdb_stdlog,
2635 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
2636 argreg, paddr_nz (struct_addr));
2637 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
2638 }
2639
2640 /* Now load as many as possible of the first arguments into
2641 registers, and push the rest onto the stack. Loop thru args
2642 from first to last. */
2643 for (argnum = 0; argnum < nargs; argnum++)
2644 {
2645 const gdb_byte *val;
2646 gdb_byte valbuf[MAX_REGISTER_SIZE];
2647 struct value *arg = args[argnum];
2648 struct type *arg_type = check_typedef (value_type (arg));
2649 int len = TYPE_LENGTH (arg_type);
2650 enum type_code typecode = TYPE_CODE (arg_type);
2651
2652 if (mips_debug)
2653 fprintf_unfiltered (gdb_stdlog,
2654 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2655 argnum + 1, len, (int) typecode);
2656
2657 /* The EABI passes structures that do not fit in a register by
2658 reference. */
2659 if (len > regsize
2660 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2661 {
2662 store_unsigned_integer (valbuf, regsize, VALUE_ADDRESS (arg));
2663 typecode = TYPE_CODE_PTR;
2664 len = regsize;
2665 val = valbuf;
2666 if (mips_debug)
2667 fprintf_unfiltered (gdb_stdlog, " push");
2668 }
2669 else
2670 val = value_contents (arg);
2671
2672 /* 32-bit ABIs always start floating point arguments in an
2673 even-numbered floating point register. Round the FP register
2674 up before the check to see if there are any FP registers
2675 left. Non MIPS_EABI targets also pass the FP in the integer
2676 registers so also round up normal registers. */
2677 if (regsize < 8 && fp_register_arg_p (typecode, arg_type))
2678 {
2679 if ((float_argreg & 1))
2680 float_argreg++;
2681 }
2682
2683 /* Floating point arguments passed in registers have to be
2684 treated specially. On 32-bit architectures, doubles
2685 are passed in register pairs; the even register gets
2686 the low word, and the odd register gets the high word.
2687 On non-EABI processors, the first two floating point arguments are
2688 also copied to general registers, because MIPS16 functions
2689 don't use float registers for arguments. This duplication of
2690 arguments in general registers can't hurt non-MIPS16 functions
2691 because those registers are normally skipped. */
2692 /* MIPS_EABI squeezes a struct that contains a single floating
2693 point value into an FP register instead of pushing it onto the
2694 stack. */
2695 if (fp_register_arg_p (typecode, arg_type)
2696 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2697 {
2698 /* EABI32 will pass doubles in consecutive registers, even on
2699 64-bit cores. At one time, we used to check the size of
2700 `float_argreg' to determine whether or not to pass doubles
2701 in consecutive registers, but this is not sufficient for
2702 making the ABI determination. */
2703 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
2704 {
2705 int low_offset = gdbarch_byte_order (gdbarch)
2706 == BFD_ENDIAN_BIG ? 4 : 0;
2707 unsigned long regval;
2708
2709 /* Write the low word of the double to the even register(s). */
2710 regval = extract_unsigned_integer (val + low_offset, 4);
2711 if (mips_debug)
2712 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2713 float_argreg, phex (regval, 4));
2714 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2715
2716 /* Write the high word of the double to the odd register(s). */
2717 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2718 if (mips_debug)
2719 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2720 float_argreg, phex (regval, 4));
2721 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2722 }
2723 else
2724 {
2725 /* This is a floating point value that fits entirely
2726 in a single register. */
2727 /* On 32 bit ABI's the float_argreg is further adjusted
2728 above to ensure that it is even register aligned. */
2729 LONGEST regval = extract_unsigned_integer (val, len);
2730 if (mips_debug)
2731 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2732 float_argreg, phex (regval, len));
2733 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2734 }
2735 }
2736 else
2737 {
2738 /* Copy the argument to general registers or the stack in
2739 register-sized pieces. Large arguments are split between
2740 registers and stack. */
2741 /* Note: structs whose size is not a multiple of regsize
2742 are treated specially: Irix cc passes
2743 them in registers where gcc sometimes puts them on the
2744 stack. For maximum compatibility, we will put them in
2745 both places. */
2746 int odd_sized_struct = (len > regsize && len % regsize != 0);
2747
2748 /* Note: Floating-point values that didn't fit into an FP
2749 register are only written to memory. */
2750 while (len > 0)
2751 {
2752 /* Remember if the argument was written to the stack. */
2753 int stack_used_p = 0;
2754 int partial_len = (len < regsize ? len : regsize);
2755
2756 if (mips_debug)
2757 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2758 partial_len);
2759
2760 /* Write this portion of the argument to the stack. */
2761 if (argreg > MIPS_LAST_ARG_REGNUM
2762 || odd_sized_struct
2763 || fp_register_arg_p (typecode, arg_type))
2764 {
2765 /* Should shorter than int integer values be
2766 promoted to int before being stored? */
2767 int longword_offset = 0;
2768 CORE_ADDR addr;
2769 stack_used_p = 1;
2770 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2771 {
2772 if (regsize == 8
2773 && (typecode == TYPE_CODE_INT
2774 || typecode == TYPE_CODE_PTR
2775 || typecode == TYPE_CODE_FLT) && len <= 4)
2776 longword_offset = regsize - len;
2777 else if ((typecode == TYPE_CODE_STRUCT
2778 || typecode == TYPE_CODE_UNION)
2779 && TYPE_LENGTH (arg_type) < regsize)
2780 longword_offset = regsize - len;
2781 }
2782
2783 if (mips_debug)
2784 {
2785 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2786 paddr_nz (stack_offset));
2787 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2788 paddr_nz (longword_offset));
2789 }
2790
2791 addr = sp + stack_offset + longword_offset;
2792
2793 if (mips_debug)
2794 {
2795 int i;
2796 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2797 paddr_nz (addr));
2798 for (i = 0; i < partial_len; i++)
2799 {
2800 fprintf_unfiltered (gdb_stdlog, "%02x",
2801 val[i] & 0xff);
2802 }
2803 }
2804 write_memory (addr, val, partial_len);
2805 }
2806
2807 /* Note!!! This is NOT an else clause. Odd sized
2808 structs may go thru BOTH paths. Floating point
2809 arguments will not. */
2810 /* Write this portion of the argument to a general
2811 purpose register. */
2812 if (argreg <= MIPS_LAST_ARG_REGNUM
2813 && !fp_register_arg_p (typecode, arg_type))
2814 {
2815 LONGEST regval =
2816 extract_unsigned_integer (val, partial_len);
2817
2818 if (mips_debug)
2819 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2820 argreg,
2821 phex (regval, regsize));
2822 regcache_cooked_write_unsigned (regcache, argreg, regval);
2823 argreg++;
2824 }
2825
2826 len -= partial_len;
2827 val += partial_len;
2828
2829 /* Compute the the offset into the stack at which we
2830 will copy the next parameter.
2831
2832 In the new EABI (and the NABI32), the stack_offset
2833 only needs to be adjusted when it has been used. */
2834
2835 if (stack_used_p)
2836 stack_offset += align_up (partial_len, regsize);
2837 }
2838 }
2839 if (mips_debug)
2840 fprintf_unfiltered (gdb_stdlog, "\n");
2841 }
2842
2843 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
2844
2845 /* Return adjusted stack pointer. */
2846 return sp;
2847 }
2848
2849 /* Determine the return value convention being used. */
2850
2851 static enum return_value_convention
2852 mips_eabi_return_value (struct gdbarch *gdbarch,
2853 struct type *type, struct regcache *regcache,
2854 gdb_byte *readbuf, const gdb_byte *writebuf)
2855 {
2856 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2857 return RETURN_VALUE_STRUCT_CONVENTION;
2858 if (readbuf)
2859 memset (readbuf, 0, TYPE_LENGTH (type));
2860 return RETURN_VALUE_REGISTER_CONVENTION;
2861 }
2862
2863
2864 /* N32/N64 ABI stuff. */
2865
2866 /* Search for a naturally aligned double at OFFSET inside a struct
2867 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
2868 registers. */
2869
2870 static int
2871 mips_n32n64_fp_arg_chunk_p (struct type *arg_type, int offset)
2872 {
2873 int i;
2874
2875 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
2876 return 0;
2877
2878 if (MIPS_FPU_TYPE != MIPS_FPU_DOUBLE)
2879 return 0;
2880
2881 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
2882 return 0;
2883
2884 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
2885 {
2886 int pos;
2887 struct type *field_type;
2888
2889 /* We're only looking at normal fields. */
2890 if (TYPE_FIELD_STATIC (arg_type, i)
2891 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
2892 continue;
2893
2894 /* If we have gone past the offset, there is no double to pass. */
2895 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
2896 if (pos > offset)
2897 return 0;
2898
2899 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
2900
2901 /* If this field is entirely before the requested offset, go
2902 on to the next one. */
2903 if (pos + TYPE_LENGTH (field_type) <= offset)
2904 continue;
2905
2906 /* If this is our special aligned double, we can stop. */
2907 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
2908 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
2909 return 1;
2910
2911 /* This field starts at or before the requested offset, and
2912 overlaps it. If it is a structure, recurse inwards. */
2913 return mips_n32n64_fp_arg_chunk_p (field_type, offset - pos);
2914 }
2915
2916 return 0;
2917 }
2918
2919 static CORE_ADDR
2920 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2921 struct regcache *regcache, CORE_ADDR bp_addr,
2922 int nargs, struct value **args, CORE_ADDR sp,
2923 int struct_return, CORE_ADDR struct_addr)
2924 {
2925 int argreg;
2926 int float_argreg;
2927 int argnum;
2928 int len = 0;
2929 int stack_offset = 0;
2930 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2931 CORE_ADDR func_addr = find_function_addr (function, NULL);
2932
2933 /* For shared libraries, "t9" needs to point at the function
2934 address. */
2935 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2936
2937 /* Set the return address register to point to the entry point of
2938 the program, where a breakpoint lies in wait. */
2939 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2940
2941 /* First ensure that the stack and structure return address (if any)
2942 are properly aligned. The stack has to be at least 64-bit
2943 aligned even on 32-bit machines, because doubles must be 64-bit
2944 aligned. For n32 and n64, stack frames need to be 128-bit
2945 aligned, so we round to this widest known alignment. */
2946
2947 sp = align_down (sp, 16);
2948 struct_addr = align_down (struct_addr, 16);
2949
2950 /* Now make space on the stack for the args. */
2951 for (argnum = 0; argnum < nargs; argnum++)
2952 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
2953 sp -= align_up (len, 16);
2954
2955 if (mips_debug)
2956 fprintf_unfiltered (gdb_stdlog,
2957 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
2958 paddr_nz (sp), (long) align_up (len, 16));
2959
2960 /* Initialize the integer and float register pointers. */
2961 argreg = MIPS_A0_REGNUM;
2962 float_argreg = mips_fpa0_regnum (gdbarch);
2963
2964 /* The struct_return pointer occupies the first parameter-passing reg. */
2965 if (struct_return)
2966 {
2967 if (mips_debug)
2968 fprintf_unfiltered (gdb_stdlog,
2969 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
2970 argreg, paddr_nz (struct_addr));
2971 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
2972 }
2973
2974 /* Now load as many as possible of the first arguments into
2975 registers, and push the rest onto the stack. Loop thru args
2976 from first to last. */
2977 for (argnum = 0; argnum < nargs; argnum++)
2978 {
2979 const gdb_byte *val;
2980 struct value *arg = args[argnum];
2981 struct type *arg_type = check_typedef (value_type (arg));
2982 int len = TYPE_LENGTH (arg_type);
2983 enum type_code typecode = TYPE_CODE (arg_type);
2984
2985 if (mips_debug)
2986 fprintf_unfiltered (gdb_stdlog,
2987 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
2988 argnum + 1, len, (int) typecode);
2989
2990 val = value_contents (arg);
2991
2992 if (fp_register_arg_p (typecode, arg_type)
2993 && argreg <= MIPS_LAST_ARG_REGNUM)
2994 {
2995 /* This is a floating point value that fits entirely
2996 in a single register. */
2997 LONGEST regval = extract_unsigned_integer (val, len);
2998 if (mips_debug)
2999 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3000 float_argreg, phex (regval, len));
3001 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
3002
3003 if (mips_debug)
3004 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3005 argreg, phex (regval, len));
3006 regcache_cooked_write_unsigned (regcache, argreg, regval);
3007 float_argreg++;
3008 argreg++;
3009 }
3010 else
3011 {
3012 /* Copy the argument to general registers or the stack in
3013 register-sized pieces. Large arguments are split between
3014 registers and stack. */
3015 /* For N32/N64, structs, unions, or other composite types are
3016 treated as a sequence of doublewords, and are passed in integer
3017 or floating point registers as though they were simple scalar
3018 parameters to the extent that they fit, with any excess on the
3019 stack packed according to the normal memory layout of the
3020 object.
