run copyright.sh for 2011.
[binutils-gdb.git] / gdb / mt-tdep.c
1 /* Target-dependent code for Morpho mt processor, for GDB.
2
3 Copyright (C) 2005, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 /* Contributed by Michael Snyder, msnyder@redhat.com. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "symtab.h"
28 #include "dis-asm.h"
29 #include "arch-utils.h"
30 #include "gdbtypes.h"
31 #include "gdb_string.h"
32 #include "regcache.h"
33 #include "reggroups.h"
34 #include "gdbcore.h"
35 #include "trad-frame.h"
36 #include "inferior.h"
37 #include "dwarf2-frame.h"
38 #include "infcall.h"
39 #include "gdb_assert.h"
40 #include "language.h"
41 #include "valprint.h"
42
43 enum mt_arch_constants
44 {
45 MT_MAX_STRUCT_SIZE = 16
46 };
47
48 enum mt_gdb_regnums
49 {
50 MT_R0_REGNUM, /* 32 bit regs. */
51 MT_R1_REGNUM,
52 MT_1ST_ARGREG = MT_R1_REGNUM,
53 MT_R2_REGNUM,
54 MT_R3_REGNUM,
55 MT_R4_REGNUM,
56 MT_LAST_ARGREG = MT_R4_REGNUM,
57 MT_R5_REGNUM,
58 MT_R6_REGNUM,
59 MT_R7_REGNUM,
60 MT_R8_REGNUM,
61 MT_R9_REGNUM,
62 MT_R10_REGNUM,
63 MT_R11_REGNUM,
64 MT_R12_REGNUM,
65 MT_FP_REGNUM = MT_R12_REGNUM,
66 MT_R13_REGNUM,
67 MT_SP_REGNUM = MT_R13_REGNUM,
68 MT_R14_REGNUM,
69 MT_RA_REGNUM = MT_R14_REGNUM,
70 MT_R15_REGNUM,
71 MT_IRA_REGNUM = MT_R15_REGNUM,
72 MT_PC_REGNUM,
73
74 /* Interrupt Enable pseudo-register, exported by SID. */
75 MT_INT_ENABLE_REGNUM,
76 /* End of CPU regs. */
77
78 MT_NUM_CPU_REGS,
79
80 /* Co-processor registers. */
81 MT_COPRO_REGNUM = MT_NUM_CPU_REGS, /* 16 bit regs. */
82 MT_CPR0_REGNUM,
83 MT_CPR1_REGNUM,
84 MT_CPR2_REGNUM,
85 MT_CPR3_REGNUM,
86 MT_CPR4_REGNUM,
87 MT_CPR5_REGNUM,
88 MT_CPR6_REGNUM,
89 MT_CPR7_REGNUM,
90 MT_CPR8_REGNUM,
91 MT_CPR9_REGNUM,
92 MT_CPR10_REGNUM,
93 MT_CPR11_REGNUM,
94 MT_CPR12_REGNUM,
95 MT_CPR13_REGNUM,
96 MT_CPR14_REGNUM,
97 MT_CPR15_REGNUM,
98 MT_BYPA_REGNUM, /* 32 bit regs. */
99 MT_BYPB_REGNUM,
100 MT_BYPC_REGNUM,
101 MT_FLAG_REGNUM,
102 MT_CONTEXT_REGNUM, /* 38 bits (treat as array of
103 six bytes). */
104 MT_MAC_REGNUM, /* 32 bits. */
105 MT_Z1_REGNUM, /* 16 bits. */
106 MT_Z2_REGNUM, /* 16 bits. */
107 MT_ICHANNEL_REGNUM, /* 32 bits. */
108 MT_ISCRAMB_REGNUM, /* 32 bits. */
109 MT_QSCRAMB_REGNUM, /* 32 bits. */
110 MT_OUT_REGNUM, /* 16 bits. */
111 MT_EXMAC_REGNUM, /* 32 bits (8 used). */
112 MT_QCHANNEL_REGNUM, /* 32 bits. */
113 MT_ZI2_REGNUM, /* 16 bits. */
114 MT_ZQ2_REGNUM, /* 16 bits. */
115 MT_CHANNEL2_REGNUM, /* 32 bits. */
116 MT_ISCRAMB2_REGNUM, /* 32 bits. */
117 MT_QSCRAMB2_REGNUM, /* 32 bits. */
118 MT_QCHANNEL2_REGNUM, /* 32 bits. */
119
120 /* Number of real registers. */
121 MT_NUM_REGS,
122
123 /* Pseudo-registers. */
124 MT_COPRO_PSEUDOREG_REGNUM = MT_NUM_REGS,
125 MT_MAC_PSEUDOREG_REGNUM,
126 MT_COPRO_PSEUDOREG_ARRAY,
127
128 MT_COPRO_PSEUDOREG_DIM_1 = 2,
129 MT_COPRO_PSEUDOREG_DIM_2 = 8,
130 /* The number of pseudo-registers for each coprocessor. These
131 include the real coprocessor registers, the pseudo-registe for
132 the coprocessor number, and the pseudo-register for the MAC. */
133 MT_COPRO_PSEUDOREG_REGS = MT_NUM_REGS - MT_NUM_CPU_REGS + 2,
134 /* The register number of the MAC, relative to a given coprocessor. */
135 MT_COPRO_PSEUDOREG_MAC_REGNUM = MT_COPRO_PSEUDOREG_REGS - 1,
136
137 /* Two pseudo-regs ('coprocessor' and 'mac'). */
138 MT_NUM_PSEUDO_REGS = 2 + (MT_COPRO_PSEUDOREG_REGS
139 * MT_COPRO_PSEUDOREG_DIM_1
140 * MT_COPRO_PSEUDOREG_DIM_2)
141 };
142
143 /* The tdep structure. */
144 struct gdbarch_tdep
145 {
146 /* ISA-specific types. */
147 struct type *copro_type;
148 };
149
150
151 /* Return name of register number specified by REGNUM. */
152
153 static const char *
154 mt_register_name (struct gdbarch *gdbarch, int regnum)
155 {
156 static const char *const register_names[] = {
