2003-05-31 Andrew Cagney <cagney@redhat.com>
[binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include "gdb_assert.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "symtab.h"
32 #include "value.h"
33 #include "gdbcmd.h"
34 #include "language.h"
35 #include "gdbcore.h"
36 #include "symfile.h"
37 #include "objfiles.h"
38 #include "gdbtypes.h"
39 #include "target.h"
40 #include "arch-utils.h"
41 #include "regcache.h"
42 #include "osabi.h"
43 #include "mips-tdep.h"
44 #include "block.h"
45
46 #include "opcode/mips.h"
47 #include "elf/mips.h"
48 #include "elf-bfd.h"
49 #include "symcat.h"
50
51 static void set_reg_offset (CORE_ADDR *saved_regs, int regnum, CORE_ADDR off);
52
53 /* A useful bit in the CP0 status register (PS_REGNUM). */
54 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
55 #define ST0_FR (1 << 26)
56
57 /* The sizes of floating point registers. */
58
59 enum
60 {
61 MIPS_FPU_SINGLE_REGSIZE = 4,
62 MIPS_FPU_DOUBLE_REGSIZE = 8
63 };
64
65
66 static const char *mips_abi_string;
67
68 static const char *mips_abi_strings[] = {
69 "auto",
70 "n32",
71 "o32",
72 "n64",
73 "o64",
74 "eabi32",
75 "eabi64",
76 NULL
77 };
78
79 struct frame_extra_info
80 {
81 mips_extra_func_info_t proc_desc;
82 int num_args;
83 };
84
85 /* Various MIPS ISA options (related to stack analysis) can be
86 overridden dynamically. Establish an enum/array for managing
87 them. */
88
89 static const char size_auto[] = "auto";
90 static const char size_32[] = "32";
91 static const char size_64[] = "64";
92
93 static const char *size_enums[] = {
94 size_auto,
95 size_32,
96 size_64,
97 0
98 };
99
100 /* Some MIPS boards don't support floating point while others only
101 support single-precision floating-point operations. See also
102 FP_REGISTER_DOUBLE. */
103
104 enum mips_fpu_type
105 {
106 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
107 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
108 MIPS_FPU_NONE /* No floating point. */
109 };
110
111 #ifndef MIPS_DEFAULT_FPU_TYPE
112 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
113 #endif
114 static int mips_fpu_type_auto = 1;
115 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
116
117 static int mips_debug = 0;
118
119 /* MIPS specific per-architecture information */
120 struct gdbarch_tdep
121 {
122 /* from the elf header */
123 int elf_flags;
124
125 /* mips options */
126 enum mips_abi mips_abi;
127 enum mips_abi found_abi;
128 enum mips_fpu_type mips_fpu_type;
129 int mips_last_arg_regnum;
130 int mips_last_fp_arg_regnum;
131 int mips_default_saved_regsize;
132 int mips_fp_register_double;
133 int mips_default_stack_argsize;
134 int gdb_target_is_mips64;
135 int default_mask_address_p;
136 };
137
138 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
139 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
140
141 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
142
143 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
144
145 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
146
147 /* Return the currently configured (or set) saved register size. */
148
149 #define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
150
151 static const char *mips_saved_regsize_string = size_auto;
152
153 #define MIPS_SAVED_REGSIZE (mips_saved_regsize())
154
155 /* Return the contents of register REGNUM as a signed integer. */
156
157 static LONGEST
158 read_signed_register (int regnum)
159 {
160 void *buf = alloca (REGISTER_RAW_SIZE (regnum));
161 deprecated_read_register_gen (regnum, buf);
162 return (extract_signed_integer (buf, REGISTER_RAW_SIZE (regnum)));
163 }
164
165 static LONGEST
166 read_signed_register_pid (int regnum, ptid_t ptid)
167 {
168 ptid_t save_ptid;
169 LONGEST retval;
170
171 if (ptid_equal (ptid, inferior_ptid))
172 return read_signed_register (regnum);
173
174 save_ptid = inferior_ptid;
175
176 inferior_ptid = ptid;
177
178 retval = read_signed_register (regnum);
179
180 inferior_ptid = save_ptid;
181
182 return retval;
183 }
184
185 /* Return the MIPS ABI associated with GDBARCH. */
186 enum mips_abi
187 mips_abi (struct gdbarch *gdbarch)
188 {
189 return gdbarch_tdep (gdbarch)->mips_abi;
190 }
191
192 static unsigned int
193 mips_saved_regsize (void)
194 {
195 if (mips_saved_regsize_string == size_auto)
196 return MIPS_DEFAULT_SAVED_REGSIZE;
197 else if (mips_saved_regsize_string == size_64)
198 return 8;
199 else /* if (mips_saved_regsize_string == size_32) */
200 return 4;
201 }
202
203 /* Functions for setting and testing a bit in a minimal symbol that
204 marks it as 16-bit function. The MSB of the minimal symbol's
205 "info" field is used for this purpose. This field is already
206 being used to store the symbol size, so the assumption is
207 that the symbol size cannot exceed 2^31.
208
209 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
210 i.e. refers to a 16-bit function, and sets a "special" bit in a
211 minimal symbol to mark it as a 16-bit function
212
213 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
214 MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
215 the "info" field with the "special" bit masked out */
216
217 static void
218 mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
219 {
220 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
221 {
222 MSYMBOL_INFO (msym) = (char *)
223 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
224 SYMBOL_VALUE_ADDRESS (msym) |= 1;
225 }
226 }
227
228 static int
229 msymbol_is_special (struct minimal_symbol *msym)
230 {
231 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
232 }
233
234 static long
235 msymbol_size (struct minimal_symbol *msym)
236 {
237 return ((long) MSYMBOL_INFO (msym) & 0x7fffffff);
238 }
239
240 /* XFER a value from the big/little/left end of the register.
241 Depending on the size of the value it might occupy the entire
242 register or just part of it. Make an allowance for this, aligning
243 things accordingly. */
244
245 static void
246 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
247 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
248 int buf_offset)
249 {
250 bfd_byte reg[MAX_REGISTER_SIZE];
251 int reg_offset = 0;
252 /* Need to transfer the left or right part of the register, based on
253 the targets byte order. */
254 switch (endian)
255 {
256 case BFD_ENDIAN_BIG:
257 reg_offset = REGISTER_RAW_SIZE (reg_num) - length;
258 break;
259 case BFD_ENDIAN_LITTLE:
260 reg_offset = 0;
261 break;
262 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
263 reg_offset = 0;
264 break;
265 default:
266 internal_error (__FILE__, __LINE__, "bad switch");
267 }
268 if (mips_debug)
269 fprintf_unfiltered (gdb_stderr,
270 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
271 reg_num, reg_offset, buf_offset, length);
272 if (mips_debug && out != NULL)
273 {
274 int i;
275 fprintf_unfiltered (gdb_stdlog, "out ");
276 for (i = 0; i < length; i++)
277 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
278 }
279 if (in != NULL)
280 regcache_raw_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
281 if (out != NULL)
282 regcache_raw_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
283 if (mips_debug && in != NULL)
284 {
285 int i;
286 fprintf_unfiltered (gdb_stdlog, "in ");
287 for (i = 0; i < length; i++)
288 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
289 }
290 if (mips_debug)
291 fprintf_unfiltered (gdb_stdlog, "\n");
292 }
293
294 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
295 compatiblity mode. A return value of 1 means that we have
296 physical 64-bit registers, but should treat them as 32-bit registers. */
297
298 static int
299 mips2_fp_compat (void)
300 {
301 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
302 meaningful. */
303 if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
304 return 0;
305
306 #if 0
307 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
308 in all the places we deal with FP registers. PR gdb/413. */
309 /* Otherwise check the FR bit in the status register - it controls
310 the FP compatiblity mode. If it is clear we are in compatibility
311 mode. */
312 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
313 return 1;
314 #endif
315
316 return 0;
317 }
318
319 /* Indicate that the ABI makes use of double-precision registers
320 provided by the FPU (rather than combining pairs of registers to
321 form double-precision values). Do not use "TARGET_IS_MIPS64" to
322 determine if the ABI is using double-precision registers. See also
323 MIPS_FPU_TYPE. */
324 #define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
325
326 /* The amount of space reserved on the stack for registers. This is
327 different to MIPS_SAVED_REGSIZE as it determines the alignment of
328 data allocated after the registers have run out. */
329
330 #define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
331
332 #define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
333
334 static const char *mips_stack_argsize_string = size_auto;
335
336 static unsigned int
337 mips_stack_argsize (void)
338 {
339 if (mips_stack_argsize_string == size_auto)
340 return MIPS_DEFAULT_STACK_ARGSIZE;
341 else if (mips_stack_argsize_string == size_64)
342 return 8;
343 else /* if (mips_stack_argsize_string == size_32) */
344 return 4;
345 }
346
347 #define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
348
349 #define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
350
351 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
352
353 int gdb_print_insn_mips (bfd_vma, disassemble_info *);
354
355 static mips_extra_func_info_t heuristic_proc_desc (CORE_ADDR, CORE_ADDR,
356 struct frame_info *, int);
357
358 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
359
360 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
361
362 static int mips_set_processor_type (char *);
363
364 static void mips_show_processor_type_command (char *, int);
365
366 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
367
368 static mips_extra_func_info_t find_proc_desc (CORE_ADDR pc,
369 struct frame_info *next_frame,
370 int cur_frame);
371
372 static CORE_ADDR after_prologue (CORE_ADDR pc,
373 mips_extra_func_info_t proc_desc);
374
375 static struct type *mips_float_register_type (void);
376 static struct type *mips_double_register_type (void);
377
378 /* This value is the model of MIPS in use. It is derived from the value
379 of the PrID register. */
380
381 char *mips_processor_type;
382
383 char *tmp_mips_processor_type;
384
385 /* The list of available "set mips " and "show mips " commands */
386
387 static struct cmd_list_element *setmipscmdlist = NULL;
388 static struct cmd_list_element *showmipscmdlist = NULL;
389
390 /* A set of original names, to be used when restoring back to generic
391 registers from a specific set. */
392 static char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
393
394 /* Integer registers 0 thru 31 are handled explicitly by
395 mips_register_name(). Processor specific registers 32 and above
396 are listed in the sets of register names assigned to
397 mips_processor_reg_names. */
398 static char **mips_processor_reg_names = mips_generic_reg_names;
399
400 /* Return the name of the register corresponding to REGNO. */
401 static const char *
402 mips_register_name (int regno)
403 {
404 /* GPR names for all ABIs other than n32/n64. */
405 static char *mips_gpr_names[] = {
406 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
407 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
408 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
409 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
410 };
411
412 /* GPR names for n32 and n64 ABIs. */
413 static char *mips_n32_n64_gpr_names[] = {
414 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
415 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
416 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
417 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
418 };
419
420 enum mips_abi abi = mips_abi (current_gdbarch);
421
422 /* The MIPS integer registers are always mapped from 0 to 31. The
423 names of the registers (which reflects the conventions regarding
424 register use) vary depending on the ABI. */
425 if (0 <= regno && regno < 32)
426 {
427 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
428 return mips_n32_n64_gpr_names[regno];
429 else
430 return mips_gpr_names[regno];
431 }
432 else if (32 <= regno && regno < NUM_REGS)
433 return mips_processor_reg_names[regno - 32];
434 else
435 internal_error (__FILE__, __LINE__,
436 "mips_register_name: bad register number %d", regno);
437 }
438
439 /* *INDENT-OFF* */
440 /* Names of IDT R3041 registers. */
441
442 char *mips_r3041_reg_names[] = {
443 "sr", "lo", "hi", "bad", "cause","pc",
444 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
445 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
446 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
447 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
448 "fsr", "fir", "",/*"fp"*/ "",
449 "", "", "bus", "ccfg", "", "", "", "",
450 "", "", "port", "cmp", "", "", "epc", "prid",
451 };
452
453 /* Names of IDT R3051 registers. */
454
455 char *mips_r3051_reg_names[] = {
456 "sr", "lo", "hi", "bad", "cause","pc",
457 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
458 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
459 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
460 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
461 "fsr", "fir", ""/*"fp"*/, "",
462 "inx", "rand", "elo", "", "ctxt", "", "", "",
463 "", "", "ehi", "", "", "", "epc", "prid",
464 };
465
466 /* Names of IDT R3081 registers. */
467
468 char *mips_r3081_reg_names[] = {
469 "sr", "lo", "hi", "bad", "cause","pc",
470 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
471 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
472 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
473 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
474 "fsr", "fir", ""/*"fp"*/, "",
475 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
476 "", "", "ehi", "", "", "", "epc", "prid",
477 };
478
479 /* Names of LSI 33k registers. */
480
481 char *mips_lsi33k_reg_names[] = {
482 "epc", "hi", "lo", "sr", "cause","badvaddr",
483 "dcic", "bpc", "bda", "", "", "", "", "",
484 "", "", "", "", "", "", "", "",
485 "", "", "", "", "", "", "", "",
486 "", "", "", "", "", "", "", "",
487 "", "", "", "",
488 "", "", "", "", "", "", "", "",
489 "", "", "", "", "", "", "", "",
490 };
491
492 struct {
493 char *name;
494 char **regnames;
495 } mips_processor_type_table[] = {
496 { "generic", mips_generic_reg_names },
497 { "r3041", mips_r3041_reg_names },
498 { "r3051", mips_r3051_reg_names },
499 { "r3071", mips_r3081_reg_names },
500 { "r3081", mips_r3081_reg_names },
501 { "lsi33k", mips_lsi33k_reg_names },
502 { NULL, NULL }
503 };
504 /* *INDENT-ON* */
505
506
507
508
509 /* Table to translate MIPS16 register field to actual register number. */
510 static int mips16_to_32_reg[8] =
511 {16, 17, 2, 3, 4, 5, 6, 7};
512
513 /* Heuristic_proc_start may hunt through the text section for a long
514 time across a 2400 baud serial line. Allows the user to limit this
515 search. */
516
517 static unsigned int heuristic_fence_post = 0;
518
519 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
520 #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
521 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
522 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
523 #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
524 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
525 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
526 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
527 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
528 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
529 /* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
530 this will corrupt pdr.iline. Fortunately we don't use it. */
531 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
532 #define _PROC_MAGIC_ 0x0F0F0F0F
533 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
534 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
535
536 struct linked_proc_info
537 {
538 struct mips_extra_func_info info;
539 struct linked_proc_info *next;
540 }
541 *linked_proc_desc_table = NULL;
542
543 void
544 mips_print_extra_frame_info (struct frame_info *fi)
545 {
546 if (fi
547 && get_frame_extra_info (fi)
548 && get_frame_extra_info (fi)->proc_desc
549 && get_frame_extra_info (fi)->proc_desc->pdr.framereg < NUM_REGS)
550 printf_filtered (" frame pointer is at %s+%s\n",
551 REGISTER_NAME (get_frame_extra_info (fi)->proc_desc->pdr.framereg),
552 paddr_d (get_frame_extra_info (fi)->proc_desc->pdr.frameoffset));
553 }
554
555 /* Number of bytes of storage in the actual machine representation for
556 register N. NOTE: This indirectly defines the register size
557 transfered by the GDB protocol. */
558
559 static int mips64_transfers_32bit_regs_p = 0;
560
561 static int
562 mips_register_raw_size (int reg_nr)
563 {
564 if (mips64_transfers_32bit_regs_p)
565 return REGISTER_VIRTUAL_SIZE (reg_nr);
566 else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32
567 && FP_REGISTER_DOUBLE)
568 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
569 registers. */
570 return 8;
571 else
572 return MIPS_REGSIZE;
573 }
574
575 /* Convert between RAW and VIRTUAL registers. The RAW register size
576 defines the remote-gdb packet. */
577
578 static int
579 mips_register_convertible (int reg_nr)
580 {
581 if (mips64_transfers_32bit_regs_p)
582 return 0;
583 else
584 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
585 }
586
587 static void
588 mips_register_convert_to_virtual (int n, struct type *virtual_type,
589 char *raw_buf, char *virt_buf)
590 {
591 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
592 memcpy (virt_buf,
593 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
594 TYPE_LENGTH (virtual_type));
595 else
596 memcpy (virt_buf,
597 raw_buf,
598 TYPE_LENGTH (virtual_type));
599 }
600
601 static void
602 mips_register_convert_to_raw (struct type *virtual_type, int n,
603 char *virt_buf, char *raw_buf)
604 {
605 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
606 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
607 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
608 virt_buf,
609 TYPE_LENGTH (virtual_type));
610 else
611 memcpy (raw_buf,
612 virt_buf,
613 TYPE_LENGTH (virtual_type));
614 }
615
616 void
617 mips_register_convert_to_type (int regnum, struct type *type, char *buffer)
618 {
619 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
620 && REGISTER_RAW_SIZE (regnum) == 4
621 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
622 && TYPE_CODE(type) == TYPE_CODE_FLT
623 && TYPE_LENGTH(type) == 8)
624 {
625 char temp[4];
626 memcpy (temp, ((char *)(buffer))+4, 4);
627 memcpy (((char *)(buffer))+4, (buffer), 4);
628 memcpy (((char *)(buffer)), temp, 4);
629 }
630 }
631
632 void
633 mips_register_convert_from_type (int regnum, struct type *type, char *buffer)
634 {
635 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
636 && REGISTER_RAW_SIZE (regnum) == 4
637 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
638 && TYPE_CODE(type) == TYPE_CODE_FLT
639 && TYPE_LENGTH(type) == 8)
640 {
641 char temp[4];
642 memcpy (temp, ((char *)(buffer))+4, 4);
643 memcpy (((char *)(buffer))+4, (buffer), 4);
644 memcpy (((char *)(buffer)), temp, 4);
645 }
646 }
647
648 /* Return the GDB type object for the "standard" data type
649 of data in register REG.
650
651 Note: kevinb/2002-08-01: The definition below should faithfully
652 reproduce the behavior of each of the REGISTER_VIRTUAL_TYPE
653 definitions found in config/mips/tm-*.h. I'm concerned about the
654 ``FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM'' clause though.
655 In some cases DEPRECATED_FP_REGNUM is in this range, and I doubt
656 that this code is correct for the 64-bit case. */
657
658 static struct type *
659 mips_register_virtual_type (int reg)
660 {
661 if (FP0_REGNUM <= reg && reg < FP0_REGNUM + 32)
662 {
663 /* Floating point registers... */
664 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
665 return builtin_type_ieee_double_big;
666 else
667 return builtin_type_ieee_double_little;
668 }
669 else if (reg == PS_REGNUM /* CR */)
670 return builtin_type_uint32;
671 else if (FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM)
672 return builtin_type_uint32;
673 else
674 {
675 /* Everything else...
676 Return type appropriate for width of register. */
677 if (MIPS_REGSIZE == TYPE_LENGTH (builtin_type_uint64))
678 return builtin_type_uint64;
679 else
680 return builtin_type_uint32;
681 }
682 }
683
684 /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
685
686 static CORE_ADDR
687 mips_read_sp (void)
688 {
689 return read_signed_register (SP_REGNUM);
690 }
691
692 /* Should the upper word of 64-bit addresses be zeroed? */
693 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
694
695 static int
696 mips_mask_address_p (void)
697 {
698 switch (mask_address_var)
699 {
700 case AUTO_BOOLEAN_TRUE:
701 return 1;
702 case AUTO_BOOLEAN_FALSE:
703 return 0;
704 break;
705 case AUTO_BOOLEAN_AUTO:
706 return MIPS_DEFAULT_MASK_ADDRESS_P;
707 default:
708 internal_error (__FILE__, __LINE__,
709 "mips_mask_address_p: bad switch");
710 return -1;
711 }
712 }
713
714 static void
715 show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
716 {
717 switch (mask_address_var)
718 {
719 case AUTO_BOOLEAN_TRUE:
720 printf_filtered ("The 32 bit mips address mask is enabled\n");
721 break;
722 case AUTO_BOOLEAN_FALSE:
723 printf_filtered ("The 32 bit mips address mask is disabled\n");
724 break;
725 case AUTO_BOOLEAN_AUTO:
726 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
727 mips_mask_address_p () ? "enabled" : "disabled");
728 break;
729 default:
730 internal_error (__FILE__, __LINE__,
731 "show_mask_address: bad switch");
732 break;
733 }
734 }
735
736 /* Should call_function allocate stack space for a struct return? */
737
738 static int
739 mips_eabi_use_struct_convention (int gcc_p, struct type *type)
740 {
741 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
742 }
743
744 static int
745 mips_n32n64_use_struct_convention (int gcc_p, struct type *type)
746 {
747 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
748 }
749
750 static int
751 mips_o32_use_struct_convention (int gcc_p, struct type *type)
752 {
753 return 1; /* Structures are returned by ref in extra arg0. */
754 }
755
756 /* Should call_function pass struct by reference?
