gdb/testsuite: fix gdb.python/py-unwind.exp with python >= 3.11
[binutils-gdb.git] / gdb / msp430-tdep.c
1 /* Target-dependent code for the Texas Instruments MSP430 for GDB, the
2 GNU debugger.
3
4 Copyright (C) 2012-2023 Free Software Foundation, Inc.
5
6 Contributed by Red Hat, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "arch-utils.h"
25 #include "prologue-value.h"
26 #include "target.h"
27 #include "regcache.h"
28 #include "dis-asm.h"
29 #include "gdbtypes.h"
30 #include "frame.h"
31 #include "frame-unwind.h"
32 #include "frame-base.h"
33 #include "value.h"
34 #include "gdbcore.h"
35 #include "dwarf2/frame.h"
36 #include "reggroups.h"
37 #include "gdbarch.h"
38
39 #include "elf/msp430.h"
40 #include "opcode/msp430-decode.h"
41 #include "elf-bfd.h"
42
43 /* Register Numbers. */
44
45 enum
46 {
47 MSP430_PC_RAW_REGNUM,
48 MSP430_SP_RAW_REGNUM,
49 MSP430_SR_RAW_REGNUM,
50 MSP430_CG_RAW_REGNUM,
51 MSP430_R4_RAW_REGNUM,
52 MSP430_R5_RAW_REGNUM,
53 MSP430_R6_RAW_REGNUM,
54 MSP430_R7_RAW_REGNUM,
55 MSP430_R8_RAW_REGNUM,
56 MSP430_R9_RAW_REGNUM,
57 MSP430_R10_RAW_REGNUM,
58 MSP430_R11_RAW_REGNUM,
59 MSP430_R12_RAW_REGNUM,
60 MSP430_R13_RAW_REGNUM,
61 MSP430_R14_RAW_REGNUM,
62 MSP430_R15_RAW_REGNUM,
63
64 MSP430_NUM_REGS,
65
66 MSP430_PC_REGNUM = MSP430_NUM_REGS,
67 MSP430_SP_REGNUM,
68 MSP430_SR_REGNUM,
69 MSP430_CG_REGNUM,
70 MSP430_R4_REGNUM,
71 MSP430_R5_REGNUM,
72 MSP430_R6_REGNUM,
73 MSP430_R7_REGNUM,
74 MSP430_R8_REGNUM,
75 MSP430_R9_REGNUM,
76 MSP430_R10_REGNUM,
77 MSP430_R11_REGNUM,
78 MSP430_R12_REGNUM,
79 MSP430_R13_REGNUM,
80 MSP430_R14_REGNUM,
81 MSP430_R15_REGNUM,
82
83 MSP430_NUM_TOTAL_REGS,
84 MSP430_NUM_PSEUDO_REGS = MSP430_NUM_TOTAL_REGS - MSP430_NUM_REGS
85 };
86
87 enum
88 {
89 /* TI MSP430 Architecture. */
90 MSP_ISA_MSP430,
91
92 /* TI MSP430X Architecture. */
93 MSP_ISA_MSP430X
94 };
95
96 enum
97 {
98 /* The small code model limits code addresses to 16 bits. */
99 MSP_SMALL_CODE_MODEL,
100
101 /* The large code model uses 20 bit addresses for function
102 pointers. These are stored in memory using four bytes (32 bits). */
103 MSP_LARGE_CODE_MODEL
104 };
105
106 /* Architecture specific data. */
107
108 struct msp430_gdbarch_tdep : gdbarch_tdep_base
109 {
110 /* The ELF header flags specify the multilib used. */
111 int elf_flags = 0;
112
113 /* One of MSP_ISA_MSP430 or MSP_ISA_MSP430X. */
114 int isa = 0;
115
116 /* One of MSP_SMALL_CODE_MODEL or MSP_LARGE_CODE_MODEL. If, at
117 some point, we support different data models too, we'll probably
118 structure things so that we can combine values using logical
119 "or". */
120 int code_model = 0;
121 };
122
123 /* This structure holds the results of a prologue analysis. */
124
125 struct msp430_prologue
126 {
127 /* The offset from the frame base to the stack pointer --- always
128 zero or negative.
