2003-03-12 Andrew Cagney <cagney@redhat.com>
[binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "symtab.h"
31 #include "value.h"
32 #include "gdbcmd.h"
33 #include "language.h"
34 #include "gdbcore.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "gdbtypes.h"
38 #include "target.h"
39 #include "arch-utils.h"
40 #include "regcache.h"
41 #include "osabi.h"
42 #include "mips-tdep.h"
43 #include "block.h"
44
45 #include "opcode/mips.h"
46 #include "elf/mips.h"
47 #include "elf-bfd.h"
48 #include "symcat.h"
49
50 /* A useful bit in the CP0 status register (PS_REGNUM). */
51 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
52 #define ST0_FR (1 << 26)
53
54 /* The sizes of floating point registers. */
55
56 enum
57 {
58 MIPS_FPU_SINGLE_REGSIZE = 4,
59 MIPS_FPU_DOUBLE_REGSIZE = 8
60 };
61
62
63 static const char *mips_abi_string;
64
65 static const char *mips_abi_strings[] = {
66 "auto",
67 "n32",
68 "o32",
69 "n64",
70 "o64",
71 "eabi32",
72 "eabi64",
73 NULL
74 };
75
76 struct frame_extra_info
77 {
78 mips_extra_func_info_t proc_desc;
79 int num_args;
80 };
81
82 /* Various MIPS ISA options (related to stack analysis) can be
83 overridden dynamically. Establish an enum/array for managing
84 them. */
85
86 static const char size_auto[] = "auto";
87 static const char size_32[] = "32";
88 static const char size_64[] = "64";
89
90 static const char *size_enums[] = {
91 size_auto,
92 size_32,
93 size_64,
94 0
95 };
96
97 /* Some MIPS boards don't support floating point while others only
98 support single-precision floating-point operations. See also
99 FP_REGISTER_DOUBLE. */
100
101 enum mips_fpu_type
102 {
103 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
104 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
105 MIPS_FPU_NONE /* No floating point. */
106 };
107
108 #ifndef MIPS_DEFAULT_FPU_TYPE
109 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
110 #endif
111 static int mips_fpu_type_auto = 1;
112 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
113
114 static int mips_debug = 0;
115
116 /* MIPS specific per-architecture information */
117 struct gdbarch_tdep
118 {
119 /* from the elf header */
120 int elf_flags;
121
122 /* mips options */
123 enum mips_abi mips_abi;
124 enum mips_abi found_abi;
125 enum mips_fpu_type mips_fpu_type;
126 int mips_last_arg_regnum;
127 int mips_last_fp_arg_regnum;
128 int mips_default_saved_regsize;
129 int mips_fp_register_double;
130 int mips_default_stack_argsize;
131 int gdb_target_is_mips64;
132 int default_mask_address_p;
133 };
134
135 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
136 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
137
138 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
139
140 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
141
142 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
143
144 /* Return the currently configured (or set) saved register size. */
145
146 #define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
147
148 static const char *mips_saved_regsize_string = size_auto;
149
150 #define MIPS_SAVED_REGSIZE (mips_saved_regsize())
151
152 /* Return the MIPS ABI associated with GDBARCH. */
153 enum mips_abi
154 mips_abi (struct gdbarch *gdbarch)
155 {
156 return gdbarch_tdep (gdbarch)->mips_abi;
157 }
158
159 static unsigned int
160 mips_saved_regsize (void)
161 {
162 if (mips_saved_regsize_string == size_auto)
163 return MIPS_DEFAULT_SAVED_REGSIZE;
164 else if (mips_saved_regsize_string == size_64)
165 return 8;
166 else /* if (mips_saved_regsize_string == size_32) */
167 return 4;
168 }
169
170 /* Functions for setting and testing a bit in a minimal symbol that
171 marks it as 16-bit function. The MSB of the minimal symbol's
172 "info" field is used for this purpose. This field is already
173 being used to store the symbol size, so the assumption is
174 that the symbol size cannot exceed 2^31.
175
176 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
177 i.e. refers to a 16-bit function, and sets a "special" bit in a
178 minimal symbol to mark it as a 16-bit function
179
180 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
181 MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
182 the "info" field with the "special" bit masked out */
183
184 static void
185 mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
186 {
187 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
188 {
189 MSYMBOL_INFO (msym) = (char *)
190 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
191 SYMBOL_VALUE_ADDRESS (msym) |= 1;
192 }
193 }
194
195 static int
196 msymbol_is_special (struct minimal_symbol *msym)
197 {
198 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
199 }
200
201 static long
202 msymbol_size (struct minimal_symbol *msym)
203 {
204 return ((long) MSYMBOL_INFO (msym) & 0x7fffffff);
205 }
206
207 /* XFER a value from the big/little/left end of the register.
208 Depending on the size of the value it might occupy the entire
209 register or just part of it. Make an allowance for this, aligning
210 things accordingly. */
211
212 static void
213 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
214 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
215 int buf_offset)
216 {
217 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
218 int reg_offset = 0;
219 /* Need to transfer the left or right part of the register, based on
220 the targets byte order. */
221 switch (endian)
222 {
223 case BFD_ENDIAN_BIG:
224 reg_offset = REGISTER_RAW_SIZE (reg_num) - length;
225 break;
226 case BFD_ENDIAN_LITTLE:
227 reg_offset = 0;
228 break;
229 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
230 reg_offset = 0;
231 break;
232 default:
233 internal_error (__FILE__, __LINE__, "bad switch");
234 }
235 if (mips_debug)
236 fprintf_unfiltered (gdb_stderr,
237 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
238 reg_num, reg_offset, buf_offset, length);
239 if (mips_debug && out != NULL)
240 {
241 int i;
242 fprintf_unfiltered (gdb_stdlog, "out ");
243 for (i = 0; i < length; i++)
244 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
245 }
246 if (in != NULL)
247 regcache_raw_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
248 if (out != NULL)
249 regcache_raw_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
250 if (mips_debug && in != NULL)
251 {
252 int i;
253 fprintf_unfiltered (gdb_stdlog, "in ");
254 for (i = 0; i < length; i++)
255 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
256 }
257 if (mips_debug)
258 fprintf_unfiltered (gdb_stdlog, "\n");
259 }
260
261 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
262 compatiblity mode. A return value of 1 means that we have
263 physical 64-bit registers, but should treat them as 32-bit registers. */
264
265 static int
266 mips2_fp_compat (void)
267 {
268 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
269 meaningful. */
270 if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
271 return 0;
272
273 #if 0
274 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
275 in all the places we deal with FP registers. PR gdb/413. */
276 /* Otherwise check the FR bit in the status register - it controls
277 the FP compatiblity mode. If it is clear we are in compatibility
278 mode. */
279 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
280 return 1;
281 #endif
282
283 return 0;
284 }
285
286 /* Indicate that the ABI makes use of double-precision registers
287 provided by the FPU (rather than combining pairs of registers to
288 form double-precision values). Do not use "TARGET_IS_MIPS64" to
289 determine if the ABI is using double-precision registers. See also
290 MIPS_FPU_TYPE. */
291 #define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
292
293 /* The amount of space reserved on the stack for registers. This is
294 different to MIPS_SAVED_REGSIZE as it determines the alignment of
295 data allocated after the registers have run out. */
296
297 #define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
298
299 #define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
300
301 static const char *mips_stack_argsize_string = size_auto;
302
303 static unsigned int
304 mips_stack_argsize (void)
305 {
306 if (mips_stack_argsize_string == size_auto)
307 return MIPS_DEFAULT_STACK_ARGSIZE;
308 else if (mips_stack_argsize_string == size_64)
309 return 8;
310 else /* if (mips_stack_argsize_string == size_32) */
311 return 4;
312 }
313
314 #define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
315
316 #define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
317
318 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
319
320 int gdb_print_insn_mips (bfd_vma, disassemble_info *);
321
322 static void mips_print_register (int, int);
323
324 static mips_extra_func_info_t heuristic_proc_desc (CORE_ADDR, CORE_ADDR,
325 struct frame_info *, int);
326
327 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
328
329 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
330
331 static int mips_set_processor_type (char *);
332
333 static void mips_show_processor_type_command (char *, int);
334
335 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
336
337 static mips_extra_func_info_t find_proc_desc (CORE_ADDR pc,
338 struct frame_info *next_frame,
339 int cur_frame);
340
341 static CORE_ADDR after_prologue (CORE_ADDR pc,
342 mips_extra_func_info_t proc_desc);
343
344 static void mips_read_fp_register_single (int regno, char *rare_buffer);
345 static void mips_read_fp_register_double (int regno, char *rare_buffer);
346
347 static struct type *mips_float_register_type (void);
348 static struct type *mips_double_register_type (void);
349
350 /* This value is the model of MIPS in use. It is derived from the value
351 of the PrID register. */
352
353 char *mips_processor_type;
354
355 char *tmp_mips_processor_type;
356
357 /* The list of available "set mips " and "show mips " commands */
358
359 static struct cmd_list_element *setmipscmdlist = NULL;
360 static struct cmd_list_element *showmipscmdlist = NULL;
361
362 /* A set of original names, to be used when restoring back to generic
363 registers from a specific set. */
364
365 char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
366 char **mips_processor_reg_names = mips_generic_reg_names;
367
368 static const char *
369 mips_register_name (int i)
370 {
371 return mips_processor_reg_names[i];
372 }
373 /* *INDENT-OFF* */
374 /* Names of IDT R3041 registers. */
375
376 char *mips_r3041_reg_names[] = {
377 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
378 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
379 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
380 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
381 "sr", "lo", "hi", "bad", "cause","pc",
382 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
383 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
384 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
385 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
386 "fsr", "fir", "",/*"fp"*/ "",
387 "", "", "bus", "ccfg", "", "", "", "",
388 "", "", "port", "cmp", "", "", "epc", "prid",
389 };
390
391 /* Names of IDT R3051 registers. */
392
393 char *mips_r3051_reg_names[] = {
394 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
395 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
396 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
397 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
398 "sr", "lo", "hi", "bad", "cause","pc",
399 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
400 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
401 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
402 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
403 "fsr", "fir", ""/*"fp"*/, "",
404 "inx", "rand", "elo", "", "ctxt", "", "", "",
405 "", "", "ehi", "", "", "", "epc", "prid",
406 };
407
408 /* Names of IDT R3081 registers. */
409
410 char *mips_r3081_reg_names[] = {
411 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
412 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
413 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
414 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
415 "sr", "lo", "hi", "bad", "cause","pc",
416 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
417 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
418 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
419 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
420 "fsr", "fir", ""/*"fp"*/, "",
421 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
422 "", "", "ehi", "", "", "", "epc", "prid",
423 };
424
425 /* Names of LSI 33k registers. */
426
427 char *mips_lsi33k_reg_names[] = {
428 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
429 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
430 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
431 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
432 "epc", "hi", "lo", "sr", "cause","badvaddr",
433 "dcic", "bpc", "bda", "", "", "", "", "",
434 "", "", "", "", "", "", "", "",
435 "", "", "", "", "", "", "", "",
436 "", "", "", "", "", "", "", "",
437 "", "", "", "",
438 "", "", "", "", "", "", "", "",
439 "", "", "", "", "", "", "", "",
440 };
441
442 struct {
443 char *name;
444 char **regnames;
445 } mips_processor_type_table[] = {
446 { "generic", mips_generic_reg_names },
447 { "r3041", mips_r3041_reg_names },
448 { "r3051", mips_r3051_reg_names },
449 { "r3071", mips_r3081_reg_names },
450 { "r3081", mips_r3081_reg_names },
451 { "lsi33k", mips_lsi33k_reg_names },
452 { NULL, NULL }
453 };
454 /* *INDENT-ON* */
455
456
457
458
459 /* Table to translate MIPS16 register field to actual register number. */
460 static int mips16_to_32_reg[8] =
461 {16, 17, 2, 3, 4, 5, 6, 7};
462
463 /* Heuristic_proc_start may hunt through the text section for a long
464 time across a 2400 baud serial line. Allows the user to limit this
465 search. */
466
467 static unsigned int heuristic_fence_post = 0;
468
469 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
470 #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
471 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
472 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
473 #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
474 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
475 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
476 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
477 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
478 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
479 /* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
480 this will corrupt pdr.iline. Fortunately we don't use it. */
481 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
482 #define _PROC_MAGIC_ 0x0F0F0F0F
483 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
484 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
485
486 struct linked_proc_info
487 {
488 struct mips_extra_func_info info;
489 struct linked_proc_info *next;
490 }
491 *linked_proc_desc_table = NULL;
492
493 void
494 mips_print_extra_frame_info (struct frame_info *fi)
495 {
496 if (fi
497 && get_frame_extra_info (fi)
498 && get_frame_extra_info (fi)->proc_desc
499 && get_frame_extra_info (fi)->proc_desc->pdr.framereg < NUM_REGS)
500 printf_filtered (" frame pointer is at %s+%s\n",
501 REGISTER_NAME (get_frame_extra_info (fi)->proc_desc->pdr.framereg),
502 paddr_d (get_frame_extra_info (fi)->proc_desc->pdr.frameoffset));
503 }
504
505 /* Number of bytes of storage in the actual machine representation for
506 register N. NOTE: This indirectly defines the register size
507 transfered by the GDB protocol. */
508
509 static int mips64_transfers_32bit_regs_p = 0;
510
511 static int
512 mips_register_raw_size (int reg_nr)
513 {
514 if (mips64_transfers_32bit_regs_p)
515 return REGISTER_VIRTUAL_SIZE (reg_nr);
516 else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32
517 && FP_REGISTER_DOUBLE)
518 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
519 registers. */
520 return 8;
521 else
522 return MIPS_REGSIZE;
523 }
524
525 /* Convert between RAW and VIRTUAL registers. The RAW register size
526 defines the remote-gdb packet. */
527
528 static int
529 mips_register_convertible (int reg_nr)
530 {
531 if (mips64_transfers_32bit_regs_p)
532 return 0;
533 else
534 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
535 }
536
537 static void
538 mips_register_convert_to_virtual (int n, struct type *virtual_type,
539 char *raw_buf, char *virt_buf)
540 {
541 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
542 memcpy (virt_buf,
543 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
544 TYPE_LENGTH (virtual_type));
545 else
546 memcpy (virt_buf,
547 raw_buf,
548 TYPE_LENGTH (virtual_type));
549 }
550
551 static void
552 mips_register_convert_to_raw (struct type *virtual_type, int n,
553 char *virt_buf, char *raw_buf)
554 {
555 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
556 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
557 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
558 virt_buf,
559 TYPE_LENGTH (virtual_type));
560 else
561 memcpy (raw_buf,
562 virt_buf,
563 TYPE_LENGTH (virtual_type));
564 }
565
566 void
567 mips_register_convert_to_type (int regnum, struct type *type, char *buffer)
568 {
569 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
570 && REGISTER_RAW_SIZE (regnum) == 4
571 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
572 && TYPE_CODE(type) == TYPE_CODE_FLT
573 && TYPE_LENGTH(type) == 8)
574 {
575 char temp[4];
576 memcpy (temp, ((char *)(buffer))+4, 4);
577 memcpy (((char *)(buffer))+4, (buffer), 4);
578 memcpy (((char *)(buffer)), temp, 4);
579 }
580 }
581
582 void
583 mips_register_convert_from_type (int regnum, struct type *type, char *buffer)
584 {
585 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
586 && REGISTER_RAW_SIZE (regnum) == 4
587 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
588 && TYPE_CODE(type) == TYPE_CODE_FLT
589 && TYPE_LENGTH(type) == 8)
590 {
591 char temp[4];
592 memcpy (temp, ((char *)(buffer))+4, 4);
593 memcpy (((char *)(buffer))+4, (buffer), 4);
594 memcpy (((char *)(buffer)), temp, 4);
595 }
596 }
597
598 /* Return the GDB type object for the "standard" data type
599 of data in register REG.
600
601 Note: kevinb/2002-08-01: The definition below should faithfully
602 reproduce the behavior of each of the REGISTER_VIRTUAL_TYPE
603 definitions found in config/mips/tm-*.h. I'm concerned about
604 the ``FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM'' clause
605 though. In some cases FP_REGNUM is in this range, and I doubt
606 that this code is correct for the 64-bit case. */
607
608 static struct type *
609 mips_register_virtual_type (int reg)
610 {
611 if (FP0_REGNUM <= reg && reg < FP0_REGNUM + 32)
612 {
613 /* Floating point registers... */
614 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
615 return builtin_type_ieee_double_big;
616 else
617 return builtin_type_ieee_double_little;
618 }
619 else if (reg == PS_REGNUM /* CR */)
620 return builtin_type_uint32;
621 else if (FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM)
622 return builtin_type_uint32;
623 else
624 {
625 /* Everything else...
626 Return type appropriate for width of register. */
627 if (MIPS_REGSIZE == TYPE_LENGTH (builtin_type_uint64))
628 return builtin_type_uint64;
629 else
630 return builtin_type_uint32;
631 }
632 }
633
634 /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
635
636 static CORE_ADDR
637 mips_read_sp (void)
638 {
639 return ADDR_BITS_REMOVE (read_register (SP_REGNUM));
640 }
641
642 /* Should the upper word of 64-bit addresses be zeroed? */
643 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
644
645 static int
646 mips_mask_address_p (void)
647 {
648 switch (mask_address_var)
649 {
650 case AUTO_BOOLEAN_TRUE:
651 return 1;
652 case AUTO_BOOLEAN_FALSE:
653 return 0;
654 break;
655 case AUTO_BOOLEAN_AUTO:
656 return MIPS_DEFAULT_MASK_ADDRESS_P;
657 default:
658 internal_error (__FILE__, __LINE__,
659 "mips_mask_address_p: bad switch");
660 return -1;
661 }
662 }
663
664 static void
665 show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
666 {
667 switch (mask_address_var)
668 {
669 case AUTO_BOOLEAN_TRUE:
670 printf_filtered ("The 32 bit mips address mask is enabled\n");
671 break;
672 case AUTO_BOOLEAN_FALSE:
673 printf_filtered ("The 32 bit mips address mask is disabled\n");
674 break;
675 case AUTO_BOOLEAN_AUTO:
676 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
677 mips_mask_address_p () ? "enabled" : "disabled");
678 break;
679 default:
680 internal_error (__FILE__, __LINE__,
681 "show_mask_address: bad switch");
682 break;
683 }
684 }
685
686 /* Should call_function allocate stack space for a struct return? */
687
688 static int
689 mips_eabi_use_struct_convention (int gcc_p, struct type *type)
690 {
691 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
692 }
693
694 static int
695 mips_n32n64_use_struct_convention (int gcc_p, struct type *type)
696 {
697 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
698 }
699
700 static int
701 mips_o32_use_struct_convention (int gcc_p, struct type *type)
702 {
703 return 1; /* Structures are returned by ref in extra arg0. */
704 }
705
706 /* Should call_function pass struct by reference?
707 For each architecture, structs are passed either by
708 value or by reference, depending on their size. */
709
710 static int
711 mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
712 {
713 enum type_code typecode = TYPE_CODE (check_typedef (type));
714 int len = TYPE_LENGTH (check_typedef (type));
715
716 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
717 return (len > MIPS_SAVED_REGSIZE);
718
719 return 0;
720 }
721
722 static int
723 mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
724 {
725 return 0; /* Assumption: N32/N64 never passes struct by ref. */
726 }
727
728 static int
729 mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
730 {
731 return 0; /* Assumption: O32/O64 never passes struct by ref. */
732 }
733
734 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
735
736 static int
737 pc_is_mips16 (bfd_vma memaddr)
738 {
739 struct minimal_symbol *sym;
740
741 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
742 if (IS_MIPS16_ADDR (memaddr))
743 return 1;
744
745 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
746 the high bit of the info field. Use this to decide if the function is
747 MIPS16 or normal MIPS. */
748 sym = lookup_minimal_symbol_by_pc (memaddr);
749 if (sym)
750 return msymbol_is_special (sym);
751 else
752 return 0;
753 }
754
755 /* MIPS believes that the PC has a sign extended value. Perhaphs the
756 all registers should be sign extended for simplicity? */
757
758 static CORE_ADDR
759 mips_read_pc (ptid_t ptid)
760 {
761 return read_signed_register_pid (PC_REGNUM, ptid);
762 }
763
764 /* This returns the PC of the first inst after the prologue. If we can't
765 find the prologue, then return 0. */
766
767 static CORE_ADDR
768 after_prologue (CORE_ADDR pc,
769 mips_extra_func_info_t proc_desc)
770 {
771 struct symtab_and_line sal;
772 CORE_ADDR func_addr, func_end;
773
774 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
775 to read the stack pointer from the current machine state, because
776 the current machine state has nothing to do with the information
777 we need from the proc_desc; and the process may or may not exist
778 right now. */
779 if (!proc_desc)
780 proc_desc = find_proc_desc (pc, NULL, 0);
781
782 if (proc_desc)
783 {
784 /* If function is frameless, then we need to do it the hard way. I
785 strongly suspect that frameless always means prologueless... */
786 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
787 && PROC_FRAME_OFFSET (proc_desc) == 0)
788 return 0;
789 }
790
791 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
792 return 0; /* Unknown */
793
794 sal = find_pc_line (func_addr, 0);
795
796 if (sal.end < func_end)
797 return sal.end;
798
799 /* The line after the prologue is after the end of the function. In this
800 case, tell the caller to find the prologue the hard way. */
801
802 return 0;
803 }
804
805 /* Decode a MIPS32 instruction that saves a register in the stack, and
806 set the appropriate bit in the general register mask or float register mask
807 to indicate which register is saved. This is a helper function
808 for mips_find_saved_regs. */
809
810 static void
811 mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
812 unsigned long *float_mask)
813 {
814 int reg;
815
816 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
817 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
818 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
819 {
820 /* It might be possible to use the instruction to
821 find the offset, rather than the code below which
822 is based on things being in a certain order in the
823 frame, but figuring out what the instruction's offset
824 is relative to might be a little tricky. */
825 reg = (inst & 0x001f0000) >> 16;
826 *gen_mask |= (1 << reg);
827 }
828 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
829 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
830 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
831
832 {
833 reg = ((inst & 0x001f0000) >> 16);
834 *float_mask |= (1 << reg);
835 }
836 }
837
838 /* Decode a MIPS16 instruction that saves a register in the stack, and
839 set the appropriate bit in the general register or float register mask
840 to indicate which register is saved. This is a helper function
841 for mips_find_saved_regs. */
842
843 static void
844 mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
845 {
846 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
847 {
848 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
849 *gen_mask |= (1 << reg);
850 }
851 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
852 {
853 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
854 *gen_mask |= (1 << reg);
855 }
856 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
857 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
858 *gen_mask |= (1 << RA_REGNUM);
859 }
860
861
862 /* Fetch and return instruction from the specified location. If the PC
863 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
864
865 static t_inst
866 mips_fetch_instruction (CORE_ADDR addr)
867 {
868 char buf[MIPS_INSTLEN];
869 int instlen;
870 int status;
871
872 if (pc_is_mips16 (addr))
873 {
874 instlen = MIPS16_INSTLEN;
875 addr = UNMAKE_MIPS16_ADDR (addr);
876 }
877 else
878 instlen = MIPS_INSTLEN;
879 status = read_memory_nobpt (addr, buf, instlen);
880 if (status)
881 memory_error (status, addr);
882 return extract_unsigned_integer (buf, instlen);
883 }
884
885
886 /* These the fields of 32 bit mips instructions */
887 #define mips32_op(x) (x >> 26)
888 #define itype_op(x) (x >> 26)
889 #define itype_rs(x) ((x >> 21) & 0x1f)
890 #define itype_rt(x) ((x >> 16) & 0x1f)
891 #define itype_immediate(x) (x & 0xffff)
892
893 #define jtype_op(x) (x >> 26)
894 #define jtype_target(x) (x & 0x03ffffff)
895
896 #define rtype_op(x) (x >> 26)
897 #define rtype_rs(x) ((x >> 21) & 0x1f)
898 #define rtype_rt(x) ((x >> 16) & 0x1f)
899 #define rtype_rd(x) ((x >> 11) & 0x1f)
900 #define rtype_shamt(x) ((x >> 6) & 0x1f)
901 #define rtype_funct(x) (x & 0x3f)
902
903 static CORE_ADDR
904 mips32_relative_offset (unsigned long inst)
905 {
906 long x;
907 x = itype_immediate (inst);
908 if (x & 0x8000) /* sign bit set */
909 {
910 x |= 0xffff0000; /* sign extension */
911 }
912 x = x << 2;
913 return x;
914 }
915
916 /* Determine whate to set a single step breakpoint while considering
917 branch prediction */
918 static CORE_ADDR
919 mips32_next_pc (CORE_ADDR pc)
920 {
921 unsigned long inst;
922 int op;
923 inst = mips_fetch_instruction (pc);
924 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
925 {
926 if (itype_op (inst) >> 2 == 5)
927 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
928 {
929 op = (itype_op (inst) & 0x03);
930 switch (op)
931 {
932 case 0: /* BEQL */
933 goto equal_branch;
934 case 1: /* BNEL */
935 goto neq_branch;
936 case 2: /* BLEZL */
937 goto less_branch;
938 case 3: /* BGTZ */
939 goto greater_branch;
940 default:
941 pc += 4;
942 }
943 }
944 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
945 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
946 {
947 int tf = itype_rt (inst) & 0x01;
948 int cnum = itype_rt (inst) >> 2;
949 int fcrcs = read_signed_register (FCRCS_REGNUM);
950 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
951
952 if (((cond >> cnum) & 0x01) == tf)
953 pc += mips32_relative_offset (inst) + 4;
954 else
955 pc += 8;
956 }
957 else
958 pc += 4; /* Not a branch, next instruction is easy */
959 }
960 else
961 { /* This gets way messy */
962
963 /* Further subdivide into SPECIAL, REGIMM and other */
964 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
965 {
966 case 0: /* SPECIAL */
967 op = rtype_funct (inst);
968 switch (op)
969 {
970 case 8: /* JR */
971 case 9: /* JALR */
972 /* Set PC to that address */
973 pc = read_signed_register (rtype_rs (inst));
974 break;
975 default:
976 pc += 4;
977 }
978
979 break; /* end SPECIAL */
980 case 1: /* REGIMM */
981 {
982 op = itype_rt (inst); /* branch condition */
983 switch (op)
984 {
985 case 0: /* BLTZ */
986 case 2: /* BLTZL */
987 case 16: /* BLTZAL */
988 case 18: /* BLTZALL */
989 less_branch:
990 if (read_signed_register (itype_rs (inst)) < 0)
991 pc += mips32_relative_offset (inst) + 4;
992 else
993 pc += 8; /* after the delay slot */
994 break;
995 case 1: /* BGEZ */
996 case 3: /* BGEZL */
997 case 17: /* BGEZAL */
998 case 19: /* BGEZALL */
999 greater_equal_branch:
1000 if (read_signed_register (itype_rs (inst)) >= 0)
1001 pc += mips32_relative_offset (inst) + 4;
1002 else
1003 pc += 8; /* after the delay slot */
1004 break;
1005 /* All of the other instructions in the REGIMM category */
1006 default:
1007 pc += 4;
1008 }
1009 }
1010 break; /* end REGIMM */
1011 case 2: /* J */
1012 case 3: /* JAL */
1013 {
1014 unsigned long reg;
1015 reg = jtype_target (inst) << 2;
1016 /* Upper four bits get never changed... */
1017 pc = reg + ((pc + 4) & 0xf0000000);
1018 }
1019 break;
1020 /* FIXME case JALX : */
1021 {
1022 unsigned long reg;
1023 reg = jtype_target (inst) << 2;
1024 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
1025 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1026 }
1027 break; /* The new PC will be alternate mode */
1028 case 4: /* BEQ, BEQL */
1029 equal_branch:
1030 if (read_signed_register (itype_rs (inst)) ==
1031 read_signed_register (itype_rt (inst)))
1032 pc += mips32_relative_offset (inst) + 4;
1033 else
1034 pc += 8;
1035 break;
1036 case 5: /* BNE, BNEL */
1037 neq_branch:
1038 if (read_signed_register (itype_rs (inst)) !=
1039 read_signed_register (itype_rt (inst)))
1040 pc += mips32_relative_offset (inst) + 4;
1041 else
1042 pc += 8;
1043 break;
1044 case 6: /* BLEZ, BLEZL */
1045 less_zero_branch:
1046 if (read_signed_register (itype_rs (inst) <= 0))
1047 pc += mips32_relative_offset (inst) + 4;
1048 else
1049 pc += 8;
1050 break;
1051 case 7:
1052 default:
1053 greater_branch: /* BGTZ, BGTZL */
1054 if (read_signed_register (itype_rs (inst) > 0))
1055 pc += mips32_relative_offset (inst) + 4;
1056 else
1057 pc += 8;
1058 break;
1059 } /* switch */
1060 } /* else */
1061 return pc;
1062 } /* mips32_next_pc */
1063
1064 /* Decoding the next place to set a breakpoint is irregular for the
1065 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1066 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1067 We dont want to set a single step instruction on the extend instruction
1068 either.