757 For each architecture, structs are passed either by
758 value or by reference, depending on their size. */
759
760 static int
761 mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
762 {
763 enum type_code typecode = TYPE_CODE (check_typedef (type));
764 int len = TYPE_LENGTH (check_typedef (type));
765
766 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
767 return (len > MIPS_SAVED_REGSIZE);
768
769 return 0;
770 }
771
772 static int
773 mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
774 {
775 return 0; /* Assumption: N32/N64 never passes struct by ref. */
776 }
777
778 static int
779 mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
780 {
781 return 0; /* Assumption: O32/O64 never passes struct by ref. */
782 }
783
784 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
785
786 static int
787 pc_is_mips16 (bfd_vma memaddr)
788 {
789 struct minimal_symbol *sym;
790
791 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
792 if (IS_MIPS16_ADDR (memaddr))
793 return 1;
794
795 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
796 the high bit of the info field. Use this to decide if the function is
797 MIPS16 or normal MIPS. */
798 sym = lookup_minimal_symbol_by_pc (memaddr);
799 if (sym)
800 return msymbol_is_special (sym);
801 else
802 return 0;
803 }
804
805 /* MIPS believes that the PC has a sign extended value. Perhaphs the
806 all registers should be sign extended for simplicity? */
807
808 static CORE_ADDR
809 mips_read_pc (ptid_t ptid)
810 {
811 return read_signed_register_pid (PC_REGNUM, ptid);
812 }
813
814 /* This returns the PC of the first inst after the prologue. If we can't
815 find the prologue, then return 0. */
816
817 static CORE_ADDR
818 after_prologue (CORE_ADDR pc,
819 mips_extra_func_info_t proc_desc)
820 {
821 struct symtab_and_line sal;
822 CORE_ADDR func_addr, func_end;
823
824 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
825 to read the stack pointer from the current machine state, because
826 the current machine state has nothing to do with the information
827 we need from the proc_desc; and the process may or may not exist
828 right now. */
829 if (!proc_desc)
830 proc_desc = find_proc_desc (pc, NULL, 0);
831
832 if (proc_desc)
833 {
834 /* If function is frameless, then we need to do it the hard way. I
835 strongly suspect that frameless always means prologueless... */
836 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
837 && PROC_FRAME_OFFSET (proc_desc) == 0)
838 return 0;
839 }
840
841 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
842 return 0; /* Unknown */
843
844 sal = find_pc_line (func_addr, 0);
845
846 if (sal.end < func_end)
847 return sal.end;
848
849 /* The line after the prologue is after the end of the function. In this
850 case, tell the caller to find the prologue the hard way. */
851
852 return 0;
853 }
854
855 /* Decode a MIPS32 instruction that saves a register in the stack, and
856 set the appropriate bit in the general register mask or float register mask
857 to indicate which register is saved. This is a helper function
858 for mips_find_saved_regs. */
859
860 static void
861 mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
862 unsigned long *float_mask)
863 {
864 int reg;
865
866 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
867 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
868 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
869 {
870 /* It might be possible to use the instruction to
871 find the offset, rather than the code below which
872 is based on things being in a certain order in the
873 frame, but figuring out what the instruction's offset
874 is relative to might be a little tricky. */
875 reg = (inst & 0x001f0000) >> 16;
876 *gen_mask |= (1 << reg);
877 }
878 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
879 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
880 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
881
882 {
883 reg = ((inst & 0x001f0000) >> 16);
884 *float_mask |= (1 << reg);
885 }
886 }
887
888 /* Decode a MIPS16 instruction that saves a register in the stack, and
889 set the appropriate bit in the general register or float register mask
890 to indicate which register is saved. This is a helper function
891 for mips_find_saved_regs. */
892
893 static void
894 mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
895 {
896 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
897 {
898 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
899 *gen_mask |= (1 << reg);
900 }
901 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
902 {
903 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
904 *gen_mask |= (1 << reg);
905 }
906 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
907 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
908 *gen_mask |= (1 << RA_REGNUM);
909 }
910
911
912 /* Fetch and return instruction from the specified location. If the PC
913 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
914
915 static t_inst
916 mips_fetch_instruction (CORE_ADDR addr)
917 {
918 char buf[MIPS_INSTLEN];
919 int instlen;
920 int status;
921
922 if (pc_is_mips16 (addr))
923 {
924 instlen = MIPS16_INSTLEN;
925 addr = UNMAKE_MIPS16_ADDR (addr);
926 }
927 else
928 instlen = MIPS_INSTLEN;
929 status = read_memory_nobpt (addr, buf, instlen);
930 if (status)
931 memory_error (status, addr);
932 return extract_unsigned_integer (buf, instlen);
933 }
934
935
936 /* These the fields of 32 bit mips instructions */
937 #define mips32_op(x) (x >> 26)
938 #define itype_op(x) (x >> 26)
939 #define itype_rs(x) ((x >> 21) & 0x1f)
940 #define itype_rt(x) ((x >> 16) & 0x1f)
941 #define itype_immediate(x) (x & 0xffff)
942
943 #define jtype_op(x) (x >> 26)
944 #define jtype_target(x) (x & 0x03ffffff)
945
946 #define rtype_op(x) (x >> 26)
947 #define rtype_rs(x) ((x >> 21) & 0x1f)
948 #define rtype_rt(x) ((x >> 16) & 0x1f)
949 #define rtype_rd(x) ((x >> 11) & 0x1f)
950 #define rtype_shamt(x) ((x >> 6) & 0x1f)
951 #define rtype_funct(x) (x & 0x3f)
952
953 static CORE_ADDR
954 mips32_relative_offset (unsigned long inst)
955 {
956 long x;
957 x = itype_immediate (inst);
958 if (x & 0x8000) /* sign bit set */
959 {
960 x |= 0xffff0000; /* sign extension */
961 }
962 x = x << 2;
963 return x;
964 }
965
966 /* Determine whate to set a single step breakpoint while considering
967 branch prediction */
968 static CORE_ADDR
969 mips32_next_pc (CORE_ADDR pc)
970 {
971 unsigned long inst;
972 int op;
973 inst = mips_fetch_instruction (pc);
974 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
975 {
976 if (itype_op (inst) >> 2 == 5)
977 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
978 {
979 op = (itype_op (inst) & 0x03);
980 switch (op)
981 {
982 case 0: /* BEQL */
983 goto equal_branch;
984 case 1: /* BNEL */
985 goto neq_branch;
986 case 2: /* BLEZL */
987 goto less_branch;
988 case 3: /* BGTZ */
989 goto greater_branch;
990 default:
991 pc += 4;
992 }
993 }
994 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
995 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
996 {
997 int tf = itype_rt (inst) & 0x01;
998 int cnum = itype_rt (inst) >> 2;
999 int fcrcs = read_signed_register (FCRCS_REGNUM);
1000 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1001
1002 if (((cond >> cnum) & 0x01) == tf)
1003 pc += mips32_relative_offset (inst) + 4;
1004 else
1005 pc += 8;
1006 }
1007 else
1008 pc += 4; /* Not a branch, next instruction is easy */
1009 }
1010 else
1011 { /* This gets way messy */
1012
1013 /* Further subdivide into SPECIAL, REGIMM and other */
1014 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
1015 {
1016 case 0: /* SPECIAL */
1017 op = rtype_funct (inst);
1018 switch (op)
1019 {
1020 case 8: /* JR */
1021 case 9: /* JALR */
1022 /* Set PC to that address */
1023 pc = read_signed_register (rtype_rs (inst));
1024 break;
1025 default:
1026 pc += 4;
1027 }
1028
1029 break; /* end SPECIAL */
1030 case 1: /* REGIMM */
1031 {
1032 op = itype_rt (inst); /* branch condition */
1033 switch (op)
1034 {
1035 case 0: /* BLTZ */
1036 case 2: /* BLTZL */
1037 case 16: /* BLTZAL */
1038 case 18: /* BLTZALL */
1039 less_branch:
1040 if (read_signed_register (itype_rs (inst)) < 0)
1041 pc += mips32_relative_offset (inst) + 4;
1042 else
1043 pc += 8; /* after the delay slot */
1044 break;
1045 case 1: /* BGEZ */
1046 case 3: /* BGEZL */
1047 case 17: /* BGEZAL */
1048 case 19: /* BGEZALL */
1049 greater_equal_branch:
1050 if (read_signed_register (itype_rs (inst)) >= 0)
1051 pc += mips32_relative_offset (inst) + 4;
1052 else
1053 pc += 8; /* after the delay slot */
1054 break;
1055 /* All of the other instructions in the REGIMM category */
1056 default:
1057 pc += 4;
1058 }
1059 }
1060 break; /* end REGIMM */
1061 case 2: /* J */
1062 case 3: /* JAL */
1063 {
1064 unsigned long reg;
1065 reg = jtype_target (inst) << 2;
1066 /* Upper four bits get never changed... */
1067 pc = reg + ((pc + 4) & 0xf0000000);
1068 }
1069 break;
1070 /* FIXME case JALX : */
1071 {
1072 unsigned long reg;
1073 reg = jtype_target (inst) << 2;
1074 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
1075 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1076 }
1077 break; /* The new PC will be alternate mode */
1078 case 4: /* BEQ, BEQL */
1079 equal_branch:
1080 if (read_signed_register (itype_rs (inst)) ==
1081 read_signed_register (itype_rt (inst)))
1082 pc += mips32_relative_offset (inst) + 4;
1083 else
1084 pc += 8;
1085 break;
1086 case 5: /* BNE, BNEL */
1087 neq_branch:
1088 if (read_signed_register (itype_rs (inst)) !=
1089 read_signed_register (itype_rt (inst)))
1090 pc += mips32_relative_offset (inst) + 4;
1091 else
1092 pc += 8;
1093 break;
1094 case 6: /* BLEZ, BLEZL */
1095 less_zero_branch:
1096 if (read_signed_register (itype_rs (inst) <= 0))
1097 pc += mips32_relative_offset (inst) + 4;
1098 else
1099 pc += 8;
1100 break;
1101 case 7:
1102 default:
1103 greater_branch: /* BGTZ, BGTZL */
1104 if (read_signed_register (itype_rs (inst) > 0))
1105 pc += mips32_relative_offset (inst) + 4;
1106 else
1107 pc += 8;
1108 break;
1109 } /* switch */
1110 } /* else */
1111 return pc;
1112 } /* mips32_next_pc */
1113
1114 /* Decoding the next place to set a breakpoint is irregular for the
1115 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1116 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1117 We dont want to set a single step instruction on the extend instruction
1118 either.
1119 */
1120
1121 /* Lots of mips16 instruction formats */
1122 /* Predicting jumps requires itype,ritype,i8type
1123 and their extensions extItype,extritype,extI8type
1124 */
1125 enum mips16_inst_fmts
1126 {
1127 itype, /* 0 immediate 5,10 */
1128 ritype, /* 1 5,3,8 */
1129 rrtype, /* 2 5,3,3,5 */
1130 rritype, /* 3 5,3,3,5 */
1131 rrrtype, /* 4 5,3,3,3,2 */
1132 rriatype, /* 5 5,3,3,1,4 */
1133 shifttype, /* 6 5,3,3,3,2 */
1134 i8type, /* 7 5,3,8 */
1135 i8movtype, /* 8 5,3,3,5 */
1136 i8mov32rtype, /* 9 5,3,5,3 */
1137 i64type, /* 10 5,3,8 */
1138 ri64type, /* 11 5,3,3,5 */
1139 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1140 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1141 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1142 extRRItype, /* 15 5,5,5,5,3,3,5 */
1143 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1144 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1145 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1146 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1147 extRi64type, /* 20 5,6,5,5,3,3,5 */
1148 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1149 };
1150 /* I am heaping all the fields of the formats into one structure and
1151 then, only the fields which are involved in instruction extension */
1152 struct upk_mips16
1153 {
1154 CORE_ADDR offset;
1155 unsigned int regx; /* Function in i8 type */
1156 unsigned int regy;
1157 };
1158
1159
1160 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1161 for the bits which make up the immediatate extension. */
1162
1163 static CORE_ADDR
1164 extended_offset (unsigned int extension)
1165 {
1166 CORE_ADDR value;
1167 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1168 value = value << 6;
1169 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1170 value = value << 5;
1171 value |= extension & 0x01f; /* extract 4:0 */
1172 return value;
1173 }
1174
1175 /* Only call this function if you know that this is an extendable
1176 instruction, It wont malfunction, but why make excess remote memory references?
1177 If the immediate operands get sign extended or somthing, do it after
1178 the extension is performed.
1179 */
1180 /* FIXME: Every one of these cases needs to worry about sign extension
1181 when the offset is to be used in relative addressing */
1182
1183
1184 static unsigned int
1185 fetch_mips_16 (CORE_ADDR pc)
1186 {
1187 char buf[8];
1188 pc &= 0xfffffffe; /* clear the low order bit */
1189 target_read_memory (pc, buf, 2);
1190 return extract_unsigned_integer (buf, 2);
1191 }
1192
1193 static void
1194 unpack_mips16 (CORE_ADDR pc,
1195 unsigned int extension,
1196 unsigned int inst,
1197 enum mips16_inst_fmts insn_format,
1198 struct upk_mips16 *upk)
1199 {
1200 CORE_ADDR offset;
1201 int regx;
1202 int regy;
1203 switch (insn_format)
1204 {
1205 case itype:
1206 {
1207 CORE_ADDR value;
1208 if (extension)
1209 {
1210 value = extended_offset (extension);
1211 value = value << 11; /* rom for the original value */
1212 value |= inst & 0x7ff; /* eleven bits from instruction */
1213 }
1214 else
1215 {
1216 value = inst & 0x7ff;
1217 /* FIXME : Consider sign extension */
1218 }
1219 offset = value;
1220 regx = -1;
1221 regy = -1;
1222 }
1223 break;
1224 case ritype:
1225 case i8type:
1226 { /* A register identifier and an offset */
1227 /* Most of the fields are the same as I type but the
1228 immediate value is of a different length */
1229 CORE_ADDR value;
1230 if (extension)
1231 {
1232 value = extended_offset (extension);
1233 value = value << 8; /* from the original instruction */
1234 value |= inst & 0xff; /* eleven bits from instruction */
1235 regx = (extension >> 8) & 0x07; /* or i8 funct */
1236 if (value & 0x4000) /* test the sign bit , bit 26 */
1237 {
1238 value &= ~0x3fff; /* remove the sign bit */
1239 value = -value;
1240 }
1241 }
1242 else
1243 {
1244 value = inst & 0xff; /* 8 bits */
1245 regx = (inst >> 8) & 0x07; /* or i8 funct */
1246 /* FIXME: Do sign extension , this format needs it */
1247 if (value & 0x80) /* THIS CONFUSES ME */
1248 {
1249 value &= 0xef; /* remove the sign bit */
1250 value = -value;
1251 }
1252 }
1253 offset = value;
1254 regy = -1;
1255 break;
1256 }
1257 case jalxtype:
1258 {
1259 unsigned long value;
1260 unsigned int nexthalf;
1261 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1262 value = value << 16;
1263 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1264 value |= nexthalf;
1265 offset = value;
1266 regx = -1;
1267 regy = -1;
1268 break;
1269 }
1270 default:
1271 internal_error (__FILE__, __LINE__,
1272 "bad switch");
1273 }
1274 upk->offset = offset;
1275 upk->regx = regx;
1276 upk->regy = regy;
1277 }
1278
1279
1280 static CORE_ADDR
1281 add_offset_16 (CORE_ADDR pc, int offset)
1282 {
1283 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1284 }
1285
1286 static CORE_ADDR
1287 extended_mips16_next_pc (CORE_ADDR pc,
1288 unsigned int extension,
1289 unsigned int insn)
1290 {
1291 int op = (insn >> 11);
1292 switch (op)
1293 {
1294 case 2: /* Branch */
1295 {
1296 CORE_ADDR offset;
1297 struct upk_mips16 upk;
1298 unpack_mips16 (pc, extension, insn, itype, &upk);
1299 offset = upk.offset;
1300 if (offset & 0x800)
1301 {
1302 offset &= 0xeff;
1303 offset = -offset;
1304 }
1305 pc += (offset << 1) + 2;
1306 break;
1307 }
1308 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1309 {
1310 struct upk_mips16 upk;
1311 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1312 pc = add_offset_16 (pc, upk.offset);
1313 if ((insn >> 10) & 0x01) /* Exchange mode */
1314 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1315 else
1316 pc |= 0x01;
1317 break;
1318 }
1319 case 4: /* beqz */
1320 {
1321 struct upk_mips16 upk;
1322 int reg;
1323 unpack_mips16 (pc, extension, insn, ritype, &upk);
1324 reg = read_signed_register (upk.regx);
1325 if (reg == 0)
1326 pc += (upk.offset << 1) + 2;
1327 else
1328 pc += 2;
1329 break;
1330 }
1331 case 5: /* bnez */
1332 {
1333 struct upk_mips16 upk;
1334 int reg;
1335 unpack_mips16 (pc, extension, insn, ritype, &upk);
1336 reg = read_signed_register (upk.regx);
1337 if (reg != 0)
1338 pc += (upk.offset << 1) + 2;
1339 else
1340 pc += 2;
1341 break;
1342 }
1343 case 12: /* I8 Formats btez btnez */
1344 {
1345 struct upk_mips16 upk;
1346 int reg;
1347 unpack_mips16 (pc, extension, insn, i8type, &upk);
1348 /* upk.regx contains the opcode */
1349 reg = read_signed_register (24); /* Test register is 24 */
1350 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1351 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1352 /* pc = add_offset_16(pc,upk.offset) ; */
1353 pc += (upk.offset << 1) + 2;
1354 else
1355 pc += 2;
1356 break;
1357 }
1358 case 29: /* RR Formats JR, JALR, JALR-RA */
1359 {
1360 struct upk_mips16 upk;
1361 /* upk.fmt = rrtype; */
1362 op = insn & 0x1f;
1363 if (op == 0)
1364 {
1365 int reg;
1366 upk.regx = (insn >> 8) & 0x07;
1367 upk.regy = (insn >> 5) & 0x07;
1368 switch (upk.regy)
1369 {
1370 case 0:
1371 reg = upk.regx;
1372 break;
1373 case 1:
1374 reg = 31;
1375 break; /* Function return instruction */
1376 case 2:
1377 reg = upk.regx;
1378 break;
1379 default:
1380 reg = 31;
1381 break; /* BOGUS Guess */
1382 }
1383 pc = read_signed_register (reg);
1384 }
1385 else
1386 pc += 2;
1387 break;
1388 }
1389 case 30:
1390 /* This is an instruction extension. Fetch the real instruction
1391 (which follows the extension) and decode things based on
1392 that. */
1393 {
1394 pc += 2;
1395 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1396 break;
1397 }
1398 default:
1399 {
1400 pc += 2;
1401 break;
1402 }
1403 }
1404 return pc;
1405 }
1406
1407 static CORE_ADDR
1408 mips16_next_pc (CORE_ADDR pc)
1409 {
1410 unsigned int insn = fetch_mips_16 (pc);
1411 return extended_mips16_next_pc (pc, 0, insn);
1412 }
1413
1414 /* The mips_next_pc function supports single_step when the remote
1415 target monitor or stub is not developed enough to do a single_step.
1416 It works by decoding the current instruction and predicting where a
1417 branch will go. This isnt hard because all the data is available.
1418 The MIPS32 and MIPS16 variants are quite different */
1419 CORE_ADDR
1420 mips_next_pc (CORE_ADDR pc)
1421 {
1422 if (pc & 0x01)
1423 return mips16_next_pc (pc);
1424 else
1425 return mips32_next_pc (pc);
1426 }
1427
1428 /* Set up the 'saved_regs' array. This is a data structure containing
1429 the addresses on the stack where each register has been saved, for
1430 each stack frame. Registers that have not been saved will have
1431 zero here. The stack pointer register is special: rather than the
1432 address where the stack register has been saved,
1433 saved_regs[SP_REGNUM] will have the actual value of the previous
1434 frame's stack register. */
1435
1436 static void
1437 mips_find_saved_regs (struct frame_info *fci)
1438 {
1439 int ireg;
1440 /* r0 bit means kernel trap */
1441 int kernel_trap;
1442 /* What registers have been saved? Bitmasks. */
1443 unsigned long gen_mask, float_mask;
1444 mips_extra_func_info_t proc_desc;
1445 t_inst inst;
1446 CORE_ADDR *saved_regs;
1447
1448 if (get_frame_saved_regs (fci) != NULL)
1449 return;
1450 saved_regs = frame_saved_regs_zalloc (fci);
1451
1452 /* If it is the frame for sigtramp, the saved registers are located
1453 in a sigcontext structure somewhere on the stack. If the stack
1454 layout for sigtramp changes we might have to change these
1455 constants and the companion fixup_sigtramp in mdebugread.c */
1456 #ifndef SIGFRAME_BASE
1457 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1458 above the sigtramp frame. */
1459 #define SIGFRAME_BASE MIPS_REGSIZE
1460 /* FIXME! Are these correct?? */
1461 #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1462 #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1463 #define SIGFRAME_FPREGSAVE_OFF \
1464 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1465 #endif
1466 #ifndef SIGFRAME_REG_SIZE
1467 /* FIXME! Is this correct?? */
1468 #define SIGFRAME_REG_SIZE MIPS_REGSIZE
1469 #endif
1470 if ((get_frame_type (fci) == SIGTRAMP_FRAME))
1471 {
1472 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1473 {
1474 CORE_ADDR reg_position = (get_frame_base (fci) + SIGFRAME_REGSAVE_OFF
1475 + ireg * SIGFRAME_REG_SIZE);
1476 set_reg_offset (saved_regs, ireg, reg_position);
1477 }
1478 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1479 {
1480 CORE_ADDR reg_position = (get_frame_base (fci)
1481 + SIGFRAME_FPREGSAVE_OFF
1482 + ireg * SIGFRAME_REG_SIZE);
1483 set_reg_offset (saved_regs, FP0_REGNUM + ireg, reg_position);
1484 }
1485
1486 set_reg_offset (saved_regs, PC_REGNUM, get_frame_base (fci) + SIGFRAME_PC_OFF);
1487 /* SP_REGNUM, contains the value and not the address. */
1488 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
1489 return;
1490 }
1491
1492 proc_desc = get_frame_extra_info (fci)->proc_desc;
1493 if (proc_desc == NULL)
1494 /* I'm not sure how/whether this can happen. Normally when we
1495 can't find a proc_desc, we "synthesize" one using
1496 heuristic_proc_desc and set the saved_regs right away. */
1497 return;
1498
1499 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1500 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1501 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
1502
1503 if (/* In any frame other than the innermost or a frame interrupted
1504 by a signal, we assume that all registers have been saved.
1505 This assumes that all register saves in a function happen
1506 before the first function call. */
1507 (get_next_frame (fci) == NULL
1508 || (get_frame_type (get_next_frame (fci)) == SIGTRAMP_FRAME))
1509
1510 /* In a dummy frame we know exactly where things are saved. */
1511 && !PROC_DESC_IS_DUMMY (proc_desc)
1512
1513 /* Don't bother unless we are inside a function prologue.
1514 Outside the prologue, we know where everything is. */
1515
1516 && in_prologue (get_frame_pc (fci), PROC_LOW_ADDR (proc_desc))
1517
1518 /* Not sure exactly what kernel_trap means, but if it means the
1519 kernel saves the registers without a prologue doing it, we
1520 better not examine the prologue to see whether registers
1521 have been saved yet. */
1522 && !kernel_trap)
1523 {
1524 /* We need to figure out whether the registers that the
1525 proc_desc claims are saved have been saved yet. */
1526
1527 CORE_ADDR addr;
1528
1529 /* Bitmasks; set if we have found a save for the register. */
1530 unsigned long gen_save_found = 0;
1531 unsigned long float_save_found = 0;
1532 int instlen;
1533
1534 /* If the address is odd, assume this is MIPS16 code. */
1535 addr = PROC_LOW_ADDR (proc_desc);
1536 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1537
1538 /* Scan through this function's instructions preceding the
1539 current PC, and look for those that save registers. */
1540 while (addr < get_frame_pc (fci))
1541 {
1542 inst = mips_fetch_instruction (addr);
1543 if (pc_is_mips16 (addr))
1544 mips16_decode_reg_save (inst, &gen_save_found);
1545 else
1546 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1547 addr += instlen;
1548 }
1549 gen_mask = gen_save_found;
1550 float_mask = float_save_found;
1551 }
1552
1553 /* Fill in the offsets for the registers which gen_mask says were
1554 saved. */
1555 {
1556 CORE_ADDR reg_position = (get_frame_base (fci)
1557 + PROC_REG_OFFSET (proc_desc));
1558 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1559 if (gen_mask & 0x80000000)
1560 {
1561 set_reg_offset (saved_regs, ireg, reg_position);
1562 reg_position -= MIPS_SAVED_REGSIZE;
1563 }
1564 }
1565
1566 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse
1567 order of that normally used by gcc. Therefore, we have to fetch
1568 the first instruction of the function, and if it's an entry
1569 instruction that saves $s0 or $s1, correct their saved addresses. */
1570 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1571 {
1572 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
1573 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700)
1574 /* entry */
1575 {
1576 int reg;
1577 int sreg_count = (inst >> 6) & 3;
1578
1579 /* Check if the ra register was pushed on the stack. */
1580 CORE_ADDR reg_position = (get_frame_base (fci)
1581 + PROC_REG_OFFSET (proc_desc));
1582 if (inst & 0x20)
1583 reg_position -= MIPS_SAVED_REGSIZE;
1584
1585 /* Check if the s0 and s1 registers were pushed on the
1586 stack. */
1587 for (reg = 16; reg < sreg_count + 16; reg++)
1588 {
1589 set_reg_offset (saved_regs, reg, reg_position);
1590 reg_position -= MIPS_SAVED_REGSIZE;
1591 }
1592 }
1593 }
1594
1595 /* Fill in the offsets for the registers which float_mask says were
1596 saved. */
1597 {
1598 CORE_ADDR reg_position = (get_frame_base (fci)
1599 + PROC_FREG_OFFSET (proc_desc));
1600
1601 /* Apparently, the freg_offset gives the offset to the first 64
1602 bit saved.
1603
1604 When the ABI specifies 64 bit saved registers, the FREG_OFFSET
1605 designates the first saved 64 bit register.
1606
1607 When the ABI specifies 32 bit saved registers, the ``64 bit
1608 saved DOUBLE'' consists of two adjacent 32 bit registers, Hence
1609 FREG_OFFSET, designates the address of the lower register of
1610 the register pair. Adjust the offset so that it designates the
1611 upper register of the pair -- i.e., the address of the first
1612 saved 32 bit register. */
1613
1614 if (MIPS_SAVED_REGSIZE == 4)
1615 reg_position += MIPS_SAVED_REGSIZE;
1616
1617 /* Fill in the offsets for the float registers which float_mask
1618 says were saved. */
1619 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1620 if (float_mask & 0x80000000)
1621 {
1622 set_reg_offset (saved_regs, FP0_REGNUM + ireg, reg_position);
1623 reg_position -= MIPS_SAVED_REGSIZE;
1624 }
1625
1626 set_reg_offset (saved_regs, PC_REGNUM, saved_regs[RA_REGNUM]);
1627 }
1628
1629 /* SP_REGNUM, contains the value and not the address. */
1630 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
1631 }
1632
1633 static CORE_ADDR
1634 read_next_frame_reg (struct frame_info *fi, int regno)
1635 {
1636 int optimized;
1637 CORE_ADDR addr;
1638 int realnum;
1639 enum lval_type lval;
1640 char raw_buffer[MAX_REGISTER_SIZE];
1641
1642 if (fi == NULL)
1643 {
1644 regcache_cooked_read (current_regcache, regno, raw_buffer);
1645 }
1646 else
1647 {
1648 frame_register_unwind (fi, regno, &optimized, &lval, &addr, &realnum,
1649 raw_buffer);
1650 /* FIXME: cagney/2002-09-13: This is just soooo bad. The MIPS
1651 should have a pseudo register range that correspons to the ABI's,
1652 rather than the ISA's, view of registers. These registers would
1653 then implicitly describe their size and hence could be used
1654 without the below munging. */
1655 if (lval == lval_memory)
1656 {
1657 if (regno < 32)
1658 {
1659 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
1660 saved. */
1661 return read_memory_integer (addr, MIPS_SAVED_REGSIZE);
1662 }
1663 }
1664 }
1665
1666 return extract_signed_integer (raw_buffer, REGISTER_VIRTUAL_SIZE (regno));
1667 }
1668
1669 /* mips_addr_bits_remove - remove useless address bits */
1670
1671 static CORE_ADDR
1672 mips_addr_bits_remove (CORE_ADDR addr)
1673 {
1674 if (GDB_TARGET_IS_MIPS64)
1675 {
1676 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
1677 {
1678 /* This hack is a work-around for existing boards using
1679 PMON, the simulator, and any other 64-bit targets that
1680 doesn't have true 64-bit addressing. On these targets,
1681 the upper 32 bits of addresses are ignored by the
1682 hardware. Thus, the PC or SP are likely to have been
1683 sign extended to all 1s by instruction sequences that
1684 load 32-bit addresses. For example, a typical piece of
1685 code that loads an address is this:
1686 lui $r2, <upper 16 bits>
1687 ori $r2, <lower 16 bits>
1688 But the lui sign-extends the value such that the upper 32
1689 bits may be all 1s. The workaround is simply to mask off
1690 these bits. In the future, gcc may be changed to support
1691 true 64-bit addressing, and this masking will have to be
1692 disabled. */
1693 addr &= (CORE_ADDR) 0xffffffff;
1694 }
1695 }
1696 else if (mips_mask_address_p ())
1697 {
1698 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1699 masking off bits, instead, the actual target should be asking
1700 for the address to be converted to a valid pointer. */
1701 /* Even when GDB is configured for some 32-bit targets
1702 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1703 so CORE_ADDR is 64 bits. So we still have to mask off
1704 useless bits from addresses. */
1705 addr &= (CORE_ADDR) 0xffffffff;
1706 }
1707 return addr;
1708 }
1709
1710 /* mips_software_single_step() is called just before we want to resume
1711 the inferior, if we want to single-step it but there is no hardware
1712 or kernel single-step support (MIPS on GNU/Linux for example). We find
1713 the target of the coming instruction and breakpoint it.