157 /* CPU regs. */
158 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
159 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
160 "pc", "IE",
161 /* Co-processor regs. */
162 "", /* copro register. */
163 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
164 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
165 "bypa", "bypb", "bypc", "flag", "context", "" /* mac. */ , "z1", "z2",
166 "Ichannel", "Iscramb", "Qscramb", "out", "" /* ex-mac. */ , "Qchannel",
167 "zi2", "zq2", "Ichannel2", "Iscramb2", "Qscramb2", "Qchannel2",
168 /* Pseudo-registers. */
169 "coprocessor", "MAC"
170 };
171 static const char *array_names[MT_COPRO_PSEUDOREG_REGS
172 * MT_COPRO_PSEUDOREG_DIM_1
173 * MT_COPRO_PSEUDOREG_DIM_2];
174
175 if (regnum < 0)
176 return "";
177 if (regnum < ARRAY_SIZE (register_names))
178 return register_names[regnum];
179 if (array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY])
180 return array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY];
181
182 {
183 char *name;
184 const char *stub;
185 unsigned dim_1;
186 unsigned dim_2;
187 unsigned index;
188
189 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
190 index = regnum % MT_COPRO_PSEUDOREG_REGS;
191 dim_2 = (regnum / MT_COPRO_PSEUDOREG_REGS) % MT_COPRO_PSEUDOREG_DIM_2;
192 dim_1 = ((regnum / MT_COPRO_PSEUDOREG_REGS / MT_COPRO_PSEUDOREG_DIM_2)
193 % MT_COPRO_PSEUDOREG_DIM_1);
194
195 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
196 stub = register_names[MT_MAC_PSEUDOREG_REGNUM];
197 else if (index >= MT_NUM_REGS - MT_CPR0_REGNUM)
198 stub = "";
199 else
200 stub = register_names[index + MT_CPR0_REGNUM];
201 if (!*stub)
202 {
203 array_names[regnum] = stub;
204 return stub;
205 }
206 name = xmalloc (30);
207 sprintf (name, "copro_%d_%d_%s", dim_1, dim_2, stub);
208 array_names[regnum] = name;
209 return name;
210 }
211 }
212
213 /* Return the type of a coprocessor register. */
214
215 static struct type *
216 mt_copro_register_type (struct gdbarch *arch, int regnum)
217 {
218 switch (regnum)
219 {
220 case MT_INT_ENABLE_REGNUM:
221 case MT_ICHANNEL_REGNUM:
222 case MT_QCHANNEL_REGNUM:
223 case MT_ISCRAMB_REGNUM:
224 case MT_QSCRAMB_REGNUM:
225 return builtin_type (arch)->builtin_int32;
226 case MT_BYPA_REGNUM:
227 case MT_BYPB_REGNUM:
228 case MT_BYPC_REGNUM:
229 case MT_Z1_REGNUM:
230 case MT_Z2_REGNUM:
231 case MT_OUT_REGNUM:
232 case MT_ZI2_REGNUM:
233 case MT_ZQ2_REGNUM:
234 return builtin_type (arch)->builtin_int16;
235 case MT_EXMAC_REGNUM:
236 case MT_MAC_REGNUM:
237 return builtin_type (arch)->builtin_uint32;
238 case MT_CONTEXT_REGNUM:
239 return builtin_type (arch)->builtin_long_long;
240 case MT_FLAG_REGNUM:
241 return builtin_type (arch)->builtin_unsigned_char;
242 default:
243 if (regnum >= MT_CPR0_REGNUM && regnum <= MT_CPR15_REGNUM)
244 return builtin_type (arch)->builtin_int16;
245 else if (regnum == MT_CPR0_REGNUM + MT_COPRO_PSEUDOREG_MAC_REGNUM)
246 {
247 if (gdbarch_bfd_arch_info (arch)->mach == bfd_mach_mrisc2
248 || gdbarch_bfd_arch_info (arch)->mach == bfd_mach_ms2)
249 return builtin_type (arch)->builtin_uint64;
250 else
251 return builtin_type (arch)->builtin_uint32;
252 }
253 else
254 return builtin_type (arch)->builtin_uint32;
255 }
256 }
257
258 /* Given ARCH and a register number specified by REGNUM, return the
259 type of that register. */
260
261 static struct type *
262 mt_register_type (struct gdbarch *arch, int regnum)
263 {
264 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
265
266 if (regnum >= 0 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS)
267 {
268 switch (regnum)
269 {
270 case MT_PC_REGNUM:
271 case MT_RA_REGNUM:
272 case MT_IRA_REGNUM:
273 return builtin_type (arch)->builtin_func_ptr;
274 case MT_SP_REGNUM:
