2003-06-13 Andrew Cagney <cagney@redhat.com>
[binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include "gdb_assert.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "symtab.h"
32 #include "value.h"
33 #include "gdbcmd.h"
34 #include "language.h"
35 #include "gdbcore.h"
36 #include "symfile.h"
37 #include "objfiles.h"
38 #include "gdbtypes.h"
39 #include "target.h"
40 #include "arch-utils.h"
41 #include "regcache.h"
42 #include "osabi.h"
43 #include "mips-tdep.h"
44 #include "block.h"
45
46 #include "opcode/mips.h"
47 #include "elf/mips.h"
48 #include "elf-bfd.h"
49 #include "symcat.h"
50
51 static void set_reg_offset (CORE_ADDR *saved_regs, int regnum, CORE_ADDR off);
52
53 /* A useful bit in the CP0 status register (PS_REGNUM). */
54 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
55 #define ST0_FR (1 << 26)
56
57 /* The sizes of floating point registers. */
58
59 enum
60 {
61 MIPS_FPU_SINGLE_REGSIZE = 4,
62 MIPS_FPU_DOUBLE_REGSIZE = 8
63 };
64
65
66 static const char *mips_abi_string;
67
68 static const char *mips_abi_strings[] = {
69 "auto",
70 "n32",
71 "o32",
72 "n64",
73 "o64",
74 "eabi32",
75 "eabi64",
76 NULL
77 };
78
79 struct frame_extra_info
80 {
81 mips_extra_func_info_t proc_desc;
82 int num_args;
83 };
84
85 /* Various MIPS ISA options (related to stack analysis) can be
86 overridden dynamically. Establish an enum/array for managing
87 them. */
88
89 static const char size_auto[] = "auto";
90 static const char size_32[] = "32";
91 static const char size_64[] = "64";
92
93 static const char *size_enums[] = {
94 size_auto,
95 size_32,
96 size_64,
97 0
98 };
99
100 /* Some MIPS boards don't support floating point while others only
101 support single-precision floating-point operations. See also
102 FP_REGISTER_DOUBLE. */
103
104 enum mips_fpu_type
105 {
106 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
107 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
108 MIPS_FPU_NONE /* No floating point. */
109 };
110
111 #ifndef MIPS_DEFAULT_FPU_TYPE
112 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
113 #endif
114 static int mips_fpu_type_auto = 1;
115 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
116
117 static int mips_debug = 0;
118
119 /* MIPS specific per-architecture information */
120 struct gdbarch_tdep
121 {
122 /* from the elf header */
123 int elf_flags;
124
125 /* mips options */
126 enum mips_abi mips_abi;
127 enum mips_abi found_abi;
128 enum mips_fpu_type mips_fpu_type;
129 int mips_last_arg_regnum;
130 int mips_last_fp_arg_regnum;
131 int mips_default_saved_regsize;
132 int mips_fp_register_double;
133 int mips_default_stack_argsize;
134 int gdb_target_is_mips64;
135 int default_mask_address_p;
136 };
137
138 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
139 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
140
141 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
142
143 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
144
145 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
146
147 /* Return the currently configured (or set) saved register size. */
148
149 #define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
150
151 static const char *mips_saved_regsize_string = size_auto;
152
153 #define MIPS_SAVED_REGSIZE (mips_saved_regsize())
154
155 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
156 functions to test, set, or clear bit 0 of addresses. */
157
158 static CORE_ADDR
159 is_mips16_addr (CORE_ADDR addr)
160 {
161 return ((addr) & 1);
162 }
163
164 static CORE_ADDR
165 make_mips16_addr (CORE_ADDR addr)
166 {
167 return ((addr) | 1);
168 }
169
170 static CORE_ADDR
171 unmake_mips16_addr (CORE_ADDR addr)
172 {
173 return ((addr) & ~1);
174 }
175
176 /* Return the contents of register REGNUM as a signed integer. */
177
178 static LONGEST
179 read_signed_register (int regnum)
180 {
181 void *buf = alloca (REGISTER_RAW_SIZE (regnum));
182 deprecated_read_register_gen (regnum, buf);
183 return (extract_signed_integer (buf, REGISTER_RAW_SIZE (regnum)));
184 }
185
186 static LONGEST
187 read_signed_register_pid (int regnum, ptid_t ptid)
188 {
189 ptid_t save_ptid;
190 LONGEST retval;
191
192 if (ptid_equal (ptid, inferior_ptid))
193 return read_signed_register (regnum);
194
195 save_ptid = inferior_ptid;
196
197 inferior_ptid = ptid;
198
199 retval = read_signed_register (regnum);
200
201 inferior_ptid = save_ptid;
202
203 return retval;
204 }
205
206 /* Return the MIPS ABI associated with GDBARCH. */
207 enum mips_abi
208 mips_abi (struct gdbarch *gdbarch)
209 {
210 return gdbarch_tdep (gdbarch)->mips_abi;
211 }
212
213 static unsigned int
214 mips_saved_regsize (void)
215 {
216 if (mips_saved_regsize_string == size_auto)
217 return MIPS_DEFAULT_SAVED_REGSIZE;
218 else if (mips_saved_regsize_string == size_64)
219 return 8;
220 else /* if (mips_saved_regsize_string == size_32) */
221 return 4;
222 }
223
224 /* Functions for setting and testing a bit in a minimal symbol that
225 marks it as 16-bit function. The MSB of the minimal symbol's
226 "info" field is used for this purpose. This field is already
227 being used to store the symbol size, so the assumption is
228 that the symbol size cannot exceed 2^31.
229
230 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
231 i.e. refers to a 16-bit function, and sets a "special" bit in a
232 minimal symbol to mark it as a 16-bit function
233
234 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
235 MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
236 the "info" field with the "special" bit masked out */
237
238 static void
239 mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
240 {
241 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
242 {
243 MSYMBOL_INFO (msym) = (char *)
244 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
245 SYMBOL_VALUE_ADDRESS (msym) |= 1;
246 }
247 }
248
249 static int
250 msymbol_is_special (struct minimal_symbol *msym)
251 {
252 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
253 }
254
255 static long
256 msymbol_size (struct minimal_symbol *msym)
257 {
258 return ((long) MSYMBOL_INFO (msym) & 0x7fffffff);
259 }
260
261 /* XFER a value from the big/little/left end of the register.
262 Depending on the size of the value it might occupy the entire
263 register or just part of it. Make an allowance for this, aligning
264 things accordingly. */
265
266 static void
267 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
268 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
269 int buf_offset)
270 {
271 bfd_byte reg[MAX_REGISTER_SIZE];
272 int reg_offset = 0;
273 /* Need to transfer the left or right part of the register, based on
274 the targets byte order. */
275 switch (endian)
276 {
277 case BFD_ENDIAN_BIG:
278 reg_offset = REGISTER_RAW_SIZE (reg_num) - length;
279 break;
280 case BFD_ENDIAN_LITTLE:
281 reg_offset = 0;
282 break;
283 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
284 reg_offset = 0;
285 break;
286 default:
287 internal_error (__FILE__, __LINE__, "bad switch");
288 }
289 if (mips_debug)
290 fprintf_unfiltered (gdb_stderr,
291 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
292 reg_num, reg_offset, buf_offset, length);
293 if (mips_debug && out != NULL)
294 {
295 int i;
296 fprintf_unfiltered (gdb_stdlog, "out ");
297 for (i = 0; i < length; i++)
298 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
299 }
300 if (in != NULL)
301 regcache_raw_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
302 if (out != NULL)
303 regcache_raw_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
304 if (mips_debug && in != NULL)
305 {
306 int i;
307 fprintf_unfiltered (gdb_stdlog, "in ");
308 for (i = 0; i < length; i++)
309 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
310 }
311 if (mips_debug)
312 fprintf_unfiltered (gdb_stdlog, "\n");
313 }
314
315 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
316 compatiblity mode. A return value of 1 means that we have
317 physical 64-bit registers, but should treat them as 32-bit registers. */
318
319 static int
320 mips2_fp_compat (void)
321 {
322 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
323 meaningful. */
324 if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
325 return 0;
326
327 #if 0
328 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
329 in all the places we deal with FP registers. PR gdb/413. */
330 /* Otherwise check the FR bit in the status register - it controls
331 the FP compatiblity mode. If it is clear we are in compatibility
332 mode. */
333 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
334 return 1;
335 #endif
336
337 return 0;
338 }
339
340 /* Indicate that the ABI makes use of double-precision registers
341 provided by the FPU (rather than combining pairs of registers to
342 form double-precision values). Do not use "TARGET_IS_MIPS64" to
343 determine if the ABI is using double-precision registers. See also
344 MIPS_FPU_TYPE. */
345 #define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
346
347 /* The amount of space reserved on the stack for registers. This is
348 different to MIPS_SAVED_REGSIZE as it determines the alignment of
349 data allocated after the registers have run out. */
350
351 #define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
352
353 #define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
354
355 static const char *mips_stack_argsize_string = size_auto;
356
357 static unsigned int
358 mips_stack_argsize (void)
359 {
360 if (mips_stack_argsize_string == size_auto)
361 return MIPS_DEFAULT_STACK_ARGSIZE;
362 else if (mips_stack_argsize_string == size_64)
363 return 8;
364 else /* if (mips_stack_argsize_string == size_32) */
365 return 4;
366 }
367
368 #define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
369
370 #define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
371
372 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
373
374 int gdb_print_insn_mips (bfd_vma, disassemble_info *);
375
376 static mips_extra_func_info_t heuristic_proc_desc (CORE_ADDR, CORE_ADDR,
377 struct frame_info *, int);
378
379 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
380
381 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
382
383 static int mips_set_processor_type (char *);
384
385 static void mips_show_processor_type_command (char *, int);
386
387 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
388
389 static mips_extra_func_info_t find_proc_desc (CORE_ADDR pc,
390 struct frame_info *next_frame,
391 int cur_frame);
392
393 static CORE_ADDR after_prologue (CORE_ADDR pc,
394 mips_extra_func_info_t proc_desc);
395
396 static struct type *mips_float_register_type (void);
397 static struct type *mips_double_register_type (void);
398
399 /* This value is the model of MIPS in use. It is derived from the value
400 of the PrID register. */
401
402 char *mips_processor_type;
403
404 char *tmp_mips_processor_type;
405
406 /* The list of available "set mips " and "show mips " commands */
407
408 static struct cmd_list_element *setmipscmdlist = NULL;
409 static struct cmd_list_element *showmipscmdlist = NULL;
410
411 /* A set of original names, to be used when restoring back to generic
412 registers from a specific set. */
413 static char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
414
415 /* Integer registers 0 thru 31 are handled explicitly by
416 mips_register_name(). Processor specific registers 32 and above
417 are listed in the sets of register names assigned to
418 mips_processor_reg_names. */
419 static char **mips_processor_reg_names = mips_generic_reg_names;
420
421 /* Return the name of the register corresponding to REGNO. */
422 static const char *
423 mips_register_name (int regno)
424 {
425 /* GPR names for all ABIs other than n32/n64. */
426 static char *mips_gpr_names[] = {
427 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
428 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
429 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
430 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
431 };
432
433 /* GPR names for n32 and n64 ABIs. */
434 static char *mips_n32_n64_gpr_names[] = {
435 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
436 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
437 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
438 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
439 };
440
441 enum mips_abi abi = mips_abi (current_gdbarch);
442
443 /* The MIPS integer registers are always mapped from 0 to 31. The
444 names of the registers (which reflects the conventions regarding
445 register use) vary depending on the ABI. */
446 if (0 <= regno && regno < 32)
447 {
448 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
449 return mips_n32_n64_gpr_names[regno];
450 else
451 return mips_gpr_names[regno];
452 }
453 else if (32 <= regno && regno < NUM_REGS)
454 return mips_processor_reg_names[regno - 32];
455 else
456 internal_error (__FILE__, __LINE__,
457 "mips_register_name: bad register number %d", regno);
458 }
459
460 /* *INDENT-OFF* */
461 /* Names of IDT R3041 registers. */
462
463 char *mips_r3041_reg_names[] = {
464 "sr", "lo", "hi", "bad", "cause","pc",
465 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
466 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
467 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
468 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
469 "fsr", "fir", "",/*"fp"*/ "",
470 "", "", "bus", "ccfg", "", "", "", "",
471 "", "", "port", "cmp", "", "", "epc", "prid",
472 };
473
474 /* Names of IDT R3051 registers. */
475
476 char *mips_r3051_reg_names[] = {
477 "sr", "lo", "hi", "bad", "cause","pc",
478 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
479 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
480 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
481 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
482 "fsr", "fir", ""/*"fp"*/, "",
483 "inx", "rand", "elo", "", "ctxt", "", "", "",
484 "", "", "ehi", "", "", "", "epc", "prid",
485 };
486
487 /* Names of IDT R3081 registers. */
488
489 char *mips_r3081_reg_names[] = {
490 "sr", "lo", "hi", "bad", "cause","pc",
491 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
492 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
493 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
494 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
495 "fsr", "fir", ""/*"fp"*/, "",
496 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
497 "", "", "ehi", "", "", "", "epc", "prid",
498 };
499
500 /* Names of LSI 33k registers. */
501
502 char *mips_lsi33k_reg_names[] = {
503 "epc", "hi", "lo", "sr", "cause","badvaddr",
504 "dcic", "bpc", "bda", "", "", "", "", "",
505 "", "", "", "", "", "", "", "",
506 "", "", "", "", "", "", "", "",
507 "", "", "", "", "", "", "", "",
508 "", "", "", "",
509 "", "", "", "", "", "", "", "",
510 "", "", "", "", "", "", "", "",
511 };
512
513 struct {
514 char *name;
515 char **regnames;
516 } mips_processor_type_table[] = {
517 { "generic", mips_generic_reg_names },
518 { "r3041", mips_r3041_reg_names },
519 { "r3051", mips_r3051_reg_names },
520 { "r3071", mips_r3081_reg_names },
521 { "r3081", mips_r3081_reg_names },
522 { "lsi33k", mips_lsi33k_reg_names },
523 { NULL, NULL }
524 };
525 /* *INDENT-ON* */
526
527
528
529
530 /* Table to translate MIPS16 register field to actual register number. */
531 static int mips16_to_32_reg[8] =
532 {16, 17, 2, 3, 4, 5, 6, 7};
533
534 /* Heuristic_proc_start may hunt through the text section for a long
535 time across a 2400 baud serial line. Allows the user to limit this
536 search. */
537
538 static unsigned int heuristic_fence_post = 0;
539
540 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
541 #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
542 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
543 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
544 #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
545 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
546 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
547 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
548 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
549 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
550 /* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
551 this will corrupt pdr.iline. Fortunately we don't use it. */
552 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
553 #define _PROC_MAGIC_ 0x0F0F0F0F
554 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
555 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
556
557 struct linked_proc_info
558 {
559 struct mips_extra_func_info info;
560 struct linked_proc_info *next;
561 }
562 *linked_proc_desc_table = NULL;
563
564 void
565 mips_print_extra_frame_info (struct frame_info *fi)
566 {
567 if (fi
568 && get_frame_extra_info (fi)
569 && get_frame_extra_info (fi)->proc_desc
570 && get_frame_extra_info (fi)->proc_desc->pdr.framereg < NUM_REGS)
571 printf_filtered (" frame pointer is at %s+%s\n",
572 REGISTER_NAME (get_frame_extra_info (fi)->proc_desc->pdr.framereg),
573 paddr_d (get_frame_extra_info (fi)->proc_desc->pdr.frameoffset));
574 }
575
576 /* Number of bytes of storage in the actual machine representation for
577 register N. NOTE: This indirectly defines the register size
578 transfered by the GDB protocol. */
579
580 static int mips64_transfers_32bit_regs_p = 0;
581
582 static int
583 mips_register_raw_size (int reg_nr)
584 {
585 if (mips64_transfers_32bit_regs_p)
586 return REGISTER_VIRTUAL_SIZE (reg_nr);
587 else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32
588 && FP_REGISTER_DOUBLE)
589 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
590 registers. */
591 return 8;
592 else
593 return MIPS_REGSIZE;
594 }
595
596 /* Convert between RAW and VIRTUAL registers. The RAW register size
597 defines the remote-gdb packet. */
598
599 static int
600 mips_register_convertible (int reg_nr)
601 {
602 if (mips64_transfers_32bit_regs_p)
603 return 0;
604 else
605 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
606 }
607
608 static void
609 mips_register_convert_to_virtual (int n, struct type *virtual_type,
610 char *raw_buf, char *virt_buf)
611 {
612 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
613 memcpy (virt_buf,
614 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
615 TYPE_LENGTH (virtual_type));
616 else
617 memcpy (virt_buf,
618 raw_buf,
619 TYPE_LENGTH (virtual_type));
620 }
621
622 static void
623 mips_register_convert_to_raw (struct type *virtual_type, int n,
624 const char *virt_buf, char *raw_buf)
625 {
626 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
627 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
628 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
629 virt_buf,
630 TYPE_LENGTH (virtual_type));
631 else
632 memcpy (raw_buf,
633 virt_buf,
634 TYPE_LENGTH (virtual_type));
635 }
636
637 void
638 mips_register_convert_to_type (int regnum, struct type *type, char *buffer)
639 {
640 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
641 && REGISTER_RAW_SIZE (regnum) == 4
642 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
643 && TYPE_CODE(type) == TYPE_CODE_FLT
644 && TYPE_LENGTH(type) == 8)
645 {
646 char temp[4];
647 memcpy (temp, ((char *)(buffer))+4, 4);
648 memcpy (((char *)(buffer))+4, (buffer), 4);
649 memcpy (((char *)(buffer)), temp, 4);
650 }
651 }
652
653 void
654 mips_register_convert_from_type (int regnum, struct type *type, char *buffer)
655 {
656 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
657 && REGISTER_RAW_SIZE (regnum) == 4
658 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
659 && TYPE_CODE(type) == TYPE_CODE_FLT
660 && TYPE_LENGTH(type) == 8)
661 {
662 char temp[4];
663 memcpy (temp, ((char *)(buffer))+4, 4);
664 memcpy (((char *)(buffer))+4, (buffer), 4);
665 memcpy (((char *)(buffer)), temp, 4);
666 }
667 }
668
669 /* Return the GDB type object for the "standard" data type
670 of data in register REG.
671
672 Note: kevinb/2002-08-01: The definition below should faithfully
673 reproduce the behavior of each of the REGISTER_VIRTUAL_TYPE
674 definitions found in config/mips/tm-*.h. I'm concerned about the
675 ``FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM'' clause though.
676 In some cases DEPRECATED_FP_REGNUM is in this range, and I doubt
677 that this code is correct for the 64-bit case. */
678
679 static struct type *
680 mips_register_virtual_type (int reg)
681 {
682 if (FP0_REGNUM <= reg && reg < FP0_REGNUM + 32)
683 {
684 /* Floating point registers... */
685 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
686 return builtin_type_ieee_double_big;
687 else
688 return builtin_type_ieee_double_little;
689 }
690 else if (reg == PS_REGNUM /* CR */)
691 return builtin_type_uint32;
692 else if (FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM)
693 return builtin_type_uint32;
694 else
695 {
696 /* Everything else...
697 Return type appropriate for width of register. */
698 if (MIPS_REGSIZE == TYPE_LENGTH (builtin_type_uint64))
699 return builtin_type_uint64;
700 else
701 return builtin_type_uint32;
702 }
703 }
704
705 /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
706
707 static CORE_ADDR
708 mips_read_sp (void)
709 {
710 return read_signed_register (SP_REGNUM);
711 }
712
713 /* Should the upper word of 64-bit addresses be zeroed? */
714 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
715
716 static int
717 mips_mask_address_p (void)
718 {
719 switch (mask_address_var)
720 {
721 case AUTO_BOOLEAN_TRUE:
722 return 1;
723 case AUTO_BOOLEAN_FALSE:
724 return 0;
725 break;
726 case AUTO_BOOLEAN_AUTO:
727 return MIPS_DEFAULT_MASK_ADDRESS_P;
728 default:
729 internal_error (__FILE__, __LINE__,
730 "mips_mask_address_p: bad switch");
731 return -1;
732 }
733 }
734
735 static void
736 show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
737 {
738 switch (mask_address_var)
739 {
740 case AUTO_BOOLEAN_TRUE:
741 printf_filtered ("The 32 bit mips address mask is enabled\n");
742 break;
743 case AUTO_BOOLEAN_FALSE:
744 printf_filtered ("The 32 bit mips address mask is disabled\n");
745 break;
746 case AUTO_BOOLEAN_AUTO:
747 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
748 mips_mask_address_p () ? "enabled" : "disabled");
749 break;
750 default:
751 internal_error (__FILE__, __LINE__,
752 "show_mask_address: bad switch");
753 break;
754 }
755 }
756
757 /* Should call_function allocate stack space for a struct return? */
758
759 static int
760 mips_eabi_use_struct_convention (int gcc_p, struct type *type)
761 {
762 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
763 }
764
765 static int
766 mips_n32n64_use_struct_convention (int gcc_p, struct type *type)
767 {
768 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
769 }
770
771 /* Should call_function pass struct by reference?