1714
1715 single_step is also called just after the inferior stops. If we had
1716 set up a simulated single-step, we undo our damage. */
1717
1718 void
1719 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1720 {
1721 static CORE_ADDR next_pc;
1722 typedef char binsn_quantum[BREAKPOINT_MAX];
1723 static binsn_quantum break_mem;
1724 CORE_ADDR pc;
1725
1726 if (insert_breakpoints_p)
1727 {
1728 pc = read_register (PC_REGNUM);
1729 next_pc = mips_next_pc (pc);
1730
1731 target_insert_breakpoint (next_pc, break_mem);
1732 }
1733 else
1734 target_remove_breakpoint (next_pc, break_mem);
1735 }
1736
1737 static CORE_ADDR
1738 mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
1739 {
1740 CORE_ADDR pc, tmp;
1741
1742 pc = ((fromleaf)
1743 ? DEPRECATED_SAVED_PC_AFTER_CALL (get_next_frame (prev))
1744 : get_next_frame (prev)
1745 ? DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev))
1746 : read_pc ());
1747 tmp = SKIP_TRAMPOLINE_CODE (pc);
1748 return tmp ? tmp : pc;
1749 }
1750
1751
1752 static CORE_ADDR
1753 mips_frame_saved_pc (struct frame_info *frame)
1754 {
1755 CORE_ADDR saved_pc;
1756 mips_extra_func_info_t proc_desc = get_frame_extra_info (frame)->proc_desc;
1757 /* We have to get the saved pc from the sigcontext
1758 if it is a signal handler frame. */
1759 int pcreg = (get_frame_type (frame) == SIGTRAMP_FRAME) ? PC_REGNUM
1760 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1761
1762 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
1763 {
1764 LONGEST tmp;
1765 frame_unwind_signed_register (frame, PC_REGNUM, &tmp);
1766 saved_pc = tmp;
1767 }
1768 else if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1769 saved_pc = read_memory_integer (get_frame_base (frame) - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
1770 else
1771 saved_pc = read_next_frame_reg (frame, pcreg);
1772
1773 return ADDR_BITS_REMOVE (saved_pc);
1774 }
1775
1776 static struct mips_extra_func_info temp_proc_desc;
1777
1778 /* This hack will go away once the get_prev_frame() code has been
1779 modified to set the frame's type first. That is BEFORE init extra
1780 frame info et.al. is called. This is because it will become
1781 possible to skip the init extra info call for sigtramp and dummy
1782 frames. */
1783 static CORE_ADDR *temp_saved_regs;
1784
1785 /* Set a register's saved stack address in temp_saved_regs. If an
1786 address has already been set for this register, do nothing; this
1787 way we will only recognize the first save of a given register in a
1788 function prologue. */
1789
1790 static void
1791 set_reg_offset (CORE_ADDR *saved_regs, int regno, CORE_ADDR offset)
1792 {
1793 if (saved_regs[regno] == 0)
1794 saved_regs[regno] = offset;
1795 }
1796
1797
1798 /* Test whether the PC points to the return instruction at the
1799 end of a function. */
1800
1801 static int
1802 mips_about_to_return (CORE_ADDR pc)
1803 {
1804 if (pc_is_mips16 (pc))
1805 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1806 generates a "jr $ra"; other times it generates code to load
1807 the return address from the stack to an accessible register (such
1808 as $a3), then a "jr" using that register. This second case
1809 is almost impossible to distinguish from an indirect jump
1810 used for switch statements, so we don't even try. */
1811 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1812 else
1813 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1814 }
1815
1816
1817 /* This fencepost looks highly suspicious to me. Removing it also
1818 seems suspicious as it could affect remote debugging across serial
1819 lines. */
1820
1821 static CORE_ADDR
1822 heuristic_proc_start (CORE_ADDR pc)
1823 {
1824 CORE_ADDR start_pc;
1825 CORE_ADDR fence;
1826 int instlen;
1827 int seen_adjsp = 0;
1828
1829 pc = ADDR_BITS_REMOVE (pc);
1830 start_pc = pc;
1831 fence = start_pc - heuristic_fence_post;
1832 if (start_pc == 0)
1833 return 0;
1834
1835 if (heuristic_fence_post == UINT_MAX
1836 || fence < VM_MIN_ADDRESS)
1837 fence = VM_MIN_ADDRESS;
1838
1839 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1840
1841 /* search back for previous return */
1842 for (start_pc -= instlen;; start_pc -= instlen)
1843 if (start_pc < fence)
1844 {
1845 /* It's not clear to me why we reach this point when
1846 stop_soon, but with this test, at least we
1847 don't print out warnings for every child forked (eg, on
1848 decstation). 22apr93 rich@cygnus.com. */
1849 if (stop_soon == NO_STOP_QUIETLY)
1850 {
1851 static int blurb_printed = 0;
1852
1853 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1854 paddr_nz (pc));
1855
1856 if (!blurb_printed)
1857 {
1858 /* This actually happens frequently in embedded
1859 development, when you first connect to a board
1860 and your stack pointer and pc are nowhere in
1861 particular. This message needs to give people
1862 in that situation enough information to
1863 determine that it's no big deal. */
1864 printf_filtered ("\n\
1865 GDB is unable to find the start of the function at 0x%s\n\
1866 and thus can't determine the size of that function's stack frame.\n\
1867 This means that GDB may be unable to access that stack frame, or\n\
1868 the frames below it.\n\
1869 This problem is most likely caused by an invalid program counter or\n\
1870 stack pointer.\n\
1871 However, if you think GDB should simply search farther back\n\
1872 from 0x%s for code which looks like the beginning of a\n\
1873 function, you can increase the range of the search using the `set\n\
1874 heuristic-fence-post' command.\n",
1875 paddr_nz (pc), paddr_nz (pc));
1876 blurb_printed = 1;
1877 }
1878 }
1879
1880 return 0;
1881 }
1882 else if (pc_is_mips16 (start_pc))
1883 {
1884 unsigned short inst;
1885
1886 /* On MIPS16, any one of the following is likely to be the
1887 start of a function:
1888 entry
1889 addiu sp,-n
1890 daddiu sp,-n
1891 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1892 inst = mips_fetch_instruction (start_pc);
1893 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1894 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1895 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1896 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1897 break;
1898 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1899 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1900 seen_adjsp = 1;
1901 else
1902 seen_adjsp = 0;
1903 }
1904 else if (mips_about_to_return (start_pc))
1905 {
1906 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1907 break;
1908 }
1909
1910 return start_pc;
1911 }
1912
1913 /* Fetch the immediate value from a MIPS16 instruction.
1914 If the previous instruction was an EXTEND, use it to extend
1915 the upper bits of the immediate value. This is a helper function
1916 for mips16_heuristic_proc_desc. */
1917
1918 static int
1919 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1920 unsigned short inst, /* current instruction */
1921 int nbits, /* number of bits in imm field */
1922 int scale, /* scale factor to be applied to imm */
1923 int is_signed) /* is the imm field signed? */
1924 {
1925 int offset;
1926
1927 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1928 {
1929 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1930 if (offset & 0x8000) /* check for negative extend */
1931 offset = 0 - (0x10000 - (offset & 0xffff));
1932 return offset | (inst & 0x1f);
1933 }
1934 else
1935 {
1936 int max_imm = 1 << nbits;
1937 int mask = max_imm - 1;
1938 int sign_bit = max_imm >> 1;
1939
1940 offset = inst & mask;
1941 if (is_signed && (offset & sign_bit))
1942 offset = 0 - (max_imm - offset);
1943 return offset * scale;
1944 }
1945 }
1946
1947
1948 /* Fill in values in temp_proc_desc based on the MIPS16 instruction
1949 stream from start_pc to limit_pc. */
1950
1951 static void
1952 mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1953 struct frame_info *next_frame, CORE_ADDR sp)
1954 {
1955 CORE_ADDR cur_pc;
1956 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1957 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1958 unsigned inst = 0; /* current instruction */
1959 unsigned entry_inst = 0; /* the entry instruction */
1960 int reg, offset;
1961
1962 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1963 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1964
1965 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1966 {
1967 /* Save the previous instruction. If it's an EXTEND, we'll extract
1968 the immediate offset extension from it in mips16_get_imm. */
1969 prev_inst = inst;
1970
1971 /* Fetch and decode the instruction. */
1972 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1973 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1974 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1975 {
1976 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1977 if (offset < 0) /* negative stack adjustment? */
1978 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
1979 else
1980 /* Exit loop if a positive stack adjustment is found, which
1981 usually means that the stack cleanup code in the function
1982 epilogue is reached. */
1983 break;
1984 }
1985 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1986 {
1987 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1988 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1989 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1990 set_reg_offset (temp_saved_regs, reg, sp + offset);
1991 }
1992 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1993 {
1994 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1995 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1996 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1997 set_reg_offset (temp_saved_regs, reg, sp + offset);
1998 }
1999 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2000 {
2001 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2002 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
2003 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2004 }
2005 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2006 {
2007 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
2008 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
2009 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2010 }
2011 else if (inst == 0x673d) /* move $s1, $sp */
2012 {
2013 frame_addr = sp;
2014 PROC_FRAME_REG (&temp_proc_desc) = 17;
2015 }
2016 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2017 {
2018 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2019 frame_addr = sp + offset;
2020 PROC_FRAME_REG (&temp_proc_desc) = 17;
2021 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
2022 }
2023 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2024 {
2025 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2026 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2027 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2028 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
2029 }
2030 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2031 {
2032 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2033 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2034 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2035 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
2036 }
2037 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2038 entry_inst = inst; /* save for later processing */
2039 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
2040 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
2041 }
2042
2043 /* The entry instruction is typically the first instruction in a function,
2044 and it stores registers at offsets relative to the value of the old SP
2045 (before the prologue). But the value of the sp parameter to this
2046 function is the new SP (after the prologue has been executed). So we
2047 can't calculate those offsets until we've seen the entire prologue,
2048 and can calculate what the old SP must have been. */
2049 if (entry_inst != 0)
2050 {
2051 int areg_count = (entry_inst >> 8) & 7;
2052 int sreg_count = (entry_inst >> 6) & 3;
2053
2054 /* The entry instruction always subtracts 32 from the SP. */
2055 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
2056
2057 /* Now we can calculate what the SP must have been at the
2058 start of the function prologue. */
2059 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
2060
2061 /* Check if a0-a3 were saved in the caller's argument save area. */
2062 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2063 {
2064 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2065 set_reg_offset (temp_saved_regs, reg, sp + offset);
2066 offset += MIPS_SAVED_REGSIZE;
2067 }
2068
2069 /* Check if the ra register was pushed on the stack. */
2070 offset = -4;
2071 if (entry_inst & 0x20)
2072 {
2073 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
2074 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2075 offset -= MIPS_SAVED_REGSIZE;
2076 }
2077
2078 /* Check if the s0 and s1 registers were pushed on the stack. */
2079 for (reg = 16; reg < sreg_count + 16; reg++)
2080 {
2081 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2082 set_reg_offset (temp_saved_regs, reg, sp + offset);
2083 offset -= MIPS_SAVED_REGSIZE;
2084 }
2085 }
2086 }
2087
2088 static void
2089 mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2090 struct frame_info *next_frame, CORE_ADDR sp)
2091 {
2092 CORE_ADDR cur_pc;
2093 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
2094 restart:
2095 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2096 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2097 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
2098 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2099 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2100 {
2101 unsigned long inst, high_word, low_word;
2102 int reg;
2103
2104 /* Fetch the instruction. */
2105 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2106
2107 /* Save some code by pre-extracting some useful fields. */
2108 high_word = (inst >> 16) & 0xffff;
2109 low_word = inst & 0xffff;
2110 reg = high_word & 0x1f;
2111
2112 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
2113 || high_word == 0x23bd /* addi $sp,$sp,-i */
2114 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2115 {
2116 if (low_word & 0x8000) /* negative stack adjustment? */
2117 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
2118 else
2119 /* Exit loop if a positive stack adjustment is found, which
2120 usually means that the stack cleanup code in the function
2121 epilogue is reached. */
2122 break;
2123 }
2124 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2125 {
2126 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2127 set_reg_offset (temp_saved_regs, reg, sp + low_word);
2128 }
2129 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2130 {
2131 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2132 but the register size used is only 32 bits. Make the address
2133 for the saved register point to the lower 32 bits. */
2134 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2135 set_reg_offset (temp_saved_regs, reg, sp + low_word + 8 - MIPS_REGSIZE);
2136 }
2137 else if (high_word == 0x27be) /* addiu $30,$sp,size */
2138 {
2139 /* Old gcc frame, r30 is virtual frame pointer. */
2140 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2141 frame_addr = sp + low_word;
2142 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2143 {
2144 unsigned alloca_adjust;
2145 PROC_FRAME_REG (&temp_proc_desc) = 30;
2146 frame_addr = read_next_frame_reg (next_frame, 30);
2147 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
2148 if (alloca_adjust > 0)
2149 {
2150 /* FP > SP + frame_size. This may be because
2151 * of an alloca or somethings similar.
2152 * Fix sp to "pre-alloca" value, and try again.
2153 */
2154 sp += alloca_adjust;
2155 goto restart;
2156 }
2157 }
2158 }
2159 /* move $30,$sp. With different versions of gas this will be either
2160 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2161 Accept any one of these. */
2162 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2163 {
2164 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2165 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2166 {
2167 unsigned alloca_adjust;
2168 PROC_FRAME_REG (&temp_proc_desc) = 30;
2169 frame_addr = read_next_frame_reg (next_frame, 30);
2170 alloca_adjust = (unsigned) (frame_addr - sp);
2171 if (alloca_adjust > 0)
2172 {
2173 /* FP > SP + frame_size. This may be because
2174 * of an alloca or somethings similar.
2175 * Fix sp to "pre-alloca" value, and try again.
2176 */
2177 sp += alloca_adjust;
2178 goto restart;
2179 }
2180 }
2181 }
2182 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
2183 {
2184 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2185 set_reg_offset (temp_saved_regs, reg, frame_addr + low_word);
2186 }
2187 }
2188 }
2189
2190 static mips_extra_func_info_t
2191 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2192 struct frame_info *next_frame, int cur_frame)
2193 {
2194 CORE_ADDR sp;
2195
2196 if (cur_frame)
2197 sp = read_next_frame_reg (next_frame, SP_REGNUM);
2198 else
2199 sp = 0;
2200
2201 if (start_pc == 0)
2202 return NULL;
2203 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
2204 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2205 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2206 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2207 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2208 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2209
2210 if (start_pc + 200 < limit_pc)
2211 limit_pc = start_pc + 200;
2212 if (pc_is_mips16 (start_pc))
2213 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2214 else
2215 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2216 return &temp_proc_desc;
2217 }
2218
2219 struct mips_objfile_private
2220 {
2221 bfd_size_type size;
2222 char *contents;
2223 };
2224
2225 /* Global used to communicate between non_heuristic_proc_desc and
2226 compare_pdr_entries within qsort (). */
2227 static bfd *the_bfd;
2228
2229 static int
2230 compare_pdr_entries (const void *a, const void *b)
2231 {
2232 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2233 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2234
2235 if (lhs < rhs)
2236 return -1;
2237 else if (lhs == rhs)
2238 return 0;
2239 else
2240 return 1;
2241 }
2242
2243 static mips_extra_func_info_t
2244 non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
2245 {
2246 CORE_ADDR startaddr;
2247 mips_extra_func_info_t proc_desc;
2248 struct block *b = block_for_pc (pc);
2249 struct symbol *sym;
2250 struct obj_section *sec;
2251 struct mips_objfile_private *priv;
2252
2253 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
2254 return NULL;
2255
2256 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2257 if (addrptr)
2258 *addrptr = startaddr;
2259
2260 priv = NULL;
2261
2262 sec = find_pc_section (pc);
2263 if (sec != NULL)
2264 {
2265 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2266
2267 /* Search the ".pdr" section generated by GAS. This includes most of
2268 the information normally found in ECOFF PDRs. */
2269
2270 the_bfd = sec->objfile->obfd;
2271 if (priv == NULL
2272 && (the_bfd->format == bfd_object
2273 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2274 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2275 {
2276 /* Right now GAS only outputs the address as a four-byte sequence.
2277 This means that we should not bother with this method on 64-bit
2278 targets (until that is fixed). */
2279
2280 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2281 sizeof (struct mips_objfile_private));
2282 priv->size = 0;
2283 sec->objfile->obj_private = priv;
2284 }
2285 else if (priv == NULL)
2286 {
2287 asection *bfdsec;
2288
2289 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2290 sizeof (struct mips_objfile_private));
2291
2292 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2293 if (bfdsec != NULL)
2294 {
2295 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2296 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2297 priv->size);
2298 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2299 priv->contents, 0, priv->size);
2300
2301 /* In general, the .pdr section is sorted. However, in the
2302 presence of multiple code sections (and other corner cases)
2303 it can become unsorted. Sort it so that we can use a faster
2304 binary search. */
2305 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2306 }
2307 else
2308 priv->size = 0;
2309
2310 sec->objfile->obj_private = priv;
2311 }
2312 the_bfd = NULL;
2313
2314 if (priv->size != 0)
2315 {
2316 int low, mid, high;
2317 char *ptr;
2318
2319 low = 0;
2320 high = priv->size / 32;
2321
2322 do
2323 {
2324 CORE_ADDR pdr_pc;
2325
2326 mid = (low + high) / 2;
2327
2328 ptr = priv->contents + mid * 32;
2329 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2330 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2331 SECT_OFF_TEXT (sec->objfile));
2332 if (pdr_pc == startaddr)
2333 break;
2334 if (pdr_pc > startaddr)
2335 high = mid;
2336 else
2337 low = mid + 1;
2338 }
2339 while (low != high);
2340
2341 if (low != high)
2342 {
2343 struct symbol *sym = find_pc_function (pc);
2344
2345 /* Fill in what we need of the proc_desc. */
2346 proc_desc = (mips_extra_func_info_t)
2347 obstack_alloc (&sec->objfile->psymbol_obstack,
2348 sizeof (struct mips_extra_func_info));
2349 PROC_LOW_ADDR (proc_desc) = startaddr;
2350
2351 /* Only used for dummy frames. */
2352 PROC_HIGH_ADDR (proc_desc) = 0;
2353
2354 PROC_FRAME_OFFSET (proc_desc)
2355 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2356 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2357 ptr + 24);
2358 PROC_FRAME_ADJUST (proc_desc) = 0;
2359 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2360 ptr + 4);
2361 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2362 ptr + 12);
2363 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2364 ptr + 8);
2365 PROC_FREG_OFFSET (proc_desc)
2366 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2367 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2368 ptr + 28);
2369 proc_desc->pdr.isym = (long) sym;
2370
2371 return proc_desc;
2372 }
2373 }
2374 }
2375
2376 if (b == NULL)
2377 return NULL;
2378
2379 if (startaddr > BLOCK_START (b))
2380 {
2381 /* This is the "pathological" case referred to in a comment in
2382 print_frame_info. It might be better to move this check into
2383 symbol reading. */
2384 return NULL;
2385 }
2386
2387 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_DOMAIN, 0, NULL);
2388
2389 /* If we never found a PDR for this function in symbol reading, then
2390 examine prologues to find the information. */
2391 if (sym)
2392 {
2393 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2394 if (PROC_FRAME_REG (proc_desc) == -1)
2395 return NULL;
2396 else
2397 return proc_desc;
2398 }
2399 else
2400 return NULL;
2401 }
2402
2403
2404 static mips_extra_func_info_t
2405 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
2406 {
2407 mips_extra_func_info_t proc_desc;
2408 CORE_ADDR startaddr = 0;
2409
2410 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2411
2412 if (proc_desc)
2413 {
2414 /* IF this is the topmost frame AND
2415 * (this proc does not have debugging information OR
2416 * the PC is in the procedure prologue)
2417 * THEN create a "heuristic" proc_desc (by analyzing
2418 * the actual code) to replace the "official" proc_desc.
2419 */
2420 if (next_frame == NULL)
2421 {
2422 struct symtab_and_line val;
2423 struct symbol *proc_symbol =
2424 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
2425
2426 if (proc_symbol)
2427 {
2428 val = find_pc_line (BLOCK_START
2429 (SYMBOL_BLOCK_VALUE (proc_symbol)),
2430 0);
2431 val.pc = val.end ? val.end : pc;
2432 }
2433 if (!proc_symbol || pc < val.pc)
2434 {
2435 mips_extra_func_info_t found_heuristic =
2436 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2437 pc, next_frame, cur_frame);
2438 if (found_heuristic)
2439 proc_desc = found_heuristic;
2440 }
2441 }
2442 }
2443 else
2444 {
2445 /* Is linked_proc_desc_table really necessary? It only seems to be used
2446 by procedure call dummys. However, the procedures being called ought
2447 to have their own proc_descs, and even if they don't,
2448 heuristic_proc_desc knows how to create them! */
2449
2450 register struct linked_proc_info *link;
2451
2452 for (link = linked_proc_desc_table; link; link = link->next)
2453 if (PROC_LOW_ADDR (&link->info) <= pc
2454 && PROC_HIGH_ADDR (&link->info) > pc)
2455 return &link->info;
2456
2457 if (startaddr == 0)
2458 startaddr = heuristic_proc_start (pc);
2459
2460 proc_desc =
2461 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
2462 }
2463 return proc_desc;
2464 }
2465
2466 static CORE_ADDR
2467 get_frame_pointer (struct frame_info *frame,
2468 mips_extra_func_info_t proc_desc)
2469 {
2470 return (read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc))
2471 + PROC_FRAME_OFFSET (proc_desc)
2472 - PROC_FRAME_ADJUST (proc_desc));
2473 }
2474
2475 static mips_extra_func_info_t cached_proc_desc;
2476
2477 static CORE_ADDR
2478 mips_frame_chain (struct frame_info *frame)
2479 {
2480 mips_extra_func_info_t proc_desc;
2481 CORE_ADDR tmp;
2482 CORE_ADDR saved_pc = DEPRECATED_FRAME_SAVED_PC (frame);
2483
2484 if (saved_pc == 0 || inside_entry_file (saved_pc))
2485 return 0;
2486
2487 /* Check if the PC is inside a call stub. If it is, fetch the
2488 PC of the caller of that stub. */
2489 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
2490 saved_pc = tmp;
2491
2492 if (DEPRECATED_PC_IN_CALL_DUMMY (saved_pc, 0, 0))
2493 {
2494 /* A dummy frame, uses SP not FP. Get the old SP value. If all
2495 is well, frame->frame the bottom of the current frame will
2496 contain that value. */
2497 return get_frame_base (frame);
2498 }
2499
2500 /* Look up the procedure descriptor for this PC. */
2501 proc_desc = find_proc_desc (saved_pc, frame, 1);
2502 if (!proc_desc)
2503 return 0;
2504
2505 cached_proc_desc = proc_desc;
2506
2507 /* If no frame pointer and frame size is zero, we must be at end
2508 of stack (or otherwise hosed). If we don't check frame size,
2509 we loop forever if we see a zero size frame. */
2510 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2511 && PROC_FRAME_OFFSET (proc_desc) == 0
2512 /* The previous frame from a sigtramp frame might be frameless
2513 and have frame size zero. */
2514 && !(get_frame_type (frame) == SIGTRAMP_FRAME)
2515 /* For a generic dummy frame, let get_frame_pointer() unwind a
2516 register value saved as part of the dummy frame call. */
2517 && !(DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0)))
2518 return 0;
2519 else
2520 return get_frame_pointer (frame, proc_desc);
2521 }
2522
2523 static void
2524 mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
2525 {
2526 int regnum;
2527 mips_extra_func_info_t proc_desc;
2528
2529 if (get_frame_type (fci) == DUMMY_FRAME)
2530 return;
2531
2532 /* Use proc_desc calculated in frame_chain. When there is no
2533 next frame, i.e, get_next_frame (fci) == NULL, we call
2534 find_proc_desc () to calculate it, passing an explicit
2535 NULL as the frame parameter. */
2536 proc_desc =
2537 get_next_frame (fci)
2538 ? cached_proc_desc
2539 : find_proc_desc (get_frame_pc (fci),
2540 NULL /* i.e, get_next_frame (fci) */,
2541 1);
2542
2543 frame_extra_info_zalloc (fci, sizeof (struct frame_extra_info));
2544
2545 deprecated_set_frame_saved_regs_hack (fci, NULL);
2546 get_frame_extra_info (fci)->proc_desc =
2547 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2548 if (proc_desc)
2549 {
2550 /* Fixup frame-pointer - only needed for top frame */
2551 /* This may not be quite right, if proc has a real frame register.
2552 Get the value of the frame relative sp, procedure might have been
2553 interrupted by a signal at it's very start. */
2554 if (get_frame_pc (fci) == PROC_LOW_ADDR (proc_desc)
2555 && !PROC_DESC_IS_DUMMY (proc_desc))
2556 deprecated_update_frame_base_hack (fci, read_next_frame_reg (get_next_frame (fci), SP_REGNUM));
2557 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fci), 0, 0))
2558 /* Do not ``fix'' fci->frame. It will have the value of the
2559 generic dummy frame's top-of-stack (since the draft
2560 fci->frame is obtained by returning the unwound stack
2561 pointer) and that is what we want. That way the fci->frame
2562 value will match the top-of-stack value that was saved as
2563 part of the dummy frames data. */
2564 /* Do nothing. */;
2565 else
2566 deprecated_update_frame_base_hack (fci, get_frame_pointer (get_next_frame (fci), proc_desc));
2567
2568 if (proc_desc == &temp_proc_desc)
2569 {
2570 char *name;
2571
2572 /* Do not set the saved registers for a sigtramp frame,
2573 mips_find_saved_registers will do that for us. We can't
2574 use (get_frame_type (fci) == SIGTRAMP_FRAME), it is not
2575 yet set. */
2576 /* FIXME: cagney/2002-11-18: This problem will go away once
2577 frame.c:get_prev_frame() is modified to set the frame's
2578 type before calling functions like this. */
2579 find_pc_partial_function (get_frame_pc (fci), &name,
2580 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
2581 if (!PC_IN_SIGTRAMP (get_frame_pc (fci), name))
2582 {
2583 frame_saved_regs_zalloc (fci);
2584 /* Set value of previous frame's stack pointer.