129
130 Calling this a "size" is a bit misleading, but given that the
131 stack grows downwards, using offsets for everything keeps one
132 from going completely sign-crazy: you never change anything's
133 sign for an ADD instruction; always change the second operand's
134 sign for a SUB instruction; and everything takes care of
135 itself. */
136 int frame_size;
137
138 /* Non-zero if this function has initialized the frame pointer from
139 the stack pointer, zero otherwise. */
140 int has_frame_ptr;
141
142 /* If has_frame_ptr is non-zero, this is the offset from the frame
143 base to where the frame pointer points. This is always zero or
144 negative. */
145 int frame_ptr_offset;
146
147 /* The address of the first instruction at which the frame has been
148 set up and the arguments are where the debug info says they are
149 --- as best as we can tell. */
150 CORE_ADDR prologue_end;
151
152 /* reg_offset[R] is the offset from the CFA at which register R is
153 saved, or 1 if register R has not been saved. (Real values are
154 always zero or negative.) */
155 int reg_offset[MSP430_NUM_TOTAL_REGS];
156 };
157
158 /* Implement the "register_type" gdbarch method. */
159
160 static struct type *
161 msp430_register_type (struct gdbarch *gdbarch, int reg_nr)
162 {
163 if (reg_nr < MSP430_NUM_REGS)
164 return builtin_type (gdbarch)->builtin_uint32;
165 else if (reg_nr == MSP430_PC_REGNUM)
166 return builtin_type (gdbarch)->builtin_func_ptr;
167 else
168 return builtin_type (gdbarch)->builtin_uint16;
169 }
170
171 /* Implement another version of the "register_type" gdbarch method
172 for msp430x. */
173
174 static struct type *
175 msp430x_register_type (struct gdbarch *gdbarch, int reg_nr)
176 {
177 if (reg_nr < MSP430_NUM_REGS)
178 return builtin_type (gdbarch)->builtin_uint32;
179 else if (reg_nr == MSP430_PC_REGNUM)
180 return builtin_type (gdbarch)->builtin_func_ptr;
181 else
182 return builtin_type (gdbarch)->builtin_uint32;
183 }
184
185 /* Implement the "register_name" gdbarch method. */
186
187 static const char *
188 msp430_register_name (struct gdbarch *gdbarch, int regnr)
189 {
190 static const char *const reg_names[] = {
191 /* Raw registers. */
192 "", "", "", "", "", "", "", "",
193 "", "", "", "", "", "", "", "",
194 /* Pseudo registers. */
195 "pc", "sp", "sr", "cg", "r4", "r5", "r6", "r7",
196 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
197 };
198
199 gdb_static_assert (ARRAY_SIZE (reg_names) == (MSP430_NUM_REGS
200 + MSP430_NUM_PSEUDO_REGS));
201 return reg_names[regnr];
202 }
203
204 /* Implement the "register_reggroup_p" gdbarch method. */
205
206 static int
207 msp430_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
208 const struct reggroup *group)
209 {
210 if (group == all_reggroup)
211 return 1;
212
213 /* All other registers are saved and restored. */
214 if (group == save_reggroup || group == restore_reggroup)
215 return (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS);
216
217 return group == general_reggroup;
218 }
219
220 /* Implement the "pseudo_register_read" gdbarch method. */
221
222 static enum register_status
223 msp430_pseudo_register_read (struct gdbarch *gdbarch,
224 readable_regcache *regcache,
225 int regnum, gdb_byte *buffer)
226 {
227 if (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS)
228 {
229 enum register_status status;
230 ULONGEST val;
231 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
232 int regsize = register_size (gdbarch, regnum);
233 int raw_regnum = regnum - MSP430_NUM_REGS;
234
235 status = regcache->raw_read (raw_regnum, &val);
236 if (status == REG_VALID)
237 store_unsigned_integer (buffer, regsize, byte_order, val);
238
239 return status;
240 }
241 else
242 gdb_assert_not_reached ("invalid pseudo register number");
243 }
244
245 /* Implement the "pseudo_register_write" gdbarch method. */
246
247 static void
248 msp430_pseudo_register_write (struct gdbarch *gdbarch,