3021 The caller does not reserve space for the register arguments;
3022 the callee is responsible for reserving it if required. */
3023 /* Note: Floating-point values that didn't fit into an FP
3024 register are only written to memory. */
3025 while (len > 0)
3026 {
3027 /* Remember if the argument was written to the stack. */
3028 int stack_used_p = 0;
3029 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
3030
3031 if (mips_debug)
3032 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3033 partial_len);
3034
3035 if (fp_register_arg_p (typecode, arg_type))
3036 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM);
3037
3038 /* Write this portion of the argument to the stack. */
3039 if (argreg > MIPS_LAST_ARG_REGNUM)
3040 {
3041 /* Should shorter than int integer values be
3042 promoted to int before being stored? */
3043 int longword_offset = 0;
3044 CORE_ADDR addr;
3045 stack_used_p = 1;
3046 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
3047 {
3048 if ((typecode == TYPE_CODE_INT
3049 || typecode == TYPE_CODE_PTR
3050 || typecode == TYPE_CODE_FLT)
3051 && len <= 4)
3052 longword_offset = MIPS64_REGSIZE - len;
3053 }
3054
3055 if (mips_debug)
3056 {
3057 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3058 paddr_nz (stack_offset));
3059 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3060 paddr_nz (longword_offset));
3061 }
3062
3063 addr = sp + stack_offset + longword_offset;
3064
3065 if (mips_debug)
3066 {
3067 int i;
3068 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3069 paddr_nz (addr));
3070 for (i = 0; i < partial_len; i++)
3071 {
3072 fprintf_unfiltered (gdb_stdlog, "%02x",
3073 val[i] & 0xff);
3074 }
3075 }
3076 write_memory (addr, val, partial_len);
3077 }
3078
3079 /* Note!!! This is NOT an else clause. Odd sized
3080 structs may go thru BOTH paths. */
3081 /* Write this portion of the argument to a general
3082 purpose register. */
3083 if (argreg <= MIPS_LAST_ARG_REGNUM)
3084 {
3085 LONGEST regval =
3086 extract_unsigned_integer (val, partial_len);
3087
3088 /* A non-floating-point argument being passed in a
3089 general register. If a struct or union, and if
3090 the remaining length is smaller than the register
3091 size, we have to adjust the register value on
3092 big endian targets.
3093
3094 It does not seem to be necessary to do the
3095 same for integral types. */
3096
3097 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
3098 && partial_len < MIPS64_REGSIZE
3099 && (typecode == TYPE_CODE_STRUCT
3100 || typecode == TYPE_CODE_UNION))
3101 regval <<= ((MIPS64_REGSIZE - partial_len)
3102 * TARGET_CHAR_BIT);
3103
3104 if (mips_debug)
3105 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3106 argreg,
3107 phex (regval, MIPS64_REGSIZE));
3108 regcache_cooked_write_unsigned (regcache, argreg, regval);
3109
3110 if (mips_n32n64_fp_arg_chunk_p (arg_type,
3111 TYPE_LENGTH (arg_type) - len))
3112 {
3113 if (mips_debug)
3114 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
3115 float_argreg,
3116 phex (regval, MIPS64_REGSIZE));
3117 regcache_cooked_write_unsigned (regcache, float_argreg,
3118 regval);
3119 }
3120
3121 float_argreg++;
3122 argreg++;
3123 }
3124
3125 len -= partial_len;
3126 val += partial_len;
3127
3128 /* Compute the the offset into the stack at which we
3129 will copy the next parameter.
3130
3131 In N32 (N64?), the stack_offset only needs to be
3132 adjusted when it has been used. */
3133
3134 if (stack_used_p)
3135 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
3136 }
3137 }
3138 if (mips_debug)
3139 fprintf_unfiltered (gdb_stdlog, "\n");
3140 }
3141
3142 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3143
3144 /* Return adjusted stack pointer. */
3145 return sp;
3146 }
3147
3148 static enum return_value_convention
3149 mips_n32n64_return_value (struct gdbarch *gdbarch,
3150 struct type *type, struct regcache *regcache,
3151 gdb_byte *readbuf, const gdb_byte *writebuf)
3152 {
3153 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3154
3155 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
3156
3157 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
3158 if needed), as appropriate for the type. Composite results (struct,
3159 union, or array) are returned in $2/$f0 and $3/$f2 according to the
3160 following rules:
3161
3162 * A struct with only one or two floating point fields is returned in $f0
3163 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
3164 case.
3165
3166 * Any other struct or union results of at most 128 bits are returned in
3167 $2 (first 64 bits) and $3 (remainder, if necessary).
3168
3169 * Larger composite results are handled by converting the function to a
3170 procedure with an implicit first parameter, which is a pointer to an area
3171 reserved by the caller to receive the result. [The o32-bit ABI requires
3172 that all composite results be handled by conversion to implicit first
3173 parameters. The MIPS/SGI Fortran implementation has always made a
3174 specific exception to return COMPLEX results in the floating point
3175 registers.] */
3176
3177 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
3178 || TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
3179 return RETURN_VALUE_STRUCT_CONVENTION;
3180 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3181 && TYPE_LENGTH (type) == 16
3182 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3183 {
3184 /* A 128-bit floating-point value fills both $f0 and $f2. The
3185 two registers are used in the same as memory order, so the
3186 eight bytes with the lower memory address are in $f0. */
3187 if (mips_debug)
3188 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
3189 mips_xfer_register (gdbarch, regcache,
3190 gdbarch_num_regs (gdbarch)
3191 + mips_regnum (gdbarch)->fp0,
3192 8, gdbarch_byte_order (gdbarch),
3193 readbuf, writebuf, 0);
3194 mips_xfer_register (gdbarch, regcache,
3195 gdbarch_num_regs (gdbarch)
3196 + mips_regnum (gdbarch)->fp0 + 2,
3197 8, gdbarch_byte_order (gdbarch),
3198 readbuf ? readbuf + 8 : readbuf,
3199 writebuf ? writebuf + 8 : writebuf, 0);
3200 return RETURN_VALUE_REGISTER_CONVENTION;
3201 }
3202 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3203 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3204 {
3205 /* A single or double floating-point value that fits in FP0. */
3206 if (mips_debug)
3207 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3208 mips_xfer_register (gdbarch, regcache,
3209 gdbarch_num_regs (gdbarch)
3210 + mips_regnum (gdbarch)->fp0,
3211 TYPE_LENGTH (type),
3212 gdbarch_byte_order (gdbarch),
3213 readbuf, writebuf, 0);
3214 return RETURN_VALUE_REGISTER_CONVENTION;
3215 }
3216 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3217 && TYPE_NFIELDS (type) <= 2
3218 && TYPE_NFIELDS (type) >= 1
3219 && ((TYPE_NFIELDS (type) == 1
3220 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
3221 == TYPE_CODE_FLT))
3222 || (TYPE_NFIELDS (type) == 2
3223 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
3224 == TYPE_CODE_FLT)
3225 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
3226 == TYPE_CODE_FLT)))
3227 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3228 {
3229 /* A struct that contains one or two floats. Each value is part
3230 in the least significant part of their floating point
3231 register.. */
3232 int regnum;
3233 int field;
3234 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
3235 field < TYPE_NFIELDS (type); field++, regnum += 2)
3236 {
3237 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3238 / TARGET_CHAR_BIT);
3239 if (mips_debug)
3240 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3241 offset);
3242 mips_xfer_register (gdbarch, regcache,
3243 gdbarch_num_regs (gdbarch) + regnum,
3244 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3245 gdbarch_byte_order (gdbarch),
3246 readbuf, writebuf, offset);
3247 }
3248 return RETURN_VALUE_REGISTER_CONVENTION;
3249 }
3250 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3251 || TYPE_CODE (type) == TYPE_CODE_UNION)
3252 {
3253 /* A structure or union. Extract the left justified value,
3254 regardless of the byte order. I.e. DO NOT USE
3255 mips_xfer_lower. */
3256 int offset;
3257 int regnum;
3258 for (offset = 0, regnum = MIPS_V0_REGNUM;
3259 offset < TYPE_LENGTH (type);
3260 offset += register_size (gdbarch, regnum), regnum++)
3261 {
3262 int xfer = register_size (gdbarch, regnum);
3263 if (offset + xfer > TYPE_LENGTH (type))
3264 xfer = TYPE_LENGTH (type) - offset;
3265 if (mips_debug)
3266 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3267 offset, xfer, regnum);
3268 mips_xfer_register (gdbarch, regcache,
3269 gdbarch_num_regs (gdbarch) + regnum,
3270 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
3271 offset);
3272 }
3273 return RETURN_VALUE_REGISTER_CONVENTION;
3274 }
3275 else
3276 {
3277 /* A scalar extract each part but least-significant-byte
3278 justified. */
3279 int offset;
3280 int regnum;
3281 for (offset = 0, regnum = MIPS_V0_REGNUM;
3282 offset < TYPE_LENGTH (type);
3283 offset += register_size (gdbarch, regnum), regnum++)
3284 {
3285 int xfer = register_size (gdbarch, regnum);
3286 if (offset + xfer > TYPE_LENGTH (type))
3287 xfer = TYPE_LENGTH (type) - offset;
3288 if (mips_debug)
3289 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3290 offset, xfer, regnum);
3291 mips_xfer_register (gdbarch, regcache,
3292 gdbarch_num_regs (gdbarch) + regnum,
3293 xfer, gdbarch_byte_order (gdbarch),
3294 readbuf, writebuf, offset);
3295 }
3296 return RETURN_VALUE_REGISTER_CONVENTION;
3297 }
3298 }
3299
3300 /* O32 ABI stuff. */
3301
3302 static CORE_ADDR
3303 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3304 struct regcache *regcache, CORE_ADDR bp_addr,
3305 int nargs, struct value **args, CORE_ADDR sp,
3306 int struct_return, CORE_ADDR struct_addr)
3307 {
3308 int argreg;
3309 int float_argreg;
3310 int argnum;
3311 int len = 0;
3312 int stack_offset = 0;
3313 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3314 CORE_ADDR func_addr = find_function_addr (function, NULL);
3315
3316 /* For shared libraries, "t9" needs to point at the function
3317 address. */
3318 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3319
3320 /* Set the return address register to point to the entry point of
3321 the program, where a breakpoint lies in wait. */
3322 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3323
3324 /* First ensure that the stack and structure return address (if any)
3325 are properly aligned. The stack has to be at least 64-bit
3326 aligned even on 32-bit machines, because doubles must be 64-bit
3327 aligned. For n32 and n64, stack frames need to be 128-bit
3328 aligned, so we round to this widest known alignment. */
3329
3330 sp = align_down (sp, 16);
3331 struct_addr = align_down (struct_addr, 16);
3332
3333 /* Now make space on the stack for the args. */
3334 for (argnum = 0; argnum < nargs; argnum++)
3335 {
3336 struct type *arg_type = check_typedef (value_type (args[argnum]));
3337 int arglen = TYPE_LENGTH (arg_type);
3338
3339 /* Align to double-word if necessary. */
3340 if (mips_type_needs_double_align (arg_type))
3341 len = align_up (len, MIPS32_REGSIZE * 2);
3342 /* Allocate space on the stack. */
3343 len += align_up (arglen, MIPS32_REGSIZE);
3344 }
3345 sp -= align_up (len, 16);
3346
3347 if (mips_debug)
3348 fprintf_unfiltered (gdb_stdlog,
3349 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3350 paddr_nz (sp), (long) align_up (len, 16));
3351
3352 /* Initialize the integer and float register pointers. */
3353 argreg = MIPS_A0_REGNUM;
3354 float_argreg = mips_fpa0_regnum (gdbarch);
3355
3356 /* The struct_return pointer occupies the first parameter-passing reg. */
3357 if (struct_return)
3358 {
3359 if (mips_debug)
3360 fprintf_unfiltered (gdb_stdlog,
3361 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
3362 argreg, paddr_nz (struct_addr));
3363 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
3364 stack_offset += MIPS32_REGSIZE;
3365 }
3366
3367 /* Now load as many as possible of the first arguments into
3368 registers, and push the rest onto the stack. Loop thru args
3369 from first to last. */
3370 for (argnum = 0; argnum < nargs; argnum++)
3371 {
3372 const gdb_byte *val;
3373 struct value *arg = args[argnum];
3374 struct type *arg_type = check_typedef (value_type (arg));
3375 int len = TYPE_LENGTH (arg_type);
3376 enum type_code typecode = TYPE_CODE (arg_type);
3377
3378 if (mips_debug)
3379 fprintf_unfiltered (gdb_stdlog,
3380 "mips_o32_push_dummy_call: %d len=%d type=%d",
3381 argnum + 1, len, (int) typecode);
3382
3383 val = value_contents (arg);
3384
3385 /* 32-bit ABIs always start floating point arguments in an
3386 even-numbered floating point register. Round the FP register
3387 up before the check to see if there are any FP registers
3388 left. O32/O64 targets also pass the FP in the integer
3389 registers so also round up normal registers. */
3390 if (fp_register_arg_p (typecode, arg_type))
3391 {
3392 if ((float_argreg & 1))
3393 float_argreg++;
3394 }
3395
3396 /* Floating point arguments passed in registers have to be
3397 treated specially. On 32-bit architectures, doubles
3398 are passed in register pairs; the even register gets
3399 the low word, and the odd register gets the high word.