1069 */
1070
1071 /* Lots of mips16 instruction formats */
1072 /* Predicting jumps requires itype,ritype,i8type
1073 and their extensions extItype,extritype,extI8type
1074 */
1075 enum mips16_inst_fmts
1076 {
1077 itype, /* 0 immediate 5,10 */
1078 ritype, /* 1 5,3,8 */
1079 rrtype, /* 2 5,3,3,5 */
1080 rritype, /* 3 5,3,3,5 */
1081 rrrtype, /* 4 5,3,3,3,2 */
1082 rriatype, /* 5 5,3,3,1,4 */
1083 shifttype, /* 6 5,3,3,3,2 */
1084 i8type, /* 7 5,3,8 */
1085 i8movtype, /* 8 5,3,3,5 */
1086 i8mov32rtype, /* 9 5,3,5,3 */
1087 i64type, /* 10 5,3,8 */
1088 ri64type, /* 11 5,3,3,5 */
1089 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1090 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1091 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1092 extRRItype, /* 15 5,5,5,5,3,3,5 */
1093 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1094 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1095 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1096 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1097 extRi64type, /* 20 5,6,5,5,3,3,5 */
1098 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1099 };
1100 /* I am heaping all the fields of the formats into one structure and
1101 then, only the fields which are involved in instruction extension */
1102 struct upk_mips16
1103 {
1104 CORE_ADDR offset;
1105 unsigned int regx; /* Function in i8 type */
1106 unsigned int regy;
1107 };
1108
1109
1110 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1111 for the bits which make up the immediatate extension. */
1112
1113 static CORE_ADDR
1114 extended_offset (unsigned int extension)
1115 {
1116 CORE_ADDR value;
1117 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1118 value = value << 6;
1119 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1120 value = value << 5;
1121 value |= extension & 0x01f; /* extract 4:0 */
1122 return value;
1123 }
1124
1125 /* Only call this function if you know that this is an extendable
1126 instruction, It wont malfunction, but why make excess remote memory references?
1127 If the immediate operands get sign extended or somthing, do it after
1128 the extension is performed.
1129 */
1130 /* FIXME: Every one of these cases needs to worry about sign extension
1131 when the offset is to be used in relative addressing */
1132
1133
1134 static unsigned int
1135 fetch_mips_16 (CORE_ADDR pc)
1136 {
1137 char buf[8];
1138 pc &= 0xfffffffe; /* clear the low order bit */
1139 target_read_memory (pc, buf, 2);
1140 return extract_unsigned_integer (buf, 2);
1141 }
1142
1143 static void
1144 unpack_mips16 (CORE_ADDR pc,
1145 unsigned int extension,
1146 unsigned int inst,
1147 enum mips16_inst_fmts insn_format,
1148 struct upk_mips16 *upk)
1149 {
1150 CORE_ADDR offset;
1151 int regx;
1152 int regy;
1153 switch (insn_format)
1154 {
1155 case itype:
1156 {
1157 CORE_ADDR value;
1158 if (extension)
1159 {
1160 value = extended_offset (extension);
1161 value = value << 11; /* rom for the original value */
1162 value |= inst & 0x7ff; /* eleven bits from instruction */
1163 }
1164 else
1165 {
1166 value = inst & 0x7ff;
1167 /* FIXME : Consider sign extension */
1168 }
1169 offset = value;
1170 regx = -1;
1171 regy = -1;
1172 }
1173 break;
1174 case ritype:
1175 case i8type:
1176 { /* A register identifier and an offset */
1177 /* Most of the fields are the same as I type but the
1178 immediate value is of a different length */
1179 CORE_ADDR value;
1180 if (extension)
1181 {
1182 value = extended_offset (extension);
1183 value = value << 8; /* from the original instruction */
1184 value |= inst & 0xff; /* eleven bits from instruction */
1185 regx = (extension >> 8) & 0x07; /* or i8 funct */
1186 if (value & 0x4000) /* test the sign bit , bit 26 */
1187 {
1188 value &= ~0x3fff; /* remove the sign bit */
1189 value = -value;
1190 }
1191 }
1192 else
1193 {
1194 value = inst & 0xff; /* 8 bits */
1195 regx = (inst >> 8) & 0x07; /* or i8 funct */
1196 /* FIXME: Do sign extension , this format needs it */
1197 if (value & 0x80) /* THIS CONFUSES ME */
1198 {
1199 value &= 0xef; /* remove the sign bit */
1200 value = -value;
1201 }
1202 }
1203 offset = value;
1204 regy = -1;
1205 break;
1206 }
1207 case jalxtype:
1208 {
1209 unsigned long value;
1210 unsigned int nexthalf;
1211 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1212 value = value << 16;
1213 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1214 value |= nexthalf;
1215 offset = value;
1216 regx = -1;
1217 regy = -1;
1218 break;
1219 }
1220 default:
1221 internal_error (__FILE__, __LINE__,
1222 "bad switch");
1223 }
1224 upk->offset = offset;
1225 upk->regx = regx;
1226 upk->regy = regy;
1227 }
1228
1229
1230 static CORE_ADDR
1231 add_offset_16 (CORE_ADDR pc, int offset)
1232 {
1233 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1234 }
1235
1236 static CORE_ADDR
1237 extended_mips16_next_pc (CORE_ADDR pc,
1238 unsigned int extension,
1239 unsigned int insn)
1240 {
1241 int op = (insn >> 11);
1242 switch (op)
1243 {
1244 case 2: /* Branch */
1245 {
1246 CORE_ADDR offset;
1247 struct upk_mips16 upk;
1248 unpack_mips16 (pc, extension, insn, itype, &upk);
1249 offset = upk.offset;
1250 if (offset & 0x800)
1251 {
1252 offset &= 0xeff;
1253 offset = -offset;
1254 }
1255 pc += (offset << 1) + 2;
1256 break;
1257 }
1258 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1259 {
1260 struct upk_mips16 upk;
1261 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1262 pc = add_offset_16 (pc, upk.offset);
1263 if ((insn >> 10) & 0x01) /* Exchange mode */
1264 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1265 else
1266 pc |= 0x01;
1267 break;
1268 }
1269 case 4: /* beqz */
1270 {
1271 struct upk_mips16 upk;
1272 int reg;
1273 unpack_mips16 (pc, extension, insn, ritype, &upk);
1274 reg = read_signed_register (upk.regx);
1275 if (reg == 0)
1276 pc += (upk.offset << 1) + 2;
1277 else
1278 pc += 2;
1279 break;
1280 }
1281 case 5: /* bnez */
1282 {
1283 struct upk_mips16 upk;
1284 int reg;
1285 unpack_mips16 (pc, extension, insn, ritype, &upk);
1286 reg = read_signed_register (upk.regx);
1287 if (reg != 0)
1288 pc += (upk.offset << 1) + 2;
1289 else
1290 pc += 2;
1291 break;
1292 }
1293 case 12: /* I8 Formats btez btnez */
1294 {
1295 struct upk_mips16 upk;
1296 int reg;
1297 unpack_mips16 (pc, extension, insn, i8type, &upk);
1298 /* upk.regx contains the opcode */
1299 reg = read_signed_register (24); /* Test register is 24 */
1300 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1301 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1302 /* pc = add_offset_16(pc,upk.offset) ; */
1303 pc += (upk.offset << 1) + 2;
1304 else
1305 pc += 2;
1306 break;
1307 }
1308 case 29: /* RR Formats JR, JALR, JALR-RA */
1309 {
1310 struct upk_mips16 upk;
1311 /* upk.fmt = rrtype; */
1312 op = insn & 0x1f;
1313 if (op == 0)
1314 {
1315 int reg;
1316 upk.regx = (insn >> 8) & 0x07;
1317 upk.regy = (insn >> 5) & 0x07;
1318 switch (upk.regy)
1319 {
1320 case 0:
1321 reg = upk.regx;
1322 break;
1323 case 1:
1324 reg = 31;
1325 break; /* Function return instruction */
1326 case 2:
1327 reg = upk.regx;
1328 break;
1329 default:
1330 reg = 31;
1331 break; /* BOGUS Guess */
1332 }
1333 pc = read_signed_register (reg);
1334 }
1335 else
1336 pc += 2;
1337 break;
1338 }
1339 case 30:
1340 /* This is an instruction extension. Fetch the real instruction
1341 (which follows the extension) and decode things based on
1342 that. */
1343 {
1344 pc += 2;
1345 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1346 break;
1347 }
1348 default:
1349 {
1350 pc += 2;
1351 break;
1352 }
1353 }
1354 return pc;
1355 }
1356
1357 static CORE_ADDR
1358 mips16_next_pc (CORE_ADDR pc)
1359 {
1360 unsigned int insn = fetch_mips_16 (pc);
1361 return extended_mips16_next_pc (pc, 0, insn);
1362 }
1363
1364 /* The mips_next_pc function supports single_step when the remote
1365 target monitor or stub is not developed enough to do a single_step.
1366 It works by decoding the current instruction and predicting where a
1367 branch will go. This isnt hard because all the data is available.
1368 The MIPS32 and MIPS16 variants are quite different */
1369 CORE_ADDR
1370 mips_next_pc (CORE_ADDR pc)
1371 {
1372 if (pc & 0x01)
1373 return mips16_next_pc (pc);
1374 else
1375 return mips32_next_pc (pc);
1376 }
1377
1378 /* Guaranteed to set fci->saved_regs to some values (it never leaves it
1379 NULL).
1380
1381 Note: kevinb/2002-08-09: The only caller of this function is (and
1382 should remain) mips_frame_init_saved_regs(). In fact,
1383 aside from calling mips_find_saved_regs(), mips_frame_init_saved_regs()
1384 does nothing more than set frame->saved_regs[SP_REGNUM]. These two
1385 functions should really be combined and now that there is only one
1386 caller, it should be straightforward. (Watch out for multiple returns
1387 though.) */
1388
1389 static void
1390 mips_find_saved_regs (struct frame_info *fci)
1391 {
1392 int ireg;
1393 CORE_ADDR reg_position;
1394 /* r0 bit means kernel trap */
1395 int kernel_trap;
1396 /* What registers have been saved? Bitmasks. */
1397 unsigned long gen_mask, float_mask;
1398 mips_extra_func_info_t proc_desc;
1399 t_inst inst;
1400
1401 frame_saved_regs_zalloc (fci);
1402
1403 /* If it is the frame for sigtramp, the saved registers are located
1404 in a sigcontext structure somewhere on the stack.
1405 If the stack layout for sigtramp changes we might have to change these
1406 constants and the companion fixup_sigtramp in mdebugread.c */
1407 #ifndef SIGFRAME_BASE
1408 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1409 above the sigtramp frame. */
1410 #define SIGFRAME_BASE MIPS_REGSIZE
1411 /* FIXME! Are these correct?? */
1412 #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1413 #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1414 #define SIGFRAME_FPREGSAVE_OFF \
1415 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1416 #endif
1417 #ifndef SIGFRAME_REG_SIZE
1418 /* FIXME! Is this correct?? */
1419 #define SIGFRAME_REG_SIZE MIPS_REGSIZE
1420 #endif
1421 if ((get_frame_type (fci) == SIGTRAMP_FRAME))
1422 {
1423 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1424 {
1425 reg_position = get_frame_base (fci) + SIGFRAME_REGSAVE_OFF
1426 + ireg * SIGFRAME_REG_SIZE;
1427 get_frame_saved_regs (fci)[ireg] = reg_position;
1428 }
1429 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1430 {
1431 reg_position = get_frame_base (fci) + SIGFRAME_FPREGSAVE_OFF
1432 + ireg * SIGFRAME_REG_SIZE;
1433 get_frame_saved_regs (fci)[FP0_REGNUM + ireg] = reg_position;
1434 }
1435 get_frame_saved_regs (fci)[PC_REGNUM] = get_frame_base (fci) + SIGFRAME_PC_OFF;
1436 return;
1437 }
1438
1439 proc_desc = get_frame_extra_info (fci)->proc_desc;
1440 if (proc_desc == NULL)
1441 /* I'm not sure how/whether this can happen. Normally when we can't
1442 find a proc_desc, we "synthesize" one using heuristic_proc_desc
1443 and set the saved_regs right away. */
1444 return;
1445
1446 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1447 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1448 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
1449
1450 if ( /* In any frame other than the innermost or a frame interrupted by
1451 a signal, we assume that all registers have been saved.
1452 This assumes that all register saves in a function happen before
1453 the first function call. */
1454 (get_next_frame (fci) == NULL
1455 || (get_frame_type (get_next_frame (fci)) == SIGTRAMP_FRAME))
1456
1457 /* In a dummy frame we know exactly where things are saved. */
1458 && !PROC_DESC_IS_DUMMY (proc_desc)
1459
1460 /* Don't bother unless we are inside a function prologue. Outside the
1461 prologue, we know where everything is. */
1462
1463 && in_prologue (get_frame_pc (fci), PROC_LOW_ADDR (proc_desc))
1464
1465 /* Not sure exactly what kernel_trap means, but if it means
1466 the kernel saves the registers without a prologue doing it,
1467 we better not examine the prologue to see whether registers
1468 have been saved yet. */
1469 && !kernel_trap)
1470 {
1471 /* We need to figure out whether the registers that the proc_desc
1472 claims are saved have been saved yet. */
1473
1474 CORE_ADDR addr;
1475
1476 /* Bitmasks; set if we have found a save for the register. */
1477 unsigned long gen_save_found = 0;
1478 unsigned long float_save_found = 0;
1479 int instlen;
1480
1481 /* If the address is odd, assume this is MIPS16 code. */
1482 addr = PROC_LOW_ADDR (proc_desc);
1483 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1484
1485 /* Scan through this function's instructions preceding the current
1486 PC, and look for those that save registers. */
1487 while (addr < get_frame_pc (fci))
1488 {
1489 inst = mips_fetch_instruction (addr);
1490 if (pc_is_mips16 (addr))
1491 mips16_decode_reg_save (inst, &gen_save_found);
1492 else
1493 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1494 addr += instlen;
1495 }
1496 gen_mask = gen_save_found;
1497 float_mask = float_save_found;
1498 }
1499
1500 /* Fill in the offsets for the registers which gen_mask says
1501 were saved. */
1502 reg_position = get_frame_base (fci) + PROC_REG_OFFSET (proc_desc);
1503 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1504 if (gen_mask & 0x80000000)
1505 {
1506 get_frame_saved_regs (fci)[ireg] = reg_position;
1507 reg_position -= MIPS_SAVED_REGSIZE;
1508 }
1509
1510 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
1511 of that normally used by gcc. Therefore, we have to fetch the first
1512 instruction of the function, and if it's an entry instruction that
1513 saves $s0 or $s1, correct their saved addresses. */
1514 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1515 {
1516 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
1517 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1518 {
1519 int reg;
1520 int sreg_count = (inst >> 6) & 3;
1521
1522 /* Check if the ra register was pushed on the stack. */
1523 reg_position = get_frame_base (fci) + PROC_REG_OFFSET (proc_desc);
1524 if (inst & 0x20)
1525 reg_position -= MIPS_SAVED_REGSIZE;
1526
1527 /* Check if the s0 and s1 registers were pushed on the stack. */
1528 for (reg = 16; reg < sreg_count + 16; reg++)
1529 {
1530 get_frame_saved_regs (fci)[reg] = reg_position;
1531 reg_position -= MIPS_SAVED_REGSIZE;
1532 }
1533 }
1534 }
1535
1536 /* Fill in the offsets for the registers which float_mask says
1537 were saved. */
1538 reg_position = get_frame_base (fci) + PROC_FREG_OFFSET (proc_desc);
1539
1540 /* Apparently, the freg_offset gives the offset to the first 64 bit
1541 saved.
1542
1543 When the ABI specifies 64 bit saved registers, the FREG_OFFSET
1544 designates the first saved 64 bit register.
1545
1546 When the ABI specifies 32 bit saved registers, the ``64 bit saved
1547 DOUBLE'' consists of two adjacent 32 bit registers, Hence
1548 FREG_OFFSET, designates the address of the lower register of the
1549 register pair. Adjust the offset so that it designates the upper
1550 register of the pair -- i.e., the address of the first saved 32
1551 bit register. */
1552
1553 if (MIPS_SAVED_REGSIZE == 4)
1554 reg_position += MIPS_SAVED_REGSIZE;
1555
1556 /* Fill in the offsets for the float registers which float_mask says
1557 were saved. */
1558 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1559 if (float_mask & 0x80000000)
1560 {
1561 get_frame_saved_regs (fci)[FP0_REGNUM + ireg] = reg_position;
1562 reg_position -= MIPS_SAVED_REGSIZE;
1563 }
1564
1565 get_frame_saved_regs (fci)[PC_REGNUM] = get_frame_saved_regs (fci)[RA_REGNUM];
1566 }
1567
1568 /* Set up the 'saved_regs' array. This is a data structure containing
1569 the addresses on the stack where each register has been saved, for
1570 each stack frame. Registers that have not been saved will have
1571 zero here. The stack pointer register is special: rather than the
1572 address where the stack register has been saved, saved_regs[SP_REGNUM]
1573 will have the actual value of the previous frame's stack register. */
1574
1575 static void
1576 mips_frame_init_saved_regs (struct frame_info *frame)
1577 {
1578 if (get_frame_saved_regs (frame) == NULL)
1579 {
1580 mips_find_saved_regs (frame);
1581 }
1582 get_frame_saved_regs (frame)[SP_REGNUM] = get_frame_base (frame);
1583 }
1584
1585 static CORE_ADDR
1586 read_next_frame_reg (struct frame_info *fi, int regno)
1587 {
1588 int optimized;
1589 CORE_ADDR addr;
1590 int realnum;
1591 enum lval_type lval;
1592 void *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
1593
1594 if (fi == NULL)
1595 {
1596 regcache_cooked_read (current_regcache, regno, raw_buffer);
1597 }
1598 else
1599 {
1600 frame_register_unwind (fi, regno, &optimized, &lval, &addr, &realnum,
1601 raw_buffer);
1602 /* FIXME: cagney/2002-09-13: This is just soooo bad. The MIPS
1603 should have a pseudo register range that correspons to the ABI's,
1604 rather than the ISA's, view of registers. These registers would
1605 then implicitly describe their size and hence could be used
1606 without the below munging. */
1607 if (lval == lval_memory)
1608 {
1609 if (regno < 32)
1610 {
1611 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
1612 saved. */
1613 return read_memory_integer (addr, MIPS_SAVED_REGSIZE);
1614 }
1615 }
1616 }
1617
1618 return extract_signed_integer (raw_buffer, REGISTER_VIRTUAL_SIZE (regno));
1619 }
1620
1621 /* mips_addr_bits_remove - remove useless address bits */
1622
1623 static CORE_ADDR
1624 mips_addr_bits_remove (CORE_ADDR addr)
1625 {
1626 if (GDB_TARGET_IS_MIPS64)
1627 {
1628 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
1629 {
1630 /* This hack is a work-around for existing boards using
1631 PMON, the simulator, and any other 64-bit targets that
1632 doesn't have true 64-bit addressing. On these targets,
1633 the upper 32 bits of addresses are ignored by the
1634 hardware. Thus, the PC or SP are likely to have been
1635 sign extended to all 1s by instruction sequences that
1636 load 32-bit addresses. For example, a typical piece of
1637 code that loads an address is this:
1638 lui $r2, <upper 16 bits>
1639 ori $r2, <lower 16 bits>
1640 But the lui sign-extends the value such that the upper 32
1641 bits may be all 1s. The workaround is simply to mask off
1642 these bits. In the future, gcc may be changed to support
1643 true 64-bit addressing, and this masking will have to be
1644 disabled. */
1645 addr &= (CORE_ADDR) 0xffffffff;
1646 }
1647 }
1648 else if (mips_mask_address_p ())
1649 {
1650 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1651 masking off bits, instead, the actual target should be asking
1652 for the address to be converted to a valid pointer. */
1653 /* Even when GDB is configured for some 32-bit targets
1654 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1655 so CORE_ADDR is 64 bits. So we still have to mask off
1656 useless bits from addresses. */
1657 addr &= (CORE_ADDR) 0xffffffff;
1658 }
1659 return addr;
1660 }
1661
1662 /* mips_software_single_step() is called just before we want to resume
1663 the inferior, if we want to single-step it but there is no hardware
1664 or kernel single-step support (MIPS on GNU/Linux for example). We find
1665 the target of the coming instruction and breakpoint it.
1666
1667 single_step is also called just after the inferior stops. If we had
1668 set up a simulated single-step, we undo our damage. */
1669
1670 void
1671 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1672 {
1673 static CORE_ADDR next_pc;
1674 typedef char binsn_quantum[BREAKPOINT_MAX];
1675 static binsn_quantum break_mem;
1676 CORE_ADDR pc;
1677
1678 if (insert_breakpoints_p)
1679 {
1680 pc = read_register (PC_REGNUM);
1681 next_pc = mips_next_pc (pc);
1682
1683 target_insert_breakpoint (next_pc, break_mem);
1684 }
1685 else
1686 target_remove_breakpoint (next_pc, break_mem);
1687 }
1688
1689 static CORE_ADDR
1690 mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
1691 {
1692 CORE_ADDR pc, tmp;
1693
1694 pc = ((fromleaf)
1695 ? SAVED_PC_AFTER_CALL (get_next_frame (prev))
1696 : get_next_frame (prev)
1697 ? DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev))
1698 : read_pc ());
1699 tmp = SKIP_TRAMPOLINE_CODE (pc);
1700 return tmp ? tmp : pc;
1701 }
1702
1703
1704 static CORE_ADDR
1705 mips_frame_saved_pc (struct frame_info *frame)
1706 {
1707 CORE_ADDR saved_pc;
1708 mips_extra_func_info_t proc_desc = get_frame_extra_info (frame)->proc_desc;
1709 /* We have to get the saved pc from the sigcontext
1710 if it is a signal handler frame. */
1711 int pcreg = (get_frame_type (frame) == SIGTRAMP_FRAME) ? PC_REGNUM
1712 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1713
1714 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
1715 {
1716 LONGEST tmp;
1717 frame_unwind_signed_register (frame, PC_REGNUM, &tmp);
1718 saved_pc = tmp;
1719 }
1720 else if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1721 saved_pc = read_memory_integer (get_frame_base (frame) - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
1722 else
1723 saved_pc = read_next_frame_reg (frame, pcreg);
1724
1725 return ADDR_BITS_REMOVE (saved_pc);
1726 }
1727
1728 static struct mips_extra_func_info temp_proc_desc;
1729
1730 /* This hack will go away once the get_prev_frame() code has been
1731 modified to set the frame's type first. That is BEFORE init extra
1732 frame info et.al. is called. This is because it will become
1733 possible to skip the init extra info call for sigtramp and dummy
1734 frames. */
1735 static CORE_ADDR *temp_saved_regs;
1736
1737 /* Set a register's saved stack address in temp_saved_regs. If an address
1738 has already been set for this register, do nothing; this way we will
1739 only recognize the first save of a given register in a function prologue.