249 struct regcache *regcache,
250 int regnum, const gdb_byte *buffer)
251 {
252 if (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS)
253
254 {
255 ULONGEST val;
256 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
257 int regsize = register_size (gdbarch, regnum);
258 int raw_regnum = regnum - MSP430_NUM_REGS;
259
260 val = extract_unsigned_integer (buffer, regsize, byte_order);
261 regcache_raw_write_unsigned (regcache, raw_regnum, val);
262
263 }
264 else
265 gdb_assert_not_reached ("invalid pseudo register number");
266 }
267
268 /* Implement the `register_sim_regno' gdbarch method. */
269
270 static int
271 msp430_register_sim_regno (struct gdbarch *gdbarch, int regnum)
272 {
273 gdb_assert (regnum < MSP430_NUM_REGS);
274
275 /* So long as regnum is in [0, RL78_NUM_REGS), it's valid. We
276 just want to override the default here which disallows register
277 numbers which have no names. */
278 return regnum;
279 }
280
281 constexpr gdb_byte msp430_break_insn[] = { 0x43, 0x43 };
282
283 typedef BP_MANIPULATION (msp430_break_insn) msp430_breakpoint;
284
285 /* Define a "handle" struct for fetching the next opcode. */
286
287 struct msp430_get_opcode_byte_handle
288 {
289 CORE_ADDR pc;
290 };
291
292 /* Fetch a byte on behalf of the opcode decoder. HANDLE contains
293 the memory address of the next byte to fetch. If successful,
294 the address in the handle is updated and the byte fetched is
295 returned as the value of the function. If not successful, -1
296 is returned. */
297
298 static int
299 msp430_get_opcode_byte (void *handle)
300 {
301 struct msp430_get_opcode_byte_handle *opcdata
302 = (struct msp430_get_opcode_byte_handle *) handle;
303 int status;
304 gdb_byte byte;
305
306 status = target_read_memory (opcdata->pc, &byte, 1);
307 if (status == 0)
308 {
309 opcdata->pc += 1;
310 return byte;
311 }
312 else
313 return -1;
314 }
315
316 /* Function for finding saved registers in a 'struct pv_area'; this
317 function is passed to pv_area::scan.
318
319 If VALUE is a saved register, ADDR says it was saved at a constant
320 offset from the frame base, and SIZE indicates that the whole
321 register was saved, record its offset. */
322
323 static void
324 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
325 {
326 struct msp430_prologue *result = (struct msp430_prologue *) result_untyped;
327
328 if (value.kind == pvk_register
329 && value.k == 0
330 && pv_is_register (addr, MSP430_SP_REGNUM)
331 && size == register_size (target_gdbarch (), value.reg))
332 result->reg_offset[value.reg] = addr.k;
333 }
334
335 /* Analyze a prologue starting at START_PC, going no further than
336 LIMIT_PC. Fill in RESULT as appropriate. */
337
338 static void
339 msp430_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc,
340 CORE_ADDR limit_pc, struct msp430_prologue *result)
341 {
342 CORE_ADDR pc, next_pc;
343 int rn;
344 pv_t reg[MSP430_NUM_TOTAL_REGS];
345 CORE_ADDR after_last_frame_setup_insn = start_pc;
346 msp430_gdbarch_tdep *tdep = gdbarch_tdep<msp430_gdbarch_tdep> (gdbarch);
347 int code_model = tdep->code_model;
348 int sz;
349
350 memset (result, 0, sizeof (*result));
351
352 for (rn = 0; rn < MSP430_NUM_TOTAL_REGS; rn++)
353 {
354 reg[rn] = pv_register (rn, 0);
355 result->reg_offset[rn] = 1;
356 }
357
358 pv_area stack (MSP430_SP_REGNUM, gdbarch_addr_bit (gdbarch));
359
360 /* The call instruction has saved the return address on the stack. */
361 sz = code_model == MSP_LARGE_CODE_MODEL ? 4 : 2;
362 reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM], -sz);
363 stack.store (reg[MSP430_SP_REGNUM], sz, reg[MSP430_PC_REGNUM]);
364
365 pc = start_pc;
366 while (pc < limit_pc)
367 {
368 int bytes_read;
369 struct msp430_get_opcode_byte_handle opcode_handle;
370 MSP430_Opcode_Decoded opc;
371
372 opcode_handle.pc = pc;
373 bytes_read = msp430_decode_opcode (pc, &opc, msp430_get_opcode_byte,
374 &opcode_handle);