772 For each architecture, structs are passed either by
773 value or by reference, depending on their size. */
774
775 static int
776 mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
777 {
778 enum type_code typecode = TYPE_CODE (check_typedef (type));
779 int len = TYPE_LENGTH (check_typedef (type));
780
781 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
782 return (len > MIPS_SAVED_REGSIZE);
783
784 return 0;
785 }
786
787 static int
788 mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
789 {
790 return 0; /* Assumption: N32/N64 never passes struct by ref. */
791 }
792
793 static int
794 mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
795 {
796 return 0; /* Assumption: O32/O64 never passes struct by ref. */
797 }
798
799 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
800
801 static int
802 pc_is_mips16 (bfd_vma memaddr)
803 {
804 struct minimal_symbol *sym;
805
806 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
807 if (is_mips16_addr (memaddr))
808 return 1;
809
810 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
811 the high bit of the info field. Use this to decide if the function is
812 MIPS16 or normal MIPS. */
813 sym = lookup_minimal_symbol_by_pc (memaddr);
814 if (sym)
815 return msymbol_is_special (sym);
816 else
817 return 0;
818 }
819
820 /* MIPS believes that the PC has a sign extended value. Perhaphs the
821 all registers should be sign extended for simplicity? */
822
823 static CORE_ADDR
824 mips_read_pc (ptid_t ptid)
825 {
826 return read_signed_register_pid (PC_REGNUM, ptid);
827 }
828
829 /* This returns the PC of the first inst after the prologue. If we can't
830 find the prologue, then return 0. */
831
832 static CORE_ADDR
833 after_prologue (CORE_ADDR pc,
834 mips_extra_func_info_t proc_desc)
835 {
836 struct symtab_and_line sal;
837 CORE_ADDR func_addr, func_end;
838
839 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
840 to read the stack pointer from the current machine state, because
841 the current machine state has nothing to do with the information
842 we need from the proc_desc; and the process may or may not exist
843 right now. */
844 if (!proc_desc)
845 proc_desc = find_proc_desc (pc, NULL, 0);
846
847 if (proc_desc)
848 {
849 /* If function is frameless, then we need to do it the hard way. I
850 strongly suspect that frameless always means prologueless... */
851 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
852 && PROC_FRAME_OFFSET (proc_desc) == 0)
853 return 0;
854 }
855
856 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
857 return 0; /* Unknown */
858
859 sal = find_pc_line (func_addr, 0);
860
861 if (sal.end < func_end)
862 return sal.end;
863
864 /* The line after the prologue is after the end of the function. In this
865 case, tell the caller to find the prologue the hard way. */
866
867 return 0;
868 }
869
870 /* Decode a MIPS32 instruction that saves a register in the stack, and
871 set the appropriate bit in the general register mask or float register mask
872 to indicate which register is saved. This is a helper function
873 for mips_find_saved_regs. */
874
875 static void
876 mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
877 unsigned long *float_mask)
878 {
879 int reg;
880
881 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
882 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
883 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
884 {
885 /* It might be possible to use the instruction to
886 find the offset, rather than the code below which
887 is based on things being in a certain order in the
888 frame, but figuring out what the instruction's offset
889 is relative to might be a little tricky. */
890 reg = (inst & 0x001f0000) >> 16;
891 *gen_mask |= (1 << reg);
892 }
893 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
894 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
895 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
896
897 {
898 reg = ((inst & 0x001f0000) >> 16);
899 *float_mask |= (1 << reg);
900 }
901 }
902
903 /* Decode a MIPS16 instruction that saves a register in the stack, and
904 set the appropriate bit in the general register or float register mask
905 to indicate which register is saved. This is a helper function
906 for mips_find_saved_regs. */
907
908 static void
909 mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
910 {
911 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
912 {
913 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
914 *gen_mask |= (1 << reg);
915 }
916 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
917 {
918 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
919 *gen_mask |= (1 << reg);
920 }
921 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
922 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
923 *gen_mask |= (1 << RA_REGNUM);
924 }
925
926
927 /* Fetch and return instruction from the specified location. If the PC
928 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
929
930 static t_inst
931 mips_fetch_instruction (CORE_ADDR addr)
932 {
933 char buf[MIPS_INSTLEN];
934 int instlen;
935 int status;
936
937 if (pc_is_mips16 (addr))
938 {
939 instlen = MIPS16_INSTLEN;
940 addr = unmake_mips16_addr (addr);
941 }
942 else
943 instlen = MIPS_INSTLEN;
944 status = read_memory_nobpt (addr, buf, instlen);
945 if (status)
946 memory_error (status, addr);
947 return extract_unsigned_integer (buf, instlen);
948 }
949
950
951 /* These the fields of 32 bit mips instructions */
952 #define mips32_op(x) (x >> 26)
953 #define itype_op(x) (x >> 26)
954 #define itype_rs(x) ((x >> 21) & 0x1f)
955 #define itype_rt(x) ((x >> 16) & 0x1f)
956 #define itype_immediate(x) (x & 0xffff)
957
958 #define jtype_op(x) (x >> 26)
959 #define jtype_target(x) (x & 0x03ffffff)
960
961 #define rtype_op(x) (x >> 26)
962 #define rtype_rs(x) ((x >> 21) & 0x1f)
963 #define rtype_rt(x) ((x >> 16) & 0x1f)
964 #define rtype_rd(x) ((x >> 11) & 0x1f)
965 #define rtype_shamt(x) ((x >> 6) & 0x1f)
966 #define rtype_funct(x) (x & 0x3f)
967
968 static CORE_ADDR
969 mips32_relative_offset (unsigned long inst)
970 {
971 long x;
972 x = itype_immediate (inst);
973 if (x & 0x8000) /* sign bit set */
974 {
975 x |= 0xffff0000; /* sign extension */
976 }
977 x = x << 2;
978 return x;
979 }
980
981 /* Determine whate to set a single step breakpoint while considering
982 branch prediction */
983 static CORE_ADDR
984 mips32_next_pc (CORE_ADDR pc)
985 {
986 unsigned long inst;
987 int op;
988 inst = mips_fetch_instruction (pc);
989 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
990 {
991 if (itype_op (inst) >> 2 == 5)
992 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
993 {
994 op = (itype_op (inst) & 0x03);
995 switch (op)
996 {
997 case 0: /* BEQL */
998 goto equal_branch;
999 case 1: /* BNEL */
1000 goto neq_branch;
1001 case 2: /* BLEZL */
1002 goto less_branch;
1003 case 3: /* BGTZ */
1004 goto greater_branch;
1005 default:
1006 pc += 4;
1007 }
1008 }
1009 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
1010 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1011 {
1012 int tf = itype_rt (inst) & 0x01;
1013 int cnum = itype_rt (inst) >> 2;
1014 int fcrcs = read_signed_register (FCRCS_REGNUM);
1015 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1016
1017 if (((cond >> cnum) & 0x01) == tf)
1018 pc += mips32_relative_offset (inst) + 4;
1019 else
1020 pc += 8;
1021 }
1022 else
1023 pc += 4; /* Not a branch, next instruction is easy */
1024 }
1025 else
1026 { /* This gets way messy */
1027
1028 /* Further subdivide into SPECIAL, REGIMM and other */
1029 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
1030 {
1031 case 0: /* SPECIAL */
1032 op = rtype_funct (inst);
1033 switch (op)
1034 {
1035 case 8: /* JR */
1036 case 9: /* JALR */
1037 /* Set PC to that address */
1038 pc = read_signed_register (rtype_rs (inst));
1039 break;
1040 default:
1041 pc += 4;
1042 }
1043
1044 break; /* end SPECIAL */
1045 case 1: /* REGIMM */
1046 {
1047 op = itype_rt (inst); /* branch condition */
1048 switch (op)
1049 {
1050 case 0: /* BLTZ */
1051 case 2: /* BLTZL */
1052 case 16: /* BLTZAL */
1053 case 18: /* BLTZALL */
1054 less_branch:
1055 if (read_signed_register (itype_rs (inst)) < 0)
1056 pc += mips32_relative_offset (inst) + 4;
1057 else
1058 pc += 8; /* after the delay slot */
1059 break;
1060 case 1: /* BGEZ */
1061 case 3: /* BGEZL */
1062 case 17: /* BGEZAL */
1063 case 19: /* BGEZALL */
1064 greater_equal_branch:
1065 if (read_signed_register (itype_rs (inst)) >= 0)
1066 pc += mips32_relative_offset (inst) + 4;
1067 else
1068 pc += 8; /* after the delay slot */
1069 break;
1070 /* All of the other instructions in the REGIMM category */
1071 default:
1072 pc += 4;
1073 }
1074 }
1075 break; /* end REGIMM */
1076 case 2: /* J */
1077 case 3: /* JAL */
1078 {
1079 unsigned long reg;
1080 reg = jtype_target (inst) << 2;
1081 /* Upper four bits get never changed... */
1082 pc = reg + ((pc + 4) & 0xf0000000);
1083 }
1084 break;
1085 /* FIXME case JALX : */
1086 {
1087 unsigned long reg;
1088 reg = jtype_target (inst) << 2;
1089 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
1090 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1091 }
1092 break; /* The new PC will be alternate mode */
1093 case 4: /* BEQ, BEQL */
1094 equal_branch:
1095 if (read_signed_register (itype_rs (inst)) ==
1096 read_signed_register (itype_rt (inst)))
1097 pc += mips32_relative_offset (inst) + 4;
1098 else
1099 pc += 8;
1100 break;
1101 case 5: /* BNE, BNEL */
1102 neq_branch:
1103 if (read_signed_register (itype_rs (inst)) !=
1104 read_signed_register (itype_rt (inst)))
1105 pc += mips32_relative_offset (inst) + 4;
1106 else
1107 pc += 8;
1108 break;
1109 case 6: /* BLEZ, BLEZL */
1110 less_zero_branch:
1111 if (read_signed_register (itype_rs (inst) <= 0))
1112 pc += mips32_relative_offset (inst) + 4;
1113 else
1114 pc += 8;
1115 break;
1116 case 7:
1117 default:
1118 greater_branch: /* BGTZ, BGTZL */
1119 if (read_signed_register (itype_rs (inst) > 0))
1120 pc += mips32_relative_offset (inst) + 4;
1121 else
1122 pc += 8;
1123 break;
1124 } /* switch */
1125 } /* else */
1126 return pc;
1127 } /* mips32_next_pc */
1128
1129 /* Decoding the next place to set a breakpoint is irregular for the
1130 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1131 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1132 We dont want to set a single step instruction on the extend instruction
1133 either.
1134 */
1135
1136 /* Lots of mips16 instruction formats */
1137 /* Predicting jumps requires itype,ritype,i8type
1138 and their extensions extItype,extritype,extI8type
1139 */
1140 enum mips16_inst_fmts
1141 {
1142 itype, /* 0 immediate 5,10 */
1143 ritype, /* 1 5,3,8 */
1144 rrtype, /* 2 5,3,3,5 */
1145 rritype, /* 3 5,3,3,5 */
1146 rrrtype, /* 4 5,3,3,3,2 */
1147 rriatype, /* 5 5,3,3,1,4 */
1148 shifttype, /* 6 5,3,3,3,2 */
1149 i8type, /* 7 5,3,8 */
1150 i8movtype, /* 8 5,3,3,5 */
1151 i8mov32rtype, /* 9 5,3,5,3 */
1152 i64type, /* 10 5,3,8 */
1153 ri64type, /* 11 5,3,3,5 */
1154 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1155 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1156 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1157 extRRItype, /* 15 5,5,5,5,3,3,5 */
1158 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1159 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1160 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1161 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1162 extRi64type, /* 20 5,6,5,5,3,3,5 */
1163 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1164 };
1165 /* I am heaping all the fields of the formats into one structure and
1166 then, only the fields which are involved in instruction extension */
1167 struct upk_mips16
1168 {
1169 CORE_ADDR offset;
1170 unsigned int regx; /* Function in i8 type */
1171 unsigned int regy;
1172 };
1173
1174
1175 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1176 for the bits which make up the immediatate extension. */
1177
1178 static CORE_ADDR
1179 extended_offset (unsigned int extension)
1180 {
1181 CORE_ADDR value;
1182 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1183 value = value << 6;
1184 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1185 value = value << 5;
1186 value |= extension & 0x01f; /* extract 4:0 */
1187 return value;
1188 }
1189
1190 /* Only call this function if you know that this is an extendable
1191 instruction, It wont malfunction, but why make excess remote memory references?
1192 If the immediate operands get sign extended or somthing, do it after
1193 the extension is performed.
1194 */
1195 /* FIXME: Every one of these cases needs to worry about sign extension
1196 when the offset is to be used in relative addressing */
1197
1198
1199 static unsigned int
1200 fetch_mips_16 (CORE_ADDR pc)
1201 {
1202 char buf[8];
1203 pc &= 0xfffffffe; /* clear the low order bit */
1204 target_read_memory (pc, buf, 2);
1205 return extract_unsigned_integer (buf, 2);
1206 }
1207
1208 static void
1209 unpack_mips16 (CORE_ADDR pc,
1210 unsigned int extension,
1211 unsigned int inst,
1212 enum mips16_inst_fmts insn_format,
1213 struct upk_mips16 *upk)
1214 {
1215 CORE_ADDR offset;
1216 int regx;
1217 int regy;
1218 switch (insn_format)
1219 {
1220 case itype:
1221 {
1222 CORE_ADDR value;
1223 if (extension)
1224 {
1225 value = extended_offset (extension);
1226 value = value << 11; /* rom for the original value */
1227 value |= inst & 0x7ff; /* eleven bits from instruction */
1228 }
1229 else
1230 {
1231 value = inst & 0x7ff;
1232 /* FIXME : Consider sign extension */
1233 }
1234 offset = value;
1235 regx = -1;
1236 regy = -1;
1237 }
1238 break;
1239 case ritype:
1240 case i8type:
1241 { /* A register identifier and an offset */
1242 /* Most of the fields are the same as I type but the
1243 immediate value is of a different length */
1244 CORE_ADDR value;
1245 if (extension)
1246 {
1247 value = extended_offset (extension);
1248 value = value << 8; /* from the original instruction */
1249 value |= inst & 0xff; /* eleven bits from instruction */
1250 regx = (extension >> 8) & 0x07; /* or i8 funct */
1251 if (value & 0x4000) /* test the sign bit , bit 26 */
1252 {
1253 value &= ~0x3fff; /* remove the sign bit */
1254 value = -value;
1255 }
1256 }
1257 else
1258 {
1259 value = inst & 0xff; /* 8 bits */
1260 regx = (inst >> 8) & 0x07; /* or i8 funct */
1261 /* FIXME: Do sign extension , this format needs it */
1262 if (value & 0x80) /* THIS CONFUSES ME */
1263 {
1264 value &= 0xef; /* remove the sign bit */
1265 value = -value;
1266 }
1267 }
1268 offset = value;
1269 regy = -1;
1270 break;
1271 }
1272 case jalxtype:
1273 {
1274 unsigned long value;
1275 unsigned int nexthalf;
1276 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1277 value = value << 16;
1278 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1279 value |= nexthalf;
1280 offset = value;
1281 regx = -1;
1282 regy = -1;
1283 break;
1284 }
1285 default:
1286 internal_error (__FILE__, __LINE__,
1287 "bad switch");
1288 }
1289 upk->offset = offset;
1290 upk->regx = regx;
1291 upk->regy = regy;
1292 }
1293
1294
1295 static CORE_ADDR
1296 add_offset_16 (CORE_ADDR pc, int offset)
1297 {
1298 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1299 }
1300
1301 static CORE_ADDR
1302 extended_mips16_next_pc (CORE_ADDR pc,
1303 unsigned int extension,
1304 unsigned int insn)
1305 {
1306 int op = (insn >> 11);
1307 switch (op)
1308 {
1309 case 2: /* Branch */
1310 {
1311 CORE_ADDR offset;
1312 struct upk_mips16 upk;
1313 unpack_mips16 (pc, extension, insn, itype, &upk);
1314 offset = upk.offset;
1315 if (offset & 0x800)
1316 {
1317 offset &= 0xeff;
1318 offset = -offset;
1319 }
1320 pc += (offset << 1) + 2;
1321 break;
1322 }
1323 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1324 {
1325 struct upk_mips16 upk;
1326 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1327 pc = add_offset_16 (pc, upk.offset);
1328 if ((insn >> 10) & 0x01) /* Exchange mode */
1329 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1330 else
1331 pc |= 0x01;
1332 break;
1333 }
1334 case 4: /* beqz */
1335 {
1336 struct upk_mips16 upk;
1337 int reg;
1338 unpack_mips16 (pc, extension, insn, ritype, &upk);
1339 reg = read_signed_register (upk.regx);
1340 if (reg == 0)
1341 pc += (upk.offset << 1) + 2;
1342 else
1343 pc += 2;
1344 break;
1345 }
1346 case 5: /* bnez */
1347 {
1348 struct upk_mips16 upk;
1349 int reg;
1350 unpack_mips16 (pc, extension, insn, ritype, &upk);
1351 reg = read_signed_register (upk.regx);
1352 if (reg != 0)
1353 pc += (upk.offset << 1) + 2;
1354 else
1355 pc += 2;
1356 break;
1357 }
1358 case 12: /* I8 Formats btez btnez */
1359 {
1360 struct upk_mips16 upk;
1361 int reg;
1362 unpack_mips16 (pc, extension, insn, i8type, &upk);
1363 /* upk.regx contains the opcode */
1364 reg = read_signed_register (24); /* Test register is 24 */
1365 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1366 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1367 /* pc = add_offset_16(pc,upk.offset) ; */
1368 pc += (upk.offset << 1) + 2;
1369 else
1370 pc += 2;
1371 break;
1372 }
1373 case 29: /* RR Formats JR, JALR, JALR-RA */
1374 {
1375 struct upk_mips16 upk;
1376 /* upk.fmt = rrtype; */
1377 op = insn & 0x1f;
1378 if (op == 0)
1379 {
1380 int reg;
1381 upk.regx = (insn >> 8) & 0x07;
1382 upk.regy = (insn >> 5) & 0x07;
1383 switch (upk.regy)
1384 {
1385 case 0:
1386 reg = upk.regx;
1387 break;
1388 case 1:
1389 reg = 31;
1390 break; /* Function return instruction */
1391 case 2:
1392 reg = upk.regx;
1393 break;
1394 default:
1395 reg = 31;
1396 break; /* BOGUS Guess */
1397 }
1398 pc = read_signed_register (reg);
1399 }
1400 else
1401 pc += 2;
1402 break;
1403 }
1404 case 30:
1405 /* This is an instruction extension. Fetch the real instruction
1406 (which follows the extension) and decode things based on
1407 that. */
1408 {
1409 pc += 2;
1410 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1411 break;
1412 }
1413 default:
1414 {
1415 pc += 2;
1416 break;
1417 }
1418 }
1419 return pc;
1420 }
1421
1422 static CORE_ADDR
1423 mips16_next_pc (CORE_ADDR pc)
1424 {
1425 unsigned int insn = fetch_mips_16 (pc);
1426 return extended_mips16_next_pc (pc, 0, insn);
1427 }
1428
1429 /* The mips_next_pc function supports single_step when the remote
1430 target monitor or stub is not developed enough to do a single_step.
1431 It works by decoding the current instruction and predicting where a
1432 branch will go. This isnt hard because all the data is available.
1433 The MIPS32 and MIPS16 variants are quite different */
1434 CORE_ADDR
1435 mips_next_pc (CORE_ADDR pc)
1436 {
1437 if (pc & 0x01)
1438 return mips16_next_pc (pc);
1439 else
1440 return mips32_next_pc (pc);
1441 }
1442
1443 /* Set up the 'saved_regs' array. This is a data structure containing
1444 the addresses on the stack where each register has been saved, for
1445 each stack frame. Registers that have not been saved will have
1446 zero here. The stack pointer register is special: rather than the
1447 address where the stack register has been saved,
1448 saved_regs[SP_REGNUM] will have the actual value of the previous
1449 frame's stack register. */
1450
1451 static void
1452 mips_find_saved_regs (struct frame_info *fci)
1453 {
1454 int ireg;
1455 /* r0 bit means kernel trap */
1456 int kernel_trap;
1457 /* What registers have been saved? Bitmasks. */
1458 unsigned long gen_mask, float_mask;
1459 mips_extra_func_info_t proc_desc;
1460 t_inst inst;
1461 CORE_ADDR *saved_regs;
1462
1463 if (get_frame_saved_regs (fci) != NULL)
1464 return;
1465 saved_regs = frame_saved_regs_zalloc (fci);
1466
1467 /* If it is the frame for sigtramp, the saved registers are located
1468 in a sigcontext structure somewhere on the stack. If the stack
1469 layout for sigtramp changes we might have to change these
1470 constants and the companion fixup_sigtramp in mdebugread.c */
1471 #ifndef SIGFRAME_BASE
1472 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1473 above the sigtramp frame. */
1474 #define SIGFRAME_BASE MIPS_REGSIZE
1475 /* FIXME! Are these correct?? */
1476 #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1477 #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1478 #define SIGFRAME_FPREGSAVE_OFF \
1479 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1480 #endif
1481 #ifndef SIGFRAME_REG_SIZE
1482 /* FIXME! Is this correct?? */
1483 #define SIGFRAME_REG_SIZE MIPS_REGSIZE
1484 #endif
1485 if ((get_frame_type (fci) == SIGTRAMP_FRAME))
1486 {
1487 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1488 {
1489 CORE_ADDR reg_position = (get_frame_base (fci) + SIGFRAME_REGSAVE_OFF
1490 + ireg * SIGFRAME_REG_SIZE);
1491 set_reg_offset (saved_regs, ireg, reg_position);
1492 }
1493 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1494 {
1495 CORE_ADDR reg_position = (get_frame_base (fci)
1496 + SIGFRAME_FPREGSAVE_OFF
1497 + ireg * SIGFRAME_REG_SIZE);
1498 set_reg_offset (saved_regs, FP0_REGNUM + ireg, reg_position);
1499 }
1500
1501 set_reg_offset (saved_regs, PC_REGNUM, get_frame_base (fci) + SIGFRAME_PC_OFF);
1502 /* SP_REGNUM, contains the value and not the address. */
1503 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
1504 return;
1505 }
1506
1507 proc_desc = get_frame_extra_info (fci)->proc_desc;
1508 if (proc_desc == NULL)
1509 /* I'm not sure how/whether this can happen. Normally when we
1510 can't find a proc_desc, we "synthesize" one using
1511 heuristic_proc_desc and set the saved_regs right away. */
1512 return;
1513
1514 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1515 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1516 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
1517
1518 if (/* In any frame other than the innermost or a frame interrupted
1519 by a signal, we assume that all registers have been saved.
1520 This assumes that all register saves in a function happen
1521 before the first function call. */
1522 (get_next_frame (fci) == NULL
1523 || (get_frame_type (get_next_frame (fci)) == SIGTRAMP_FRAME))
1524
1525 /* In a dummy frame we know exactly where things are saved. */
1526 && !PROC_DESC_IS_DUMMY (proc_desc)
1527
1528 /* Don't bother unless we are inside a function prologue.
1529 Outside the prologue, we know where everything is. */
1530
1531 && in_prologue (get_frame_pc (fci), PROC_LOW_ADDR (proc_desc))
1532
1533 /* Not sure exactly what kernel_trap means, but if it means the
1534 kernel saves the registers without a prologue doing it, we
1535 better not examine the prologue to see whether registers
1536 have been saved yet. */
1537 && !kernel_trap)
1538 {
1539 /* We need to figure out whether the registers that the
1540 proc_desc claims are saved have been saved yet. */
1541
1542 CORE_ADDR addr;
1543
1544 /* Bitmasks; set if we have found a save for the register. */
1545 unsigned long gen_save_found = 0;
1546 unsigned long float_save_found = 0;
1547 int instlen;
1548
1549 /* If the address is odd, assume this is MIPS16 code. */
1550 addr = PROC_LOW_ADDR (proc_desc);
1551 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1552
1553 /* Scan through this function's instructions preceding the
1554 current PC, and look for those that save registers. */
1555 while (addr < get_frame_pc (fci))
1556 {
1557 inst = mips_fetch_instruction (addr);
1558 if (pc_is_mips16 (addr))
1559 mips16_decode_reg_save (inst, &gen_save_found);
1560 else
1561 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1562 addr += instlen;
1563 }
1564 gen_mask = gen_save_found;
1565 float_mask = float_save_found;
1566 }
1567
1568 /* Fill in the offsets for the registers which gen_mask says were
1569 saved. */
1570 {
1571 CORE_ADDR reg_position = (get_frame_base (fci)
1572 + PROC_REG_OFFSET (proc_desc));
1573 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1574 if (gen_mask & 0x80000000)
1575 {
1576 set_reg_offset (saved_regs, ireg, reg_position);
1577 reg_position -= MIPS_SAVED_REGSIZE;
1578 }
1579 }
1580
1581 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse
1582 order of that normally used by gcc. Therefore, we have to fetch
1583 the first instruction of the function, and if it's an entry
1584 instruction that saves $s0 or $s1, correct their saved addresses. */
1585 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1586 {
1587 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
1588 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700)
1589 /* entry */
1590 {
1591 int reg;
1592 int sreg_count = (inst >> 6) & 3;
1593
1594 /* Check if the ra register was pushed on the stack. */
1595 CORE_ADDR reg_position = (get_frame_base (fci)
1596 + PROC_REG_OFFSET (proc_desc));
1597 if (inst & 0x20)
1598 reg_position -= MIPS_SAVED_REGSIZE;
1599
1600 /* Check if the s0 and s1 registers were pushed on the
1601 stack. */
1602 for (reg = 16; reg < sreg_count + 16; reg++)
1603 {
1604 set_reg_offset (saved_regs, reg, reg_position);
1605 reg_position -= MIPS_SAVED_REGSIZE;
1606 }
1607 }
1608 }
1609
1610 /* Fill in the offsets for the registers which float_mask says were
1611 saved. */
1612 {
1613 CORE_ADDR reg_position = (get_frame_base (fci)
1614 + PROC_FREG_OFFSET (proc_desc));
1615
1616 /* Apparently, the freg_offset gives the offset to the first 64
1617 bit saved.
1618
1619 When the ABI specifies 64 bit saved registers, the FREG_OFFSET
1620 designates the first saved 64 bit register.
1621
1622 When the ABI specifies 32 bit saved registers, the ``64 bit
1623 saved DOUBLE'' consists of two adjacent 32 bit registers, Hence
1624 FREG_OFFSET, designates the address of the lower register of
1625 the register pair. Adjust the offset so that it designates the
1626 upper register of the pair -- i.e., the address of the first
1627 saved 32 bit register. */
1628
1629 if (MIPS_SAVED_REGSIZE == 4)
1630 reg_position += MIPS_SAVED_REGSIZE;
1631
1632 /* Fill in the offsets for the float registers which float_mask
1633 says were saved. */
1634 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1635 if (float_mask & 0x80000000)
1636 {
1637 set_reg_offset (saved_regs, FP0_REGNUM + ireg, reg_position);
1638 reg_position -= MIPS_SAVED_REGSIZE;
1639 }
1640
1641 set_reg_offset (saved_regs, PC_REGNUM, saved_regs[RA_REGNUM]);
1642 }
1643
1644 /* SP_REGNUM, contains the value and not the address. */
1645 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
1646 }
1647
1648 static CORE_ADDR
1649 read_next_frame_reg (struct frame_info *fi, int regno)
1650 {
1651 int optimized;
1652 CORE_ADDR addr;
1653 int realnum;
1654 enum lval_type lval;
1655 char raw_buffer[MAX_REGISTER_SIZE];
1656
1657 if (fi == NULL)
1658 {
1659 regcache_cooked_read (current_regcache, regno, raw_buffer);
1660 }
1661 else
1662 {
1663 frame_register_unwind (fi, regno, &optimized, &lval, &addr, &realnum,
1664 raw_buffer);
1665 /* FIXME: cagney/2002-09-13: This is just soooo bad. The MIPS
1666 should have a pseudo register range that correspons to the ABI's,
1667 rather than the ISA's, view of registers. These registers would
1668 then implicitly describe their size and hence could be used
1669 without the below munging. */
1670 if (lval == lval_memory)
1671 {
1672 if (regno < 32)
1673 {
1674 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
1675 saved. */
1676 return read_memory_integer (addr, MIPS_SAVED_REGSIZE);
1677 }
1678 }
1679 }
1680
1681 return extract_signed_integer (raw_buffer, REGISTER_VIRTUAL_SIZE (regno));
1682 }
1683
1684 /* mips_addr_bits_remove - remove useless address bits */
1685
1686 static CORE_ADDR
1687 mips_addr_bits_remove (CORE_ADDR addr)
1688 {
1689 if (GDB_TARGET_IS_MIPS64)
1690 {
1691 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
1692 {
1693 /* This hack is a work-around for existing boards using
1694 PMON, the simulator, and any other 64-bit targets that
1695 doesn't have true 64-bit addressing. On these targets,
1696 the upper 32 bits of addresses are ignored by the
1697 hardware. Thus, the PC or SP are likely to have been
1698 sign extended to all 1s by instruction sequences that
1699 load 32-bit addresses. For example, a typical piece of
1700 code that loads an address is this:
1701 lui $r2, <upper 16 bits>
1702 ori $r2, <lower 16 bits>
1703 But the lui sign-extends the value such that the upper 32
1704 bits may be all 1s. The workaround is simply to mask off
1705 these bits. In the future, gcc may be changed to support
1706 true 64-bit addressing, and this masking will have to be
1707 disabled. */
1708 addr &= (CORE_ADDR) 0xffffffff;
1709 }
1710 }
1711 else if (mips_mask_address_p ())
1712 {
1713 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1714 masking off bits, instead, the actual target should be asking
1715 for the address to be converted to a valid pointer. */
1716 /* Even when GDB is configured for some 32-bit targets
1717 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1718 so CORE_ADDR is 64 bits. So we still have to mask off
1719 useless bits from addresses. */
1720 addr &= (CORE_ADDR) 0xffffffff;
1721 }
1722 return addr;
1723 }
1724
1725 /* mips_software_single_step() is called just before we want to resume
1726 the inferior, if we want to single-step it but there is no hardware
1727 or kernel single-step support (MIPS on GNU/Linux for example). We find
1728 the target of the coming instruction and breakpoint it.