3400 On O32/O64, the first two floating point arguments are
3401 also copied to general registers, because MIPS16 functions
3402 don't use float registers for arguments. This duplication of
3403 arguments in general registers can't hurt non-MIPS16 functions
3404 because those registers are normally skipped. */
3405
3406 if (fp_register_arg_p (typecode, arg_type)
3407 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3408 {
3409 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
3410 {
3411 int low_offset = gdbarch_byte_order (gdbarch)
3412 == BFD_ENDIAN_BIG ? 4 : 0;
3413 unsigned long regval;
3414
3415 /* Write the low word of the double to the even register(s). */
3416 regval = extract_unsigned_integer (val + low_offset, 4);
3417 if (mips_debug)
3418 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3419 float_argreg, phex (regval, 4));
3420 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3421 if (mips_debug)
3422 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3423 argreg, phex (regval, 4));
3424 regcache_cooked_write_unsigned (regcache, argreg++, regval);
3425
3426 /* Write the high word of the double to the odd register(s). */
3427 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3428 if (mips_debug)
3429 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3430 float_argreg, phex (regval, 4));
3431 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3432
3433 if (mips_debug)
3434 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3435 argreg, phex (regval, 4));
3436 regcache_cooked_write_unsigned (regcache, argreg++, regval);
3437 }
3438 else
3439 {
3440 /* This is a floating point value that fits entirely
3441 in a single register. */
3442 /* On 32 bit ABI's the float_argreg is further adjusted
3443 above to ensure that it is even register aligned. */
3444 LONGEST regval = extract_unsigned_integer (val, len);
3445 if (mips_debug)
3446 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3447 float_argreg, phex (regval, len));
3448 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3449 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3450 registers for each argument. The below is (my
3451 guess) to ensure that the corresponding integer
3452 register has reserved the same space. */
3453 if (mips_debug)
3454 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3455 argreg, phex (regval, len));
3456 regcache_cooked_write_unsigned (regcache, argreg, regval);
3457 argreg += 2;
3458 }
3459 /* Reserve space for the FP register. */
3460 stack_offset += align_up (len, MIPS32_REGSIZE);
3461 }
3462 else
3463 {
3464 /* Copy the argument to general registers or the stack in
3465 register-sized pieces. Large arguments are split between
3466 registers and stack. */
3467 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
3468 are treated specially: Irix cc passes
3469 them in registers where gcc sometimes puts them on the
3470 stack. For maximum compatibility, we will put them in
3471 both places. */
3472 int odd_sized_struct = (len > MIPS32_REGSIZE
3473 && len % MIPS32_REGSIZE != 0);
3474 /* Structures should be aligned to eight bytes (even arg registers)
3475 on MIPS_ABI_O32, if their first member has double precision. */
3476 if (mips_type_needs_double_align (arg_type))
3477 {
3478 if ((argreg & 1))
3479 {
3480 argreg++;
3481 stack_offset += MIPS32_REGSIZE;
3482 }
3483 }
3484 while (len > 0)
3485 {
3486 /* Remember if the argument was written to the stack. */
3487 int stack_used_p = 0;
3488 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
3489
3490 if (mips_debug)
3491 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3492 partial_len);
3493
3494 /* Write this portion of the argument to the stack. */
3495 if (argreg > MIPS_LAST_ARG_REGNUM
3496 || odd_sized_struct)
3497 {
3498 /* Should shorter than int integer values be
3499 promoted to int before being stored? */
3500 int longword_offset = 0;
3501 CORE_ADDR addr;
3502 stack_used_p = 1;
3503
3504 if (mips_debug)
3505 {
3506 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3507 paddr_nz (stack_offset));
3508 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3509 paddr_nz (longword_offset));
3510 }
3511
3512 addr = sp + stack_offset + longword_offset;
3513
3514 if (mips_debug)
3515 {
3516 int i;
3517 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3518 paddr_nz (addr));
3519 for (i = 0; i < partial_len; i++)
3520 {
3521 fprintf_unfiltered (gdb_stdlog, "%02x",
3522 val[i] & 0xff);
3523 }
3524 }
3525 write_memory (addr, val, partial_len);
3526 }
3527
3528 /* Note!!! This is NOT an else clause. Odd sized
3529 structs may go thru BOTH paths. */
3530 /* Write this portion of the argument to a general
3531 purpose register. */
3532 if (argreg <= MIPS_LAST_ARG_REGNUM)
3533 {
3534 LONGEST regval = extract_signed_integer (val, partial_len);
3535 /* Value may need to be sign extended, because
3536 mips_isa_regsize() != mips_abi_regsize(). */
3537
3538 /* A non-floating-point argument being passed in a
3539 general register. If a struct or union, and if
3540 the remaining length is smaller than the register
3541 size, we have to adjust the register value on
3542 big endian targets.
3543
3544 It does not seem to be necessary to do the
3545 same for integral types.
3546
3547 Also don't do this adjustment on O64 binaries.
3548
3549 cagney/2001-07-23: gdb/179: Also, GCC, when
3550 outputting LE O32 with sizeof (struct) <
3551 mips_abi_regsize(), generates a left shift
3552 as part of storing the argument in a register
3553 (the left shift isn't generated when
3554 sizeof (struct) >= mips_abi_regsize()). Since
3555 it is quite possible that this is GCC
3556 contradicting the LE/O32 ABI, GDB has not been
3557 adjusted to accommodate this. Either someone
3558 needs to demonstrate that the LE/O32 ABI
3559 specifies such a left shift OR this new ABI gets
3560 identified as such and GDB gets tweaked
3561 accordingly. */
3562
3563 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
3564 && partial_len < MIPS32_REGSIZE
3565 && (typecode == TYPE_CODE_STRUCT
3566 || typecode == TYPE_CODE_UNION))
3567 regval <<= ((MIPS32_REGSIZE - partial_len)
3568 * TARGET_CHAR_BIT);
3569
3570 if (mips_debug)
3571 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3572 argreg,
3573 phex (regval, MIPS32_REGSIZE));
3574 regcache_cooked_write_unsigned (regcache, argreg, regval);
3575 argreg++;
3576
3577 /* Prevent subsequent floating point arguments from
3578 being passed in floating point registers. */
3579 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3580 }
3581
3582 len -= partial_len;
3583 val += partial_len;
3584
3585 /* Compute the the offset into the stack at which we
3586 will copy the next parameter.
3587
3588 In older ABIs, the caller reserved space for
3589 registers that contained arguments. This was loosely
3590 refered to as their "home". Consequently, space is
3591 always allocated. */
3592
3593 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
3594 }
3595 }
3596 if (mips_debug)
3597 fprintf_unfiltered (gdb_stdlog, "\n");
3598 }
3599
3600 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3601
3602 /* Return adjusted stack pointer. */
3603 return sp;
3604 }
3605
3606 static enum return_value_convention
3607 mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
3608 struct regcache *regcache,
3609 gdb_byte *readbuf, const gdb_byte *writebuf)
3610 {
3611 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3612
3613 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3614 || TYPE_CODE (type) == TYPE_CODE_UNION
3615 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3616 return RETURN_VALUE_STRUCT_CONVENTION;
3617 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3618 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3619 {
3620 /* A single-precision floating-point value. It fits in the
3621 least significant part of FP0. */
3622 if (mips_debug)
3623 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3624 mips_xfer_register (gdbarch, regcache,
3625 gdbarch_num_regs (gdbarch)
3626 + mips_regnum (gdbarch)->fp0,
3627 TYPE_LENGTH (type),
3628 gdbarch_byte_order (gdbarch),
3629 readbuf, writebuf, 0);
3630 return RETURN_VALUE_REGISTER_CONVENTION;
3631 }
3632 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3633 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3634 {
3635 /* A double-precision floating-point value. The most
3636 significant part goes in FP1, and the least significant in
3637 FP0. */
3638 if (mips_debug)
3639 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
3640 switch (gdbarch_byte_order (gdbarch))
3641 {
3642 case BFD_ENDIAN_LITTLE:
3643 mips_xfer_register (gdbarch, regcache,
3644 gdbarch_num_regs (gdbarch)
3645 + mips_regnum (gdbarch)->fp0 +
3646 0, 4, gdbarch_byte_order (gdbarch),
3647 readbuf, writebuf, 0);
3648 mips_xfer_register (gdbarch, regcache,
3649 gdbarch_num_regs (gdbarch)
3650 + mips_regnum (gdbarch)->fp0 + 1,
3651 4, gdbarch_byte_order (gdbarch),
3652 readbuf, writebuf, 4);
3653 break;
3654 case BFD_ENDIAN_BIG:
3655 mips_xfer_register (gdbarch, regcache,
3656 gdbarch_num_regs (gdbarch)
3657 + mips_regnum (gdbarch)->fp0 + 1,
3658 4, gdbarch_byte_order (gdbarch),
3659 readbuf, writebuf, 0);
3660 mips_xfer_register (gdbarch, regcache,
3661 gdbarch_num_regs (gdbarch)
3662 + mips_regnum (gdbarch)->fp0 + 0,
3663 4, gdbarch_byte_order (gdbarch),
3664 readbuf, writebuf, 4);
3665 break;
3666 default:
3667 internal_error (__FILE__, __LINE__, _("bad switch"));
3668 }
3669 return RETURN_VALUE_REGISTER_CONVENTION;
3670 }
3671 #if 0
3672 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3673 && TYPE_NFIELDS (type) <= 2
3674 && TYPE_NFIELDS (type) >= 1
3675 && ((TYPE_NFIELDS (type) == 1
3676 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3677 == TYPE_CODE_FLT))
3678 || (TYPE_NFIELDS (type) == 2
3679 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3680 == TYPE_CODE_FLT)
3681 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3682 == TYPE_CODE_FLT)))
3683 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3684 {
3685 /* A struct that contains one or two floats. Each value is part
3686 in the least significant part of their floating point
3687 register.. */
3688 gdb_byte reg[MAX_REGISTER_SIZE];
3689 int regnum;
3690 int field;
3691 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
3692 field < TYPE_NFIELDS (type); field++, regnum += 2)
3693 {
3694 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3695 / TARGET_CHAR_BIT);
3696 if (mips_debug)
3697 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3698 offset);
3699 mips_xfer_register (gdbarch, regcache,
3700 gdbarch_num_regs (gdbarch) + regnum,
3701 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3702 gdbarch_byte_order (gdbarch),
3703 readbuf, writebuf, offset);
3704 }
3705 return RETURN_VALUE_REGISTER_CONVENTION;
3706 }
3707 #endif
3708 #if 0
3709 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3710 || TYPE_CODE (type) == TYPE_CODE_UNION)
3711 {
3712 /* A structure or union. Extract the left justified value,
3713 regardless of the byte order. I.e. DO NOT USE
3714 mips_xfer_lower. */
3715 int offset;
3716 int regnum;
3717 for (offset = 0, regnum = MIPS_V0_REGNUM;
3718 offset < TYPE_LENGTH (type);
3719 offset += register_size (gdbarch, regnum), regnum++)
3720 {
3721 int xfer = register_size (gdbarch, regnum);
3722 if (offset + xfer > TYPE_LENGTH (type))
3723 xfer = TYPE_LENGTH (type) - offset;
3724 if (mips_debug)
3725 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3726 offset, xfer, regnum);
3727 mips_xfer_register (gdbarch, regcache,
3728 gdbarch_num_regs (gdbarch) + regnum, xfer,
3729 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3730 }
3731 return RETURN_VALUE_REGISTER_CONVENTION;
3732 }
3733 #endif
3734 else
3735 {
3736 /* A scalar extract each part but least-significant-byte
3737 justified. o32 thinks registers are 4 byte, regardless of
3738 the ISA. */
3739 int offset;
3740 int regnum;
3741 for (offset = 0, regnum = MIPS_V0_REGNUM;
3742 offset < TYPE_LENGTH (type);
3743 offset += MIPS32_REGSIZE, regnum++)
3744 {
3745 int xfer = MIPS32_REGSIZE;
3746 if (offset + xfer > TYPE_LENGTH (type))
3747 xfer = TYPE_LENGTH (type) - offset;
3748 if (mips_debug)
3749 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3750 offset, xfer, regnum);
3751 mips_xfer_register (gdbarch, regcache,
3752 gdbarch_num_regs (gdbarch) + regnum, xfer,
3753 gdbarch_byte_order (gdbarch),
3754 readbuf, writebuf, offset);
3755 }
3756 return RETURN_VALUE_REGISTER_CONVENTION;
3757 }
3758 }
3759
3760 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
3761 ABI. */
3762
3763 static CORE_ADDR
3764 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3765 struct regcache *regcache, CORE_ADDR bp_addr,
3766 int nargs,
3767 struct value **args, CORE_ADDR sp,
3768 int struct_return, CORE_ADDR struct_addr)
3769 {
3770 int argreg;
3771 int float_argreg;
3772 int argnum;
3773 int len = 0;
3774 int stack_offset = 0;
3775 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3776 CORE_ADDR func_addr = find_function_addr (function, NULL);
3777
3778 /* For shared libraries, "t9" needs to point at the function
3779 address. */
3780 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3781
3782 /* Set the return address register to point to the entry point of
3783 the program, where a breakpoint lies in wait. */
3784 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3785
3786 /* First ensure that the stack and structure return address (if any)
3787 are properly aligned. The stack has to be at least 64-bit
3788 aligned even on 32-bit machines, because doubles must be 64-bit
3789 aligned. For n32 and n64, stack frames need to be 128-bit
3790 aligned, so we round to this widest known alignment. */
3791
3792 sp = align_down (sp, 16);
3793 struct_addr = align_down (struct_addr, 16);
3794
3795 /* Now make space on the stack for the args. */
3796 for (argnum = 0; argnum < nargs; argnum++)
3797 {
3798 struct type *arg_type = check_typedef (value_type (args[argnum]));
3799 int arglen = TYPE_LENGTH (arg_type);
3800
3801 /* Allocate space on the stack. */
3802 len += align_up (arglen, MIPS64_REGSIZE);
3803 }
3804 sp -= align_up (len, 16);
3805
3806 if (mips_debug)
3807 fprintf_unfiltered (gdb_stdlog,
3808 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3809 paddr_nz (sp), (long) align_up (len, 16));
3810
3811 /* Initialize the integer and float register pointers. */
3812 argreg = MIPS_A0_REGNUM;
3813 float_argreg = mips_fpa0_regnum (gdbarch);
3814
3815 /* The struct_return pointer occupies the first parameter-passing reg. */
3816 if (struct_return)
3817 {
3818 if (mips_debug)
3819 fprintf_unfiltered (gdb_stdlog,
3820 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
3821 argreg, paddr_nz (struct_addr));
3822 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
3823 stack_offset += MIPS64_REGSIZE;
3824 }
3825
3826 /* Now load as many as possible of the first arguments into
3827 registers, and push the rest onto the stack. Loop thru args
3828 from first to last. */
3829 for (argnum = 0; argnum < nargs; argnum++)
3830 {
3831 const gdb_byte *val;
3832 struct value *arg = args[argnum];
3833 struct type *arg_type = check_typedef (value_type (arg));
3834 int len = TYPE_LENGTH (arg_type);
3835 enum type_code typecode = TYPE_CODE (arg_type);
3836
3837 if (mips_debug)
3838 fprintf_unfiltered (gdb_stdlog,
3839 "mips_o64_push_dummy_call: %d len=%d type=%d",
3840 argnum + 1, len, (int) typecode);
3841
3842 val = value_contents (arg);
3843
3844 /* Floating point arguments passed in registers have to be
3845 treated specially. On 32-bit architectures, doubles
3846 are passed in register pairs; the even register gets
3847 the low word, and the odd register gets the high word.