2585 Remember that saved_regs[SP_REGNUM] is special in
2586 that it contains the value of the stack pointer
2587 register. The other saved_regs values are addresses
2588 (in the inferior) at which a given register's value
2589 may be found. */
2590 set_reg_offset (temp_saved_regs, SP_REGNUM,
2591 get_frame_base (fci));
2592 set_reg_offset (temp_saved_regs, PC_REGNUM,
2593 temp_saved_regs[RA_REGNUM]);
2594 memcpy (get_frame_saved_regs (fci), temp_saved_regs,
2595 SIZEOF_FRAME_SAVED_REGS);
2596 }
2597 }
2598
2599 /* hack: if argument regs are saved, guess these contain args */
2600 /* assume we can't tell how many args for now */
2601 get_frame_extra_info (fci)->num_args = -1;
2602 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2603 {
2604 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
2605 {
2606 get_frame_extra_info (fci)->num_args = regnum - A0_REGNUM + 1;
2607 break;
2608 }
2609 }
2610 }
2611 }
2612
2613 /* MIPS stack frames are almost impenetrable. When execution stops,
2614 we basically have to look at symbol information for the function
2615 that we stopped in, which tells us *which* register (if any) is
2616 the base of the frame pointer, and what offset from that register
2617 the frame itself is at.
2618
2619 This presents a problem when trying to examine a stack in memory
2620 (that isn't executing at the moment), using the "frame" command. We
2621 don't have a PC, nor do we have any registers except SP.
2622
2623 This routine takes two arguments, SP and PC, and tries to make the
2624 cached frames look as if these two arguments defined a frame on the
2625 cache. This allows the rest of info frame to extract the important
2626 arguments without difficulty. */
2627
2628 struct frame_info *
2629 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
2630 {
2631 if (argc != 2)
2632 error ("MIPS frame specifications require two arguments: sp and pc");
2633
2634 return create_new_frame (argv[0], argv[1]);
2635 }
2636
2637 /* According to the current ABI, should the type be passed in a
2638 floating-point register (assuming that there is space)? When there
2639 is no FPU, FP are not even considered as possibile candidates for
2640 FP registers and, consequently this returns false - forces FP
2641 arguments into integer registers. */
2642
2643 static int
2644 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2645 {
2646 return ((typecode == TYPE_CODE_FLT
2647 || (MIPS_EABI
2648 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2649 && TYPE_NFIELDS (arg_type) == 1
2650 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2651 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2652 }
2653
2654 /* On o32, argument passing in GPRs depends on the alignment of the type being
2655 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2656
2657 static int
2658 mips_type_needs_double_align (struct type *type)
2659 {
2660 enum type_code typecode = TYPE_CODE (type);
2661
2662 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2663 return 1;
2664 else if (typecode == TYPE_CODE_STRUCT)
2665 {
2666 if (TYPE_NFIELDS (type) < 1)
2667 return 0;
2668 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2669 }
2670 else if (typecode == TYPE_CODE_UNION)
2671 {
2672 int i, n;
2673
2674 n = TYPE_NFIELDS (type);
2675 for (i = 0; i < n; i++)
2676 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2677 return 1;
2678 return 0;
2679 }
2680 return 0;
2681 }
2682
2683 /* Macros to round N up or down to the next A boundary;
2684 A must be a power of two. */
2685
2686 #define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2687 #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2688
2689 /* Adjust the address downward (direction of stack growth) so that it
2690 is correctly aligned for a new stack frame. */
2691 static CORE_ADDR
2692 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2693 {
2694 return ROUND_DOWN (addr, 16);
2695 }
2696
2697 static CORE_ADDR
2698 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2699 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2700 struct value **args, CORE_ADDR sp, int struct_return,
2701 CORE_ADDR struct_addr)
2702 {
2703 int argreg;
2704 int float_argreg;
2705 int argnum;
2706 int len = 0;
2707 int stack_offset = 0;
2708
2709 /* For shared libraries, "t9" needs to point at the function
2710 address. */
2711 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
2712
2713 /* Set the return address register to point to the entry point of
2714 the program, where a breakpoint lies in wait. */
2715 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
2716
2717 /* First ensure that the stack and structure return address (if any)
2718 are properly aligned. The stack has to be at least 64-bit
2719 aligned even on 32-bit machines, because doubles must be 64-bit
2720 aligned. For n32 and n64, stack frames need to be 128-bit
2721 aligned, so we round to this widest known alignment. */
2722
2723 sp = ROUND_DOWN (sp, 16);
2724 struct_addr = ROUND_DOWN (struct_addr, 16);
2725
2726 /* Now make space on the stack for the args. We allocate more
2727 than necessary for EABI, because the first few arguments are
2728 passed in registers, but that's OK. */
2729 for (argnum = 0; argnum < nargs; argnum++)
2730 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2731 MIPS_STACK_ARGSIZE);
2732 sp -= ROUND_UP (len, 16);
2733
2734 if (mips_debug)
2735 fprintf_unfiltered (gdb_stdlog,
2736 "mips_eabi_push_dummy_call: sp=0x%s allocated %d\n",
2737 paddr_nz (sp), ROUND_UP (len, 16));
2738
2739 /* Initialize the integer and float register pointers. */
2740 argreg = A0_REGNUM;
2741 float_argreg = FPA0_REGNUM;
2742
2743 /* The struct_return pointer occupies the first parameter-passing reg. */
2744 if (struct_return)
2745 {
2746 if (mips_debug)
2747 fprintf_unfiltered (gdb_stdlog,
2748 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
2749 argreg, paddr_nz (struct_addr));
2750 write_register (argreg++, struct_addr);
2751 }
2752
2753 /* Now load as many as possible of the first arguments into
2754 registers, and push the rest onto the stack. Loop thru args
2755 from first to last. */
2756 for (argnum = 0; argnum < nargs; argnum++)
2757 {
2758 char *val;
2759 char valbuf[MAX_REGISTER_SIZE];
2760 struct value *arg = args[argnum];
2761 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2762 int len = TYPE_LENGTH (arg_type);
2763 enum type_code typecode = TYPE_CODE (arg_type);
2764
2765 if (mips_debug)
2766 fprintf_unfiltered (gdb_stdlog,
2767 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2768 argnum + 1, len, (int) typecode);
2769
2770 /* The EABI passes structures that do not fit in a register by
2771 reference. */
2772 if (len > MIPS_SAVED_REGSIZE
2773 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2774 {
2775 store_unsigned_integer (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
2776 typecode = TYPE_CODE_PTR;
2777 len = MIPS_SAVED_REGSIZE;
2778 val = valbuf;
2779 if (mips_debug)
2780 fprintf_unfiltered (gdb_stdlog, " push");
2781 }
2782 else
2783 val = (char *) VALUE_CONTENTS (arg);
2784
2785 /* 32-bit ABIs always start floating point arguments in an
2786 even-numbered floating point register. Round the FP register
2787 up before the check to see if there are any FP registers
2788 left. Non MIPS_EABI targets also pass the FP in the integer
2789 registers so also round up normal registers. */
2790 if (!FP_REGISTER_DOUBLE
2791 && fp_register_arg_p (typecode, arg_type))
2792 {
2793 if ((float_argreg & 1))
2794 float_argreg++;
2795 }
2796
2797 /* Floating point arguments passed in registers have to be
2798 treated specially. On 32-bit architectures, doubles
2799 are passed in register pairs; the even register gets
2800 the low word, and the odd register gets the high word.
2801 On non-EABI processors, the first two floating point arguments are
2802 also copied to general registers, because MIPS16 functions
2803 don't use float registers for arguments. This duplication of
2804 arguments in general registers can't hurt non-MIPS16 functions
2805 because those registers are normally skipped. */
2806 /* MIPS_EABI squeezes a struct that contains a single floating
2807 point value into an FP register instead of pushing it onto the
2808 stack. */
2809 if (fp_register_arg_p (typecode, arg_type)
2810 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2811 {
2812 if (!FP_REGISTER_DOUBLE && len == 8)
2813 {
2814 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2815 unsigned long regval;
2816
2817 /* Write the low word of the double to the even register(s). */
2818 regval = extract_unsigned_integer (val + low_offset, 4);
2819 if (mips_debug)
2820 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2821 float_argreg, phex (regval, 4));
2822 write_register (float_argreg++, regval);
2823
2824 /* Write the high word of the double to the odd register(s). */
2825 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2826 if (mips_debug)
2827 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2828 float_argreg, phex (regval, 4));
2829 write_register (float_argreg++, regval);
2830 }
2831 else
2832 {
2833 /* This is a floating point value that fits entirely
2834 in a single register. */
2835 /* On 32 bit ABI's the float_argreg is further adjusted
2836 above to ensure that it is even register aligned. */
2837 LONGEST regval = extract_unsigned_integer (val, len);
2838 if (mips_debug)
2839 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2840 float_argreg, phex (regval, len));
2841 write_register (float_argreg++, regval);
2842 }
2843 }
2844 else
2845 {
2846 /* Copy the argument to general registers or the stack in
2847 register-sized pieces. Large arguments are split between
2848 registers and stack. */
2849 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2850 are treated specially: Irix cc passes them in registers
2851 where gcc sometimes puts them on the stack. For maximum
2852 compatibility, we will put them in both places. */
2853 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2854 (len % MIPS_SAVED_REGSIZE != 0));
2855
2856 /* Note: Floating-point values that didn't fit into an FP
2857 register are only written to memory. */
2858 while (len > 0)
2859 {
2860 /* Remember if the argument was written to the stack. */
2861 int stack_used_p = 0;
2862 int partial_len =
2863 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
2864
2865 if (mips_debug)
2866 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2867 partial_len);
2868
2869 /* Write this portion of the argument to the stack. */
2870 if (argreg > MIPS_LAST_ARG_REGNUM
2871 || odd_sized_struct
2872 || fp_register_arg_p (typecode, arg_type))
2873 {
2874 /* Should shorter than int integer values be
2875 promoted to int before being stored? */
2876 int longword_offset = 0;
2877 CORE_ADDR addr;
2878 stack_used_p = 1;
2879 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2880 {
2881 if (MIPS_STACK_ARGSIZE == 8 &&
2882 (typecode == TYPE_CODE_INT ||
2883 typecode == TYPE_CODE_PTR ||
2884 typecode == TYPE_CODE_FLT) && len <= 4)
2885 longword_offset = MIPS_STACK_ARGSIZE - len;
2886 else if ((typecode == TYPE_CODE_STRUCT ||
2887 typecode == TYPE_CODE_UNION) &&
2888 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2889 longword_offset = MIPS_STACK_ARGSIZE - len;
2890 }
2891
2892 if (mips_debug)
2893 {
2894 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2895 paddr_nz (stack_offset));
2896 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2897 paddr_nz (longword_offset));
2898 }
2899
2900 addr = sp + stack_offset + longword_offset;
2901
2902 if (mips_debug)
2903 {
2904 int i;
2905 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2906 paddr_nz (addr));
2907 for (i = 0; i < partial_len; i++)
2908 {
2909 fprintf_unfiltered (gdb_stdlog, "%02x",
2910 val[i] & 0xff);
2911 }
2912 }
2913 write_memory (addr, val, partial_len);
2914 }
2915
2916 /* Note!!! This is NOT an else clause. Odd sized
2917 structs may go thru BOTH paths. Floating point
2918 arguments will not. */
2919 /* Write this portion of the argument to a general
2920 purpose register. */
2921 if (argreg <= MIPS_LAST_ARG_REGNUM
2922 && !fp_register_arg_p (typecode, arg_type))
2923 {
2924 LONGEST regval = extract_unsigned_integer (val, partial_len);
2925
2926 if (mips_debug)
2927 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2928 argreg,
2929 phex (regval, MIPS_SAVED_REGSIZE));
2930 write_register (argreg, regval);
2931 argreg++;
2932 }
2933
2934 len -= partial_len;
2935 val += partial_len;
2936
2937 /* Compute the the offset into the stack at which we
2938 will copy the next parameter.
2939
2940 In the new EABI (and the NABI32), the stack_offset
2941 only needs to be adjusted when it has been used. */
2942
2943 if (stack_used_p)
2944 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
2945 }
2946 }
2947 if (mips_debug)
2948 fprintf_unfiltered (gdb_stdlog, "\n");
2949 }
2950
2951 /* Return adjusted stack pointer. */
2952 return sp;
2953 }
2954
2955 /* N32/N64 version of push_dummy_call. */
2956
2957 static CORE_ADDR
2958 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2959 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2960 struct value **args, CORE_ADDR sp, int struct_return,
2961 CORE_ADDR struct_addr)
2962 {
2963 int argreg;
2964 int float_argreg;
2965 int argnum;
2966 int len = 0;
2967 int stack_offset = 0;
2968
2969 /* For shared libraries, "t9" needs to point at the function
2970 address. */
2971 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
2972
2973 /* Set the return address register to point to the entry point of
2974 the program, where a breakpoint lies in wait. */
2975 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
2976
2977 /* First ensure that the stack and structure return address (if any)
2978 are properly aligned. The stack has to be at least 64-bit
2979 aligned even on 32-bit machines, because doubles must be 64-bit
2980 aligned. For n32 and n64, stack frames need to be 128-bit
2981 aligned, so we round to this widest known alignment. */
2982
2983 sp = ROUND_DOWN (sp, 16);
2984 struct_addr = ROUND_DOWN (struct_addr, 16);
2985
2986 /* Now make space on the stack for the args. */
2987 for (argnum = 0; argnum < nargs; argnum++)
2988 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2989 MIPS_STACK_ARGSIZE);
2990 sp -= ROUND_UP (len, 16);
2991
2992 if (mips_debug)
2993 fprintf_unfiltered (gdb_stdlog,
2994 "mips_n32n64_push_dummy_call: sp=0x%s allocated %d\n",
2995 paddr_nz (sp), ROUND_UP (len, 16));
2996
2997 /* Initialize the integer and float register pointers. */
2998 argreg = A0_REGNUM;
2999 float_argreg = FPA0_REGNUM;
3000
3001 /* The struct_return pointer occupies the first parameter-passing reg. */
3002 if (struct_return)
3003 {
3004 if (mips_debug)
3005 fprintf_unfiltered (gdb_stdlog,
3006 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
3007 argreg, paddr_nz (struct_addr));
3008 write_register (argreg++, struct_addr);
3009 }
3010
3011 /* Now load as many as possible of the first arguments into
3012 registers, and push the rest onto the stack. Loop thru args
3013 from first to last. */
3014 for (argnum = 0; argnum < nargs; argnum++)
3015 {
3016 char *val;
3017 char valbuf[MAX_REGISTER_SIZE];
3018 struct value *arg = args[argnum];
3019 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3020 int len = TYPE_LENGTH (arg_type);
3021 enum type_code typecode = TYPE_CODE (arg_type);
3022
3023 if (mips_debug)
3024 fprintf_unfiltered (gdb_stdlog,
3025 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
3026 argnum + 1, len, (int) typecode);
3027
3028 val = (char *) VALUE_CONTENTS (arg);
3029
3030 if (fp_register_arg_p (typecode, arg_type)
3031 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3032 {
3033 /* This is a floating point value that fits entirely
3034 in a single register. */
3035 /* On 32 bit ABI's the float_argreg is further adjusted
3036 above to ensure that it is even register aligned. */
3037 LONGEST regval = extract_unsigned_integer (val, len);
3038 if (mips_debug)
3039 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3040 float_argreg, phex (regval, len));
3041 write_register (float_argreg++, regval);
3042
3043 if (mips_debug)
3044 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3045 argreg, phex (regval, len));
3046 write_register (argreg, regval);
3047 argreg += 1;
3048 }
3049 else
3050 {
3051 /* Copy the argument to general registers or the stack in
3052 register-sized pieces. Large arguments are split between
3053 registers and stack. */
3054 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3055 are treated specially: Irix cc passes them in registers
3056 where gcc sometimes puts them on the stack. For maximum
3057 compatibility, we will put them in both places. */
3058 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3059 (len % MIPS_SAVED_REGSIZE != 0));
3060 /* Note: Floating-point values that didn't fit into an FP
3061 register are only written to memory. */
3062 while (len > 0)
3063 {
3064 /* Rememer if the argument was written to the stack. */
3065 int stack_used_p = 0;
3066 int partial_len = len < MIPS_SAVED_REGSIZE ?
3067 len : MIPS_SAVED_REGSIZE;
3068
3069 if (mips_debug)
3070 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3071 partial_len);
3072
3073 /* Write this portion of the argument to the stack. */
3074 if (argreg > MIPS_LAST_ARG_REGNUM
3075 || odd_sized_struct
3076 || fp_register_arg_p (typecode, arg_type))
3077 {
3078 /* Should shorter than int integer values be
3079 promoted to int before being stored? */
3080 int longword_offset = 0;
3081 CORE_ADDR addr;
3082 stack_used_p = 1;
3083 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3084 {
3085 if (MIPS_STACK_ARGSIZE == 8 &&
3086 (typecode == TYPE_CODE_INT ||
3087 typecode == TYPE_CODE_PTR ||
3088 typecode == TYPE_CODE_FLT) && len <= 4)
3089 longword_offset = MIPS_STACK_ARGSIZE - len;
3090 }
3091
3092 if (mips_debug)
3093 {
3094 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3095 paddr_nz (stack_offset));
3096 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3097 paddr_nz (longword_offset));
3098 }
3099
3100 addr = sp + stack_offset + longword_offset;
3101
3102 if (mips_debug)
3103 {
3104 int i;
3105 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3106 paddr_nz (addr));
3107 for (i = 0; i < partial_len; i++)
3108 {
3109 fprintf_unfiltered (gdb_stdlog, "%02x",
3110 val[i] & 0xff);
3111 }
3112 }
3113 write_memory (addr, val, partial_len);
3114 }
3115
3116 /* Note!!! This is NOT an else clause. Odd sized
3117 structs may go thru BOTH paths. Floating point
3118 arguments will not. */
3119 /* Write this portion of the argument to a general
3120 purpose register. */
3121 if (argreg <= MIPS_LAST_ARG_REGNUM
3122 && !fp_register_arg_p (typecode, arg_type))
3123 {
3124 LONGEST regval = extract_unsigned_integer (val, partial_len);
3125
3126 /* A non-floating-point argument being passed in a
3127 general register. If a struct or union, and if
3128 the remaining length is smaller than the register
3129 size, we have to adjust the register value on
3130 big endian targets.
3131
3132 It does not seem to be necessary to do the
3133 same for integral types.
3134
3135 cagney/2001-07-23: gdb/179: Also, GCC, when
3136 outputting LE O32 with sizeof (struct) <
3137 MIPS_SAVED_REGSIZE, generates a left shift as
3138 part of storing the argument in a register a
3139 register (the left shift isn't generated when
3140 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3141 is quite possible that this is GCC contradicting
3142 the LE/O32 ABI, GDB has not been adjusted to
3143 accommodate this. Either someone needs to
3144 demonstrate that the LE/O32 ABI specifies such a
3145 left shift OR this new ABI gets identified as
3146 such and GDB gets tweaked accordingly. */
3147
3148 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3149 && partial_len < MIPS_SAVED_REGSIZE
3150 && (typecode == TYPE_CODE_STRUCT ||
3151 typecode == TYPE_CODE_UNION))
3152 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3153 TARGET_CHAR_BIT);
3154
3155 if (mips_debug)
3156 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3157 argreg,
3158 phex (regval, MIPS_SAVED_REGSIZE));
3159 write_register (argreg, regval);
3160 argreg++;
3161 }
3162
3163 len -= partial_len;
3164 val += partial_len;
3165
3166 /* Compute the the offset into the stack at which we
3167 will copy the next parameter.
3168
3169 In N32 (N64?), the stack_offset only needs to be
3170 adjusted when it has been used. */
3171
3172 if (stack_used_p)
3173 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3174 }
3175 }
3176 if (mips_debug)
3177 fprintf_unfiltered (gdb_stdlog, "\n");
3178 }
3179
3180 /* Return adjusted stack pointer. */
3181 return sp;
3182 }
3183
3184 /* O32 version of push_dummy_call. */
3185
3186 static CORE_ADDR
3187 mips_o32_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3188 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3189 struct value **args, CORE_ADDR sp, int struct_return,
3190 CORE_ADDR struct_addr)
3191 {
3192 int argreg;
3193 int float_argreg;
3194 int argnum;
3195 int len = 0;
3196 int stack_offset = 0;
3197
3198 /* For shared libraries, "t9" needs to point at the function
3199 address. */
3200 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3201
3202 /* Set the return address register to point to the entry point of
3203 the program, where a breakpoint lies in wait. */
3204 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3205
3206 /* First ensure that the stack and structure return address (if any)
3207 are properly aligned. The stack has to be at least 64-bit
3208 aligned even on 32-bit machines, because doubles must be 64-bit
3209 aligned. For n32 and n64, stack frames need to be 128-bit
3210 aligned, so we round to this widest known alignment. */
3211
3212 sp = ROUND_DOWN (sp, 16);
3213 struct_addr = ROUND_DOWN (struct_addr, 16);
3214
3215 /* Now make space on the stack for the args. */
3216 for (argnum = 0; argnum < nargs; argnum++)
3217 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3218 MIPS_STACK_ARGSIZE);
3219 sp -= ROUND_UP (len, 16);
3220
3221 if (mips_debug)
3222 fprintf_unfiltered (gdb_stdlog,
3223 "mips_o32_push_dummy_call: sp=0x%s allocated %d\n",
3224 paddr_nz (sp), ROUND_UP (len, 16));
3225
3226 /* Initialize the integer and float register pointers. */
3227 argreg = A0_REGNUM;
3228 float_argreg = FPA0_REGNUM;
3229
3230 /* The struct_return pointer occupies the first parameter-passing reg. */
3231 if (struct_return)
3232 {
3233 if (mips_debug)
3234 fprintf_unfiltered (gdb_stdlog,
3235 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
3236 argreg, paddr_nz (struct_addr));
3237 write_register (argreg++, struct_addr);
3238 stack_offset += MIPS_STACK_ARGSIZE;
3239 }
3240
3241 /* Now load as many as possible of the first arguments into
3242 registers, and push the rest onto the stack. Loop thru args
3243 from first to last. */
3244 for (argnum = 0; argnum < nargs; argnum++)
3245 {
3246 char *val;
3247 char valbuf[MAX_REGISTER_SIZE];
3248 struct value *arg = args[argnum];
3249 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3250 int len = TYPE_LENGTH (arg_type);
3251 enum type_code typecode = TYPE_CODE (arg_type);
3252
3253 if (mips_debug)
3254 fprintf_unfiltered (gdb_stdlog,
3255 "mips_o32_push_dummy_call: %d len=%d type=%d",
3256 argnum + 1, len, (int) typecode);
3257
3258 val = (char *) VALUE_CONTENTS (arg);
3259
3260 /* 32-bit ABIs always start floating point arguments in an
3261 even-numbered floating point register. Round the FP register
3262 up before the check to see if there are any FP registers
3263 left. O32/O64 targets also pass the FP in the integer
3264 registers so also round up normal registers. */
3265 if (!FP_REGISTER_DOUBLE
3266 && fp_register_arg_p (typecode, arg_type))
3267 {
3268 if ((float_argreg & 1))
3269 float_argreg++;
3270 }
3271
3272 /* Floating point arguments passed in registers have to be
3273 treated specially. On 32-bit architectures, doubles
3274 are passed in register pairs; the even register gets
3275 the low word, and the odd register gets the high word.