375 next_pc = pc + bytes_read;
376
377 if (opc.id == MSO_push && opc.op[0].type == MSP430_Operand_Register)
378 {
379 int rsrc = opc.op[0].reg;
380
381 reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM], -2);
382 stack.store (reg[MSP430_SP_REGNUM], 2, reg[rsrc]);
383 after_last_frame_setup_insn = next_pc;
384 }
385 else if (opc.id == MSO_push /* PUSHM */
386 && opc.op[0].type == MSP430_Operand_None
387 && opc.op[1].type == MSP430_Operand_Register)
388 {
389 int rsrc = opc.op[1].reg;
390 int count = opc.repeats + 1;
391 int size = opc.size == 16 ? 2 : 4;
392
393 while (count > 0)
394 {
395 reg[MSP430_SP_REGNUM]
396 = pv_add_constant (reg[MSP430_SP_REGNUM], -size);
397 stack.store (reg[MSP430_SP_REGNUM], size, reg[rsrc]);
398 rsrc--;
399 count--;
400 }
401 after_last_frame_setup_insn = next_pc;
402 }
403 else if (opc.id == MSO_sub
404 && opc.op[0].type == MSP430_Operand_Register
405 && opc.op[0].reg == MSR_SP
406 && opc.op[1].type == MSP430_Operand_Immediate)
407 {
408 int addend = opc.op[1].addend;
409
410 reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM],
411 -addend);
412 after_last_frame_setup_insn = next_pc;
413 }
414 else if (opc.id == MSO_mov
415 && opc.op[0].type == MSP430_Operand_Immediate
416 && 12 <= opc.op[0].reg && opc.op[0].reg <= 15)
417 after_last_frame_setup_insn = next_pc;
418 else
419 {
420 /* Terminate the prologue scan. */
421 break;
422 }
423
424 pc = next_pc;
425 }
426
427 /* Is the frame size (offset, really) a known constant? */
428 if (pv_is_register (reg[MSP430_SP_REGNUM], MSP430_SP_REGNUM))
429 result->frame_size = reg[MSP430_SP_REGNUM].k;
430
431 /* Record where all the registers were saved. */
432 stack.scan (check_for_saved, result);
433
434 result->prologue_end = after_last_frame_setup_insn;
435 }
436
437 /* Implement the "skip_prologue" gdbarch method. */
438
439 static CORE_ADDR
440 msp430_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
441 {
442 const char *name;
443 CORE_ADDR func_addr, func_end;
444 struct msp430_prologue p;
445
446 /* Try to find the extent of the function that contains PC. */
447 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
448 return pc;
449
450 msp430_analyze_prologue (gdbarch, pc, func_end, &p);
451 return p.prologue_end;
452 }
453
454 /* Given a frame described by THIS_FRAME, decode the prologue of its
455 associated function if there is not cache entry as specified by
456 THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and
457 return that struct as the value of this function. */
458
459 static struct msp430_prologue *
460 msp430_analyze_frame_prologue (frame_info_ptr this_frame,
461 void **this_prologue_cache)
462 {
463 if (!*this_prologue_cache)
464 {
465 CORE_ADDR func_start, stop_addr;
466
467 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct msp430_prologue);
468
469 func_start = get_frame_func (this_frame);
470 stop_addr = get_frame_pc (this_frame);
471
472 /* If we couldn't find any function containing the PC, then
473 just initialize the prologue cache, but don't do anything. */
474 if (!func_start)
475 stop_addr = func_start;
476
477 msp430_analyze_prologue (get_frame_arch (this_frame), func_start,
478 stop_addr,
479 (struct msp430_prologue *) *this_prologue_cache);
480 }
481
482 return (struct msp430_prologue *) *this_prologue_cache;
483 }
484
485 /* Given a frame and a prologue cache, return this frame's base. */
486
487 static CORE_ADDR
488 msp430_frame_base (frame_info_ptr this_frame, void **this_prologue_cache)
489 {
490 struct msp430_prologue *p
491 = msp430_analyze_frame_prologue (this_frame, this_prologue_cache);
492 CORE_ADDR sp = get_frame_register_unsigned (this_frame, MSP430_SP_REGNUM);
493
494 return sp - p->frame_size;
495 }
496
497 /* Implement the "frame_this_id" method for unwinding frames. */
498
499 static void
500 msp430_this_id (frame_info_ptr this_frame,
501 void **this_prologue_cache, struct frame_id *this_id)
502 {