1740 This is a helper function for mips{16,32}_heuristic_proc_desc. */
1741
1742 static void
1743 set_reg_offset (int regno, CORE_ADDR offset)
1744 {
1745 if (temp_saved_regs[regno] == 0)
1746 temp_saved_regs[regno] = offset;
1747 }
1748
1749
1750 /* Test whether the PC points to the return instruction at the
1751 end of a function. */
1752
1753 static int
1754 mips_about_to_return (CORE_ADDR pc)
1755 {
1756 if (pc_is_mips16 (pc))
1757 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1758 generates a "jr $ra"; other times it generates code to load
1759 the return address from the stack to an accessible register (such
1760 as $a3), then a "jr" using that register. This second case
1761 is almost impossible to distinguish from an indirect jump
1762 used for switch statements, so we don't even try. */
1763 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1764 else
1765 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1766 }
1767
1768
1769 /* This fencepost looks highly suspicious to me. Removing it also
1770 seems suspicious as it could affect remote debugging across serial
1771 lines. */
1772
1773 static CORE_ADDR
1774 heuristic_proc_start (CORE_ADDR pc)
1775 {
1776 CORE_ADDR start_pc;
1777 CORE_ADDR fence;
1778 int instlen;
1779 int seen_adjsp = 0;
1780
1781 pc = ADDR_BITS_REMOVE (pc);
1782 start_pc = pc;
1783 fence = start_pc - heuristic_fence_post;
1784 if (start_pc == 0)
1785 return 0;
1786
1787 if (heuristic_fence_post == UINT_MAX
1788 || fence < VM_MIN_ADDRESS)
1789 fence = VM_MIN_ADDRESS;
1790
1791 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1792
1793 /* search back for previous return */
1794 for (start_pc -= instlen;; start_pc -= instlen)
1795 if (start_pc < fence)
1796 {
1797 /* It's not clear to me why we reach this point when
1798 stop_soon_quietly, but with this test, at least we
1799 don't print out warnings for every child forked (eg, on
1800 decstation). 22apr93 rich@cygnus.com. */
1801 if (!stop_soon_quietly)
1802 {
1803 static int blurb_printed = 0;
1804
1805 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1806 paddr_nz (pc));
1807
1808 if (!blurb_printed)
1809 {
1810 /* This actually happens frequently in embedded
1811 development, when you first connect to a board
1812 and your stack pointer and pc are nowhere in
1813 particular. This message needs to give people
1814 in that situation enough information to
1815 determine that it's no big deal. */
1816 printf_filtered ("\n\
1817 GDB is unable to find the start of the function at 0x%s\n\
1818 and thus can't determine the size of that function's stack frame.\n\
1819 This means that GDB may be unable to access that stack frame, or\n\
1820 the frames below it.\n\
1821 This problem is most likely caused by an invalid program counter or\n\
1822 stack pointer.\n\
1823 However, if you think GDB should simply search farther back\n\
1824 from 0x%s for code which looks like the beginning of a\n\
1825 function, you can increase the range of the search using the `set\n\
1826 heuristic-fence-post' command.\n",
1827 paddr_nz (pc), paddr_nz (pc));
1828 blurb_printed = 1;
1829 }
1830 }
1831
1832 return 0;
1833 }
1834 else if (pc_is_mips16 (start_pc))
1835 {
1836 unsigned short inst;
1837
1838 /* On MIPS16, any one of the following is likely to be the
1839 start of a function:
1840 entry
1841 addiu sp,-n
1842 daddiu sp,-n
1843 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1844 inst = mips_fetch_instruction (start_pc);
1845 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1846 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1847 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1848 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1849 break;
1850 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1851 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1852 seen_adjsp = 1;
1853 else
1854 seen_adjsp = 0;
1855 }
1856 else if (mips_about_to_return (start_pc))
1857 {
1858 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1859 break;
1860 }
1861
1862 return start_pc;
1863 }
1864
1865 /* Fetch the immediate value from a MIPS16 instruction.
1866 If the previous instruction was an EXTEND, use it to extend
1867 the upper bits of the immediate value. This is a helper function
1868 for mips16_heuristic_proc_desc. */
1869
1870 static int
1871 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1872 unsigned short inst, /* current instruction */
1873 int nbits, /* number of bits in imm field */
1874 int scale, /* scale factor to be applied to imm */
1875 int is_signed) /* is the imm field signed? */
1876 {
1877 int offset;
1878
1879 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1880 {
1881 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1882 if (offset & 0x8000) /* check for negative extend */
1883 offset = 0 - (0x10000 - (offset & 0xffff));
1884 return offset | (inst & 0x1f);
1885 }
1886 else
1887 {
1888 int max_imm = 1 << nbits;
1889 int mask = max_imm - 1;
1890 int sign_bit = max_imm >> 1;
1891
1892 offset = inst & mask;
1893 if (is_signed && (offset & sign_bit))
1894 offset = 0 - (max_imm - offset);
1895 return offset * scale;
1896 }
1897 }
1898
1899
1900 /* Fill in values in temp_proc_desc based on the MIPS16 instruction
1901 stream from start_pc to limit_pc. */
1902
1903 static void
1904 mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1905 struct frame_info *next_frame, CORE_ADDR sp)
1906 {
1907 CORE_ADDR cur_pc;
1908 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1909 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1910 unsigned inst = 0; /* current instruction */
1911 unsigned entry_inst = 0; /* the entry instruction */
1912 int reg, offset;
1913
1914 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1915 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1916
1917 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1918 {
1919 /* Save the previous instruction. If it's an EXTEND, we'll extract
1920 the immediate offset extension from it in mips16_get_imm. */
1921 prev_inst = inst;
1922
1923 /* Fetch and decode the instruction. */
1924 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1925 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1926 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1927 {
1928 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1929 if (offset < 0) /* negative stack adjustment? */
1930 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
1931 else
1932 /* Exit loop if a positive stack adjustment is found, which
1933 usually means that the stack cleanup code in the function
1934 epilogue is reached. */
1935 break;
1936 }
1937 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1938 {
1939 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1940 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1941 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1942 set_reg_offset (reg, sp + offset);
1943 }
1944 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1945 {
1946 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1947 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1948 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1949 set_reg_offset (reg, sp + offset);
1950 }
1951 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1952 {
1953 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1954 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1955 set_reg_offset (RA_REGNUM, sp + offset);
1956 }
1957 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1958 {
1959 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1960 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1961 set_reg_offset (RA_REGNUM, sp + offset);
1962 }
1963 else if (inst == 0x673d) /* move $s1, $sp */
1964 {
1965 frame_addr = sp;
1966 PROC_FRAME_REG (&temp_proc_desc) = 17;
1967 }
1968 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1969 {
1970 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1971 frame_addr = sp + offset;
1972 PROC_FRAME_REG (&temp_proc_desc) = 17;
1973 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
1974 }
1975 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1976 {
1977 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1978 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1979 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1980 set_reg_offset (reg, frame_addr + offset);
1981 }
1982 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1983 {
1984 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1985 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1986 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1987 set_reg_offset (reg, frame_addr + offset);
1988 }
1989 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1990 entry_inst = inst; /* save for later processing */
1991 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1992 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
1993 }
1994
1995 /* The entry instruction is typically the first instruction in a function,
1996 and it stores registers at offsets relative to the value of the old SP
1997 (before the prologue). But the value of the sp parameter to this
1998 function is the new SP (after the prologue has been executed). So we
1999 can't calculate those offsets until we've seen the entire prologue,
2000 and can calculate what the old SP must have been. */
2001 if (entry_inst != 0)
2002 {
2003 int areg_count = (entry_inst >> 8) & 7;
2004 int sreg_count = (entry_inst >> 6) & 3;
2005
2006 /* The entry instruction always subtracts 32 from the SP. */
2007 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
2008
2009 /* Now we can calculate what the SP must have been at the
2010 start of the function prologue. */
2011 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
2012
2013 /* Check if a0-a3 were saved in the caller's argument save area. */
2014 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2015 {
2016 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2017 set_reg_offset (reg, sp + offset);
2018 offset += MIPS_SAVED_REGSIZE;
2019 }
2020
2021 /* Check if the ra register was pushed on the stack. */
2022 offset = -4;
2023 if (entry_inst & 0x20)
2024 {
2025 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
2026 set_reg_offset (RA_REGNUM, sp + offset);
2027 offset -= MIPS_SAVED_REGSIZE;
2028 }
2029
2030 /* Check if the s0 and s1 registers were pushed on the stack. */
2031 for (reg = 16; reg < sreg_count + 16; reg++)
2032 {
2033 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2034 set_reg_offset (reg, sp + offset);
2035 offset -= MIPS_SAVED_REGSIZE;
2036 }
2037 }
2038 }
2039
2040 static void
2041 mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2042 struct frame_info *next_frame, CORE_ADDR sp)
2043 {
2044 CORE_ADDR cur_pc;
2045 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
2046 restart:
2047 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2048 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2049 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
2050 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2051 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2052 {
2053 unsigned long inst, high_word, low_word;
2054 int reg;
2055
2056 /* Fetch the instruction. */
2057 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2058
2059 /* Save some code by pre-extracting some useful fields. */
2060 high_word = (inst >> 16) & 0xffff;
2061 low_word = inst & 0xffff;
2062 reg = high_word & 0x1f;
2063
2064 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
2065 || high_word == 0x23bd /* addi $sp,$sp,-i */
2066 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2067 {
2068 if (low_word & 0x8000) /* negative stack adjustment? */
2069 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
2070 else
2071 /* Exit loop if a positive stack adjustment is found, which
2072 usually means that the stack cleanup code in the function
2073 epilogue is reached. */
2074 break;
2075 }
2076 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2077 {
2078 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2079 set_reg_offset (reg, sp + low_word);
2080 }
2081 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2082 {
2083 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2084 but the register size used is only 32 bits. Make the address
2085 for the saved register point to the lower 32 bits. */
2086 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2087 set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
2088 }
2089 else if (high_word == 0x27be) /* addiu $30,$sp,size */
2090 {
2091 /* Old gcc frame, r30 is virtual frame pointer. */
2092 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2093 frame_addr = sp + low_word;
2094 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2095 {
2096 unsigned alloca_adjust;
2097 PROC_FRAME_REG (&temp_proc_desc) = 30;
2098 frame_addr = read_next_frame_reg (next_frame, 30);
2099 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
2100 if (alloca_adjust > 0)
2101 {
2102 /* FP > SP + frame_size. This may be because
2103 * of an alloca or somethings similar.
2104 * Fix sp to "pre-alloca" value, and try again.
2105 */
2106 sp += alloca_adjust;
2107 goto restart;
2108 }
2109 }
2110 }
2111 /* move $30,$sp. With different versions of gas this will be either
2112 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2113 Accept any one of these. */
2114 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2115 {
2116 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2117 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2118 {
2119 unsigned alloca_adjust;
2120 PROC_FRAME_REG (&temp_proc_desc) = 30;
2121 frame_addr = read_next_frame_reg (next_frame, 30);
2122 alloca_adjust = (unsigned) (frame_addr - sp);
2123 if (alloca_adjust > 0)
2124 {
2125 /* FP > SP + frame_size. This may be because
2126 * of an alloca or somethings similar.
2127 * Fix sp to "pre-alloca" value, and try again.
2128 */
2129 sp += alloca_adjust;
2130 goto restart;
2131 }
2132 }
2133 }
2134 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
2135 {
2136 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2137 set_reg_offset (reg, frame_addr + low_word);
2138 }
2139 }
2140 }
2141
2142 static mips_extra_func_info_t
2143 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2144 struct frame_info *next_frame, int cur_frame)
2145 {
2146 CORE_ADDR sp;
2147
2148 if (cur_frame)
2149 sp = read_next_frame_reg (next_frame, SP_REGNUM);
2150 else
2151 sp = 0;
2152
2153 if (start_pc == 0)
2154 return NULL;
2155 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
2156 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2157 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2158 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2159 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2160 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2161
2162 if (start_pc + 200 < limit_pc)
2163 limit_pc = start_pc + 200;
2164 if (pc_is_mips16 (start_pc))
2165 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2166 else
2167 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2168 return &temp_proc_desc;
2169 }
2170
2171 struct mips_objfile_private
2172 {
2173 bfd_size_type size;
2174 char *contents;
2175 };
2176
2177 /* Global used to communicate between non_heuristic_proc_desc and
2178 compare_pdr_entries within qsort (). */
2179 static bfd *the_bfd;
2180
2181 static int
2182 compare_pdr_entries (const void *a, const void *b)
2183 {
2184 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2185 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2186
2187 if (lhs < rhs)
2188 return -1;
2189 else if (lhs == rhs)
2190 return 0;
2191 else
2192 return 1;
2193 }
2194
2195 static mips_extra_func_info_t
2196 non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
2197 {
2198 CORE_ADDR startaddr;
2199 mips_extra_func_info_t proc_desc;
2200 struct block *b = block_for_pc (pc);
2201 struct symbol *sym;
2202 struct obj_section *sec;
2203 struct mips_objfile_private *priv;
2204
2205 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
2206 return NULL;
2207
2208 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2209 if (addrptr)
2210 *addrptr = startaddr;
2211
2212 priv = NULL;
2213
2214 sec = find_pc_section (pc);
2215 if (sec != NULL)
2216 {
2217 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2218
2219 /* Search the ".pdr" section generated by GAS. This includes most of
2220 the information normally found in ECOFF PDRs. */
2221
2222 the_bfd = sec->objfile->obfd;
2223 if (priv == NULL
2224 && (the_bfd->format == bfd_object
2225 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2226 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2227 {
2228 /* Right now GAS only outputs the address as a four-byte sequence.
2229 This means that we should not bother with this method on 64-bit
2230 targets (until that is fixed). */
2231
2232 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2233 sizeof (struct mips_objfile_private));
2234 priv->size = 0;
2235 sec->objfile->obj_private = priv;
2236 }
2237 else if (priv == NULL)
2238 {
2239 asection *bfdsec;
2240
2241 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2242 sizeof (struct mips_objfile_private));
2243
2244 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2245 if (bfdsec != NULL)
2246 {
2247 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2248 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2249 priv->size);
2250 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2251 priv->contents, 0, priv->size);
2252
2253 /* In general, the .pdr section is sorted. However, in the
2254 presence of multiple code sections (and other corner cases)
2255 it can become unsorted. Sort it so that we can use a faster
2256 binary search. */
2257 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2258 }
2259 else
2260 priv->size = 0;
2261
2262 sec->objfile->obj_private = priv;
2263 }
2264 the_bfd = NULL;
2265
2266 if (priv->size != 0)
2267 {
2268 int low, mid, high;
2269 char *ptr;
2270
2271 low = 0;
2272 high = priv->size / 32;
2273
2274 do
2275 {
2276 CORE_ADDR pdr_pc;
2277
2278 mid = (low + high) / 2;
2279
2280 ptr = priv->contents + mid * 32;
2281 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2282 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2283 SECT_OFF_TEXT (sec->objfile));
2284 if (pdr_pc == startaddr)
2285 break;
2286 if (pdr_pc > startaddr)
2287 high = mid;
2288 else
2289 low = mid + 1;
2290 }
2291 while (low != high);
2292
2293 if (low != high)
2294 {
2295 struct symbol *sym = find_pc_function (pc);
2296
2297 /* Fill in what we need of the proc_desc. */
2298 proc_desc = (mips_extra_func_info_t)
2299 obstack_alloc (&sec->objfile->psymbol_obstack,
2300 sizeof (struct mips_extra_func_info));
2301 PROC_LOW_ADDR (proc_desc) = startaddr;
2302
2303 /* Only used for dummy frames. */
2304 PROC_HIGH_ADDR (proc_desc) = 0;
2305
2306 PROC_FRAME_OFFSET (proc_desc)
2307 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2308 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2309 ptr + 24);
2310 PROC_FRAME_ADJUST (proc_desc) = 0;
2311 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2312 ptr + 4);
2313 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2314 ptr + 12);
2315 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2316 ptr + 8);
2317 PROC_FREG_OFFSET (proc_desc)
2318 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2319 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2320 ptr + 28);
2321 proc_desc->pdr.isym = (long) sym;
2322
2323 return proc_desc;
2324 }
2325 }
2326 }
2327
2328 if (b == NULL)
2329 return NULL;
2330
2331 if (startaddr > BLOCK_START (b))
2332 {
2333 /* This is the "pathological" case referred to in a comment in
2334 print_frame_info. It might be better to move this check into
2335 symbol reading. */
2336 return NULL;
2337 }
2338
2339 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
2340
2341 /* If we never found a PDR for this function in symbol reading, then
2342 examine prologues to find the information. */
2343 if (sym)
2344 {
2345 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2346 if (PROC_FRAME_REG (proc_desc) == -1)
2347 return NULL;
2348 else
2349 return proc_desc;
2350 }
2351 else
2352 return NULL;
2353 }
2354
2355
2356 static mips_extra_func_info_t
2357 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
2358 {
2359 mips_extra_func_info_t proc_desc;
2360 CORE_ADDR startaddr = 0;
2361
2362 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2363
2364 if (proc_desc)
2365 {
2366 /* IF this is the topmost frame AND
2367 * (this proc does not have debugging information OR
2368 * the PC is in the procedure prologue)
2369 * THEN create a "heuristic" proc_desc (by analyzing
2370 * the actual code) to replace the "official" proc_desc.
2371 */
2372 if (next_frame == NULL)
2373 {
2374 struct symtab_and_line val;
2375 struct symbol *proc_symbol =
2376 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
2377
2378 if (proc_symbol)
2379 {
2380 val = find_pc_line (BLOCK_START
2381 (SYMBOL_BLOCK_VALUE (proc_symbol)),
2382 0);
2383 val.pc = val.end ? val.end : pc;
2384 }
2385 if (!proc_symbol || pc < val.pc)
2386 {
2387 mips_extra_func_info_t found_heuristic =
2388 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2389 pc, next_frame, cur_frame);
2390 if (found_heuristic)
2391 proc_desc = found_heuristic;
2392 }
2393 }
2394 }
2395 else
2396 {
2397 /* Is linked_proc_desc_table really necessary? It only seems to be used
2398 by procedure call dummys. However, the procedures being called ought
2399 to have their own proc_descs, and even if they don't,
2400 heuristic_proc_desc knows how to create them! */
2401
2402 register struct linked_proc_info *link;
2403
2404 for (link = linked_proc_desc_table; link; link = link->next)
2405 if (PROC_LOW_ADDR (&link->info) <= pc
2406 && PROC_HIGH_ADDR (&link->info) > pc)
2407 return &link->info;
2408
2409 if (startaddr == 0)
2410 startaddr = heuristic_proc_start (pc);
2411
2412 proc_desc =
2413 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
2414 }
2415 return proc_desc;
2416 }
2417
2418 static CORE_ADDR
2419 get_frame_pointer (struct frame_info *frame,
2420 mips_extra_func_info_t proc_desc)
2421 {
2422 return ADDR_BITS_REMOVE (read_next_frame_reg (frame,
2423 PROC_FRAME_REG (proc_desc)) +
2424 PROC_FRAME_OFFSET (proc_desc) -
2425 PROC_FRAME_ADJUST (proc_desc));
2426 }
2427
2428 static mips_extra_func_info_t cached_proc_desc;
2429
2430 static CORE_ADDR
2431 mips_frame_chain (struct frame_info *frame)
2432 {
2433 mips_extra_func_info_t proc_desc;
2434 CORE_ADDR tmp;
2435 CORE_ADDR saved_pc = DEPRECATED_FRAME_SAVED_PC (frame);
2436
2437 if (saved_pc == 0 || inside_entry_file (saved_pc))
2438 return 0;
2439
2440 /* Check if the PC is inside a call stub. If it is, fetch the
2441 PC of the caller of that stub. */
2442 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
2443 saved_pc = tmp;
2444
2445 if (DEPRECATED_PC_IN_CALL_DUMMY (saved_pc, 0, 0))
2446 {
2447 /* A dummy frame, uses SP not FP. Get the old SP value. If all
2448 is well, frame->frame the bottom of the current frame will
2449 contain that value. */
2450 return get_frame_base (frame);
2451 }
2452
2453 /* Look up the procedure descriptor for this PC. */
2454 proc_desc = find_proc_desc (saved_pc, frame, 1);
2455 if (!proc_desc)
2456 return 0;
2457
2458 cached_proc_desc = proc_desc;
2459
2460 /* If no frame pointer and frame size is zero, we must be at end
2461 of stack (or otherwise hosed). If we don't check frame size,
2462 we loop forever if we see a zero size frame. */
2463 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2464 && PROC_FRAME_OFFSET (proc_desc) == 0
2465 /* The previous frame from a sigtramp frame might be frameless
2466 and have frame size zero. */
2467 && !(get_frame_type (frame) == SIGTRAMP_FRAME)
2468 /* For a generic dummy frame, let get_frame_pointer() unwind a
2469 register value saved as part of the dummy frame call. */
2470 && !(DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0)))
2471 return 0;
2472 else
2473 return get_frame_pointer (frame, proc_desc);
2474 }
2475
2476 static void
2477 mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
2478 {
2479 int regnum;
2480 mips_extra_func_info_t proc_desc;
2481
2482 if (get_frame_type (fci) == DUMMY_FRAME)
2483 return;
2484
2485 /* Use proc_desc calculated in frame_chain. When there is no
2486 next frame, i.e, get_next_frame (fci) == NULL, we call
2487 find_proc_desc () to calculate it, passing an explicit
2488 NULL as the frame parameter. */
2489 proc_desc =
2490 get_next_frame (fci)
2491 ? cached_proc_desc
2492 : find_proc_desc (get_frame_pc (fci),
2493 NULL /* i.e, get_next_frame (fci) */,
2494 1);
2495
2496 frame_extra_info_zalloc (fci, sizeof (struct frame_extra_info));
2497
2498 deprecated_set_frame_saved_regs_hack (fci, NULL);
2499 get_frame_extra_info (fci)->proc_desc =
2500 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2501 if (proc_desc)
2502 {
2503 /* Fixup frame-pointer - only needed for top frame */
2504 /* This may not be quite right, if proc has a real frame register.
2505 Get the value of the frame relative sp, procedure might have been
2506 interrupted by a signal at it's very start. */
2507 if (get_frame_pc (fci) == PROC_LOW_ADDR (proc_desc)
2508 && !PROC_DESC_IS_DUMMY (proc_desc))
2509 deprecated_update_frame_base_hack (fci, read_next_frame_reg (get_next_frame (fci), SP_REGNUM));
2510 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fci), 0, 0))
2511 /* Do not ``fix'' fci->frame. It will have the value of the
2512 generic dummy frame's top-of-stack (since the draft
2513 fci->frame is obtained by returning the unwound stack
2514 pointer) and that is what we want. That way the fci->frame
2515 value will match the top-of-stack value that was saved as
2516 part of the dummy frames data. */
2517 /* Do nothing. */;
2518 else
2519 deprecated_update_frame_base_hack (fci, get_frame_pointer (get_next_frame (fci), proc_desc));
2520
2521 if (proc_desc == &temp_proc_desc)
2522 {
2523 char *name;
2524
2525 /* Do not set the saved registers for a sigtramp frame,
2526 mips_find_saved_registers will do that for us. We can't
2527 use (get_frame_type (fci) == SIGTRAMP_FRAME), it is not
2528 yet set. */
2529 /* FIXME: cagney/2002-11-18: This problem will go away once
2530 frame.c:get_prev_frame() is modified to set the frame's
2531 type before calling functions like this. */
2532 find_pc_partial_function (get_frame_pc (fci), &name,
2533 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
2534 if (!PC_IN_SIGTRAMP (get_frame_pc (fci), name))
2535 {
2536 frame_saved_regs_zalloc (fci);
2537 memcpy (get_frame_saved_regs (fci), temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2538 get_frame_saved_regs (fci)[PC_REGNUM]
2539 = get_frame_saved_regs (fci)[RA_REGNUM];
2540 /* Set value of previous frame's stack pointer. Remember that
2541 saved_regs[SP_REGNUM] is special in that it contains the
2542 value of the stack pointer register. The other saved_regs
2543 values are addresses (in the inferior) at which a given
2544 register's value may be found. */
2545 get_frame_saved_regs (fci)[SP_REGNUM] = get_frame_base (fci);
2546 }
2547 }
2548
2549 /* hack: if argument regs are saved, guess these contain args */
2550 /* assume we can't tell how many args for now */
2551 get_frame_extra_info (fci)->num_args = -1;
2552 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2553 {
2554 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
2555 {
2556 get_frame_extra_info (fci)->num_args = regnum - A0_REGNUM + 1;
2557 break;
2558 }
2559 }
2560 }
2561 }
2562
2563 /* MIPS stack frames are almost impenetrable. When execution stops,
2564 we basically have to look at symbol information for the function
2565 that we stopped in, which tells us *which* register (if any) is
2566 the base of the frame pointer, and what offset from that register
2567 the frame itself is at.
2568
2569 This presents a problem when trying to examine a stack in memory
2570 (that isn't executing at the moment), using the "frame" command. We
2571 don't have a PC, nor do we have any registers except SP.