1729
1730 single_step is also called just after the inferior stops. If we had
1731 set up a simulated single-step, we undo our damage. */
1732
1733 void
1734 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1735 {
1736 static CORE_ADDR next_pc;
1737 typedef char binsn_quantum[BREAKPOINT_MAX];
1738 static binsn_quantum break_mem;
1739 CORE_ADDR pc;
1740
1741 if (insert_breakpoints_p)
1742 {
1743 pc = read_register (PC_REGNUM);
1744 next_pc = mips_next_pc (pc);
1745
1746 target_insert_breakpoint (next_pc, break_mem);
1747 }
1748 else
1749 target_remove_breakpoint (next_pc, break_mem);
1750 }
1751
1752 static CORE_ADDR
1753 mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
1754 {
1755 CORE_ADDR pc, tmp;
1756
1757 pc = ((fromleaf)
1758 ? DEPRECATED_SAVED_PC_AFTER_CALL (get_next_frame (prev))
1759 : get_next_frame (prev)
1760 ? DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev))
1761 : read_pc ());
1762 tmp = SKIP_TRAMPOLINE_CODE (pc);
1763 return tmp ? tmp : pc;
1764 }
1765
1766
1767 static CORE_ADDR
1768 mips_frame_saved_pc (struct frame_info *frame)
1769 {
1770 CORE_ADDR saved_pc;
1771 mips_extra_func_info_t proc_desc = get_frame_extra_info (frame)->proc_desc;
1772 /* We have to get the saved pc from the sigcontext
1773 if it is a signal handler frame. */
1774 int pcreg = (get_frame_type (frame) == SIGTRAMP_FRAME) ? PC_REGNUM
1775 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1776
1777 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
1778 {
1779 LONGEST tmp;
1780 frame_unwind_signed_register (frame, PC_REGNUM, &tmp);
1781 saved_pc = tmp;
1782 }
1783 else if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1784 saved_pc = read_memory_integer (get_frame_base (frame) - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
1785 else
1786 saved_pc = read_next_frame_reg (frame, pcreg);
1787
1788 return ADDR_BITS_REMOVE (saved_pc);
1789 }
1790
1791 static struct mips_extra_func_info temp_proc_desc;
1792
1793 /* This hack will go away once the get_prev_frame() code has been
1794 modified to set the frame's type first. That is BEFORE init extra
1795 frame info et.al. is called. This is because it will become
1796 possible to skip the init extra info call for sigtramp and dummy
1797 frames. */
1798 static CORE_ADDR *temp_saved_regs;
1799
1800 /* Set a register's saved stack address in temp_saved_regs. If an
1801 address has already been set for this register, do nothing; this
1802 way we will only recognize the first save of a given register in a
1803 function prologue. */
1804
1805 static void
1806 set_reg_offset (CORE_ADDR *saved_regs, int regno, CORE_ADDR offset)
1807 {
1808 if (saved_regs[regno] == 0)
1809 saved_regs[regno] = offset;
1810 }
1811
1812
1813 /* Test whether the PC points to the return instruction at the
1814 end of a function. */
1815
1816 static int
1817 mips_about_to_return (CORE_ADDR pc)
1818 {
1819 if (pc_is_mips16 (pc))
1820 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1821 generates a "jr $ra"; other times it generates code to load
1822 the return address from the stack to an accessible register (such
1823 as $a3), then a "jr" using that register. This second case
1824 is almost impossible to distinguish from an indirect jump
1825 used for switch statements, so we don't even try. */
1826 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1827 else
1828 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1829 }
1830
1831
1832 /* This fencepost looks highly suspicious to me. Removing it also
1833 seems suspicious as it could affect remote debugging across serial
1834 lines. */
1835
1836 static CORE_ADDR
1837 heuristic_proc_start (CORE_ADDR pc)
1838 {
1839 CORE_ADDR start_pc;
1840 CORE_ADDR fence;
1841 int instlen;
1842 int seen_adjsp = 0;
1843
1844 pc = ADDR_BITS_REMOVE (pc);
1845 start_pc = pc;
1846 fence = start_pc - heuristic_fence_post;
1847 if (start_pc == 0)
1848 return 0;
1849
1850 if (heuristic_fence_post == UINT_MAX
1851 || fence < VM_MIN_ADDRESS)
1852 fence = VM_MIN_ADDRESS;
1853
1854 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1855
1856 /* search back for previous return */
1857 for (start_pc -= instlen;; start_pc -= instlen)
1858 if (start_pc < fence)
1859 {
1860 /* It's not clear to me why we reach this point when
1861 stop_soon, but with this test, at least we
1862 don't print out warnings for every child forked (eg, on
1863 decstation). 22apr93 rich@cygnus.com. */
1864 if (stop_soon == NO_STOP_QUIETLY)
1865 {
1866 static int blurb_printed = 0;
1867
1868 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1869 paddr_nz (pc));
1870
1871 if (!blurb_printed)
1872 {
1873 /* This actually happens frequently in embedded
1874 development, when you first connect to a board
1875 and your stack pointer and pc are nowhere in
1876 particular. This message needs to give people
1877 in that situation enough information to
1878 determine that it's no big deal. */
1879 printf_filtered ("\n\
1880 GDB is unable to find the start of the function at 0x%s\n\
1881 and thus can't determine the size of that function's stack frame.\n\
1882 This means that GDB may be unable to access that stack frame, or\n\
1883 the frames below it.\n\
1884 This problem is most likely caused by an invalid program counter or\n\
1885 stack pointer.\n\
1886 However, if you think GDB should simply search farther back\n\
1887 from 0x%s for code which looks like the beginning of a\n\
1888 function, you can increase the range of the search using the `set\n\
1889 heuristic-fence-post' command.\n",
1890 paddr_nz (pc), paddr_nz (pc));
1891 blurb_printed = 1;
1892 }
1893 }
1894
1895 return 0;
1896 }
1897 else if (pc_is_mips16 (start_pc))
1898 {
1899 unsigned short inst;
1900
1901 /* On MIPS16, any one of the following is likely to be the
1902 start of a function:
1903 entry
1904 addiu sp,-n
1905 daddiu sp,-n
1906 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1907 inst = mips_fetch_instruction (start_pc);
1908 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1909 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1910 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1911 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1912 break;
1913 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1914 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1915 seen_adjsp = 1;
1916 else
1917 seen_adjsp = 0;
1918 }
1919 else if (mips_about_to_return (start_pc))
1920 {
1921 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1922 break;
1923 }
1924
1925 return start_pc;
1926 }
1927
1928 /* Fetch the immediate value from a MIPS16 instruction.
1929 If the previous instruction was an EXTEND, use it to extend
1930 the upper bits of the immediate value. This is a helper function
1931 for mips16_heuristic_proc_desc. */
1932
1933 static int
1934 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1935 unsigned short inst, /* current instruction */
1936 int nbits, /* number of bits in imm field */
1937 int scale, /* scale factor to be applied to imm */
1938 int is_signed) /* is the imm field signed? */
1939 {
1940 int offset;
1941
1942 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1943 {
1944 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1945 if (offset & 0x8000) /* check for negative extend */
1946 offset = 0 - (0x10000 - (offset & 0xffff));
1947 return offset | (inst & 0x1f);
1948 }
1949 else
1950 {
1951 int max_imm = 1 << nbits;
1952 int mask = max_imm - 1;
1953 int sign_bit = max_imm >> 1;
1954
1955 offset = inst & mask;
1956 if (is_signed && (offset & sign_bit))
1957 offset = 0 - (max_imm - offset);
1958 return offset * scale;
1959 }
1960 }
1961
1962
1963 /* Fill in values in temp_proc_desc based on the MIPS16 instruction
1964 stream from start_pc to limit_pc. */
1965
1966 static void
1967 mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1968 struct frame_info *next_frame, CORE_ADDR sp)
1969 {
1970 CORE_ADDR cur_pc;
1971 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1972 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1973 unsigned inst = 0; /* current instruction */
1974 unsigned entry_inst = 0; /* the entry instruction */
1975 int reg, offset;
1976
1977 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1978 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1979
1980 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1981 {
1982 /* Save the previous instruction. If it's an EXTEND, we'll extract
1983 the immediate offset extension from it in mips16_get_imm. */
1984 prev_inst = inst;
1985
1986 /* Fetch and decode the instruction. */
1987 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1988 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1989 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1990 {
1991 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1992 if (offset < 0) /* negative stack adjustment? */
1993 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
1994 else
1995 /* Exit loop if a positive stack adjustment is found, which
1996 usually means that the stack cleanup code in the function
1997 epilogue is reached. */
1998 break;
1999 }
2000 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2001 {
2002 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2003 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
2004 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
2005 set_reg_offset (temp_saved_regs, reg, sp + offset);
2006 }
2007 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2008 {
2009 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2010 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2011 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
2012 set_reg_offset (temp_saved_regs, reg, sp + offset);
2013 }
2014 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2015 {
2016 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2017 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
2018 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2019 }
2020 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2021 {
2022 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
2023 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
2024 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2025 }
2026 else if (inst == 0x673d) /* move $s1, $sp */
2027 {
2028 frame_addr = sp;
2029 PROC_FRAME_REG (&temp_proc_desc) = 17;
2030 }
2031 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2032 {
2033 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2034 frame_addr = sp + offset;
2035 PROC_FRAME_REG (&temp_proc_desc) = 17;
2036 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
2037 }
2038 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2039 {
2040 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2041 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2042 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2043 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
2044 }
2045 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2046 {
2047 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2048 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2049 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2050 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
2051 }
2052 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2053 entry_inst = inst; /* save for later processing */
2054 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
2055 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
2056 }
2057
2058 /* The entry instruction is typically the first instruction in a function,
2059 and it stores registers at offsets relative to the value of the old SP
2060 (before the prologue). But the value of the sp parameter to this
2061 function is the new SP (after the prologue has been executed). So we
2062 can't calculate those offsets until we've seen the entire prologue,
2063 and can calculate what the old SP must have been. */
2064 if (entry_inst != 0)
2065 {
2066 int areg_count = (entry_inst >> 8) & 7;
2067 int sreg_count = (entry_inst >> 6) & 3;
2068
2069 /* The entry instruction always subtracts 32 from the SP. */
2070 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
2071
2072 /* Now we can calculate what the SP must have been at the
2073 start of the function prologue. */
2074 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
2075
2076 /* Check if a0-a3 were saved in the caller's argument save area. */
2077 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2078 {
2079 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2080 set_reg_offset (temp_saved_regs, reg, sp + offset);
2081 offset += MIPS_SAVED_REGSIZE;
2082 }
2083
2084 /* Check if the ra register was pushed on the stack. */
2085 offset = -4;
2086 if (entry_inst & 0x20)
2087 {
2088 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
2089 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2090 offset -= MIPS_SAVED_REGSIZE;
2091 }
2092
2093 /* Check if the s0 and s1 registers were pushed on the stack. */
2094 for (reg = 16; reg < sreg_count + 16; reg++)
2095 {
2096 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2097 set_reg_offset (temp_saved_regs, reg, sp + offset);
2098 offset -= MIPS_SAVED_REGSIZE;
2099 }
2100 }
2101 }
2102
2103 static void
2104 mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2105 struct frame_info *next_frame, CORE_ADDR sp)
2106 {
2107 CORE_ADDR cur_pc;
2108 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
2109 restart:
2110 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2111 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2112 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
2113 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2114 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2115 {
2116 unsigned long inst, high_word, low_word;
2117 int reg;
2118
2119 /* Fetch the instruction. */
2120 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2121
2122 /* Save some code by pre-extracting some useful fields. */
2123 high_word = (inst >> 16) & 0xffff;
2124 low_word = inst & 0xffff;
2125 reg = high_word & 0x1f;
2126
2127 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
2128 || high_word == 0x23bd /* addi $sp,$sp,-i */
2129 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2130 {
2131 if (low_word & 0x8000) /* negative stack adjustment? */
2132 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
2133 else
2134 /* Exit loop if a positive stack adjustment is found, which
2135 usually means that the stack cleanup code in the function
2136 epilogue is reached. */
2137 break;
2138 }
2139 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2140 {
2141 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2142 set_reg_offset (temp_saved_regs, reg, sp + low_word);
2143 }
2144 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2145 {
2146 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2147 but the register size used is only 32 bits. Make the address
2148 for the saved register point to the lower 32 bits. */
2149 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2150 set_reg_offset (temp_saved_regs, reg, sp + low_word + 8 - MIPS_REGSIZE);
2151 }
2152 else if (high_word == 0x27be) /* addiu $30,$sp,size */
2153 {
2154 /* Old gcc frame, r30 is virtual frame pointer. */
2155 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2156 frame_addr = sp + low_word;
2157 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2158 {
2159 unsigned alloca_adjust;
2160 PROC_FRAME_REG (&temp_proc_desc) = 30;
2161 frame_addr = read_next_frame_reg (next_frame, 30);
2162 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
2163 if (alloca_adjust > 0)
2164 {
2165 /* FP > SP + frame_size. This may be because
2166 * of an alloca or somethings similar.
2167 * Fix sp to "pre-alloca" value, and try again.
2168 */
2169 sp += alloca_adjust;
2170 goto restart;
2171 }
2172 }
2173 }
2174 /* move $30,$sp. With different versions of gas this will be either
2175 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2176 Accept any one of these. */
2177 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2178 {
2179 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2180 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2181 {
2182 unsigned alloca_adjust;
2183 PROC_FRAME_REG (&temp_proc_desc) = 30;
2184 frame_addr = read_next_frame_reg (next_frame, 30);
2185 alloca_adjust = (unsigned) (frame_addr - sp);
2186 if (alloca_adjust > 0)
2187 {
2188 /* FP > SP + frame_size. This may be because
2189 * of an alloca or somethings similar.
2190 * Fix sp to "pre-alloca" value, and try again.
2191 */
2192 sp += alloca_adjust;
2193 goto restart;
2194 }
2195 }
2196 }
2197 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
2198 {
2199 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2200 set_reg_offset (temp_saved_regs, reg, frame_addr + low_word);
2201 }
2202 }
2203 }
2204
2205 static mips_extra_func_info_t
2206 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2207 struct frame_info *next_frame, int cur_frame)
2208 {
2209 CORE_ADDR sp;
2210
2211 if (cur_frame)
2212 sp = read_next_frame_reg (next_frame, SP_REGNUM);
2213 else
2214 sp = 0;
2215
2216 if (start_pc == 0)
2217 return NULL;
2218 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
2219 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2220 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2221 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2222 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2223 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2224
2225 if (start_pc + 200 < limit_pc)
2226 limit_pc = start_pc + 200;
2227 if (pc_is_mips16 (start_pc))
2228 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2229 else
2230 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2231 return &temp_proc_desc;
2232 }
2233
2234 struct mips_objfile_private
2235 {
2236 bfd_size_type size;
2237 char *contents;
2238 };
2239
2240 /* Global used to communicate between non_heuristic_proc_desc and
2241 compare_pdr_entries within qsort (). */
2242 static bfd *the_bfd;
2243
2244 static int
2245 compare_pdr_entries (const void *a, const void *b)
2246 {
2247 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2248 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2249
2250 if (lhs < rhs)
2251 return -1;
2252 else if (lhs == rhs)
2253 return 0;
2254 else
2255 return 1;
2256 }
2257
2258 static mips_extra_func_info_t
2259 non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
2260 {
2261 CORE_ADDR startaddr;
2262 mips_extra_func_info_t proc_desc;
2263 struct block *b = block_for_pc (pc);
2264 struct symbol *sym;
2265 struct obj_section *sec;
2266 struct mips_objfile_private *priv;
2267
2268 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
2269 return NULL;
2270
2271 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2272 if (addrptr)
2273 *addrptr = startaddr;
2274
2275 priv = NULL;
2276
2277 sec = find_pc_section (pc);
2278 if (sec != NULL)
2279 {
2280 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2281
2282 /* Search the ".pdr" section generated by GAS. This includes most of
2283 the information normally found in ECOFF PDRs. */
2284
2285 the_bfd = sec->objfile->obfd;
2286 if (priv == NULL
2287 && (the_bfd->format == bfd_object
2288 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2289 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2290 {
2291 /* Right now GAS only outputs the address as a four-byte sequence.
2292 This means that we should not bother with this method on 64-bit
2293 targets (until that is fixed). */
2294
2295 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2296 sizeof (struct mips_objfile_private));
2297 priv->size = 0;
2298 sec->objfile->obj_private = priv;
2299 }
2300 else if (priv == NULL)
2301 {
2302 asection *bfdsec;
2303
2304 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2305 sizeof (struct mips_objfile_private));
2306
2307 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2308 if (bfdsec != NULL)
2309 {
2310 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2311 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2312 priv->size);
2313 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2314 priv->contents, 0, priv->size);
2315
2316 /* In general, the .pdr section is sorted. However, in the
2317 presence of multiple code sections (and other corner cases)
2318 it can become unsorted. Sort it so that we can use a faster
2319 binary search. */
2320 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2321 }
2322 else
2323 priv->size = 0;
2324
2325 sec->objfile->obj_private = priv;
2326 }
2327 the_bfd = NULL;
2328
2329 if (priv->size != 0)
2330 {
2331 int low, mid, high;
2332 char *ptr;
2333
2334 low = 0;
2335 high = priv->size / 32;
2336
2337 do
2338 {
2339 CORE_ADDR pdr_pc;
2340
2341 mid = (low + high) / 2;
2342
2343 ptr = priv->contents + mid * 32;
2344 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2345 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2346 SECT_OFF_TEXT (sec->objfile));
2347 if (pdr_pc == startaddr)
2348 break;
2349 if (pdr_pc > startaddr)
2350 high = mid;
2351 else
2352 low = mid + 1;
2353 }
2354 while (low != high);
2355
2356 if (low != high)
2357 {
2358 struct symbol *sym = find_pc_function (pc);
2359
2360 /* Fill in what we need of the proc_desc. */
2361 proc_desc = (mips_extra_func_info_t)
2362 obstack_alloc (&sec->objfile->psymbol_obstack,
2363 sizeof (struct mips_extra_func_info));
2364 PROC_LOW_ADDR (proc_desc) = startaddr;
2365
2366 /* Only used for dummy frames. */
2367 PROC_HIGH_ADDR (proc_desc) = 0;
2368
2369 PROC_FRAME_OFFSET (proc_desc)
2370 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2371 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2372 ptr + 24);
2373 PROC_FRAME_ADJUST (proc_desc) = 0;
2374 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2375 ptr + 4);
2376 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2377 ptr + 12);
2378 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2379 ptr + 8);
2380 PROC_FREG_OFFSET (proc_desc)
2381 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2382 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2383 ptr + 28);
2384 proc_desc->pdr.isym = (long) sym;
2385
2386 return proc_desc;
2387 }
2388 }
2389 }
2390
2391 if (b == NULL)
2392 return NULL;
2393
2394 if (startaddr > BLOCK_START (b))
2395 {
2396 /* This is the "pathological" case referred to in a comment in
2397 print_frame_info. It might be better to move this check into
2398 symbol reading. */
2399 return NULL;
2400 }
2401
2402 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_DOMAIN, 0, NULL);
2403
2404 /* If we never found a PDR for this function in symbol reading, then
2405 examine prologues to find the information. */
2406 if (sym)
2407 {
2408 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2409 if (PROC_FRAME_REG (proc_desc) == -1)
2410 return NULL;
2411 else
2412 return proc_desc;
2413 }
2414 else
2415 return NULL;
2416 }
2417
2418
2419 static mips_extra_func_info_t
2420 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
2421 {
2422 mips_extra_func_info_t proc_desc;
2423 CORE_ADDR startaddr = 0;
2424
2425 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2426
2427 if (proc_desc)
2428 {
2429 /* IF this is the topmost frame AND
2430 * (this proc does not have debugging information OR
2431 * the PC is in the procedure prologue)
2432 * THEN create a "heuristic" proc_desc (by analyzing
2433 * the actual code) to replace the "official" proc_desc.
2434 */
2435 if (next_frame == NULL)
2436 {
2437 struct symtab_and_line val;
2438 struct symbol *proc_symbol =
2439 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
2440
2441 if (proc_symbol)
2442 {
2443 val = find_pc_line (BLOCK_START
2444 (SYMBOL_BLOCK_VALUE (proc_symbol)),
2445 0);
2446 val.pc = val.end ? val.end : pc;
2447 }
2448 if (!proc_symbol || pc < val.pc)
2449 {
2450 mips_extra_func_info_t found_heuristic =
2451 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2452 pc, next_frame, cur_frame);
2453 if (found_heuristic)
2454 proc_desc = found_heuristic;
2455 }
2456 }
2457 }
2458 else
2459 {
2460 /* Is linked_proc_desc_table really necessary? It only seems to be used
2461 by procedure call dummys. However, the procedures being called ought
2462 to have their own proc_descs, and even if they don't,
2463 heuristic_proc_desc knows how to create them! */
2464
2465 register struct linked_proc_info *link;
2466
2467 for (link = linked_proc_desc_table; link; link = link->next)
2468 if (PROC_LOW_ADDR (&link->info) <= pc
2469 && PROC_HIGH_ADDR (&link->info) > pc)
2470 return &link->info;
2471
2472 if (startaddr == 0)
2473 startaddr = heuristic_proc_start (pc);
2474
2475 proc_desc =
2476 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
2477 }
2478 return proc_desc;
2479 }
2480
2481 static CORE_ADDR
2482 get_frame_pointer (struct frame_info *frame,
2483 mips_extra_func_info_t proc_desc)
2484 {
2485 return (read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc))
2486 + PROC_FRAME_OFFSET (proc_desc)
2487 - PROC_FRAME_ADJUST (proc_desc));
2488 }
2489
2490 static mips_extra_func_info_t cached_proc_desc;
2491
2492 static CORE_ADDR
2493 mips_frame_chain (struct frame_info *frame)
2494 {
2495 mips_extra_func_info_t proc_desc;
2496 CORE_ADDR tmp;
2497 CORE_ADDR saved_pc = DEPRECATED_FRAME_SAVED_PC (frame);
2498
2499 if (saved_pc == 0 || inside_entry_file (saved_pc))
2500 return 0;
2501
2502 /* Check if the PC is inside a call stub. If it is, fetch the
2503 PC of the caller of that stub. */
2504 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
2505 saved_pc = tmp;
2506
2507 if (DEPRECATED_PC_IN_CALL_DUMMY (saved_pc, 0, 0))
2508 {
2509 /* A dummy frame, uses SP not FP. Get the old SP value. If all
2510 is well, frame->frame the bottom of the current frame will
2511 contain that value. */
2512 return get_frame_base (frame);
2513 }
2514
2515 /* Look up the procedure descriptor for this PC. */
2516 proc_desc = find_proc_desc (saved_pc, frame, 1);
2517 if (!proc_desc)
2518 return 0;
2519
2520 cached_proc_desc = proc_desc;
2521
2522 /* If no frame pointer and frame size is zero, we must be at end
2523 of stack (or otherwise hosed). If we don't check frame size,
2524 we loop forever if we see a zero size frame. */
2525 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2526 && PROC_FRAME_OFFSET (proc_desc) == 0
2527 /* The previous frame from a sigtramp frame might be frameless
2528 and have frame size zero. */
2529 && !(get_frame_type (frame) == SIGTRAMP_FRAME)
2530 /* For a generic dummy frame, let get_frame_pointer() unwind a
2531 register value saved as part of the dummy frame call. */
2532 && !(DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0)))
2533 return 0;
2534 else
2535 return get_frame_pointer (frame, proc_desc);
2536 }
2537
2538 static void
2539 mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
2540 {
2541 int regnum;
2542 mips_extra_func_info_t proc_desc;
2543
2544 if (get_frame_type (fci) == DUMMY_FRAME)
2545 return;
2546
2547 /* Use proc_desc calculated in frame_chain. When there is no
2548 next frame, i.e, get_next_frame (fci) == NULL, we call
2549 find_proc_desc () to calculate it, passing an explicit
2550 NULL as the frame parameter. */
2551 proc_desc =
2552 get_next_frame (fci)
2553 ? cached_proc_desc
2554 : find_proc_desc (get_frame_pc (fci),
2555 NULL /* i.e, get_next_frame (fci) */,
2556 1);
2557
2558 frame_extra_info_zalloc (fci, sizeof (struct frame_extra_info));
2559
2560 deprecated_set_frame_saved_regs_hack (fci, NULL);
2561 get_frame_extra_info (fci)->proc_desc =
2562 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2563 if (proc_desc)
2564 {
2565 /* Fixup frame-pointer - only needed for top frame */
2566 /* This may not be quite right, if proc has a real frame register.
2567 Get the value of the frame relative sp, procedure might have been
2568 interrupted by a signal at it's very start. */
2569 if (get_frame_pc (fci) == PROC_LOW_ADDR (proc_desc)
2570 && !PROC_DESC_IS_DUMMY (proc_desc))
2571 deprecated_update_frame_base_hack (fci, read_next_frame_reg (get_next_frame (fci), SP_REGNUM));
2572 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fci), 0, 0))
2573 /* Do not ``fix'' fci->frame. It will have the value of the
2574 generic dummy frame's top-of-stack (since the draft
2575 fci->frame is obtained by returning the unwound stack
2576 pointer) and that is what we want. That way the fci->frame
2577 value will match the top-of-stack value that was saved as
2578 part of the dummy frames data. */
2579 /* Do nothing. */;
2580 else
2581 deprecated_update_frame_base_hack (fci, get_frame_pointer (get_next_frame (fci), proc_desc));
2582
2583 if (proc_desc == &temp_proc_desc)
2584 {
2585 char *name;
2586
2587 /* Do not set the saved registers for a sigtramp frame,
2588 mips_find_saved_registers will do that for us. We can't
2589 use (get_frame_type (fci) == SIGTRAMP_FRAME), it is not
2590 yet set. */
2591 /* FIXME: cagney/2002-11-18: This problem will go away once
2592 frame.c:get_prev_frame() is modified to set the frame's
2593 type before calling functions like this. */
2594 find_pc_partial_function (get_frame_pc (fci), &name,
2595 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
2596 if (!PC_IN_SIGTRAMP (get_frame_pc (fci), name))
2597 {
2598 frame_saved_regs_zalloc (fci);
2599 /* Set value of previous frame's stack pointer.