275 case MT_FP_REGNUM:
276 return builtin_type (arch)->builtin_data_ptr;
277 case MT_COPRO_REGNUM:
278 case MT_COPRO_PSEUDOREG_REGNUM:
279 if (tdep->copro_type == NULL)
280 {
281 struct type *elt = builtin_type (arch)->builtin_int16;
282 tdep->copro_type = lookup_array_range_type (elt, 0, 1);
283 }
284 return tdep->copro_type;
285 case MT_MAC_PSEUDOREG_REGNUM:
286 return mt_copro_register_type (arch,
287 MT_CPR0_REGNUM
288 + MT_COPRO_PSEUDOREG_MAC_REGNUM);
289 default:
290 if (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM)
291 return builtin_type (arch)->builtin_int32;
292 else if (regnum < MT_COPRO_PSEUDOREG_ARRAY)
293 return mt_copro_register_type (arch, regnum);
294 else
295 {
296 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
297 regnum %= MT_COPRO_PSEUDOREG_REGS;
298 regnum += MT_CPR0_REGNUM;
299 return mt_copro_register_type (arch, regnum);
300 }
301 }
302 }
303 internal_error (__FILE__, __LINE__,
304 _("mt_register_type: illegal register number %d"), regnum);
305 }
306
307 /* Return true if register REGNUM is a member of the register group
308 specified by GROUP. */
309
310 static int
311 mt_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
312 struct reggroup *group)
313 {
314 /* Groups of registers that can be displayed via "info reg". */
315 if (group == all_reggroup)
316 return (regnum >= 0
317 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS
318 && mt_register_name (gdbarch, regnum)[0] != '\0');
319
320 if (group == general_reggroup)
321 return (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM);
322
323 if (group == float_reggroup)
324 return 0; /* No float regs. */
325
326 if (group == vector_reggroup)
327 return 0; /* No vector regs. */
328
329 /* For any that are not handled above. */
330 return default_register_reggroup_p (gdbarch, regnum, group);
331 }
332
333 /* Return the return value convention used for a given type TYPE.
334 Optionally, fetch or set the return value via READBUF or
335 WRITEBUF respectively using REGCACHE for the register
336 values. */
337
338 static enum return_value_convention
339 mt_return_value (struct gdbarch *gdbarch, struct type *func_type,
340 struct type *type, struct regcache *regcache,
341 gdb_byte *readbuf, const gdb_byte *writebuf)
342 {
343 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
344
345 if (TYPE_LENGTH (type) > 4)
346 {
347 /* Return values > 4 bytes are returned in memory,
348 pointed to by R11. */
349 if (readbuf)
350 {
351 ULONGEST addr;
352
353 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
354 read_memory (addr, readbuf, TYPE_LENGTH (type));
355 }
356
357 if (writebuf)
358 {
359 ULONGEST addr;
360
361 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
362 write_memory (addr, writebuf, TYPE_LENGTH (type));
363 }
364
365 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
366 }
367 else
368 {
369 if (readbuf)
370 {
371 ULONGEST temp;
372
373 /* Return values of <= 4 bytes are returned in R11. */
374 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &temp);
375 store_unsigned_integer (readbuf, TYPE_LENGTH (type),
376 byte_order, temp);
377 }
378
379 if (writebuf)
380 {
381 if (TYPE_LENGTH (type) < 4)
382 {
383 gdb_byte buf[4];
384 /* Add leading zeros to the value. */
385 memset (buf, 0, sizeof (buf));
386 memcpy (buf + sizeof (buf) - TYPE_LENGTH (type),
387 writebuf, TYPE_LENGTH (type));
388 regcache_cooked_write (regcache, MT_R11_REGNUM, buf);
389 }
390 else /* (TYPE_LENGTH (type) == 4 */
391 regcache_cooked_write (regcache, MT_R11_REGNUM, writebuf);
392 }
393
394 return RETURN_VALUE_REGISTER_CONVENTION;
395 }
396 }
397
398 /* If the input address, PC, is in a function prologue, return the
399 address of the end of the prologue, otherwise return the input
400 address.