3848 On O32/O64, the first two floating point arguments are
3849 also copied to general registers, because MIPS16 functions
3850 don't use float registers for arguments. This duplication of
3851 arguments in general registers can't hurt non-MIPS16 functions
3852 because those registers are normally skipped. */
3853
3854 if (fp_register_arg_p (typecode, arg_type)
3855 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3856 {
3857 LONGEST regval = extract_unsigned_integer (val, len);
3858 if (mips_debug)
3859 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3860 float_argreg, phex (regval, len));
3861 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3862 if (mips_debug)
3863 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3864 argreg, phex (regval, len));
3865 regcache_cooked_write_unsigned (regcache, argreg, regval);
3866 argreg++;
3867 /* Reserve space for the FP register. */
3868 stack_offset += align_up (len, MIPS64_REGSIZE);
3869 }
3870 else
3871 {
3872 /* Copy the argument to general registers or the stack in
3873 register-sized pieces. Large arguments are split between
3874 registers and stack. */
3875 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
3876 are treated specially: Irix cc passes them in registers
3877 where gcc sometimes puts them on the stack. For maximum
3878 compatibility, we will put them in both places. */
3879 int odd_sized_struct = (len > MIPS64_REGSIZE
3880 && len % MIPS64_REGSIZE != 0);
3881 while (len > 0)
3882 {
3883 /* Remember if the argument was written to the stack. */
3884 int stack_used_p = 0;
3885 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
3886
3887 if (mips_debug)
3888 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3889 partial_len);
3890
3891 /* Write this portion of the argument to the stack. */
3892 if (argreg > MIPS_LAST_ARG_REGNUM
3893 || odd_sized_struct)
3894 {
3895 /* Should shorter than int integer values be
3896 promoted to int before being stored? */
3897 int longword_offset = 0;
3898 CORE_ADDR addr;
3899 stack_used_p = 1;
3900 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
3901 {
3902 if ((typecode == TYPE_CODE_INT
3903 || typecode == TYPE_CODE_PTR
3904 || typecode == TYPE_CODE_FLT)
3905 && len <= 4)
3906 longword_offset = MIPS64_REGSIZE - len;
3907 }
3908
3909 if (mips_debug)
3910 {
3911 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3912 paddr_nz (stack_offset));
3913 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3914 paddr_nz (longword_offset));
3915 }
3916
3917 addr = sp + stack_offset + longword_offset;
3918
3919 if (mips_debug)
3920 {
3921 int i;
3922 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3923 paddr_nz (addr));
3924 for (i = 0; i < partial_len; i++)
3925 {
3926 fprintf_unfiltered (gdb_stdlog, "%02x",
3927 val[i] & 0xff);
3928 }
3929 }
3930 write_memory (addr, val, partial_len);
3931 }
3932
3933 /* Note!!! This is NOT an else clause. Odd sized
3934 structs may go thru BOTH paths. */
3935 /* Write this portion of the argument to a general
3936 purpose register. */
3937 if (argreg <= MIPS_LAST_ARG_REGNUM)
3938 {
3939 LONGEST regval = extract_signed_integer (val, partial_len);
3940 /* Value may need to be sign extended, because
3941 mips_isa_regsize() != mips_abi_regsize(). */
3942
3943 /* A non-floating-point argument being passed in a
3944 general register. If a struct or union, and if
3945 the remaining length is smaller than the register
3946 size, we have to adjust the register value on
3947 big endian targets.
3948
3949 It does not seem to be necessary to do the
3950 same for integral types. */
3951
3952 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
3953 && partial_len < MIPS64_REGSIZE
3954 && (typecode == TYPE_CODE_STRUCT
3955 || typecode == TYPE_CODE_UNION))
3956 regval <<= ((MIPS64_REGSIZE - partial_len)
3957 * TARGET_CHAR_BIT);
3958
3959 if (mips_debug)
3960 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3961 argreg,
3962 phex (regval, MIPS64_REGSIZE));
3963 regcache_cooked_write_unsigned (regcache, argreg, regval);
3964 argreg++;
3965
3966 /* Prevent subsequent floating point arguments from
3967 being passed in floating point registers. */
3968 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3969 }
3970
3971 len -= partial_len;
3972 val += partial_len;
3973
3974 /* Compute the the offset into the stack at which we
3975 will copy the next parameter.
3976
3977 In older ABIs, the caller reserved space for
3978 registers that contained arguments. This was loosely
3979 refered to as their "home". Consequently, space is
3980 always allocated. */
3981
3982 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
3983 }
3984 }
3985 if (mips_debug)
3986 fprintf_unfiltered (gdb_stdlog, "\n");
3987 }
3988
3989 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3990
3991 /* Return adjusted stack pointer. */
3992 return sp;
3993 }
3994
3995 static enum return_value_convention
3996 mips_o64_return_value (struct gdbarch *gdbarch,
3997 struct type *type, struct regcache *regcache,
3998 gdb_byte *readbuf, const gdb_byte *writebuf)
3999 {
4000 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4001
4002 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4003 || TYPE_CODE (type) == TYPE_CODE_UNION
4004 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
4005 return RETURN_VALUE_STRUCT_CONVENTION;
4006 else if (fp_register_arg_p (TYPE_CODE (type), type))
4007 {
4008 /* A floating-point value. It fits in the least significant
4009 part of FP0. */
4010 if (mips_debug)
4011 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4012 mips_xfer_register (gdbarch, regcache,
4013 gdbarch_num_regs (gdbarch)
4014 + mips_regnum (gdbarch)->fp0,
4015 TYPE_LENGTH (type),
4016 gdbarch_byte_order (gdbarch),
4017 readbuf, writebuf, 0);
4018 return RETURN_VALUE_REGISTER_CONVENTION;
4019 }
4020 else
4021 {
4022 /* A scalar extract each part but least-significant-byte
4023 justified. */
4024 int offset;
4025 int regnum;
4026 for (offset = 0, regnum = MIPS_V0_REGNUM;
4027 offset < TYPE_LENGTH (type);
4028 offset += MIPS64_REGSIZE, regnum++)
4029 {
4030 int xfer = MIPS64_REGSIZE;
4031 if (offset + xfer > TYPE_LENGTH (type))
4032 xfer = TYPE_LENGTH (type) - offset;
4033 if (mips_debug)
4034 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4035 offset, xfer, regnum);
4036 mips_xfer_register (gdbarch, regcache,
4037 gdbarch_num_regs (gdbarch) + regnum,
4038 xfer, gdbarch_byte_order (gdbarch),
4039 readbuf, writebuf, offset);
4040 }
4041 return RETURN_VALUE_REGISTER_CONVENTION;
4042 }
4043 }
4044
4045 /* Floating point register management.
4046
4047 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
4048 64bit operations, these early MIPS cpus treat fp register pairs
4049 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
4050 registers and offer a compatibility mode that emulates the MIPS2 fp
4051 model. When operating in MIPS2 fp compat mode, later cpu's split
4052 double precision floats into two 32-bit chunks and store them in
4053 consecutive fp regs. To display 64-bit floats stored in this
4054 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
4055 Throw in user-configurable endianness and you have a real mess.
4056
4057 The way this works is:
4058 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
4059 double-precision value will be split across two logical registers.
4060 The lower-numbered logical register will hold the low-order bits,
4061 regardless of the processor's endianness.
4062 - If we are on a 64-bit processor, and we are looking for a
4063 single-precision value, it will be in the low ordered bits
4064 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
4065 save slot in memory.
4066 - If we are in 64-bit mode, everything is straightforward.
4067
4068 Note that this code only deals with "live" registers at the top of the
4069 stack. We will attempt to deal with saved registers later, when
4070 the raw/cooked register interface is in place. (We need a general
4071 interface that can deal with dynamic saved register sizes -- fp
4072 regs could be 32 bits wide in one frame and 64 on the frame above
4073 and below). */
4074
4075 static struct type *
4076 mips_float_register_type (void)
4077 {
4078 return builtin_type_ieee_single;
4079 }
4080
4081 static struct type *
4082 mips_double_register_type (void)
4083 {
4084 return builtin_type_ieee_double;
4085 }
4086
4087 /* Copy a 32-bit single-precision value from the current frame
4088 into rare_buffer. */
4089
4090 static void
4091 mips_read_fp_register_single (struct frame_info *frame, int regno,
4092 gdb_byte *rare_buffer)
4093 {
4094 struct gdbarch *gdbarch = get_frame_arch (frame);
4095 int raw_size = register_size (gdbarch, regno);
4096 gdb_byte *raw_buffer = alloca (raw_size);
4097
4098 if (!frame_register_read (frame, regno, raw_buffer))
4099 error (_("can't read register %d (%s)"),
4100 regno, gdbarch_register_name (gdbarch, regno));
4101 if (raw_size == 8)
4102 {
4103 /* We have a 64-bit value for this register. Find the low-order
4104 32 bits. */
4105 int offset;
4106
4107 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4108 offset = 4;
4109 else
4110 offset = 0;
4111
4112 memcpy (rare_buffer, raw_buffer + offset, 4);
4113 }
4114 else
4115 {
4116 memcpy (rare_buffer, raw_buffer, 4);
4117 }
4118 }
4119
4120 /* Copy a 64-bit double-precision value from the current frame into
4121 rare_buffer. This may include getting half of it from the next
4122 register. */
4123
4124 static void
4125 mips_read_fp_register_double (struct frame_info *frame, int regno,
4126 gdb_byte *rare_buffer)
4127 {
4128 struct gdbarch *gdbarch = get_frame_arch (frame);
4129 int raw_size = register_size (gdbarch, regno);
4130
4131 if (raw_size == 8 && !mips2_fp_compat (frame))
4132 {
4133 /* We have a 64-bit value for this register, and we should use
4134 all 64 bits. */
4135 if (!frame_register_read (frame, regno, rare_buffer))
4136 error (_("can't read register %d (%s)"),
4137 regno, gdbarch_register_name (gdbarch, regno));
4138 }
4139 else
4140 {
4141 int rawnum = regno % gdbarch_num_regs (gdbarch);
4142
4143 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
4144 internal_error (__FILE__, __LINE__,
4145 _("mips_read_fp_register_double: bad access to "
4146 "odd-numbered FP register"));
4147
4148 /* mips_read_fp_register_single will find the correct 32 bits from
4149 each register. */
4150 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4151 {
4152 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4153 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
4154 }
4155 else
4156 {
4157 mips_read_fp_register_single (frame, regno, rare_buffer);
4158 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
4159 }
4160 }
4161 }
4162
4163 static void
4164 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4165 int regnum)
4166 { /* do values for FP (float) regs */
4167 struct gdbarch *gdbarch = get_frame_arch (frame);
4168 gdb_byte *raw_buffer;
4169 double doub, flt1; /* doubles extracted from raw hex data */
4170 int inv1, inv2;
4171
4172 raw_buffer = alloca (2 * register_size (gdbarch, mips_regnum (gdbarch)->fp0));
4173
4174 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
4175 fprintf_filtered (file, "%*s",
4176 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
4177 "");
4178
4179 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
4180 {
4181 /* 4-byte registers: Print hex and floating. Also print even
4182 numbered registers as doubles. */
4183 mips_read_fp_register_single (frame, regnum, raw_buffer);
4184 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4185
4186 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
4187 file);
4188
4189 fprintf_filtered (file, " flt: ");
4190 if (inv1)
4191 fprintf_filtered (file, " <invalid float> ");
4192 else
4193 fprintf_filtered (file, "%-17.9g", flt1);
4194
4195 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
4196 {
4197 mips_read_fp_register_double (frame, regnum, raw_buffer);
4198 doub = unpack_double (mips_double_register_type (), raw_buffer,
4199 &inv2);
4200
4201 fprintf_filtered (file, " dbl: ");
4202 if (inv2)
4203 fprintf_filtered (file, "<invalid double>");
4204 else
4205 fprintf_filtered (file, "%-24.17g", doub);
4206 }
4207 }
4208 else
4209 {
4210 /* Eight byte registers: print each one as hex, float and double. */
4211 mips_read_fp_register_single (frame, regnum, raw_buffer);
4212 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4213
4214 mips_read_fp_register_double (frame, regnum, raw_buffer);
4215 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4216
4217
4218 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
4219 file);
4220
4221 fprintf_filtered (file, " flt: ");
4222 if (inv1)
4223 fprintf_filtered (file, "<invalid float>");
4224 else
4225 fprintf_filtered (file, "%-17.9g", flt1);
4226
4227 fprintf_filtered (file, " dbl: ");
4228 if (inv2)
4229 fprintf_filtered (file, "<invalid double>");
4230 else
4231 fprintf_filtered (file, "%-24.17g", doub);
4232 }
4233 }
4234
4235 static void
4236 mips_print_register (struct ui_file *file, struct frame_info *frame,
4237 int regnum)
4238 {
4239 struct gdbarch *gdbarch = get_frame_arch (frame);
4240 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4241 int offset;
4242
4243 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4244 {
4245 mips_print_fp_register (file, frame, regnum);
4246 return;
4247 }
4248
4249 /* Get the data in raw format. */
4250 if (!frame_register_read (frame, regnum, raw_buffer))
4251 {
4252 fprintf_filtered (file, "%s: [Invalid]",
4253 gdbarch_register_name (gdbarch, regnum));
4254 return;
4255 }
4256
4257 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
4258
4259 /* The problem with printing numeric register names (r26, etc.) is that
4260 the user can't use them on input. Probably the best solution is to
4261 fix it so that either the numeric or the funky (a2, etc.) names
4262 are accepted on input. */
4263 if (regnum < MIPS_NUMREGS)
4264 fprintf_filtered (file, "(r%d): ", regnum);
4265 else
4266 fprintf_filtered (file, ": ");
4267
4268 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4269 offset =
4270 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
4271 else
4272 offset = 0;
4273
4274 print_scalar_formatted (raw_buffer + offset,
4275 register_type (gdbarch, regnum), 'x', 0,
4276 file);
4277 }
4278
4279 /* Replacement for generic do_registers_info.