2600 Remember that saved_regs[SP_REGNUM] is special in
2601 that it contains the value of the stack pointer
2602 register. The other saved_regs values are addresses
2603 (in the inferior) at which a given register's value
2604 may be found. */
2605 set_reg_offset (temp_saved_regs, SP_REGNUM,
2606 get_frame_base (fci));
2607 set_reg_offset (temp_saved_regs, PC_REGNUM,
2608 temp_saved_regs[RA_REGNUM]);
2609 memcpy (get_frame_saved_regs (fci), temp_saved_regs,
2610 SIZEOF_FRAME_SAVED_REGS);
2611 }
2612 }
2613
2614 /* hack: if argument regs are saved, guess these contain args */
2615 /* assume we can't tell how many args for now */
2616 get_frame_extra_info (fci)->num_args = -1;
2617 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2618 {
2619 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
2620 {
2621 get_frame_extra_info (fci)->num_args = regnum - A0_REGNUM + 1;
2622 break;
2623 }
2624 }
2625 }
2626 }
2627
2628 /* MIPS stack frames are almost impenetrable. When execution stops,
2629 we basically have to look at symbol information for the function
2630 that we stopped in, which tells us *which* register (if any) is
2631 the base of the frame pointer, and what offset from that register
2632 the frame itself is at.
2633
2634 This presents a problem when trying to examine a stack in memory
2635 (that isn't executing at the moment), using the "frame" command. We
2636 don't have a PC, nor do we have any registers except SP.
2637
2638 This routine takes two arguments, SP and PC, and tries to make the
2639 cached frames look as if these two arguments defined a frame on the
2640 cache. This allows the rest of info frame to extract the important
2641 arguments without difficulty. */
2642
2643 struct frame_info *
2644 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
2645 {
2646 if (argc != 2)
2647 error ("MIPS frame specifications require two arguments: sp and pc");
2648
2649 return create_new_frame (argv[0], argv[1]);
2650 }
2651
2652 /* According to the current ABI, should the type be passed in a
2653 floating-point register (assuming that there is space)? When there
2654 is no FPU, FP are not even considered as possibile candidates for
2655 FP registers and, consequently this returns false - forces FP
2656 arguments into integer registers. */
2657
2658 static int
2659 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2660 {
2661 return ((typecode == TYPE_CODE_FLT
2662 || (MIPS_EABI
2663 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2664 && TYPE_NFIELDS (arg_type) == 1
2665 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2666 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2667 }
2668
2669 /* On o32, argument passing in GPRs depends on the alignment of the type being
2670 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2671
2672 static int
2673 mips_type_needs_double_align (struct type *type)
2674 {
2675 enum type_code typecode = TYPE_CODE (type);
2676
2677 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2678 return 1;
2679 else if (typecode == TYPE_CODE_STRUCT)
2680 {
2681 if (TYPE_NFIELDS (type) < 1)
2682 return 0;
2683 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2684 }
2685 else if (typecode == TYPE_CODE_UNION)
2686 {
2687 int i, n;
2688
2689 n = TYPE_NFIELDS (type);
2690 for (i = 0; i < n; i++)
2691 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2692 return 1;
2693 return 0;
2694 }
2695 return 0;
2696 }
2697
2698 /* Macros to round N up or down to the next A boundary;
2699 A must be a power of two. */
2700
2701 #define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2702 #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2703
2704 /* Adjust the address downward (direction of stack growth) so that it
2705 is correctly aligned for a new stack frame. */
2706 static CORE_ADDR
2707 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2708 {
2709 return ROUND_DOWN (addr, 16);
2710 }
2711
2712 static CORE_ADDR
2713 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2714 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2715 struct value **args, CORE_ADDR sp, int struct_return,
2716 CORE_ADDR struct_addr)
2717 {
2718 int argreg;
2719 int float_argreg;
2720 int argnum;
2721 int len = 0;
2722 int stack_offset = 0;
2723
2724 /* For shared libraries, "t9" needs to point at the function
2725 address. */
2726 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
2727
2728 /* Set the return address register to point to the entry point of
2729 the program, where a breakpoint lies in wait. */
2730 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
2731
2732 /* First ensure that the stack and structure return address (if any)
2733 are properly aligned. The stack has to be at least 64-bit
2734 aligned even on 32-bit machines, because doubles must be 64-bit
2735 aligned. For n32 and n64, stack frames need to be 128-bit
2736 aligned, so we round to this widest known alignment. */
2737
2738 sp = ROUND_DOWN (sp, 16);
2739 struct_addr = ROUND_DOWN (struct_addr, 16);
2740
2741 /* Now make space on the stack for the args. We allocate more
2742 than necessary for EABI, because the first few arguments are
2743 passed in registers, but that's OK. */
2744 for (argnum = 0; argnum < nargs; argnum++)
2745 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2746 MIPS_STACK_ARGSIZE);
2747 sp -= ROUND_UP (len, 16);
2748
2749 if (mips_debug)
2750 fprintf_unfiltered (gdb_stdlog,
2751 "mips_eabi_push_dummy_call: sp=0x%s allocated %d\n",
2752 paddr_nz (sp), ROUND_UP (len, 16));
2753
2754 /* Initialize the integer and float register pointers. */
2755 argreg = A0_REGNUM;
2756 float_argreg = FPA0_REGNUM;
2757
2758 /* The struct_return pointer occupies the first parameter-passing reg. */
2759 if (struct_return)
2760 {
2761 if (mips_debug)
2762 fprintf_unfiltered (gdb_stdlog,
2763 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
2764 argreg, paddr_nz (struct_addr));
2765 write_register (argreg++, struct_addr);
2766 }
2767
2768 /* Now load as many as possible of the first arguments into
2769 registers, and push the rest onto the stack. Loop thru args
2770 from first to last. */
2771 for (argnum = 0; argnum < nargs; argnum++)
2772 {
2773 char *val;
2774 char valbuf[MAX_REGISTER_SIZE];
2775 struct value *arg = args[argnum];
2776 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2777 int len = TYPE_LENGTH (arg_type);
2778 enum type_code typecode = TYPE_CODE (arg_type);
2779
2780 if (mips_debug)
2781 fprintf_unfiltered (gdb_stdlog,
2782 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2783 argnum + 1, len, (int) typecode);
2784
2785 /* The EABI passes structures that do not fit in a register by
2786 reference. */
2787 if (len > MIPS_SAVED_REGSIZE
2788 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2789 {
2790 store_unsigned_integer (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
2791 typecode = TYPE_CODE_PTR;
2792 len = MIPS_SAVED_REGSIZE;
2793 val = valbuf;
2794 if (mips_debug)
2795 fprintf_unfiltered (gdb_stdlog, " push");
2796 }
2797 else
2798 val = (char *) VALUE_CONTENTS (arg);
2799
2800 /* 32-bit ABIs always start floating point arguments in an
2801 even-numbered floating point register. Round the FP register
2802 up before the check to see if there are any FP registers
2803 left. Non MIPS_EABI targets also pass the FP in the integer
2804 registers so also round up normal registers. */
2805 if (!FP_REGISTER_DOUBLE
2806 && fp_register_arg_p (typecode, arg_type))
2807 {
2808 if ((float_argreg & 1))
2809 float_argreg++;
2810 }
2811
2812 /* Floating point arguments passed in registers have to be
2813 treated specially. On 32-bit architectures, doubles
2814 are passed in register pairs; the even register gets
2815 the low word, and the odd register gets the high word.
2816 On non-EABI processors, the first two floating point arguments are
2817 also copied to general registers, because MIPS16 functions
2818 don't use float registers for arguments. This duplication of
2819 arguments in general registers can't hurt non-MIPS16 functions
2820 because those registers are normally skipped. */
2821 /* MIPS_EABI squeezes a struct that contains a single floating
2822 point value into an FP register instead of pushing it onto the
2823 stack. */
2824 if (fp_register_arg_p (typecode, arg_type)
2825 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2826 {
2827 if (!FP_REGISTER_DOUBLE && len == 8)
2828 {
2829 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2830 unsigned long regval;
2831
2832 /* Write the low word of the double to the even register(s). */
2833 regval = extract_unsigned_integer (val + low_offset, 4);
2834 if (mips_debug)
2835 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2836 float_argreg, phex (regval, 4));
2837 write_register (float_argreg++, regval);
2838
2839 /* Write the high word of the double to the odd register(s). */
2840 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2841 if (mips_debug)
2842 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2843 float_argreg, phex (regval, 4));
2844 write_register (float_argreg++, regval);
2845 }
2846 else
2847 {
2848 /* This is a floating point value that fits entirely
2849 in a single register. */
2850 /* On 32 bit ABI's the float_argreg is further adjusted
2851 above to ensure that it is even register aligned. */
2852 LONGEST regval = extract_unsigned_integer (val, len);
2853 if (mips_debug)
2854 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2855 float_argreg, phex (regval, len));
2856 write_register (float_argreg++, regval);
2857 }
2858 }
2859 else
2860 {
2861 /* Copy the argument to general registers or the stack in
2862 register-sized pieces. Large arguments are split between
2863 registers and stack. */
2864 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2865 are treated specially: Irix cc passes them in registers
2866 where gcc sometimes puts them on the stack. For maximum
2867 compatibility, we will put them in both places. */
2868 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2869 (len % MIPS_SAVED_REGSIZE != 0));
2870
2871 /* Note: Floating-point values that didn't fit into an FP
2872 register are only written to memory. */
2873 while (len > 0)
2874 {
2875 /* Remember if the argument was written to the stack. */
2876 int stack_used_p = 0;
2877 int partial_len =
2878 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
2879
2880 if (mips_debug)
2881 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2882 partial_len);
2883
2884 /* Write this portion of the argument to the stack. */
2885 if (argreg > MIPS_LAST_ARG_REGNUM
2886 || odd_sized_struct
2887 || fp_register_arg_p (typecode, arg_type))
2888 {
2889 /* Should shorter than int integer values be
2890 promoted to int before being stored? */
2891 int longword_offset = 0;
2892 CORE_ADDR addr;
2893 stack_used_p = 1;
2894 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2895 {
2896 if (MIPS_STACK_ARGSIZE == 8 &&
2897 (typecode == TYPE_CODE_INT ||
2898 typecode == TYPE_CODE_PTR ||
2899 typecode == TYPE_CODE_FLT) && len <= 4)
2900 longword_offset = MIPS_STACK_ARGSIZE - len;
2901 else if ((typecode == TYPE_CODE_STRUCT ||
2902 typecode == TYPE_CODE_UNION) &&
2903 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2904 longword_offset = MIPS_STACK_ARGSIZE - len;
2905 }
2906
2907 if (mips_debug)
2908 {
2909 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2910 paddr_nz (stack_offset));
2911 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2912 paddr_nz (longword_offset));
2913 }
2914
2915 addr = sp + stack_offset + longword_offset;
2916
2917 if (mips_debug)
2918 {
2919 int i;
2920 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2921 paddr_nz (addr));
2922 for (i = 0; i < partial_len; i++)
2923 {
2924 fprintf_unfiltered (gdb_stdlog, "%02x",
2925 val[i] & 0xff);
2926 }
2927 }
2928 write_memory (addr, val, partial_len);
2929 }
2930
2931 /* Note!!! This is NOT an else clause. Odd sized
2932 structs may go thru BOTH paths. Floating point
2933 arguments will not. */
2934 /* Write this portion of the argument to a general
2935 purpose register. */
2936 if (argreg <= MIPS_LAST_ARG_REGNUM
2937 && !fp_register_arg_p (typecode, arg_type))
2938 {
2939 LONGEST regval = extract_unsigned_integer (val, partial_len);
2940
2941 if (mips_debug)
2942 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2943 argreg,
2944 phex (regval, MIPS_SAVED_REGSIZE));
2945 write_register (argreg, regval);
2946 argreg++;
2947 }
2948
2949 len -= partial_len;
2950 val += partial_len;
2951
2952 /* Compute the the offset into the stack at which we
2953 will copy the next parameter.
2954
2955 In the new EABI (and the NABI32), the stack_offset
2956 only needs to be adjusted when it has been used. */
2957
2958 if (stack_used_p)
2959 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
2960 }
2961 }
2962 if (mips_debug)
2963 fprintf_unfiltered (gdb_stdlog, "\n");
2964 }
2965
2966 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
2967
2968 /* Return adjusted stack pointer. */
2969 return sp;
2970 }
2971
2972 /* N32/N64 version of push_dummy_call. */
2973
2974 static CORE_ADDR
2975 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2976 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2977 struct value **args, CORE_ADDR sp, int struct_return,
2978 CORE_ADDR struct_addr)
2979 {
2980 int argreg;
2981 int float_argreg;
2982 int argnum;
2983 int len = 0;
2984 int stack_offset = 0;
2985
2986 /* For shared libraries, "t9" needs to point at the function
2987 address. */
2988 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
2989
2990 /* Set the return address register to point to the entry point of
2991 the program, where a breakpoint lies in wait. */
2992 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
2993
2994 /* First ensure that the stack and structure return address (if any)
2995 are properly aligned. The stack has to be at least 64-bit
2996 aligned even on 32-bit machines, because doubles must be 64-bit
2997 aligned. For n32 and n64, stack frames need to be 128-bit
2998 aligned, so we round to this widest known alignment. */
2999
3000 sp = ROUND_DOWN (sp, 16);
3001 struct_addr = ROUND_DOWN (struct_addr, 16);
3002
3003 /* Now make space on the stack for the args. */
3004 for (argnum = 0; argnum < nargs; argnum++)
3005 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3006 MIPS_STACK_ARGSIZE);
3007 sp -= ROUND_UP (len, 16);
3008
3009 if (mips_debug)
3010 fprintf_unfiltered (gdb_stdlog,
3011 "mips_n32n64_push_dummy_call: sp=0x%s allocated %d\n",
3012 paddr_nz (sp), ROUND_UP (len, 16));
3013
3014 /* Initialize the integer and float register pointers. */
3015 argreg = A0_REGNUM;
3016 float_argreg = FPA0_REGNUM;
3017
3018 /* The struct_return pointer occupies the first parameter-passing reg. */
3019 if (struct_return)
3020 {
3021 if (mips_debug)
3022 fprintf_unfiltered (gdb_stdlog,
3023 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
3024 argreg, paddr_nz (struct_addr));
3025 write_register (argreg++, struct_addr);
3026 }
3027
3028 /* Now load as many as possible of the first arguments into
3029 registers, and push the rest onto the stack. Loop thru args
3030 from first to last. */
3031 for (argnum = 0; argnum < nargs; argnum++)
3032 {
3033 char *val;
3034 char valbuf[MAX_REGISTER_SIZE];
3035 struct value *arg = args[argnum];
3036 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3037 int len = TYPE_LENGTH (arg_type);
3038 enum type_code typecode = TYPE_CODE (arg_type);
3039
3040 if (mips_debug)
3041 fprintf_unfiltered (gdb_stdlog,
3042 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
3043 argnum + 1, len, (int) typecode);
3044
3045 val = (char *) VALUE_CONTENTS (arg);
3046
3047 if (fp_register_arg_p (typecode, arg_type)
3048 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3049 {
3050 /* This is a floating point value that fits entirely
3051 in a single register. */
3052 /* On 32 bit ABI's the float_argreg is further adjusted
3053 above to ensure that it is even register aligned. */
3054 LONGEST regval = extract_unsigned_integer (val, len);
3055 if (mips_debug)
3056 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3057 float_argreg, phex (regval, len));
3058 write_register (float_argreg++, regval);
3059
3060 if (mips_debug)
3061 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3062 argreg, phex (regval, len));
3063 write_register (argreg, regval);
3064 argreg += 1;
3065 }
3066 else
3067 {
3068 /* Copy the argument to general registers or the stack in
3069 register-sized pieces. Large arguments are split between
3070 registers and stack. */
3071 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3072 are treated specially: Irix cc passes them in registers
3073 where gcc sometimes puts them on the stack. For maximum
3074 compatibility, we will put them in both places. */
3075 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3076 (len % MIPS_SAVED_REGSIZE != 0));
3077 /* Note: Floating-point values that didn't fit into an FP
3078 register are only written to memory. */
3079 while (len > 0)
3080 {
3081 /* Rememer if the argument was written to the stack. */
3082 int stack_used_p = 0;
3083 int partial_len = len < MIPS_SAVED_REGSIZE ?
3084 len : MIPS_SAVED_REGSIZE;
3085
3086 if (mips_debug)
3087 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3088 partial_len);
3089
3090 /* Write this portion of the argument to the stack. */
3091 if (argreg > MIPS_LAST_ARG_REGNUM
3092 || odd_sized_struct
3093 || fp_register_arg_p (typecode, arg_type))
3094 {
3095 /* Should shorter than int integer values be
3096 promoted to int before being stored? */
3097 int longword_offset = 0;
3098 CORE_ADDR addr;
3099 stack_used_p = 1;
3100 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3101 {
3102 if (MIPS_STACK_ARGSIZE == 8 &&
3103 (typecode == TYPE_CODE_INT ||
3104 typecode == TYPE_CODE_PTR ||
3105 typecode == TYPE_CODE_FLT) && len <= 4)
3106 longword_offset = MIPS_STACK_ARGSIZE - len;
3107 }
3108
3109 if (mips_debug)
3110 {
3111 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3112 paddr_nz (stack_offset));
3113 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3114 paddr_nz (longword_offset));
3115 }
3116
3117 addr = sp + stack_offset + longword_offset;
3118
3119 if (mips_debug)
3120 {
3121 int i;
3122 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3123 paddr_nz (addr));
3124 for (i = 0; i < partial_len; i++)
3125 {
3126 fprintf_unfiltered (gdb_stdlog, "%02x",
3127 val[i] & 0xff);
3128 }
3129 }
3130 write_memory (addr, val, partial_len);
3131 }
3132
3133 /* Note!!! This is NOT an else clause. Odd sized
3134 structs may go thru BOTH paths. Floating point
3135 arguments will not. */
3136 /* Write this portion of the argument to a general
3137 purpose register. */
3138 if (argreg <= MIPS_LAST_ARG_REGNUM
3139 && !fp_register_arg_p (typecode, arg_type))
3140 {
3141 LONGEST regval = extract_unsigned_integer (val, partial_len);
3142
3143 /* A non-floating-point argument being passed in a
3144 general register. If a struct or union, and if
3145 the remaining length is smaller than the register
3146 size, we have to adjust the register value on
3147 big endian targets.
3148
3149 It does not seem to be necessary to do the
3150 same for integral types.
3151
3152 cagney/2001-07-23: gdb/179: Also, GCC, when
3153 outputting LE O32 with sizeof (struct) <
3154 MIPS_SAVED_REGSIZE, generates a left shift as
3155 part of storing the argument in a register a
3156 register (the left shift isn't generated when
3157 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3158 is quite possible that this is GCC contradicting
3159 the LE/O32 ABI, GDB has not been adjusted to
3160 accommodate this. Either someone needs to
3161 demonstrate that the LE/O32 ABI specifies such a
3162 left shift OR this new ABI gets identified as
3163 such and GDB gets tweaked accordingly. */
3164
3165 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3166 && partial_len < MIPS_SAVED_REGSIZE
3167 && (typecode == TYPE_CODE_STRUCT ||
3168 typecode == TYPE_CODE_UNION))
3169 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3170 TARGET_CHAR_BIT);
3171
3172 if (mips_debug)
3173 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3174 argreg,
3175 phex (regval, MIPS_SAVED_REGSIZE));
3176 write_register (argreg, regval);
3177 argreg++;
3178 }
3179
3180 len -= partial_len;
3181 val += partial_len;
3182
3183 /* Compute the the offset into the stack at which we
3184 will copy the next parameter.
3185
3186 In N32 (N64?), the stack_offset only needs to be
3187 adjusted when it has been used. */
3188
3189 if (stack_used_p)
3190 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3191 }
3192 }
3193 if (mips_debug)
3194 fprintf_unfiltered (gdb_stdlog, "\n");
3195 }
3196
3197 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3198
3199 /* Return adjusted stack pointer. */
3200 return sp;
3201 }
3202
3203 /* O32 version of push_dummy_call. */
3204
3205 static CORE_ADDR
3206 mips_o32_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3207 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3208 struct value **args, CORE_ADDR sp, int struct_return,
3209 CORE_ADDR struct_addr)
3210 {
3211 int argreg;
3212 int float_argreg;
3213 int argnum;
3214 int len = 0;
3215 int stack_offset = 0;
3216
3217 /* For shared libraries, "t9" needs to point at the function
3218 address. */
3219 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3220
3221 /* Set the return address register to point to the entry point of
3222 the program, where a breakpoint lies in wait. */
3223 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3224
3225 /* First ensure that the stack and structure return address (if any)
3226 are properly aligned. The stack has to be at least 64-bit
3227 aligned even on 32-bit machines, because doubles must be 64-bit
3228 aligned. For n32 and n64, stack frames need to be 128-bit
3229 aligned, so we round to this widest known alignment. */
3230
3231 sp = ROUND_DOWN (sp, 16);
3232 struct_addr = ROUND_DOWN (struct_addr, 16);
3233
3234 /* Now make space on the stack for the args. */
3235 for (argnum = 0; argnum < nargs; argnum++)
3236 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3237 MIPS_STACK_ARGSIZE);
3238 sp -= ROUND_UP (len, 16);
3239
3240 if (mips_debug)
3241 fprintf_unfiltered (gdb_stdlog,
3242 "mips_o32_push_dummy_call: sp=0x%s allocated %d\n",
3243 paddr_nz (sp), ROUND_UP (len, 16));
3244
3245 /* Initialize the integer and float register pointers. */
3246 argreg = A0_REGNUM;
3247 float_argreg = FPA0_REGNUM;
3248
3249 /* The struct_return pointer occupies the first parameter-passing reg. */
3250 if (struct_return)
3251 {
3252 if (mips_debug)
3253 fprintf_unfiltered (gdb_stdlog,
3254 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
3255 argreg, paddr_nz (struct_addr));
3256 write_register (argreg++, struct_addr);
3257 stack_offset += MIPS_STACK_ARGSIZE;
3258 }
3259
3260 /* Now load as many as possible of the first arguments into
3261 registers, and push the rest onto the stack. Loop thru args
3262 from first to last. */
3263 for (argnum = 0; argnum < nargs; argnum++)
3264 {
3265 char *val;
3266 char valbuf[MAX_REGISTER_SIZE];
3267 struct value *arg = args[argnum];
3268 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3269 int len = TYPE_LENGTH (arg_type);
3270 enum type_code typecode = TYPE_CODE (arg_type);
3271
3272 if (mips_debug)
3273 fprintf_unfiltered (gdb_stdlog,
3274 "mips_o32_push_dummy_call: %d len=%d type=%d",
3275 argnum + 1, len, (int) typecode);
3276
3277 val = (char *) VALUE_CONTENTS (arg);
3278
3279 /* 32-bit ABIs always start floating point arguments in an
3280 even-numbered floating point register. Round the FP register
3281 up before the check to see if there are any FP registers
3282 left. O32/O64 targets also pass the FP in the integer
3283 registers so also round up normal registers. */
3284 if (!FP_REGISTER_DOUBLE
3285 && fp_register_arg_p (typecode, arg_type))
3286 {
3287 if ((float_argreg & 1))
3288 float_argreg++;
3289 }
3290
3291 /* Floating point arguments passed in registers have to be
3292 treated specially. On 32-bit architectures, doubles
3293 are passed in register pairs; the even register gets
3294 the low word, and the odd register gets the high word.