2572
2573 This routine takes two arguments, SP and PC, and tries to make the
2574 cached frames look as if these two arguments defined a frame on the
2575 cache. This allows the rest of info frame to extract the important
2576 arguments without difficulty. */
2577
2578 struct frame_info *
2579 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
2580 {
2581 if (argc != 2)
2582 error ("MIPS frame specifications require two arguments: sp and pc");
2583
2584 return create_new_frame (argv[0], argv[1]);
2585 }
2586
2587 /* According to the current ABI, should the type be passed in a
2588 floating-point register (assuming that there is space)? When there
2589 is no FPU, FP are not even considered as possibile candidates for
2590 FP registers and, consequently this returns false - forces FP
2591 arguments into integer registers. */
2592
2593 static int
2594 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2595 {
2596 return ((typecode == TYPE_CODE_FLT
2597 || (MIPS_EABI
2598 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2599 && TYPE_NFIELDS (arg_type) == 1
2600 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2601 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2602 }
2603
2604 /* On o32, argument passing in GPRs depends on the alignment of the type being
2605 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2606
2607 static int
2608 mips_type_needs_double_align (struct type *type)
2609 {
2610 enum type_code typecode = TYPE_CODE (type);
2611
2612 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2613 return 1;
2614 else if (typecode == TYPE_CODE_STRUCT)
2615 {
2616 if (TYPE_NFIELDS (type) < 1)
2617 return 0;
2618 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2619 }
2620 else if (typecode == TYPE_CODE_UNION)
2621 {
2622 int i, n;
2623
2624 n = TYPE_NFIELDS (type);
2625 for (i = 0; i < n; i++)
2626 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2627 return 1;
2628 return 0;
2629 }
2630 return 0;
2631 }
2632
2633 /* Macros to round N up or down to the next A boundary;
2634 A must be a power of two. */
2635
2636 #define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2637 #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2638
2639 /* Adjust the address downward (direction of stack growth) so that it
2640 is correctly aligned for a new stack frame. */
2641 static CORE_ADDR
2642 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2643 {
2644 return ROUND_DOWN (addr, 16);
2645 }
2646
2647 static CORE_ADDR
2648 mips_eabi_push_arguments (int nargs,
2649 struct value **args,
2650 CORE_ADDR sp,
2651 int struct_return,
2652 CORE_ADDR struct_addr)
2653 {
2654 int argreg;
2655 int float_argreg;
2656 int argnum;
2657 int len = 0;
2658 int stack_offset = 0;
2659
2660 /* First ensure that the stack and structure return address (if any)
2661 are properly aligned. The stack has to be at least 64-bit
2662 aligned even on 32-bit machines, because doubles must be 64-bit
2663 aligned. For n32 and n64, stack frames need to be 128-bit
2664 aligned, so we round to this widest known alignment. */
2665
2666 sp = ROUND_DOWN (sp, 16);
2667 struct_addr = ROUND_DOWN (struct_addr, 16);
2668
2669 /* Now make space on the stack for the args. We allocate more
2670 than necessary for EABI, because the first few arguments are
2671 passed in registers, but that's OK. */
2672 for (argnum = 0; argnum < nargs; argnum++)
2673 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2674 MIPS_STACK_ARGSIZE);
2675 sp -= ROUND_UP (len, 16);
2676
2677 if (mips_debug)
2678 fprintf_unfiltered (gdb_stdlog,
2679 "mips_eabi_push_arguments: sp=0x%s allocated %d\n",
2680 paddr_nz (sp), ROUND_UP (len, 16));
2681
2682 /* Initialize the integer and float register pointers. */
2683 argreg = A0_REGNUM;
2684 float_argreg = FPA0_REGNUM;
2685
2686 /* The struct_return pointer occupies the first parameter-passing reg. */
2687 if (struct_return)
2688 {
2689 if (mips_debug)
2690 fprintf_unfiltered (gdb_stdlog,
2691 "mips_eabi_push_arguments: struct_return reg=%d 0x%s\n",
2692 argreg, paddr_nz (struct_addr));
2693 write_register (argreg++, struct_addr);
2694 }
2695
2696 /* Now load as many as possible of the first arguments into
2697 registers, and push the rest onto the stack. Loop thru args
2698 from first to last. */
2699 for (argnum = 0; argnum < nargs; argnum++)
2700 {
2701 char *val;
2702 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
2703 struct value *arg = args[argnum];
2704 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2705 int len = TYPE_LENGTH (arg_type);
2706 enum type_code typecode = TYPE_CODE (arg_type);
2707
2708 if (mips_debug)
2709 fprintf_unfiltered (gdb_stdlog,
2710 "mips_eabi_push_arguments: %d len=%d type=%d",
2711 argnum + 1, len, (int) typecode);
2712
2713 /* The EABI passes structures that do not fit in a register by
2714 reference. */
2715 if (len > MIPS_SAVED_REGSIZE
2716 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2717 {
2718 store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
2719 typecode = TYPE_CODE_PTR;
2720 len = MIPS_SAVED_REGSIZE;
2721 val = valbuf;
2722 if (mips_debug)
2723 fprintf_unfiltered (gdb_stdlog, " push");
2724 }
2725 else
2726 val = (char *) VALUE_CONTENTS (arg);
2727
2728 /* 32-bit ABIs always start floating point arguments in an
2729 even-numbered floating point register. Round the FP register
2730 up before the check to see if there are any FP registers
2731 left. Non MIPS_EABI targets also pass the FP in the integer
2732 registers so also round up normal registers. */
2733 if (!FP_REGISTER_DOUBLE
2734 && fp_register_arg_p (typecode, arg_type))
2735 {
2736 if ((float_argreg & 1))
2737 float_argreg++;
2738 }
2739
2740 /* Floating point arguments passed in registers have to be
2741 treated specially. On 32-bit architectures, doubles
2742 are passed in register pairs; the even register gets
2743 the low word, and the odd register gets the high word.
2744 On non-EABI processors, the first two floating point arguments are
2745 also copied to general registers, because MIPS16 functions
2746 don't use float registers for arguments. This duplication of
2747 arguments in general registers can't hurt non-MIPS16 functions
2748 because those registers are normally skipped. */
2749 /* MIPS_EABI squeezes a struct that contains a single floating
2750 point value into an FP register instead of pushing it onto the
2751 stack. */
2752 if (fp_register_arg_p (typecode, arg_type)
2753 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2754 {
2755 if (!FP_REGISTER_DOUBLE && len == 8)
2756 {
2757 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2758 unsigned long regval;
2759
2760 /* Write the low word of the double to the even register(s). */
2761 regval = extract_unsigned_integer (val + low_offset, 4);
2762 if (mips_debug)
2763 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2764 float_argreg, phex (regval, 4));
2765 write_register (float_argreg++, regval);
2766
2767 /* Write the high word of the double to the odd register(s). */
2768 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2769 if (mips_debug)
2770 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2771 float_argreg, phex (regval, 4));
2772 write_register (float_argreg++, regval);
2773 }
2774 else
2775 {
2776 /* This is a floating point value that fits entirely
2777 in a single register. */
2778 /* On 32 bit ABI's the float_argreg is further adjusted
2779 above to ensure that it is even register aligned. */
2780 LONGEST regval = extract_unsigned_integer (val, len);
2781 if (mips_debug)
2782 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2783 float_argreg, phex (regval, len));
2784 write_register (float_argreg++, regval);
2785 }
2786 }
2787 else
2788 {
2789 /* Copy the argument to general registers or the stack in
2790 register-sized pieces. Large arguments are split between
2791 registers and stack. */
2792 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2793 are treated specially: Irix cc passes them in registers
2794 where gcc sometimes puts them on the stack. For maximum
2795 compatibility, we will put them in both places. */
2796 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2797 (len % MIPS_SAVED_REGSIZE != 0));
2798
2799 /* Note: Floating-point values that didn't fit into an FP
2800 register are only written to memory. */
2801 while (len > 0)
2802 {
2803 /* Remember if the argument was written to the stack. */
2804 int stack_used_p = 0;
2805 int partial_len =
2806 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
2807
2808 if (mips_debug)
2809 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2810 partial_len);
2811
2812 /* Write this portion of the argument to the stack. */
2813 if (argreg > MIPS_LAST_ARG_REGNUM
2814 || odd_sized_struct
2815 || fp_register_arg_p (typecode, arg_type))
2816 {
2817 /* Should shorter than int integer values be
2818 promoted to int before being stored? */
2819 int longword_offset = 0;
2820 CORE_ADDR addr;
2821 stack_used_p = 1;
2822 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2823 {
2824 if (MIPS_STACK_ARGSIZE == 8 &&
2825 (typecode == TYPE_CODE_INT ||
2826 typecode == TYPE_CODE_PTR ||
2827 typecode == TYPE_CODE_FLT) && len <= 4)
2828 longword_offset = MIPS_STACK_ARGSIZE - len;
2829 else if ((typecode == TYPE_CODE_STRUCT ||
2830 typecode == TYPE_CODE_UNION) &&
2831 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2832 longword_offset = MIPS_STACK_ARGSIZE - len;
2833 }
2834
2835 if (mips_debug)
2836 {
2837 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2838 paddr_nz (stack_offset));
2839 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2840 paddr_nz (longword_offset));
2841 }
2842
2843 addr = sp + stack_offset + longword_offset;
2844
2845 if (mips_debug)
2846 {
2847 int i;
2848 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2849 paddr_nz (addr));
2850 for (i = 0; i < partial_len; i++)
2851 {
2852 fprintf_unfiltered (gdb_stdlog, "%02x",
2853 val[i] & 0xff);
2854 }
2855 }
2856 write_memory (addr, val, partial_len);
2857 }
2858
2859 /* Note!!! This is NOT an else clause. Odd sized
2860 structs may go thru BOTH paths. Floating point
2861 arguments will not. */
2862 /* Write this portion of the argument to a general
2863 purpose register. */
2864 if (argreg <= MIPS_LAST_ARG_REGNUM
2865 && !fp_register_arg_p (typecode, arg_type))
2866 {
2867 LONGEST regval = extract_unsigned_integer (val, partial_len);
2868
2869 if (mips_debug)
2870 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2871 argreg,
2872 phex (regval, MIPS_SAVED_REGSIZE));
2873 write_register (argreg, regval);
2874 argreg++;
2875 }
2876
2877 len -= partial_len;
2878 val += partial_len;
2879
2880 /* Compute the the offset into the stack at which we
2881 will copy the next parameter.
2882
2883 In the new EABI (and the NABI32), the stack_offset
2884 only needs to be adjusted when it has been used. */
2885
2886 if (stack_used_p)
2887 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
2888 }
2889 }
2890 if (mips_debug)
2891 fprintf_unfiltered (gdb_stdlog, "\n");
2892 }
2893
2894 /* Return adjusted stack pointer. */
2895 return sp;
2896 }
2897
2898 /* N32/N64 version of push_arguments. */
2899
2900 static CORE_ADDR
2901 mips_n32n64_push_arguments (int nargs,
2902 struct value **args,
2903 CORE_ADDR sp,
2904 int struct_return,
2905 CORE_ADDR struct_addr)
2906 {
2907 int argreg;
2908 int float_argreg;
2909 int argnum;
2910 int len = 0;
2911 int stack_offset = 0;
2912
2913 /* First ensure that the stack and structure return address (if any)
2914 are properly aligned. The stack has to be at least 64-bit
2915 aligned even on 32-bit machines, because doubles must be 64-bit
2916 aligned. For n32 and n64, stack frames need to be 128-bit
2917 aligned, so we round to this widest known alignment. */
2918
2919 sp = ROUND_DOWN (sp, 16);
2920 struct_addr = ROUND_DOWN (struct_addr, 16);
2921
2922 /* Now make space on the stack for the args. */
2923 for (argnum = 0; argnum < nargs; argnum++)
2924 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2925 MIPS_STACK_ARGSIZE);
2926 sp -= ROUND_UP (len, 16);
2927
2928 if (mips_debug)
2929 fprintf_unfiltered (gdb_stdlog,
2930 "mips_n32n64_push_arguments: sp=0x%s allocated %d\n",
2931 paddr_nz (sp), ROUND_UP (len, 16));
2932
2933 /* Initialize the integer and float register pointers. */
2934 argreg = A0_REGNUM;
2935 float_argreg = FPA0_REGNUM;
2936
2937 /* The struct_return pointer occupies the first parameter-passing reg. */
2938 if (struct_return)
2939 {
2940 if (mips_debug)
2941 fprintf_unfiltered (gdb_stdlog,
2942 "mips_n32n64_push_arguments: struct_return reg=%d 0x%s\n",
2943 argreg, paddr_nz (struct_addr));
2944 write_register (argreg++, struct_addr);
2945 }
2946
2947 /* Now load as many as possible of the first arguments into
2948 registers, and push the rest onto the stack. Loop thru args
2949 from first to last. */
2950 for (argnum = 0; argnum < nargs; argnum++)
2951 {
2952 char *val;
2953 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
2954 struct value *arg = args[argnum];
2955 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2956 int len = TYPE_LENGTH (arg_type);
2957 enum type_code typecode = TYPE_CODE (arg_type);
2958
2959 if (mips_debug)
2960 fprintf_unfiltered (gdb_stdlog,
2961 "mips_n32n64_push_arguments: %d len=%d type=%d",
2962 argnum + 1, len, (int) typecode);
2963
2964 val = (char *) VALUE_CONTENTS (arg);
2965
2966 if (fp_register_arg_p (typecode, arg_type)
2967 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2968 {
2969 /* This is a floating point value that fits entirely
2970 in a single register. */
2971 /* On 32 bit ABI's the float_argreg is further adjusted
2972 above to ensure that it is even register aligned. */
2973 LONGEST regval = extract_unsigned_integer (val, len);
2974 if (mips_debug)
2975 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2976 float_argreg, phex (regval, len));
2977 write_register (float_argreg++, regval);
2978
2979 if (mips_debug)
2980 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2981 argreg, phex (regval, len));
2982 write_register (argreg, regval);
2983 argreg += 1;
2984 }
2985 else
2986 {
2987 /* Copy the argument to general registers or the stack in
2988 register-sized pieces. Large arguments are split between
2989 registers and stack. */
2990 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2991 are treated specially: Irix cc passes them in registers
2992 where gcc sometimes puts them on the stack. For maximum
2993 compatibility, we will put them in both places. */
2994 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2995 (len % MIPS_SAVED_REGSIZE != 0));
2996 /* Note: Floating-point values that didn't fit into an FP
2997 register are only written to memory. */
2998 while (len > 0)
2999 {
3000 /* Rememer if the argument was written to the stack. */
3001 int stack_used_p = 0;
3002 int partial_len = len < MIPS_SAVED_REGSIZE ?
3003 len : MIPS_SAVED_REGSIZE;
3004
3005 if (mips_debug)
3006 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3007 partial_len);
3008
3009 /* Write this portion of the argument to the stack. */
3010 if (argreg > MIPS_LAST_ARG_REGNUM
3011 || odd_sized_struct
3012 || fp_register_arg_p (typecode, arg_type))
3013 {
3014 /* Should shorter than int integer values be
3015 promoted to int before being stored? */
3016 int longword_offset = 0;
3017 CORE_ADDR addr;
3018 stack_used_p = 1;
3019 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3020 {
3021 if (MIPS_STACK_ARGSIZE == 8 &&
3022 (typecode == TYPE_CODE_INT ||
3023 typecode == TYPE_CODE_PTR ||
3024 typecode == TYPE_CODE_FLT) && len <= 4)
3025 longword_offset = MIPS_STACK_ARGSIZE - len;
3026 }
3027
3028 if (mips_debug)
3029 {
3030 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3031 paddr_nz (stack_offset));
3032 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3033 paddr_nz (longword_offset));
3034 }
3035
3036 addr = sp + stack_offset + longword_offset;
3037
3038 if (mips_debug)
3039 {
3040 int i;
3041 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3042 paddr_nz (addr));
3043 for (i = 0; i < partial_len; i++)
3044 {
3045 fprintf_unfiltered (gdb_stdlog, "%02x",
3046 val[i] & 0xff);
3047 }
3048 }
3049 write_memory (addr, val, partial_len);
3050 }
3051
3052 /* Note!!! This is NOT an else clause. Odd sized
3053 structs may go thru BOTH paths. Floating point
3054 arguments will not. */
3055 /* Write this portion of the argument to a general
3056 purpose register. */
3057 if (argreg <= MIPS_LAST_ARG_REGNUM
3058 && !fp_register_arg_p (typecode, arg_type))
3059 {
3060 LONGEST regval = extract_unsigned_integer (val, partial_len);
3061
3062 /* A non-floating-point argument being passed in a
3063 general register. If a struct or union, and if
3064 the remaining length is smaller than the register
3065 size, we have to adjust the register value on
3066 big endian targets.
3067
3068 It does not seem to be necessary to do the
3069 same for integral types.
3070
3071 cagney/2001-07-23: gdb/179: Also, GCC, when
3072 outputting LE O32 with sizeof (struct) <
3073 MIPS_SAVED_REGSIZE, generates a left shift as
3074 part of storing the argument in a register a
3075 register (the left shift isn't generated when
3076 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3077 is quite possible that this is GCC contradicting
3078 the LE/O32 ABI, GDB has not been adjusted to
3079 accommodate this. Either someone needs to
3080 demonstrate that the LE/O32 ABI specifies such a
3081 left shift OR this new ABI gets identified as
3082 such and GDB gets tweaked accordingly. */
3083
3084 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3085 && partial_len < MIPS_SAVED_REGSIZE
3086 && (typecode == TYPE_CODE_STRUCT ||
3087 typecode == TYPE_CODE_UNION))
3088 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3089 TARGET_CHAR_BIT);
3090
3091 if (mips_debug)
3092 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3093 argreg,
3094 phex (regval, MIPS_SAVED_REGSIZE));
3095 write_register (argreg, regval);
3096 argreg++;
3097 }
3098
3099 len -= partial_len;
3100 val += partial_len;
3101
3102 /* Compute the the offset into the stack at which we
3103 will copy the next parameter.
3104
3105 In N32 (N64?), the stack_offset only needs to be
3106 adjusted when it has been used. */
3107
3108 if (stack_used_p)
3109 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3110 }
3111 }
3112 if (mips_debug)
3113 fprintf_unfiltered (gdb_stdlog, "\n");
3114 }
3115
3116 /* Return adjusted stack pointer. */
3117 return sp;
3118 }
3119
3120 /* O32 version of push_arguments. */
3121
3122 static CORE_ADDR
3123 mips_o32_push_arguments (int nargs,
3124 struct value **args,
3125 CORE_ADDR sp,
3126 int struct_return,
3127 CORE_ADDR struct_addr)
3128 {
3129 int argreg;
3130 int float_argreg;
3131 int argnum;
3132 int len = 0;
3133 int stack_offset = 0;
3134
3135 /* First ensure that the stack and structure return address (if any)
3136 are properly aligned. The stack has to be at least 64-bit
3137 aligned even on 32-bit machines, because doubles must be 64-bit
3138 aligned. For n32 and n64, stack frames need to be 128-bit
3139 aligned, so we round to this widest known alignment. */
3140
3141 sp = ROUND_DOWN (sp, 16);
3142 struct_addr = ROUND_DOWN (struct_addr, 16);
3143
3144 /* Now make space on the stack for the args. */
3145 for (argnum = 0; argnum < nargs; argnum++)
3146 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3147 MIPS_STACK_ARGSIZE);
3148 sp -= ROUND_UP (len, 16);
3149
3150 if (mips_debug)
3151 fprintf_unfiltered (gdb_stdlog,
3152 "mips_o32_push_arguments: sp=0x%s allocated %d\n",
3153 paddr_nz (sp), ROUND_UP (len, 16));
3154
3155 /* Initialize the integer and float register pointers. */
3156 argreg = A0_REGNUM;
3157 float_argreg = FPA0_REGNUM;
3158
3159 /* The struct_return pointer occupies the first parameter-passing reg. */
3160 if (struct_return)
3161 {
3162 if (mips_debug)
3163 fprintf_unfiltered (gdb_stdlog,
3164 "mips_o32_push_arguments: struct_return reg=%d 0x%s\n",
3165 argreg, paddr_nz (struct_addr));
3166 write_register (argreg++, struct_addr);
3167 stack_offset += MIPS_STACK_ARGSIZE;
3168 }
3169
3170 /* Now load as many as possible of the first arguments into
3171 registers, and push the rest onto the stack. Loop thru args
3172 from first to last. */
3173 for (argnum = 0; argnum < nargs; argnum++)
3174 {
3175 char *val;
3176 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3177 struct value *arg = args[argnum];
3178 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3179 int len = TYPE_LENGTH (arg_type);
3180 enum type_code typecode = TYPE_CODE (arg_type);
3181
3182 if (mips_debug)
3183 fprintf_unfiltered (gdb_stdlog,
3184 "mips_o32_push_arguments: %d len=%d type=%d",
3185 argnum + 1, len, (int) typecode);
3186
3187 val = (char *) VALUE_CONTENTS (arg);
3188
3189 /* 32-bit ABIs always start floating point arguments in an
3190 even-numbered floating point register. Round the FP register
3191 up before the check to see if there are any FP registers
3192 left. O32/O64 targets also pass the FP in the integer
3193 registers so also round up normal registers. */
3194 if (!FP_REGISTER_DOUBLE
3195 && fp_register_arg_p (typecode, arg_type))
3196 {
3197 if ((float_argreg & 1))
3198 float_argreg++;
3199 }
3200
3201 /* Floating point arguments passed in registers have to be
3202 treated specially. On 32-bit architectures, doubles
3203 are passed in register pairs; the even register gets
3204 the low word, and the odd register gets the high word.
3205 On O32/O64, the first two floating point arguments are
3206 also copied to general registers, because MIPS16 functions
3207 don't use float registers for arguments. This duplication of
3208 arguments in general registers can't hurt non-MIPS16 functions
3209 because those registers are normally skipped. */
3210
3211 if (fp_register_arg_p (typecode, arg_type)
3212 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3213 {
3214 if (!FP_REGISTER_DOUBLE && len == 8)
3215 {
3216 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3217 unsigned long regval;
3218
3219 /* Write the low word of the double to the even register(s). */
3220 regval = extract_unsigned_integer (val + low_offset, 4);
3221 if (mips_debug)
3222 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3223 float_argreg, phex (regval, 4));
3224 write_register (float_argreg++, regval);
3225 if (mips_debug)
3226 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3227 argreg, phex (regval, 4));
3228 write_register (argreg++, regval);
3229
3230 /* Write the high word of the double to the odd register(s). */
3231 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3232 if (mips_debug)
3233 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3234 float_argreg, phex (regval, 4));
3235 write_register (float_argreg++, regval);
3236
3237 if (mips_debug)
3238 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3239 argreg, phex (regval, 4));
3240 write_register (argreg++, regval);
3241 }
3242 else
3243 {
3244 /* This is a floating point value that fits entirely
3245 in a single register. */
3246 /* On 32 bit ABI's the float_argreg is further adjusted
3247 above to ensure that it is even register aligned. */
3248 LONGEST regval = extract_unsigned_integer (val, len);
3249 if (mips_debug)
3250 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3251 float_argreg, phex (regval, len));
3252 write_register (float_argreg++, regval);
3253 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3254 registers for each argument. The below is (my
3255 guess) to ensure that the corresponding integer
3256 register has reserved the same space. */
3257 if (mips_debug)
3258 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3259 argreg, phex (regval, len));
3260 write_register (argreg, regval);
3261 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3262 }
3263 /* Reserve space for the FP register. */
3264 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3265 }
3266 else
3267 {
3268 /* Copy the argument to general registers or the stack in
3269 register-sized pieces. Large arguments are split between
3270 registers and stack. */
3271 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3272 are treated specially: Irix cc passes them in registers
3273 where gcc sometimes puts them on the stack. For maximum
3274 compatibility, we will put them in both places. */
3275 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3276 (len % MIPS_SAVED_REGSIZE != 0));
3277 /* Structures should be aligned to eight bytes (even arg registers)
3278 on MIPS_ABI_O32, if their first member has double precision. */
3279 if (MIPS_SAVED_REGSIZE < 8
3280 && mips_type_needs_double_align (arg_type))
3281 {
3282 if ((argreg & 1))
3283 argreg++;
3284 }
3285 /* Note: Floating-point values that didn't fit into an FP
3286 register are only written to memory. */
3287 while (len > 0)
3288 {
3289 /* Remember if the argument was written to the stack. */
3290 int stack_used_p = 0;
3291 int partial_len =
3292 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3293
3294 if (mips_debug)
3295 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3296 partial_len);
3297
3298 /* Write this portion of the argument to the stack. */
3299 if (argreg > MIPS_LAST_ARG_REGNUM
3300 || odd_sized_struct
3301 || fp_register_arg_p (typecode, arg_type))
3302 {
3303 /* Should shorter than int integer values be
3304 promoted to int before being stored? */
3305 int longword_offset = 0;
3306 CORE_ADDR addr;
3307 stack_used_p = 1;
3308 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3309 {
3310 if (MIPS_STACK_ARGSIZE == 8 &&
3311 (typecode == TYPE_CODE_INT ||
3312 typecode == TYPE_CODE_PTR ||
3313 typecode == TYPE_CODE_FLT) && len <= 4)
3314 longword_offset = MIPS_STACK_ARGSIZE - len;
3315 }
3316
3317 if (mips_debug)
3318 {
3319 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3320 paddr_nz (stack_offset));
3321 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3322 paddr_nz (longword_offset));
3323 }
3324
3325 addr = sp + stack_offset + longword_offset;
3326
3327 if (mips_debug)
3328 {
3329 int i;
3330 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3331 paddr_nz (addr));
3332 for (i = 0; i < partial_len; i++)
3333 {
3334 fprintf_unfiltered (gdb_stdlog, "%02x",
3335 val[i] & 0xff);
3336 }
3337 }
3338 write_memory (addr, val, partial_len);
3339 }
3340
3341 /* Note!!! This is NOT an else clause. Odd sized
3342 structs may go thru BOTH paths. Floating point
3343 arguments will not. */
3344 /* Write this portion of the argument to a general
3345 purpose register. */
3346 if (argreg <= MIPS_LAST_ARG_REGNUM
3347 && !fp_register_arg_p (typecode, arg_type))
3348 {
3349 LONGEST regval = extract_signed_integer (val, partial_len);
3350 /* Value may need to be sign extended, because
3351 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3352
3353 /* A non-floating-point argument being passed in a
3354 general register. If a struct or union, and if
3355 the remaining length is smaller than the register
3356 size, we have to adjust the register value on
3357 big endian targets.
3358
3359 It does not seem to be necessary to do the
3360 same for integral types.
3361
3362 Also don't do this adjustment on O64 binaries.
3363
3364 cagney/2001-07-23: gdb/179: Also, GCC, when
3365 outputting LE O32 with sizeof (struct) <
3366 MIPS_SAVED_REGSIZE, generates a left shift as
3367 part of storing the argument in a register a
3368 register (the left shift isn't generated when
3369 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3370 is quite possible that this is GCC contradicting
3371 the LE/O32 ABI, GDB has not been adjusted to
3372 accommodate this. Either someone needs to
3373 demonstrate that the LE/O32 ABI specifies such a
3374 left shift OR this new ABI gets identified as
3375 such and GDB gets tweaked accordingly. */
3376
3377 if (MIPS_SAVED_REGSIZE < 8
3378 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3379 && partial_len < MIPS_SAVED_REGSIZE
3380 && (typecode == TYPE_CODE_STRUCT ||
3381 typecode == TYPE_CODE_UNION))
3382 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3383 TARGET_CHAR_BIT);
3384
3385 if (mips_debug)
3386 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3387 argreg,
3388 phex (regval, MIPS_SAVED_REGSIZE));
3389 write_register (argreg, regval);
3390 argreg++;
3391
3392 /* Prevent subsequent floating point arguments from
3393 being passed in floating point registers. */
3394 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3395 }
3396
3397 len -= partial_len;
3398 val += partial_len;
3399
3400 /* Compute the the offset into the stack at which we
3401 will copy the next parameter.