4280 Print regs in pretty columns. */
4281
4282 static int
4283 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4284 int regnum)
4285 {
4286 fprintf_filtered (file, " ");
4287 mips_print_fp_register (file, frame, regnum);
4288 fprintf_filtered (file, "\n");
4289 return regnum + 1;
4290 }
4291
4292
4293 /* Print a row's worth of GP (int) registers, with name labels above */
4294
4295 static int
4296 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4297 int start_regnum)
4298 {
4299 struct gdbarch *gdbarch = get_frame_arch (frame);
4300 /* do values for GP (int) regs */
4301 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4302 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
4303 int col, byte;
4304 int regnum;
4305
4306 /* For GP registers, we print a separate row of names above the vals */
4307 for (col = 0, regnum = start_regnum;
4308 col < ncols && regnum < gdbarch_num_regs (gdbarch)
4309 + gdbarch_num_pseudo_regs (gdbarch);
4310 regnum++)
4311 {
4312 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
4313 continue; /* unused register */
4314 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4315 TYPE_CODE_FLT)
4316 break; /* end the row: reached FP register */
4317 /* Large registers are handled separately. */
4318 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
4319 {
4320 if (col > 0)
4321 break; /* End the row before this register. */
4322
4323 /* Print this register on a row by itself. */
4324 mips_print_register (file, frame, regnum);
4325 fprintf_filtered (file, "\n");
4326 return regnum + 1;
4327 }
4328 if (col == 0)
4329 fprintf_filtered (file, " ");
4330 fprintf_filtered (file,
4331 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
4332 gdbarch_register_name (gdbarch, regnum));
4333 col++;
4334 }
4335
4336 if (col == 0)
4337 return regnum;
4338
4339 /* print the R0 to R31 names */
4340 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
4341 fprintf_filtered (file, "\n R%-4d",
4342 start_regnum % gdbarch_num_regs (gdbarch));
4343 else
4344 fprintf_filtered (file, "\n ");
4345
4346 /* now print the values in hex, 4 or 8 to the row */
4347 for (col = 0, regnum = start_regnum;
4348 col < ncols && regnum < gdbarch_num_regs (gdbarch)
4349 + gdbarch_num_pseudo_regs (gdbarch);
4350 regnum++)
4351 {
4352 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
4353 continue; /* unused register */
4354 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4355 TYPE_CODE_FLT)
4356 break; /* end row: reached FP register */
4357 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
4358 break; /* End row: large register. */
4359
4360 /* OK: get the data in raw format. */
4361 if (!frame_register_read (frame, regnum, raw_buffer))
4362 error (_("can't read register %d (%s)"),
4363 regnum, gdbarch_register_name (gdbarch, regnum));
4364 /* pad small registers */
4365 for (byte = 0;
4366 byte < (mips_abi_regsize (gdbarch)
4367 - register_size (gdbarch, regnum)); byte++)
4368 printf_filtered (" ");
4369 /* Now print the register value in hex, endian order. */
4370 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4371 for (byte =
4372 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
4373 byte < register_size (gdbarch, regnum); byte++)
4374 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4375 else
4376 for (byte = register_size (gdbarch, regnum) - 1;
4377 byte >= 0; byte--)
4378 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4379 fprintf_filtered (file, " ");
4380 col++;
4381 }
4382 if (col > 0) /* ie. if we actually printed anything... */
4383 fprintf_filtered (file, "\n");
4384
4385 return regnum;
4386 }
4387
4388 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4389
4390 static void
4391 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4392 struct frame_info *frame, int regnum, int all)
4393 {
4394 if (regnum != -1) /* do one specified register */
4395 {
4396 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
4397 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
4398 error (_("Not a valid register for the current processor type"));
4399
4400 mips_print_register (file, frame, regnum);
4401 fprintf_filtered (file, "\n");
4402 }
4403 else
4404 /* do all (or most) registers */
4405 {
4406 regnum = gdbarch_num_regs (gdbarch);
4407 while (regnum < gdbarch_num_regs (gdbarch)
4408 + gdbarch_num_pseudo_regs (gdbarch))
4409 {
4410 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4411 TYPE_CODE_FLT)
4412 {
4413 if (all) /* true for "INFO ALL-REGISTERS" command */
4414 regnum = print_fp_register_row (file, frame, regnum);
4415 else
4416 regnum += MIPS_NUMREGS; /* skip floating point regs */
4417 }
4418 else
4419 regnum = print_gp_register_row (file, frame, regnum);
4420 }
4421 }
4422 }
4423
4424 /* Is this a branch with a delay slot? */
4425
4426 static int
4427 is_delayed (unsigned long insn)
4428 {
4429 int i;
4430 for (i = 0; i < NUMOPCODES; ++i)
4431 if (mips_opcodes[i].pinfo != INSN_MACRO
4432 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4433 break;
4434 return (i < NUMOPCODES
4435 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4436 | INSN_COND_BRANCH_DELAY
4437 | INSN_COND_BRANCH_LIKELY)));
4438 }
4439
4440 int
4441 mips_single_step_through_delay (struct gdbarch *gdbarch,
4442 struct frame_info *frame)
4443 {
4444 CORE_ADDR pc = get_frame_pc (frame);
4445 gdb_byte buf[MIPS_INSN32_SIZE];
4446
4447 /* There is no branch delay slot on MIPS16. */
4448 if (mips_pc_is_mips16 (pc))
4449 return 0;
4450
4451 if (!breakpoint_here_p (pc + 4))
4452 return 0;
4453
4454 if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
4455 /* If error reading memory, guess that it is not a delayed
4456 branch. */
4457 return 0;
4458 return is_delayed (extract_unsigned_integer (buf, sizeof buf));
4459 }
4460
4461 /* To skip prologues, I use this predicate. Returns either PC itself
4462 if the code at PC does not look like a function prologue; otherwise
4463 returns an address that (if we're lucky) follows the prologue. If
4464 LENIENT, then we must skip everything which is involved in setting
4465 up the frame (it's OK to skip more, just so long as we don't skip
4466 anything which might clobber the registers which are being saved.
4467 We must skip more in the case where part of the prologue is in the
4468 delay slot of a non-prologue instruction). */
4469
4470 static CORE_ADDR
4471 mips_skip_prologue (CORE_ADDR pc)
4472 {
4473 CORE_ADDR limit_pc;
4474 CORE_ADDR func_addr;
4475
4476 /* See if we can determine the end of the prologue via the symbol table.
4477 If so, then return either PC, or the PC after the prologue, whichever
4478 is greater. */
4479 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4480 {
4481 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
4482 if (post_prologue_pc != 0)
4483 return max (pc, post_prologue_pc);
4484 }
4485
4486 /* Can't determine prologue from the symbol table, need to examine
4487 instructions. */
4488
4489 /* Find an upper limit on the function prologue using the debug
4490 information. If the debug information could not be used to provide
4491 that bound, then use an arbitrary large number as the upper bound. */
4492 limit_pc = skip_prologue_using_sal (pc);
4493 if (limit_pc == 0)
4494 limit_pc = pc + 100; /* Magic. */
4495
4496 if (mips_pc_is_mips16 (pc))
4497 return mips16_scan_prologue (pc, limit_pc, NULL, NULL);
4498 else
4499 return mips32_scan_prologue (pc, limit_pc, NULL, NULL);
4500 }
4501
4502 /* Check whether the PC is in a function epilogue (32-bit version).
4503 This is a helper function for mips_in_function_epilogue_p. */
4504 static int
4505 mips32_in_function_epilogue_p (CORE_ADDR pc)
4506 {
4507 CORE_ADDR func_addr = 0, func_end = 0;
4508
4509 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4510 {
4511 /* The MIPS epilogue is max. 12 bytes long. */
4512 CORE_ADDR addr = func_end - 12;
4513
4514 if (addr < func_addr + 4)
4515 addr = func_addr + 4;
4516 if (pc < addr)
4517 return 0;
4518
4519 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
4520 {
4521 unsigned long high_word;
4522 unsigned long inst;
4523
4524 inst = mips_fetch_instruction (pc);
4525 high_word = (inst >> 16) & 0xffff;
4526
4527 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
4528 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
4529 && inst != 0x03e00008 /* jr $ra */
4530 && inst != 0x00000000) /* nop */
4531 return 0;
4532 }
4533
4534 return 1;
4535 }
4536
4537 return 0;
4538 }
4539
4540 /* Check whether the PC is in a function epilogue (16-bit version).
4541 This is a helper function for mips_in_function_epilogue_p. */
4542 static int
4543 mips16_in_function_epilogue_p (CORE_ADDR pc)
4544 {
4545 CORE_ADDR func_addr = 0, func_end = 0;
4546
4547 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4548 {
4549 /* The MIPS epilogue is max. 12 bytes long. */
4550 CORE_ADDR addr = func_end - 12;
4551
4552 if (addr < func_addr + 4)
4553 addr = func_addr + 4;
4554 if (pc < addr)
4555 return 0;
4556
4557 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
4558 {
4559 unsigned short inst;
4560
4561 inst = mips_fetch_instruction (pc);
4562
4563 if ((inst & 0xf800) == 0xf000) /* extend */
4564 continue;
4565
4566 if (inst != 0x6300 /* addiu $sp,offset */
4567 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
4568 && inst != 0xe820 /* jr $ra */
4569 && inst != 0xe8a0 /* jrc $ra */
4570 && inst != 0x6500) /* nop */
4571 return 0;
4572 }
4573
4574 return 1;
4575 }
4576
4577 return 0;
4578 }
4579
4580 /* The epilogue is defined here as the area at the end of a function,
4581 after an instruction which destroys the function's stack frame. */
4582 static int
4583 mips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
4584 {
4585 if (mips_pc_is_mips16 (pc))
4586 return mips16_in_function_epilogue_p (pc);
4587 else
4588 return mips32_in_function_epilogue_p (pc);
4589 }
4590
4591 /* Root of all "set mips "/"show mips " commands. This will eventually be
4592 used for all MIPS-specific commands. */
4593
4594 static void
4595 show_mips_command (char *args, int from_tty)
4596 {
4597 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4598 }
4599
4600 static void
4601 set_mips_command (char *args, int from_tty)
4602 {
4603 printf_unfiltered
4604 ("\"set mips\" must be followed by an appropriate subcommand.\n");
4605 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4606 }
4607
4608 /* Commands to show/set the MIPS FPU type. */
4609
4610 static void
4611 show_mipsfpu_command (char *args, int from_tty)
4612 {
4613 char *fpu;
4614
4615 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
4616 {
4617 printf_unfiltered
4618 ("The MIPS floating-point coprocessor is unknown "
4619 "because the current architecture is not MIPS.\n");
4620 return;
4621 }
4622
4623 switch (MIPS_FPU_TYPE)
4624 {
4625 case MIPS_FPU_SINGLE:
4626 fpu = "single-precision";
4627 break;
4628 case MIPS_FPU_DOUBLE:
4629 fpu = "double-precision";
4630 break;
4631 case MIPS_FPU_NONE:
4632 fpu = "absent (none)";
4633 break;
4634 default:
4635 internal_error (__FILE__, __LINE__, _("bad switch"));
4636 }
4637 if (mips_fpu_type_auto)
4638 printf_unfiltered
4639 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4640 fpu);
4641 else
4642 printf_unfiltered
4643 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
4644 }
4645
4646
4647 static void
4648 set_mipsfpu_command (char *args, int from_tty)
4649 {
4650 printf_unfiltered
4651 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
4652 show_mipsfpu_command (args, from_tty);
4653 }
4654
4655 static void
4656 set_mipsfpu_single_command (char *args, int from_tty)
4657 {
4658 struct gdbarch_info info;
4659 gdbarch_info_init (&info);
4660 mips_fpu_type = MIPS_FPU_SINGLE;
4661 mips_fpu_type_auto = 0;
4662 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4663 instead of relying on globals. Doing that would let generic code
4664 handle the search for this specific architecture. */
4665 if (!gdbarch_update_p (info))
4666 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4667 }
4668
4669 static void
4670 set_mipsfpu_double_command (char *args, int from_tty)
4671 {
4672 struct gdbarch_info info;
4673 gdbarch_info_init (&info);
4674 mips_fpu_type = MIPS_FPU_DOUBLE;
4675 mips_fpu_type_auto = 0;
4676 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4677 instead of relying on globals. Doing that would let generic code
4678 handle the search for this specific architecture. */
4679 if (!gdbarch_update_p (info))
4680 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4681 }
4682
4683 static void
4684 set_mipsfpu_none_command (char *args, int from_tty)
4685 {
4686 struct gdbarch_info info;
4687 gdbarch_info_init (&info);
4688 mips_fpu_type = MIPS_FPU_NONE;
4689 mips_fpu_type_auto = 0;
4690 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4691 instead of relying on globals. Doing that would let generic code
4692 handle the search for this specific architecture. */
4693 if (!gdbarch_update_p (info))
4694 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4695 }
4696
4697 static void
4698 set_mipsfpu_auto_command (char *args, int from_tty)
4699 {
4700 mips_fpu_type_auto = 1;
4701 }
4702
4703 /* Attempt to identify the particular processor model by reading the
4704 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
4705 the relevant processor still exists (it dates back to '94) and
4706 secondly this is not the way to do this. The processor type should
4707 be set by forcing an architecture change. */
4708
4709 void
4710 deprecated_mips_set_processor_regs_hack (void)
4711 {
4712 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4713 ULONGEST prid;
4714
4715 regcache_cooked_read_unsigned (get_current_regcache (),
4716 MIPS_PRID_REGNUM, &prid);
4717 if ((prid & ~0xf) == 0x700)
4718 tdep->mips_processor_reg_names = mips_r3041_reg_names;
4719 }
4720
4721 /* Just like reinit_frame_cache, but with the right arguments to be
4722 callable as an sfunc. */
4723
4724 static void
4725 reinit_frame_cache_sfunc (char *args, int from_tty,
4726 struct cmd_list_element *c)
4727 {
4728 reinit_frame_cache ();
4729 }
4730
4731 static int
4732 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
4733 {
4734 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4735
4736 /* FIXME: cagney/2003-06-26: Is this even necessary? The
4737 disassembler needs to be able to locally determine the ISA, and
4738 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
4739 work. */
4740 if (mips_pc_is_mips16 (memaddr))
4741 info->mach = bfd_mach_mips16;
4742
4743 /* Round down the instruction address to the appropriate boundary. */
4744 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
4745
4746 /* Set the disassembler options. */
4747 if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64)
4748 {
4749 /* Set up the disassembler info, so that we get the right
4750 register names from libopcodes. */
4751 if (tdep->mips_abi == MIPS_ABI_N32)
4752 info->disassembler_options = "gpr-names=n32";
4753 else
4754 info->disassembler_options = "gpr-names=64";
4755 info->flavour = bfd_target_elf_flavour;
4756 }
4757 else
4758 /* This string is not recognized explicitly by the disassembler,
4759 but it tells the disassembler to not try to guess the ABI from
4760 the bfd elf headers, such that, if the user overrides the ABI
4761 of a program linked as NewABI, the disassembly will follow the
4762 register naming conventions specified by the user. */
4763 info->disassembler_options = "gpr-names=32";
4764
4765 /* Call the appropriate disassembler based on the target endian-ness. */
4766 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4767 return print_insn_big_mips (memaddr, info);
4768 else
4769 return print_insn_little_mips (memaddr, info);
4770 }
4771
4772 /* This function implements gdbarch_breakpoint_from_pc. It uses the program
4773 counter value to determine whether a 16- or 32-bit breakpoint should be used.