401
402 Note: PC is likely to be the function start, since this function
403 is mainly used for advancing a breakpoint to the first line, or
404 stepping to the first line when we have stepped into a function
405 call. */
406
407 static CORE_ADDR
408 mt_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
409 {
410 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
411 CORE_ADDR func_addr = 0, func_end = 0;
412 char *func_name;
413 unsigned long instr;
414
415 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
416 {
417 struct symtab_and_line sal;
418 struct symbol *sym;
419
420 /* Found a function. */
421 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL);
422 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
423 {
424 /* Don't use this trick for assembly source files. */
425 sal = find_pc_line (func_addr, 0);
426
427 if (sal.end && sal.end < func_end)
428 {
429 /* Found a line number, use it as end of prologue. */
430 return sal.end;
431 }
432 }
433 }
434
435 /* No function symbol, or no line symbol. Use prologue scanning method. */
436 for (;; pc += 4)
437 {
438 instr = read_memory_unsigned_integer (pc, 4, byte_order);
439 if (instr == 0x12000000) /* nop */
440 continue;
441 if (instr == 0x12ddc000) /* copy sp into fp */
442 continue;
443 instr >>= 16;
444 if (instr == 0x05dd) /* subi sp, sp, imm */
445 continue;
446 if (instr >= 0x43c0 && instr <= 0x43df) /* push */
447 continue;
448 /* Not an obvious prologue instruction. */
449 break;
450 }
451
452 return pc;
453 }
454
455 /* The breakpoint instruction must be the same size as the smallest
456 instruction in the instruction set.
457
458 The BP for ms1 is defined as 0x68000000 (BREAK).
459 The BP for ms2 is defined as 0x69000000 (illegal) */
460
461 static const gdb_byte *
462 mt_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
463 int *bp_size)
464 {
465 static gdb_byte ms1_breakpoint[] = { 0x68, 0, 0, 0 };
466 static gdb_byte ms2_breakpoint[] = { 0x69, 0, 0, 0 };
467
468 *bp_size = 4;
469 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
470 return ms2_breakpoint;
471
472 return ms1_breakpoint;
473 }
474
475 /* Select the correct coprocessor register bank. Return the pseudo
476 regnum we really want to read. */
477
478 static int
479 mt_select_coprocessor (struct gdbarch *gdbarch,
480 struct regcache *regcache, int regno)
481 {
482 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
483 unsigned index, base;
484 gdb_byte copro[4];
485
486 /* Get the copro pseudo regnum. */
487 regcache_raw_read (regcache, MT_COPRO_REGNUM, copro);
488 base = ((extract_signed_integer (&copro[0], 2, byte_order)
489 * MT_COPRO_PSEUDOREG_DIM_2)
490 + extract_signed_integer (&copro[2], 2, byte_order));
491
492 regno -= MT_COPRO_PSEUDOREG_ARRAY;
493 index = regno % MT_COPRO_PSEUDOREG_REGS;
494 regno /= MT_COPRO_PSEUDOREG_REGS;
495 if (base != regno)
496 {
497 /* Select the correct coprocessor register bank. Invalidate the
498 coprocessor register cache. */
499 unsigned ix;
500
501 store_signed_integer (&copro[0], 2, byte_order,
502 regno / MT_COPRO_PSEUDOREG_DIM_2);
503 store_signed_integer (&copro[2], 2, byte_order,
504 regno % MT_COPRO_PSEUDOREG_DIM_2);
505 regcache_raw_write (regcache, MT_COPRO_REGNUM, copro);
506
507 /* We must flush the cache, as it is now invalid. */
508 for (ix = MT_NUM_CPU_REGS; ix != MT_NUM_REGS; ix++)
509 regcache_invalidate (regcache, ix);
510 }
511
512 return index;
513 }
514
515 /* Fetch the pseudo registers:
516
517 There are two regular pseudo-registers:
518 1) The 'coprocessor' pseudo-register (which mirrors the
519 "real" coprocessor register sent by the target), and
520 2) The 'MAC' pseudo-register (which represents the union
521 of the original 32 bit target MAC register and the new
522 8-bit extended-MAC register).