3295 On O32/O64, the first two floating point arguments are
3296 also copied to general registers, because MIPS16 functions
3297 don't use float registers for arguments. This duplication of
3298 arguments in general registers can't hurt non-MIPS16 functions
3299 because those registers are normally skipped. */
3300
3301 if (fp_register_arg_p (typecode, arg_type)
3302 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3303 {
3304 if (!FP_REGISTER_DOUBLE && len == 8)
3305 {
3306 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3307 unsigned long regval;
3308
3309 /* Write the low word of the double to the even register(s). */
3310 regval = extract_unsigned_integer (val + low_offset, 4);
3311 if (mips_debug)
3312 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3313 float_argreg, phex (regval, 4));
3314 write_register (float_argreg++, regval);
3315 if (mips_debug)
3316 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3317 argreg, phex (regval, 4));
3318 write_register (argreg++, regval);
3319
3320 /* Write the high word of the double to the odd register(s). */
3321 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3322 if (mips_debug)
3323 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3324 float_argreg, phex (regval, 4));
3325 write_register (float_argreg++, regval);
3326
3327 if (mips_debug)
3328 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3329 argreg, phex (regval, 4));
3330 write_register (argreg++, regval);
3331 }
3332 else
3333 {
3334 /* This is a floating point value that fits entirely
3335 in a single register. */
3336 /* On 32 bit ABI's the float_argreg is further adjusted
3337 above to ensure that it is even register aligned. */
3338 LONGEST regval = extract_unsigned_integer (val, len);
3339 if (mips_debug)
3340 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3341 float_argreg, phex (regval, len));
3342 write_register (float_argreg++, regval);
3343 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3344 registers for each argument. The below is (my
3345 guess) to ensure that the corresponding integer
3346 register has reserved the same space. */
3347 if (mips_debug)
3348 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3349 argreg, phex (regval, len));
3350 write_register (argreg, regval);
3351 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3352 }
3353 /* Reserve space for the FP register. */
3354 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3355 }
3356 else
3357 {
3358 /* Copy the argument to general registers or the stack in
3359 register-sized pieces. Large arguments are split between
3360 registers and stack. */
3361 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3362 are treated specially: Irix cc passes them in registers
3363 where gcc sometimes puts them on the stack. For maximum
3364 compatibility, we will put them in both places. */
3365 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3366 (len % MIPS_SAVED_REGSIZE != 0));
3367 /* Structures should be aligned to eight bytes (even arg registers)
3368 on MIPS_ABI_O32, if their first member has double precision. */
3369 if (MIPS_SAVED_REGSIZE < 8
3370 && mips_type_needs_double_align (arg_type))
3371 {
3372 if ((argreg & 1))
3373 argreg++;
3374 }
3375 /* Note: Floating-point values that didn't fit into an FP
3376 register are only written to memory. */
3377 while (len > 0)
3378 {
3379 /* Remember if the argument was written to the stack. */
3380 int stack_used_p = 0;
3381 int partial_len =
3382 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3383
3384 if (mips_debug)
3385 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3386 partial_len);
3387
3388 /* Write this portion of the argument to the stack. */
3389 if (argreg > MIPS_LAST_ARG_REGNUM
3390 || odd_sized_struct
3391 || fp_register_arg_p (typecode, arg_type))
3392 {
3393 /* Should shorter than int integer values be
3394 promoted to int before being stored? */
3395 int longword_offset = 0;
3396 CORE_ADDR addr;
3397 stack_used_p = 1;
3398 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3399 {
3400 if (MIPS_STACK_ARGSIZE == 8 &&
3401 (typecode == TYPE_CODE_INT ||
3402 typecode == TYPE_CODE_PTR ||
3403 typecode == TYPE_CODE_FLT) && len <= 4)
3404 longword_offset = MIPS_STACK_ARGSIZE - len;
3405 }
3406
3407 if (mips_debug)
3408 {
3409 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3410 paddr_nz (stack_offset));
3411 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3412 paddr_nz (longword_offset));
3413 }
3414
3415 addr = sp + stack_offset + longword_offset;
3416
3417 if (mips_debug)
3418 {
3419 int i;
3420 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3421 paddr_nz (addr));
3422 for (i = 0; i < partial_len; i++)
3423 {
3424 fprintf_unfiltered (gdb_stdlog, "%02x",
3425 val[i] & 0xff);
3426 }
3427 }
3428 write_memory (addr, val, partial_len);
3429 }
3430
3431 /* Note!!! This is NOT an else clause. Odd sized
3432 structs may go thru BOTH paths. Floating point
3433 arguments will not. */
3434 /* Write this portion of the argument to a general
3435 purpose register. */
3436 if (argreg <= MIPS_LAST_ARG_REGNUM
3437 && !fp_register_arg_p (typecode, arg_type))
3438 {
3439 LONGEST regval = extract_signed_integer (val, partial_len);
3440 /* Value may need to be sign extended, because
3441 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3442
3443 /* A non-floating-point argument being passed in a
3444 general register. If a struct or union, and if
3445 the remaining length is smaller than the register
3446 size, we have to adjust the register value on
3447 big endian targets.
3448
3449 It does not seem to be necessary to do the
3450 same for integral types.
3451
3452 Also don't do this adjustment on O64 binaries.
3453
3454 cagney/2001-07-23: gdb/179: Also, GCC, when
3455 outputting LE O32 with sizeof (struct) <
3456 MIPS_SAVED_REGSIZE, generates a left shift as
3457 part of storing the argument in a register a
3458 register (the left shift isn't generated when
3459 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3460 is quite possible that this is GCC contradicting
3461 the LE/O32 ABI, GDB has not been adjusted to
3462 accommodate this. Either someone needs to
3463 demonstrate that the LE/O32 ABI specifies such a
3464 left shift OR this new ABI gets identified as
3465 such and GDB gets tweaked accordingly. */
3466
3467 if (MIPS_SAVED_REGSIZE < 8
3468 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3469 && partial_len < MIPS_SAVED_REGSIZE
3470 && (typecode == TYPE_CODE_STRUCT ||
3471 typecode == TYPE_CODE_UNION))
3472 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3473 TARGET_CHAR_BIT);
3474
3475 if (mips_debug)
3476 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3477 argreg,
3478 phex (regval, MIPS_SAVED_REGSIZE));
3479 write_register (argreg, regval);
3480 argreg++;
3481
3482 /* Prevent subsequent floating point arguments from
3483 being passed in floating point registers. */
3484 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3485 }
3486
3487 len -= partial_len;
3488 val += partial_len;
3489
3490 /* Compute the the offset into the stack at which we
3491 will copy the next parameter.
3492
3493 In older ABIs, the caller reserved space for
3494 registers that contained arguments. This was loosely
3495 refered to as their "home". Consequently, space is
3496 always allocated. */
3497
3498 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3499 }
3500 }
3501 if (mips_debug)
3502 fprintf_unfiltered (gdb_stdlog, "\n");
3503 }
3504
3505 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3506
3507 /* Return adjusted stack pointer. */
3508 return sp;
3509 }
3510
3511 /* O64 version of push_dummy_call. */
3512
3513 static CORE_ADDR
3514 mips_o64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3515 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3516 struct value **args, CORE_ADDR sp, int struct_return,
3517 CORE_ADDR struct_addr)
3518 {
3519 int argreg;
3520 int float_argreg;
3521 int argnum;
3522 int len = 0;
3523 int stack_offset = 0;
3524
3525 /* For shared libraries, "t9" needs to point at the function
3526 address. */
3527 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3528
3529 /* Set the return address register to point to the entry point of
3530 the program, where a breakpoint lies in wait. */
3531 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3532
3533 /* First ensure that the stack and structure return address (if any)
3534 are properly aligned. The stack has to be at least 64-bit
3535 aligned even on 32-bit machines, because doubles must be 64-bit
3536 aligned. For n32 and n64, stack frames need to be 128-bit
3537 aligned, so we round to this widest known alignment. */
3538
3539 sp = ROUND_DOWN (sp, 16);
3540 struct_addr = ROUND_DOWN (struct_addr, 16);
3541
3542 /* Now make space on the stack for the args. */
3543 for (argnum = 0; argnum < nargs; argnum++)
3544 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3545 MIPS_STACK_ARGSIZE);
3546 sp -= ROUND_UP (len, 16);
3547
3548 if (mips_debug)
3549 fprintf_unfiltered (gdb_stdlog,
3550 "mips_o64_push_dummy_call: sp=0x%s allocated %d\n",
3551 paddr_nz (sp), ROUND_UP (len, 16));
3552
3553 /* Initialize the integer and float register pointers. */
3554 argreg = A0_REGNUM;
3555 float_argreg = FPA0_REGNUM;
3556
3557 /* The struct_return pointer occupies the first parameter-passing reg. */
3558 if (struct_return)
3559 {
3560 if (mips_debug)
3561 fprintf_unfiltered (gdb_stdlog,
3562 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
3563 argreg, paddr_nz (struct_addr));
3564 write_register (argreg++, struct_addr);
3565 stack_offset += MIPS_STACK_ARGSIZE;
3566 }
3567
3568 /* Now load as many as possible of the first arguments into
3569 registers, and push the rest onto the stack. Loop thru args
3570 from first to last. */
3571 for (argnum = 0; argnum < nargs; argnum++)
3572 {
3573 char *val;
3574 char valbuf[MAX_REGISTER_SIZE];
3575 struct value *arg = args[argnum];
3576 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3577 int len = TYPE_LENGTH (arg_type);
3578 enum type_code typecode = TYPE_CODE (arg_type);
3579
3580 if (mips_debug)
3581 fprintf_unfiltered (gdb_stdlog,
3582 "mips_o64_push_dummy_call: %d len=%d type=%d",
3583 argnum + 1, len, (int) typecode);
3584
3585 val = (char *) VALUE_CONTENTS (arg);
3586
3587 /* 32-bit ABIs always start floating point arguments in an
3588 even-numbered floating point register. Round the FP register
3589 up before the check to see if there are any FP registers
3590 left. O32/O64 targets also pass the FP in the integer
3591 registers so also round up normal registers. */
3592 if (!FP_REGISTER_DOUBLE
3593 && fp_register_arg_p (typecode, arg_type))
3594 {
3595 if ((float_argreg & 1))
3596 float_argreg++;
3597 }
3598
3599 /* Floating point arguments passed in registers have to be
3600 treated specially. On 32-bit architectures, doubles
3601 are passed in register pairs; the even register gets
3602 the low word, and the odd register gets the high word.
3603 On O32/O64, the first two floating point arguments are
3604 also copied to general registers, because MIPS16 functions
3605 don't use float registers for arguments. This duplication of
3606 arguments in general registers can't hurt non-MIPS16 functions
3607 because those registers are normally skipped. */
3608
3609 if (fp_register_arg_p (typecode, arg_type)
3610 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3611 {
3612 if (!FP_REGISTER_DOUBLE && len == 8)
3613 {
3614 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3615 unsigned long regval;
3616
3617 /* Write the low word of the double to the even register(s). */
3618 regval = extract_unsigned_integer (val + low_offset, 4);
3619 if (mips_debug)
3620 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3621 float_argreg, phex (regval, 4));
3622 write_register (float_argreg++, regval);
3623 if (mips_debug)
3624 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3625 argreg, phex (regval, 4));
3626 write_register (argreg++, regval);
3627
3628 /* Write the high word of the double to the odd register(s). */
3629 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3630 if (mips_debug)
3631 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3632 float_argreg, phex (regval, 4));
3633 write_register (float_argreg++, regval);
3634
3635 if (mips_debug)
3636 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3637 argreg, phex (regval, 4));
3638 write_register (argreg++, regval);
3639 }
3640 else
3641 {
3642 /* This is a floating point value that fits entirely
3643 in a single register. */
3644 /* On 32 bit ABI's the float_argreg is further adjusted
3645 above to ensure that it is even register aligned. */
3646 LONGEST regval = extract_unsigned_integer (val, len);
3647 if (mips_debug)
3648 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3649 float_argreg, phex (regval, len));
3650 write_register (float_argreg++, regval);
3651 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3652 registers for each argument. The below is (my
3653 guess) to ensure that the corresponding integer
3654 register has reserved the same space. */
3655 if (mips_debug)
3656 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3657 argreg, phex (regval, len));
3658 write_register (argreg, regval);
3659 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3660 }
3661 /* Reserve space for the FP register. */
3662 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3663 }
3664 else
3665 {
3666 /* Copy the argument to general registers or the stack in
3667 register-sized pieces. Large arguments are split between
3668 registers and stack. */
3669 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3670 are treated specially: Irix cc passes them in registers
3671 where gcc sometimes puts them on the stack. For maximum
3672 compatibility, we will put them in both places. */
3673 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3674 (len % MIPS_SAVED_REGSIZE != 0));
3675 /* Structures should be aligned to eight bytes (even arg registers)
3676 on MIPS_ABI_O32, if their first member has double precision. */
3677 if (MIPS_SAVED_REGSIZE < 8
3678 && mips_type_needs_double_align (arg_type))
3679 {
3680 if ((argreg & 1))
3681 argreg++;
3682 }
3683 /* Note: Floating-point values that didn't fit into an FP
3684 register are only written to memory. */
3685 while (len > 0)
3686 {
3687 /* Remember if the argument was written to the stack. */
3688 int stack_used_p = 0;
3689 int partial_len =
3690 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3691
3692 if (mips_debug)
3693 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3694 partial_len);
3695
3696 /* Write this portion of the argument to the stack. */
3697 if (argreg > MIPS_LAST_ARG_REGNUM
3698 || odd_sized_struct
3699 || fp_register_arg_p (typecode, arg_type))
3700 {
3701 /* Should shorter than int integer values be
3702 promoted to int before being stored? */
3703 int longword_offset = 0;
3704 CORE_ADDR addr;
3705 stack_used_p = 1;
3706 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3707 {
3708 if (MIPS_STACK_ARGSIZE == 8 &&
3709 (typecode == TYPE_CODE_INT ||
3710 typecode == TYPE_CODE_PTR ||
3711 typecode == TYPE_CODE_FLT) && len <= 4)
3712 longword_offset = MIPS_STACK_ARGSIZE - len;
3713 }
3714
3715 if (mips_debug)
3716 {
3717 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3718 paddr_nz (stack_offset));
3719 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3720 paddr_nz (longword_offset));
3721 }
3722
3723 addr = sp + stack_offset + longword_offset;
3724
3725 if (mips_debug)
3726 {
3727 int i;
3728 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3729 paddr_nz (addr));
3730 for (i = 0; i < partial_len; i++)
3731 {
3732 fprintf_unfiltered (gdb_stdlog, "%02x",
3733 val[i] & 0xff);
3734 }
3735 }
3736 write_memory (addr, val, partial_len);
3737 }
3738
3739 /* Note!!! This is NOT an else clause. Odd sized
3740 structs may go thru BOTH paths. Floating point
3741 arguments will not. */
3742 /* Write this portion of the argument to a general
3743 purpose register. */
3744 if (argreg <= MIPS_LAST_ARG_REGNUM
3745 && !fp_register_arg_p (typecode, arg_type))
3746 {
3747 LONGEST regval = extract_signed_integer (val, partial_len);
3748 /* Value may need to be sign extended, because
3749 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3750
3751 /* A non-floating-point argument being passed in a
3752 general register. If a struct or union, and if
3753 the remaining length is smaller than the register
3754 size, we have to adjust the register value on
3755 big endian targets.
3756
3757 It does not seem to be necessary to do the
3758 same for integral types.
3759
3760 Also don't do this adjustment on O64 binaries.
3761
3762 cagney/2001-07-23: gdb/179: Also, GCC, when
3763 outputting LE O32 with sizeof (struct) <
3764 MIPS_SAVED_REGSIZE, generates a left shift as
3765 part of storing the argument in a register a
3766 register (the left shift isn't generated when
3767 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3768 is quite possible that this is GCC contradicting
3769 the LE/O32 ABI, GDB has not been adjusted to
3770 accommodate this. Either someone needs to
3771 demonstrate that the LE/O32 ABI specifies such a
3772 left shift OR this new ABI gets identified as
3773 such and GDB gets tweaked accordingly. */
3774
3775 if (MIPS_SAVED_REGSIZE < 8
3776 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3777 && partial_len < MIPS_SAVED_REGSIZE
3778 && (typecode == TYPE_CODE_STRUCT ||
3779 typecode == TYPE_CODE_UNION))
3780 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3781 TARGET_CHAR_BIT);
3782
3783 if (mips_debug)
3784 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3785 argreg,
3786 phex (regval, MIPS_SAVED_REGSIZE));
3787 write_register (argreg, regval);
3788 argreg++;
3789
3790 /* Prevent subsequent floating point arguments from
3791 being passed in floating point registers. */
3792 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3793 }
3794
3795 len -= partial_len;
3796 val += partial_len;
3797
3798 /* Compute the the offset into the stack at which we
3799 will copy the next parameter.
3800
3801 In older ABIs, the caller reserved space for
3802 registers that contained arguments. This was loosely
3803 refered to as their "home". Consequently, space is
3804 always allocated. */
3805
3806 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3807 }
3808 }
3809 if (mips_debug)
3810 fprintf_unfiltered (gdb_stdlog, "\n");
3811 }
3812
3813 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3814
3815 /* Return adjusted stack pointer. */
3816 return sp;
3817 }
3818
3819 static void
3820 mips_pop_frame (void)
3821 {
3822 register int regnum;
3823 struct frame_info *frame = get_current_frame ();
3824 CORE_ADDR new_sp = get_frame_base (frame);
3825 mips_extra_func_info_t proc_desc;
3826
3827 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
3828 {
3829 generic_pop_dummy_frame ();
3830 flush_cached_frames ();
3831 return;
3832 }
3833
3834 proc_desc = get_frame_extra_info (frame)->proc_desc;
3835 write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
3836 mips_find_saved_regs (frame);
3837 for (regnum = 0; regnum < NUM_REGS; regnum++)
3838 if (regnum != SP_REGNUM && regnum != PC_REGNUM
3839 && get_frame_saved_regs (frame)[regnum])
3840 {
3841 /* Floating point registers must not be sign extended,
3842 in case MIPS_SAVED_REGSIZE = 4 but sizeof (FP0_REGNUM) == 8. */
3843
3844 if (FP0_REGNUM <= regnum && regnum < FP0_REGNUM + 32)
3845 write_register (regnum,
3846 read_memory_unsigned_integer (get_frame_saved_regs (frame)[regnum],
3847 MIPS_SAVED_REGSIZE));
3848 else
3849 write_register (regnum,
3850 read_memory_integer (get_frame_saved_regs (frame)[regnum],
3851 MIPS_SAVED_REGSIZE));
3852 }
3853
3854 write_register (SP_REGNUM, new_sp);
3855 flush_cached_frames ();
3856
3857 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
3858 {
3859 struct linked_proc_info *pi_ptr, *prev_ptr;
3860
3861 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3862 pi_ptr != NULL;
3863 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3864 {
3865 if (&pi_ptr->info == proc_desc)
3866 break;
3867 }
3868
3869 if (pi_ptr == NULL)
3870 error ("Can't locate dummy extra frame info\n");
3871
3872 if (prev_ptr != NULL)
3873 prev_ptr->next = pi_ptr->next;
3874 else
3875 linked_proc_desc_table = pi_ptr->next;
3876
3877 xfree (pi_ptr);
3878
3879 write_register (HI_REGNUM,
3880 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
3881 MIPS_SAVED_REGSIZE));
3882 write_register (LO_REGNUM,
3883 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
3884 MIPS_SAVED_REGSIZE));
3885 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
3886 write_register (FCRCS_REGNUM,
3887 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
3888 MIPS_SAVED_REGSIZE));
3889 }
3890 }
3891
3892 /* Floating point register management.
3893
3894 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3895 64bit operations, these early MIPS cpus treat fp register pairs
3896 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3897 registers and offer a compatibility mode that emulates the MIPS2 fp
3898 model. When operating in MIPS2 fp compat mode, later cpu's split
3899 double precision floats into two 32-bit chunks and store them in
3900 consecutive fp regs. To display 64-bit floats stored in this
3901 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3902 Throw in user-configurable endianness and you have a real mess.
3903
3904 The way this works is:
3905 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3906 double-precision value will be split across two logical registers.
3907 The lower-numbered logical register will hold the low-order bits,
3908 regardless of the processor's endianness.
3909 - If we are on a 64-bit processor, and we are looking for a
3910 single-precision value, it will be in the low ordered bits
3911 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3912 save slot in memory.
3913 - If we are in 64-bit mode, everything is straightforward.
3914
3915 Note that this code only deals with "live" registers at the top of the
3916 stack. We will attempt to deal with saved registers later, when
3917 the raw/cooked register interface is in place. (We need a general
3918 interface that can deal with dynamic saved register sizes -- fp
3919 regs could be 32 bits wide in one frame and 64 on the frame above
3920 and below). */
3921
3922 static struct type *
3923 mips_float_register_type (void)
3924 {
3925 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3926 return builtin_type_ieee_single_big;
3927 else
3928 return builtin_type_ieee_single_little;
3929 }
3930
3931 static struct type *
3932 mips_double_register_type (void)
3933 {
3934 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3935 return builtin_type_ieee_double_big;
3936 else
3937 return builtin_type_ieee_double_little;
3938 }
3939
3940 /* Copy a 32-bit single-precision value from the current frame
3941 into rare_buffer. */
3942
3943 static void
3944 mips_read_fp_register_single (struct frame_info *frame, int regno,
3945 char *rare_buffer)
3946 {
3947 int raw_size = REGISTER_RAW_SIZE (regno);
3948 char *raw_buffer = alloca (raw_size);
3949
3950 if (!frame_register_read (frame, regno, raw_buffer))
3951 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3952 if (raw_size == 8)
3953 {
3954 /* We have a 64-bit value for this register. Find the low-order
3955 32 bits. */
3956 int offset;
3957
3958 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3959 offset = 4;
3960 else
3961 offset = 0;
3962
3963 memcpy (rare_buffer, raw_buffer + offset, 4);
3964 }
3965 else
3966 {
3967 memcpy (rare_buffer, raw_buffer, 4);
3968 }
3969 }
3970
3971 /* Copy a 64-bit double-precision value from the current frame into
3972 rare_buffer. This may include getting half of it from the next
3973 register. */
3974
3975 static void
3976 mips_read_fp_register_double (struct frame_info *frame, int regno,
3977 char *rare_buffer)
3978 {
3979 int raw_size = REGISTER_RAW_SIZE (regno);
3980
3981 if (raw_size == 8 && !mips2_fp_compat ())
3982 {
3983 /* We have a 64-bit value for this register, and we should use
3984 all 64 bits. */
3985 if (!frame_register_read (frame, regno, rare_buffer))
3986 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3987 }
3988 else
3989 {
3990 if ((regno - FP0_REGNUM) & 1)
3991 internal_error (__FILE__, __LINE__,
3992 "mips_read_fp_register_double: bad access to "
3993 "odd-numbered FP register");
3994
3995 /* mips_read_fp_register_single will find the correct 32 bits from
3996 each register. */
3997 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3998 {
3999 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4000 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
4001 }
4002 else
4003 {
4004 mips_read_fp_register_single (frame, regno, rare_buffer);
4005 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
4006 }
4007 }
4008 }
4009
4010 static void
4011 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4012 int regnum)
4013 { /* do values for FP (float) regs */
4014 char *raw_buffer;
4015 double doub, flt1, flt2; /* doubles extracted from raw hex data */
4016 int inv1, inv2, namelen;
4017
4018 raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
4019
4020 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
4021 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
4022 "");
4023
4024 if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
4025 {
4026 /* 4-byte registers: Print hex and floating. Also print even
4027 numbered registers as doubles. */
4028 mips_read_fp_register_single (frame, regnum, raw_buffer);
4029 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4030
4031 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w', file);
4032
4033 fprintf_filtered (file, " flt: ");
4034 if (inv1)
4035 fprintf_filtered (file, " <invalid float> ");
4036 else
4037 fprintf_filtered (file, "%-17.9g", flt1);
4038
4039 if (regnum % 2 == 0)
4040 {
4041 mips_read_fp_register_double (frame, regnum, raw_buffer);
4042 doub = unpack_double (mips_double_register_type (), raw_buffer,
4043 &inv2);
4044
4045 fprintf_filtered (file, " dbl: ");
4046 if (inv2)
4047 fprintf_filtered (file, "<invalid double>");
4048 else
4049 fprintf_filtered (file, "%-24.17g", doub);
4050 }
4051 }
4052 else
4053 {
4054 /* Eight byte registers: print each one as hex, float and double. */
4055 mips_read_fp_register_single (frame, regnum, raw_buffer);
4056 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4057
4058 mips_read_fp_register_double (frame, regnum, raw_buffer);
4059 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4060
4061
4062 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g', file);
4063
4064 fprintf_filtered (file, " flt: ");
4065 if (inv1)
4066 fprintf_filtered (file, "<invalid float>");
4067 else
4068 fprintf_filtered (file, "%-17.9g", flt1);
4069
4070 fprintf_filtered (file, " dbl: ");
4071 if (inv2)
4072 fprintf_filtered (file, "<invalid double>");
4073 else
4074 fprintf_filtered (file, "%-24.17g", doub);
4075 }
4076 }
4077
4078 static void
4079 mips_print_register (struct ui_file *file, struct frame_info *frame,
4080 int regnum, int all)
4081 {
4082 char raw_buffer[MAX_REGISTER_SIZE];
4083 int offset;
4084
4085 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4086 {
4087 mips_print_fp_register (file, frame, regnum);
4088 return;
4089 }
4090
4091 /* Get the data in raw format. */
4092 if (!frame_register_read (frame, regnum, raw_buffer))
4093 {
4094 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
4095 return;
4096 }
4097
4098 fputs_filtered (REGISTER_NAME (regnum), file);
4099
4100 /* The problem with printing numeric register names (r26, etc.) is that
4101 the user can't use them on input. Probably the best solution is to
4102 fix it so that either the numeric or the funky (a2, etc.) names
4103 are accepted on input. */
4104 if (regnum < MIPS_NUMREGS)
4105 fprintf_filtered (file, "(r%d): ", regnum);
4106 else
4107 fprintf_filtered (file, ": ");
4108
4109 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4110 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4111 else
4112 offset = 0;
4113
4114 print_scalar_formatted (raw_buffer + offset,
4115 REGISTER_VIRTUAL_TYPE (regnum),
4116 'x', 0, file);
4117 }
4118
4119 /* Replacement for generic do_registers_info.