3402
3403 In older ABIs, the caller reserved space for
3404 registers that contained arguments. This was loosely
3405 refered to as their "home". Consequently, space is
3406 always allocated. */
3407
3408 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3409 }
3410 }
3411 if (mips_debug)
3412 fprintf_unfiltered (gdb_stdlog, "\n");
3413 }
3414
3415 /* Return adjusted stack pointer. */
3416 return sp;
3417 }
3418
3419 /* O64 version of push_arguments. */
3420
3421 static CORE_ADDR
3422 mips_o64_push_arguments (int nargs,
3423 struct value **args,
3424 CORE_ADDR sp,
3425 int struct_return,
3426 CORE_ADDR struct_addr)
3427 {
3428 int argreg;
3429 int float_argreg;
3430 int argnum;
3431 int len = 0;
3432 int stack_offset = 0;
3433
3434 /* First ensure that the stack and structure return address (if any)
3435 are properly aligned. The stack has to be at least 64-bit
3436 aligned even on 32-bit machines, because doubles must be 64-bit
3437 aligned. For n32 and n64, stack frames need to be 128-bit
3438 aligned, so we round to this widest known alignment. */
3439
3440 sp = ROUND_DOWN (sp, 16);
3441 struct_addr = ROUND_DOWN (struct_addr, 16);
3442
3443 /* Now make space on the stack for the args. */
3444 for (argnum = 0; argnum < nargs; argnum++)
3445 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3446 MIPS_STACK_ARGSIZE);
3447 sp -= ROUND_UP (len, 16);
3448
3449 if (mips_debug)
3450 fprintf_unfiltered (gdb_stdlog,
3451 "mips_o64_push_arguments: sp=0x%s allocated %d\n",
3452 paddr_nz (sp), ROUND_UP (len, 16));
3453
3454 /* Initialize the integer and float register pointers. */
3455 argreg = A0_REGNUM;
3456 float_argreg = FPA0_REGNUM;
3457
3458 /* The struct_return pointer occupies the first parameter-passing reg. */
3459 if (struct_return)
3460 {
3461 if (mips_debug)
3462 fprintf_unfiltered (gdb_stdlog,
3463 "mips_o64_push_arguments: struct_return reg=%d 0x%s\n",
3464 argreg, paddr_nz (struct_addr));
3465 write_register (argreg++, struct_addr);
3466 stack_offset += MIPS_STACK_ARGSIZE;
3467 }
3468
3469 /* Now load as many as possible of the first arguments into
3470 registers, and push the rest onto the stack. Loop thru args
3471 from first to last. */
3472 for (argnum = 0; argnum < nargs; argnum++)
3473 {
3474 char *val;
3475 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3476 struct value *arg = args[argnum];
3477 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3478 int len = TYPE_LENGTH (arg_type);
3479 enum type_code typecode = TYPE_CODE (arg_type);
3480
3481 if (mips_debug)
3482 fprintf_unfiltered (gdb_stdlog,
3483 "mips_o64_push_arguments: %d len=%d type=%d",
3484 argnum + 1, len, (int) typecode);
3485
3486 val = (char *) VALUE_CONTENTS (arg);
3487
3488 /* 32-bit ABIs always start floating point arguments in an
3489 even-numbered floating point register. Round the FP register
3490 up before the check to see if there are any FP registers
3491 left. O32/O64 targets also pass the FP in the integer
3492 registers so also round up normal registers. */
3493 if (!FP_REGISTER_DOUBLE
3494 && fp_register_arg_p (typecode, arg_type))
3495 {
3496 if ((float_argreg & 1))
3497 float_argreg++;
3498 }
3499
3500 /* Floating point arguments passed in registers have to be
3501 treated specially. On 32-bit architectures, doubles
3502 are passed in register pairs; the even register gets
3503 the low word, and the odd register gets the high word.
3504 On O32/O64, the first two floating point arguments are
3505 also copied to general registers, because MIPS16 functions
3506 don't use float registers for arguments. This duplication of
3507 arguments in general registers can't hurt non-MIPS16 functions
3508 because those registers are normally skipped. */
3509
3510 if (fp_register_arg_p (typecode, arg_type)
3511 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3512 {
3513 if (!FP_REGISTER_DOUBLE && len == 8)
3514 {
3515 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3516 unsigned long regval;
3517
3518 /* Write the low word of the double to the even register(s). */
3519 regval = extract_unsigned_integer (val + low_offset, 4);
3520 if (mips_debug)
3521 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3522 float_argreg, phex (regval, 4));
3523 write_register (float_argreg++, regval);
3524 if (mips_debug)
3525 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3526 argreg, phex (regval, 4));
3527 write_register (argreg++, regval);
3528
3529 /* Write the high word of the double to the odd register(s). */
3530 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3531 if (mips_debug)
3532 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3533 float_argreg, phex (regval, 4));
3534 write_register (float_argreg++, regval);
3535
3536 if (mips_debug)
3537 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3538 argreg, phex (regval, 4));
3539 write_register (argreg++, regval);
3540 }
3541 else
3542 {
3543 /* This is a floating point value that fits entirely
3544 in a single register. */
3545 /* On 32 bit ABI's the float_argreg is further adjusted
3546 above to ensure that it is even register aligned. */
3547 LONGEST regval = extract_unsigned_integer (val, len);
3548 if (mips_debug)
3549 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3550 float_argreg, phex (regval, len));
3551 write_register (float_argreg++, regval);
3552 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3553 registers for each argument. The below is (my
3554 guess) to ensure that the corresponding integer
3555 register has reserved the same space. */
3556 if (mips_debug)
3557 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3558 argreg, phex (regval, len));
3559 write_register (argreg, regval);
3560 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3561 }
3562 /* Reserve space for the FP register. */
3563 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3564 }
3565 else
3566 {
3567 /* Copy the argument to general registers or the stack in
3568 register-sized pieces. Large arguments are split between
3569 registers and stack. */
3570 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3571 are treated specially: Irix cc passes them in registers
3572 where gcc sometimes puts them on the stack. For maximum
3573 compatibility, we will put them in both places. */
3574 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3575 (len % MIPS_SAVED_REGSIZE != 0));
3576 /* Structures should be aligned to eight bytes (even arg registers)
3577 on MIPS_ABI_O32, if their first member has double precision. */
3578 if (MIPS_SAVED_REGSIZE < 8
3579 && mips_type_needs_double_align (arg_type))
3580 {
3581 if ((argreg & 1))
3582 argreg++;
3583 }
3584 /* Note: Floating-point values that didn't fit into an FP
3585 register are only written to memory. */
3586 while (len > 0)
3587 {
3588 /* Remember if the argument was written to the stack. */
3589 int stack_used_p = 0;
3590 int partial_len =
3591 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3592
3593 if (mips_debug)
3594 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3595 partial_len);
3596
3597 /* Write this portion of the argument to the stack. */
3598 if (argreg > MIPS_LAST_ARG_REGNUM
3599 || odd_sized_struct
3600 || fp_register_arg_p (typecode, arg_type))
3601 {
3602 /* Should shorter than int integer values be
3603 promoted to int before being stored? */
3604 int longword_offset = 0;
3605 CORE_ADDR addr;
3606 stack_used_p = 1;
3607 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3608 {
3609 if (MIPS_STACK_ARGSIZE == 8 &&
3610 (typecode == TYPE_CODE_INT ||
3611 typecode == TYPE_CODE_PTR ||
3612 typecode == TYPE_CODE_FLT) && len <= 4)
3613 longword_offset = MIPS_STACK_ARGSIZE - len;
3614 }
3615
3616 if (mips_debug)
3617 {
3618 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3619 paddr_nz (stack_offset));
3620 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3621 paddr_nz (longword_offset));
3622 }
3623
3624 addr = sp + stack_offset + longword_offset;
3625
3626 if (mips_debug)
3627 {
3628 int i;
3629 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3630 paddr_nz (addr));
3631 for (i = 0; i < partial_len; i++)
3632 {
3633 fprintf_unfiltered (gdb_stdlog, "%02x",
3634 val[i] & 0xff);
3635 }
3636 }
3637 write_memory (addr, val, partial_len);
3638 }
3639
3640 /* Note!!! This is NOT an else clause. Odd sized
3641 structs may go thru BOTH paths. Floating point
3642 arguments will not. */
3643 /* Write this portion of the argument to a general
3644 purpose register. */
3645 if (argreg <= MIPS_LAST_ARG_REGNUM
3646 && !fp_register_arg_p (typecode, arg_type))
3647 {
3648 LONGEST regval = extract_signed_integer (val, partial_len);
3649 /* Value may need to be sign extended, because
3650 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3651
3652 /* A non-floating-point argument being passed in a
3653 general register. If a struct or union, and if
3654 the remaining length is smaller than the register
3655 size, we have to adjust the register value on
3656 big endian targets.
3657
3658 It does not seem to be necessary to do the
3659 same for integral types.
3660
3661 Also don't do this adjustment on O64 binaries.
3662
3663 cagney/2001-07-23: gdb/179: Also, GCC, when
3664 outputting LE O32 with sizeof (struct) <
3665 MIPS_SAVED_REGSIZE, generates a left shift as
3666 part of storing the argument in a register a
3667 register (the left shift isn't generated when
3668 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3669 is quite possible that this is GCC contradicting
3670 the LE/O32 ABI, GDB has not been adjusted to
3671 accommodate this. Either someone needs to
3672 demonstrate that the LE/O32 ABI specifies such a
3673 left shift OR this new ABI gets identified as
3674 such and GDB gets tweaked accordingly. */
3675
3676 if (MIPS_SAVED_REGSIZE < 8
3677 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3678 && partial_len < MIPS_SAVED_REGSIZE
3679 && (typecode == TYPE_CODE_STRUCT ||
3680 typecode == TYPE_CODE_UNION))
3681 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3682 TARGET_CHAR_BIT);
3683
3684 if (mips_debug)
3685 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3686 argreg,
3687 phex (regval, MIPS_SAVED_REGSIZE));
3688 write_register (argreg, regval);
3689 argreg++;
3690
3691 /* Prevent subsequent floating point arguments from
3692 being passed in floating point registers. */
3693 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3694 }
3695
3696 len -= partial_len;
3697 val += partial_len;
3698
3699 /* Compute the the offset into the stack at which we
3700 will copy the next parameter.
3701
3702 In older ABIs, the caller reserved space for
3703 registers that contained arguments. This was loosely
3704 refered to as their "home". Consequently, space is
3705 always allocated. */
3706
3707 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3708 }
3709 }
3710 if (mips_debug)
3711 fprintf_unfiltered (gdb_stdlog, "\n");
3712 }
3713
3714 /* Return adjusted stack pointer. */
3715 return sp;
3716 }
3717
3718 static CORE_ADDR
3719 mips_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
3720 {
3721 /* Set the return address register to point to the entry
3722 point of the program, where a breakpoint lies in wait. */
3723 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
3724 return sp;
3725 }
3726
3727 static void
3728 mips_push_register (CORE_ADDR * sp, int regno)
3729 {
3730 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
3731 int regsize;
3732 int offset;
3733 if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno))
3734 {
3735 regsize = MIPS_SAVED_REGSIZE;
3736 offset = (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3737 ? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE
3738 : 0);
3739 }
3740 else
3741 {
3742 regsize = REGISTER_RAW_SIZE (regno);
3743 offset = 0;
3744 }
3745 *sp -= regsize;
3746 deprecated_read_register_gen (regno, buffer);
3747 write_memory (*sp, buffer + offset, regsize);
3748 }
3749
3750 /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
3751 #define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
3752
3753 static void
3754 mips_push_dummy_frame (void)
3755 {
3756 int ireg;
3757 struct linked_proc_info *link = (struct linked_proc_info *)
3758 xmalloc (sizeof (struct linked_proc_info));
3759 mips_extra_func_info_t proc_desc = &link->info;
3760 CORE_ADDR sp = ADDR_BITS_REMOVE (read_signed_register (SP_REGNUM));
3761 CORE_ADDR old_sp = sp;
3762 link->next = linked_proc_desc_table;
3763 linked_proc_desc_table = link;
3764
3765 /* FIXME! are these correct ? */
3766 #define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
3767 #define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
3768 #define FLOAT_REG_SAVE_MASK MASK(0,19)
3769 #define FLOAT_SINGLE_REG_SAVE_MASK \
3770 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
3771 /*
3772 * The registers we must save are all those not preserved across
3773 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
3774 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
3775 * and FP Control/Status registers.
3776 *
3777 *
3778 * Dummy frame layout:
3779 * (high memory)
3780 * Saved PC
3781 * Saved MMHI, MMLO, FPC_CSR
3782 * Saved R31
3783 * Saved R28
3784 * ...
3785 * Saved R1
3786 * Saved D18 (i.e. F19, F18)
3787 * ...
3788 * Saved D0 (i.e. F1, F0)
3789 * Argument build area and stack arguments written via mips_push_arguments
3790 * (low memory)
3791 */
3792
3793 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
3794 PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM;
3795 PROC_FRAME_OFFSET (proc_desc) = 0;
3796 PROC_FRAME_ADJUST (proc_desc) = 0;
3797 mips_push_register (&sp, PC_REGNUM);
3798 mips_push_register (&sp, HI_REGNUM);
3799 mips_push_register (&sp, LO_REGNUM);
3800 mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
3801
3802 /* Save general CPU registers */
3803 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
3804 /* PROC_REG_OFFSET is the offset of the first saved register from FP. */
3805 PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE;
3806 for (ireg = 32; --ireg >= 0;)
3807 if (PROC_REG_MASK (proc_desc) & (1 << ireg))
3808 mips_push_register (&sp, ireg);
3809
3810 /* Save floating point registers starting with high order word */
3811 PROC_FREG_MASK (proc_desc) =
3812 MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
3813 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
3814 /* PROC_FREG_OFFSET is the offset of the first saved *double* register
3815 from FP. */
3816 PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8;
3817 for (ireg = 32; --ireg >= 0;)
3818 if (PROC_FREG_MASK (proc_desc) & (1 << ireg))
3819 mips_push_register (&sp, ireg + FP0_REGNUM);
3820
3821 /* Update the frame pointer for the call dummy and the stack pointer.
3822 Set the procedure's starting and ending addresses to point to the
3823 call dummy address at the entry point. */
3824 write_register (PUSH_FP_REGNUM, old_sp);
3825 write_register (SP_REGNUM, sp);
3826 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
3827 PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4;
3828 SET_PROC_DESC_IS_DUMMY (proc_desc);
3829 PROC_PC_REG (proc_desc) = RA_REGNUM;
3830 }
3831
3832 static void
3833 mips_pop_frame (void)
3834 {
3835 register int regnum;
3836 struct frame_info *frame = get_current_frame ();
3837 CORE_ADDR new_sp = get_frame_base (frame);
3838 mips_extra_func_info_t proc_desc = get_frame_extra_info (frame)->proc_desc;
3839
3840 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
3841 {
3842 generic_pop_dummy_frame ();
3843 flush_cached_frames ();
3844 return;
3845 }
3846
3847 write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
3848 if (get_frame_saved_regs (frame) == NULL)
3849 DEPRECATED_FRAME_INIT_SAVED_REGS (frame);
3850 for (regnum = 0; regnum < NUM_REGS; regnum++)
3851 if (regnum != SP_REGNUM && regnum != PC_REGNUM
3852 && get_frame_saved_regs (frame)[regnum])
3853 {
3854 /* Floating point registers must not be sign extended,
3855 in case MIPS_SAVED_REGSIZE = 4 but sizeof (FP0_REGNUM) == 8. */
3856
3857 if (FP0_REGNUM <= regnum && regnum < FP0_REGNUM + 32)
3858 write_register (regnum,
3859 read_memory_unsigned_integer (get_frame_saved_regs (frame)[regnum],
3860 MIPS_SAVED_REGSIZE));
3861 else
3862 write_register (regnum,
3863 read_memory_integer (get_frame_saved_regs (frame)[regnum],
3864 MIPS_SAVED_REGSIZE));
3865 }
3866
3867 write_register (SP_REGNUM, new_sp);
3868 flush_cached_frames ();
3869
3870 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
3871 {
3872 struct linked_proc_info *pi_ptr, *prev_ptr;
3873
3874 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3875 pi_ptr != NULL;
3876 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3877 {
3878 if (&pi_ptr->info == proc_desc)
3879 break;
3880 }
3881
3882 if (pi_ptr == NULL)
3883 error ("Can't locate dummy extra frame info\n");
3884
3885 if (prev_ptr != NULL)
3886 prev_ptr->next = pi_ptr->next;
3887 else
3888 linked_proc_desc_table = pi_ptr->next;
3889
3890 xfree (pi_ptr);
3891
3892 write_register (HI_REGNUM,
3893 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
3894 MIPS_SAVED_REGSIZE));
3895 write_register (LO_REGNUM,
3896 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
3897 MIPS_SAVED_REGSIZE));
3898 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
3899 write_register (FCRCS_REGNUM,
3900 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
3901 MIPS_SAVED_REGSIZE));
3902 }
3903 }
3904
3905 static void
3906 mips_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
3907 struct value **args, struct type *type, int gcc_p)
3908 {
3909 write_register(T9_REGNUM, fun);
3910 }
3911
3912 /* Floating point register management.
3913
3914 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3915 64bit operations, these early MIPS cpus treat fp register pairs
3916 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3917 registers and offer a compatibility mode that emulates the MIPS2 fp
3918 model. When operating in MIPS2 fp compat mode, later cpu's split
3919 double precision floats into two 32-bit chunks and store them in
3920 consecutive fp regs. To display 64-bit floats stored in this
3921 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3922 Throw in user-configurable endianness and you have a real mess.
3923
3924 The way this works is:
3925 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3926 double-precision value will be split across two logical registers.
3927 The lower-numbered logical register will hold the low-order bits,
3928 regardless of the processor's endianness.
3929 - If we are on a 64-bit processor, and we are looking for a
3930 single-precision value, it will be in the low ordered bits
3931 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3932 save slot in memory.
3933 - If we are in 64-bit mode, everything is straightforward.
3934
3935 Note that this code only deals with "live" registers at the top of the
3936 stack. We will attempt to deal with saved registers later, when
3937 the raw/cooked register interface is in place. (We need a general
3938 interface that can deal with dynamic saved register sizes -- fp
3939 regs could be 32 bits wide in one frame and 64 on the frame above
3940 and below). */
3941
3942 static struct type *
3943 mips_float_register_type (void)
3944 {
3945 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3946 return builtin_type_ieee_single_big;
3947 else
3948 return builtin_type_ieee_single_little;
3949 }
3950
3951 static struct type *
3952 mips_double_register_type (void)
3953 {
3954 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3955 return builtin_type_ieee_double_big;
3956 else
3957 return builtin_type_ieee_double_little;
3958 }
3959
3960 /* Copy a 32-bit single-precision value from the current frame
3961 into rare_buffer. */
3962
3963 static void
3964 mips_read_fp_register_single (int regno, char *rare_buffer)
3965 {
3966 int raw_size = REGISTER_RAW_SIZE (regno);
3967 char *raw_buffer = alloca (raw_size);
3968
3969 if (!frame_register_read (deprecated_selected_frame, regno, raw_buffer))
3970 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3971 if (raw_size == 8)
3972 {
3973 /* We have a 64-bit value for this register. Find the low-order
3974 32 bits. */
3975 int offset;
3976
3977 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3978 offset = 4;
3979 else
3980 offset = 0;
3981
3982 memcpy (rare_buffer, raw_buffer + offset, 4);
3983 }
3984 else
3985 {
3986 memcpy (rare_buffer, raw_buffer, 4);
3987 }
3988 }
3989
3990 /* Copy a 64-bit double-precision value from the current frame into
3991 rare_buffer. This may include getting half of it from the next
3992 register. */
3993
3994 static void
3995 mips_read_fp_register_double (int regno, char *rare_buffer)
3996 {
3997 int raw_size = REGISTER_RAW_SIZE (regno);
3998
3999 if (raw_size == 8 && !mips2_fp_compat ())
4000 {
4001 /* We have a 64-bit value for this register, and we should use
4002 all 64 bits. */
4003 if (!frame_register_read (deprecated_selected_frame, regno, rare_buffer))
4004 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
4005 }
4006 else
4007 {
4008 if ((regno - FP0_REGNUM) & 1)
4009 internal_error (__FILE__, __LINE__,
4010 "mips_read_fp_register_double: bad access to "
4011 "odd-numbered FP register");
4012
4013 /* mips_read_fp_register_single will find the correct 32 bits from
4014 each register. */
4015 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4016 {
4017 mips_read_fp_register_single (regno, rare_buffer + 4);
4018 mips_read_fp_register_single (regno + 1, rare_buffer);
4019 }
4020 else
4021 {
4022 mips_read_fp_register_single (regno, rare_buffer);
4023 mips_read_fp_register_single (regno + 1, rare_buffer + 4);
4024 }
4025 }
4026 }
4027
4028 static void
4029 mips_print_register (int regnum, int all)
4030 {
4031 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4032
4033 /* Get the data in raw format. */
4034 if (!frame_register_read (deprecated_selected_frame, regnum, raw_buffer))
4035 {
4036 printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
4037 return;
4038 }
4039
4040 /* If we have a actual 32-bit floating point register (or we are in
4041 32-bit compatibility mode), and the register is even-numbered,
4042 also print it as a double (spanning two registers). */
4043 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
4044 && (REGISTER_RAW_SIZE (regnum) == 4
4045 || mips2_fp_compat ())
4046 && !((regnum - FP0_REGNUM) & 1))
4047 {
4048 char *dbuffer = alloca (2 * MAX_REGISTER_RAW_SIZE);
4049
4050 mips_read_fp_register_double (regnum, dbuffer);
4051
4052 printf_filtered ("(d%d: ", regnum - FP0_REGNUM);
4053 val_print (mips_double_register_type (), dbuffer, 0, 0,
4054 gdb_stdout, 0, 1, 0, Val_pretty_default);
4055 printf_filtered ("); ");
4056 }
4057 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
4058
4059 /* The problem with printing numeric register names (r26, etc.) is that
4060 the user can't use them on input. Probably the best solution is to
4061 fix it so that either the numeric or the funky (a2, etc.) names
4062 are accepted on input. */
4063 if (regnum < MIPS_NUMREGS)
4064 printf_filtered ("(r%d): ", regnum);
4065 else
4066 printf_filtered (": ");
4067
4068 /* If virtual format is floating, print it that way. */
4069 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4070 if (REGISTER_RAW_SIZE (regnum) == 8 && !mips2_fp_compat ())
4071 {
4072 /* We have a meaningful 64-bit value in this register. Show
4073 it as a 32-bit float and a 64-bit double. */
4074 int offset = 4 * (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG);
4075
4076 printf_filtered (" (float) ");
4077 val_print (mips_float_register_type (), raw_buffer + offset, 0, 0,
4078 gdb_stdout, 0, 1, 0, Val_pretty_default);
4079 printf_filtered (", (double) ");
4080 val_print (mips_double_register_type (), raw_buffer, 0, 0,
4081 gdb_stdout, 0, 1, 0, Val_pretty_default);
4082 }
4083 else
4084 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
4085 gdb_stdout, 0, 1, 0, Val_pretty_default);
4086 /* Else print as integer in hex. */
4087 else
4088 {
4089 int offset;
4090
4091 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4092 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4093 else
4094 offset = 0;
4095
4096 print_scalar_formatted (raw_buffer + offset,
4097 REGISTER_VIRTUAL_TYPE (regnum),
4098 'x', 0, gdb_stdout);
4099 }
4100 }
4101
4102 /* Replacement for generic do_registers_info.