523
524 Additionally there is an array of coprocessor registers which track
525 the coprocessor registers for each coprocessor. */
526
527 static void
528 mt_pseudo_register_read (struct gdbarch *gdbarch,
529 struct regcache *regcache, int regno, gdb_byte *buf)
530 {
531 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
532
533 switch (regno)
534 {
535 case MT_COPRO_REGNUM:
536 case MT_COPRO_PSEUDOREG_REGNUM:
537 regcache_raw_read (regcache, MT_COPRO_REGNUM, buf);
538 break;
539 case MT_MAC_REGNUM:
540 case MT_MAC_PSEUDOREG_REGNUM:
541 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
542 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
543 {
544 ULONGEST oldmac = 0, ext_mac = 0;
545 ULONGEST newmac;
546
547 regcache_cooked_read_unsigned (regcache, MT_MAC_REGNUM, &oldmac);
548 regcache_cooked_read_unsigned (regcache, MT_EXMAC_REGNUM, &ext_mac);
549 newmac =
550 (oldmac & 0xffffffff) | ((long long) (ext_mac & 0xff) << 32);
551 store_signed_integer (buf, 8, byte_order, newmac);
552 }
553 else
554 regcache_raw_read (regcache, MT_MAC_REGNUM, buf);
555 break;
556 default:
557 {
558 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
559
560 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
561 mt_pseudo_register_read (gdbarch, regcache,
562 MT_MAC_PSEUDOREG_REGNUM, buf);
563 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
564 regcache_raw_read (regcache, index + MT_CPR0_REGNUM, buf);
565 }
566 break;
567 }
568 }
569
570 /* Write the pseudo registers:
571
572 Mt pseudo-registers are stored directly to the target. The
573 'coprocessor' register is special, because when it is modified, all
574 the other coprocessor regs must be flushed from the reg cache. */
575
576 static void
577 mt_pseudo_register_write (struct gdbarch *gdbarch,
578 struct regcache *regcache,
579 int regno, const gdb_byte *buf)
580 {
581 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
582 int i;
583
584 switch (regno)
585 {
586 case MT_COPRO_REGNUM:
587 case MT_COPRO_PSEUDOREG_REGNUM:
588 regcache_raw_write (regcache, MT_COPRO_REGNUM, buf);
589 for (i = MT_NUM_CPU_REGS; i < MT_NUM_REGS; i++)
590 regcache_invalidate (regcache, i);
591 break;
592 case MT_MAC_REGNUM:
593 case MT_MAC_PSEUDOREG_REGNUM:
594 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
595 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
596 {
597 /* The 8-byte MAC pseudo-register must be broken down into two
598 32-byte registers. */
599 unsigned int oldmac, ext_mac;
600 ULONGEST newmac;
601
602 newmac = extract_unsigned_integer (buf, 8, byte_order);
603 oldmac = newmac & 0xffffffff;
604 ext_mac = (newmac >> 32) & 0xff;
605 regcache_cooked_write_unsigned (regcache, MT_MAC_REGNUM, oldmac);
606 regcache_cooked_write_unsigned (regcache, MT_EXMAC_REGNUM, ext_mac);
607 }
608 else
609 regcache_raw_write (regcache, MT_MAC_REGNUM, buf);
610 break;
611 default:
612 {
613 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
614
615 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
616 mt_pseudo_register_write (gdbarch, regcache,
617 MT_MAC_PSEUDOREG_REGNUM, buf);
618 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
619 regcache_raw_write (regcache, index + MT_CPR0_REGNUM, buf);
620 }
621 break;
622 }
623 }
624
625 static CORE_ADDR
626 mt_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
627 {
628 /* Register size is 4 bytes. */
629 return align_down (sp, 4);
630 }
631
632 /* Implements the "info registers" command. When ``all'' is non-zero,
633 the coprocessor registers will be printed in addition to the rest
634 of the registers. */
635
636 static void
637 mt_registers_info (struct gdbarch *gdbarch,
638 struct ui_file *file,
639 struct frame_info *frame, int regnum, int all)
640 {
641 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
642