4120 Print regs in pretty columns. */
4121
4122 static int
4123 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4124 int regnum)
4125 {
4126 fprintf_filtered (file, " ");
4127 mips_print_fp_register (file, frame, regnum);
4128 fprintf_filtered (file, "\n");
4129 return regnum + 1;
4130 }
4131
4132
4133 /* Print a row's worth of GP (int) registers, with name labels above */
4134
4135 static int
4136 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4137 int regnum)
4138 {
4139 /* do values for GP (int) regs */
4140 char raw_buffer[MAX_REGISTER_SIZE];
4141 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
4142 int col, byte;
4143 int start_regnum = regnum;
4144 int numregs = NUM_REGS;
4145
4146
4147 /* For GP registers, we print a separate row of names above the vals */
4148 fprintf_filtered (file, " ");
4149 for (col = 0; col < ncols && regnum < numregs; regnum++)
4150 {
4151 if (*REGISTER_NAME (regnum) == '\0')
4152 continue; /* unused register */
4153 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4154 break; /* end the row: reached FP register */
4155 fprintf_filtered (file, MIPS_REGSIZE == 8 ? "%17s" : "%9s",
4156 REGISTER_NAME (regnum));
4157 col++;
4158 }
4159 fprintf_filtered (file,
4160 start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
4161 start_regnum); /* print the R0 to R31 names */
4162
4163 regnum = start_regnum; /* go back to start of row */
4164 /* now print the values in hex, 4 or 8 to the row */
4165 for (col = 0; col < ncols && regnum < numregs; regnum++)
4166 {
4167 if (*REGISTER_NAME (regnum) == '\0')
4168 continue; /* unused register */
4169 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4170 break; /* end row: reached FP register */
4171 /* OK: get the data in raw format. */
4172 if (!frame_register_read (frame, regnum, raw_buffer))
4173 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4174 /* pad small registers */
4175 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
4176 printf_filtered (" ");
4177 /* Now print the register value in hex, endian order. */
4178 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4179 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4180 byte < REGISTER_RAW_SIZE (regnum);
4181 byte++)
4182 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4183 else
4184 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
4185 byte >= 0;
4186 byte--)
4187 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4188 fprintf_filtered (file, " ");
4189 col++;
4190 }
4191 if (col > 0) /* ie. if we actually printed anything... */
4192 fprintf_filtered (file, "\n");
4193
4194 return regnum;
4195 }
4196
4197 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4198
4199 static void
4200 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4201 struct frame_info *frame, int regnum, int all)
4202 {
4203 if (regnum != -1) /* do one specified register */
4204 {
4205 if (*(REGISTER_NAME (regnum)) == '\0')
4206 error ("Not a valid register for the current processor type");
4207
4208 mips_print_register (file, frame, regnum, 0);
4209 fprintf_filtered (file, "\n");
4210 }
4211 else
4212 /* do all (or most) registers */
4213 {
4214 regnum = 0;
4215 while (regnum < NUM_REGS)
4216 {
4217 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4218 {
4219 if (all) /* true for "INFO ALL-REGISTERS" command */
4220 regnum = print_fp_register_row (file, frame, regnum);
4221 else
4222 regnum += MIPS_NUMREGS; /* skip floating point regs */
4223 }
4224 else
4225 regnum = print_gp_register_row (file, frame, regnum);
4226 }
4227 }
4228 }
4229
4230 /* Is this a branch with a delay slot? */
4231
4232 static int is_delayed (unsigned long);
4233
4234 static int
4235 is_delayed (unsigned long insn)
4236 {
4237 int i;
4238 for (i = 0; i < NUMOPCODES; ++i)
4239 if (mips_opcodes[i].pinfo != INSN_MACRO
4240 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4241 break;
4242 return (i < NUMOPCODES
4243 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4244 | INSN_COND_BRANCH_DELAY
4245 | INSN_COND_BRANCH_LIKELY)));
4246 }
4247
4248 int
4249 mips_step_skips_delay (CORE_ADDR pc)
4250 {
4251 char buf[MIPS_INSTLEN];
4252
4253 /* There is no branch delay slot on MIPS16. */
4254 if (pc_is_mips16 (pc))
4255 return 0;
4256
4257 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4258 /* If error reading memory, guess that it is not a delayed branch. */
4259 return 0;
4260 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
4261 }
4262
4263
4264 /* Skip the PC past function prologue instructions (32-bit version).
4265 This is a helper function for mips_skip_prologue. */
4266
4267 static CORE_ADDR
4268 mips32_skip_prologue (CORE_ADDR pc)
4269 {
4270 t_inst inst;
4271 CORE_ADDR end_pc;
4272 int seen_sp_adjust = 0;
4273 int load_immediate_bytes = 0;
4274
4275 /* Skip the typical prologue instructions. These are the stack adjustment
4276 instruction and the instructions that save registers on the stack
4277 or in the gcc frame. */
4278 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
4279 {
4280 unsigned long high_word;
4281
4282 inst = mips_fetch_instruction (pc);
4283 high_word = (inst >> 16) & 0xffff;
4284
4285 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4286 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4287 seen_sp_adjust = 1;
4288 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4289 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4290 seen_sp_adjust = 1;
4291 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4292 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4293 && (inst & 0x001F0000)) /* reg != $zero */
4294 continue;
4295
4296 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4297 continue;
4298 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4299 /* sx reg,n($s8) */
4300 continue; /* reg != $zero */
4301
4302 /* move $s8,$sp. With different versions of gas this will be either
4303 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4304 Accept any one of these. */
4305 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4306 continue;
4307
4308 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4309 continue;
4310 else if (high_word == 0x3c1c) /* lui $gp,n */
4311 continue;
4312 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4313 continue;
4314 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4315 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4316 continue;
4317 /* The following instructions load $at or $t0 with an immediate
4318 value in preparation for a stack adjustment via
4319 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4320 a local variable, so we accept them only before a stack adjustment
4321 instruction was seen. */
4322 else if (!seen_sp_adjust)
4323 {
4324 if (high_word == 0x3c01 || /* lui $at,n */
4325 high_word == 0x3c08) /* lui $t0,n */
4326 {
4327 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4328 continue;
4329 }
4330 else if (high_word == 0x3421 || /* ori $at,$at,n */
4331 high_word == 0x3508 || /* ori $t0,$t0,n */
4332 high_word == 0x3401 || /* ori $at,$zero,n */
4333 high_word == 0x3408) /* ori $t0,$zero,n */
4334 {
4335 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4336 continue;
4337 }
4338 else
4339 break;
4340 }
4341 else
4342 break;
4343 }
4344
4345 /* In a frameless function, we might have incorrectly
4346 skipped some load immediate instructions. Undo the skipping
4347 if the load immediate was not followed by a stack adjustment. */
4348 if (load_immediate_bytes && !seen_sp_adjust)
4349 pc -= load_immediate_bytes;
4350 return pc;
4351 }
4352
4353 /* Skip the PC past function prologue instructions (16-bit version).
4354 This is a helper function for mips_skip_prologue. */
4355
4356 static CORE_ADDR
4357 mips16_skip_prologue (CORE_ADDR pc)
4358 {
4359 CORE_ADDR end_pc;
4360 int extend_bytes = 0;
4361 int prev_extend_bytes;
4362
4363 /* Table of instructions likely to be found in a function prologue. */
4364 static struct
4365 {
4366 unsigned short inst;
4367 unsigned short mask;
4368 }
4369 table[] =
4370 {
4371 {
4372 0x6300, 0xff00
4373 }
4374 , /* addiu $sp,offset */
4375 {
4376 0xfb00, 0xff00
4377 }
4378 , /* daddiu $sp,offset */
4379 {
4380 0xd000, 0xf800
4381 }
4382 , /* sw reg,n($sp) */
4383 {
4384 0xf900, 0xff00
4385 }
4386 , /* sd reg,n($sp) */
4387 {
4388 0x6200, 0xff00
4389 }
4390 , /* sw $ra,n($sp) */
4391 {
4392 0xfa00, 0xff00
4393 }
4394 , /* sd $ra,n($sp) */
4395 {
4396 0x673d, 0xffff
4397 }
4398 , /* move $s1,sp */
4399 {
4400 0xd980, 0xff80
4401 }
4402 , /* sw $a0-$a3,n($s1) */
4403 {
4404 0x6704, 0xff1c
4405 }
4406 , /* move reg,$a0-$a3 */
4407 {
4408 0xe809, 0xf81f
4409 }
4410 , /* entry pseudo-op */
4411 {
4412 0x0100, 0xff00
4413 }
4414 , /* addiu $s1,$sp,n */
4415 {
4416 0, 0
4417 } /* end of table marker */
4418 };
4419
4420 /* Skip the typical prologue instructions. These are the stack adjustment
4421 instruction and the instructions that save registers on the stack
4422 or in the gcc frame. */
4423 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
4424 {
4425 unsigned short inst;
4426 int i;
4427
4428 inst = mips_fetch_instruction (pc);
4429
4430 /* Normally we ignore an extend instruction. However, if it is
4431 not followed by a valid prologue instruction, we must adjust
4432 the pc back over the extend so that it won't be considered
4433 part of the prologue. */
4434 if ((inst & 0xf800) == 0xf000) /* extend */
4435 {
4436 extend_bytes = MIPS16_INSTLEN;
4437 continue;
4438 }
4439 prev_extend_bytes = extend_bytes;
4440 extend_bytes = 0;
4441
4442 /* Check for other valid prologue instructions besides extend. */
4443 for (i = 0; table[i].mask != 0; i++)
4444 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4445 break;
4446 if (table[i].mask != 0) /* it was in table? */
4447 continue; /* ignore it */
4448 else
4449 /* non-prologue */
4450 {
4451 /* Return the current pc, adjusted backwards by 2 if
4452 the previous instruction was an extend. */
4453 return pc - prev_extend_bytes;
4454 }
4455 }
4456 return pc;
4457 }
4458
4459 /* To skip prologues, I use this predicate. Returns either PC itself
4460 if the code at PC does not look like a function prologue; otherwise
4461 returns an address that (if we're lucky) follows the prologue. If
4462 LENIENT, then we must skip everything which is involved in setting
4463 up the frame (it's OK to skip more, just so long as we don't skip
4464 anything which might clobber the registers which are being saved.
4465 We must skip more in the case where part of the prologue is in the
4466 delay slot of a non-prologue instruction). */
4467
4468 static CORE_ADDR
4469 mips_skip_prologue (CORE_ADDR pc)
4470 {
4471 /* See if we can determine the end of the prologue via the symbol table.
4472 If so, then return either PC, or the PC after the prologue, whichever
4473 is greater. */
4474
4475 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4476
4477 if (post_prologue_pc != 0)
4478 return max (pc, post_prologue_pc);
4479
4480 /* Can't determine prologue from the symbol table, need to examine
4481 instructions. */
4482
4483 if (pc_is_mips16 (pc))
4484 return mips16_skip_prologue (pc);
4485 else
4486 return mips32_skip_prologue (pc);
4487 }
4488
4489 /* Determine how a return value is stored within the MIPS register
4490 file, given the return type `valtype'. */
4491
4492 struct return_value_word
4493 {
4494 int len;
4495 int reg;
4496 int reg_offset;
4497 int buf_offset;
4498 };
4499
4500 static void
4501 return_value_location (struct type *valtype,
4502 struct return_value_word *hi,
4503 struct return_value_word *lo)
4504 {
4505 int len = TYPE_LENGTH (valtype);
4506
4507 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4508 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4509 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4510 {
4511 if (!FP_REGISTER_DOUBLE && len == 8)
4512 {
4513 /* We need to break a 64bit float in two 32 bit halves and
4514 spread them across a floating-point register pair. */
4515 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4516 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4517 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4518 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
4519 ? 4 : 0);
4520 hi->reg_offset = lo->reg_offset;
4521 lo->reg = FP0_REGNUM + 0;
4522 hi->reg = FP0_REGNUM + 1;
4523 lo->len = 4;
4524 hi->len = 4;
4525 }
4526 else
4527 {
4528 /* The floating point value fits in a single floating-point
4529 register. */
4530 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4531 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
4532 && len == 4)
4533 ? 4 : 0);
4534 lo->reg = FP0_REGNUM;
4535 lo->len = len;
4536 lo->buf_offset = 0;
4537 hi->len = 0;
4538 hi->reg_offset = 0;
4539 hi->buf_offset = 0;
4540 hi->reg = 0;
4541 }
4542 }
4543 else
4544 {
4545 /* Locate a result possibly spread across two registers. */
4546 int regnum = 2;
4547 lo->reg = regnum + 0;
4548 hi->reg = regnum + 1;
4549 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4550 && len < MIPS_SAVED_REGSIZE)
4551 {
4552 /* "un-left-justify" the value in the low register */
4553 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
4554 lo->len = len;
4555 hi->reg_offset = 0;
4556 hi->len = 0;
4557 }
4558 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4559 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4560 && len < MIPS_SAVED_REGSIZE * 2
4561 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4562 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4563 {
4564 /* "un-left-justify" the value spread across two registers. */
4565 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4566 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4567 hi->reg_offset = 0;
4568 hi->len = len - lo->len;
4569 }
4570 else
4571 {
4572 /* Only perform a partial copy of the second register. */
4573 lo->reg_offset = 0;
4574 hi->reg_offset = 0;
4575 if (len > MIPS_SAVED_REGSIZE)
4576 {
4577 lo->len = MIPS_SAVED_REGSIZE;
4578 hi->len = len - MIPS_SAVED_REGSIZE;
4579 }
4580 else
4581 {
4582 lo->len = len;
4583 hi->len = 0;
4584 }
4585 }
4586 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4587 && REGISTER_RAW_SIZE (regnum) == 8
4588 && MIPS_SAVED_REGSIZE == 4)
4589 {
4590 /* Account for the fact that only the least-signficant part
4591 of the register is being used */
4592 lo->reg_offset += 4;
4593 hi->reg_offset += 4;
4594 }
4595 lo->buf_offset = 0;
4596 hi->buf_offset = lo->len;
4597 }
4598 }
4599
4600 /* Given a return value in `regbuf' with a type `valtype', extract and
4601 copy its value into `valbuf'. */
4602
4603 static void
4604 mips_eabi_extract_return_value (struct type *valtype,
4605 char regbuf[],
4606 char *valbuf)
4607 {
4608 struct return_value_word lo;
4609 struct return_value_word hi;
4610 return_value_location (valtype, &hi, &lo);
4611
4612 memcpy (valbuf + lo.buf_offset,
4613 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4614 lo.len);
4615
4616 if (hi.len > 0)
4617 memcpy (valbuf + hi.buf_offset,
4618 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4619 hi.len);
4620 }
4621
4622 static void
4623 mips_o64_extract_return_value (struct type *valtype,
4624 char regbuf[],
4625 char *valbuf)
4626 {
4627 struct return_value_word lo;
4628 struct return_value_word hi;
4629 return_value_location (valtype, &hi, &lo);
4630
4631 memcpy (valbuf + lo.buf_offset,
4632 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4633 lo.len);
4634
4635 if (hi.len > 0)
4636 memcpy (valbuf + hi.buf_offset,
4637 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4638 hi.len);
4639 }
4640
4641 /* Given a return value in `valbuf' with a type `valtype', write it's
4642 value into the appropriate register. */
4643
4644 static void
4645 mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4646 {
4647 char raw_buffer[MAX_REGISTER_SIZE];
4648 struct return_value_word lo;
4649 struct return_value_word hi;
4650 return_value_location (valtype, &hi, &lo);
4651
4652 memset (raw_buffer, 0, sizeof (raw_buffer));
4653 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4654 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4655 REGISTER_RAW_SIZE (lo.reg));
4656
4657 if (hi.len > 0)
4658 {
4659 memset (raw_buffer, 0, sizeof (raw_buffer));
4660 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4661 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4662 REGISTER_RAW_SIZE (hi.reg));
4663 }
4664 }
4665
4666 static void
4667 mips_o64_store_return_value (struct type *valtype, char *valbuf)
4668 {
4669 char raw_buffer[MAX_REGISTER_SIZE];
4670 struct return_value_word lo;
4671 struct return_value_word hi;
4672 return_value_location (valtype, &hi, &lo);
4673
4674 memset (raw_buffer, 0, sizeof (raw_buffer));
4675 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4676 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4677 REGISTER_RAW_SIZE (lo.reg));
4678
4679 if (hi.len > 0)
4680 {
4681 memset (raw_buffer, 0, sizeof (raw_buffer));
4682 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4683 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4684 REGISTER_RAW_SIZE (hi.reg));
4685 }
4686 }
4687
4688 /* O32 ABI stuff. */
4689
4690 static void
4691 mips_o32_xfer_return_value (struct type *type,
4692 struct regcache *regcache,
4693 bfd_byte *in, const bfd_byte *out)
4694 {
4695 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4696 if (TYPE_CODE (type) == TYPE_CODE_FLT
4697 && TYPE_LENGTH (type) == 4
4698 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4699 {
4700 /* A single-precision floating-point value. It fits in the
4701 least significant part of FP0. */
4702 if (mips_debug)
4703 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4704 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4705 TARGET_BYTE_ORDER, in, out, 0);
4706 }
4707 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4708 && TYPE_LENGTH (type) == 8
4709 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4710 {
4711 /* A double-precision floating-point value. It fits in the
4712 least significant part of FP0/FP1 but with byte ordering
4713 based on the target (???). */
4714 if (mips_debug)
4715 fprintf_unfiltered (gdb_stderr, "Return float in $fp0/$fp1\n");
4716 switch (TARGET_BYTE_ORDER)
4717 {
4718 case BFD_ENDIAN_LITTLE:
4719 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4720 TARGET_BYTE_ORDER, in, out, 0);
4721 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4722 TARGET_BYTE_ORDER, in, out, 4);
4723 break;
4724 case BFD_ENDIAN_BIG:
4725 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4726 TARGET_BYTE_ORDER, in, out, 0);
4727 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4728 TARGET_BYTE_ORDER, in, out, 4);
4729 break;
4730 default:
4731 internal_error (__FILE__, __LINE__, "bad switch");
4732 }
4733 }
4734 #if 0
4735 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4736 && TYPE_NFIELDS (type) <= 2
4737 && TYPE_NFIELDS (type) >= 1
4738 && ((TYPE_NFIELDS (type) == 1
4739 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4740 == TYPE_CODE_FLT))
4741 || (TYPE_NFIELDS (type) == 2
4742 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4743 == TYPE_CODE_FLT)
4744 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4745 == TYPE_CODE_FLT)))
4746 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4747 {
4748 /* A struct that contains one or two floats. Each value is part
4749 in the least significant part of their floating point
4750 register.. */
4751 bfd_byte reg[MAX_REGISTER_SIZE];
4752 int regnum;
4753 int field;
4754 for (field = 0, regnum = FP0_REGNUM;
4755 field < TYPE_NFIELDS (type);
4756 field++, regnum += 2)
4757 {
4758 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4759 / TARGET_CHAR_BIT);
4760 if (mips_debug)
4761 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4762 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4763 TARGET_BYTE_ORDER, in, out, offset);
4764 }
4765 }
4766 #endif
4767 #if 0
4768 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4769 || TYPE_CODE (type) == TYPE_CODE_UNION)
4770 {
4771 /* A structure or union. Extract the left justified value,
4772 regardless of the byte order. I.e. DO NOT USE
4773 mips_xfer_lower. */
4774 int offset;
4775 int regnum;
4776 for (offset = 0, regnum = V0_REGNUM;
4777 offset < TYPE_LENGTH (type);
4778 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4779 {
4780 int xfer = REGISTER_RAW_SIZE (regnum);
4781 if (offset + xfer > TYPE_LENGTH (type))
4782 xfer = TYPE_LENGTH (type) - offset;
4783 if (mips_debug)
4784 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4785 offset, xfer, regnum);
4786 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4787 in, out, offset);
4788 }
4789 }
4790 #endif
4791 else
4792 {
4793 /* A scalar extract each part but least-significant-byte
4794 justified. o32 thinks registers are 4 byte, regardless of
4795 the ISA. mips_stack_argsize controls this. */
4796 int offset;
4797 int regnum;
4798 for (offset = 0, regnum = V0_REGNUM;
4799 offset < TYPE_LENGTH (type);
4800 offset += mips_stack_argsize (), regnum++)
4801 {
4802 int xfer = mips_stack_argsize ();
4803 int pos = 0;
4804 if (offset + xfer > TYPE_LENGTH (type))
4805 xfer = TYPE_LENGTH (type) - offset;
4806 if (mips_debug)
4807 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4808 offset, xfer, regnum);
4809 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4810 in, out, offset);
4811 }
4812 }
4813 }
4814
4815 static void
4816 mips_o32_extract_return_value (struct type *type,
4817 struct regcache *regcache,
4818 void *valbuf)
4819 {
4820 mips_o32_xfer_return_value (type, regcache, valbuf, NULL);
4821 }
4822
4823 static void
4824 mips_o32_store_return_value (struct type *type, char *valbuf)
4825 {
4826 mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf);
4827 }
4828
4829 /* N32/N44 ABI stuff. */
4830
4831 static void
4832 mips_n32n64_xfer_return_value (struct type *type,
4833 struct regcache *regcache,
4834 bfd_byte *in, const bfd_byte *out)
4835 {
4836 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4837 if (TYPE_CODE (type) == TYPE_CODE_FLT
4838 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4839 {
4840 /* A floating-point value belongs in the least significant part
4841 of FP0. */
4842 if (mips_debug)
4843 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4844 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4845 TARGET_BYTE_ORDER, in, out, 0);
4846 }
4847 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4848 && TYPE_NFIELDS (type) <= 2
4849 && TYPE_NFIELDS (type) >= 1
4850 && ((TYPE_NFIELDS (type) == 1
4851 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4852 == TYPE_CODE_FLT))
4853 || (TYPE_NFIELDS (type) == 2
4854 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4855 == TYPE_CODE_FLT)
4856 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4857 == TYPE_CODE_FLT)))
4858 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4859 {
4860 /* A struct that contains one or two floats. Each value is part
4861 in the least significant part of their floating point
4862 register.. */
4863 bfd_byte reg[MAX_REGISTER_SIZE];
4864 int regnum;
4865 int field;
4866 for (field = 0, regnum = FP0_REGNUM;
4867 field < TYPE_NFIELDS (type);
4868 field++, regnum += 2)
4869 {
4870 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4871 / TARGET_CHAR_BIT);
4872 if (mips_debug)
4873 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4874 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4875 TARGET_BYTE_ORDER, in, out, offset);
4876 }
4877 }
4878 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4879 || TYPE_CODE (type) == TYPE_CODE_UNION)
4880 {
4881 /* A structure or union. Extract the left justified value,
4882 regardless of the byte order. I.e. DO NOT USE
4883 mips_xfer_lower. */
4884 int offset;
4885 int regnum;
4886 for (offset = 0, regnum = V0_REGNUM;
4887 offset < TYPE_LENGTH (type);
4888 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4889 {
4890 int xfer = REGISTER_RAW_SIZE (regnum);
4891 if (offset + xfer > TYPE_LENGTH (type))
4892 xfer = TYPE_LENGTH (type) - offset;
4893 if (mips_debug)
4894 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4895 offset, xfer, regnum);
4896 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4897 in, out, offset);
4898 }
4899 }
4900 else
4901 {
4902 /* A scalar extract each part but least-significant-byte
4903 justified. */
4904 int offset;
4905 int regnum;
4906 for (offset = 0, regnum = V0_REGNUM;
4907 offset < TYPE_LENGTH (type);
4908 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4909 {
4910 int xfer = REGISTER_RAW_SIZE (regnum);
4911 int pos = 0;
4912 if (offset + xfer > TYPE_LENGTH (type))
4913 xfer = TYPE_LENGTH (type) - offset;
4914 if (mips_debug)
4915 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4916 offset, xfer, regnum);
4917 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4918 in, out, offset);
4919 }
4920 }
4921 }
4922
4923 static void
4924 mips_n32n64_extract_return_value (struct type *type,
4925 struct regcache *regcache,
4926 void *valbuf)
4927 {
4928 mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL);
4929 }
4930
4931 static void
4932 mips_n32n64_store_return_value (struct type *type, char *valbuf)
4933 {
4934 mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf);
4935 }
4936
4937 static CORE_ADDR
4938 mips_extract_struct_value_address (struct regcache *regcache)
4939 {
4940 /* FIXME: This will only work at random. The caller passes the
4941 struct_return address in V0, but it is not preserved. It may
4942 still be there, or this may be a random value. */
4943 LONGEST val;
4944
4945 regcache_cooked_read_signed (regcache, V0_REGNUM, &val);
4946 return val;
4947 }
4948
4949 /* Exported procedure: Is PC in the signal trampoline code */
4950
4951 static int
4952 mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
4953 {
4954 if (sigtramp_address == 0)
4955 fixup_sigtramp ();
4956 return (pc >= sigtramp_address && pc < sigtramp_end);
4957 }
4958
4959 /* Root of all "set mips "/"show mips " commands. This will eventually be
4960 used for all MIPS-specific commands. */
4961
4962 static void
4963 show_mips_command (char *args, int from_tty)
4964 {
4965 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4966 }
4967
4968 static void
4969 set_mips_command (char *args, int from_tty)
4970 {
4971 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
4972 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4973 }
4974
4975 /* Commands to show/set the MIPS FPU type. */
4976
4977 static void
4978 show_mipsfpu_command (char *args, int from_tty)
4979 {
4980 char *fpu;
4981 switch (MIPS_FPU_TYPE)
4982 {
4983 case MIPS_FPU_SINGLE:
4984 fpu = "single-precision";
4985 break;
4986 case MIPS_FPU_DOUBLE:
4987 fpu = "double-precision";
4988 break;
4989 case MIPS_FPU_NONE:
4990 fpu = "absent (none)";
4991 break;
4992 default:
4993 internal_error (__FILE__, __LINE__, "bad switch");
4994 }
4995 if (mips_fpu_type_auto)
4996 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4997 fpu);
4998 else
4999 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
5000 fpu);
5001 }
5002
5003
5004 static void
5005 set_mipsfpu_command (char *args, int from_tty)
5006 {
5007 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
5008 show_mipsfpu_command (args, from_tty);
5009 }
5010
5011 static void
5012 set_mipsfpu_single_command (char *args, int from_tty)
5013 {
5014 mips_fpu_type = MIPS_FPU_SINGLE;
5015 mips_fpu_type_auto = 0;
5016 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
5017 }
5018
5019 static void
5020 set_mipsfpu_double_command (char *args, int from_tty)
5021 {
5022 mips_fpu_type = MIPS_FPU_DOUBLE;
5023 mips_fpu_type_auto = 0;
5024 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
5025 }
5026
5027 static void
5028 set_mipsfpu_none_command (char *args, int from_tty)
5029 {
5030 mips_fpu_type = MIPS_FPU_NONE;
5031 mips_fpu_type_auto = 0;
5032 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
5033 }
5034
5035 static void
5036 set_mipsfpu_auto_command (char *args, int from_tty)
5037 {
5038 mips_fpu_type_auto = 1;
5039 }
5040
5041 /* Command to set the processor type. */
5042
5043 void
5044 mips_set_processor_type_command (char *args, int from_tty)
5045 {
5046 int i;
5047
5048 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
5049 {
5050 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
5051 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5052 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
5053
5054 /* Restore the value. */
5055 tmp_mips_processor_type = xstrdup (mips_processor_type);
5056
5057 return;
5058 }
5059
5060 if (!mips_set_processor_type (tmp_mips_processor_type))
5061 {
5062 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
5063 /* Restore its value. */
5064 tmp_mips_processor_type = xstrdup (mips_processor_type);
5065 }
5066 }
5067
5068 static void
5069 mips_show_processor_type_command (char *args, int from_tty)
5070 {
5071 }
5072
5073 /* Modify the actual processor type. */
5074
5075 static int
5076 mips_set_processor_type (char *str)
5077 {
5078 int i;
5079
5080 if (str == NULL)
5081 return 0;
5082
5083 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5084 {
5085 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
5086 {
5087 mips_processor_type = str;
5088 mips_processor_reg_names = mips_processor_type_table[i].regnames;
5089 return 1;
5090 /* FIXME tweak fpu flag too */
5091 }
5092 }
5093
5094 return 0;
5095 }
5096
5097 /* Attempt to identify the particular processor model by reading the
5098 processor id. */
5099
5100 char *
5101 mips_read_processor_type (void)
5102 {
5103 CORE_ADDR prid;
5104
5105 prid = read_register (PRID_REGNUM);
5106
5107 if ((prid & ~0xf) == 0x700)
5108 return savestring ("r3041", strlen ("r3041"));
5109
5110 return NULL;
5111 }
5112
5113 /* Just like reinit_frame_cache, but with the right arguments to be
5114 callable as an sfunc. */
5115
5116 static void
5117 reinit_frame_cache_sfunc (char *args, int from_tty,
5118 struct cmd_list_element *c)
5119 {
5120 reinit_frame_cache ();
5121 }
5122
5123 int
5124 gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
5125 {
5126 mips_extra_func_info_t proc_desc;
5127
5128 /* Search for the function containing this address. Set the low bit
5129 of the address when searching, in case we were given an even address
5130 that is the start of a 16-bit function. If we didn't do this,
5131 the search would fail because the symbol table says the function
5132 starts at an odd address, i.e. 1 byte past the given address. */
5133 memaddr = ADDR_BITS_REMOVE (memaddr);
5134 proc_desc = non_heuristic_proc_desc (make_mips16_addr (memaddr), NULL);
5135
5136 /* Make an attempt to determine if this is a 16-bit function. If
5137 the procedure descriptor exists and the address therein is odd,
5138 it's definitely a 16-bit function. Otherwise, we have to just
5139 guess that if the address passed in is odd, it's 16-bits. */
5140 if (proc_desc)
5141 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
5142 bfd_mach_mips16 : 0;
5143 else
5144 info->mach = pc_is_mips16 (memaddr) ?