4103 Print regs in pretty columns. */
4104
4105 static int
4106 do_fp_register_row (int regnum)
4107 { /* do values for FP (float) regs */
4108 char *raw_buffer;
4109 double doub, flt1, flt2; /* doubles extracted from raw hex data */
4110 int inv1, inv2, inv3;
4111
4112 raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
4113
4114 if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
4115 {
4116 /* 4-byte registers: we can fit two registers per row. */
4117 /* Also print every pair of 4-byte regs as an 8-byte double. */
4118 mips_read_fp_register_single (regnum, raw_buffer);
4119 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4120
4121 mips_read_fp_register_single (regnum + 1, raw_buffer);
4122 flt2 = unpack_double (mips_float_register_type (), raw_buffer, &inv2);
4123
4124 mips_read_fp_register_double (regnum, raw_buffer);
4125 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
4126
4127 printf_filtered (" %-5s", REGISTER_NAME (regnum));
4128 if (inv1)
4129 printf_filtered (": <invalid float>");
4130 else
4131 printf_filtered ("%-17.9g", flt1);
4132
4133 printf_filtered (" %-5s", REGISTER_NAME (regnum + 1));
4134 if (inv2)
4135 printf_filtered (": <invalid float>");
4136 else
4137 printf_filtered ("%-17.9g", flt2);
4138
4139 printf_filtered (" dbl: ");
4140 if (inv3)
4141 printf_filtered ("<invalid double>");
4142 else
4143 printf_filtered ("%-24.17g", doub);
4144 printf_filtered ("\n");
4145
4146 /* may want to do hex display here (future enhancement) */
4147 regnum += 2;
4148 }
4149 else
4150 {
4151 /* Eight byte registers: print each one as float AND as double. */
4152 mips_read_fp_register_single (regnum, raw_buffer);
4153 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4154
4155 mips_read_fp_register_double (regnum, raw_buffer);
4156 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
4157
4158 printf_filtered (" %-5s: ", REGISTER_NAME (regnum));
4159 if (inv1)
4160 printf_filtered ("<invalid float>");
4161 else
4162 printf_filtered ("flt: %-17.9g", flt1);
4163
4164 printf_filtered (" dbl: ");
4165 if (inv3)
4166 printf_filtered ("<invalid double>");
4167 else
4168 printf_filtered ("%-24.17g", doub);
4169
4170 printf_filtered ("\n");
4171 /* may want to do hex display here (future enhancement) */
4172 regnum++;
4173 }
4174 return regnum;
4175 }
4176
4177 /* Print a row's worth of GP (int) registers, with name labels above */
4178
4179 static int
4180 do_gp_register_row (int regnum)
4181 {
4182 /* do values for GP (int) regs */
4183 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4184 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
4185 int col, byte;
4186 int start_regnum = regnum;
4187 int numregs = NUM_REGS;
4188
4189
4190 /* For GP registers, we print a separate row of names above the vals */
4191 printf_filtered (" ");
4192 for (col = 0; col < ncols && regnum < numregs; regnum++)
4193 {
4194 if (*REGISTER_NAME (regnum) == '\0')
4195 continue; /* unused register */
4196 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4197 break; /* end the row: reached FP register */
4198 printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
4199 REGISTER_NAME (regnum));
4200 col++;
4201 }
4202 printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
4203 start_regnum); /* print the R0 to R31 names */
4204
4205 regnum = start_regnum; /* go back to start of row */
4206 /* now print the values in hex, 4 or 8 to the row */
4207 for (col = 0; col < ncols && regnum < numregs; regnum++)
4208 {
4209 if (*REGISTER_NAME (regnum) == '\0')
4210 continue; /* unused register */
4211 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4212 break; /* end row: reached FP register */
4213 /* OK: get the data in raw format. */
4214 if (!frame_register_read (deprecated_selected_frame, regnum, raw_buffer))
4215 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4216 /* pad small registers */
4217 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
4218 printf_filtered (" ");
4219 /* Now print the register value in hex, endian order. */
4220 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4221 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4222 byte < REGISTER_RAW_SIZE (regnum);
4223 byte++)
4224 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4225 else
4226 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
4227 byte >= 0;
4228 byte--)
4229 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4230 printf_filtered (" ");
4231 col++;
4232 }
4233 if (col > 0) /* ie. if we actually printed anything... */
4234 printf_filtered ("\n");
4235
4236 return regnum;
4237 }
4238
4239 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4240
4241 static void
4242 mips_do_registers_info (int regnum, int fpregs)
4243 {
4244 if (regnum != -1) /* do one specified register */
4245 {
4246 if (*(REGISTER_NAME (regnum)) == '\0')
4247 error ("Not a valid register for the current processor type");
4248
4249 mips_print_register (regnum, 0);
4250 printf_filtered ("\n");
4251 }
4252 else
4253 /* do all (or most) registers */
4254 {
4255 regnum = 0;
4256 while (regnum < NUM_REGS)
4257 {
4258 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4259 if (fpregs) /* true for "INFO ALL-REGISTERS" command */
4260 regnum = do_fp_register_row (regnum); /* FP regs */
4261 else
4262 regnum += MIPS_NUMREGS; /* skip floating point regs */
4263 else
4264 regnum = do_gp_register_row (regnum); /* GP (int) regs */
4265 }
4266 }
4267 }
4268
4269 /* Is this a branch with a delay slot? */
4270
4271 static int is_delayed (unsigned long);
4272
4273 static int
4274 is_delayed (unsigned long insn)
4275 {
4276 int i;
4277 for (i = 0; i < NUMOPCODES; ++i)
4278 if (mips_opcodes[i].pinfo != INSN_MACRO
4279 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4280 break;
4281 return (i < NUMOPCODES
4282 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4283 | INSN_COND_BRANCH_DELAY
4284 | INSN_COND_BRANCH_LIKELY)));
4285 }
4286
4287 int
4288 mips_step_skips_delay (CORE_ADDR pc)
4289 {
4290 char buf[MIPS_INSTLEN];
4291
4292 /* There is no branch delay slot on MIPS16. */
4293 if (pc_is_mips16 (pc))
4294 return 0;
4295
4296 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4297 /* If error reading memory, guess that it is not a delayed branch. */
4298 return 0;
4299 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
4300 }
4301
4302
4303 /* Skip the PC past function prologue instructions (32-bit version).
4304 This is a helper function for mips_skip_prologue. */
4305
4306 static CORE_ADDR
4307 mips32_skip_prologue (CORE_ADDR pc)
4308 {
4309 t_inst inst;
4310 CORE_ADDR end_pc;
4311 int seen_sp_adjust = 0;
4312 int load_immediate_bytes = 0;
4313
4314 /* Skip the typical prologue instructions. These are the stack adjustment
4315 instruction and the instructions that save registers on the stack
4316 or in the gcc frame. */
4317 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
4318 {
4319 unsigned long high_word;
4320
4321 inst = mips_fetch_instruction (pc);
4322 high_word = (inst >> 16) & 0xffff;
4323
4324 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4325 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4326 seen_sp_adjust = 1;
4327 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4328 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4329 seen_sp_adjust = 1;
4330 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4331 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4332 && (inst & 0x001F0000)) /* reg != $zero */
4333 continue;
4334
4335 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4336 continue;
4337 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4338 /* sx reg,n($s8) */
4339 continue; /* reg != $zero */
4340
4341 /* move $s8,$sp. With different versions of gas this will be either
4342 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4343 Accept any one of these. */
4344 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4345 continue;
4346
4347 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4348 continue;
4349 else if (high_word == 0x3c1c) /* lui $gp,n */
4350 continue;
4351 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4352 continue;
4353 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4354 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4355 continue;
4356 /* The following instructions load $at or $t0 with an immediate
4357 value in preparation for a stack adjustment via
4358 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4359 a local variable, so we accept them only before a stack adjustment
4360 instruction was seen. */
4361 else if (!seen_sp_adjust)
4362 {
4363 if (high_word == 0x3c01 || /* lui $at,n */
4364 high_word == 0x3c08) /* lui $t0,n */
4365 {
4366 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4367 continue;
4368 }
4369 else if (high_word == 0x3421 || /* ori $at,$at,n */
4370 high_word == 0x3508 || /* ori $t0,$t0,n */
4371 high_word == 0x3401 || /* ori $at,$zero,n */
4372 high_word == 0x3408) /* ori $t0,$zero,n */
4373 {
4374 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4375 continue;
4376 }
4377 else
4378 break;
4379 }
4380 else
4381 break;
4382 }
4383
4384 /* In a frameless function, we might have incorrectly
4385 skipped some load immediate instructions. Undo the skipping
4386 if the load immediate was not followed by a stack adjustment. */
4387 if (load_immediate_bytes && !seen_sp_adjust)
4388 pc -= load_immediate_bytes;
4389 return pc;
4390 }
4391
4392 /* Skip the PC past function prologue instructions (16-bit version).
4393 This is a helper function for mips_skip_prologue. */
4394
4395 static CORE_ADDR
4396 mips16_skip_prologue (CORE_ADDR pc)
4397 {
4398 CORE_ADDR end_pc;
4399 int extend_bytes = 0;
4400 int prev_extend_bytes;
4401
4402 /* Table of instructions likely to be found in a function prologue. */
4403 static struct
4404 {
4405 unsigned short inst;
4406 unsigned short mask;
4407 }
4408 table[] =
4409 {
4410 {
4411 0x6300, 0xff00
4412 }
4413 , /* addiu $sp,offset */
4414 {
4415 0xfb00, 0xff00
4416 }
4417 , /* daddiu $sp,offset */
4418 {
4419 0xd000, 0xf800
4420 }
4421 , /* sw reg,n($sp) */
4422 {
4423 0xf900, 0xff00
4424 }
4425 , /* sd reg,n($sp) */
4426 {
4427 0x6200, 0xff00
4428 }
4429 , /* sw $ra,n($sp) */
4430 {
4431 0xfa00, 0xff00
4432 }
4433 , /* sd $ra,n($sp) */
4434 {
4435 0x673d, 0xffff
4436 }
4437 , /* move $s1,sp */
4438 {
4439 0xd980, 0xff80
4440 }
4441 , /* sw $a0-$a3,n($s1) */
4442 {
4443 0x6704, 0xff1c
4444 }
4445 , /* move reg,$a0-$a3 */
4446 {
4447 0xe809, 0xf81f
4448 }
4449 , /* entry pseudo-op */
4450 {
4451 0x0100, 0xff00
4452 }
4453 , /* addiu $s1,$sp,n */
4454 {
4455 0, 0
4456 } /* end of table marker */
4457 };
4458
4459 /* Skip the typical prologue instructions. These are the stack adjustment
4460 instruction and the instructions that save registers on the stack
4461 or in the gcc frame. */
4462 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
4463 {
4464 unsigned short inst;
4465 int i;
4466
4467 inst = mips_fetch_instruction (pc);
4468
4469 /* Normally we ignore an extend instruction. However, if it is
4470 not followed by a valid prologue instruction, we must adjust
4471 the pc back over the extend so that it won't be considered
4472 part of the prologue. */
4473 if ((inst & 0xf800) == 0xf000) /* extend */
4474 {
4475 extend_bytes = MIPS16_INSTLEN;
4476 continue;
4477 }
4478 prev_extend_bytes = extend_bytes;
4479 extend_bytes = 0;
4480
4481 /* Check for other valid prologue instructions besides extend. */
4482 for (i = 0; table[i].mask != 0; i++)
4483 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4484 break;
4485 if (table[i].mask != 0) /* it was in table? */
4486 continue; /* ignore it */
4487 else
4488 /* non-prologue */
4489 {
4490 /* Return the current pc, adjusted backwards by 2 if
4491 the previous instruction was an extend. */
4492 return pc - prev_extend_bytes;
4493 }
4494 }
4495 return pc;
4496 }
4497
4498 /* To skip prologues, I use this predicate. Returns either PC itself
4499 if the code at PC does not look like a function prologue; otherwise
4500 returns an address that (if we're lucky) follows the prologue. If
4501 LENIENT, then we must skip everything which is involved in setting
4502 up the frame (it's OK to skip more, just so long as we don't skip
4503 anything which might clobber the registers which are being saved.
4504 We must skip more in the case where part of the prologue is in the
4505 delay slot of a non-prologue instruction). */
4506
4507 static CORE_ADDR
4508 mips_skip_prologue (CORE_ADDR pc)
4509 {
4510 /* See if we can determine the end of the prologue via the symbol table.
4511 If so, then return either PC, or the PC after the prologue, whichever
4512 is greater. */
4513
4514 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4515
4516 if (post_prologue_pc != 0)
4517 return max (pc, post_prologue_pc);
4518
4519 /* Can't determine prologue from the symbol table, need to examine
4520 instructions. */
4521
4522 if (pc_is_mips16 (pc))
4523 return mips16_skip_prologue (pc);
4524 else
4525 return mips32_skip_prologue (pc);
4526 }
4527
4528 /* Determine how a return value is stored within the MIPS register
4529 file, given the return type `valtype'. */
4530
4531 struct return_value_word
4532 {
4533 int len;
4534 int reg;
4535 int reg_offset;
4536 int buf_offset;
4537 };
4538
4539 static void
4540 return_value_location (struct type *valtype,
4541 struct return_value_word *hi,
4542 struct return_value_word *lo)
4543 {
4544 int len = TYPE_LENGTH (valtype);
4545
4546 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4547 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4548 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4549 {
4550 if (!FP_REGISTER_DOUBLE && len == 8)
4551 {
4552 /* We need to break a 64bit float in two 32 bit halves and
4553 spread them across a floating-point register pair. */
4554 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4555 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4556 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4557 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
4558 ? 4 : 0);
4559 hi->reg_offset = lo->reg_offset;
4560 lo->reg = FP0_REGNUM + 0;
4561 hi->reg = FP0_REGNUM + 1;
4562 lo->len = 4;
4563 hi->len = 4;
4564 }
4565 else
4566 {
4567 /* The floating point value fits in a single floating-point
4568 register. */
4569 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4570 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
4571 && len == 4)
4572 ? 4 : 0);
4573 lo->reg = FP0_REGNUM;
4574 lo->len = len;
4575 lo->buf_offset = 0;
4576 hi->len = 0;
4577 hi->reg_offset = 0;
4578 hi->buf_offset = 0;
4579 hi->reg = 0;
4580 }
4581 }
4582 else
4583 {
4584 /* Locate a result possibly spread across two registers. */
4585 int regnum = 2;
4586 lo->reg = regnum + 0;
4587 hi->reg = regnum + 1;
4588 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4589 && len < MIPS_SAVED_REGSIZE)
4590 {
4591 /* "un-left-justify" the value in the low register */
4592 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
4593 lo->len = len;
4594 hi->reg_offset = 0;
4595 hi->len = 0;
4596 }
4597 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4598 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4599 && len < MIPS_SAVED_REGSIZE * 2
4600 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4601 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4602 {
4603 /* "un-left-justify" the value spread across two registers. */
4604 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4605 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4606 hi->reg_offset = 0;
4607 hi->len = len - lo->len;
4608 }
4609 else
4610 {
4611 /* Only perform a partial copy of the second register. */
4612 lo->reg_offset = 0;
4613 hi->reg_offset = 0;
4614 if (len > MIPS_SAVED_REGSIZE)
4615 {
4616 lo->len = MIPS_SAVED_REGSIZE;
4617 hi->len = len - MIPS_SAVED_REGSIZE;
4618 }
4619 else
4620 {
4621 lo->len = len;
4622 hi->len = 0;
4623 }
4624 }
4625 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4626 && REGISTER_RAW_SIZE (regnum) == 8
4627 && MIPS_SAVED_REGSIZE == 4)
4628 {
4629 /* Account for the fact that only the least-signficant part
4630 of the register is being used */
4631 lo->reg_offset += 4;
4632 hi->reg_offset += 4;
4633 }
4634 lo->buf_offset = 0;
4635 hi->buf_offset = lo->len;
4636 }
4637 }
4638
4639 /* Given a return value in `regbuf' with a type `valtype', extract and
4640 copy its value into `valbuf'. */
4641
4642 static void
4643 mips_eabi_extract_return_value (struct type *valtype,
4644 char regbuf[REGISTER_BYTES],
4645 char *valbuf)
4646 {
4647 struct return_value_word lo;
4648 struct return_value_word hi;
4649 return_value_location (valtype, &hi, &lo);
4650
4651 memcpy (valbuf + lo.buf_offset,
4652 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4653 lo.len);
4654
4655 if (hi.len > 0)
4656 memcpy (valbuf + hi.buf_offset,
4657 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4658 hi.len);
4659 }
4660
4661 static void
4662 mips_o64_extract_return_value (struct type *valtype,
4663 char regbuf[REGISTER_BYTES],
4664 char *valbuf)
4665 {
4666 struct return_value_word lo;
4667 struct return_value_word hi;
4668 return_value_location (valtype, &hi, &lo);
4669
4670 memcpy (valbuf + lo.buf_offset,
4671 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4672 lo.len);
4673
4674 if (hi.len > 0)
4675 memcpy (valbuf + hi.buf_offset,
4676 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4677 hi.len);
4678 }
4679
4680 /* Given a return value in `valbuf' with a type `valtype', write it's
4681 value into the appropriate register. */
4682
4683 static void
4684 mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4685 {
4686 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4687 struct return_value_word lo;
4688 struct return_value_word hi;
4689 return_value_location (valtype, &hi, &lo);
4690
4691 memset (raw_buffer, 0, sizeof (raw_buffer));
4692 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4693 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4694 REGISTER_RAW_SIZE (lo.reg));
4695
4696 if (hi.len > 0)
4697 {
4698 memset (raw_buffer, 0, sizeof (raw_buffer));
4699 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4700 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4701 REGISTER_RAW_SIZE (hi.reg));
4702 }
4703 }
4704
4705 static void
4706 mips_o64_store_return_value (struct type *valtype, char *valbuf)
4707 {
4708 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4709 struct return_value_word lo;
4710 struct return_value_word hi;
4711 return_value_location (valtype, &hi, &lo);
4712
4713 memset (raw_buffer, 0, sizeof (raw_buffer));
4714 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4715 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4716 REGISTER_RAW_SIZE (lo.reg));
4717
4718 if (hi.len > 0)
4719 {
4720 memset (raw_buffer, 0, sizeof (raw_buffer));
4721 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4722 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4723 REGISTER_RAW_SIZE (hi.reg));
4724 }
4725 }
4726
4727 /* O32 ABI stuff. */
4728
4729 static void
4730 mips_o32_xfer_return_value (struct type *type,
4731 struct regcache *regcache,
4732 bfd_byte *in, const bfd_byte *out)
4733 {
4734 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4735 if (TYPE_CODE (type) == TYPE_CODE_FLT
4736 && TYPE_LENGTH (type) == 4
4737 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4738 {
4739 /* A single-precision floating-point value. It fits in the
4740 least significant part of FP0. */
4741 if (mips_debug)
4742 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4743 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4744 TARGET_BYTE_ORDER, in, out, 0);
4745 }
4746 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4747 && TYPE_LENGTH (type) == 8
4748 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4749 {
4750 /* A double-precision floating-point value. It fits in the
4751 least significant part of FP0/FP1 but with byte ordering
4752 based on the target (???). */
4753 if (mips_debug)
4754 fprintf_unfiltered (gdb_stderr, "Return float in $fp0/$fp1\n");
4755 switch (TARGET_BYTE_ORDER)
4756 {
4757 case BFD_ENDIAN_LITTLE:
4758 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4759 TARGET_BYTE_ORDER, in, out, 0);
4760 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4761 TARGET_BYTE_ORDER, in, out, 4);
4762 break;
4763 case BFD_ENDIAN_BIG:
4764 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4765 TARGET_BYTE_ORDER, in, out, 0);
4766 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4767 TARGET_BYTE_ORDER, in, out, 4);
4768 break;
4769 default:
4770 internal_error (__FILE__, __LINE__, "bad switch");
4771 }
4772 }
4773 #if 0
4774 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4775 && TYPE_NFIELDS (type) <= 2
4776 && TYPE_NFIELDS (type) >= 1
4777 && ((TYPE_NFIELDS (type) == 1
4778 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4779 == TYPE_CODE_FLT))
4780 || (TYPE_NFIELDS (type) == 2
4781 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4782 == TYPE_CODE_FLT)
4783 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4784 == TYPE_CODE_FLT)))
4785 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4786 {
4787 /* A struct that contains one or two floats. Each value is part
4788 in the least significant part of their floating point
4789 register.. */
4790 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
4791 int regnum;
4792 int field;
4793 for (field = 0, regnum = FP0_REGNUM;
4794 field < TYPE_NFIELDS (type);
4795 field++, regnum += 2)
4796 {
4797 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4798 / TARGET_CHAR_BIT);
4799 if (mips_debug)
4800 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4801 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4802 TARGET_BYTE_ORDER, in, out, offset);
4803 }
4804 }
4805 #endif
4806 #if 0
4807 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4808 || TYPE_CODE (type) == TYPE_CODE_UNION)
4809 {
4810 /* A structure or union. Extract the left justified value,
4811 regardless of the byte order. I.e. DO NOT USE
4812 mips_xfer_lower. */
4813 int offset;
4814 int regnum;
4815 for (offset = 0, regnum = V0_REGNUM;
4816 offset < TYPE_LENGTH (type);
4817 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4818 {
4819 int xfer = REGISTER_RAW_SIZE (regnum);
4820 if (offset + xfer > TYPE_LENGTH (type))
4821 xfer = TYPE_LENGTH (type) - offset;
4822 if (mips_debug)
4823 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4824 offset, xfer, regnum);
4825 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4826 in, out, offset);
4827 }
4828 }
4829 #endif
4830 else
4831 {
4832 /* A scalar extract each part but least-significant-byte
4833 justified. o32 thinks registers are 4 byte, regardless of
4834 the ISA. mips_stack_argsize controls this. */
4835 int offset;
4836 int regnum;
4837 for (offset = 0, regnum = V0_REGNUM;
4838 offset < TYPE_LENGTH (type);
4839 offset += mips_stack_argsize (), regnum++)
4840 {
4841 int xfer = mips_stack_argsize ();
4842 int pos = 0;
4843 if (offset + xfer > TYPE_LENGTH (type))
4844 xfer = TYPE_LENGTH (type) - offset;
4845 if (mips_debug)
4846 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4847 offset, xfer, regnum);
4848 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4849 in, out, offset);
4850 }
4851 }
4852 }
4853
4854 static void
4855 mips_o32_extract_return_value (struct type *type,
4856 struct regcache *regcache,
4857 void *valbuf)
4858 {
4859 mips_o32_xfer_return_value (type, regcache, valbuf, NULL);
4860 }
4861
4862 static void
4863 mips_o32_store_return_value (struct type *type, char *valbuf)
4864 {
4865 mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf);
4866 }
4867
4868 /* N32/N44 ABI stuff. */
4869
4870 static void
4871 mips_n32n64_xfer_return_value (struct type *type,
4872 struct regcache *regcache,
4873 bfd_byte *in, const bfd_byte *out)
4874 {
4875 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4876 if (TYPE_CODE (type) == TYPE_CODE_FLT
4877 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4878 {
4879 /* A floating-point value belongs in the least significant part
4880 of FP0. */
4881 if (mips_debug)
4882 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4883 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4884 TARGET_BYTE_ORDER, in, out, 0);
4885 }
4886 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4887 && TYPE_NFIELDS (type) <= 2
4888 && TYPE_NFIELDS (type) >= 1
4889 && ((TYPE_NFIELDS (type) == 1
4890 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4891 == TYPE_CODE_FLT))
4892 || (TYPE_NFIELDS (type) == 2
4893 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4894 == TYPE_CODE_FLT)
4895 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4896 == TYPE_CODE_FLT)))
4897 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4898 {
4899 /* A struct that contains one or two floats. Each value is part
4900 in the least significant part of their floating point
4901 register.. */
4902 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
4903 int regnum;
4904 int field;
4905 for (field = 0, regnum = FP0_REGNUM;
4906 field < TYPE_NFIELDS (type);
4907 field++, regnum += 2)
4908 {
4909 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4910 / TARGET_CHAR_BIT);
4911 if (mips_debug)
4912 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4913 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4914 TARGET_BYTE_ORDER, in, out, offset);
4915 }
4916 }
4917 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4918 || TYPE_CODE (type) == TYPE_CODE_UNION)
4919 {
4920 /* A structure or union. Extract the left justified value,
4921 regardless of the byte order. I.e. DO NOT USE
4922 mips_xfer_lower. */
4923 int offset;
4924 int regnum;
4925 for (offset = 0, regnum = V0_REGNUM;
4926 offset < TYPE_LENGTH (type);
4927 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4928 {
4929 int xfer = REGISTER_RAW_SIZE (regnum);
4930 if (offset + xfer > TYPE_LENGTH (type))
4931 xfer = TYPE_LENGTH (type) - offset;
4932 if (mips_debug)
4933 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4934 offset, xfer, regnum);
4935 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4936 in, out, offset);
4937 }
4938 }
4939 else
4940 {
4941 /* A scalar extract each part but least-significant-byte
4942 justified. */
4943 int offset;
4944 int regnum;
4945 for (offset = 0, regnum = V0_REGNUM;
4946 offset < TYPE_LENGTH (type);
4947 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4948 {
4949 int xfer = REGISTER_RAW_SIZE (regnum);
4950 int pos = 0;
4951 if (offset + xfer > TYPE_LENGTH (type))
4952 xfer = TYPE_LENGTH (type) - offset;
4953 if (mips_debug)
4954 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4955 offset, xfer, regnum);
4956 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4957 in, out, offset);
4958 }
4959 }
4960 }
4961
4962 static void
4963 mips_n32n64_extract_return_value (struct type *type,
4964 struct regcache *regcache,
4965 void *valbuf)
4966 {
4967 mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL);
4968 }
4969
4970 static void
4971 mips_n32n64_store_return_value (struct type *type, char *valbuf)
4972 {
4973 mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf);
4974 }
4975
4976 static void
4977 mips_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
4978 {
4979 /* Nothing to do -- push_arguments does all the work. */
4980 }
4981
4982 static CORE_ADDR
4983 mips_extract_struct_value_address (struct regcache *regcache)
4984 {
4985 /* FIXME: This will only work at random. The caller passes the
4986 struct_return address in V0, but it is not preserved. It may
4987 still be there, or this may be a random value. */
4988 LONGEST val;
4989
4990 regcache_cooked_read_signed (regcache, V0_REGNUM, &val);
4991 return val;
4992 }
4993
4994 /* Exported procedure: Is PC in the signal trampoline code */
4995
4996 static int
4997 mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
4998 {
4999 if (sigtramp_address == 0)
5000 fixup_sigtramp ();
5001 return (pc >= sigtramp_address && pc < sigtramp_end);
5002 }
5003
5004 /* Root of all "set mips "/"show mips " commands. This will eventually be
5005 used for all MIPS-specific commands. */
5006
5007 static void
5008 show_mips_command (char *args, int from_tty)
5009 {
5010 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
5011 }
5012
5013 static void
5014 set_mips_command (char *args, int from_tty)
5015 {
5016 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
5017 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
5018 }
5019
5020 /* Commands to show/set the MIPS FPU type. */
5021
5022 static void
5023 show_mipsfpu_command (char *args, int from_tty)
5024 {
5025 char *fpu;
5026 switch (MIPS_FPU_TYPE)
5027 {
5028 case MIPS_FPU_SINGLE:
5029 fpu = "single-precision";
5030 break;
5031 case MIPS_FPU_DOUBLE:
5032 fpu = "double-precision";
5033 break;
5034 case MIPS_FPU_NONE:
5035 fpu = "absent (none)";
5036 break;
5037 default:
5038 internal_error (__FILE__, __LINE__, "bad switch");
5039 }
5040 if (mips_fpu_type_auto)
5041 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
5042 fpu);
5043 else
5044 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
5045 fpu);
5046 }
5047
5048
5049 static void
5050 set_mipsfpu_command (char *args, int from_tty)
5051 {
5052 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
5053 show_mipsfpu_command (args, from_tty);
5054 }
5055
5056 static void
5057 set_mipsfpu_single_command (char *args, int from_tty)
5058 {
5059 mips_fpu_type = MIPS_FPU_SINGLE;
5060 mips_fpu_type_auto = 0;
5061 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
5062 }
5063
5064 static void
5065 set_mipsfpu_double_command (char *args, int from_tty)
5066 {
5067 mips_fpu_type = MIPS_FPU_DOUBLE;
5068 mips_fpu_type_auto = 0;
5069 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
5070 }
5071
5072 static void
5073 set_mipsfpu_none_command (char *args, int from_tty)
5074 {
5075 mips_fpu_type = MIPS_FPU_NONE;
5076 mips_fpu_type_auto = 0;
5077 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
5078 }
5079
5080 static void
5081 set_mipsfpu_auto_command (char *args, int from_tty)
5082 {
5083 mips_fpu_type_auto = 1;
5084 }
5085
5086 /* Command to set the processor type. */
5087
5088 void
5089 mips_set_processor_type_command (char *args, int from_tty)
5090 {
5091 int i;
5092
5093 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
5094 {
5095 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
5096 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5097 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
5098
5099 /* Restore the value. */
5100 tmp_mips_processor_type = xstrdup (mips_processor_type);
5101
5102 return;
5103 }
5104
5105 if (!mips_set_processor_type (tmp_mips_processor_type))
5106 {
5107 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
5108 /* Restore its value. */
5109 tmp_mips_processor_type = xstrdup (mips_processor_type);
5110 }
5111 }
5112
5113 static void
5114 mips_show_processor_type_command (char *args, int from_tty)
5115 {
5116 }
5117
5118 /* Modify the actual processor type. */
5119
5120 static int
5121 mips_set_processor_type (char *str)
5122 {
5123 int i;
5124
5125 if (str == NULL)
5126 return 0;
5127
5128 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5129 {
5130 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
5131 {
5132 mips_processor_type = str;
5133 mips_processor_reg_names = mips_processor_type_table[i].regnames;
5134 return 1;
5135 /* FIXME tweak fpu flag too */
5136 }
5137 }
5138
5139 return 0;
5140 }
5141
5142 /* Attempt to identify the particular processor model by reading the
5143 processor id. */
5144
5145 char *
5146 mips_read_processor_type (void)
5147 {
5148 CORE_ADDR prid;
5149
5150 prid = read_register (PRID_REGNUM);
5151
5152 if ((prid & ~0xf) == 0x700)
5153 return savestring ("r3041", strlen ("r3041"));
5154
5155 return NULL;
5156 }
5157
5158 /* Just like reinit_frame_cache, but with the right arguments to be
5159 callable as an sfunc. */
5160
5161 static void
5162 reinit_frame_cache_sfunc (char *args, int from_tty,
5163 struct cmd_list_element *c)
5164 {
5165 reinit_frame_cache ();
5166 }
5167
5168 int
5169 gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
5170 {
5171 mips_extra_func_info_t proc_desc;
5172
5173 /* Search for the function containing this address. Set the low bit
5174 of the address when searching, in case we were given an even address
5175 that is the start of a 16-bit function. If we didn't do this,
5176 the search would fail because the symbol table says the function
5177 starts at an odd address, i.e. 1 byte past the given address. */
5178 memaddr = ADDR_BITS_REMOVE (memaddr);
5179 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
5180
5181 /* Make an attempt to determine if this is a 16-bit function. If
5182 the procedure descriptor exists and the address therein is odd,
5183 it's definitely a 16-bit function. Otherwise, we have to just
5184 guess that if the address passed in is odd, it's 16-bits. */
5185 if (proc_desc)
5186 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
5187 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
5188 else
5189 info->mach = pc_is_mips16 (memaddr) ?