4774 It returns a pointer to a string of bytes that encode a breakpoint
4775 instruction, stores the length of the string to *lenptr, and adjusts pc (if
4776 necessary) to point to the actual memory location where the breakpoint
4777 should be inserted. */
4778
4779 static const gdb_byte *
4780 mips_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
4781 {
4782 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4783 {
4784 if (mips_pc_is_mips16 (*pcptr))
4785 {
4786 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
4787 *pcptr = unmake_mips16_addr (*pcptr);
4788 *lenptr = sizeof (mips16_big_breakpoint);
4789 return mips16_big_breakpoint;
4790 }
4791 else
4792 {
4793 /* The IDT board uses an unusual breakpoint value, and
4794 sometimes gets confused when it sees the usual MIPS
4795 breakpoint instruction. */
4796 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
4797 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
4798 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
4799
4800 *lenptr = sizeof (big_breakpoint);
4801
4802 if (strcmp (target_shortname, "mips") == 0)
4803 return idt_big_breakpoint;
4804 else if (strcmp (target_shortname, "ddb") == 0
4805 || strcmp (target_shortname, "pmon") == 0
4806 || strcmp (target_shortname, "lsi") == 0)
4807 return pmon_big_breakpoint;
4808 else
4809 return big_breakpoint;
4810 }
4811 }
4812 else
4813 {
4814 if (mips_pc_is_mips16 (*pcptr))
4815 {
4816 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
4817 *pcptr = unmake_mips16_addr (*pcptr);
4818 *lenptr = sizeof (mips16_little_breakpoint);
4819 return mips16_little_breakpoint;
4820 }
4821 else
4822 {
4823 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
4824 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
4825 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
4826
4827 *lenptr = sizeof (little_breakpoint);
4828
4829 if (strcmp (target_shortname, "mips") == 0)
4830 return idt_little_breakpoint;
4831 else if (strcmp (target_shortname, "ddb") == 0
4832 || strcmp (target_shortname, "pmon") == 0
4833 || strcmp (target_shortname, "lsi") == 0)
4834 return pmon_little_breakpoint;
4835 else
4836 return little_breakpoint;
4837 }
4838 }
4839 }
4840
4841 /* If PC is in a mips16 call or return stub, return the address of the target
4842 PC, which is either the callee or the caller. There are several
4843 cases which must be handled:
4844
4845 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4846 target PC is in $31 ($ra).
4847 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4848 and the target PC is in $2.
4849 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4850 before the jal instruction, this is effectively a call stub
4851 and the the target PC is in $2. Otherwise this is effectively
4852 a return stub and the target PC is in $18.
4853
4854 See the source code for the stubs in gcc/config/mips/mips16.S for
4855 gory details. */
4856
4857 static CORE_ADDR
4858 mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
4859 {
4860 char *name;
4861 CORE_ADDR start_addr;
4862
4863 /* Find the starting address and name of the function containing the PC. */
4864 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
4865 return 0;
4866
4867 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4868 target PC is in $31 ($ra). */
4869 if (strcmp (name, "__mips16_ret_sf") == 0
4870 || strcmp (name, "__mips16_ret_df") == 0)
4871 return get_frame_register_signed (frame, MIPS_RA_REGNUM);
4872
4873 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
4874 {
4875 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4876 and the target PC is in $2. */
4877 if (name[19] >= '0' && name[19] <= '9')
4878 return get_frame_register_signed (frame, 2);
4879
4880 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4881 before the jal instruction, this is effectively a call stub
4882 and the the target PC is in $2. Otherwise this is effectively
4883 a return stub and the target PC is in $18. */
4884 else if (name[19] == 's' || name[19] == 'd')
4885 {
4886 if (pc == start_addr)
4887 {
4888 /* Check if the target of the stub is a compiler-generated
4889 stub. Such a stub for a function bar might have a name
4890 like __fn_stub_bar, and might look like this:
4891 mfc1 $4,$f13
4892 mfc1 $5,$f12
4893 mfc1 $6,$f15
4894 mfc1 $7,$f14
4895 la $1,bar (becomes a lui/addiu pair)
4896 jr $1
4897 So scan down to the lui/addi and extract the target
4898 address from those two instructions. */
4899
4900 CORE_ADDR target_pc = get_frame_register_signed (frame, 2);
4901 ULONGEST inst;
4902 int i;
4903
4904 /* See if the name of the target function is __fn_stub_*. */
4905 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
4906 0)
4907 return target_pc;
4908 if (strncmp (name, "__fn_stub_", 10) != 0
4909 && strcmp (name, "etext") != 0
4910 && strcmp (name, "_etext") != 0)
4911 return target_pc;
4912
4913 /* Scan through this _fn_stub_ code for the lui/addiu pair.
4914 The limit on the search is arbitrarily set to 20
4915 instructions. FIXME. */
4916 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
4917 {
4918 inst = mips_fetch_instruction (target_pc);
4919 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
4920 pc = (inst << 16) & 0xffff0000; /* high word */
4921 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
4922 return pc | (inst & 0xffff); /* low word */
4923 }
4924
4925 /* Couldn't find the lui/addui pair, so return stub address. */
4926 return target_pc;
4927 }
4928 else
4929 /* This is the 'return' part of a call stub. The return
4930 address is in $r18. */
4931 return get_frame_register_signed (frame, 18);
4932 }
4933 }
4934 return 0; /* not a stub */
4935 }
4936
4937 /* Convert a dbx stab register number (from `r' declaration) to a GDB
4938 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
4939
4940 static int
4941 mips_stab_reg_to_regnum (int num)
4942 {
4943 int regnum;
4944 if (num >= 0 && num < 32)
4945 regnum = num;
4946 else if (num >= 38 && num < 70)
4947 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
4948 else if (num == 70)
4949 regnum = mips_regnum (current_gdbarch)->hi;
4950 else if (num == 71)
4951 regnum = mips_regnum (current_gdbarch)->lo;
4952 else
4953 /* This will hopefully (eventually) provoke a warning. Should
4954 we be calling complaint() here? */
4955 return gdbarch_num_regs (current_gdbarch)
4956 + gdbarch_num_pseudo_regs (current_gdbarch);
4957 return gdbarch_num_regs (current_gdbarch) + regnum;
4958 }
4959
4960
4961 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
4962 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
4963
4964 static int
4965 mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
4966 {
4967 int regnum;
4968 if (num >= 0 && num < 32)
4969 regnum = num;
4970 else if (num >= 32 && num < 64)
4971 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
4972 else if (num == 64)
4973 regnum = mips_regnum (current_gdbarch)->hi;
4974 else if (num == 65)
4975 regnum = mips_regnum (current_gdbarch)->lo;
4976 else
4977 /* This will hopefully (eventually) provoke a warning. Should we
4978 be calling complaint() here? */
4979 return gdbarch_num_regs (current_gdbarch)
4980 + gdbarch_num_pseudo_regs (current_gdbarch);
4981 return gdbarch_num_regs (current_gdbarch) + regnum;
4982 }
4983
4984 static int
4985 mips_register_sim_regno (int regnum)
4986 {
4987 /* Only makes sense to supply raw registers. */
4988 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (current_gdbarch));
4989 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
4990 decide if it is valid. Should instead define a standard sim/gdb
4991 register numbering scheme. */
4992 if (gdbarch_register_name (current_gdbarch,
4993 gdbarch_num_regs
4994 (current_gdbarch) + regnum) != NULL
4995 && gdbarch_register_name (current_gdbarch,
4996 gdbarch_num_regs
4997 (current_gdbarch) + regnum)[0] != '\0')
4998 return regnum;
4999 else
5000 return LEGACY_SIM_REGNO_IGNORE;
5001 }
5002
5003
5004 /* Convert an integer into an address. Extracting the value signed
5005 guarantees a correctly sign extended address. */
5006
5007 static CORE_ADDR
5008 mips_integer_to_address (struct gdbarch *gdbarch,
5009 struct type *type, const gdb_byte *buf)
5010 {
5011 return (CORE_ADDR) extract_signed_integer (buf, TYPE_LENGTH (type));
5012 }
5013
5014 /* Dummy virtual frame pointer method. This is no more or less accurate
5015 than most other architectures; we just need to be explicit about it,
5016 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
5017 an assertion failure. */
5018
5019 static void
5020 mips_virtual_frame_pointer (struct gdbarch *gdbarch,
5021 CORE_ADDR pc, int *reg, LONGEST *offset)
5022 {
5023 *reg = MIPS_SP_REGNUM;
5024 *offset = 0;
5025 }
5026
5027 static void
5028 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5029 {
5030 enum mips_abi *abip = (enum mips_abi *) obj;
5031 const char *name = bfd_get_section_name (abfd, sect);
5032
5033 if (*abip != MIPS_ABI_UNKNOWN)
5034 return;
5035
5036 if (strncmp (name, ".mdebug.", 8) != 0)
5037 return;
5038
5039 if (strcmp (name, ".mdebug.abi32") == 0)
5040 *abip = MIPS_ABI_O32;
5041 else if (strcmp (name, ".mdebug.abiN32") == 0)
5042 *abip = MIPS_ABI_N32;
5043 else if (strcmp (name, ".mdebug.abi64") == 0)
5044 *abip = MIPS_ABI_N64;
5045 else if (strcmp (name, ".mdebug.abiO64") == 0)
5046 *abip = MIPS_ABI_O64;
5047 else if (strcmp (name, ".mdebug.eabi32") == 0)
5048 *abip = MIPS_ABI_EABI32;
5049 else if (strcmp (name, ".mdebug.eabi64") == 0)
5050 *abip = MIPS_ABI_EABI64;
5051 else
5052 warning (_("unsupported ABI %s."), name + 8);
5053 }
5054
5055 static void
5056 mips_find_long_section (bfd *abfd, asection *sect, void *obj)
5057 {
5058 int *lbp = (int *) obj;
5059 const char *name = bfd_get_section_name (abfd, sect);
5060
5061 if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
5062 *lbp = 32;
5063 else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
5064 *lbp = 64;
5065 else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
5066 warning (_("unrecognized .gcc_compiled_longXX"));
5067 }
5068
5069 static enum mips_abi
5070 global_mips_abi (void)
5071 {
5072 int i;
5073
5074 for (i = 0; mips_abi_strings[i] != NULL; i++)
5075 if (mips_abi_strings[i] == mips_abi_string)
5076 return (enum mips_abi) i;
5077
5078 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
5079 }
5080
5081 static void
5082 mips_register_g_packet_guesses (struct gdbarch *gdbarch)
5083 {
5084 /* If the size matches the set of 32-bit or 64-bit integer registers,
5085 assume that's what we've got. */
5086 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
5087 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
5088
5089 /* If the size matches the full set of registers GDB traditionally
5090 knows about, including floating point, for either 32-bit or
5091 64-bit, assume that's what we've got. */
5092 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
5093 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
5094
5095 /* Otherwise we don't have a useful guess. */
5096 }
5097
5098 static struct value *
5099 value_of_mips_user_reg (struct frame_info *frame, const void *baton)
5100 {
5101 const int *reg_p = baton;
5102 return value_of_register (*reg_p, frame);
5103 }
5104
5105 static struct gdbarch *
5106 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5107 {
5108 struct gdbarch *gdbarch;
5109 struct gdbarch_tdep *tdep;
5110 int elf_flags;
5111 enum mips_abi mips_abi, found_abi, wanted_abi;
5112 int i, num_regs;
5113 enum mips_fpu_type fpu_type;
5114 struct tdesc_arch_data *tdesc_data = NULL;
5115 int elf_fpu_type = 0;
5116
5117 /* Check any target description for validity. */
5118 if (tdesc_has_registers (info.target_desc))
5119 {
5120 static const char *const mips_gprs[] = {
5121 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
5122 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
5123 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
5124 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
5125 };
5126 static const char *const mips_fprs[] = {
5127 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
5128 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
5129 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
5130 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
5131 };
5132
5133 const struct tdesc_feature *feature;
5134 int valid_p;
5135
5136 feature = tdesc_find_feature (info.target_desc,
5137 "org.gnu.gdb.mips.cpu");
5138 if (feature == NULL)
5139 return NULL;
5140
5141 tdesc_data = tdesc_data_alloc ();
5142
5143 valid_p = 1;
5144 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
5145 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
5146 mips_gprs[i]);
5147
5148
5149 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5150 MIPS_EMBED_LO_REGNUM, "lo");
5151 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5152 MIPS_EMBED_HI_REGNUM, "hi");
5153 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5154 MIPS_EMBED_PC_REGNUM, "pc");
5155
5156 if (!valid_p)
5157 {
5158 tdesc_data_cleanup (tdesc_data);
5159 return NULL;
5160 }
5161
5162 feature = tdesc_find_feature (info.target_desc,
5163 "org.gnu.gdb.mips.cp0");
5164 if (feature == NULL)
5165 {
5166 tdesc_data_cleanup (tdesc_data);
5167 return NULL;
5168 }
5169
5170 valid_p = 1;
5171 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5172 MIPS_EMBED_BADVADDR_REGNUM,
5173 "badvaddr");
5174 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5175 MIPS_PS_REGNUM, "status");
5176 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5177 MIPS_EMBED_CAUSE_REGNUM, "cause");
5178
5179 if (!valid_p)
5180 {
5181 tdesc_data_cleanup (tdesc_data);
5182 return NULL;
5183 }
5184
5185 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
5186 backend is not prepared for that, though. */
5187 feature = tdesc_find_feature (info.target_desc,
5188 "org.gnu.gdb.mips.fpu");
5189 if (feature == NULL)
5190 {
5191 tdesc_data_cleanup (tdesc_data);
5192 return NULL;
5193 }
5194
5195 valid_p = 1;
5196 for (i = 0; i < 32; i++)