503 *this_id = frame_id_build (msp430_frame_base (this_frame,
504 this_prologue_cache),
505 get_frame_func (this_frame));
506 }
507
508 /* Implement the "frame_prev_register" method for unwinding frames. */
509
510 static struct value *
511 msp430_prev_register (frame_info_ptr this_frame,
512 void **this_prologue_cache, int regnum)
513 {
514 struct msp430_prologue *p
515 = msp430_analyze_frame_prologue (this_frame, this_prologue_cache);
516 CORE_ADDR frame_base = msp430_frame_base (this_frame, this_prologue_cache);
517
518 if (regnum == MSP430_SP_REGNUM)
519 return frame_unwind_got_constant (this_frame, regnum, frame_base);
520
521 /* If prologue analysis says we saved this register somewhere,
522 return a description of the stack slot holding it. */
523 else if (p->reg_offset[regnum] != 1)
524 {
525 struct value *rv = frame_unwind_got_memory (this_frame, regnum,
526 frame_base +
527 p->reg_offset[regnum]);
528
529 if (regnum == MSP430_PC_REGNUM)
530 {
531 ULONGEST pc = value_as_long (rv);
532
533 return frame_unwind_got_constant (this_frame, regnum, pc);
534 }
535 return rv;
536 }
537
538 /* Otherwise, presume we haven't changed the value of this
539 register, and get it from the next frame. */
540 else
541 return frame_unwind_got_register (this_frame, regnum, regnum);
542 }
543
544 static const struct frame_unwind msp430_unwind = {
545 "msp430 prologue",
546 NORMAL_FRAME,
547 default_frame_unwind_stop_reason,
548 msp430_this_id,
549 msp430_prev_register,
550 NULL,
551 default_frame_sniffer
552 };
553
554 /* Implement the "dwarf2_reg_to_regnum" gdbarch method. */
555
556 static int
557 msp430_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
558 {
559 if (reg >= 0 && reg < MSP430_NUM_REGS)
560 return reg + MSP430_NUM_REGS;
561 return -1;
562 }
563
564 /* Implement the "return_value" gdbarch method. */
565
566 static enum return_value_convention
567 msp430_return_value (struct gdbarch *gdbarch,
568 struct value *function,
569 struct type *valtype,
570 struct regcache *regcache,
571 gdb_byte *readbuf, const gdb_byte *writebuf)
572 {
573 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
574 LONGEST valtype_len = valtype->length ();
575 msp430_gdbarch_tdep *tdep = gdbarch_tdep<msp430_gdbarch_tdep> (gdbarch);
576 int code_model = tdep->code_model;
577
578 if (valtype->length () > 8
579 || valtype->code () == TYPE_CODE_STRUCT
580 || valtype->code () == TYPE_CODE_UNION)
581 return RETURN_VALUE_STRUCT_CONVENTION;
582
583 if (readbuf)
584 {
585 ULONGEST u;
586 int argreg = MSP430_R12_REGNUM;
587 int offset = 0;
588
589 while (valtype_len > 0)
590 {
591 int size = 2;
592
593 if (code_model == MSP_LARGE_CODE_MODEL
594 && valtype->code () == TYPE_CODE_PTR)
595 {
596 size = 4;
597 }
598
599 regcache_cooked_read_unsigned (regcache, argreg, &u);
600 store_unsigned_integer (readbuf + offset, size, byte_order, u);
601 valtype_len -= size;
602 offset += size;
603 argreg++;
604 }
605 }
606
607 if (writebuf)
608 {
609 ULONGEST u;
610 int argreg = MSP430_R12_REGNUM;
611 int offset = 0;
612
613 while (valtype_len > 0)
614 {
615 int size = 2;
616
617 if (code_model == MSP_LARGE_CODE_MODEL
618 && valtype->code () == TYPE_CODE_PTR)
619 {
620 size = 4;
621 }
622
623 u = extract_unsigned_integer (writebuf + offset, size, byte_order);
624 regcache_cooked_write_unsigned (regcache, argreg, u);
625 valtype_len -= size;
626 offset += size;
627 argreg++;
628 }
629 }
630
631 return RETURN_VALUE_REGISTER_CONVENTION;
632 }
633
634
635 /* Implement the "frame_align" gdbarch method. */
636
637 static CORE_ADDR
638 msp430_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
639 {
640 return align_down (sp, 2);
641 }
642
643 /* Implement the "push_dummy_call" gdbarch method. */
644
645 static CORE_ADDR
646 msp430_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
647 struct regcache *regcache, CORE_ADDR bp_addr,
648 int nargs, struct value **args, CORE_ADDR sp,
649 function_call_return_method return_method,