5190 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
5191
5192 /* Round down the instruction address to the appropriate boundary. */
5193 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
5194
5195 /* Call the appropriate disassembler based on the target endian-ness. */
5196 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5197 return print_insn_big_mips (memaddr, info);
5198 else
5199 return print_insn_little_mips (memaddr, info);
5200 }
5201
5202 /* Old-style breakpoint macros.
5203 The IDT board uses an unusual breakpoint value, and sometimes gets
5204 confused when it sees the usual MIPS breakpoint instruction. */
5205
5206 #define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
5207 #define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
5208 #define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
5209 #define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
5210 #define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
5211 #define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
5212 #define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
5213 #define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
5214
5215 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5216 counter value to determine whether a 16- or 32-bit breakpoint should be
5217 used. It returns a pointer to a string of bytes that encode a breakpoint
5218 instruction, stores the length of the string to *lenptr, and adjusts pc
5219 (if necessary) to point to the actual memory location where the
5220 breakpoint should be inserted. */
5221
5222 static const unsigned char *
5223 mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
5224 {
5225 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5226 {
5227 if (pc_is_mips16 (*pcptr))
5228 {
5229 static unsigned char mips16_big_breakpoint[] =
5230 MIPS16_BIG_BREAKPOINT;
5231 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
5232 *lenptr = sizeof (mips16_big_breakpoint);
5233 return mips16_big_breakpoint;
5234 }
5235 else
5236 {
5237 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
5238 static unsigned char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
5239 static unsigned char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
5240
5241 *lenptr = sizeof (big_breakpoint);
5242
5243 if (strcmp (target_shortname, "mips") == 0)
5244 return idt_big_breakpoint;
5245 else if (strcmp (target_shortname, "ddb") == 0
5246 || strcmp (target_shortname, "pmon") == 0
5247 || strcmp (target_shortname, "lsi") == 0)
5248 return pmon_big_breakpoint;
5249 else
5250 return big_breakpoint;
5251 }
5252 }
5253 else
5254 {
5255 if (pc_is_mips16 (*pcptr))
5256 {
5257 static unsigned char mips16_little_breakpoint[] =
5258 MIPS16_LITTLE_BREAKPOINT;
5259 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
5260 *lenptr = sizeof (mips16_little_breakpoint);
5261 return mips16_little_breakpoint;
5262 }
5263 else
5264 {
5265 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
5266 static unsigned char pmon_little_breakpoint[] =
5267 PMON_LITTLE_BREAKPOINT;
5268 static unsigned char idt_little_breakpoint[] =
5269 IDT_LITTLE_BREAKPOINT;
5270
5271 *lenptr = sizeof (little_breakpoint);
5272
5273 if (strcmp (target_shortname, "mips") == 0)
5274 return idt_little_breakpoint;
5275 else if (strcmp (target_shortname, "ddb") == 0
5276 || strcmp (target_shortname, "pmon") == 0
5277 || strcmp (target_shortname, "lsi") == 0)
5278 return pmon_little_breakpoint;
5279 else
5280 return little_breakpoint;
5281 }
5282 }
5283 }
5284
5285 /* If PC is in a mips16 call or return stub, return the address of the target
5286 PC, which is either the callee or the caller. There are several
5287 cases which must be handled:
5288
5289 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5290 target PC is in $31 ($ra).
5291 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5292 and the target PC is in $2.
5293 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5294 before the jal instruction, this is effectively a call stub
5295 and the the target PC is in $2. Otherwise this is effectively
5296 a return stub and the target PC is in $18.
5297
5298 See the source code for the stubs in gcc/config/mips/mips16.S for
5299 gory details.
5300
5301 This function implements the SKIP_TRAMPOLINE_CODE macro.
5302 */
5303
5304 static CORE_ADDR
5305 mips_skip_stub (CORE_ADDR pc)
5306 {
5307 char *name;
5308 CORE_ADDR start_addr;
5309
5310 /* Find the starting address and name of the function containing the PC. */
5311 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5312 return 0;
5313
5314 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5315 target PC is in $31 ($ra). */
5316 if (strcmp (name, "__mips16_ret_sf") == 0
5317 || strcmp (name, "__mips16_ret_df") == 0)
5318 return read_signed_register (RA_REGNUM);
5319
5320 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5321 {
5322 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5323 and the target PC is in $2. */
5324 if (name[19] >= '0' && name[19] <= '9')
5325 return read_signed_register (2);
5326
5327 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5328 before the jal instruction, this is effectively a call stub
5329 and the the target PC is in $2. Otherwise this is effectively
5330 a return stub and the target PC is in $18. */
5331 else if (name[19] == 's' || name[19] == 'd')
5332 {
5333 if (pc == start_addr)
5334 {
5335 /* Check if the target of the stub is a compiler-generated
5336 stub. Such a stub for a function bar might have a name
5337 like __fn_stub_bar, and might look like this:
5338 mfc1 $4,$f13
5339 mfc1 $5,$f12
5340 mfc1 $6,$f15
5341 mfc1 $7,$f14
5342 la $1,bar (becomes a lui/addiu pair)
5343 jr $1
5344 So scan down to the lui/addi and extract the target
5345 address from those two instructions. */
5346
5347 CORE_ADDR target_pc = read_signed_register (2);
5348 t_inst inst;
5349 int i;
5350
5351 /* See if the name of the target function is __fn_stub_*. */
5352 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5353 return target_pc;
5354 if (strncmp (name, "__fn_stub_", 10) != 0
5355 && strcmp (name, "etext") != 0
5356 && strcmp (name, "_etext") != 0)
5357 return target_pc;
5358
5359 /* Scan through this _fn_stub_ code for the lui/addiu pair.
5360 The limit on the search is arbitrarily set to 20
5361 instructions. FIXME. */
5362 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5363 {
5364 inst = mips_fetch_instruction (target_pc);
5365 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5366 pc = (inst << 16) & 0xffff0000; /* high word */
5367 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5368 return pc | (inst & 0xffff); /* low word */
5369 }
5370
5371 /* Couldn't find the lui/addui pair, so return stub address. */
5372 return target_pc;
5373 }
5374 else
5375 /* This is the 'return' part of a call stub. The return
5376 address is in $r18. */
5377 return read_signed_register (18);
5378 }
5379 }
5380 return 0; /* not a stub */
5381 }
5382
5383
5384 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5385 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5386
5387 static int
5388 mips_in_call_stub (CORE_ADDR pc, char *name)
5389 {
5390 CORE_ADDR start_addr;
5391
5392 /* Find the starting address of the function containing the PC. If the
5393 caller didn't give us a name, look it up at the same time. */
5394 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5395 return 0;
5396
5397 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5398 {
5399 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5400 if (name[19] >= '0' && name[19] <= '9')
5401 return 1;
5402 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5403 before the jal instruction, this is effectively a call stub. */
5404 else if (name[19] == 's' || name[19] == 'd')
5405 return pc == start_addr;
5406 }
5407
5408 return 0; /* not a stub */
5409 }
5410
5411
5412 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5413 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5414
5415 static int
5416 mips_in_return_stub (CORE_ADDR pc, char *name)
5417 {
5418 CORE_ADDR start_addr;
5419
5420 /* Find the starting address of the function containing the PC. */
5421 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5422 return 0;
5423
5424 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5425 if (strcmp (name, "__mips16_ret_sf") == 0
5426 || strcmp (name, "__mips16_ret_df") == 0)
5427 return 1;
5428
5429 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
5430 i.e. after the jal instruction, this is effectively a return stub. */
5431 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5432 && (name[19] == 's' || name[19] == 'd')
5433 && pc != start_addr)
5434 return 1;
5435
5436 return 0; /* not a stub */
5437 }
5438
5439
5440 /* Return non-zero if the PC is in a library helper function that should
5441 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5442
5443 int
5444 mips_ignore_helper (CORE_ADDR pc)
5445 {
5446 char *name;
5447
5448 /* Find the starting address and name of the function containing the PC. */
5449 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5450 return 0;
5451
5452 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5453 that we want to ignore. */
5454 return (strcmp (name, "__mips16_ret_sf") == 0
5455 || strcmp (name, "__mips16_ret_df") == 0);
5456 }
5457
5458
5459 /* Return a location where we can set a breakpoint that will be hit
5460 when an inferior function call returns. This is normally the
5461 program's entry point. Executables that don't have an entry
5462 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
5463 whose address is the location where the breakpoint should be placed. */
5464
5465 static CORE_ADDR
5466 mips_call_dummy_address (void)
5467 {
5468 struct minimal_symbol *sym;
5469
5470 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
5471 if (sym)
5472 return SYMBOL_VALUE_ADDRESS (sym);
5473 else
5474 return entry_point_address ();
5475 }
5476
5477
5478 /* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5479 the register stored on the stack (32) is different to its real raw
5480 size (64). The below ensures that registers are fetched from the
5481 stack using their ABI size and then stored into the RAW_BUFFER
5482 using their raw size.
5483
5484 The alternative to adding this function would be to add an ABI
5485 macro - REGISTER_STACK_SIZE(). */
5486
5487 static void
5488 mips_get_saved_register (char *raw_buffer,
5489 int *optimizedp,
5490 CORE_ADDR *addrp,
5491 struct frame_info *frame,
5492 int regnum,
5493 enum lval_type *lvalp)
5494 {
5495 CORE_ADDR addrx;
5496 enum lval_type lvalx;
5497 int optimizedx;
5498
5499 if (!target_has_registers)
5500 error ("No registers.");
5501
5502 /* Make certain that all needed parameters are present. */
5503 if (addrp == NULL)
5504 addrp = &addrx;
5505 if (lvalp == NULL)
5506 lvalp = &lvalx;
5507 if (optimizedp == NULL)
5508 optimizedp = &optimizedx;
5509 generic_unwind_get_saved_register (raw_buffer, optimizedp, addrp, frame,
5510 regnum, lvalp);
5511 /* FIXME: cagney/2002-09-13: This is just so bad. The MIPS should
5512 have a pseudo register range that correspons to the ABI's, rather
5513 than the ISA's, view of registers. These registers would then
5514 implicitly describe their size and hence could be used without
5515 the below munging. */
5516 if ((*lvalp) == lval_memory)
5517 {
5518 if (raw_buffer != NULL)
5519 {
5520 if (regnum < 32)
5521 {
5522 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
5523 saved. */
5524 LONGEST val = read_memory_integer ((*addrp), MIPS_SAVED_REGSIZE);
5525 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
5526 }
5527 }
5528 }
5529 }
5530
5531 /* Immediately after a function call, return the saved pc.
5532 Can't always go through the frames for this because on some machines
5533 the new frame is not set up until the new function executes
5534 some instructions. */
5535
5536 static CORE_ADDR
5537 mips_saved_pc_after_call (struct frame_info *frame)
5538 {
5539 return read_signed_register (RA_REGNUM);
5540 }
5541
5542
5543 /* Convert a dbx stab register number (from `r' declaration) to a gdb
5544 REGNUM */
5545
5546 static int
5547 mips_stab_reg_to_regnum (int num)
5548 {
5549 if (num >= 0 && num < 32)
5550 return num;
5551 else if (num >= 38 && num < 70)
5552 return num + FP0_REGNUM - 38;
5553 else
5554 {
5555 /* This will hopefully (eventually) provoke a warning. Should
5556 we be calling complaint() here? */
5557 return NUM_REGS + NUM_PSEUDO_REGS;
5558 }
5559 }
5560
5561
5562 /* Convert a dwarf, dwarf2, or ecoff register number to a gdb REGNUM */
5563
5564 static int
5565 mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
5566 {
5567 if (num >= 0 && num < 32)
5568 return num;
5569 else if (num >= 32 && num < 64)
5570 return num + FP0_REGNUM - 32;
5571 else
5572 {
5573 /* This will hopefully (eventually) provoke a warning. Should
5574 we be calling complaint() here? */
5575 return NUM_REGS + NUM_PSEUDO_REGS;
5576 }
5577 }
5578
5579
5580 /* Convert an integer into an address. By first converting the value
5581 into a pointer and then extracting it signed, the address is
5582 guarenteed to be correctly sign extended. */
5583
5584 static CORE_ADDR
5585 mips_integer_to_address (struct type *type, void *buf)
5586 {
5587 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5588 LONGEST val = unpack_long (type, buf);
5589 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5590 return extract_signed_integer (tmp,
5591 TYPE_LENGTH (builtin_type_void_data_ptr));
5592 }
5593
5594 static void
5595 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5596 {
5597 enum mips_abi *abip = (enum mips_abi *) obj;
5598 const char *name = bfd_get_section_name (abfd, sect);
5599
5600 if (*abip != MIPS_ABI_UNKNOWN)
5601 return;
5602
5603 if (strncmp (name, ".mdebug.", 8) != 0)
5604 return;
5605
5606 if (strcmp (name, ".mdebug.abi32") == 0)
5607 *abip = MIPS_ABI_O32;
5608 else if (strcmp (name, ".mdebug.abiN32") == 0)
5609 *abip = MIPS_ABI_N32;
5610 else if (strcmp (name, ".mdebug.abi64") == 0)
5611 *abip = MIPS_ABI_N64;
5612 else if (strcmp (name, ".mdebug.abiO64") == 0)
5613 *abip = MIPS_ABI_O64;
5614 else if (strcmp (name, ".mdebug.eabi32") == 0)
5615 *abip = MIPS_ABI_EABI32;
5616 else if (strcmp (name, ".mdebug.eabi64") == 0)
5617 *abip = MIPS_ABI_EABI64;
5618 else
5619 warning ("unsupported ABI %s.", name + 8);
5620 }
5621
5622 static enum mips_abi
5623 global_mips_abi (void)
5624 {
5625 int i;
5626
5627 for (i = 0; mips_abi_strings[i] != NULL; i++)
5628 if (mips_abi_strings[i] == mips_abi_string)
5629 return (enum mips_abi) i;
5630
5631 internal_error (__FILE__, __LINE__,
5632 "unknown ABI string");
5633 }
5634
5635 static struct gdbarch *
5636 mips_gdbarch_init (struct gdbarch_info info,
5637 struct gdbarch_list *arches)
5638 {
5639 static LONGEST mips_call_dummy_words[] =
5640 {0};
5641 struct gdbarch *gdbarch;
5642 struct gdbarch_tdep *tdep;
5643 int elf_flags;
5644 enum mips_abi mips_abi, found_abi, wanted_abi;
5645
5646 /* Reset the disassembly info, in case it was set to something
5647 non-default. */
5648 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
5649 tm_print_insn_info.arch = bfd_arch_unknown;
5650 tm_print_insn_info.mach = 0;
5651
5652 elf_flags = 0;
5653
5654 if (info.abfd)
5655 {
5656 /* First of all, extract the elf_flags, if available. */
5657 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5658 elf_flags = elf_elfheader (info.abfd)->e_flags;
5659 }
5660
5661 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5662 switch ((elf_flags & EF_MIPS_ABI))
5663 {
5664 case E_MIPS_ABI_O32:
5665 mips_abi = MIPS_ABI_O32;
5666 break;
5667 case E_MIPS_ABI_O64:
5668 mips_abi = MIPS_ABI_O64;
5669 break;
5670 case E_MIPS_ABI_EABI32:
5671 mips_abi = MIPS_ABI_EABI32;
5672 break;
5673 case E_MIPS_ABI_EABI64:
5674 mips_abi = MIPS_ABI_EABI64;
5675 break;
5676 default:
5677 if ((elf_flags & EF_MIPS_ABI2))
5678 mips_abi = MIPS_ABI_N32;
5679 else
5680 mips_abi = MIPS_ABI_UNKNOWN;
5681 break;
5682 }
5683
5684 /* GCC creates a pseudo-section whose name describes the ABI. */
5685 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5686 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5687
5688 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5689 Use the ABI from the last architecture if there is one. */
5690 if (info.abfd == NULL && arches != NULL)
5691 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5692
5693 /* Try the architecture for any hint of the correct ABI. */
5694 if (mips_abi == MIPS_ABI_UNKNOWN
5695 && info.bfd_arch_info != NULL
5696 && info.bfd_arch_info->arch == bfd_arch_mips)
5697 {
5698 switch (info.bfd_arch_info->mach)
5699 {
5700 case bfd_mach_mips3900:
5701 mips_abi = MIPS_ABI_EABI32;
5702 break;
5703 case bfd_mach_mips4100:
5704 case bfd_mach_mips5000:
5705 mips_abi = MIPS_ABI_EABI64;
5706 break;
5707 case bfd_mach_mips8000:
5708 case bfd_mach_mips10000:
5709 /* On Irix, ELF64 executables use the N64 ABI. The
5710 pseudo-sections which describe the ABI aren't present
5711 on IRIX. (Even for executables created by gcc.) */
5712 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5713 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5714 mips_abi = MIPS_ABI_N64;
5715 else
5716 mips_abi = MIPS_ABI_N32;
5717 break;
5718 }
5719 }
5720
5721 if (mips_abi == MIPS_ABI_UNKNOWN)
5722 mips_abi = MIPS_ABI_O32;
5723
5724 /* Now that we have found what the ABI for this binary would be,
5725 check whether the user is overriding it. */
5726 found_abi = mips_abi;
5727 wanted_abi = global_mips_abi ();
5728 if (wanted_abi != MIPS_ABI_UNKNOWN)
5729 mips_abi = wanted_abi;
5730
5731 if (gdbarch_debug)
5732 {
5733 fprintf_unfiltered (gdb_stdlog,
5734 "mips_gdbarch_init: elf_flags = 0x%08x\n",
5735 elf_flags);
5736 fprintf_unfiltered (gdb_stdlog,
5737 "mips_gdbarch_init: mips_abi = %d\n",
5738 mips_abi);
5739 fprintf_unfiltered (gdb_stdlog,
5740 "mips_gdbarch_init: found_mips_abi = %d\n",
5741 found_abi);
5742 }
5743
5744 /* try to find a pre-existing architecture */
5745 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5746 arches != NULL;
5747 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5748 {
5749 /* MIPS needs to be pedantic about which ABI the object is
5750 using. */
5751 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5752 continue;
5753 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5754 continue;
5755 return arches->gdbarch;
5756 }
5757
5758 /* Need a new architecture. Fill in a target specific vector. */
5759 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5760 gdbarch = gdbarch_alloc (&info, tdep);
5761 tdep->elf_flags = elf_flags;
5762
5763 /* Initially set everything according to the default ABI/ISA. */
5764 set_gdbarch_short_bit (gdbarch, 16);
5765 set_gdbarch_int_bit (gdbarch, 32);
5766 set_gdbarch_float_bit (gdbarch, 32);
5767 set_gdbarch_double_bit (gdbarch, 64);
5768 set_gdbarch_long_double_bit (gdbarch, 64);
5769 set_gdbarch_register_raw_size (gdbarch, mips_register_raw_size);
5770 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 8);
5771 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8);
5772 tdep->found_abi = found_abi;
5773 tdep->mips_abi = mips_abi;
5774
5775 set_gdbarch_elf_make_msymbol_special (gdbarch,
5776 mips_elf_make_msymbol_special);
5777
5778 if (info.osabi == GDB_OSABI_IRIX)
5779 set_gdbarch_num_regs (gdbarch, 71);
5780 else
5781 set_gdbarch_num_regs (gdbarch, 90);
5782
5783 switch (mips_abi)
5784 {
5785 case MIPS_ABI_O32:
5786 set_gdbarch_push_arguments (gdbarch, mips_o32_push_arguments);
5787 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o32_store_return_value);
5788 set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value);
5789 tdep->mips_default_saved_regsize = 4;
5790 tdep->mips_default_stack_argsize = 4;
5791 tdep->mips_fp_register_double = 0;
5792 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5793 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5794 tdep->gdb_target_is_mips64 = 0;
5795 tdep->default_mask_address_p = 0;
5796 set_gdbarch_long_bit (gdbarch, 32);
5797 set_gdbarch_ptr_bit (gdbarch, 32);
5798 set_gdbarch_long_long_bit (gdbarch, 64);
5799 set_gdbarch_reg_struct_has_addr (gdbarch,
5800 mips_o32_reg_struct_has_addr);
5801 set_gdbarch_use_struct_convention (gdbarch,
5802 mips_o32_use_struct_convention);
5803 break;
5804 case MIPS_ABI_O64:
5805 set_gdbarch_push_arguments (gdbarch, mips_o64_push_arguments);
5806 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
5807 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
5808 tdep->mips_default_saved_regsize = 8;
5809 tdep->mips_default_stack_argsize = 8;
5810 tdep->mips_fp_register_double = 1;
5811 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5812 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5813 tdep->gdb_target_is_mips64 = 1;
5814 tdep->default_mask_address_p = 0;
5815 set_gdbarch_long_bit (gdbarch, 32);
5816 set_gdbarch_ptr_bit (gdbarch, 32);
5817 set_gdbarch_long_long_bit (gdbarch, 64);
5818 set_gdbarch_reg_struct_has_addr (gdbarch,
5819 mips_o32_reg_struct_has_addr);
5820 set_gdbarch_use_struct_convention (gdbarch,
5821 mips_o32_use_struct_convention);
5822 break;
5823 case MIPS_ABI_EABI32:
5824 set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
5825 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5826 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5827 tdep->mips_default_saved_regsize = 4;
5828 tdep->mips_default_stack_argsize = 4;
5829 tdep->mips_fp_register_double = 0;
5830 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5831 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5832 tdep->gdb_target_is_mips64 = 0;
5833 tdep->default_mask_address_p = 0;
5834 set_gdbarch_long_bit (gdbarch, 32);
5835 set_gdbarch_ptr_bit (gdbarch, 32);
5836 set_gdbarch_long_long_bit (gdbarch, 64);
5837 set_gdbarch_reg_struct_has_addr (gdbarch,
5838 mips_eabi_reg_struct_has_addr);
5839 set_gdbarch_use_struct_convention (gdbarch,
5840 mips_eabi_use_struct_convention);
5841 break;
5842 case MIPS_ABI_EABI64:
5843 set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
5844 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5845 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5846 tdep->mips_default_saved_regsize = 8;
5847 tdep->mips_default_stack_argsize = 8;
5848 tdep->mips_fp_register_double = 1;
5849 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5850 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5851 tdep->gdb_target_is_mips64 = 1;
5852 tdep->default_mask_address_p = 0;
5853 set_gdbarch_long_bit (gdbarch, 64);
5854 set_gdbarch_ptr_bit (gdbarch, 64);
5855 set_gdbarch_long_long_bit (gdbarch, 64);
5856 set_gdbarch_reg_struct_has_addr (gdbarch,
5857 mips_eabi_reg_struct_has_addr);
5858 set_gdbarch_use_struct_convention (gdbarch,
5859 mips_eabi_use_struct_convention);
5860 break;
5861 case MIPS_ABI_N32:
5862 set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
5863 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5864 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5865 tdep->mips_default_saved_regsize = 8;
5866 tdep->mips_default_stack_argsize = 8;
5867 tdep->mips_fp_register_double = 1;
5868 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5869 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5870 tdep->gdb_target_is_mips64 = 1;
5871 tdep->default_mask_address_p = 0;
5872 set_gdbarch_long_bit (gdbarch, 32);
5873 set_gdbarch_ptr_bit (gdbarch, 32);
5874 set_gdbarch_long_long_bit (gdbarch, 64);
5875
5876 /* Set up the disassembler info, so that we get the right
5877 register names from libopcodes. */
5878 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5879 tm_print_insn_info.arch = bfd_arch_mips;
5880 if (info.bfd_arch_info != NULL
5881 && info.bfd_arch_info->arch == bfd_arch_mips
5882 && info.bfd_arch_info->mach)
5883 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5884 else
5885 tm_print_insn_info.mach = bfd_mach_mips8000;
5886
5887 set_gdbarch_use_struct_convention (gdbarch,
5888 mips_n32n64_use_struct_convention);
5889 set_gdbarch_reg_struct_has_addr (gdbarch,
5890 mips_n32n64_reg_struct_has_addr);
5891 break;
5892 case MIPS_ABI_N64:
5893 set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
5894 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5895 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5896 tdep->mips_default_saved_regsize = 8;
5897 tdep->mips_default_stack_argsize = 8;
5898 tdep->mips_fp_register_double = 1;
5899 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5900 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5901 tdep->gdb_target_is_mips64 = 1;
5902 tdep->default_mask_address_p = 0;
5903 set_gdbarch_long_bit (gdbarch, 64);
5904 set_gdbarch_ptr_bit (gdbarch, 64);
5905 set_gdbarch_long_long_bit (gdbarch, 64);
5906
5907 /* Set up the disassembler info, so that we get the right
5908 register names from libopcodes. */
5909 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5910 tm_print_insn_info.arch = bfd_arch_mips;
5911 if (info.bfd_arch_info != NULL
5912 && info.bfd_arch_info->arch == bfd_arch_mips
5913 && info.bfd_arch_info->mach)
5914 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5915 else
5916 tm_print_insn_info.mach = bfd_mach_mips8000;
5917
5918 set_gdbarch_use_struct_convention (gdbarch,
5919 mips_n32n64_use_struct_convention);
5920 set_gdbarch_reg_struct_has_addr (gdbarch,
5921 mips_n32n64_reg_struct_has_addr);
5922 break;
5923 default:
5924 internal_error (__FILE__, __LINE__,
5925 "unknown ABI in switch");
5926 }
5927
5928 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5929 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5930 comment:
5931
5932 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5933 flag in object files because to do so would make it impossible to
5934 link with libraries compiled without "-gp32". This is
5935 unnecessarily restrictive.