643 if (regnum == -1)
644 {
645 int lim;
646
647 lim = all ? MT_NUM_REGS : MT_NUM_CPU_REGS;
648
649 for (regnum = 0; regnum < lim; regnum++)
650 {
651 /* Don't display the Qchannel register since it will be displayed
652 along with Ichannel. (See below.) */
653 if (regnum == MT_QCHANNEL_REGNUM)
654 continue;
655
656 mt_registers_info (gdbarch, file, frame, regnum, all);
657
658 /* Display the Qchannel register immediately after Ichannel. */
659 if (regnum == MT_ICHANNEL_REGNUM)
660 mt_registers_info (gdbarch, file, frame, MT_QCHANNEL_REGNUM, all);
661 }
662 }
663 else
664 {
665 if (regnum == MT_EXMAC_REGNUM)
666 return;
667 else if (regnum == MT_CONTEXT_REGNUM)
668 {
669 /* Special output handling for 38-bit context register. */
670 unsigned char *buff;
671 unsigned int *bytes, i, regsize;
672
673 regsize = register_size (gdbarch, regnum);
674
675 buff = alloca (regsize);
676 bytes = alloca (regsize * sizeof (*bytes));
677
678 frame_register_read (frame, regnum, buff);
679
680 fputs_filtered (gdbarch_register_name
681 (gdbarch, regnum), file);
682 print_spaces_filtered (15 - strlen (gdbarch_register_name
683 (gdbarch, regnum)),
684 file);
685 fputs_filtered ("0x", file);
686
687 for (i = 0; i < regsize; i++)
688 fprintf_filtered (file, "%02x", (unsigned int)
689 extract_unsigned_integer (buff + i, 1, byte_order));
690 fputs_filtered ("\t", file);
691 print_longest (file, 'd', 0,
692 extract_unsigned_integer (buff, regsize, byte_order));
693 fputs_filtered ("\n", file);
694 }
695 else if (regnum == MT_COPRO_REGNUM
696 || regnum == MT_COPRO_PSEUDOREG_REGNUM)
697 {
698 /* Special output handling for the 'coprocessor' register. */
699 gdb_byte *buf;
700 struct value_print_options opts;
701
702 buf = alloca (register_size (gdbarch, MT_COPRO_REGNUM));
703 frame_register_read (frame, MT_COPRO_REGNUM, buf);
704 /* And print. */
705 regnum = MT_COPRO_PSEUDOREG_REGNUM;
706 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
707 file);
708 print_spaces_filtered (15 - strlen (gdbarch_register_name
709 (gdbarch, regnum)),
710 file);
711 get_raw_print_options (&opts);
712 opts.deref_ref = 1;
713 val_print (register_type (gdbarch, regnum), buf,
714 0, 0, file, 0, NULL,
715 &opts, current_language);
716 fputs_filtered ("\n", file);
717 }
718 else if (regnum == MT_MAC_REGNUM || regnum == MT_MAC_PSEUDOREG_REGNUM)
719 {
720 ULONGEST oldmac, ext_mac, newmac;
721 gdb_byte buf[3 * sizeof (LONGEST)];
722
723 /* Get the two "real" mac registers. */
724 frame_register_read (frame, MT_MAC_REGNUM, buf);
725 oldmac = extract_unsigned_integer
726 (buf, register_size (gdbarch, MT_MAC_REGNUM), byte_order);
727 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
728 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
729 {
730 frame_register_read (frame, MT_EXMAC_REGNUM, buf);
731 ext_mac = extract_unsigned_integer
732 (buf, register_size (gdbarch, MT_EXMAC_REGNUM), byte_order);
733 }
734 else
735 ext_mac = 0;
736
737 /* Add them together. */
738 newmac = (oldmac & 0xffffffff) + ((ext_mac & 0xff) << 32);
739
740 /* And print. */
741 regnum = MT_MAC_PSEUDOREG_REGNUM;
742 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
743 file);
744 print_spaces_filtered (15 - strlen (gdbarch_register_name
745 (gdbarch, regnum)),
746 file);
747 fputs_filtered ("0x", file);
748 print_longest (file, 'x', 0, newmac);
749 fputs_filtered ("\t", file);
750 print_longest (file, 'u', 0, newmac);
751 fputs_filtered ("\n", file);
752 }
753 else
754 default_print_registers_info (gdbarch, file, frame, regnum, all);
755 }
756 }
757
758 /* Set up the callee's arguments for an inferior function call. The
759 arguments are pushed on the stack or are placed in registers as
760 appropriate. It also sets up the return address (which points to
761 the call dummy breakpoint).