5197 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5198 i + MIPS_EMBED_FP0_REGNUM,
5199 mips_fprs[i]);
5200
5201 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5202 MIPS_EMBED_FP0_REGNUM + 32, "fcsr");
5203 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5204 MIPS_EMBED_FP0_REGNUM + 33, "fir");
5205
5206 if (!valid_p)
5207 {
5208 tdesc_data_cleanup (tdesc_data);
5209 return NULL;
5210 }
5211
5212 /* It would be nice to detect an attempt to use a 64-bit ABI
5213 when only 32-bit registers are provided. */
5214 }
5215
5216 /* First of all, extract the elf_flags, if available. */
5217 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5218 elf_flags = elf_elfheader (info.abfd)->e_flags;
5219 else if (arches != NULL)
5220 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
5221 else
5222 elf_flags = 0;
5223 if (gdbarch_debug)
5224 fprintf_unfiltered (gdb_stdlog,
5225 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
5226
5227 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5228 switch ((elf_flags & EF_MIPS_ABI))
5229 {
5230 case E_MIPS_ABI_O32:
5231 found_abi = MIPS_ABI_O32;
5232 break;
5233 case E_MIPS_ABI_O64:
5234 found_abi = MIPS_ABI_O64;
5235 break;
5236 case E_MIPS_ABI_EABI32:
5237 found_abi = MIPS_ABI_EABI32;
5238 break;
5239 case E_MIPS_ABI_EABI64:
5240 found_abi = MIPS_ABI_EABI64;
5241 break;
5242 default:
5243 if ((elf_flags & EF_MIPS_ABI2))
5244 found_abi = MIPS_ABI_N32;
5245 else
5246 found_abi = MIPS_ABI_UNKNOWN;
5247 break;
5248 }
5249
5250 /* GCC creates a pseudo-section whose name describes the ABI. */
5251 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5252 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
5253
5254 /* If we have no useful BFD information, use the ABI from the last
5255 MIPS architecture (if there is one). */
5256 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
5257 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5258
5259 /* Try the architecture for any hint of the correct ABI. */
5260 if (found_abi == MIPS_ABI_UNKNOWN
5261 && info.bfd_arch_info != NULL
5262 && info.bfd_arch_info->arch == bfd_arch_mips)
5263 {
5264 switch (info.bfd_arch_info->mach)
5265 {
5266 case bfd_mach_mips3900:
5267 found_abi = MIPS_ABI_EABI32;
5268 break;
5269 case bfd_mach_mips4100:
5270 case bfd_mach_mips5000:
5271 found_abi = MIPS_ABI_EABI64;
5272 break;
5273 case bfd_mach_mips8000:
5274 case bfd_mach_mips10000:
5275 /* On Irix, ELF64 executables use the N64 ABI. The
5276 pseudo-sections which describe the ABI aren't present
5277 on IRIX. (Even for executables created by gcc.) */
5278 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5279 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5280 found_abi = MIPS_ABI_N64;
5281 else
5282 found_abi = MIPS_ABI_N32;
5283 break;
5284 }
5285 }
5286
5287 /* Default 64-bit objects to N64 instead of O32. */
5288 if (found_abi == MIPS_ABI_UNKNOWN
5289 && info.abfd != NULL
5290 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5291 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5292 found_abi = MIPS_ABI_N64;
5293
5294 if (gdbarch_debug)
5295 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
5296 found_abi);
5297
5298 /* What has the user specified from the command line? */
5299 wanted_abi = global_mips_abi ();
5300 if (gdbarch_debug)
5301 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
5302 wanted_abi);
5303
5304 /* Now that we have found what the ABI for this binary would be,
5305 check whether the user is overriding it. */
5306 if (wanted_abi != MIPS_ABI_UNKNOWN)
5307 mips_abi = wanted_abi;
5308 else if (found_abi != MIPS_ABI_UNKNOWN)
5309 mips_abi = found_abi;
5310 else
5311 mips_abi = MIPS_ABI_O32;
5312 if (gdbarch_debug)
5313 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
5314 mips_abi);
5315
5316 /* Also used when doing an architecture lookup. */
5317 if (gdbarch_debug)
5318 fprintf_unfiltered (gdb_stdlog,
5319 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
5320 mips64_transfers_32bit_regs_p);
5321
5322 /* Determine the MIPS FPU type. */
5323 #ifdef HAVE_ELF
5324 if (info.abfd
5325 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5326 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
5327 Tag_GNU_MIPS_ABI_FP);
5328 #endif /* HAVE_ELF */
5329
5330 if (!mips_fpu_type_auto)
5331 fpu_type = mips_fpu_type;
5332 else if (elf_fpu_type != 0)
5333 {
5334 switch (elf_fpu_type)
5335 {
5336 case 1:
5337 fpu_type = MIPS_FPU_DOUBLE;
5338 break;
5339 case 2:
5340 fpu_type = MIPS_FPU_SINGLE;
5341 break;
5342 case 3:
5343 default:
5344 /* Soft float or unknown. */
5345 fpu_type = MIPS_FPU_NONE;
5346 break;
5347 }
5348 }
5349 else if (info.bfd_arch_info != NULL
5350 && info.bfd_arch_info->arch == bfd_arch_mips)
5351 switch (info.bfd_arch_info->mach)
5352 {
5353 case bfd_mach_mips3900:
5354 case bfd_mach_mips4100:
5355 case bfd_mach_mips4111:
5356 case bfd_mach_mips4120:
5357 fpu_type = MIPS_FPU_NONE;
5358 break;
5359 case bfd_mach_mips4650:
5360 fpu_type = MIPS_FPU_SINGLE;
5361 break;
5362 default:
5363 fpu_type = MIPS_FPU_DOUBLE;
5364 break;
5365 }
5366 else if (arches != NULL)
5367 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
5368 else
5369 fpu_type = MIPS_FPU_DOUBLE;
5370 if (gdbarch_debug)
5371 fprintf_unfiltered (gdb_stdlog,
5372 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
5373
5374 /* Check for blatant incompatibilities. */
5375
5376 /* If we have only 32-bit registers, then we can't debug a 64-bit
5377 ABI. */
5378 if (info.target_desc
5379 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
5380 && mips_abi != MIPS_ABI_EABI32
5381 && mips_abi != MIPS_ABI_O32)
5382 {
5383 if (tdesc_data != NULL)
5384 tdesc_data_cleanup (tdesc_data);
5385 return NULL;
5386 }
5387
5388 /* try to find a pre-existing architecture */
5389 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5390 arches != NULL;
5391 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5392 {
5393 /* MIPS needs to be pedantic about which ABI the object is
5394 using. */
5395 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5396 continue;
5397 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5398 continue;
5399 /* Need to be pedantic about which register virtual size is
5400 used. */
5401 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
5402 != mips64_transfers_32bit_regs_p)
5403 continue;
5404 /* Be pedantic about which FPU is selected. */
5405 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
5406 continue;
5407
5408 if (tdesc_data != NULL)
5409 tdesc_data_cleanup (tdesc_data);
5410 return arches->gdbarch;
5411 }
5412
5413 /* Need a new architecture. Fill in a target specific vector. */
5414 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5415 gdbarch = gdbarch_alloc (&info, tdep);
5416 tdep->elf_flags = elf_flags;
5417 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
5418 tdep->found_abi = found_abi;
5419 tdep->mips_abi = mips_abi;
5420 tdep->mips_fpu_type = fpu_type;
5421 tdep->register_size_valid_p = 0;
5422 tdep->register_size = 0;
5423
5424 if (info.target_desc)
5425 {
5426 /* Some useful properties can be inferred from the target. */
5427 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
5428 {
5429 tdep->register_size_valid_p = 1;
5430 tdep->register_size = 4;
5431 }
5432 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
5433 {
5434 tdep->register_size_valid_p = 1;
5435 tdep->register_size = 8;
5436 }
5437 }
5438
5439 /* Initially set everything according to the default ABI/ISA. */
5440 set_gdbarch_short_bit (gdbarch, 16);
5441 set_gdbarch_int_bit (gdbarch, 32);
5442 set_gdbarch_float_bit (gdbarch, 32);
5443 set_gdbarch_double_bit (gdbarch, 64);
5444 set_gdbarch_long_double_bit (gdbarch, 64);
5445 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
5446 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
5447 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
5448
5449 set_gdbarch_elf_make_msymbol_special (gdbarch,
5450 mips_elf_make_msymbol_special);
5451
5452 /* Fill in the OS dependant register numbers and names. */
5453 {
5454 const char **reg_names;
5455 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
5456 struct mips_regnum);
5457 if (tdesc_has_registers (info.target_desc))
5458 {
5459 regnum->lo = MIPS_EMBED_LO_REGNUM;
5460 regnum->hi = MIPS_EMBED_HI_REGNUM;
5461 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5462 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5463 regnum->pc = MIPS_EMBED_PC_REGNUM;
5464 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5465 regnum->fp_control_status = 70;
5466 regnum->fp_implementation_revision = 71;
5467 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
5468 reg_names = NULL;
5469 }
5470 else if (info.osabi == GDB_OSABI_IRIX)
5471 {
5472 regnum->fp0 = 32;
5473 regnum->pc = 64;
5474 regnum->cause = 65;
5475 regnum->badvaddr = 66;
5476 regnum->hi = 67;
5477 regnum->lo = 68;
5478 regnum->fp_control_status = 69;
5479 regnum->fp_implementation_revision = 70;
5480 num_regs = 71;
5481 reg_names = mips_irix_reg_names;
5482 }
5483 else
5484 {
5485 regnum->lo = MIPS_EMBED_LO_REGNUM;
5486 regnum->hi = MIPS_EMBED_HI_REGNUM;
5487 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5488 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5489 regnum->pc = MIPS_EMBED_PC_REGNUM;
5490 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5491 regnum->fp_control_status = 70;
5492 regnum->fp_implementation_revision = 71;
5493 num_regs = 90;
5494 if (info.bfd_arch_info != NULL
5495 && info.bfd_arch_info->mach == bfd_mach_mips3900)
5496 reg_names = mips_tx39_reg_names;
5497 else
5498 reg_names = mips_generic_reg_names;
5499 }
5500 /* FIXME: cagney/2003-11-15: For MIPS, hasn't gdbarch_pc_regnum been
5501 replaced by read_pc? */
5502 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
5503 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
5504 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
5505 set_gdbarch_num_regs (gdbarch, num_regs);
5506 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5507 set_gdbarch_register_name (gdbarch, mips_register_name);
5508 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
5509 tdep->mips_processor_reg_names = reg_names;
5510 tdep->regnum = regnum;
5511 }
5512
5513 switch (mips_abi)
5514 {
5515 case MIPS_ABI_O32:
5516 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
5517 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
5518 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
5519 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5520 tdep->default_mask_address_p = 0;
5521 set_gdbarch_long_bit (gdbarch, 32);
5522 set_gdbarch_ptr_bit (gdbarch, 32);
5523 set_gdbarch_long_long_bit (gdbarch, 64);
5524 break;
5525 case MIPS_ABI_O64:
5526 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
5527 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
5528 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
5529 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5530 tdep->default_mask_address_p = 0;
5531 set_gdbarch_long_bit (gdbarch, 32);
5532 set_gdbarch_ptr_bit (gdbarch, 32);
5533 set_gdbarch_long_long_bit (gdbarch, 64);
5534 break;
5535 case MIPS_ABI_EABI32:
5536 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5537 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
5538 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5539 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5540 tdep->default_mask_address_p = 0;
5541 set_gdbarch_long_bit (gdbarch, 32);
5542 set_gdbarch_ptr_bit (gdbarch, 32);
5543 set_gdbarch_long_long_bit (gdbarch, 64);
5544 break;
5545 case MIPS_ABI_EABI64:
5546 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5547 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
5548 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5549 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5550 tdep->default_mask_address_p = 0;
5551 set_gdbarch_long_bit (gdbarch, 64);
5552 set_gdbarch_ptr_bit (gdbarch, 64);
5553 set_gdbarch_long_long_bit (gdbarch, 64);
5554 break;
5555 case MIPS_ABI_N32:
5556 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5557 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5558 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5559 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5560 tdep->default_mask_address_p = 0;
5561 set_gdbarch_long_bit (gdbarch, 32);
5562 set_gdbarch_ptr_bit (gdbarch, 32);
5563 set_gdbarch_long_long_bit (gdbarch, 64);
5564 set_gdbarch_long_double_bit (gdbarch, 128);
5565 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
5566 break;
5567 case MIPS_ABI_N64:
5568 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5569 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5570 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5571 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5572 tdep->default_mask_address_p = 0;
5573 set_gdbarch_long_bit (gdbarch, 64);
5574 set_gdbarch_ptr_bit (gdbarch, 64);
5575 set_gdbarch_long_long_bit (gdbarch, 64);
5576 set_gdbarch_long_double_bit (gdbarch, 128);
5577 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
5578 break;
5579 default:
5580 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5581 }
5582
5583 /* GCC creates a pseudo-section whose name specifies the size of
5584 longs, since -mlong32 or -mlong64 may be used independent of
5585 other options. How those options affect pointer sizes is ABI and
5586 architecture dependent, so use them to override the default sizes
5587 set by the ABI. This table shows the relationship between ABI,
5588 -mlongXX, and size of pointers:
5589
5590 ABI -mlongXX ptr bits
5591 --- -------- --------
5592 o32 32 32
5593 o32 64 32
5594 n32 32 32
5595 n32 64 64
5596 o64 32 32
5597 o64 64 64
5598 n64 32 32
5599 n64 64 64
5600 eabi32 32 32
5601 eabi32 64 32
5602 eabi64 32 32
5603 eabi64 64 64
5604
5605 Note that for o32 and eabi32, pointers are always 32 bits
5606 regardless of any -mlongXX option. For all others, pointers and
5607 longs are the same, as set by -mlongXX or set by defaults.