5936
5937 We could solve this problem by adding "-gp32" multilibs to gcc,
5938 but to set this flag before gcc is built with such multilibs will
5939 break too many systems.''
5940
5941 But even more unhelpfully, the default linker output target for
5942 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5943 for 64-bit programs - you need to change the ABI to change this,
5944 and not all gcc targets support that currently. Therefore using
5945 this flag to detect 32-bit mode would do the wrong thing given
5946 the current gcc - it would make GDB treat these 64-bit programs
5947 as 32-bit programs by default. */
5948
5949 /* enable/disable the MIPS FPU */
5950 if (!mips_fpu_type_auto)
5951 tdep->mips_fpu_type = mips_fpu_type;
5952 else if (info.bfd_arch_info != NULL
5953 && info.bfd_arch_info->arch == bfd_arch_mips)
5954 switch (info.bfd_arch_info->mach)
5955 {
5956 case bfd_mach_mips3900:
5957 case bfd_mach_mips4100:
5958 case bfd_mach_mips4111:
5959 tdep->mips_fpu_type = MIPS_FPU_NONE;
5960 break;
5961 case bfd_mach_mips4650:
5962 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
5963 break;
5964 default:
5965 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5966 break;
5967 }
5968 else
5969 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5970
5971 /* MIPS version of register names. NOTE: At present the MIPS
5972 register name management is part way between the old -
5973 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
5974 Further work on it is required. */
5975 /* NOTE: many targets (esp. embedded) do not go thru the
5976 gdbarch_register_name vector at all, instead bypassing it
5977 by defining REGISTER_NAMES. */
5978 set_gdbarch_register_name (gdbarch, mips_register_name);
5979 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5980 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
5981 set_gdbarch_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */
5982 set_gdbarch_read_sp (gdbarch, mips_read_sp);
5983 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
5984
5985 /* Add/remove bits from an address. The MIPS needs be careful to
5986 ensure that all 32 bit addresses are sign extended to 64 bits. */
5987 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5988
5989 /* There's a mess in stack frame creation. See comments in
5990 blockframe.c near reference to DEPRECATED_INIT_FRAME_PC_FIRST. */
5991 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
5992 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_noop);
5993
5994 /* Map debug register numbers onto internal register numbers. */
5995 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5996 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5997 set_gdbarch_dwarf_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5998 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5999
6000 /* Initialize a frame */
6001 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, mips_frame_init_saved_regs);
6002 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
6003
6004 /* MIPS version of CALL_DUMMY */
6005
6006 set_gdbarch_call_dummy_p (gdbarch, 1);
6007 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
6008 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
6009 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
6010 set_gdbarch_pop_frame (gdbarch, mips_pop_frame);
6011 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
6012 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
6013 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
6014 set_gdbarch_call_dummy_length (gdbarch, 0);
6015 set_gdbarch_fix_call_dummy (gdbarch, mips_fix_call_dummy);
6016 set_gdbarch_call_dummy_words (gdbarch, mips_call_dummy_words);
6017 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
6018 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
6019 set_gdbarch_frame_align (gdbarch, mips_frame_align);
6020 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
6021 set_gdbarch_register_convertible (gdbarch, mips_register_convertible);
6022 set_gdbarch_register_convert_to_virtual (gdbarch,
6023 mips_register_convert_to_virtual);
6024 set_gdbarch_register_convert_to_raw (gdbarch,
6025 mips_register_convert_to_raw);
6026
6027 set_gdbarch_frame_chain (gdbarch, mips_frame_chain);
6028 set_gdbarch_frameless_function_invocation (gdbarch,
6029 generic_frameless_function_invocation_not);
6030 set_gdbarch_deprecated_frame_saved_pc (gdbarch, mips_frame_saved_pc);
6031 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
6032 set_gdbarch_frame_args_skip (gdbarch, 0);
6033
6034 set_gdbarch_get_saved_register (gdbarch, mips_get_saved_register);
6035
6036 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6037 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
6038 set_gdbarch_decr_pc_after_break (gdbarch, 0);
6039
6040 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
6041 set_gdbarch_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
6042
6043 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
6044 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
6045 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
6046
6047 set_gdbarch_function_start_offset (gdbarch, 0);
6048
6049 /* There are MIPS targets which do not yet use this since they still
6050 define REGISTER_VIRTUAL_TYPE. */
6051 set_gdbarch_register_virtual_type (gdbarch, mips_register_virtual_type);
6052 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
6053
6054 set_gdbarch_deprecated_do_registers_info (gdbarch, mips_do_registers_info);
6055 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
6056
6057 /* Hook in OS ABI-specific overrides, if they have been registered. */
6058 gdbarch_init_osabi (info, gdbarch);
6059
6060 set_gdbarch_store_struct_return (gdbarch, mips_store_struct_return);
6061 set_gdbarch_extract_struct_value_address (gdbarch,
6062 mips_extract_struct_value_address);
6063
6064 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
6065
6066 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
6067 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
6068
6069 return gdbarch;
6070 }
6071
6072 static void
6073 mips_abi_update (char *ignore_args, int from_tty,
6074 struct cmd_list_element *c)
6075 {
6076 struct gdbarch_info info;
6077
6078 /* Force the architecture to update, and (if it's a MIPS architecture)
6079 mips_gdbarch_init will take care of the rest. */
6080 gdbarch_info_init (&info);
6081 gdbarch_update_p (info);
6082 }
6083
6084 /* Print out which MIPS ABI is in use. */
6085
6086 static void
6087 show_mips_abi (char *ignore_args, int from_tty)
6088 {
6089 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
6090 printf_filtered (
6091 "The MIPS ABI is unknown because the current architecture is not MIPS.\n");
6092 else
6093 {
6094 enum mips_abi global_abi = global_mips_abi ();
6095 enum mips_abi actual_abi = mips_abi (current_gdbarch);
6096 const char *actual_abi_str = mips_abi_strings[actual_abi];
6097
6098 if (global_abi == MIPS_ABI_UNKNOWN)
6099 printf_filtered ("The MIPS ABI is set automatically (currently \"%s\").\n",
6100 actual_abi_str);
6101 else if (global_abi == actual_abi)
6102 printf_filtered (
6103 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6104 actual_abi_str);
6105 else
6106 {
6107 /* Probably shouldn't happen... */
6108 printf_filtered (
6109 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6110 actual_abi_str,
6111 mips_abi_strings[global_abi]);
6112 }
6113 }
6114 }
6115
6116 static void
6117 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6118 {
6119 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6120 if (tdep != NULL)
6121 {
6122 int ef_mips_arch;
6123 int ef_mips_32bitmode;
6124 /* determine the ISA */
6125 switch (tdep->elf_flags & EF_MIPS_ARCH)
6126 {
6127 case E_MIPS_ARCH_1:
6128 ef_mips_arch = 1;
6129 break;
6130 case E_MIPS_ARCH_2:
6131 ef_mips_arch = 2;
6132 break;
6133 case E_MIPS_ARCH_3:
6134 ef_mips_arch = 3;
6135 break;
6136 case E_MIPS_ARCH_4:
6137 ef_mips_arch = 4;
6138 break;
6139 default:
6140 ef_mips_arch = 0;
6141 break;
6142 }
6143 /* determine the size of a pointer */
6144 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
6145 fprintf_unfiltered (file,
6146 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
6147 tdep->elf_flags);
6148 fprintf_unfiltered (file,
6149 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6150 ef_mips_32bitmode);
6151 fprintf_unfiltered (file,
6152 "mips_dump_tdep: ef_mips_arch = %d\n",
6153 ef_mips_arch);
6154 fprintf_unfiltered (file,
6155 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6156 tdep->mips_abi,
6157 mips_abi_strings[tdep->mips_abi]);
6158 fprintf_unfiltered (file,
6159 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6160 mips_mask_address_p (),
6161 tdep->default_mask_address_p);
6162 }
6163 fprintf_unfiltered (file,
6164 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6165 FP_REGISTER_DOUBLE);
6166 fprintf_unfiltered (file,
6167 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6168 MIPS_DEFAULT_FPU_TYPE,
6169 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6170 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6171 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6172 : "???"));
6173 fprintf_unfiltered (file,
6174 "mips_dump_tdep: MIPS_EABI = %d\n",
6175 MIPS_EABI);
6176 fprintf_unfiltered (file,
6177 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
6178 MIPS_LAST_FP_ARG_REGNUM,
6179 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
6180 fprintf_unfiltered (file,
6181 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6182 MIPS_FPU_TYPE,
6183 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6184 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6185 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6186 : "???"));
6187 fprintf_unfiltered (file,
6188 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6189 MIPS_DEFAULT_SAVED_REGSIZE);
6190 fprintf_unfiltered (file,
6191 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6192 FP_REGISTER_DOUBLE);
6193 fprintf_unfiltered (file,
6194 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6195 MIPS_DEFAULT_STACK_ARGSIZE);
6196 fprintf_unfiltered (file,
6197 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6198 MIPS_STACK_ARGSIZE);
6199 fprintf_unfiltered (file,
6200 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
6201 MIPS_REGSIZE);
6202 fprintf_unfiltered (file,
6203 "mips_dump_tdep: A0_REGNUM = %d\n",
6204 A0_REGNUM);
6205 fprintf_unfiltered (file,
6206 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6207 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6208 fprintf_unfiltered (file,
6209 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6210 XSTRING (ATTACH_DETACH));
6211 fprintf_unfiltered (file,
6212 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
6213 BADVADDR_REGNUM);
6214 fprintf_unfiltered (file,
6215 "mips_dump_tdep: BIG_BREAKPOINT = delete?\n");
6216 fprintf_unfiltered (file,
6217 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
6218 CAUSE_REGNUM);
6219 fprintf_unfiltered (file,
6220 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6221 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6222 fprintf_unfiltered (file,
6223 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6224 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
6225 fprintf_unfiltered (file,
6226 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
6227 FCRCS_REGNUM);
6228 fprintf_unfiltered (file,
6229 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
6230 FCRIR_REGNUM);
6231 fprintf_unfiltered (file,
6232 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6233 FIRST_EMBED_REGNUM);
6234 fprintf_unfiltered (file,
6235 "mips_dump_tdep: FPA0_REGNUM = %d\n",
6236 FPA0_REGNUM);
6237 fprintf_unfiltered (file,
6238 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
6239 GDB_TARGET_IS_MIPS64);
6240 fprintf_unfiltered (file,
6241 "mips_dump_tdep: GEN_REG_SAVE_MASK = %d\n",
6242 GEN_REG_SAVE_MASK);
6243 fprintf_unfiltered (file,
6244 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
6245 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
6246 fprintf_unfiltered (file,
6247 "mips_dump_tdep: HI_REGNUM = %d\n",
6248 HI_REGNUM);
6249 fprintf_unfiltered (file,
6250 "mips_dump_tdep: IDT_BIG_BREAKPOINT = delete?\n");
6251 fprintf_unfiltered (file,
6252 "mips_dump_tdep: IDT_LITTLE_BREAKPOINT = delete?\n");
6253 fprintf_unfiltered (file,
6254 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6255 XSTRING (IGNORE_HELPER_CALL (PC)));
6256 fprintf_unfiltered (file,
6257 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6258 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6259 fprintf_unfiltered (file,
6260 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6261 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
6262 fprintf_unfiltered (file,
6263 "mips_dump_tdep: IS_MIPS16_ADDR = FIXME!\n");
6264 fprintf_unfiltered (file,
6265 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6266 LAST_EMBED_REGNUM);
6267 fprintf_unfiltered (file,
6268 "mips_dump_tdep: LITTLE_BREAKPOINT = delete?\n");
6269 fprintf_unfiltered (file,
6270 "mips_dump_tdep: LO_REGNUM = %d\n",
6271 LO_REGNUM);
6272 #ifdef MACHINE_CPROC_FP_OFFSET
6273 fprintf_unfiltered (file,
6274 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6275 MACHINE_CPROC_FP_OFFSET);
6276 #endif
6277 #ifdef MACHINE_CPROC_PC_OFFSET
6278 fprintf_unfiltered (file,
6279 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6280 MACHINE_CPROC_PC_OFFSET);
6281 #endif
6282 #ifdef MACHINE_CPROC_SP_OFFSET
6283 fprintf_unfiltered (file,
6284 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6285 MACHINE_CPROC_SP_OFFSET);
6286 #endif
6287 fprintf_unfiltered (file,
6288 "mips_dump_tdep: MAKE_MIPS16_ADDR = FIXME!\n");
6289 fprintf_unfiltered (file,
6290 "mips_dump_tdep: MIPS16_BIG_BREAKPOINT = delete?\n");
6291 fprintf_unfiltered (file,
6292 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6293 MIPS16_INSTLEN);
6294 fprintf_unfiltered (file,
6295 "mips_dump_tdep: MIPS16_LITTLE_BREAKPOINT = delete?\n");
6296 fprintf_unfiltered (file,
6297 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6298 fprintf_unfiltered (file,
6299 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6300 fprintf_unfiltered (file,
6301 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6302 MIPS_INSTLEN);
6303 fprintf_unfiltered (file,
6304 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6305 MIPS_LAST_ARG_REGNUM,
6306 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
6307 fprintf_unfiltered (file,
6308 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6309 MIPS_NUMREGS);
6310 fprintf_unfiltered (file,
6311 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
6312 fprintf_unfiltered (file,
6313 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6314 MIPS_SAVED_REGSIZE);
6315 fprintf_unfiltered (file,
6316 "mips_dump_tdep: OP_LDFPR = used?\n");
6317 fprintf_unfiltered (file,
6318 "mips_dump_tdep: OP_LDGPR = used?\n");
6319 fprintf_unfiltered (file,
6320 "mips_dump_tdep: PMON_BIG_BREAKPOINT = delete?\n");
6321 fprintf_unfiltered (file,
6322 "mips_dump_tdep: PMON_LITTLE_BREAKPOINT = delete?\n");
6323 fprintf_unfiltered (file,
6324 "mips_dump_tdep: PRID_REGNUM = %d\n",
6325 PRID_REGNUM);
6326 fprintf_unfiltered (file,
6327 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
6328 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
6329 fprintf_unfiltered (file,
6330 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6331 fprintf_unfiltered (file,
6332 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6333 fprintf_unfiltered (file,
6334 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6335 fprintf_unfiltered (file,
6336 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6337 fprintf_unfiltered (file,
6338 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6339 fprintf_unfiltered (file,
6340 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6341 fprintf_unfiltered (file,
6342 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6343 fprintf_unfiltered (file,
6344 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6345 fprintf_unfiltered (file,
6346 "mips_dump_tdep: PROC_PC_REG = function?\n");
6347 fprintf_unfiltered (file,
6348 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6349 fprintf_unfiltered (file,
6350 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6351 fprintf_unfiltered (file,
6352 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6353 fprintf_unfiltered (file,
6354 "mips_dump_tdep: PS_REGNUM = %d\n",
6355 PS_REGNUM);
6356 fprintf_unfiltered (file,
6357 "mips_dump_tdep: PUSH_FP_REGNUM = %d\n",
6358 PUSH_FP_REGNUM);
6359 fprintf_unfiltered (file,
6360 "mips_dump_tdep: RA_REGNUM = %d\n",
6361 RA_REGNUM);
6362 fprintf_unfiltered (file,
6363 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
6364 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6365 fprintf_unfiltered (file,
6366 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
6367 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6368 fprintf_unfiltered (file,
6369 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
6370 fprintf_unfiltered (file,
6371 "mips_dump_tdep: ROUND_DOWN = function?\n");
6372 fprintf_unfiltered (file,
6373 "mips_dump_tdep: ROUND_UP = function?\n");
6374 #ifdef SAVED_BYTES
6375 fprintf_unfiltered (file,
6376 "mips_dump_tdep: SAVED_BYTES = %d\n",
6377 SAVED_BYTES);
6378 #endif
6379 #ifdef SAVED_FP
6380 fprintf_unfiltered (file,
6381 "mips_dump_tdep: SAVED_FP = %d\n",
6382 SAVED_FP);
6383 #endif
6384 #ifdef SAVED_PC
6385 fprintf_unfiltered (file,
6386 "mips_dump_tdep: SAVED_PC = %d\n",
6387 SAVED_PC);
6388 #endif
6389 fprintf_unfiltered (file,
6390 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6391 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6392 fprintf_unfiltered (file,
6393 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6394 fprintf_unfiltered (file,
6395 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6396 SIGFRAME_BASE);
6397 fprintf_unfiltered (file,
6398 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6399 SIGFRAME_FPREGSAVE_OFF);
6400 fprintf_unfiltered (file,
6401 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6402 SIGFRAME_PC_OFF);
6403 fprintf_unfiltered (file,
6404 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6405 SIGFRAME_REGSAVE_OFF);
6406 fprintf_unfiltered (file,
6407 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
6408 SIGFRAME_REG_SIZE);
6409 fprintf_unfiltered (file,
6410 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6411 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6412 fprintf_unfiltered (file,
6413 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6414 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6415 fprintf_unfiltered (file,
6416 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6417 SOFTWARE_SINGLE_STEP_P ());
6418 fprintf_unfiltered (file,
6419 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6420 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6421 #ifdef STACK_END_ADDR
6422 fprintf_unfiltered (file,
6423 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6424 STACK_END_ADDR);
6425 #endif
6426 fprintf_unfiltered (file,
6427 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6428 XSTRING (STEP_SKIPS_DELAY (PC)));
6429 fprintf_unfiltered (file,
6430 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6431 STEP_SKIPS_DELAY_P);
6432 fprintf_unfiltered (file,
6433 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6434 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6435 fprintf_unfiltered (file,
6436 "mips_dump_tdep: T9_REGNUM = %d\n",
6437 T9_REGNUM);
6438 fprintf_unfiltered (file,
6439 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6440 fprintf_unfiltered (file,
6441 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6442 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6443 fprintf_unfiltered (file,
6444 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6445 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
6446 fprintf_unfiltered (file,
6447 "mips_dump_tdep: TARGET_MIPS = used?\n");
6448 fprintf_unfiltered (file,
6449 "mips_dump_tdep: TM_PRINT_INSN_MACH # %s\n",
6450 XSTRING (TM_PRINT_INSN_MACH));
6451 #ifdef TRACE_CLEAR
6452 fprintf_unfiltered (file,
6453 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6454 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6455 #endif
6456 #ifdef TRACE_FLAVOR
6457 fprintf_unfiltered (file,
6458 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6459 TRACE_FLAVOR);
6460 #endif
6461 #ifdef TRACE_FLAVOR_SIZE
6462 fprintf_unfiltered (file,
6463 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6464 TRACE_FLAVOR_SIZE);
6465 #endif
6466 #ifdef TRACE_SET
6467 fprintf_unfiltered (file,
6468 "mips_dump_tdep: TRACE_SET # %s\n",
6469 XSTRING (TRACE_SET (X,STATE)));
6470 #endif
6471 fprintf_unfiltered (file,
6472 "mips_dump_tdep: UNMAKE_MIPS16_ADDR = function?\n");
6473 #ifdef UNUSED_REGNUM
6474 fprintf_unfiltered (file,
6475 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6476 UNUSED_REGNUM);
6477 #endif
6478 fprintf_unfiltered (file,
6479 "mips_dump_tdep: V0_REGNUM = %d\n",
6480 V0_REGNUM);
6481 fprintf_unfiltered (file,
6482 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6483 (long) VM_MIN_ADDRESS);
6484 #ifdef VX_NUM_REGS
6485 fprintf_unfiltered (file,
6486 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
6487 VX_NUM_REGS);
6488 #endif
6489 fprintf_unfiltered (file,
6490 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6491 ZERO_REGNUM);
6492 fprintf_unfiltered (file,
6493 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6494 _PROC_MAGIC_);
6495 }
6496
6497 void
6498 _initialize_mips_tdep (void)
6499 {
6500 static struct cmd_list_element *mipsfpulist = NULL;
6501 struct cmd_list_element *c;
6502
6503 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6504 if (MIPS_ABI_LAST + 1
6505 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6506 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6507
6508 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
6509 if (!tm_print_insn) /* Someone may have already set it */
6510 tm_print_insn = gdb_print_insn_mips;
6511
6512 /* Add root prefix command for all "set mips"/"show mips" commands */
6513 add_prefix_cmd ("mips", no_class, set_mips_command,
6514 "Various MIPS specific commands.",
6515 &setmipscmdlist, "set mips ", 0, &setlist);
6516
6517 add_prefix_cmd ("mips", no_class, show_mips_command,
6518 "Various MIPS specific commands.",
6519 &showmipscmdlist, "show mips ", 0, &showlist);
6520
6521 /* Allow the user to override the saved register size. */
6522 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
6523 class_obscure,
6524 size_enums,
6525 &mips_saved_regsize_string, "\
6526 Set size of general purpose registers saved on the stack.\n\
6527 This option can be set to one of:\n\
6528 32 - Force GDB to treat saved GP registers as 32-bit\n\
6529 64 - Force GDB to treat saved GP registers as 64-bit\n\
6530 auto - Allow GDB to use the target's default setting or autodetect the\n\
6531 saved GP register size from information contained in the executable.\n\
6532 (default: auto)",
6533 &setmipscmdlist),
6534 &showmipscmdlist);
6535
6536 /* Allow the user to override the argument stack size. */
6537 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6538 class_obscure,
6539 size_enums,
6540 &mips_stack_argsize_string, "\
6541 Set the amount of stack space reserved for each argument.\n\
6542 This option can be set to one of:\n\
6543 32 - Force GDB to allocate 32-bit chunks per argument\n\
6544 64 - Force GDB to allocate 64-bit chunks per argument\n\
6545 auto - Allow GDB to determine the correct setting from the current\n\
6546 target and executable (default)",
6547 &setmipscmdlist),
6548 &showmipscmdlist);
6549
6550 /* Allow the user to override the ABI. */
6551 c = add_set_enum_cmd
6552 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6553 "Set the ABI used by this program.\n"
6554 "This option can be set to one of:\n"
6555 " auto - the default ABI associated with the current binary\n"
6556 " o32\n"
6557 " o64\n"
6558 " n32\n"
6559 " n64\n"
6560 " eabi32\n"
6561 " eabi64",
6562 &setmipscmdlist);
6563 set_cmd_sfunc (c, mips_abi_update);
6564 add_cmd ("abi", class_obscure, show_mips_abi,
6565 "Show ABI in use by MIPS target", &showmipscmdlist);
6566
6567 /* Let the user turn off floating point and set the fence post for
6568 heuristic_proc_start. */
6569
6570 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6571 "Set use of MIPS floating-point coprocessor.",
6572 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6573 add_cmd ("single", class_support, set_mipsfpu_single_command,
6574 "Select single-precision MIPS floating-point coprocessor.",
6575 &mipsfpulist);
6576 add_cmd ("double", class_support, set_mipsfpu_double_command,
6577 "Select double-precision MIPS floating-point coprocessor.",
6578 &mipsfpulist);
6579 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6580 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6581 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6582 add_cmd ("none", class_support, set_mipsfpu_none_command,
6583 "Select no MIPS floating-point coprocessor.",
6584 &mipsfpulist);
6585 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6586 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6587 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6588 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6589 "Select MIPS floating-point coprocessor automatically.",
6590 &mipsfpulist);
6591 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6592 "Show current use of MIPS floating-point coprocessor target.",
6593 &showlist);
6594
6595 /* We really would like to have both "0" and "unlimited" work, but
6596 command.c doesn't deal with that. So make it a var_zinteger
6597 because the user can always use "999999" or some such for unlimited. */
6598 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6599 (char *) &heuristic_fence_post,
6600 "\
6601 Set the distance searched for the start of a function.\n\
6602 If you are debugging a stripped executable, GDB needs to search through the\n\
6603 program for the start of a function. This command sets the distance of the\n\
6604 search. The only need to set it is when debugging a stripped executable.",
6605 &setlist);
6606 /* We need to throw away the frame cache when we set this, since it
6607 might change our ability to get backtraces. */
6608 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
6609 add_show_from_set (c, &showlist);
6610
6611 /* Allow the user to control whether the upper bits of 64-bit
6612 addresses should be zeroed. */
6613 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6614 Set zeroing of upper 32 bits of 64-bit addresses.\n\
6615 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6616 allow GDB to determine the correct value.\n", "\
6617 Show zeroing of upper 32 bits of 64-bit addresses.",
6618 NULL, show_mask_address,
6619 &setmipscmdlist, &showmipscmdlist);
6620
6621 /* Allow the user to control the size of 32 bit registers within the
6622 raw remote packet. */
6623 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
6624 class_obscure,
6625 var_boolean,
6626 (char *)&mips64_transfers_32bit_regs_p, "\
6627 Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
6628 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6629 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
6630 64 bits for others. Use \"off\" to disable compatibility mode",
6631 &setlist),
6632 &showlist);
6633
6634 /* Debug this files internals. */
6635 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6636 &mips_debug, "Set mips debugging.\n\
6637 When non-zero, mips specific debugging is enabled.", &setdebuglist),
6638 &showdebuglist);
6639 }