762
763 Returns the updated (and aligned) stack pointer. */
764
765 static CORE_ADDR
766 mt_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
767 struct regcache *regcache, CORE_ADDR bp_addr,
768 int nargs, struct value **args, CORE_ADDR sp,
769 int struct_return, CORE_ADDR struct_addr)
770 {
771 #define wordsize 4
772 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
773 gdb_byte buf[MT_MAX_STRUCT_SIZE];
774 int argreg = MT_1ST_ARGREG;
775 int split_param_len = 0;
776 int stack_dest = sp;
777 int slacklen;
778 int typelen;
779 int i, j;
780
781 /* First handle however many args we can fit into MT_1ST_ARGREG thru
782 MT_LAST_ARGREG. */
783 for (i = 0; i < nargs && argreg <= MT_LAST_ARGREG; i++)
784 {
785 const gdb_byte *val;
786 typelen = TYPE_LENGTH (value_type (args[i]));
787 switch (typelen)
788 {
789 case 1:
790 case 2:
791 case 3:
792 case 4:
793 regcache_cooked_write_unsigned (regcache, argreg++,
794 extract_unsigned_integer
795 (value_contents (args[i]),
796 wordsize, byte_order));
797 break;
798 case 8:
799 case 12:
800 case 16:
801 val = value_contents (args[i]);
802 while (typelen > 0)
803 {
804 if (argreg <= MT_LAST_ARGREG)
805 {
806 /* This word of the argument is passed in a register. */
807 regcache_cooked_write_unsigned (regcache, argreg++,
808 extract_unsigned_integer
809 (val, wordsize, byte_order));
810 typelen -= wordsize;
811 val += wordsize;
812 }
813 else
814 {
815 /* Remainder of this arg must be passed on the stack
816 (deferred to do later). */
817 split_param_len = typelen;
818 memcpy (buf, val, typelen);
819 break; /* No more args can be handled in regs. */
820 }
821 }
822 break;
823 default:
824 /* By reverse engineering of gcc output, args bigger than
825 16 bytes go on the stack, and their address is passed
826 in the argreg. */
827 stack_dest -= typelen;
828 write_memory (stack_dest, value_contents (args[i]), typelen);
829 regcache_cooked_write_unsigned (regcache, argreg++, stack_dest);
830 break;
831 }
832 }
833
834 /* Next, the rest of the arguments go onto the stack, in reverse order. */
835 for (j = nargs - 1; j >= i; j--)
836 {
837 gdb_byte *val;
838
839 /* Right-justify the value in an aligned-length buffer. */
840 typelen = TYPE_LENGTH (value_type (args[j]));
841 slacklen = (wordsize - (typelen % wordsize)) % wordsize;
842 val = alloca (typelen + slacklen);
843 memcpy (val, value_contents (args[j]), typelen);
844 memset (val + typelen, 0, slacklen);
845 /* Now write this data to the stack. */
846 stack_dest -= typelen + slacklen;
847 write_memory (stack_dest, val, typelen + slacklen);
848 }
849
850 /* Finally, if a param needs to be split between registers and stack,
851 write the second half to the stack now. */
852 if (split_param_len != 0)
853 {
854 stack_dest -= split_param_len;
855 write_memory (stack_dest, buf, split_param_len);
856 }
857
858 /* Set up return address (provided to us as bp_addr). */
859 regcache_cooked_write_unsigned (regcache, MT_RA_REGNUM, bp_addr);
860
861 /* Store struct return address, if given. */
862 if (struct_return && struct_addr != 0)
863 regcache_cooked_write_unsigned (regcache, MT_R11_REGNUM, struct_addr);
864
865 /* Set aside 16 bytes for the callee to save regs 1-4. */
866 stack_dest -= 16;
867
868 /* Update the stack pointer. */
869 regcache_cooked_write_unsigned (regcache, MT_SP_REGNUM, stack_dest);
870
871 /* And that should do it. Return the new stack pointer. */
872 return stack_dest;
873 }
874
875
876 /* The 'unwind_cache' data structure. */
877
878 struct mt_unwind_cache
879 {
880 /* The previous frame's inner most stack address.
881 Used as this frame ID's stack_addr. */
882 CORE_ADDR prev_sp;
883 CORE_ADDR frame_base;
884 int framesize;
885 int frameless_p;
886
887 /* Table indicating the location of each and every register. */
888 struct trad_frame_saved_reg *saved_regs;
889 };
890
891 /* Initialize an unwind_cache. Build up the saved_regs table etc. for
892 the frame. */
893
894 static struct mt_unwind_cache *
895 mt_frame_unwind_cache (struct frame_info *this_frame,
896 void **this_prologue_cache)
897 {
898 struct gdbarch *gdbarch;
899 struct mt_unwind_cache *info;
900 CORE_ADDR next_addr, start_addr, end_addr, prologue_end_addr;
901 unsigned long instr, upper_half, delayed_store = 0;
902 int regnum, offset;
903 ULONGEST sp, fp;
904
905 if ((*this_prologue_cache))
906 return (*this_prologue_cache);
907
908 gdbarch = get_frame_arch (this_frame);
909 info = FRAME_OBSTACK_ZALLOC (struct mt_unwind_cache);
910 (*this_prologue_cache) = info;
911
912 info->prev_sp = 0;
913 info->framesize = 0;
914 info->frame_base = 0;
915 info->frameless_p = 1;
916 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
917
918 /* Grab the frame-relative values of SP and FP, needed below.