5145 bfd_mach_mips16 : 0;
5146
5147 /* Round down the instruction address to the appropriate boundary. */
5148 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
5149
5150 /* Call the appropriate disassembler based on the target endian-ness. */
5151 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5152 return print_insn_big_mips (memaddr, info);
5153 else
5154 return print_insn_little_mips (memaddr, info);
5155 }
5156
5157 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5158 counter value to determine whether a 16- or 32-bit breakpoint should be
5159 used. It returns a pointer to a string of bytes that encode a breakpoint
5160 instruction, stores the length of the string to *lenptr, and adjusts pc
5161 (if necessary) to point to the actual memory location where the
5162 breakpoint should be inserted. */
5163
5164 static const unsigned char *
5165 mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
5166 {
5167 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5168 {
5169 if (pc_is_mips16 (*pcptr))
5170 {
5171 static unsigned char mips16_big_breakpoint[] = {0xe8, 0xa5};
5172 *pcptr = unmake_mips16_addr (*pcptr);
5173 *lenptr = sizeof (mips16_big_breakpoint);
5174 return mips16_big_breakpoint;
5175 }
5176 else
5177 {
5178 /* The IDT board uses an unusual breakpoint value, and
5179 sometimes gets confused when it sees the usual MIPS
5180 breakpoint instruction. */
5181 static unsigned char big_breakpoint[] = {0, 0x5, 0, 0xd};
5182 static unsigned char pmon_big_breakpoint[] = {0, 0, 0, 0xd};
5183 static unsigned char idt_big_breakpoint[] = {0, 0, 0x0a, 0xd};
5184
5185 *lenptr = sizeof (big_breakpoint);
5186
5187 if (strcmp (target_shortname, "mips") == 0)
5188 return idt_big_breakpoint;
5189 else if (strcmp (target_shortname, "ddb") == 0
5190 || strcmp (target_shortname, "pmon") == 0
5191 || strcmp (target_shortname, "lsi") == 0)
5192 return pmon_big_breakpoint;
5193 else
5194 return big_breakpoint;
5195 }
5196 }
5197 else
5198 {
5199 if (pc_is_mips16 (*pcptr))
5200 {
5201 static unsigned char mips16_little_breakpoint[] = {0xa5, 0xe8};
5202 *pcptr = unmake_mips16_addr (*pcptr);
5203 *lenptr = sizeof (mips16_little_breakpoint);
5204 return mips16_little_breakpoint;
5205 }
5206 else
5207 {
5208 static unsigned char little_breakpoint[] = {0xd, 0, 0x5, 0};
5209 static unsigned char pmon_little_breakpoint[] = {0xd, 0, 0, 0};
5210 static unsigned char idt_little_breakpoint[] = {0xd, 0x0a, 0, 0};
5211
5212 *lenptr = sizeof (little_breakpoint);
5213
5214 if (strcmp (target_shortname, "mips") == 0)
5215 return idt_little_breakpoint;
5216 else if (strcmp (target_shortname, "ddb") == 0
5217 || strcmp (target_shortname, "pmon") == 0
5218 || strcmp (target_shortname, "lsi") == 0)
5219 return pmon_little_breakpoint;
5220 else
5221 return little_breakpoint;
5222 }
5223 }
5224 }
5225
5226 /* If PC is in a mips16 call or return stub, return the address of the target
5227 PC, which is either the callee or the caller. There are several
5228 cases which must be handled:
5229
5230 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5231 target PC is in $31 ($ra).
5232 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5233 and the target PC is in $2.
5234 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5235 before the jal instruction, this is effectively a call stub
5236 and the the target PC is in $2. Otherwise this is effectively
5237 a return stub and the target PC is in $18.
5238
5239 See the source code for the stubs in gcc/config/mips/mips16.S for
5240 gory details.
5241
5242 This function implements the SKIP_TRAMPOLINE_CODE macro.
5243 */
5244
5245 static CORE_ADDR
5246 mips_skip_stub (CORE_ADDR pc)
5247 {
5248 char *name;
5249 CORE_ADDR start_addr;
5250
5251 /* Find the starting address and name of the function containing the PC. */
5252 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5253 return 0;
5254
5255 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5256 target PC is in $31 ($ra). */
5257 if (strcmp (name, "__mips16_ret_sf") == 0
5258 || strcmp (name, "__mips16_ret_df") == 0)
5259 return read_signed_register (RA_REGNUM);
5260
5261 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5262 {
5263 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5264 and the target PC is in $2. */
5265 if (name[19] >= '0' && name[19] <= '9')
5266 return read_signed_register (2);
5267
5268 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5269 before the jal instruction, this is effectively a call stub
5270 and the the target PC is in $2. Otherwise this is effectively
5271 a return stub and the target PC is in $18. */
5272 else if (name[19] == 's' || name[19] == 'd')
5273 {
5274 if (pc == start_addr)
5275 {
5276 /* Check if the target of the stub is a compiler-generated
5277 stub. Such a stub for a function bar might have a name
5278 like __fn_stub_bar, and might look like this:
5279 mfc1 $4,$f13
5280 mfc1 $5,$f12
5281 mfc1 $6,$f15
5282 mfc1 $7,$f14
5283 la $1,bar (becomes a lui/addiu pair)
5284 jr $1
5285 So scan down to the lui/addi and extract the target
5286 address from those two instructions. */
5287
5288 CORE_ADDR target_pc = read_signed_register (2);
5289 t_inst inst;
5290 int i;
5291
5292 /* See if the name of the target function is __fn_stub_*. */
5293 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5294 return target_pc;
5295 if (strncmp (name, "__fn_stub_", 10) != 0
5296 && strcmp (name, "etext") != 0
5297 && strcmp (name, "_etext") != 0)
5298 return target_pc;
5299
5300 /* Scan through this _fn_stub_ code for the lui/addiu pair.
5301 The limit on the search is arbitrarily set to 20
5302 instructions. FIXME. */
5303 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5304 {
5305 inst = mips_fetch_instruction (target_pc);
5306 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5307 pc = (inst << 16) & 0xffff0000; /* high word */
5308 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5309 return pc | (inst & 0xffff); /* low word */
5310 }
5311
5312 /* Couldn't find the lui/addui pair, so return stub address. */
5313 return target_pc;
5314 }
5315 else
5316 /* This is the 'return' part of a call stub. The return
5317 address is in $r18. */
5318 return read_signed_register (18);
5319 }
5320 }
5321 return 0; /* not a stub */
5322 }
5323
5324
5325 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5326 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5327
5328 static int
5329 mips_in_call_stub (CORE_ADDR pc, char *name)
5330 {
5331 CORE_ADDR start_addr;
5332
5333 /* Find the starting address of the function containing the PC. If the
5334 caller didn't give us a name, look it up at the same time. */
5335 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5336 return 0;
5337
5338 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5339 {
5340 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5341 if (name[19] >= '0' && name[19] <= '9')
5342 return 1;
5343 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5344 before the jal instruction, this is effectively a call stub. */
5345 else if (name[19] == 's' || name[19] == 'd')
5346 return pc == start_addr;
5347 }
5348
5349 return 0; /* not a stub */
5350 }
5351
5352
5353 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5354 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5355
5356 static int
5357 mips_in_return_stub (CORE_ADDR pc, char *name)
5358 {
5359 CORE_ADDR start_addr;
5360
5361 /* Find the starting address of the function containing the PC. */
5362 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5363 return 0;
5364
5365 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5366 if (strcmp (name, "__mips16_ret_sf") == 0
5367 || strcmp (name, "__mips16_ret_df") == 0)
5368 return 1;
5369
5370 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
5371 i.e. after the jal instruction, this is effectively a return stub. */
5372 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5373 && (name[19] == 's' || name[19] == 'd')
5374 && pc != start_addr)
5375 return 1;
5376
5377 return 0; /* not a stub */
5378 }
5379
5380
5381 /* Return non-zero if the PC is in a library helper function that should
5382 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5383
5384 int
5385 mips_ignore_helper (CORE_ADDR pc)
5386 {
5387 char *name;
5388
5389 /* Find the starting address and name of the function containing the PC. */
5390 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5391 return 0;
5392
5393 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5394 that we want to ignore. */
5395 return (strcmp (name, "__mips16_ret_sf") == 0
5396 || strcmp (name, "__mips16_ret_df") == 0);
5397 }
5398
5399
5400 /* Return a location where we can set a breakpoint that will be hit
5401 when an inferior function call returns. This is normally the
5402 program's entry point. Executables that don't have an entry
5403 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
5404 whose address is the location where the breakpoint should be placed. */
5405
5406 static CORE_ADDR
5407 mips_call_dummy_address (void)
5408 {
5409 struct minimal_symbol *sym;
5410
5411 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
5412 if (sym)
5413 return SYMBOL_VALUE_ADDRESS (sym);
5414 else
5415 return entry_point_address ();
5416 }
5417
5418
5419 /* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5420 the register stored on the stack (32) is different to its real raw
5421 size (64). The below ensures that registers are fetched from the
5422 stack using their ABI size and then stored into the RAW_BUFFER
5423 using their raw size.
5424
5425 The alternative to adding this function would be to add an ABI
5426 macro - REGISTER_STACK_SIZE(). */
5427
5428 static void
5429 mips_get_saved_register (char *raw_buffer,
5430 int *optimizedp,
5431 CORE_ADDR *addrp,
5432 struct frame_info *frame,
5433 int regnum,
5434 enum lval_type *lvalp)
5435 {
5436 CORE_ADDR addrx;
5437 enum lval_type lvalx;
5438 int optimizedx;
5439
5440 if (!target_has_registers)
5441 error ("No registers.");
5442
5443 /* Make certain that all needed parameters are present. */
5444 if (addrp == NULL)
5445 addrp = &addrx;
5446 if (lvalp == NULL)
5447 lvalp = &lvalx;
5448 if (optimizedp == NULL)
5449 optimizedp = &optimizedx;
5450 deprecated_unwind_get_saved_register (raw_buffer, optimizedp, addrp, frame,
5451 regnum, lvalp);
5452 /* FIXME: cagney/2002-09-13: This is just so bad. The MIPS should
5453 have a pseudo register range that correspons to the ABI's, rather
5454 than the ISA's, view of registers. These registers would then
5455 implicitly describe their size and hence could be used without
5456 the below munging. */
5457 if ((*lvalp) == lval_memory)
5458 {
5459 if (raw_buffer != NULL)
5460 {
5461 if (regnum < 32)
5462 {
5463 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
5464 saved. */
5465 LONGEST val = read_memory_integer ((*addrp), MIPS_SAVED_REGSIZE);
5466 store_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
5467 }
5468 }
5469 }
5470 }
5471
5472 /* Immediately after a function call, return the saved pc.
5473 Can't always go through the frames for this because on some machines
5474 the new frame is not set up until the new function executes
5475 some instructions. */
5476
5477 static CORE_ADDR
5478 mips_saved_pc_after_call (struct frame_info *frame)
5479 {
5480 return read_signed_register (RA_REGNUM);
5481 }
5482
5483
5484 /* Convert a dbx stab register number (from `r' declaration) to a gdb
5485 REGNUM */
5486
5487 static int
5488 mips_stab_reg_to_regnum (int num)
5489 {
5490 if (num >= 0 && num < 32)
5491 return num;
5492 else if (num >= 38 && num < 70)
5493 return num + FP0_REGNUM - 38;
5494 else if (num == 70)
5495 return HI_REGNUM;
5496 else if (num == 71)
5497 return LO_REGNUM;
5498 else
5499 {
5500 /* This will hopefully (eventually) provoke a warning. Should
5501 we be calling complaint() here? */
5502 return NUM_REGS + NUM_PSEUDO_REGS;
5503 }
5504 }
5505
5506
5507 /* Convert a dwarf, dwarf2, or ecoff register number to a gdb REGNUM */
5508
5509 static int
5510 mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
5511 {
5512 if (num >= 0 && num < 32)
5513 return num;
5514 else if (num >= 32 && num < 64)
5515 return num + FP0_REGNUM - 32;
5516 else if (num == 64)
5517 return HI_REGNUM;
5518 else if (num == 65)
5519 return LO_REGNUM;
5520 else
5521 {
5522 /* This will hopefully (eventually) provoke a warning. Should
5523 we be calling complaint() here? */
5524 return NUM_REGS + NUM_PSEUDO_REGS;
5525 }
5526 }
5527
5528
5529 /* Convert an integer into an address. By first converting the value
5530 into a pointer and then extracting it signed, the address is
5531 guarenteed to be correctly sign extended. */
5532
5533 static CORE_ADDR
5534 mips_integer_to_address (struct type *type, void *buf)
5535 {
5536 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5537 LONGEST val = unpack_long (type, buf);
5538 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5539 return extract_signed_integer (tmp,
5540 TYPE_LENGTH (builtin_type_void_data_ptr));
5541 }
5542
5543 static void
5544 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5545 {
5546 enum mips_abi *abip = (enum mips_abi *) obj;
5547 const char *name = bfd_get_section_name (abfd, sect);
5548
5549 if (*abip != MIPS_ABI_UNKNOWN)
5550 return;
5551
5552 if (strncmp (name, ".mdebug.", 8) != 0)
5553 return;
5554
5555 if (strcmp (name, ".mdebug.abi32") == 0)
5556 *abip = MIPS_ABI_O32;
5557 else if (strcmp (name, ".mdebug.abiN32") == 0)
5558 *abip = MIPS_ABI_N32;
5559 else if (strcmp (name, ".mdebug.abi64") == 0)
5560 *abip = MIPS_ABI_N64;
5561 else if (strcmp (name, ".mdebug.abiO64") == 0)
5562 *abip = MIPS_ABI_O64;
5563 else if (strcmp (name, ".mdebug.eabi32") == 0)
5564 *abip = MIPS_ABI_EABI32;
5565 else if (strcmp (name, ".mdebug.eabi64") == 0)
5566 *abip = MIPS_ABI_EABI64;
5567 else
5568 warning ("unsupported ABI %s.", name + 8);
5569 }
5570
5571 static enum mips_abi
5572 global_mips_abi (void)
5573 {
5574 int i;
5575
5576 for (i = 0; mips_abi_strings[i] != NULL; i++)
5577 if (mips_abi_strings[i] == mips_abi_string)
5578 return (enum mips_abi) i;
5579
5580 internal_error (__FILE__, __LINE__,
5581 "unknown ABI string");
5582 }
5583
5584 static struct gdbarch *
5585 mips_gdbarch_init (struct gdbarch_info info,
5586 struct gdbarch_list *arches)
5587 {
5588 struct gdbarch *gdbarch;
5589 struct gdbarch_tdep *tdep;
5590 int elf_flags;
5591 enum mips_abi mips_abi, found_abi, wanted_abi;
5592
5593 /* Reset the disassembly info, in case it was set to something
5594 non-default. */
5595 deprecated_tm_print_insn_info.flavour = bfd_target_unknown_flavour;
5596 deprecated_tm_print_insn_info.arch = bfd_arch_unknown;
5597 deprecated_tm_print_insn_info.mach = 0;
5598
5599 elf_flags = 0;
5600
5601 if (info.abfd)
5602 {
5603 /* First of all, extract the elf_flags, if available. */
5604 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5605 elf_flags = elf_elfheader (info.abfd)->e_flags;
5606 }
5607
5608 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5609 switch ((elf_flags & EF_MIPS_ABI))
5610 {
5611 case E_MIPS_ABI_O32:
5612 mips_abi = MIPS_ABI_O32;
5613 break;
5614 case E_MIPS_ABI_O64:
5615 mips_abi = MIPS_ABI_O64;
5616 break;
5617 case E_MIPS_ABI_EABI32:
5618 mips_abi = MIPS_ABI_EABI32;
5619 break;
5620 case E_MIPS_ABI_EABI64:
5621 mips_abi = MIPS_ABI_EABI64;
5622 break;
5623 default:
5624 if ((elf_flags & EF_MIPS_ABI2))
5625 mips_abi = MIPS_ABI_N32;
5626 else
5627 mips_abi = MIPS_ABI_UNKNOWN;
5628 break;
5629 }
5630
5631 /* GCC creates a pseudo-section whose name describes the ABI. */
5632 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5633 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5634
5635 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5636 Use the ABI from the last architecture if there is one. */
5637 if (info.abfd == NULL && arches != NULL)
5638 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5639
5640 /* Try the architecture for any hint of the correct ABI. */
5641 if (mips_abi == MIPS_ABI_UNKNOWN
5642 && info.bfd_arch_info != NULL
5643 && info.bfd_arch_info->arch == bfd_arch_mips)
5644 {
5645 switch (info.bfd_arch_info->mach)
5646 {
5647 case bfd_mach_mips3900:
5648 mips_abi = MIPS_ABI_EABI32;
5649 break;
5650 case bfd_mach_mips4100:
5651 case bfd_mach_mips5000:
5652 mips_abi = MIPS_ABI_EABI64;
5653 break;
5654 case bfd_mach_mips8000:
5655 case bfd_mach_mips10000:
5656 /* On Irix, ELF64 executables use the N64 ABI. The
5657 pseudo-sections which describe the ABI aren't present
5658 on IRIX. (Even for executables created by gcc.) */
5659 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5660 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5661 mips_abi = MIPS_ABI_N64;
5662 else
5663 mips_abi = MIPS_ABI_N32;
5664 break;
5665 }
5666 }
5667
5668 if (mips_abi == MIPS_ABI_UNKNOWN)
5669 mips_abi = MIPS_ABI_O32;
5670
5671 /* Now that we have found what the ABI for this binary would be,
5672 check whether the user is overriding it. */
5673 found_abi = mips_abi;
5674 wanted_abi = global_mips_abi ();
5675 if (wanted_abi != MIPS_ABI_UNKNOWN)
5676 mips_abi = wanted_abi;
5677
5678 /* We have to set deprecated_tm_print_insn_info before looking for a
5679 pre-existing architecture, otherwise we may return before we get
5680 a chance to set it up. */
5681 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
5682 {
5683 /* Set up the disassembler info, so that we get the right
5684 register names from libopcodes. */
5685 if (mips_abi == MIPS_ABI_N32)
5686 deprecated_tm_print_insn_info.disassembler_options = "gpr-names=n32";
5687 else
5688 deprecated_tm_print_insn_info.disassembler_options = "gpr-names=64";
5689 deprecated_tm_print_insn_info.flavour = bfd_target_elf_flavour;
5690 deprecated_tm_print_insn_info.arch = bfd_arch_mips;
5691 if (info.bfd_arch_info != NULL
5692 && info.bfd_arch_info->arch == bfd_arch_mips
5693 && info.bfd_arch_info->mach)
5694 deprecated_tm_print_insn_info.mach = info.bfd_arch_info->mach;
5695 else
5696 deprecated_tm_print_insn_info.mach = bfd_mach_mips8000;
5697 }
5698 else
5699 /* This string is not recognized explicitly by the disassembler,
5700 but it tells the disassembler to not try to guess the ABI from
5701 the bfd elf headers, such that, if the user overrides the ABI
5702 of a program linked as NewABI, the disassembly will follow the
5703 register naming conventions specified by the user. */
5704 deprecated_tm_print_insn_info.disassembler_options = "gpr-names=32";
5705
5706 if (gdbarch_debug)
5707 {
5708 fprintf_unfiltered (gdb_stdlog,
5709 "mips_gdbarch_init: elf_flags = 0x%08x\n",
5710 elf_flags);
5711 fprintf_unfiltered (gdb_stdlog,
5712 "mips_gdbarch_init: mips_abi = %d\n",
5713 mips_abi);
5714 fprintf_unfiltered (gdb_stdlog,
5715 "mips_gdbarch_init: found_mips_abi = %d\n",
5716 found_abi);
5717 }
5718
5719 /* try to find a pre-existing architecture */
5720 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5721 arches != NULL;
5722 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5723 {
5724 /* MIPS needs to be pedantic about which ABI the object is
5725 using. */
5726 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5727 continue;
5728 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5729 continue;
5730 return arches->gdbarch;
5731 }
5732
5733 /* Need a new architecture. Fill in a target specific vector. */
5734 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5735 gdbarch = gdbarch_alloc (&info, tdep);
5736 tdep->elf_flags = elf_flags;
5737
5738 /* Initially set everything according to the default ABI/ISA. */
5739 set_gdbarch_short_bit (gdbarch, 16);
5740 set_gdbarch_int_bit (gdbarch, 32);
5741 set_gdbarch_float_bit (gdbarch, 32);
5742 set_gdbarch_double_bit (gdbarch, 64);
5743 set_gdbarch_long_double_bit (gdbarch, 64);
5744 set_gdbarch_deprecated_register_raw_size (gdbarch, mips_register_raw_size);
5745 tdep->found_abi = found_abi;
5746 tdep->mips_abi = mips_abi;
5747
5748 set_gdbarch_elf_make_msymbol_special (gdbarch,
5749 mips_elf_make_msymbol_special);
5750
5751 if (info.osabi == GDB_OSABI_IRIX)
5752 set_gdbarch_num_regs (gdbarch, 71);
5753 else
5754 set_gdbarch_num_regs (gdbarch, 90);
5755
5756 switch (mips_abi)
5757 {
5758 case MIPS_ABI_O32:
5759 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
5760 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o32_store_return_value);
5761 set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value);
5762 tdep->mips_default_saved_regsize = 4;
5763 tdep->mips_default_stack_argsize = 4;
5764 tdep->mips_fp_register_double = 0;
5765 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5766 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5767 tdep->gdb_target_is_mips64 = 0;
5768 tdep->default_mask_address_p = 0;
5769 set_gdbarch_long_bit (gdbarch, 32);
5770 set_gdbarch_ptr_bit (gdbarch, 32);
5771 set_gdbarch_long_long_bit (gdbarch, 64);
5772 set_gdbarch_reg_struct_has_addr (gdbarch,
5773 mips_o32_reg_struct_has_addr);
5774 set_gdbarch_use_struct_convention (gdbarch,
5775 always_use_struct_convention);
5776 break;
5777 case MIPS_ABI_O64:
5778 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
5779 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
5780 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
5781 tdep->mips_default_saved_regsize = 8;
5782 tdep->mips_default_stack_argsize = 8;
5783 tdep->mips_fp_register_double = 1;
5784 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5785 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5786 tdep->gdb_target_is_mips64 = 1;
5787 tdep->default_mask_address_p = 0;
5788 set_gdbarch_long_bit (gdbarch, 32);
5789 set_gdbarch_ptr_bit (gdbarch, 32);
5790 set_gdbarch_long_long_bit (gdbarch, 64);
5791 set_gdbarch_reg_struct_has_addr (gdbarch,
5792 mips_o32_reg_struct_has_addr);
5793 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
5794 break;
5795 case MIPS_ABI_EABI32:
5796 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5797 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5798 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5799 tdep->mips_default_saved_regsize = 4;
5800 tdep->mips_default_stack_argsize = 4;
5801 tdep->mips_fp_register_double = 0;
5802 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5803 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5804 tdep->gdb_target_is_mips64 = 0;
5805 tdep->default_mask_address_p = 0;
5806 set_gdbarch_long_bit (gdbarch, 32);
5807 set_gdbarch_ptr_bit (gdbarch, 32);
5808 set_gdbarch_long_long_bit (gdbarch, 64);
5809 set_gdbarch_reg_struct_has_addr (gdbarch,
5810 mips_eabi_reg_struct_has_addr);
5811 set_gdbarch_use_struct_convention (gdbarch,
5812 mips_eabi_use_struct_convention);
5813 break;
5814 case MIPS_ABI_EABI64:
5815 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5816 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5817 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5818 tdep->mips_default_saved_regsize = 8;
5819 tdep->mips_default_stack_argsize = 8;
5820 tdep->mips_fp_register_double = 1;
5821 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5822 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5823 tdep->gdb_target_is_mips64 = 1;
5824 tdep->default_mask_address_p = 0;
5825 set_gdbarch_long_bit (gdbarch, 64);
5826 set_gdbarch_ptr_bit (gdbarch, 64);
5827 set_gdbarch_long_long_bit (gdbarch, 64);
5828 set_gdbarch_reg_struct_has_addr (gdbarch,
5829 mips_eabi_reg_struct_has_addr);
5830 set_gdbarch_use_struct_convention (gdbarch,
5831 mips_eabi_use_struct_convention);
5832 break;
5833 case MIPS_ABI_N32:
5834 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5835 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5836 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5837 tdep->mips_default_saved_regsize = 8;
5838 tdep->mips_default_stack_argsize = 8;
5839 tdep->mips_fp_register_double = 1;
5840 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5841 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5842 tdep->gdb_target_is_mips64 = 1;
5843 tdep->default_mask_address_p = 0;
5844 set_gdbarch_long_bit (gdbarch, 32);
5845 set_gdbarch_ptr_bit (gdbarch, 32);
5846 set_gdbarch_long_long_bit (gdbarch, 64);
5847 set_gdbarch_use_struct_convention (gdbarch,
5848 mips_n32n64_use_struct_convention);
5849 set_gdbarch_reg_struct_has_addr (gdbarch,
5850 mips_n32n64_reg_struct_has_addr);
5851 break;
5852 case MIPS_ABI_N64:
5853 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5854 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5855 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5856 tdep->mips_default_saved_regsize = 8;
5857 tdep->mips_default_stack_argsize = 8;
5858 tdep->mips_fp_register_double = 1;
5859 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5860 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5861 tdep->gdb_target_is_mips64 = 1;
5862 tdep->default_mask_address_p = 0;
5863 set_gdbarch_long_bit (gdbarch, 64);
5864 set_gdbarch_ptr_bit (gdbarch, 64);
5865 set_gdbarch_long_long_bit (gdbarch, 64);
5866 set_gdbarch_use_struct_convention (gdbarch,
5867 mips_n32n64_use_struct_convention);
5868 set_gdbarch_reg_struct_has_addr (gdbarch,
5869 mips_n32n64_reg_struct_has_addr);
5870 break;
5871 default:
5872 internal_error (__FILE__, __LINE__,
5873 "unknown ABI in switch");
5874 }
5875
5876 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5877 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5878 comment:
5879
5880 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5881 flag in object files because to do so would make it impossible to
5882 link with libraries compiled without "-gp32". This is
5883 unnecessarily restrictive.