3276 On O32/O64, the first two floating point arguments are
3277 also copied to general registers, because MIPS16 functions
3278 don't use float registers for arguments. This duplication of
3279 arguments in general registers can't hurt non-MIPS16 functions
3280 because those registers are normally skipped. */
3281
3282 if (fp_register_arg_p (typecode, arg_type)
3283 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3284 {
3285 if (!FP_REGISTER_DOUBLE && len == 8)
3286 {
3287 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3288 unsigned long regval;
3289
3290 /* Write the low word of the double to the even register(s). */
3291 regval = extract_unsigned_integer (val + low_offset, 4);
3292 if (mips_debug)
3293 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3294 float_argreg, phex (regval, 4));
3295 write_register (float_argreg++, regval);
3296 if (mips_debug)
3297 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3298 argreg, phex (regval, 4));
3299 write_register (argreg++, regval);
3300
3301 /* Write the high word of the double to the odd register(s). */
3302 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3303 if (mips_debug)
3304 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3305 float_argreg, phex (regval, 4));
3306 write_register (float_argreg++, regval);
3307
3308 if (mips_debug)
3309 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3310 argreg, phex (regval, 4));
3311 write_register (argreg++, regval);
3312 }
3313 else
3314 {
3315 /* This is a floating point value that fits entirely
3316 in a single register. */
3317 /* On 32 bit ABI's the float_argreg is further adjusted
3318 above to ensure that it is even register aligned. */
3319 LONGEST regval = extract_unsigned_integer (val, len);
3320 if (mips_debug)
3321 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3322 float_argreg, phex (regval, len));
3323 write_register (float_argreg++, regval);
3324 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3325 registers for each argument. The below is (my
3326 guess) to ensure that the corresponding integer
3327 register has reserved the same space. */
3328 if (mips_debug)
3329 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3330 argreg, phex (regval, len));
3331 write_register (argreg, regval);
3332 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3333 }
3334 /* Reserve space for the FP register. */
3335 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3336 }
3337 else
3338 {
3339 /* Copy the argument to general registers or the stack in
3340 register-sized pieces. Large arguments are split between
3341 registers and stack. */
3342 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3343 are treated specially: Irix cc passes them in registers
3344 where gcc sometimes puts them on the stack. For maximum
3345 compatibility, we will put them in both places. */
3346 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3347 (len % MIPS_SAVED_REGSIZE != 0));
3348 /* Structures should be aligned to eight bytes (even arg registers)
3349 on MIPS_ABI_O32, if their first member has double precision. */
3350 if (MIPS_SAVED_REGSIZE < 8
3351 && mips_type_needs_double_align (arg_type))
3352 {
3353 if ((argreg & 1))
3354 argreg++;
3355 }
3356 /* Note: Floating-point values that didn't fit into an FP
3357 register are only written to memory. */
3358 while (len > 0)
3359 {
3360 /* Remember if the argument was written to the stack. */
3361 int stack_used_p = 0;
3362 int partial_len =
3363 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3364
3365 if (mips_debug)
3366 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3367 partial_len);
3368
3369 /* Write this portion of the argument to the stack. */
3370 if (argreg > MIPS_LAST_ARG_REGNUM
3371 || odd_sized_struct
3372 || fp_register_arg_p (typecode, arg_type))
3373 {
3374 /* Should shorter than int integer values be
3375 promoted to int before being stored? */
3376 int longword_offset = 0;
3377 CORE_ADDR addr;
3378 stack_used_p = 1;
3379 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3380 {
3381 if (MIPS_STACK_ARGSIZE == 8 &&
3382 (typecode == TYPE_CODE_INT ||
3383 typecode == TYPE_CODE_PTR ||
3384 typecode == TYPE_CODE_FLT) && len <= 4)
3385 longword_offset = MIPS_STACK_ARGSIZE - len;
3386 }
3387
3388 if (mips_debug)
3389 {
3390 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3391 paddr_nz (stack_offset));
3392 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3393 paddr_nz (longword_offset));
3394 }
3395
3396 addr = sp + stack_offset + longword_offset;
3397
3398 if (mips_debug)
3399 {
3400 int i;
3401 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3402 paddr_nz (addr));
3403 for (i = 0; i < partial_len; i++)
3404 {
3405 fprintf_unfiltered (gdb_stdlog, "%02x",
3406 val[i] & 0xff);
3407 }
3408 }
3409 write_memory (addr, val, partial_len);
3410 }
3411
3412 /* Note!!! This is NOT an else clause. Odd sized
3413 structs may go thru BOTH paths. Floating point
3414 arguments will not. */
3415 /* Write this portion of the argument to a general
3416 purpose register. */
3417 if (argreg <= MIPS_LAST_ARG_REGNUM
3418 && !fp_register_arg_p (typecode, arg_type))
3419 {
3420 LONGEST regval = extract_signed_integer (val, partial_len);
3421 /* Value may need to be sign extended, because
3422 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3423
3424 /* A non-floating-point argument being passed in a
3425 general register. If a struct or union, and if
3426 the remaining length is smaller than the register
3427 size, we have to adjust the register value on
3428 big endian targets.
3429
3430 It does not seem to be necessary to do the
3431 same for integral types.
3432
3433 Also don't do this adjustment on O64 binaries.
3434
3435 cagney/2001-07-23: gdb/179: Also, GCC, when
3436 outputting LE O32 with sizeof (struct) <
3437 MIPS_SAVED_REGSIZE, generates a left shift as
3438 part of storing the argument in a register a
3439 register (the left shift isn't generated when
3440 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3441 is quite possible that this is GCC contradicting
3442 the LE/O32 ABI, GDB has not been adjusted to
3443 accommodate this. Either someone needs to
3444 demonstrate that the LE/O32 ABI specifies such a
3445 left shift OR this new ABI gets identified as
3446 such and GDB gets tweaked accordingly. */
3447
3448 if (MIPS_SAVED_REGSIZE < 8
3449 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3450 && partial_len < MIPS_SAVED_REGSIZE
3451 && (typecode == TYPE_CODE_STRUCT ||
3452 typecode == TYPE_CODE_UNION))
3453 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3454 TARGET_CHAR_BIT);
3455
3456 if (mips_debug)
3457 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3458 argreg,
3459 phex (regval, MIPS_SAVED_REGSIZE));
3460 write_register (argreg, regval);
3461 argreg++;
3462
3463 /* Prevent subsequent floating point arguments from
3464 being passed in floating point registers. */
3465 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3466 }
3467
3468 len -= partial_len;
3469 val += partial_len;
3470
3471 /* Compute the the offset into the stack at which we
3472 will copy the next parameter.
3473
3474 In older ABIs, the caller reserved space for
3475 registers that contained arguments. This was loosely
3476 refered to as their "home". Consequently, space is
3477 always allocated. */
3478
3479 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3480 }
3481 }
3482 if (mips_debug)
3483 fprintf_unfiltered (gdb_stdlog, "\n");
3484 }
3485
3486 /* Return adjusted stack pointer. */
3487 return sp;
3488 }
3489
3490 /* O64 version of push_dummy_call. */
3491
3492 static CORE_ADDR
3493 mips_o64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3494 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3495 struct value **args, CORE_ADDR sp, int struct_return,
3496 CORE_ADDR struct_addr)
3497 {
3498 int argreg;
3499 int float_argreg;
3500 int argnum;
3501 int len = 0;
3502 int stack_offset = 0;
3503
3504 /* For shared libraries, "t9" needs to point at the function
3505 address. */
3506 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3507
3508 /* Set the return address register to point to the entry point of
3509 the program, where a breakpoint lies in wait. */
3510 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3511
3512 /* First ensure that the stack and structure return address (if any)
3513 are properly aligned. The stack has to be at least 64-bit
3514 aligned even on 32-bit machines, because doubles must be 64-bit
3515 aligned. For n32 and n64, stack frames need to be 128-bit
3516 aligned, so we round to this widest known alignment. */
3517
3518 sp = ROUND_DOWN (sp, 16);
3519 struct_addr = ROUND_DOWN (struct_addr, 16);
3520
3521 /* Now make space on the stack for the args. */
3522 for (argnum = 0; argnum < nargs; argnum++)
3523 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3524 MIPS_STACK_ARGSIZE);
3525 sp -= ROUND_UP (len, 16);
3526
3527 if (mips_debug)
3528 fprintf_unfiltered (gdb_stdlog,
3529 "mips_o64_push_dummy_call: sp=0x%s allocated %d\n",
3530 paddr_nz (sp), ROUND_UP (len, 16));
3531
3532 /* Initialize the integer and float register pointers. */
3533 argreg = A0_REGNUM;
3534 float_argreg = FPA0_REGNUM;
3535
3536 /* The struct_return pointer occupies the first parameter-passing reg. */
3537 if (struct_return)
3538 {
3539 if (mips_debug)
3540 fprintf_unfiltered (gdb_stdlog,
3541 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
3542 argreg, paddr_nz (struct_addr));
3543 write_register (argreg++, struct_addr);
3544 stack_offset += MIPS_STACK_ARGSIZE;
3545 }
3546
3547 /* Now load as many as possible of the first arguments into
3548 registers, and push the rest onto the stack. Loop thru args
3549 from first to last. */
3550 for (argnum = 0; argnum < nargs; argnum++)
3551 {
3552 char *val;
3553 char valbuf[MAX_REGISTER_SIZE];
3554 struct value *arg = args[argnum];
3555 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3556 int len = TYPE_LENGTH (arg_type);
3557 enum type_code typecode = TYPE_CODE (arg_type);
3558
3559 if (mips_debug)
3560 fprintf_unfiltered (gdb_stdlog,
3561 "mips_o64_push_dummy_call: %d len=%d type=%d",
3562 argnum + 1, len, (int) typecode);
3563
3564 val = (char *) VALUE_CONTENTS (arg);
3565
3566 /* 32-bit ABIs always start floating point arguments in an
3567 even-numbered floating point register. Round the FP register
3568 up before the check to see if there are any FP registers
3569 left. O32/O64 targets also pass the FP in the integer
3570 registers so also round up normal registers. */
3571 if (!FP_REGISTER_DOUBLE
3572 && fp_register_arg_p (typecode, arg_type))
3573 {
3574 if ((float_argreg & 1))
3575 float_argreg++;
3576 }
3577
3578 /* Floating point arguments passed in registers have to be
3579 treated specially. On 32-bit architectures, doubles
3580 are passed in register pairs; the even register gets
3581 the low word, and the odd register gets the high word.
3582 On O32/O64, the first two floating point arguments are
3583 also copied to general registers, because MIPS16 functions
3584 don't use float registers for arguments. This duplication of
3585 arguments in general registers can't hurt non-MIPS16 functions
3586 because those registers are normally skipped. */
3587
3588 if (fp_register_arg_p (typecode, arg_type)
3589 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3590 {
3591 if (!FP_REGISTER_DOUBLE && len == 8)
3592 {
3593 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3594 unsigned long regval;
3595
3596 /* Write the low word of the double to the even register(s). */
3597 regval = extract_unsigned_integer (val + low_offset, 4);
3598 if (mips_debug)
3599 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3600 float_argreg, phex (regval, 4));
3601 write_register (float_argreg++, regval);
3602 if (mips_debug)
3603 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3604 argreg, phex (regval, 4));
3605 write_register (argreg++, regval);
3606
3607 /* Write the high word of the double to the odd register(s). */
3608 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3609 if (mips_debug)
3610 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3611 float_argreg, phex (regval, 4));
3612 write_register (float_argreg++, regval);
3613
3614 if (mips_debug)
3615 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3616 argreg, phex (regval, 4));
3617 write_register (argreg++, regval);
3618 }
3619 else
3620 {
3621 /* This is a floating point value that fits entirely
3622 in a single register. */
3623 /* On 32 bit ABI's the float_argreg is further adjusted
3624 above to ensure that it is even register aligned. */
3625 LONGEST regval = extract_unsigned_integer (val, len);
3626 if (mips_debug)
3627 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3628 float_argreg, phex (regval, len));
3629 write_register (float_argreg++, regval);
3630 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3631 registers for each argument. The below is (my
3632 guess) to ensure that the corresponding integer
3633 register has reserved the same space. */
3634 if (mips_debug)
3635 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3636 argreg, phex (regval, len));
3637 write_register (argreg, regval);
3638 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3639 }
3640 /* Reserve space for the FP register. */
3641 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3642 }
3643 else
3644 {
3645 /* Copy the argument to general registers or the stack in
3646 register-sized pieces. Large arguments are split between
3647 registers and stack. */
3648 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3649 are treated specially: Irix cc passes them in registers
3650 where gcc sometimes puts them on the stack. For maximum
3651 compatibility, we will put them in both places. */
3652 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3653 (len % MIPS_SAVED_REGSIZE != 0));
3654 /* Structures should be aligned to eight bytes (even arg registers)
3655 on MIPS_ABI_O32, if their first member has double precision. */
3656 if (MIPS_SAVED_REGSIZE < 8
3657 && mips_type_needs_double_align (arg_type))
3658 {
3659 if ((argreg & 1))
3660 argreg++;
3661 }
3662 /* Note: Floating-point values that didn't fit into an FP
3663 register are only written to memory. */
3664 while (len > 0)
3665 {
3666 /* Remember if the argument was written to the stack. */
3667 int stack_used_p = 0;
3668 int partial_len =
3669 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3670
3671 if (mips_debug)
3672 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3673 partial_len);
3674
3675 /* Write this portion of the argument to the stack. */
3676 if (argreg > MIPS_LAST_ARG_REGNUM
3677 || odd_sized_struct
3678 || fp_register_arg_p (typecode, arg_type))
3679 {
3680 /* Should shorter than int integer values be
3681 promoted to int before being stored? */
3682 int longword_offset = 0;
3683 CORE_ADDR addr;
3684 stack_used_p = 1;
3685 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3686 {
3687 if (MIPS_STACK_ARGSIZE == 8 &&
3688 (typecode == TYPE_CODE_INT ||
3689 typecode == TYPE_CODE_PTR ||
3690 typecode == TYPE_CODE_FLT) && len <= 4)
3691 longword_offset = MIPS_STACK_ARGSIZE - len;
3692 }
3693
3694 if (mips_debug)
3695 {
3696 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3697 paddr_nz (stack_offset));
3698 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3699 paddr_nz (longword_offset));
3700 }
3701
3702 addr = sp + stack_offset + longword_offset;
3703
3704 if (mips_debug)
3705 {
3706 int i;
3707 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3708 paddr_nz (addr));
3709 for (i = 0; i < partial_len; i++)
3710 {
3711 fprintf_unfiltered (gdb_stdlog, "%02x",
3712 val[i] & 0xff);
3713 }
3714 }
3715 write_memory (addr, val, partial_len);
3716 }
3717
3718 /* Note!!! This is NOT an else clause. Odd sized
3719 structs may go thru BOTH paths. Floating point
3720 arguments will not. */
3721 /* Write this portion of the argument to a general
3722 purpose register. */
3723 if (argreg <= MIPS_LAST_ARG_REGNUM
3724 && !fp_register_arg_p (typecode, arg_type))
3725 {
3726 LONGEST regval = extract_signed_integer (val, partial_len);
3727 /* Value may need to be sign extended, because
3728 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3729
3730 /* A non-floating-point argument being passed in a
3731 general register. If a struct or union, and if
3732 the remaining length is smaller than the register
3733 size, we have to adjust the register value on
3734 big endian targets.
3735
3736 It does not seem to be necessary to do the
3737 same for integral types.
3738
3739 Also don't do this adjustment on O64 binaries.
3740
3741 cagney/2001-07-23: gdb/179: Also, GCC, when
3742 outputting LE O32 with sizeof (struct) <
3743 MIPS_SAVED_REGSIZE, generates a left shift as
3744 part of storing the argument in a register a
3745 register (the left shift isn't generated when
3746 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3747 is quite possible that this is GCC contradicting
3748 the LE/O32 ABI, GDB has not been adjusted to
3749 accommodate this. Either someone needs to
3750 demonstrate that the LE/O32 ABI specifies such a
3751 left shift OR this new ABI gets identified as
3752 such and GDB gets tweaked accordingly. */
3753
3754 if (MIPS_SAVED_REGSIZE < 8
3755 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3756 && partial_len < MIPS_SAVED_REGSIZE
3757 && (typecode == TYPE_CODE_STRUCT ||
3758 typecode == TYPE_CODE_UNION))
3759 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3760 TARGET_CHAR_BIT);
3761
3762 if (mips_debug)
3763 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3764 argreg,
3765 phex (regval, MIPS_SAVED_REGSIZE));
3766 write_register (argreg, regval);
3767 argreg++;
3768
3769 /* Prevent subsequent floating point arguments from
3770 being passed in floating point registers. */
3771 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3772 }
3773
3774 len -= partial_len;
3775 val += partial_len;
3776
3777 /* Compute the the offset into the stack at which we
3778 will copy the next parameter.
3779
3780 In older ABIs, the caller reserved space for
3781 registers that contained arguments. This was loosely
3782 refered to as their "home". Consequently, space is
3783 always allocated. */
3784
3785 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3786 }
3787 }
3788 if (mips_debug)
3789 fprintf_unfiltered (gdb_stdlog, "\n");
3790 }
3791
3792 /* Return adjusted stack pointer. */
3793 return sp;
3794 }
3795
3796 static void
3797 mips_pop_frame (void)
3798 {
3799 register int regnum;
3800 struct frame_info *frame = get_current_frame ();
3801 CORE_ADDR new_sp = get_frame_base (frame);
3802 mips_extra_func_info_t proc_desc;
3803
3804 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
3805 {
3806 generic_pop_dummy_frame ();
3807 flush_cached_frames ();
3808 return;
3809 }
3810
3811 proc_desc = get_frame_extra_info (frame)->proc_desc;
3812 write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
3813 mips_find_saved_regs (frame);
3814 for (regnum = 0; regnum < NUM_REGS; regnum++)
3815 if (regnum != SP_REGNUM && regnum != PC_REGNUM
3816 && get_frame_saved_regs (frame)[regnum])
3817 {
3818 /* Floating point registers must not be sign extended,
3819 in case MIPS_SAVED_REGSIZE = 4 but sizeof (FP0_REGNUM) == 8. */
3820
3821 if (FP0_REGNUM <= regnum && regnum < FP0_REGNUM + 32)
3822 write_register (regnum,
3823 read_memory_unsigned_integer (get_frame_saved_regs (frame)[regnum],
3824 MIPS_SAVED_REGSIZE));
3825 else
3826 write_register (regnum,
3827 read_memory_integer (get_frame_saved_regs (frame)[regnum],
3828 MIPS_SAVED_REGSIZE));
3829 }
3830
3831 write_register (SP_REGNUM, new_sp);
3832 flush_cached_frames ();
3833
3834 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
3835 {
3836 struct linked_proc_info *pi_ptr, *prev_ptr;
3837
3838 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3839 pi_ptr != NULL;
3840 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3841 {
3842 if (&pi_ptr->info == proc_desc)
3843 break;
3844 }
3845
3846 if (pi_ptr == NULL)
3847 error ("Can't locate dummy extra frame info\n");
3848
3849 if (prev_ptr != NULL)
3850 prev_ptr->next = pi_ptr->next;
3851 else
3852 linked_proc_desc_table = pi_ptr->next;
3853
3854 xfree (pi_ptr);
3855
3856 write_register (HI_REGNUM,
3857 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
3858 MIPS_SAVED_REGSIZE));
3859 write_register (LO_REGNUM,
3860 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
3861 MIPS_SAVED_REGSIZE));
3862 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
3863 write_register (FCRCS_REGNUM,
3864 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
3865 MIPS_SAVED_REGSIZE));
3866 }
3867 }
3868
3869 /* Floating point register management.
3870
3871 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3872 64bit operations, these early MIPS cpus treat fp register pairs
3873 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3874 registers and offer a compatibility mode that emulates the MIPS2 fp
3875 model. When operating in MIPS2 fp compat mode, later cpu's split
3876 double precision floats into two 32-bit chunks and store them in
3877 consecutive fp regs. To display 64-bit floats stored in this
3878 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3879 Throw in user-configurable endianness and you have a real mess.
3880
3881 The way this works is:
3882 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3883 double-precision value will be split across two logical registers.
3884 The lower-numbered logical register will hold the low-order bits,
3885 regardless of the processor's endianness.
3886 - If we are on a 64-bit processor, and we are looking for a
3887 single-precision value, it will be in the low ordered bits
3888 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3889 save slot in memory.
3890 - If we are in 64-bit mode, everything is straightforward.
3891
3892 Note that this code only deals with "live" registers at the top of the
3893 stack. We will attempt to deal with saved registers later, when
3894 the raw/cooked register interface is in place. (We need a general
3895 interface that can deal with dynamic saved register sizes -- fp
3896 regs could be 32 bits wide in one frame and 64 on the frame above
3897 and below). */
3898
3899 static struct type *
3900 mips_float_register_type (void)
3901 {
3902 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3903 return builtin_type_ieee_single_big;
3904 else
3905 return builtin_type_ieee_single_little;
3906 }
3907
3908 static struct type *
3909 mips_double_register_type (void)
3910 {
3911 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3912 return builtin_type_ieee_double_big;
3913 else
3914 return builtin_type_ieee_double_little;
3915 }
3916
3917 /* Copy a 32-bit single-precision value from the current frame
3918 into rare_buffer. */
3919
3920 static void
3921 mips_read_fp_register_single (struct frame_info *frame, int regno,
3922 char *rare_buffer)
3923 {
3924 int raw_size = REGISTER_RAW_SIZE (regno);
3925 char *raw_buffer = alloca (raw_size);
3926
3927 if (!frame_register_read (frame, regno, raw_buffer))
3928 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3929 if (raw_size == 8)
3930 {
3931 /* We have a 64-bit value for this register. Find the low-order
3932 32 bits. */
3933 int offset;
3934
3935 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3936 offset = 4;
3937 else
3938 offset = 0;
3939
3940 memcpy (rare_buffer, raw_buffer + offset, 4);
3941 }
3942 else
3943 {
3944 memcpy (rare_buffer, raw_buffer, 4);
3945 }
3946 }
3947
3948 /* Copy a 64-bit double-precision value from the current frame into
3949 rare_buffer. This may include getting half of it from the next
3950 register. */
3951
3952 static void
3953 mips_read_fp_register_double (struct frame_info *frame, int regno,
3954 char *rare_buffer)
3955 {
3956 int raw_size = REGISTER_RAW_SIZE (regno);
3957
3958 if (raw_size == 8 && !mips2_fp_compat ())
3959 {
3960 /* We have a 64-bit value for this register, and we should use
3961 all 64 bits. */
3962 if (!frame_register_read (frame, regno, rare_buffer))
3963 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3964 }
3965 else
3966 {
3967 if ((regno - FP0_REGNUM) & 1)
3968 internal_error (__FILE__, __LINE__,
3969 "mips_read_fp_register_double: bad access to "
3970 "odd-numbered FP register");
3971
3972 /* mips_read_fp_register_single will find the correct 32 bits from
3973 each register. */
3974 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3975 {
3976 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
3977 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
3978 }
3979 else
3980 {
3981 mips_read_fp_register_single (frame, regno, rare_buffer);
3982 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
3983 }
3984 }
3985 }
3986
3987 static void
3988 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
3989 int regnum)
3990 { /* do values for FP (float) regs */
3991 char *raw_buffer;
3992 double doub, flt1, flt2; /* doubles extracted from raw hex data */
3993 int inv1, inv2, namelen;
3994
3995 raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
3996
3997 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
3998 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
3999 "");
4000
4001 if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
4002 {
4003 /* 4-byte registers: Print hex and floating. Also print even
4004 numbered registers as doubles. */
4005 mips_read_fp_register_single (frame, regnum, raw_buffer);
4006 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4007
4008 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w', file);
4009
4010 fprintf_filtered (file, " flt: ");
4011 if (inv1)
4012 fprintf_filtered (file, " <invalid float> ");
4013 else
4014 fprintf_filtered (file, "%-17.9g", flt1);
4015
4016 if (regnum % 2 == 0)
4017 {
4018 mips_read_fp_register_double (frame, regnum, raw_buffer);
4019 doub = unpack_double (mips_double_register_type (), raw_buffer,
4020 &inv2);
4021
4022 fprintf_filtered (file, " dbl: ");
4023 if (inv2)
4024 fprintf_filtered (file, "<invalid double>");
4025 else
4026 fprintf_filtered (file, "%-24.17g", doub);
4027 }
4028 }
4029 else
4030 {
4031 /* Eight byte registers: print each one as hex, float and double. */
4032 mips_read_fp_register_single (frame, regnum, raw_buffer);
4033 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4034
4035 mips_read_fp_register_double (frame, regnum, raw_buffer);
4036 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4037
4038
4039 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g', file);
4040
4041 fprintf_filtered (file, " flt: ");
4042 if (inv1)
4043 fprintf_filtered (file, "<invalid float>");
4044 else
4045 fprintf_filtered (file, "%-17.9g", flt1);
4046
4047 fprintf_filtered (file, " dbl: ");
4048 if (inv2)
4049 fprintf_filtered (file, "<invalid double>");
4050 else
4051 fprintf_filtered (file, "%-24.17g", doub);
4052 }
4053 }
4054
4055 static void
4056 mips_print_register (struct ui_file *file, struct frame_info *frame,
4057 int regnum, int all)
4058 {
4059 char raw_buffer[MAX_REGISTER_SIZE];
4060 int offset;
4061
4062 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4063 {
4064 mips_print_fp_register (file, frame, regnum);
4065 return;
4066 }
4067
4068 /* Get the data in raw format. */
4069 if (!frame_register_read (frame, regnum, raw_buffer))
4070 {
4071 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
4072 return;
4073 }
4074
4075 fputs_filtered (REGISTER_NAME (regnum), file);
4076
4077 /* The problem with printing numeric register names (r26, etc.) is that
4078 the user can't use them on input. Probably the best solution is to
4079 fix it so that either the numeric or the funky (a2, etc.) names
4080 are accepted on input. */
4081 if (regnum < MIPS_NUMREGS)
4082 fprintf_filtered (file, "(r%d): ", regnum);
4083 else
4084 fprintf_filtered (file, ": ");
4085
4086 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4087 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4088 else
4089 offset = 0;
4090
4091 print_scalar_formatted (raw_buffer + offset,
4092 REGISTER_VIRTUAL_TYPE (regnum),
4093 'x', 0, file);
4094 }
4095
4096 /* Replacement for generic do_registers_info.