650 CORE_ADDR struct_addr)
651 {
652 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
653 int write_pass;
654 int sp_off = 0;
655 CORE_ADDR cfa;
656 msp430_gdbarch_tdep *tdep = gdbarch_tdep<msp430_gdbarch_tdep> (gdbarch);
657 int code_model = tdep->code_model;
658
659 struct type *func_type = function->type ();
660
661 /* Dereference function pointer types. */
662 while (func_type->code () == TYPE_CODE_PTR)
663 func_type = func_type->target_type ();
664
665 /* The end result had better be a function or a method. */
666 gdb_assert (func_type->code () == TYPE_CODE_FUNC
667 || func_type->code () == TYPE_CODE_METHOD);
668
669 /* We make two passes; the first does the stack allocation,
670 the second actually stores the arguments. */
671 for (write_pass = 0; write_pass <= 1; write_pass++)
672 {
673 int i;
674 int arg_reg = MSP430_R12_REGNUM;
675 int args_on_stack = 0;
676
677 if (write_pass)
678 sp = align_down (sp - sp_off, 4);
679 sp_off = 0;
680
681 if (return_method == return_method_struct)
682 {
683 if (write_pass)
684 regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
685 arg_reg++;
686 }
687
688 /* Push the arguments. */
689 for (i = 0; i < nargs; i++)
690 {
691 struct value *arg = args[i];
692 const gdb_byte *arg_bits = arg->contents_all ().data ();
693 struct type *arg_type = check_typedef (arg->type ());
694 ULONGEST arg_size = arg_type->length ();
695 int offset;
696 int current_arg_on_stack;
697 gdb_byte struct_addr_buf[4];
698
699 current_arg_on_stack = 0;
700
701 if (arg_type->code () == TYPE_CODE_STRUCT
702 || arg_type->code () == TYPE_CODE_UNION)
703 {
704 /* Aggregates of any size are passed by reference. */
705 store_unsigned_integer (struct_addr_buf, 4, byte_order,
706 arg->address ());
707 arg_bits = struct_addr_buf;
708 arg_size = (code_model == MSP_LARGE_CODE_MODEL) ? 4 : 2;
709 }
710 else
711 {
712 /* Scalars bigger than 8 bytes such as complex doubles are passed
713 on the stack. */
714 if (arg_size > 8)
715 current_arg_on_stack = 1;
716 }
717
718
719 for (offset = 0; offset < arg_size; offset += 2)
720 {
721 /* The condition below prevents 8 byte scalars from being split
722 between registers and memory (stack). It also prevents other
723 splits once the stack has been written to. */
724 if (!current_arg_on_stack
725 && (arg_reg
726 + ((arg_size == 8 || args_on_stack)
727 ? ((arg_size - offset) / 2 - 1)
728 : 0) <= MSP430_R15_REGNUM))
729 {
730 int size = 2;
731
732 if (code_model == MSP_LARGE_CODE_MODEL
733 && (arg_type->code () == TYPE_CODE_PTR
734 || TYPE_IS_REFERENCE (arg_type)
735 || arg_type->code () == TYPE_CODE_STRUCT
736 || arg_type->code () == TYPE_CODE_UNION))
737 {
738 /* When using the large memory model, pointer,
739 reference, struct, and union arguments are
740 passed using the entire register. (As noted
741 earlier, aggregates are always passed by
742 reference.) */
743 if (offset != 0)
744 continue;
745 size = 4;
746 }
747
748 if (write_pass)
749 regcache_cooked_write_unsigned (regcache, arg_reg,
750 extract_unsigned_integer
751 (arg_bits + offset, size,
752 byte_order));
753
754 arg_reg++;
755 }
756 else
757 {
758 if (write_pass)
759 write_memory (sp + sp_off, arg_bits + offset, 2);
760
761 sp_off += 2;
762 args_on_stack = 1;
763 current_arg_on_stack = 1;
764 }
765 }
766 }
767 }
768
769 /* Keep track of the stack address prior to pushing the return address.
770 This is the value that we'll return. */
771 cfa = sp;
772
773 /* Push the return address. */
774 {
775 int sz = tdep->code_model == MSP_SMALL_CODE_MODEL ? 2 : 4;
776 sp = sp - sz;
777 write_memory_unsigned_integer (sp, sz, byte_order, bp_addr);
778 }
779
780 /* Update the stack pointer. */
781 regcache_cooked_write_unsigned (regcache, MSP430_SP_REGNUM, sp);
782
783 return cfa;
784 }
785
786 /* In order to keep code size small, the compiler may create epilogue
787 code through which more than one function epilogue is routed. I.e.