5608 */
5609
5610 if (info.abfd != NULL)
5611 {
5612 int long_bit = 0;
5613
5614 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
5615 if (long_bit)
5616 {
5617 set_gdbarch_long_bit (gdbarch, long_bit);
5618 switch (mips_abi)
5619 {
5620 case MIPS_ABI_O32:
5621 case MIPS_ABI_EABI32:
5622 break;
5623 case MIPS_ABI_N32:
5624 case MIPS_ABI_O64:
5625 case MIPS_ABI_N64:
5626 case MIPS_ABI_EABI64:
5627 set_gdbarch_ptr_bit (gdbarch, long_bit);
5628 break;
5629 default:
5630 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5631 }
5632 }
5633 }
5634
5635 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5636 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5637 comment:
5638
5639 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5640 flag in object files because to do so would make it impossible to
5641 link with libraries compiled without "-gp32". This is
5642 unnecessarily restrictive.
5643
5644 We could solve this problem by adding "-gp32" multilibs to gcc,
5645 but to set this flag before gcc is built with such multilibs will
5646 break too many systems.''
5647
5648 But even more unhelpfully, the default linker output target for
5649 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5650 for 64-bit programs - you need to change the ABI to change this,
5651 and not all gcc targets support that currently. Therefore using
5652 this flag to detect 32-bit mode would do the wrong thing given
5653 the current gcc - it would make GDB treat these 64-bit programs
5654 as 32-bit programs by default. */
5655
5656 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5657 set_gdbarch_write_pc (gdbarch, mips_write_pc);
5658
5659 /* Add/remove bits from an address. The MIPS needs be careful to
5660 ensure that all 32 bit addresses are sign extended to 64 bits. */
5661 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5662
5663 /* Unwind the frame. */
5664 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
5665 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
5666 set_gdbarch_unwind_dummy_id (gdbarch, mips_unwind_dummy_id);
5667
5668 /* Map debug register numbers onto internal register numbers. */
5669 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5670 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
5671 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5672 set_gdbarch_dwarf_reg_to_regnum (gdbarch,
5673 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5674 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
5675 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5676 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
5677
5678 /* MIPS version of CALL_DUMMY */
5679
5680 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
5681 replaced by a command, and all targets will default to on stack
5682 (regardless of the stack's execute status). */
5683 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
5684 set_gdbarch_frame_align (gdbarch, mips_frame_align);
5685
5686 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
5687 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
5688 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
5689
5690 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5691 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5692
5693 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
5694
5695 set_gdbarch_in_function_epilogue_p (gdbarch, mips_in_function_epilogue_p);
5696
5697 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5698 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5699 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
5700
5701 set_gdbarch_register_type (gdbarch, mips_register_type);
5702
5703 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
5704
5705 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
5706
5707 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
5708 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
5709 need to all be folded into the target vector. Since they are
5710 being used as guards for STOPPED_BY_WATCHPOINT, why not have
5711 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
5712 is sitting on? */
5713 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5714
5715 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
5716
5717 set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
5718
5719 /* Virtual tables. */
5720 set_gdbarch_vbit_in_delta (gdbarch, 1);
5721
5722 mips_register_g_packet_guesses (gdbarch);
5723
5724 /* Hook in OS ABI-specific overrides, if they have been registered. */
5725 info.tdep_info = (void *) tdesc_data;
5726 gdbarch_init_osabi (info, gdbarch);
5727
5728 /* Unwind the frame. */
5729 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
5730 frame_unwind_append_sniffer (gdbarch, mips_stub_frame_sniffer);
5731 frame_unwind_append_sniffer (gdbarch, mips_insn16_frame_sniffer);
5732 frame_unwind_append_sniffer (gdbarch, mips_insn32_frame_sniffer);
5733 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
5734 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
5735 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
5736 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5737
5738 if (tdesc_data)
5739 {
5740 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
5741 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
5742
5743 /* Override the normal target description methods to handle our
5744 dual real and pseudo registers. */
5745 set_gdbarch_register_name (gdbarch, mips_register_name);
5746 set_gdbarch_register_reggroup_p (gdbarch, mips_tdesc_register_reggroup_p);
5747
5748 num_regs = gdbarch_num_regs (gdbarch);
5749 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5750 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
5751 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
5752 }
5753
5754 /* Add ABI-specific aliases for the registers. */
5755 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
5756 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
5757 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
5758 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
5759 else
5760 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
5761 user_reg_add (gdbarch, mips_o32_aliases[i].name,
5762 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
5763
5764 /* Add some other standard aliases. */
5765 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
5766 user_reg_add (gdbarch, mips_register_aliases[i].name,
5767 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
5768
5769 return gdbarch;
5770 }
5771
5772 static void
5773 mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
5774 {
5775 struct gdbarch_info info;
5776
5777 /* Force the architecture to update, and (if it's a MIPS architecture)
5778 mips_gdbarch_init will take care of the rest. */
5779 gdbarch_info_init (&info);
5780 gdbarch_update_p (info);
5781 }
5782
5783 /* Print out which MIPS ABI is in use. */
5784
5785 static void
5786 show_mips_abi (struct ui_file *file,
5787 int from_tty,
5788 struct cmd_list_element *ignored_cmd,
5789 const char *ignored_value)
5790 {
5791 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
5792 fprintf_filtered
5793 (file,
5794 "The MIPS ABI is unknown because the current architecture "
5795 "is not MIPS.\n");
5796 else
5797 {
5798 enum mips_abi global_abi = global_mips_abi ();
5799 enum mips_abi actual_abi = mips_abi (current_gdbarch);
5800 const char *actual_abi_str = mips_abi_strings[actual_abi];
5801
5802 if (global_abi == MIPS_ABI_UNKNOWN)
5803 fprintf_filtered
5804 (file,
5805 "The MIPS ABI is set automatically (currently \"%s\").\n",
5806 actual_abi_str);
5807 else if (global_abi == actual_abi)
5808 fprintf_filtered
5809 (file,
5810 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
5811 actual_abi_str);
5812 else
5813 {
5814 /* Probably shouldn't happen... */
5815 fprintf_filtered
5816 (file,
5817 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
5818 actual_abi_str, mips_abi_strings[global_abi]);
5819 }
5820 }
5821 }
5822
5823 static void
5824 mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
5825 {
5826 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5827 if (tdep != NULL)
5828 {
5829 int ef_mips_arch;
5830 int ef_mips_32bitmode;
5831 /* Determine the ISA. */
5832 switch (tdep->elf_flags & EF_MIPS_ARCH)
5833 {
5834 case E_MIPS_ARCH_1:
5835 ef_mips_arch = 1;
5836 break;
5837 case E_MIPS_ARCH_2:
5838 ef_mips_arch = 2;
5839 break;
5840 case E_MIPS_ARCH_3:
5841 ef_mips_arch = 3;
5842 break;
5843 case E_MIPS_ARCH_4:
5844 ef_mips_arch = 4;
5845 break;
5846 default:
5847 ef_mips_arch = 0;
5848 break;
5849 }
5850 /* Determine the size of a pointer. */
5851 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
5852 fprintf_unfiltered (file,
5853 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
5854 tdep->elf_flags);
5855 fprintf_unfiltered (file,
5856 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
5857 ef_mips_32bitmode);
5858 fprintf_unfiltered (file,
5859 "mips_dump_tdep: ef_mips_arch = %d\n",
5860 ef_mips_arch);
5861 fprintf_unfiltered (file,
5862 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
5863 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
5864 fprintf_unfiltered (file,
5865 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
5866 mips_mask_address_p (tdep),
5867 tdep->default_mask_address_p);
5868 }
5869 fprintf_unfiltered (file,
5870 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
5871 MIPS_DEFAULT_FPU_TYPE,
5872 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
5873 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5874 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5875 : "???"));
5876 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI);
5877 fprintf_unfiltered (file,
5878 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
5879 MIPS_FPU_TYPE,
5880 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
5881 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5882 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5883 : "???"));
5884 }
5885
5886 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
5887
5888 void
5889 _initialize_mips_tdep (void)
5890 {
5891 static struct cmd_list_element *mipsfpulist = NULL;
5892 struct cmd_list_element *c;
5893
5894 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
5895 if (MIPS_ABI_LAST + 1
5896 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
5897 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
5898
5899 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
5900
5901 mips_pdr_data = register_objfile_data ();
5902
5903 /* Create feature sets with the appropriate properties. The values
5904 are not important. */
5905 mips_tdesc_gp32 = allocate_target_description ();
5906 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
5907
5908 mips_tdesc_gp64 = allocate_target_description ();
5909 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
5910
5911 /* Add root prefix command for all "set mips"/"show mips" commands */
5912 add_prefix_cmd ("mips", no_class, set_mips_command,
5913 _("Various MIPS specific commands."),
5914 &setmipscmdlist, "set mips ", 0, &setlist);
5915
5916 add_prefix_cmd ("mips", no_class, show_mips_command,
5917 _("Various MIPS specific commands."),
5918 &showmipscmdlist, "show mips ", 0, &showlist);
5919
5920 /* Allow the user to override the ABI. */
5921 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
5922 &mips_abi_string, _("\
5923 Set the MIPS ABI used by this program."), _("\
5924 Show the MIPS ABI used by this program."), _("\
5925 This option can be set to one of:\n\
5926 auto - the default ABI associated with the current binary\n\
5927 o32\n\
5928 o64\n\
5929 n32\n\
5930 n64\n\
5931 eabi32\n\
5932 eabi64"),
5933 mips_abi_update,
5934 show_mips_abi,
5935 &setmipscmdlist, &showmipscmdlist);
5936
5937 /* Let the user turn off floating point and set the fence post for
5938 heuristic_proc_start. */
5939
5940 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
5941 _("Set use of MIPS floating-point coprocessor."),
5942 &mipsfpulist, "set mipsfpu ", 0, &setlist);
5943 add_cmd ("single", class_support, set_mipsfpu_single_command,
5944 _("Select single-precision MIPS floating-point coprocessor."),
5945 &mipsfpulist);
5946 add_cmd ("double", class_support, set_mipsfpu_double_command,
5947 _("Select double-precision MIPS floating-point coprocessor."),
5948 &mipsfpulist);
5949 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
5950 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
5951 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
5952 add_cmd ("none", class_support, set_mipsfpu_none_command,
5953 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
5954 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
5955 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
5956 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
5957 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
5958 _("Select MIPS floating-point coprocessor automatically."),
5959 &mipsfpulist);
5960 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
5961 _("Show current use of MIPS floating-point coprocessor target."),
5962 &showlist);
5963
5964 /* We really would like to have both "0" and "unlimited" work, but
5965 command.c doesn't deal with that. So make it a var_zinteger
5966 because the user can always use "999999" or some such for unlimited. */
5967 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
5968 &heuristic_fence_post, _("\
5969 Set the distance searched for the start of a function."), _("\
5970 Show the distance searched for the start of a function."), _("\
5971 If you are debugging a stripped executable, GDB needs to search through the\n\
5972 program for the start of a function. This command sets the distance of the\n\
5973 search. The only need to set it is when debugging a stripped executable."),
5974 reinit_frame_cache_sfunc,
5975 NULL, /* FIXME: i18n: The distance searched for the start of a function is %s. */
5976 &setlist, &showlist);
5977
5978 /* Allow the user to control whether the upper bits of 64-bit
5979 addresses should be zeroed. */
5980 add_setshow_auto_boolean_cmd ("mask-address", no_class,
5981 &mask_address_var, _("\
5982 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
5983 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
5984 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
5985 allow GDB to determine the correct value."),
5986 NULL, show_mask_address,
5987 &setmipscmdlist, &showmipscmdlist);
5988
5989 /* Allow the user to control the size of 32 bit registers within the
5990 raw remote packet. */
5991 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
5992 &mips64_transfers_32bit_regs_p, _("\
5993 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5994 _("\
5995 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5996 _("\
5997 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
5998 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
5999 64 bits for others. Use \"off\" to disable compatibility mode"),
6000 set_mips64_transfers_32bit_regs,
6001 NULL, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s. */
6002 &setlist, &showlist);
6003
6004 /* Debug this files internals. */
6005 add_setshow_zinteger_cmd ("mips", class_maintenance,
6006 &mips_debug, _("\
6007 Set mips debugging."), _("\
6008 Show mips debugging."), _("\
6009 When non-zero, mips specific debugging is enabled."),
6010 NULL,
6011 NULL, /* FIXME: i18n: Mips debugging is currently %s. */
6012 &setdebuglist, &showdebuglist);
6013 }