5884
5885 We could solve this problem by adding "-gp32" multilibs to gcc,
5886 but to set this flag before gcc is built with such multilibs will
5887 break too many systems.''
5888
5889 But even more unhelpfully, the default linker output target for
5890 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5891 for 64-bit programs - you need to change the ABI to change this,
5892 and not all gcc targets support that currently. Therefore using
5893 this flag to detect 32-bit mode would do the wrong thing given
5894 the current gcc - it would make GDB treat these 64-bit programs
5895 as 32-bit programs by default. */
5896
5897 /* enable/disable the MIPS FPU */
5898 if (!mips_fpu_type_auto)
5899 tdep->mips_fpu_type = mips_fpu_type;
5900 else if (info.bfd_arch_info != NULL
5901 && info.bfd_arch_info->arch == bfd_arch_mips)
5902 switch (info.bfd_arch_info->mach)
5903 {
5904 case bfd_mach_mips3900:
5905 case bfd_mach_mips4100:
5906 case bfd_mach_mips4111:
5907 tdep->mips_fpu_type = MIPS_FPU_NONE;
5908 break;
5909 case bfd_mach_mips4650:
5910 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
5911 break;
5912 default:
5913 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5914 break;
5915 }
5916 else
5917 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5918
5919 /* MIPS version of register names. NOTE: At present the MIPS
5920 register name management is part way between the old -
5921 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
5922 Further work on it is required. */
5923 /* NOTE: many targets (esp. embedded) do not go thru the
5924 gdbarch_register_name vector at all, instead bypassing it
5925 by defining REGISTER_NAMES. */
5926 set_gdbarch_register_name (gdbarch, mips_register_name);
5927 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5928 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
5929 set_gdbarch_deprecated_target_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */
5930 set_gdbarch_read_sp (gdbarch, mips_read_sp);
5931
5932 /* Add/remove bits from an address. The MIPS needs be careful to
5933 ensure that all 32 bit addresses are sign extended to 64 bits. */
5934 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5935
5936 /* There's a mess in stack frame creation. See comments in
5937 blockframe.c near reference to DEPRECATED_INIT_FRAME_PC_FIRST. */
5938 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
5939 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_noop);
5940
5941 /* Map debug register numbers onto internal register numbers. */
5942 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5943 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5944 set_gdbarch_dwarf_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5945 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5946
5947 /* Initialize a frame */
5948 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, mips_find_saved_regs);
5949 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
5950
5951 /* MIPS version of CALL_DUMMY */
5952
5953 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
5954 set_gdbarch_deprecated_pop_frame (gdbarch, mips_pop_frame);
5955 set_gdbarch_frame_align (gdbarch, mips_frame_align);
5956 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
5957 set_gdbarch_deprecated_register_convertible (gdbarch, mips_register_convertible);
5958 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, mips_register_convert_to_virtual);
5959 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, mips_register_convert_to_raw);
5960
5961 set_gdbarch_deprecated_frame_chain (gdbarch, mips_frame_chain);
5962 set_gdbarch_frameless_function_invocation (gdbarch,
5963 generic_frameless_function_invocation_not);
5964 set_gdbarch_deprecated_frame_saved_pc (gdbarch, mips_frame_saved_pc);
5965 set_gdbarch_frame_args_skip (gdbarch, 0);
5966
5967 set_gdbarch_deprecated_get_saved_register (gdbarch, mips_get_saved_register);
5968
5969 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5970 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5971 set_gdbarch_decr_pc_after_break (gdbarch, 0);
5972
5973 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
5974 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
5975
5976 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5977 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5978 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
5979
5980 set_gdbarch_function_start_offset (gdbarch, 0);
5981
5982 /* There are MIPS targets which do not yet use this since they still
5983 define REGISTER_VIRTUAL_TYPE. */
5984 set_gdbarch_deprecated_register_virtual_type (gdbarch, mips_register_virtual_type);
5985
5986 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
5987 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
5988
5989 /* Hook in OS ABI-specific overrides, if they have been registered. */
5990 gdbarch_init_osabi (info, gdbarch);
5991
5992 set_gdbarch_extract_struct_value_address (gdbarch,
5993 mips_extract_struct_value_address);
5994
5995 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
5996
5997 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
5998 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
5999
6000 return gdbarch;
6001 }
6002
6003 static void
6004 mips_abi_update (char *ignore_args, int from_tty,
6005 struct cmd_list_element *c)
6006 {
6007 struct gdbarch_info info;
6008
6009 /* Force the architecture to update, and (if it's a MIPS architecture)
6010 mips_gdbarch_init will take care of the rest. */
6011 gdbarch_info_init (&info);
6012 gdbarch_update_p (info);
6013 }
6014
6015 /* Print out which MIPS ABI is in use. */
6016
6017 static void
6018 show_mips_abi (char *ignore_args, int from_tty)
6019 {
6020 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
6021 printf_filtered (
6022 "The MIPS ABI is unknown because the current architecture is not MIPS.\n");
6023 else
6024 {
6025 enum mips_abi global_abi = global_mips_abi ();
6026 enum mips_abi actual_abi = mips_abi (current_gdbarch);
6027 const char *actual_abi_str = mips_abi_strings[actual_abi];
6028
6029 if (global_abi == MIPS_ABI_UNKNOWN)
6030 printf_filtered ("The MIPS ABI is set automatically (currently \"%s\").\n",
6031 actual_abi_str);
6032 else if (global_abi == actual_abi)
6033 printf_filtered (
6034 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6035 actual_abi_str);
6036 else
6037 {
6038 /* Probably shouldn't happen... */
6039 printf_filtered (
6040 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6041 actual_abi_str,
6042 mips_abi_strings[global_abi]);
6043 }
6044 }
6045 }
6046
6047 static void
6048 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6049 {
6050 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6051 if (tdep != NULL)
6052 {
6053 int ef_mips_arch;
6054 int ef_mips_32bitmode;
6055 /* determine the ISA */
6056 switch (tdep->elf_flags & EF_MIPS_ARCH)
6057 {
6058 case E_MIPS_ARCH_1:
6059 ef_mips_arch = 1;
6060 break;
6061 case E_MIPS_ARCH_2:
6062 ef_mips_arch = 2;
6063 break;
6064 case E_MIPS_ARCH_3:
6065 ef_mips_arch = 3;
6066 break;
6067 case E_MIPS_ARCH_4:
6068 ef_mips_arch = 4;
6069 break;
6070 default:
6071 ef_mips_arch = 0;
6072 break;
6073 }
6074 /* determine the size of a pointer */
6075 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
6076 fprintf_unfiltered (file,
6077 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
6078 tdep->elf_flags);
6079 fprintf_unfiltered (file,
6080 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6081 ef_mips_32bitmode);
6082 fprintf_unfiltered (file,
6083 "mips_dump_tdep: ef_mips_arch = %d\n",
6084 ef_mips_arch);
6085 fprintf_unfiltered (file,
6086 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6087 tdep->mips_abi,
6088 mips_abi_strings[tdep->mips_abi]);
6089 fprintf_unfiltered (file,
6090 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6091 mips_mask_address_p (),
6092 tdep->default_mask_address_p);
6093 }
6094 fprintf_unfiltered (file,
6095 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6096 FP_REGISTER_DOUBLE);
6097 fprintf_unfiltered (file,
6098 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6099 MIPS_DEFAULT_FPU_TYPE,
6100 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6101 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6102 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6103 : "???"));
6104 fprintf_unfiltered (file,
6105 "mips_dump_tdep: MIPS_EABI = %d\n",
6106 MIPS_EABI);
6107 fprintf_unfiltered (file,
6108 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
6109 MIPS_LAST_FP_ARG_REGNUM,
6110 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
6111 fprintf_unfiltered (file,
6112 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6113 MIPS_FPU_TYPE,
6114 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6115 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6116 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6117 : "???"));
6118 fprintf_unfiltered (file,
6119 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6120 MIPS_DEFAULT_SAVED_REGSIZE);
6121 fprintf_unfiltered (file,
6122 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6123 FP_REGISTER_DOUBLE);
6124 fprintf_unfiltered (file,
6125 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6126 MIPS_DEFAULT_STACK_ARGSIZE);
6127 fprintf_unfiltered (file,
6128 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6129 MIPS_STACK_ARGSIZE);
6130 fprintf_unfiltered (file,
6131 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
6132 MIPS_REGSIZE);
6133 fprintf_unfiltered (file,
6134 "mips_dump_tdep: A0_REGNUM = %d\n",
6135 A0_REGNUM);
6136 fprintf_unfiltered (file,
6137 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6138 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6139 fprintf_unfiltered (file,
6140 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6141 XSTRING (ATTACH_DETACH));
6142 fprintf_unfiltered (file,
6143 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
6144 BADVADDR_REGNUM);
6145 fprintf_unfiltered (file,
6146 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
6147 CAUSE_REGNUM);
6148 fprintf_unfiltered (file,
6149 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6150 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6151 fprintf_unfiltered (file,
6152 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6153 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
6154 fprintf_unfiltered (file,
6155 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
6156 FCRCS_REGNUM);
6157 fprintf_unfiltered (file,
6158 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
6159 FCRIR_REGNUM);
6160 fprintf_unfiltered (file,
6161 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6162 FIRST_EMBED_REGNUM);
6163 fprintf_unfiltered (file,
6164 "mips_dump_tdep: FPA0_REGNUM = %d\n",
6165 FPA0_REGNUM);
6166 fprintf_unfiltered (file,
6167 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
6168 GDB_TARGET_IS_MIPS64);
6169 fprintf_unfiltered (file,
6170 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
6171 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
6172 fprintf_unfiltered (file,
6173 "mips_dump_tdep: HI_REGNUM = %d\n",
6174 HI_REGNUM);
6175 fprintf_unfiltered (file,
6176 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6177 XSTRING (IGNORE_HELPER_CALL (PC)));
6178 fprintf_unfiltered (file,
6179 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6180 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6181 fprintf_unfiltered (file,
6182 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6183 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
6184 fprintf_unfiltered (file,
6185 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6186 LAST_EMBED_REGNUM);
6187 fprintf_unfiltered (file,
6188 "mips_dump_tdep: LO_REGNUM = %d\n",
6189 LO_REGNUM);
6190 #ifdef MACHINE_CPROC_FP_OFFSET
6191 fprintf_unfiltered (file,
6192 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6193 MACHINE_CPROC_FP_OFFSET);
6194 #endif
6195 #ifdef MACHINE_CPROC_PC_OFFSET
6196 fprintf_unfiltered (file,
6197 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6198 MACHINE_CPROC_PC_OFFSET);
6199 #endif
6200 #ifdef MACHINE_CPROC_SP_OFFSET
6201 fprintf_unfiltered (file,
6202 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6203 MACHINE_CPROC_SP_OFFSET);
6204 #endif
6205 fprintf_unfiltered (file,
6206 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6207 MIPS16_INSTLEN);
6208 fprintf_unfiltered (file,
6209 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6210 fprintf_unfiltered (file,
6211 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6212 fprintf_unfiltered (file,
6213 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6214 MIPS_INSTLEN);
6215 fprintf_unfiltered (file,
6216 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6217 MIPS_LAST_ARG_REGNUM,
6218 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
6219 fprintf_unfiltered (file,
6220 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6221 MIPS_NUMREGS);
6222 fprintf_unfiltered (file,
6223 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
6224 fprintf_unfiltered (file,
6225 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6226 MIPS_SAVED_REGSIZE);
6227 fprintf_unfiltered (file,
6228 "mips_dump_tdep: OP_LDFPR = used?\n");
6229 fprintf_unfiltered (file,
6230 "mips_dump_tdep: OP_LDGPR = used?\n");
6231 fprintf_unfiltered (file,
6232 "mips_dump_tdep: PRID_REGNUM = %d\n",
6233 PRID_REGNUM);
6234 fprintf_unfiltered (file,
6235 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
6236 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
6237 fprintf_unfiltered (file,
6238 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6239 fprintf_unfiltered (file,
6240 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6241 fprintf_unfiltered (file,
6242 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6243 fprintf_unfiltered (file,
6244 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6245 fprintf_unfiltered (file,
6246 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6247 fprintf_unfiltered (file,
6248 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6249 fprintf_unfiltered (file,
6250 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6251 fprintf_unfiltered (file,
6252 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6253 fprintf_unfiltered (file,
6254 "mips_dump_tdep: PROC_PC_REG = function?\n");
6255 fprintf_unfiltered (file,
6256 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6257 fprintf_unfiltered (file,
6258 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6259 fprintf_unfiltered (file,
6260 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6261 fprintf_unfiltered (file,
6262 "mips_dump_tdep: PS_REGNUM = %d\n",
6263 PS_REGNUM);
6264 fprintf_unfiltered (file,
6265 "mips_dump_tdep: RA_REGNUM = %d\n",
6266 RA_REGNUM);
6267 fprintf_unfiltered (file,
6268 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
6269 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6270 fprintf_unfiltered (file,
6271 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
6272 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6273 fprintf_unfiltered (file,
6274 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
6275 fprintf_unfiltered (file,
6276 "mips_dump_tdep: ROUND_DOWN = function?\n");
6277 fprintf_unfiltered (file,
6278 "mips_dump_tdep: ROUND_UP = function?\n");
6279 #ifdef SAVED_BYTES
6280 fprintf_unfiltered (file,
6281 "mips_dump_tdep: SAVED_BYTES = %d\n",
6282 SAVED_BYTES);
6283 #endif
6284 #ifdef SAVED_FP
6285 fprintf_unfiltered (file,
6286 "mips_dump_tdep: SAVED_FP = %d\n",
6287 SAVED_FP);
6288 #endif
6289 #ifdef SAVED_PC
6290 fprintf_unfiltered (file,
6291 "mips_dump_tdep: SAVED_PC = %d\n",
6292 SAVED_PC);
6293 #endif
6294 fprintf_unfiltered (file,
6295 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6296 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6297 fprintf_unfiltered (file,
6298 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6299 fprintf_unfiltered (file,
6300 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6301 SIGFRAME_BASE);
6302 fprintf_unfiltered (file,
6303 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6304 SIGFRAME_FPREGSAVE_OFF);
6305 fprintf_unfiltered (file,
6306 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6307 SIGFRAME_PC_OFF);
6308 fprintf_unfiltered (file,
6309 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6310 SIGFRAME_REGSAVE_OFF);
6311 fprintf_unfiltered (file,
6312 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
6313 SIGFRAME_REG_SIZE);
6314 fprintf_unfiltered (file,
6315 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6316 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6317 fprintf_unfiltered (file,
6318 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6319 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6320 fprintf_unfiltered (file,
6321 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6322 SOFTWARE_SINGLE_STEP_P ());
6323 fprintf_unfiltered (file,
6324 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6325 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6326 #ifdef STACK_END_ADDR
6327 fprintf_unfiltered (file,
6328 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6329 STACK_END_ADDR);
6330 #endif
6331 fprintf_unfiltered (file,
6332 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6333 XSTRING (STEP_SKIPS_DELAY (PC)));
6334 fprintf_unfiltered (file,
6335 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6336 STEP_SKIPS_DELAY_P);
6337 fprintf_unfiltered (file,
6338 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6339 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6340 fprintf_unfiltered (file,
6341 "mips_dump_tdep: T9_REGNUM = %d\n",
6342 T9_REGNUM);
6343 fprintf_unfiltered (file,
6344 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6345 fprintf_unfiltered (file,
6346 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6347 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6348 fprintf_unfiltered (file,
6349 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6350 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
6351 #ifdef TRACE_CLEAR
6352 fprintf_unfiltered (file,
6353 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6354 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6355 #endif
6356 #ifdef TRACE_FLAVOR
6357 fprintf_unfiltered (file,
6358 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6359 TRACE_FLAVOR);
6360 #endif
6361 #ifdef TRACE_FLAVOR_SIZE
6362 fprintf_unfiltered (file,
6363 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6364 TRACE_FLAVOR_SIZE);
6365 #endif
6366 #ifdef TRACE_SET
6367 fprintf_unfiltered (file,
6368 "mips_dump_tdep: TRACE_SET # %s\n",
6369 XSTRING (TRACE_SET (X,STATE)));
6370 #endif
6371 #ifdef UNUSED_REGNUM
6372 fprintf_unfiltered (file,
6373 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6374 UNUSED_REGNUM);
6375 #endif
6376 fprintf_unfiltered (file,
6377 "mips_dump_tdep: V0_REGNUM = %d\n",
6378 V0_REGNUM);
6379 fprintf_unfiltered (file,
6380 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6381 (long) VM_MIN_ADDRESS);
6382 #ifdef VX_NUM_REGS
6383 fprintf_unfiltered (file,
6384 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
6385 VX_NUM_REGS);
6386 #endif
6387 fprintf_unfiltered (file,
6388 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6389 ZERO_REGNUM);
6390 fprintf_unfiltered (file,
6391 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6392 _PROC_MAGIC_);
6393 }
6394
6395 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
6396
6397 void
6398 _initialize_mips_tdep (void)
6399 {
6400 static struct cmd_list_element *mipsfpulist = NULL;
6401 struct cmd_list_element *c;
6402
6403 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6404 if (MIPS_ABI_LAST + 1
6405 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6406 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6407
6408 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
6409 if (!deprecated_tm_print_insn) /* Someone may have already set it */
6410 deprecated_tm_print_insn = gdb_print_insn_mips;
6411
6412 /* Add root prefix command for all "set mips"/"show mips" commands */
6413 add_prefix_cmd ("mips", no_class, set_mips_command,
6414 "Various MIPS specific commands.",
6415 &setmipscmdlist, "set mips ", 0, &setlist);
6416
6417 add_prefix_cmd ("mips", no_class, show_mips_command,
6418 "Various MIPS specific commands.",
6419 &showmipscmdlist, "show mips ", 0, &showlist);
6420
6421 /* Allow the user to override the saved register size. */
6422 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
6423 class_obscure,
6424 size_enums,
6425 &mips_saved_regsize_string, "\
6426 Set size of general purpose registers saved on the stack.\n\
6427 This option can be set to one of:\n\
6428 32 - Force GDB to treat saved GP registers as 32-bit\n\
6429 64 - Force GDB to treat saved GP registers as 64-bit\n\
6430 auto - Allow GDB to use the target's default setting or autodetect the\n\
6431 saved GP register size from information contained in the executable.\n\
6432 (default: auto)",
6433 &setmipscmdlist),
6434 &showmipscmdlist);
6435
6436 /* Allow the user to override the argument stack size. */
6437 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6438 class_obscure,
6439 size_enums,
6440 &mips_stack_argsize_string, "\
6441 Set the amount of stack space reserved for each argument.\n\
6442 This option can be set to one of:\n\
6443 32 - Force GDB to allocate 32-bit chunks per argument\n\
6444 64 - Force GDB to allocate 64-bit chunks per argument\n\
6445 auto - Allow GDB to determine the correct setting from the current\n\
6446 target and executable (default)",
6447 &setmipscmdlist),
6448 &showmipscmdlist);
6449
6450 /* Allow the user to override the ABI. */
6451 c = add_set_enum_cmd
6452 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6453 "Set the ABI used by this program.\n"
6454 "This option can be set to one of:\n"
6455 " auto - the default ABI associated with the current binary\n"
6456 " o32\n"
6457 " o64\n"
6458 " n32\n"
6459 " n64\n"
6460 " eabi32\n"
6461 " eabi64",
6462 &setmipscmdlist);
6463 set_cmd_sfunc (c, mips_abi_update);
6464 add_cmd ("abi", class_obscure, show_mips_abi,
6465 "Show ABI in use by MIPS target", &showmipscmdlist);
6466
6467 /* Let the user turn off floating point and set the fence post for
6468 heuristic_proc_start. */
6469
6470 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6471 "Set use of MIPS floating-point coprocessor.",
6472 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6473 add_cmd ("single", class_support, set_mipsfpu_single_command,
6474 "Select single-precision MIPS floating-point coprocessor.",
6475 &mipsfpulist);
6476 add_cmd ("double", class_support, set_mipsfpu_double_command,
6477 "Select double-precision MIPS floating-point coprocessor.",
6478 &mipsfpulist);
6479 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6480 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6481 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6482 add_cmd ("none", class_support, set_mipsfpu_none_command,
6483 "Select no MIPS floating-point coprocessor.",
6484 &mipsfpulist);
6485 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6486 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6487 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6488 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6489 "Select MIPS floating-point coprocessor automatically.",
6490 &mipsfpulist);
6491 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6492 "Show current use of MIPS floating-point coprocessor target.",
6493 &showlist);
6494
6495 /* We really would like to have both "0" and "unlimited" work, but
6496 command.c doesn't deal with that. So make it a var_zinteger
6497 because the user can always use "999999" or some such for unlimited. */
6498 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6499 (char *) &heuristic_fence_post,
6500 "\
6501 Set the distance searched for the start of a function.\n\
6502 If you are debugging a stripped executable, GDB needs to search through the\n\
6503 program for the start of a function. This command sets the distance of the\n\
6504 search. The only need to set it is when debugging a stripped executable.",
6505 &setlist);
6506 /* We need to throw away the frame cache when we set this, since it
6507 might change our ability to get backtraces. */
6508 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
6509 add_show_from_set (c, &showlist);
6510
6511 /* Allow the user to control whether the upper bits of 64-bit
6512 addresses should be zeroed. */
6513 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6514 Set zeroing of upper 32 bits of 64-bit addresses.\n\
6515 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6516 allow GDB to determine the correct value.\n", "\
6517 Show zeroing of upper 32 bits of 64-bit addresses.",
6518 NULL, show_mask_address,
6519 &setmipscmdlist, &showmipscmdlist);
6520
6521 /* Allow the user to control the size of 32 bit registers within the
6522 raw remote packet. */
6523 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
6524 class_obscure,
6525 var_boolean,
6526 (char *)&mips64_transfers_32bit_regs_p, "\
6527 Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
6528 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6529 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
6530 64 bits for others. Use \"off\" to disable compatibility mode",
6531 &setlist),
6532 &showlist);
6533
6534 /* Debug this files internals. */
6535 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6536 &mips_debug, "Set mips debugging.\n\
6537 When non-zero, mips specific debugging is enabled.", &setdebuglist),
6538 &showdebuglist);
6539 }