4097 Print regs in pretty columns. */
4098
4099 static int
4100 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4101 int regnum)
4102 {
4103 fprintf_filtered (file, " ");
4104 mips_print_fp_register (file, frame, regnum);
4105 fprintf_filtered (file, "\n");
4106 return regnum + 1;
4107 }
4108
4109
4110 /* Print a row's worth of GP (int) registers, with name labels above */
4111
4112 static int
4113 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4114 int regnum)
4115 {
4116 /* do values for GP (int) regs */
4117 char raw_buffer[MAX_REGISTER_SIZE];
4118 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
4119 int col, byte;
4120 int start_regnum = regnum;
4121 int numregs = NUM_REGS;
4122
4123
4124 /* For GP registers, we print a separate row of names above the vals */
4125 fprintf_filtered (file, " ");
4126 for (col = 0; col < ncols && regnum < numregs; regnum++)
4127 {
4128 if (*REGISTER_NAME (regnum) == '\0')
4129 continue; /* unused register */
4130 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4131 break; /* end the row: reached FP register */
4132 fprintf_filtered (file, MIPS_REGSIZE == 8 ? "%17s" : "%9s",
4133 REGISTER_NAME (regnum));
4134 col++;
4135 }
4136 fprintf_filtered (file,
4137 start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
4138 start_regnum); /* print the R0 to R31 names */
4139
4140 regnum = start_regnum; /* go back to start of row */
4141 /* now print the values in hex, 4 or 8 to the row */
4142 for (col = 0; col < ncols && regnum < numregs; regnum++)
4143 {
4144 if (*REGISTER_NAME (regnum) == '\0')
4145 continue; /* unused register */
4146 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4147 break; /* end row: reached FP register */
4148 /* OK: get the data in raw format. */
4149 if (!frame_register_read (frame, regnum, raw_buffer))
4150 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4151 /* pad small registers */
4152 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
4153 printf_filtered (" ");
4154 /* Now print the register value in hex, endian order. */
4155 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4156 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4157 byte < REGISTER_RAW_SIZE (regnum);
4158 byte++)
4159 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4160 else
4161 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
4162 byte >= 0;
4163 byte--)
4164 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4165 fprintf_filtered (file, " ");
4166 col++;
4167 }
4168 if (col > 0) /* ie. if we actually printed anything... */
4169 fprintf_filtered (file, "\n");
4170
4171 return regnum;
4172 }
4173
4174 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4175
4176 static void
4177 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4178 struct frame_info *frame, int regnum, int all)
4179 {
4180 if (regnum != -1) /* do one specified register */
4181 {
4182 if (*(REGISTER_NAME (regnum)) == '\0')
4183 error ("Not a valid register for the current processor type");
4184
4185 mips_print_register (file, frame, regnum, 0);
4186 fprintf_filtered (file, "\n");
4187 }
4188 else
4189 /* do all (or most) registers */
4190 {
4191 regnum = 0;
4192 while (regnum < NUM_REGS)
4193 {
4194 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4195 {
4196 if (all) /* true for "INFO ALL-REGISTERS" command */
4197 regnum = print_fp_register_row (file, frame, regnum);
4198 else
4199 regnum += MIPS_NUMREGS; /* skip floating point regs */
4200 }
4201 else
4202 regnum = print_gp_register_row (file, frame, regnum);
4203 }
4204 }
4205 }
4206
4207 /* Is this a branch with a delay slot? */
4208
4209 static int is_delayed (unsigned long);
4210
4211 static int
4212 is_delayed (unsigned long insn)
4213 {
4214 int i;
4215 for (i = 0; i < NUMOPCODES; ++i)
4216 if (mips_opcodes[i].pinfo != INSN_MACRO
4217 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4218 break;
4219 return (i < NUMOPCODES
4220 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4221 | INSN_COND_BRANCH_DELAY
4222 | INSN_COND_BRANCH_LIKELY)));
4223 }
4224
4225 int
4226 mips_step_skips_delay (CORE_ADDR pc)
4227 {
4228 char buf[MIPS_INSTLEN];
4229
4230 /* There is no branch delay slot on MIPS16. */
4231 if (pc_is_mips16 (pc))
4232 return 0;
4233
4234 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4235 /* If error reading memory, guess that it is not a delayed branch. */
4236 return 0;
4237 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
4238 }
4239
4240
4241 /* Skip the PC past function prologue instructions (32-bit version).
4242 This is a helper function for mips_skip_prologue. */
4243
4244 static CORE_ADDR
4245 mips32_skip_prologue (CORE_ADDR pc)
4246 {
4247 t_inst inst;
4248 CORE_ADDR end_pc;
4249 int seen_sp_adjust = 0;
4250 int load_immediate_bytes = 0;
4251
4252 /* Skip the typical prologue instructions. These are the stack adjustment
4253 instruction and the instructions that save registers on the stack
4254 or in the gcc frame. */
4255 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
4256 {
4257 unsigned long high_word;
4258
4259 inst = mips_fetch_instruction (pc);
4260 high_word = (inst >> 16) & 0xffff;
4261
4262 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4263 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4264 seen_sp_adjust = 1;
4265 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4266 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4267 seen_sp_adjust = 1;
4268 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4269 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4270 && (inst & 0x001F0000)) /* reg != $zero */
4271 continue;
4272
4273 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4274 continue;
4275 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4276 /* sx reg,n($s8) */
4277 continue; /* reg != $zero */
4278
4279 /* move $s8,$sp. With different versions of gas this will be either
4280 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4281 Accept any one of these. */
4282 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4283 continue;
4284
4285 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4286 continue;
4287 else if (high_word == 0x3c1c) /* lui $gp,n */
4288 continue;
4289 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4290 continue;
4291 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4292 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4293 continue;
4294 /* The following instructions load $at or $t0 with an immediate
4295 value in preparation for a stack adjustment via
4296 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4297 a local variable, so we accept them only before a stack adjustment
4298 instruction was seen. */
4299 else if (!seen_sp_adjust)
4300 {
4301 if (high_word == 0x3c01 || /* lui $at,n */
4302 high_word == 0x3c08) /* lui $t0,n */
4303 {
4304 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4305 continue;
4306 }
4307 else if (high_word == 0x3421 || /* ori $at,$at,n */
4308 high_word == 0x3508 || /* ori $t0,$t0,n */
4309 high_word == 0x3401 || /* ori $at,$zero,n */
4310 high_word == 0x3408) /* ori $t0,$zero,n */
4311 {
4312 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4313 continue;
4314 }
4315 else
4316 break;
4317 }
4318 else
4319 break;
4320 }
4321
4322 /* In a frameless function, we might have incorrectly
4323 skipped some load immediate instructions. Undo the skipping
4324 if the load immediate was not followed by a stack adjustment. */
4325 if (load_immediate_bytes && !seen_sp_adjust)
4326 pc -= load_immediate_bytes;
4327 return pc;
4328 }
4329
4330 /* Skip the PC past function prologue instructions (16-bit version).
4331 This is a helper function for mips_skip_prologue. */
4332
4333 static CORE_ADDR
4334 mips16_skip_prologue (CORE_ADDR pc)
4335 {
4336 CORE_ADDR end_pc;
4337 int extend_bytes = 0;
4338 int prev_extend_bytes;
4339
4340 /* Table of instructions likely to be found in a function prologue. */
4341 static struct
4342 {
4343 unsigned short inst;
4344 unsigned short mask;
4345 }
4346 table[] =
4347 {
4348 {
4349 0x6300, 0xff00
4350 }
4351 , /* addiu $sp,offset */
4352 {
4353 0xfb00, 0xff00
4354 }
4355 , /* daddiu $sp,offset */
4356 {
4357 0xd000, 0xf800
4358 }
4359 , /* sw reg,n($sp) */
4360 {
4361 0xf900, 0xff00
4362 }
4363 , /* sd reg,n($sp) */
4364 {
4365 0x6200, 0xff00
4366 }
4367 , /* sw $ra,n($sp) */
4368 {
4369 0xfa00, 0xff00
4370 }
4371 , /* sd $ra,n($sp) */
4372 {
4373 0x673d, 0xffff
4374 }
4375 , /* move $s1,sp */
4376 {
4377 0xd980, 0xff80
4378 }
4379 , /* sw $a0-$a3,n($s1) */
4380 {
4381 0x6704, 0xff1c
4382 }
4383 , /* move reg,$a0-$a3 */
4384 {
4385 0xe809, 0xf81f
4386 }
4387 , /* entry pseudo-op */
4388 {
4389 0x0100, 0xff00
4390 }
4391 , /* addiu $s1,$sp,n */
4392 {
4393 0, 0
4394 } /* end of table marker */
4395 };
4396
4397 /* Skip the typical prologue instructions. These are the stack adjustment
4398 instruction and the instructions that save registers on the stack
4399 or in the gcc frame. */
4400 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
4401 {
4402 unsigned short inst;
4403 int i;
4404
4405 inst = mips_fetch_instruction (pc);
4406
4407 /* Normally we ignore an extend instruction. However, if it is
4408 not followed by a valid prologue instruction, we must adjust
4409 the pc back over the extend so that it won't be considered
4410 part of the prologue. */
4411 if ((inst & 0xf800) == 0xf000) /* extend */
4412 {
4413 extend_bytes = MIPS16_INSTLEN;
4414 continue;
4415 }
4416 prev_extend_bytes = extend_bytes;
4417 extend_bytes = 0;
4418
4419 /* Check for other valid prologue instructions besides extend. */
4420 for (i = 0; table[i].mask != 0; i++)
4421 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4422 break;
4423 if (table[i].mask != 0) /* it was in table? */
4424 continue; /* ignore it */
4425 else
4426 /* non-prologue */
4427 {
4428 /* Return the current pc, adjusted backwards by 2 if
4429 the previous instruction was an extend. */
4430 return pc - prev_extend_bytes;
4431 }
4432 }
4433 return pc;
4434 }
4435
4436 /* To skip prologues, I use this predicate. Returns either PC itself
4437 if the code at PC does not look like a function prologue; otherwise
4438 returns an address that (if we're lucky) follows the prologue. If
4439 LENIENT, then we must skip everything which is involved in setting
4440 up the frame (it's OK to skip more, just so long as we don't skip
4441 anything which might clobber the registers which are being saved.
4442 We must skip more in the case where part of the prologue is in the
4443 delay slot of a non-prologue instruction). */
4444
4445 static CORE_ADDR
4446 mips_skip_prologue (CORE_ADDR pc)
4447 {
4448 /* See if we can determine the end of the prologue via the symbol table.
4449 If so, then return either PC, or the PC after the prologue, whichever
4450 is greater. */
4451
4452 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4453
4454 if (post_prologue_pc != 0)
4455 return max (pc, post_prologue_pc);
4456
4457 /* Can't determine prologue from the symbol table, need to examine
4458 instructions. */
4459
4460 if (pc_is_mips16 (pc))
4461 return mips16_skip_prologue (pc);
4462 else
4463 return mips32_skip_prologue (pc);
4464 }
4465
4466 /* Determine how a return value is stored within the MIPS register
4467 file, given the return type `valtype'. */
4468
4469 struct return_value_word
4470 {
4471 int len;
4472 int reg;
4473 int reg_offset;
4474 int buf_offset;
4475 };
4476
4477 static void
4478 return_value_location (struct type *valtype,
4479 struct return_value_word *hi,
4480 struct return_value_word *lo)
4481 {
4482 int len = TYPE_LENGTH (valtype);
4483
4484 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4485 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4486 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4487 {
4488 if (!FP_REGISTER_DOUBLE && len == 8)
4489 {
4490 /* We need to break a 64bit float in two 32 bit halves and
4491 spread them across a floating-point register pair. */
4492 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4493 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4494 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4495 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
4496 ? 4 : 0);
4497 hi->reg_offset = lo->reg_offset;
4498 lo->reg = FP0_REGNUM + 0;
4499 hi->reg = FP0_REGNUM + 1;
4500 lo->len = 4;
4501 hi->len = 4;
4502 }
4503 else
4504 {
4505 /* The floating point value fits in a single floating-point
4506 register. */
4507 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4508 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
4509 && len == 4)
4510 ? 4 : 0);
4511 lo->reg = FP0_REGNUM;
4512 lo->len = len;
4513 lo->buf_offset = 0;
4514 hi->len = 0;
4515 hi->reg_offset = 0;
4516 hi->buf_offset = 0;
4517 hi->reg = 0;
4518 }
4519 }
4520 else
4521 {
4522 /* Locate a result possibly spread across two registers. */
4523 int regnum = 2;
4524 lo->reg = regnum + 0;
4525 hi->reg = regnum + 1;
4526 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4527 && len < MIPS_SAVED_REGSIZE)
4528 {
4529 /* "un-left-justify" the value in the low register */
4530 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
4531 lo->len = len;
4532 hi->reg_offset = 0;
4533 hi->len = 0;
4534 }
4535 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4536 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4537 && len < MIPS_SAVED_REGSIZE * 2
4538 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4539 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4540 {
4541 /* "un-left-justify" the value spread across two registers. */
4542 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4543 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4544 hi->reg_offset = 0;
4545 hi->len = len - lo->len;
4546 }
4547 else
4548 {
4549 /* Only perform a partial copy of the second register. */
4550 lo->reg_offset = 0;
4551 hi->reg_offset = 0;
4552 if (len > MIPS_SAVED_REGSIZE)
4553 {
4554 lo->len = MIPS_SAVED_REGSIZE;
4555 hi->len = len - MIPS_SAVED_REGSIZE;
4556 }
4557 else
4558 {
4559 lo->len = len;
4560 hi->len = 0;
4561 }
4562 }
4563 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4564 && REGISTER_RAW_SIZE (regnum) == 8
4565 && MIPS_SAVED_REGSIZE == 4)
4566 {
4567 /* Account for the fact that only the least-signficant part
4568 of the register is being used */
4569 lo->reg_offset += 4;
4570 hi->reg_offset += 4;
4571 }
4572 lo->buf_offset = 0;
4573 hi->buf_offset = lo->len;
4574 }
4575 }
4576
4577 /* Given a return value in `regbuf' with a type `valtype', extract and
4578 copy its value into `valbuf'. */
4579
4580 static void
4581 mips_eabi_extract_return_value (struct type *valtype,
4582 char regbuf[],
4583 char *valbuf)
4584 {
4585 struct return_value_word lo;
4586 struct return_value_word hi;
4587 return_value_location (valtype, &hi, &lo);
4588
4589 memcpy (valbuf + lo.buf_offset,
4590 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4591 lo.len);
4592
4593 if (hi.len > 0)
4594 memcpy (valbuf + hi.buf_offset,
4595 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4596 hi.len);
4597 }
4598
4599 static void
4600 mips_o64_extract_return_value (struct type *valtype,
4601 char regbuf[],
4602 char *valbuf)
4603 {
4604 struct return_value_word lo;
4605 struct return_value_word hi;
4606 return_value_location (valtype, &hi, &lo);
4607
4608 memcpy (valbuf + lo.buf_offset,
4609 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4610 lo.len);
4611
4612 if (hi.len > 0)
4613 memcpy (valbuf + hi.buf_offset,
4614 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4615 hi.len);
4616 }
4617
4618 /* Given a return value in `valbuf' with a type `valtype', write it's
4619 value into the appropriate register. */
4620
4621 static void
4622 mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4623 {
4624 char raw_buffer[MAX_REGISTER_SIZE];
4625 struct return_value_word lo;
4626 struct return_value_word hi;
4627 return_value_location (valtype, &hi, &lo);
4628
4629 memset (raw_buffer, 0, sizeof (raw_buffer));
4630 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4631 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4632 REGISTER_RAW_SIZE (lo.reg));
4633
4634 if (hi.len > 0)
4635 {
4636 memset (raw_buffer, 0, sizeof (raw_buffer));
4637 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4638 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4639 REGISTER_RAW_SIZE (hi.reg));
4640 }
4641 }
4642
4643 static void
4644 mips_o64_store_return_value (struct type *valtype, char *valbuf)
4645 {
4646 char raw_buffer[MAX_REGISTER_SIZE];
4647 struct return_value_word lo;
4648 struct return_value_word hi;
4649 return_value_location (valtype, &hi, &lo);
4650
4651 memset (raw_buffer, 0, sizeof (raw_buffer));
4652 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4653 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4654 REGISTER_RAW_SIZE (lo.reg));
4655
4656 if (hi.len > 0)
4657 {
4658 memset (raw_buffer, 0, sizeof (raw_buffer));
4659 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4660 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4661 REGISTER_RAW_SIZE (hi.reg));
4662 }
4663 }
4664
4665 /* O32 ABI stuff. */
4666
4667 static void
4668 mips_o32_xfer_return_value (struct type *type,
4669 struct regcache *regcache,
4670 bfd_byte *in, const bfd_byte *out)
4671 {
4672 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4673 if (TYPE_CODE (type) == TYPE_CODE_FLT
4674 && TYPE_LENGTH (type) == 4
4675 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4676 {
4677 /* A single-precision floating-point value. It fits in the
4678 least significant part of FP0. */
4679 if (mips_debug)
4680 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4681 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4682 TARGET_BYTE_ORDER, in, out, 0);
4683 }
4684 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4685 && TYPE_LENGTH (type) == 8
4686 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4687 {
4688 /* A double-precision floating-point value. It fits in the
4689 least significant part of FP0/FP1 but with byte ordering
4690 based on the target (???). */
4691 if (mips_debug)
4692 fprintf_unfiltered (gdb_stderr, "Return float in $fp0/$fp1\n");
4693 switch (TARGET_BYTE_ORDER)
4694 {
4695 case BFD_ENDIAN_LITTLE:
4696 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4697 TARGET_BYTE_ORDER, in, out, 0);
4698 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4699 TARGET_BYTE_ORDER, in, out, 4);
4700 break;
4701 case BFD_ENDIAN_BIG:
4702 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4703 TARGET_BYTE_ORDER, in, out, 0);
4704 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4705 TARGET_BYTE_ORDER, in, out, 4);
4706 break;
4707 default:
4708 internal_error (__FILE__, __LINE__, "bad switch");
4709 }
4710 }
4711 #if 0
4712 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4713 && TYPE_NFIELDS (type) <= 2
4714 && TYPE_NFIELDS (type) >= 1
4715 && ((TYPE_NFIELDS (type) == 1
4716 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4717 == TYPE_CODE_FLT))
4718 || (TYPE_NFIELDS (type) == 2
4719 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4720 == TYPE_CODE_FLT)
4721 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4722 == TYPE_CODE_FLT)))
4723 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4724 {
4725 /* A struct that contains one or two floats. Each value is part
4726 in the least significant part of their floating point
4727 register.. */
4728 bfd_byte reg[MAX_REGISTER_SIZE];
4729 int regnum;
4730 int field;
4731 for (field = 0, regnum = FP0_REGNUM;
4732 field < TYPE_NFIELDS (type);
4733 field++, regnum += 2)
4734 {
4735 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4736 / TARGET_CHAR_BIT);
4737 if (mips_debug)
4738 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4739 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4740 TARGET_BYTE_ORDER, in, out, offset);
4741 }
4742 }
4743 #endif
4744 #if 0
4745 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4746 || TYPE_CODE (type) == TYPE_CODE_UNION)
4747 {
4748 /* A structure or union. Extract the left justified value,
4749 regardless of the byte order. I.e. DO NOT USE
4750 mips_xfer_lower. */
4751 int offset;
4752 int regnum;
4753 for (offset = 0, regnum = V0_REGNUM;
4754 offset < TYPE_LENGTH (type);
4755 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4756 {
4757 int xfer = REGISTER_RAW_SIZE (regnum);
4758 if (offset + xfer > TYPE_LENGTH (type))
4759 xfer = TYPE_LENGTH (type) - offset;
4760 if (mips_debug)
4761 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4762 offset, xfer, regnum);
4763 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4764 in, out, offset);
4765 }
4766 }
4767 #endif
4768 else
4769 {
4770 /* A scalar extract each part but least-significant-byte
4771 justified. o32 thinks registers are 4 byte, regardless of
4772 the ISA. mips_stack_argsize controls this. */
4773 int offset;
4774 int regnum;
4775 for (offset = 0, regnum = V0_REGNUM;
4776 offset < TYPE_LENGTH (type);
4777 offset += mips_stack_argsize (), regnum++)
4778 {
4779 int xfer = mips_stack_argsize ();
4780 int pos = 0;
4781 if (offset + xfer > TYPE_LENGTH (type))
4782 xfer = TYPE_LENGTH (type) - offset;
4783 if (mips_debug)
4784 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4785 offset, xfer, regnum);
4786 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4787 in, out, offset);
4788 }
4789 }
4790 }
4791
4792 static void
4793 mips_o32_extract_return_value (struct type *type,
4794 struct regcache *regcache,
4795 void *valbuf)
4796 {
4797 mips_o32_xfer_return_value (type, regcache, valbuf, NULL);
4798 }
4799
4800 static void
4801 mips_o32_store_return_value (struct type *type, char *valbuf)
4802 {
4803 mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf);
4804 }
4805
4806 /* N32/N44 ABI stuff. */
4807
4808 static void
4809 mips_n32n64_xfer_return_value (struct type *type,
4810 struct regcache *regcache,
4811 bfd_byte *in, const bfd_byte *out)
4812 {
4813 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4814 if (TYPE_CODE (type) == TYPE_CODE_FLT
4815 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4816 {
4817 /* A floating-point value belongs in the least significant part
4818 of FP0. */
4819 if (mips_debug)
4820 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4821 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4822 TARGET_BYTE_ORDER, in, out, 0);
4823 }
4824 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4825 && TYPE_NFIELDS (type) <= 2
4826 && TYPE_NFIELDS (type) >= 1
4827 && ((TYPE_NFIELDS (type) == 1
4828 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4829 == TYPE_CODE_FLT))
4830 || (TYPE_NFIELDS (type) == 2
4831 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4832 == TYPE_CODE_FLT)
4833 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4834 == TYPE_CODE_FLT)))
4835 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4836 {
4837 /* A struct that contains one or two floats. Each value is part
4838 in the least significant part of their floating point
4839 register.. */
4840 bfd_byte reg[MAX_REGISTER_SIZE];
4841 int regnum;
4842 int field;
4843 for (field = 0, regnum = FP0_REGNUM;
4844 field < TYPE_NFIELDS (type);
4845 field++, regnum += 2)
4846 {
4847 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4848 / TARGET_CHAR_BIT);
4849 if (mips_debug)
4850 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4851 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4852 TARGET_BYTE_ORDER, in, out, offset);
4853 }
4854 }
4855 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4856 || TYPE_CODE (type) == TYPE_CODE_UNION)
4857 {
4858 /* A structure or union. Extract the left justified value,
4859 regardless of the byte order. I.e. DO NOT USE
4860 mips_xfer_lower. */
4861 int offset;
4862 int regnum;
4863 for (offset = 0, regnum = V0_REGNUM;
4864 offset < TYPE_LENGTH (type);
4865 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4866 {
4867 int xfer = REGISTER_RAW_SIZE (regnum);
4868 if (offset + xfer > TYPE_LENGTH (type))
4869 xfer = TYPE_LENGTH (type) - offset;
4870 if (mips_debug)
4871 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4872 offset, xfer, regnum);
4873 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4874 in, out, offset);
4875 }
4876 }
4877 else
4878 {
4879 /* A scalar extract each part but least-significant-byte
4880 justified. */
4881 int offset;
4882 int regnum;
4883 for (offset = 0, regnum = V0_REGNUM;
4884 offset < TYPE_LENGTH (type);
4885 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4886 {
4887 int xfer = REGISTER_RAW_SIZE (regnum);
4888 int pos = 0;
4889 if (offset + xfer > TYPE_LENGTH (type))
4890 xfer = TYPE_LENGTH (type) - offset;
4891 if (mips_debug)
4892 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4893 offset, xfer, regnum);
4894 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4895 in, out, offset);
4896 }
4897 }
4898 }
4899
4900 static void
4901 mips_n32n64_extract_return_value (struct type *type,
4902 struct regcache *regcache,
4903 void *valbuf)
4904 {
4905 mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL);
4906 }
4907
4908 static void
4909 mips_n32n64_store_return_value (struct type *type, char *valbuf)
4910 {
4911 mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf);
4912 }
4913
4914 static CORE_ADDR
4915 mips_extract_struct_value_address (struct regcache *regcache)
4916 {
4917 /* FIXME: This will only work at random. The caller passes the
4918 struct_return address in V0, but it is not preserved. It may
4919 still be there, or this may be a random value. */
4920 LONGEST val;
4921
4922 regcache_cooked_read_signed (regcache, V0_REGNUM, &val);
4923 return val;
4924 }
4925
4926 /* Exported procedure: Is PC in the signal trampoline code */
4927
4928 static int
4929 mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
4930 {
4931 if (sigtramp_address == 0)
4932 fixup_sigtramp ();
4933 return (pc >= sigtramp_address && pc < sigtramp_end);
4934 }
4935
4936 /* Root of all "set mips "/"show mips " commands. This will eventually be
4937 used for all MIPS-specific commands. */
4938
4939 static void
4940 show_mips_command (char *args, int from_tty)
4941 {
4942 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4943 }
4944
4945 static void
4946 set_mips_command (char *args, int from_tty)
4947 {
4948 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
4949 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4950 }
4951
4952 /* Commands to show/set the MIPS FPU type. */
4953
4954 static void
4955 show_mipsfpu_command (char *args, int from_tty)
4956 {
4957 char *fpu;
4958 switch (MIPS_FPU_TYPE)
4959 {
4960 case MIPS_FPU_SINGLE:
4961 fpu = "single-precision";
4962 break;
4963 case MIPS_FPU_DOUBLE:
4964 fpu = "double-precision";
4965 break;
4966 case MIPS_FPU_NONE:
4967 fpu = "absent (none)";
4968 break;
4969 default:
4970 internal_error (__FILE__, __LINE__, "bad switch");
4971 }
4972 if (mips_fpu_type_auto)
4973 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4974 fpu);
4975 else
4976 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
4977 fpu);
4978 }
4979
4980
4981 static void
4982 set_mipsfpu_command (char *args, int from_tty)
4983 {
4984 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
4985 show_mipsfpu_command (args, from_tty);
4986 }
4987
4988 static void
4989 set_mipsfpu_single_command (char *args, int from_tty)
4990 {
4991 mips_fpu_type = MIPS_FPU_SINGLE;
4992 mips_fpu_type_auto = 0;
4993 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
4994 }
4995
4996 static void
4997 set_mipsfpu_double_command (char *args, int from_tty)
4998 {
4999 mips_fpu_type = MIPS_FPU_DOUBLE;
5000 mips_fpu_type_auto = 0;
5001 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
5002 }
5003
5004 static void
5005 set_mipsfpu_none_command (char *args, int from_tty)
5006 {
5007 mips_fpu_type = MIPS_FPU_NONE;
5008 mips_fpu_type_auto = 0;
5009 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
5010 }
5011
5012 static void
5013 set_mipsfpu_auto_command (char *args, int from_tty)
5014 {
5015 mips_fpu_type_auto = 1;
5016 }
5017
5018 /* Command to set the processor type. */
5019
5020 void
5021 mips_set_processor_type_command (char *args, int from_tty)
5022 {
5023 int i;
5024
5025 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
5026 {
5027 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
5028 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5029 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
5030
5031 /* Restore the value. */
5032 tmp_mips_processor_type = xstrdup (mips_processor_type);
5033
5034 return;
5035 }
5036
5037 if (!mips_set_processor_type (tmp_mips_processor_type))
5038 {
5039 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
5040 /* Restore its value. */
5041 tmp_mips_processor_type = xstrdup (mips_processor_type);
5042 }
5043 }
5044
5045 static void
5046 mips_show_processor_type_command (char *args, int from_tty)
5047 {
5048 }
5049
5050 /* Modify the actual processor type. */
5051
5052 static int
5053 mips_set_processor_type (char *str)
5054 {
5055 int i;
5056
5057 if (str == NULL)
5058 return 0;
5059
5060 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5061 {
5062 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
5063 {
5064 mips_processor_type = str;
5065 mips_processor_reg_names = mips_processor_type_table[i].regnames;
5066 return 1;
5067 /* FIXME tweak fpu flag too */
5068 }
5069 }
5070
5071 return 0;
5072 }
5073
5074 /* Attempt to identify the particular processor model by reading the
5075 processor id. */
5076
5077 char *
5078 mips_read_processor_type (void)
5079 {
5080 CORE_ADDR prid;
5081
5082 prid = read_register (PRID_REGNUM);
5083
5084 if ((prid & ~0xf) == 0x700)
5085 return savestring ("r3041", strlen ("r3041"));
5086
5087 return NULL;
5088 }
5089
5090 /* Just like reinit_frame_cache, but with the right arguments to be
5091 callable as an sfunc. */
5092
5093 static void
5094 reinit_frame_cache_sfunc (char *args, int from_tty,
5095 struct cmd_list_element *c)
5096 {
5097 reinit_frame_cache ();
5098 }
5099
5100 int
5101 gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
5102 {
5103 mips_extra_func_info_t proc_desc;
5104
5105 /* Search for the function containing this address. Set the low bit
5106 of the address when searching, in case we were given an even address
5107 that is the start of a 16-bit function. If we didn't do this,
5108 the search would fail because the symbol table says the function
5109 starts at an odd address, i.e. 1 byte past the given address. */
5110 memaddr = ADDR_BITS_REMOVE (memaddr);
5111 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
5112
5113 /* Make an attempt to determine if this is a 16-bit function. If
5114 the procedure descriptor exists and the address therein is odd,
5115 it's definitely a 16-bit function. Otherwise, we have to just
5116 guess that if the address passed in is odd, it's 16-bits. */
5117 if (proc_desc)
5118 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
5119 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
5120 else
5121 info->mach = pc_is_mips16 (memaddr) ?