788 the epilogue and return may just be a branch to some common piece of
789 code which is responsible for tearing down the frame and performing
790 the return. These epilog (label) names will have the common prefix
791 defined here. */
792
793 static const char msp430_epilog_name_prefix[] = "__mspabi_func_epilog_";
794
795 /* Implement the "in_return_stub" gdbarch method. */
796
797 static int
798 msp430_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc,
799 const char *name)
800 {
801 return (name != NULL
802 && startswith (name, msp430_epilog_name_prefix));
803 }
804
805 /* Implement the "skip_trampoline_code" gdbarch method. */
806 static CORE_ADDR
807 msp430_skip_trampoline_code (frame_info_ptr frame, CORE_ADDR pc)
808 {
809 struct bound_minimal_symbol bms;
810 const char *stub_name;
811 struct gdbarch *gdbarch = get_frame_arch (frame);
812
813 bms = lookup_minimal_symbol_by_pc (pc);
814 if (!bms.minsym)
815 return pc;
816
817 stub_name = bms.minsym->linkage_name ();
818
819 msp430_gdbarch_tdep *tdep = gdbarch_tdep<msp430_gdbarch_tdep> (gdbarch);
820 if (tdep->code_model == MSP_SMALL_CODE_MODEL
821 && msp430_in_return_stub (gdbarch, pc, stub_name))
822 {
823 CORE_ADDR sp = get_frame_register_unsigned (frame, MSP430_SP_REGNUM);
824
825 return read_memory_integer
826 (sp + 2 * (stub_name[strlen (msp430_epilog_name_prefix)] - '0'),
827 2, gdbarch_byte_order (gdbarch));
828 }
829
830 return pc;
831 }
832
833 /* Allocate and initialize a gdbarch object. */
834
835 static struct gdbarch *
836 msp430_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
837 {
838 int elf_flags, isa, code_model;
839
840 /* Extract the elf_flags if available. */
841 if (info.abfd != NULL
842 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
843 elf_flags = elf_elfheader (info.abfd)->e_flags;
844 else
845 elf_flags = 0;
846
847 if (info.abfd != NULL)
848 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
849 OFBA_MSPABI_Tag_ISA))
850 {
851 case 1:
852 isa = MSP_ISA_MSP430;
853 code_model = MSP_SMALL_CODE_MODEL;
854 break;
855 case 2:
856 isa = MSP_ISA_MSP430X;
857 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
858 OFBA_MSPABI_Tag_Code_Model))
859 {
860 case 1:
861 code_model = MSP_SMALL_CODE_MODEL;
862 break;
863 case 2:
864 code_model = MSP_LARGE_CODE_MODEL;
865 break;
866 default:
867 internal_error (_("Unknown msp430x code memory model"));
868 break;
869 }
870 break;
871 case 0:
872 /* This can happen when loading a previously dumped data structure.