5122 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
5123
5124 /* Round down the instruction address to the appropriate boundary. */
5125 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
5126
5127 /* Call the appropriate disassembler based on the target endian-ness. */
5128 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5129 return print_insn_big_mips (memaddr, info);
5130 else
5131 return print_insn_little_mips (memaddr, info);
5132 }
5133
5134 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5135 counter value to determine whether a 16- or 32-bit breakpoint should be
5136 used. It returns a pointer to a string of bytes that encode a breakpoint
5137 instruction, stores the length of the string to *lenptr, and adjusts pc
5138 (if necessary) to point to the actual memory location where the
5139 breakpoint should be inserted. */
5140
5141 static const unsigned char *
5142 mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
5143 {
5144 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5145 {
5146 if (pc_is_mips16 (*pcptr))
5147 {
5148 static unsigned char mips16_big_breakpoint[] = {0xe8, 0xa5};
5149 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
5150 *lenptr = sizeof (mips16_big_breakpoint);
5151 return mips16_big_breakpoint;
5152 }
5153 else
5154 {
5155 /* The IDT board uses an unusual breakpoint value, and
5156 sometimes gets confused when it sees the usual MIPS
5157 breakpoint instruction. */
5158 static unsigned char big_breakpoint[] = {0, 0x5, 0, 0xd};
5159 static unsigned char pmon_big_breakpoint[] = {0, 0, 0, 0xd};
5160 static unsigned char idt_big_breakpoint[] = {0, 0, 0x0a, 0xd};
5161
5162 *lenptr = sizeof (big_breakpoint);
5163
5164 if (strcmp (target_shortname, "mips") == 0)
5165 return idt_big_breakpoint;
5166 else if (strcmp (target_shortname, "ddb") == 0
5167 || strcmp (target_shortname, "pmon") == 0
5168 || strcmp (target_shortname, "lsi") == 0)
5169 return pmon_big_breakpoint;
5170 else
5171 return big_breakpoint;
5172 }
5173 }
5174 else
5175 {
5176 if (pc_is_mips16 (*pcptr))
5177 {
5178 static unsigned char mips16_little_breakpoint[] = {0xa5, 0xe8};
5179 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
5180 *lenptr = sizeof (mips16_little_breakpoint);
5181 return mips16_little_breakpoint;
5182 }
5183 else
5184 {
5185 static unsigned char little_breakpoint[] = {0xd, 0, 0x5, 0};
5186 static unsigned char pmon_little_breakpoint[] = {0xd, 0, 0, 0};
5187 static unsigned char idt_little_breakpoint[] = {0xd, 0x0a, 0, 0};
5188
5189 *lenptr = sizeof (little_breakpoint);
5190
5191 if (strcmp (target_shortname, "mips") == 0)
5192 return idt_little_breakpoint;
5193 else if (strcmp (target_shortname, "ddb") == 0
5194 || strcmp (target_shortname, "pmon") == 0
5195 || strcmp (target_shortname, "lsi") == 0)
5196 return pmon_little_breakpoint;
5197 else
5198 return little_breakpoint;
5199 }
5200 }
5201 }
5202
5203 /* If PC is in a mips16 call or return stub, return the address of the target
5204 PC, which is either the callee or the caller. There are several
5205 cases which must be handled:
5206
5207 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5208 target PC is in $31 ($ra).
5209 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5210 and the target PC is in $2.
5211 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5212 before the jal instruction, this is effectively a call stub
5213 and the the target PC is in $2. Otherwise this is effectively
5214 a return stub and the target PC is in $18.
5215
5216 See the source code for the stubs in gcc/config/mips/mips16.S for
5217 gory details.
5218
5219 This function implements the SKIP_TRAMPOLINE_CODE macro.
5220 */
5221
5222 static CORE_ADDR
5223 mips_skip_stub (CORE_ADDR pc)
5224 {
5225 char *name;
5226 CORE_ADDR start_addr;
5227
5228 /* Find the starting address and name of the function containing the PC. */
5229 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5230 return 0;
5231
5232 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5233 target PC is in $31 ($ra). */
5234 if (strcmp (name, "__mips16_ret_sf") == 0
5235 || strcmp (name, "__mips16_ret_df") == 0)
5236 return read_signed_register (RA_REGNUM);
5237
5238 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5239 {
5240 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5241 and the target PC is in $2. */
5242 if (name[19] >= '0' && name[19] <= '9')
5243 return read_signed_register (2);
5244
5245 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5246 before the jal instruction, this is effectively a call stub
5247 and the the target PC is in $2. Otherwise this is effectively
5248 a return stub and the target PC is in $18. */
5249 else if (name[19] == 's' || name[19] == 'd')
5250 {
5251 if (pc == start_addr)
5252 {
5253 /* Check if the target of the stub is a compiler-generated
5254 stub. Such a stub for a function bar might have a name
5255 like __fn_stub_bar, and might look like this:
5256 mfc1 $4,$f13
5257 mfc1 $5,$f12
5258 mfc1 $6,$f15
5259 mfc1 $7,$f14
5260 la $1,bar (becomes a lui/addiu pair)
5261 jr $1
5262 So scan down to the lui/addi and extract the target
5263 address from those two instructions. */
5264
5265 CORE_ADDR target_pc = read_signed_register (2);
5266 t_inst inst;
5267 int i;
5268
5269 /* See if the name of the target function is __fn_stub_*. */
5270 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5271 return target_pc;
5272 if (strncmp (name, "__fn_stub_", 10) != 0
5273 && strcmp (name, "etext") != 0
5274 && strcmp (name, "_etext") != 0)
5275 return target_pc;
5276
5277 /* Scan through this _fn_stub_ code for the lui/addiu pair.
5278 The limit on the search is arbitrarily set to 20
5279 instructions. FIXME. */
5280 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5281 {
5282 inst = mips_fetch_instruction (target_pc);
5283 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5284 pc = (inst << 16) & 0xffff0000; /* high word */
5285 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5286 return pc | (inst & 0xffff); /* low word */
5287 }
5288
5289 /* Couldn't find the lui/addui pair, so return stub address. */
5290 return target_pc;
5291 }
5292 else
5293 /* This is the 'return' part of a call stub. The return
5294 address is in $r18. */
5295 return read_signed_register (18);
5296 }
5297 }
5298 return 0; /* not a stub */
5299 }
5300
5301
5302 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5303 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5304
5305 static int
5306 mips_in_call_stub (CORE_ADDR pc, char *name)
5307 {
5308 CORE_ADDR start_addr;
5309
5310 /* Find the starting address of the function containing the PC. If the
5311 caller didn't give us a name, look it up at the same time. */
5312 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5313 return 0;
5314
5315 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5316 {
5317 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5318 if (name[19] >= '0' && name[19] <= '9')
5319 return 1;
5320 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5321 before the jal instruction, this is effectively a call stub. */
5322 else if (name[19] == 's' || name[19] == 'd')
5323 return pc == start_addr;
5324 }
5325
5326 return 0; /* not a stub */
5327 }
5328
5329
5330 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5331 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5332
5333 static int
5334 mips_in_return_stub (CORE_ADDR pc, char *name)
5335 {
5336 CORE_ADDR start_addr;
5337
5338 /* Find the starting address of the function containing the PC. */
5339 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5340 return 0;
5341
5342 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5343 if (strcmp (name, "__mips16_ret_sf") == 0
5344 || strcmp (name, "__mips16_ret_df") == 0)
5345 return 1;
5346
5347 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
5348 i.e. after the jal instruction, this is effectively a return stub. */
5349 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5350 && (name[19] == 's' || name[19] == 'd')
5351 && pc != start_addr)
5352 return 1;
5353
5354 return 0; /* not a stub */
5355 }
5356
5357
5358 /* Return non-zero if the PC is in a library helper function that should
5359 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5360
5361 int
5362 mips_ignore_helper (CORE_ADDR pc)
5363 {
5364 char *name;
5365
5366 /* Find the starting address and name of the function containing the PC. */
5367 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5368 return 0;
5369
5370 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5371 that we want to ignore. */
5372 return (strcmp (name, "__mips16_ret_sf") == 0
5373 || strcmp (name, "__mips16_ret_df") == 0);
5374 }
5375
5376
5377 /* Return a location where we can set a breakpoint that will be hit
5378 when an inferior function call returns. This is normally the
5379 program's entry point. Executables that don't have an entry
5380 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
5381 whose address is the location where the breakpoint should be placed. */
5382
5383 static CORE_ADDR
5384 mips_call_dummy_address (void)
5385 {
5386 struct minimal_symbol *sym;
5387
5388 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
5389 if (sym)
5390 return SYMBOL_VALUE_ADDRESS (sym);
5391 else
5392 return entry_point_address ();
5393 }
5394
5395
5396 /* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5397 the register stored on the stack (32) is different to its real raw
5398 size (64). The below ensures that registers are fetched from the
5399 stack using their ABI size and then stored into the RAW_BUFFER
5400 using their raw size.
5401
5402 The alternative to adding this function would be to add an ABI
5403 macro - REGISTER_STACK_SIZE(). */
5404
5405 static void
5406 mips_get_saved_register (char *raw_buffer,
5407 int *optimizedp,
5408 CORE_ADDR *addrp,
5409 struct frame_info *frame,
5410 int regnum,
5411 enum lval_type *lvalp)
5412 {
5413 CORE_ADDR addrx;
5414 enum lval_type lvalx;
5415 int optimizedx;
5416
5417 if (!target_has_registers)
5418 error ("No registers.");
5419
5420 /* Make certain that all needed parameters are present. */
5421 if (addrp == NULL)
5422 addrp = &addrx;
5423 if (lvalp == NULL)
5424 lvalp = &lvalx;
5425 if (optimizedp == NULL)
5426 optimizedp = &optimizedx;
5427 generic_unwind_get_saved_register (raw_buffer, optimizedp, addrp, frame,
5428 regnum, lvalp);
5429 /* FIXME: cagney/2002-09-13: This is just so bad. The MIPS should
5430 have a pseudo register range that correspons to the ABI's, rather
5431 than the ISA's, view of registers. These registers would then
5432 implicitly describe their size and hence could be used without
5433 the below munging. */
5434 if ((*lvalp) == lval_memory)
5435 {
5436 if (raw_buffer != NULL)
5437 {
5438 if (regnum < 32)
5439 {
5440 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
5441 saved. */
5442 LONGEST val = read_memory_integer ((*addrp), MIPS_SAVED_REGSIZE);
5443 store_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
5444 }
5445 }
5446 }
5447 }
5448
5449 /* Immediately after a function call, return the saved pc.
5450 Can't always go through the frames for this because on some machines
5451 the new frame is not set up until the new function executes
5452 some instructions. */
5453
5454 static CORE_ADDR
5455 mips_saved_pc_after_call (struct frame_info *frame)
5456 {
5457 return read_signed_register (RA_REGNUM);
5458 }
5459
5460
5461 /* Convert a dbx stab register number (from `r' declaration) to a gdb
5462 REGNUM */
5463
5464 static int
5465 mips_stab_reg_to_regnum (int num)
5466 {
5467 if (num >= 0 && num < 32)
5468 return num;
5469 else if (num >= 38 && num < 70)
5470 return num + FP0_REGNUM - 38;
5471 else if (num == 70)
5472 return HI_REGNUM;
5473 else if (num == 71)
5474 return LO_REGNUM;
5475 else
5476 {
5477 /* This will hopefully (eventually) provoke a warning. Should
5478 we be calling complaint() here? */
5479 return NUM_REGS + NUM_PSEUDO_REGS;
5480 }
5481 }
5482
5483
5484 /* Convert a dwarf, dwarf2, or ecoff register number to a gdb REGNUM */
5485
5486 static int
5487 mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
5488 {
5489 if (num >= 0 && num < 32)
5490 return num;
5491 else if (num >= 32 && num < 64)
5492 return num + FP0_REGNUM - 32;
5493 else if (num == 64)
5494 return HI_REGNUM;
5495 else if (num == 65)
5496 return LO_REGNUM;
5497 else
5498 {
5499 /* This will hopefully (eventually) provoke a warning. Should
5500 we be calling complaint() here? */
5501 return NUM_REGS + NUM_PSEUDO_REGS;
5502 }
5503 }
5504
5505
5506 /* Convert an integer into an address. By first converting the value
5507 into a pointer and then extracting it signed, the address is
5508 guarenteed to be correctly sign extended. */
5509
5510 static CORE_ADDR
5511 mips_integer_to_address (struct type *type, void *buf)
5512 {
5513 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5514 LONGEST val = unpack_long (type, buf);
5515 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5516 return extract_signed_integer (tmp,
5517 TYPE_LENGTH (builtin_type_void_data_ptr));
5518 }
5519
5520 static void
5521 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5522 {
5523 enum mips_abi *abip = (enum mips_abi *) obj;
5524 const char *name = bfd_get_section_name (abfd, sect);
5525
5526 if (*abip != MIPS_ABI_UNKNOWN)
5527 return;
5528
5529 if (strncmp (name, ".mdebug.", 8) != 0)
5530 return;
5531
5532 if (strcmp (name, ".mdebug.abi32") == 0)
5533 *abip = MIPS_ABI_O32;
5534 else if (strcmp (name, ".mdebug.abiN32") == 0)
5535 *abip = MIPS_ABI_N32;
5536 else if (strcmp (name, ".mdebug.abi64") == 0)
5537 *abip = MIPS_ABI_N64;
5538 else if (strcmp (name, ".mdebug.abiO64") == 0)
5539 *abip = MIPS_ABI_O64;
5540 else if (strcmp (name, ".mdebug.eabi32") == 0)
5541 *abip = MIPS_ABI_EABI32;
5542 else if (strcmp (name, ".mdebug.eabi64") == 0)
5543 *abip = MIPS_ABI_EABI64;
5544 else
5545 warning ("unsupported ABI %s.", name + 8);
5546 }
5547
5548 static enum mips_abi
5549 global_mips_abi (void)
5550 {
5551 int i;
5552
5553 for (i = 0; mips_abi_strings[i] != NULL; i++)
5554 if (mips_abi_strings[i] == mips_abi_string)
5555 return (enum mips_abi) i;
5556
5557 internal_error (__FILE__, __LINE__,
5558 "unknown ABI string");
5559 }
5560
5561 static struct gdbarch *
5562 mips_gdbarch_init (struct gdbarch_info info,
5563 struct gdbarch_list *arches)
5564 {
5565 struct gdbarch *gdbarch;
5566 struct gdbarch_tdep *tdep;
5567 int elf_flags;
5568 enum mips_abi mips_abi, found_abi, wanted_abi;
5569
5570 /* Reset the disassembly info, in case it was set to something
5571 non-default. */
5572 deprecated_tm_print_insn_info.flavour = bfd_target_unknown_flavour;
5573 deprecated_tm_print_insn_info.arch = bfd_arch_unknown;
5574 deprecated_tm_print_insn_info.mach = 0;
5575
5576 elf_flags = 0;
5577
5578 if (info.abfd)
5579 {
5580 /* First of all, extract the elf_flags, if available. */
5581 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5582 elf_flags = elf_elfheader (info.abfd)->e_flags;
5583 }
5584
5585 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5586 switch ((elf_flags & EF_MIPS_ABI))
5587 {
5588 case E_MIPS_ABI_O32:
5589 mips_abi = MIPS_ABI_O32;
5590 break;
5591 case E_MIPS_ABI_O64:
5592 mips_abi = MIPS_ABI_O64;
5593 break;
5594 case E_MIPS_ABI_EABI32:
5595 mips_abi = MIPS_ABI_EABI32;
5596 break;
5597 case E_MIPS_ABI_EABI64:
5598 mips_abi = MIPS_ABI_EABI64;
5599 break;
5600 default:
5601 if ((elf_flags & EF_MIPS_ABI2))
5602 mips_abi = MIPS_ABI_N32;
5603 else
5604 mips_abi = MIPS_ABI_UNKNOWN;
5605 break;
5606 }
5607
5608 /* GCC creates a pseudo-section whose name describes the ABI. */
5609 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5610 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5611
5612 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5613 Use the ABI from the last architecture if there is one. */
5614 if (info.abfd == NULL && arches != NULL)
5615 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5616
5617 /* Try the architecture for any hint of the correct ABI. */
5618 if (mips_abi == MIPS_ABI_UNKNOWN
5619 && info.bfd_arch_info != NULL
5620 && info.bfd_arch_info->arch == bfd_arch_mips)
5621 {
5622 switch (info.bfd_arch_info->mach)
5623 {
5624 case bfd_mach_mips3900:
5625 mips_abi = MIPS_ABI_EABI32;
5626 break;
5627 case bfd_mach_mips4100:
5628 case bfd_mach_mips5000:
5629 mips_abi = MIPS_ABI_EABI64;
5630 break;
5631 case bfd_mach_mips8000:
5632 case bfd_mach_mips10000:
5633 /* On Irix, ELF64 executables use the N64 ABI. The
5634 pseudo-sections which describe the ABI aren't present
5635 on IRIX. (Even for executables created by gcc.) */
5636 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5637 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5638 mips_abi = MIPS_ABI_N64;
5639 else
5640 mips_abi = MIPS_ABI_N32;
5641 break;
5642 }
5643 }
5644
5645 if (mips_abi == MIPS_ABI_UNKNOWN)
5646 mips_abi = MIPS_ABI_O32;
5647
5648 /* Now that we have found what the ABI for this binary would be,
5649 check whether the user is overriding it. */
5650 found_abi = mips_abi;
5651 wanted_abi = global_mips_abi ();
5652 if (wanted_abi != MIPS_ABI_UNKNOWN)
5653 mips_abi = wanted_abi;
5654
5655 /* We have to set deprecated_tm_print_insn_info before looking for a
5656 pre-existing architecture, otherwise we may return before we get
5657 a chance to set it up. */
5658 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
5659 {
5660 /* Set up the disassembler info, so that we get the right
5661 register names from libopcodes. */
5662 if (mips_abi == MIPS_ABI_N32)
5663 deprecated_tm_print_insn_info.disassembler_options = "gpr-names=n32";
5664 else
5665 deprecated_tm_print_insn_info.disassembler_options = "gpr-names=64";
5666 deprecated_tm_print_insn_info.flavour = bfd_target_elf_flavour;
5667 deprecated_tm_print_insn_info.arch = bfd_arch_mips;
5668 if (info.bfd_arch_info != NULL
5669 && info.bfd_arch_info->arch == bfd_arch_mips
5670 && info.bfd_arch_info->mach)
5671 deprecated_tm_print_insn_info.mach = info.bfd_arch_info->mach;
5672 else
5673 deprecated_tm_print_insn_info.mach = bfd_mach_mips8000;
5674 }
5675 else
5676 /* This string is not recognized explicitly by the disassembler,
5677 but it tells the disassembler to not try to guess the ABI from
5678 the bfd elf headers, such that, if the user overrides the ABI
5679 of a program linked as NewABI, the disassembly will follow the
5680 register naming conventions specified by the user. */
5681 deprecated_tm_print_insn_info.disassembler_options = "gpr-names=32";
5682
5683 if (gdbarch_debug)
5684 {
5685 fprintf_unfiltered (gdb_stdlog,
5686 "mips_gdbarch_init: elf_flags = 0x%08x\n",
5687 elf_flags);
5688 fprintf_unfiltered (gdb_stdlog,
5689 "mips_gdbarch_init: mips_abi = %d\n",
5690 mips_abi);
5691 fprintf_unfiltered (gdb_stdlog,
5692 "mips_gdbarch_init: found_mips_abi = %d\n",
5693 found_abi);
5694 }
5695
5696 /* try to find a pre-existing architecture */
5697 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5698 arches != NULL;
5699 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5700 {
5701 /* MIPS needs to be pedantic about which ABI the object is
5702 using. */
5703 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5704 continue;
5705 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5706 continue;
5707 return arches->gdbarch;
5708 }
5709
5710 /* Need a new architecture. Fill in a target specific vector. */
5711 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5712 gdbarch = gdbarch_alloc (&info, tdep);
5713 tdep->elf_flags = elf_flags;
5714
5715 /* Initially set everything according to the default ABI/ISA. */
5716 set_gdbarch_short_bit (gdbarch, 16);
5717 set_gdbarch_int_bit (gdbarch, 32);
5718 set_gdbarch_float_bit (gdbarch, 32);
5719 set_gdbarch_double_bit (gdbarch, 64);
5720 set_gdbarch_long_double_bit (gdbarch, 64);
5721 set_gdbarch_register_raw_size (gdbarch, mips_register_raw_size);
5722 tdep->found_abi = found_abi;
5723 tdep->mips_abi = mips_abi;
5724
5725 set_gdbarch_elf_make_msymbol_special (gdbarch,
5726 mips_elf_make_msymbol_special);
5727
5728 if (info.osabi == GDB_OSABI_IRIX)
5729 set_gdbarch_num_regs (gdbarch, 71);
5730 else
5731 set_gdbarch_num_regs (gdbarch, 90);
5732
5733 switch (mips_abi)
5734 {
5735 case MIPS_ABI_O32:
5736 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
5737 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o32_store_return_value);
5738 set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value);
5739 tdep->mips_default_saved_regsize = 4;
5740 tdep->mips_default_stack_argsize = 4;
5741 tdep->mips_fp_register_double = 0;
5742 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5743 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5744 tdep->gdb_target_is_mips64 = 0;
5745 tdep->default_mask_address_p = 0;
5746 set_gdbarch_long_bit (gdbarch, 32);
5747 set_gdbarch_ptr_bit (gdbarch, 32);
5748 set_gdbarch_long_long_bit (gdbarch, 64);
5749 set_gdbarch_reg_struct_has_addr (gdbarch,
5750 mips_o32_reg_struct_has_addr);
5751 set_gdbarch_use_struct_convention (gdbarch,
5752 mips_o32_use_struct_convention);
5753 break;
5754 case MIPS_ABI_O64:
5755 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
5756 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
5757 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
5758 tdep->mips_default_saved_regsize = 8;
5759 tdep->mips_default_stack_argsize = 8;
5760 tdep->mips_fp_register_double = 1;
5761 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5762 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5763 tdep->gdb_target_is_mips64 = 1;
5764 tdep->default_mask_address_p = 0;
5765 set_gdbarch_long_bit (gdbarch, 32);
5766 set_gdbarch_ptr_bit (gdbarch, 32);
5767 set_gdbarch_long_long_bit (gdbarch, 64);
5768 set_gdbarch_reg_struct_has_addr (gdbarch,
5769 mips_o32_reg_struct_has_addr);
5770 set_gdbarch_use_struct_convention (gdbarch,
5771 mips_o32_use_struct_convention);
5772 break;
5773 case MIPS_ABI_EABI32:
5774 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5775 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5776 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5777 tdep->mips_default_saved_regsize = 4;
5778 tdep->mips_default_stack_argsize = 4;
5779 tdep->mips_fp_register_double = 0;
5780 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5781 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5782 tdep->gdb_target_is_mips64 = 0;
5783 tdep->default_mask_address_p = 0;
5784 set_gdbarch_long_bit (gdbarch, 32);
5785 set_gdbarch_ptr_bit (gdbarch, 32);
5786 set_gdbarch_long_long_bit (gdbarch, 64);
5787 set_gdbarch_reg_struct_has_addr (gdbarch,
5788 mips_eabi_reg_struct_has_addr);
5789 set_gdbarch_use_struct_convention (gdbarch,
5790 mips_eabi_use_struct_convention);
5791 break;
5792 case MIPS_ABI_EABI64:
5793 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5794 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5795 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5796 tdep->mips_default_saved_regsize = 8;
5797 tdep->mips_default_stack_argsize = 8;
5798 tdep->mips_fp_register_double = 1;
5799 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5800 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5801 tdep->gdb_target_is_mips64 = 1;
5802 tdep->default_mask_address_p = 0;
5803 set_gdbarch_long_bit (gdbarch, 64);
5804 set_gdbarch_ptr_bit (gdbarch, 64);
5805 set_gdbarch_long_long_bit (gdbarch, 64);
5806 set_gdbarch_reg_struct_has_addr (gdbarch,
5807 mips_eabi_reg_struct_has_addr);
5808 set_gdbarch_use_struct_convention (gdbarch,
5809 mips_eabi_use_struct_convention);
5810 break;
5811 case MIPS_ABI_N32:
5812 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5813 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5814 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5815 tdep->mips_default_saved_regsize = 8;
5816 tdep->mips_default_stack_argsize = 8;
5817 tdep->mips_fp_register_double = 1;
5818 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5819 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5820 tdep->gdb_target_is_mips64 = 1;
5821 tdep->default_mask_address_p = 0;
5822 set_gdbarch_long_bit (gdbarch, 32);
5823 set_gdbarch_ptr_bit (gdbarch, 32);
5824 set_gdbarch_long_long_bit (gdbarch, 64);
5825 set_gdbarch_use_struct_convention (gdbarch,
5826 mips_n32n64_use_struct_convention);
5827 set_gdbarch_reg_struct_has_addr (gdbarch,
5828 mips_n32n64_reg_struct_has_addr);
5829 break;
5830 case MIPS_ABI_N64:
5831 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5832 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5833 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5834 tdep->mips_default_saved_regsize = 8;
5835 tdep->mips_default_stack_argsize = 8;
5836 tdep->mips_fp_register_double = 1;
5837 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5838 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5839 tdep->gdb_target_is_mips64 = 1;
5840 tdep->default_mask_address_p = 0;
5841 set_gdbarch_long_bit (gdbarch, 64);
5842 set_gdbarch_ptr_bit (gdbarch, 64);
5843 set_gdbarch_long_long_bit (gdbarch, 64);
5844 set_gdbarch_use_struct_convention (gdbarch,
5845 mips_n32n64_use_struct_convention);
5846 set_gdbarch_reg_struct_has_addr (gdbarch,
5847 mips_n32n64_reg_struct_has_addr);
5848 break;
5849 default:
5850 internal_error (__FILE__, __LINE__,
5851 "unknown ABI in switch");
5852 }
5853
5854 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5855 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5856 comment:
5857
5858 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5859 flag in object files because to do so would make it impossible to
5860 link with libraries compiled without "-gp32". This is
5861 unnecessarily restrictive.
5862
5863 We could solve this problem by adding "-gp32" multilibs to gcc,
5864 but to set this flag before gcc is built with such multilibs will
5865 break too many systems.''
5866
5867 But even more unhelpfully, the default linker output target for
5868 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5869 for 64-bit programs - you need to change the ABI to change this,
5870 and not all gcc targets support that currently. Therefore using
5871 this flag to detect 32-bit mode would do the wrong thing given
5872 the current gcc - it would make GDB treat these 64-bit programs
5873 as 32-bit programs by default. */
5874
5875 /* enable/disable the MIPS FPU */
5876 if (!mips_fpu_type_auto)
5877 tdep->mips_fpu_type = mips_fpu_type;
5878 else if (info.bfd_arch_info != NULL
5879 && info.bfd_arch_info->arch == bfd_arch_mips)
5880 switch (info.bfd_arch_info->mach)
5881 {
5882 case bfd_mach_mips3900:
5883 case bfd_mach_mips4100:
5884 case bfd_mach_mips4111:
5885 tdep->mips_fpu_type = MIPS_FPU_NONE;
5886 break;
5887 case bfd_mach_mips4650:
5888 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
5889 break;
5890 default:
5891 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5892 break;
5893 }
5894 else
5895 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5896
5897 /* MIPS version of register names. NOTE: At present the MIPS
5898 register name management is part way between the old -
5899 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
5900 Further work on it is required. */
5901 /* NOTE: many targets (esp. embedded) do not go thru the
5902 gdbarch_register_name vector at all, instead bypassing it
5903 by defining REGISTER_NAMES. */
5904 set_gdbarch_register_name (gdbarch, mips_register_name);
5905 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5906 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
5907 set_gdbarch_deprecated_target_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */
5908 set_gdbarch_read_sp (gdbarch, mips_read_sp);
5909 set_gdbarch_deprecated_dummy_write_sp (gdbarch, generic_target_write_sp);
5910
5911 /* Add/remove bits from an address. The MIPS needs be careful to
5912 ensure that all 32 bit addresses are sign extended to 64 bits. */
5913 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5914
5915 /* There's a mess in stack frame creation. See comments in
5916 blockframe.c near reference to DEPRECATED_INIT_FRAME_PC_FIRST. */
5917 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
5918 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_noop);
5919
5920 /* Map debug register numbers onto internal register numbers. */
5921 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5922 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5923 set_gdbarch_dwarf_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5924 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5925
5926 /* Initialize a frame */
5927 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, mips_find_saved_regs);
5928 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
5929
5930 /* MIPS version of CALL_DUMMY */
5931
5932 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
5933 set_gdbarch_deprecated_pop_frame (gdbarch, mips_pop_frame);
5934 set_gdbarch_frame_align (gdbarch, mips_frame_align);
5935 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
5936 set_gdbarch_register_convertible (gdbarch, mips_register_convertible);
5937 set_gdbarch_register_convert_to_virtual (gdbarch,
5938 mips_register_convert_to_virtual);
5939 set_gdbarch_register_convert_to_raw (gdbarch,
5940 mips_register_convert_to_raw);
5941
5942 set_gdbarch_deprecated_frame_chain (gdbarch, mips_frame_chain);
5943 set_gdbarch_frameless_function_invocation (gdbarch,
5944 generic_frameless_function_invocation_not);
5945 set_gdbarch_deprecated_frame_saved_pc (gdbarch, mips_frame_saved_pc);
5946 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
5947 set_gdbarch_frame_args_skip (gdbarch, 0);
5948
5949 set_gdbarch_deprecated_get_saved_register (gdbarch, mips_get_saved_register);
5950
5951 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5952 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5953 set_gdbarch_decr_pc_after_break (gdbarch, 0);
5954
5955 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
5956 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
5957
5958 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5959 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5960 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
5961
5962 set_gdbarch_function_start_offset (gdbarch, 0);
5963
5964 /* There are MIPS targets which do not yet use this since they still
5965 define REGISTER_VIRTUAL_TYPE. */
5966 set_gdbarch_register_virtual_type (gdbarch, mips_register_virtual_type);
5967
5968 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
5969 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
5970
5971 /* Hook in OS ABI-specific overrides, if they have been registered. */
5972 gdbarch_init_osabi (info, gdbarch);
5973
5974 set_gdbarch_extract_struct_value_address (gdbarch,
5975 mips_extract_struct_value_address);
5976
5977 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
5978
5979 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
5980 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
5981
5982 return gdbarch;
5983 }
5984
5985 static void
5986 mips_abi_update (char *ignore_args, int from_tty,
5987 struct cmd_list_element *c)
5988 {
5989 struct gdbarch_info info;
5990
5991 /* Force the architecture to update, and (if it's a MIPS architecture)
5992 mips_gdbarch_init will take care of the rest. */
5993 gdbarch_info_init (&info);
5994 gdbarch_update_p (info);
5995 }
5996
5997 /* Print out which MIPS ABI is in use. */
5998
5999 static void
6000 show_mips_abi (char *ignore_args, int from_tty)
6001 {
6002 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
6003 printf_filtered (
6004 "The MIPS ABI is unknown because the current architecture is not MIPS.\n");
6005 else
6006 {
6007 enum mips_abi global_abi = global_mips_abi ();
6008 enum mips_abi actual_abi = mips_abi (current_gdbarch);
6009 const char *actual_abi_str = mips_abi_strings[actual_abi];
6010
6011 if (global_abi == MIPS_ABI_UNKNOWN)
6012 printf_filtered ("The MIPS ABI is set automatically (currently \"%s\").\n",
6013 actual_abi_str);
6014 else if (global_abi == actual_abi)
6015 printf_filtered (
6016 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6017 actual_abi_str);
6018 else
6019 {
6020 /* Probably shouldn't happen... */
6021 printf_filtered (
6022 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6023 actual_abi_str,
6024 mips_abi_strings[global_abi]);
6025 }
6026 }
6027 }
6028
6029 static void
6030 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6031 {
6032 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6033 if (tdep != NULL)
6034 {
6035 int ef_mips_arch;
6036 int ef_mips_32bitmode;
6037 /* determine the ISA */
6038 switch (tdep->elf_flags & EF_MIPS_ARCH)
6039 {
6040 case E_MIPS_ARCH_1:
6041 ef_mips_arch = 1;
6042 break;
6043 case E_MIPS_ARCH_2:
6044 ef_mips_arch = 2;
6045 break;
6046 case E_MIPS_ARCH_3:
6047 ef_mips_arch = 3;
6048 break;
6049 case E_MIPS_ARCH_4:
6050 ef_mips_arch = 4;
6051 break;
6052 default:
6053 ef_mips_arch = 0;
6054 break;
6055 }
6056 /* determine the size of a pointer */
6057 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
6058 fprintf_unfiltered (file,
6059 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
6060 tdep->elf_flags);
6061 fprintf_unfiltered (file,
6062 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6063 ef_mips_32bitmode);
6064 fprintf_unfiltered (file,
6065 "mips_dump_tdep: ef_mips_arch = %d\n",
6066 ef_mips_arch);
6067 fprintf_unfiltered (file,
6068 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6069 tdep->mips_abi,
6070 mips_abi_strings[tdep->mips_abi]);
6071 fprintf_unfiltered (file,
6072 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6073 mips_mask_address_p (),
6074 tdep->default_mask_address_p);
6075 }
6076 fprintf_unfiltered (file,
6077 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6078 FP_REGISTER_DOUBLE);
6079 fprintf_unfiltered (file,
6080 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6081 MIPS_DEFAULT_FPU_TYPE,
6082 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6083 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6084 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6085 : "???"));
6086 fprintf_unfiltered (file,
6087 "mips_dump_tdep: MIPS_EABI = %d\n",
6088 MIPS_EABI);
6089 fprintf_unfiltered (file,
6090 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
6091 MIPS_LAST_FP_ARG_REGNUM,
6092 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
6093 fprintf_unfiltered (file,
6094 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6095 MIPS_FPU_TYPE,
6096 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6097 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6098 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6099 : "???"));
6100 fprintf_unfiltered (file,
6101 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6102 MIPS_DEFAULT_SAVED_REGSIZE);
6103 fprintf_unfiltered (file,
6104 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6105 FP_REGISTER_DOUBLE);
6106 fprintf_unfiltered (file,
6107 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6108 MIPS_DEFAULT_STACK_ARGSIZE);
6109 fprintf_unfiltered (file,
6110 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6111 MIPS_STACK_ARGSIZE);
6112 fprintf_unfiltered (file,
6113 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
6114 MIPS_REGSIZE);
6115 fprintf_unfiltered (file,
6116 "mips_dump_tdep: A0_REGNUM = %d\n",
6117 A0_REGNUM);
6118 fprintf_unfiltered (file,
6119 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6120 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6121 fprintf_unfiltered (file,
6122 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6123 XSTRING (ATTACH_DETACH));
6124 fprintf_unfiltered (file,
6125 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
6126 BADVADDR_REGNUM);
6127 fprintf_unfiltered (file,
6128 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
6129 CAUSE_REGNUM);
6130 fprintf_unfiltered (file,
6131 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6132 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6133 fprintf_unfiltered (file,
6134 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6135 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
6136 fprintf_unfiltered (file,
6137 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
6138 FCRCS_REGNUM);
6139 fprintf_unfiltered (file,
6140 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
6141 FCRIR_REGNUM);
6142 fprintf_unfiltered (file,
6143 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6144 FIRST_EMBED_REGNUM);
6145 fprintf_unfiltered (file,
6146 "mips_dump_tdep: FPA0_REGNUM = %d\n",
6147 FPA0_REGNUM);
6148 fprintf_unfiltered (file,
6149 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
6150 GDB_TARGET_IS_MIPS64);
6151 fprintf_unfiltered (file,
6152 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
6153 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
6154 fprintf_unfiltered (file,
6155 "mips_dump_tdep: HI_REGNUM = %d\n",
6156 HI_REGNUM);
6157 fprintf_unfiltered (file,
6158 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6159 XSTRING (IGNORE_HELPER_CALL (PC)));
6160 fprintf_unfiltered (file,
6161 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6162 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6163 fprintf_unfiltered (file,
6164 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6165 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
6166 fprintf_unfiltered (file,
6167 "mips_dump_tdep: IS_MIPS16_ADDR = FIXME!\n");
6168 fprintf_unfiltered (file,
6169 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6170 LAST_EMBED_REGNUM);
6171 fprintf_unfiltered (file,
6172 "mips_dump_tdep: LO_REGNUM = %d\n",
6173 LO_REGNUM);
6174 #ifdef MACHINE_CPROC_FP_OFFSET
6175 fprintf_unfiltered (file,
6176 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6177 MACHINE_CPROC_FP_OFFSET);
6178 #endif
6179 #ifdef MACHINE_CPROC_PC_OFFSET
6180 fprintf_unfiltered (file,
6181 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6182 MACHINE_CPROC_PC_OFFSET);
6183 #endif
6184 #ifdef MACHINE_CPROC_SP_OFFSET
6185 fprintf_unfiltered (file,
6186 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6187 MACHINE_CPROC_SP_OFFSET);
6188 #endif
6189 fprintf_unfiltered (file,
6190 "mips_dump_tdep: MAKE_MIPS16_ADDR = FIXME!\n");
6191 fprintf_unfiltered (file,
6192 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6193 MIPS16_INSTLEN);
6194 fprintf_unfiltered (file,
6195 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6196 fprintf_unfiltered (file,
6197 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6198 fprintf_unfiltered (file,
6199 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6200 MIPS_INSTLEN);
6201 fprintf_unfiltered (file,
6202 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6203 MIPS_LAST_ARG_REGNUM,
6204 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
6205 fprintf_unfiltered (file,
6206 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6207 MIPS_NUMREGS);
6208 fprintf_unfiltered (file,
6209 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
6210 fprintf_unfiltered (file,
6211 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6212 MIPS_SAVED_REGSIZE);
6213 fprintf_unfiltered (file,
6214 "mips_dump_tdep: OP_LDFPR = used?\n");
6215 fprintf_unfiltered (file,
6216 "mips_dump_tdep: OP_LDGPR = used?\n");
6217 fprintf_unfiltered (file,
6218 "mips_dump_tdep: PRID_REGNUM = %d\n",
6219 PRID_REGNUM);
6220 fprintf_unfiltered (file,
6221 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
6222 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
6223 fprintf_unfiltered (file,
6224 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6225 fprintf_unfiltered (file,
6226 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6227 fprintf_unfiltered (file,
6228 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6229 fprintf_unfiltered (file,
6230 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6231 fprintf_unfiltered (file,
6232 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6233 fprintf_unfiltered (file,
6234 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6235 fprintf_unfiltered (file,
6236 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6237 fprintf_unfiltered (file,
6238 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6239 fprintf_unfiltered (file,
6240 "mips_dump_tdep: PROC_PC_REG = function?\n");
6241 fprintf_unfiltered (file,
6242 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6243 fprintf_unfiltered (file,
6244 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6245 fprintf_unfiltered (file,
6246 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6247 fprintf_unfiltered (file,
6248 "mips_dump_tdep: PS_REGNUM = %d\n",
6249 PS_REGNUM);
6250 fprintf_unfiltered (file,
6251 "mips_dump_tdep: RA_REGNUM = %d\n",
6252 RA_REGNUM);
6253 fprintf_unfiltered (file,
6254 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
6255 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6256 fprintf_unfiltered (file,
6257 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
6258 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6259 fprintf_unfiltered (file,
6260 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
6261 fprintf_unfiltered (file,
6262 "mips_dump_tdep: ROUND_DOWN = function?\n");
6263 fprintf_unfiltered (file,
6264 "mips_dump_tdep: ROUND_UP = function?\n");
6265 #ifdef SAVED_BYTES
6266 fprintf_unfiltered (file,
6267 "mips_dump_tdep: SAVED_BYTES = %d\n",
6268 SAVED_BYTES);
6269 #endif
6270 #ifdef SAVED_FP
6271 fprintf_unfiltered (file,
6272 "mips_dump_tdep: SAVED_FP = %d\n",
6273 SAVED_FP);
6274 #endif
6275 #ifdef SAVED_PC
6276 fprintf_unfiltered (file,
6277 "mips_dump_tdep: SAVED_PC = %d\n",
6278 SAVED_PC);
6279 #endif
6280 fprintf_unfiltered (file,
6281 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6282 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6283 fprintf_unfiltered (file,
6284 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6285 fprintf_unfiltered (file,
6286 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6287 SIGFRAME_BASE);
6288 fprintf_unfiltered (file,
6289 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6290 SIGFRAME_FPREGSAVE_OFF);
6291 fprintf_unfiltered (file,
6292 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6293 SIGFRAME_PC_OFF);
6294 fprintf_unfiltered (file,
6295 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6296 SIGFRAME_REGSAVE_OFF);
6297 fprintf_unfiltered (file,
6298 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
6299 SIGFRAME_REG_SIZE);
6300 fprintf_unfiltered (file,
6301 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6302 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6303 fprintf_unfiltered (file,
6304 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6305 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6306 fprintf_unfiltered (file,
6307 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6308 SOFTWARE_SINGLE_STEP_P ());
6309 fprintf_unfiltered (file,
6310 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6311 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6312 #ifdef STACK_END_ADDR
6313 fprintf_unfiltered (file,
6314 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6315 STACK_END_ADDR);
6316 #endif
6317 fprintf_unfiltered (file,
6318 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6319 XSTRING (STEP_SKIPS_DELAY (PC)));
6320 fprintf_unfiltered (file,
6321 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6322 STEP_SKIPS_DELAY_P);
6323 fprintf_unfiltered (file,
6324 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6325 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6326 fprintf_unfiltered (file,
6327 "mips_dump_tdep: T9_REGNUM = %d\n",
6328 T9_REGNUM);
6329 fprintf_unfiltered (file,
6330 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6331 fprintf_unfiltered (file,
6332 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6333 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6334 fprintf_unfiltered (file,
6335 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6336 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
6337 fprintf_unfiltered (file,
6338 "mips_dump_tdep: TARGET_MIPS = used?\n");
6339 fprintf_unfiltered (file,
6340 "mips_dump_tdep: TM_PRINT_INSN_MACH # %s\n",
6341 XSTRING (TM_PRINT_INSN_MACH));
6342 #ifdef TRACE_CLEAR
6343 fprintf_unfiltered (file,
6344 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6345 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6346 #endif
6347 #ifdef TRACE_FLAVOR
6348 fprintf_unfiltered (file,
6349 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6350 TRACE_FLAVOR);
6351 #endif
6352 #ifdef TRACE_FLAVOR_SIZE
6353 fprintf_unfiltered (file,
6354 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6355 TRACE_FLAVOR_SIZE);
6356 #endif
6357 #ifdef TRACE_SET
6358 fprintf_unfiltered (file,
6359 "mips_dump_tdep: TRACE_SET # %s\n",
6360 XSTRING (TRACE_SET (X,STATE)));
6361 #endif
6362 fprintf_unfiltered (file,
6363 "mips_dump_tdep: UNMAKE_MIPS16_ADDR = function?\n");
6364 #ifdef UNUSED_REGNUM
6365 fprintf_unfiltered (file,
6366 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6367 UNUSED_REGNUM);
6368 #endif
6369 fprintf_unfiltered (file,
6370 "mips_dump_tdep: V0_REGNUM = %d\n",
6371 V0_REGNUM);
6372 fprintf_unfiltered (file,
6373 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6374 (long) VM_MIN_ADDRESS);
6375 #ifdef VX_NUM_REGS
6376 fprintf_unfiltered (file,
6377 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
6378 VX_NUM_REGS);
6379 #endif
6380 fprintf_unfiltered (file,
6381 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6382 ZERO_REGNUM);
6383 fprintf_unfiltered (file,
6384 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6385 _PROC_MAGIC_);
6386 }
6387
6388 void
6389 _initialize_mips_tdep (void)
6390 {
6391 static struct cmd_list_element *mipsfpulist = NULL;
6392 struct cmd_list_element *c;
6393
6394 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6395 if (MIPS_ABI_LAST + 1
6396 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6397 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6398
6399 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
6400 if (!deprecated_tm_print_insn) /* Someone may have already set it */
6401 deprecated_tm_print_insn = gdb_print_insn_mips;
6402
6403 /* Add root prefix command for all "set mips"/"show mips" commands */
6404 add_prefix_cmd ("mips", no_class, set_mips_command,
6405 "Various MIPS specific commands.",
6406 &setmipscmdlist, "set mips ", 0, &setlist);
6407
6408 add_prefix_cmd ("mips", no_class, show_mips_command,
6409 "Various MIPS specific commands.",
6410 &showmipscmdlist, "show mips ", 0, &showlist);
6411
6412 /* Allow the user to override the saved register size. */
6413 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
6414 class_obscure,
6415 size_enums,
6416 &mips_saved_regsize_string, "\
6417 Set size of general purpose registers saved on the stack.\n\
6418 This option can be set to one of:\n\
6419 32 - Force GDB to treat saved GP registers as 32-bit\n\
6420 64 - Force GDB to treat saved GP registers as 64-bit\n\
6421 auto - Allow GDB to use the target's default setting or autodetect the\n\
6422 saved GP register size from information contained in the executable.\n\
6423 (default: auto)",
6424 &setmipscmdlist),
6425 &showmipscmdlist);
6426
6427 /* Allow the user to override the argument stack size. */
6428 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6429 class_obscure,
6430 size_enums,
6431 &mips_stack_argsize_string, "\
6432 Set the amount of stack space reserved for each argument.\n\
6433 This option can be set to one of:\n\
6434 32 - Force GDB to allocate 32-bit chunks per argument\n\
6435 64 - Force GDB to allocate 64-bit chunks per argument\n\
6436 auto - Allow GDB to determine the correct setting from the current\n\
6437 target and executable (default)",
6438 &setmipscmdlist),
6439 &showmipscmdlist);
6440
6441 /* Allow the user to override the ABI. */
6442 c = add_set_enum_cmd
6443 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6444 "Set the ABI used by this program.\n"
6445 "This option can be set to one of:\n"
6446 " auto - the default ABI associated with the current binary\n"
6447 " o32\n"
6448 " o64\n"
6449 " n32\n"
6450 " n64\n"
6451 " eabi32\n"
6452 " eabi64",
6453 &setmipscmdlist);
6454 set_cmd_sfunc (c, mips_abi_update);
6455 add_cmd ("abi", class_obscure, show_mips_abi,
6456 "Show ABI in use by MIPS target", &showmipscmdlist);
6457
6458 /* Let the user turn off floating point and set the fence post for
6459 heuristic_proc_start. */
6460
6461 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6462 "Set use of MIPS floating-point coprocessor.",
6463 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6464 add_cmd ("single", class_support, set_mipsfpu_single_command,
6465 "Select single-precision MIPS floating-point coprocessor.",
6466 &mipsfpulist);
6467 add_cmd ("double", class_support, set_mipsfpu_double_command,
6468 "Select double-precision MIPS floating-point coprocessor.",
6469 &mipsfpulist);
6470 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6471 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6472 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6473 add_cmd ("none", class_support, set_mipsfpu_none_command,
6474 "Select no MIPS floating-point coprocessor.",
6475 &mipsfpulist);
6476 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6477 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6478 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6479 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6480 "Select MIPS floating-point coprocessor automatically.",
6481 &mipsfpulist);
6482 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6483 "Show current use of MIPS floating-point coprocessor target.",
6484 &showlist);
6485
6486 /* We really would like to have both "0" and "unlimited" work, but
6487 command.c doesn't deal with that. So make it a var_zinteger
6488 because the user can always use "999999" or some such for unlimited. */
6489 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6490 (char *) &heuristic_fence_post,
6491 "\
6492 Set the distance searched for the start of a function.\n\
6493 If you are debugging a stripped executable, GDB needs to search through the\n\
6494 program for the start of a function. This command sets the distance of the\n\
6495 search. The only need to set it is when debugging a stripped executable.",
6496 &setlist);
6497 /* We need to throw away the frame cache when we set this, since it
6498 might change our ability to get backtraces. */
6499 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
6500 add_show_from_set (c, &showlist);
6501
6502 /* Allow the user to control whether the upper bits of 64-bit
6503 addresses should be zeroed. */
6504 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6505 Set zeroing of upper 32 bits of 64-bit addresses.\n\
6506 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6507 allow GDB to determine the correct value.\n", "\
6508 Show zeroing of upper 32 bits of 64-bit addresses.",
6509 NULL, show_mask_address,
6510 &setmipscmdlist, &showmipscmdlist);
6511
6512 /* Allow the user to control the size of 32 bit registers within the
6513 raw remote packet. */
6514 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
6515 class_obscure,
6516 var_boolean,
6517 (char *)&mips64_transfers_32bit_regs_p, "\
6518 Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
6519 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6520 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
6521 64 bits for others. Use \"off\" to disable compatibility mode",
6522 &setlist),
6523 &showlist);
6524
6525 /* Debug this files internals. */
6526 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6527 &mips_debug, "Set mips debugging.\n\
6528 When non-zero, mips specific debugging is enabled.", &setdebuglist),
6529 &showdebuglist);
6530 }