873 Use the ISA and code model from the current architecture, provided
874 it's compatible. */
875 {
876 struct gdbarch *ca = get_current_arch ();
877 if (ca && gdbarch_bfd_arch_info (ca)->arch == bfd_arch_msp430)
878 {
879 msp430_gdbarch_tdep *ca_tdep
880 = gdbarch_tdep<msp430_gdbarch_tdep> (ca);
881
882 elf_flags = ca_tdep->elf_flags;
883 isa = ca_tdep->isa;
884 code_model = ca_tdep->code_model;
885 break;
886 }
887 }
888 /* Fall through. */
889 default:
890 error (_("Unknown msp430 isa"));
891 break;
892 }
893 else
894 {
895 isa = MSP_ISA_MSP430;
896 code_model = MSP_SMALL_CODE_MODEL;
897 }
898
899
900 /* Try to find the architecture in the list of already defined
901 architectures. */
902 for (arches = gdbarch_list_lookup_by_info (arches, &info);
903 arches != NULL;
904 arches = gdbarch_list_lookup_by_info (arches->next, &info))
905 {
906 msp430_gdbarch_tdep *candidate_tdep
907 = gdbarch_tdep<msp430_gdbarch_tdep> (arches->gdbarch);
908
909 if (candidate_tdep->elf_flags != elf_flags
910 || candidate_tdep->isa != isa
911 || candidate_tdep->code_model != code_model)
912 continue;
913
914 return arches->gdbarch;
915 }
916
917 /* None found, create a new architecture from the information
918 provided. */
919 gdbarch *gdbarch
920 = gdbarch_alloc (&info, gdbarch_tdep_up (new msp430_gdbarch_tdep));
921 msp430_gdbarch_tdep *tdep = gdbarch_tdep<msp430_gdbarch_tdep> (gdbarch);
922
923 tdep->elf_flags = elf_flags;
924 tdep->isa = isa;
925 tdep->code_model = code_model;
926
927 /* Registers. */
928 set_gdbarch_num_regs (gdbarch, MSP430_NUM_REGS);
929 set_gdbarch_num_pseudo_regs (gdbarch, MSP430_NUM_PSEUDO_REGS);
930 set_gdbarch_register_name (gdbarch, msp430_register_name);
931 if (isa == MSP_ISA_MSP430)
932 set_gdbarch_register_type (gdbarch, msp430_register_type);
933 else
934 set_gdbarch_register_type (gdbarch, msp430x_register_type);
935 set_gdbarch_pc_regnum (gdbarch, MSP430_PC_REGNUM);
936 set_gdbarch_sp_regnum (gdbarch, MSP430_SP_REGNUM);
937 set_gdbarch_register_reggroup_p (gdbarch, msp430_register_reggroup_p);
938 set_gdbarch_pseudo_register_read (gdbarch, msp430_pseudo_register_read);
939 set_gdbarch_pseudo_register_write (gdbarch, msp430_pseudo_register_write);
940 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, msp430_dwarf2_reg_to_regnum);
941 set_gdbarch_register_sim_regno (gdbarch, msp430_register_sim_regno);
942
943 /* Data types. */
944 set_gdbarch_char_signed (gdbarch, 0);
945 set_gdbarch_short_bit (gdbarch, 16);
946 set_gdbarch_int_bit (gdbarch, 16);
947 set_gdbarch_long_bit (gdbarch, 32);
948 set_gdbarch_long_long_bit (gdbarch, 64);
949 if (code_model == MSP_SMALL_CODE_MODEL)
950 {
951 set_gdbarch_ptr_bit (gdbarch, 16);
952 set_gdbarch_addr_bit (gdbarch, 16);
953 }
954 else /* MSP_LARGE_CODE_MODEL */
955 {
956 set_gdbarch_ptr_bit (gdbarch, 32);
957 set_gdbarch_addr_bit (gdbarch, 32);
958 }
959 set_gdbarch_dwarf2_addr_size (gdbarch, 4);
960 set_gdbarch_float_bit (gdbarch, 32);
961 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
962 set_gdbarch_double_bit (gdbarch, 64);
963 set_gdbarch_long_double_bit (gdbarch, 64);
964 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
965 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
966
967 /* Breakpoints. */
968 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
969 msp430_breakpoint::kind_from_pc);
970 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
971 msp430_breakpoint::bp_from_kind);
972 set_gdbarch_decr_pc_after_break (gdbarch, 1);
973
974 /* Frames, prologues, etc. */
975 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
976 set_gdbarch_skip_prologue (gdbarch, msp430_skip_prologue);
977 set_gdbarch_frame_align (gdbarch, msp430_frame_align);
978 dwarf2_append_unwinders (gdbarch);
979 frame_unwind_append_unwinder (gdbarch, &msp430_unwind);
980
981 /* Dummy frames, return values. */
982 set_gdbarch_push_dummy_call (gdbarch, msp430_push_dummy_call);
983 set_gdbarch_return_value (gdbarch, msp430_return_value);
984
985 /* Trampolines. */
986 set_gdbarch_in_solib_return_trampoline (gdbarch, msp430_in_return_stub);
987 set_gdbarch_skip_trampoline_code (gdbarch, msp430_skip_trampoline_code);
988
989 /* Virtual tables. */
990 set_gdbarch_vbit_in_delta (gdbarch, 0);
991
992 return gdbarch;
993 }
994
995 /* Register the initialization routine. */
996
997 void _initialize_msp430_tdep ();
998 void
999 _initialize_msp430_tdep ()
1000 {
1001 gdbarch_register (bfd_arch_msp430, msp430_gdbarch_init);
1002 }