919 The frame_saved_register function will find them on the
920 stack or in the registers as appropriate. */
921 sp = get_frame_register_unsigned (this_frame, MT_SP_REGNUM);
922 fp = get_frame_register_unsigned (this_frame, MT_FP_REGNUM);
923
924 start_addr = get_frame_func (this_frame);
925
926 /* Return early if GDB couldn't find the function. */
927 if (start_addr == 0)
928 return info;
929
930 end_addr = get_frame_pc (this_frame);
931 prologue_end_addr = skip_prologue_using_sal (gdbarch, start_addr);
932 if (end_addr == 0)
933 for (next_addr = start_addr; next_addr < end_addr; next_addr += 4)
934 {
935 instr = get_frame_memory_unsigned (this_frame, next_addr, 4);
936 if (delayed_store) /* previous instr was a push */
937 {
938 upper_half = delayed_store >> 16;
939 regnum = upper_half & 0xf;
940 offset = delayed_store & 0xffff;
941 switch (upper_half & 0xfff0)
942 {
943 case 0x43c0: /* push using frame pointer */
944 info->saved_regs[regnum].addr = offset;
945 break;
946 case 0x43d0: /* push using stack pointer */
947 info->saved_regs[regnum].addr = offset;
948 break;
949 default: /* lint */
950 break;
951 }
952 delayed_store = 0;
953 }
954
955 switch (instr)
956 {
957 case 0x12000000: /* NO-OP */
958 continue;
959 case 0x12ddc000: /* copy sp into fp */
960 info->frameless_p = 0; /* Record that the frame pointer is in use. */
961 continue;
962 default:
963 upper_half = instr >> 16;
964 if (upper_half == 0x05dd || /* subi sp, sp, imm */
965 upper_half == 0x07dd) /* subui sp, sp, imm */
966 {
967 /* Record the frame size. */
968 info->framesize = instr & 0xffff;
969 continue;
970 }
971 if ((upper_half & 0xfff0) == 0x43c0 || /* frame push */
972 (upper_half & 0xfff0) == 0x43d0) /* stack push */
973 {
974 /* Save this instruction, but don't record the
975 pushed register as 'saved' until we see the
976 next instruction. That's because of deferred stores
977 on this target -- GDB won't be able to read the register
978 from the stack until one instruction later. */
979 delayed_store = instr;
980 continue;
981 }
982 /* Not a prologue instruction. Is this the end of the prologue?
983 This is the most difficult decision; when to stop scanning.
984
985 If we have no line symbol, then the best thing we can do
986 is to stop scanning when we encounter an instruction that
987 is not likely to be a part of the prologue.
988
989 But if we do have a line symbol, then we should
990 keep scanning until we reach it (or we reach end_addr). */
991
992 if (prologue_end_addr && (prologue_end_addr > (next_addr + 4)))
993 continue; /* Keep scanning, recording saved_regs etc. */
994 else
995 break; /* Quit scanning: breakpoint can be set here. */
996 }
997 }
998
999 /* Special handling for the "saved" address of the SP:
1000 The SP is of course never saved on the stack at all, so
1001 by convention what we put here is simply the previous
1002 _value_ of the SP (as opposed to an address where the
1003 previous value would have been pushed). This will also
1004 give us the frame base address. */
1005
1006 if (info->frameless_p)
1007 {
1008 info->frame_base = sp + info->framesize;
1009 info->prev_sp = sp + info->framesize;
1010 }
1011 else
1012 {
1013 info->frame_base = fp + info->framesize;
1014 info->prev_sp = fp + info->framesize;
1015 }
1016 /* Save prev_sp in saved_regs as a value, not as an address. */
1017 trad_frame_set_value (info->saved_regs, MT_SP_REGNUM, info->prev_sp);
1018
1019 /* Now convert frame offsets to actual addresses (not offsets). */
1020 for (regnum = 0; regnum < MT_NUM_REGS; regnum++)
1021 if (trad_frame_addr_p (info->saved_regs, regnum))
1022 info->saved_regs[regnum].addr += info->frame_base - info->framesize;
1023
1024 /* The call instruction moves the caller's PC in the callee's RA reg.
1025 Since this is an unwind, do the reverse. Copy the location of RA
1026 into PC (the address / regnum) so that a request for PC will be
1027 converted into a request for the RA. */
1028 info->saved_regs[MT_PC_REGNUM] = info->saved_regs[MT_RA_REGNUM];
1029
1030 return info;
1031 }
1032
1033 static CORE_ADDR
1034 mt_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1035 {
1036 ULONGEST pc;
1037
1038 pc = frame_unwind_register_unsigned (next_frame, MT_PC_REGNUM);
1039 return pc;
1040 }
1041
1042 static CORE_ADDR
1043 mt_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1044 {
1045 ULONGEST sp;
1046
1047 sp = frame_unwind_register_unsigned (next_frame, MT_SP_REGNUM);
1048 return sp;
1049 }
1050
1051 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1052 frame. The frame ID's base needs to match the TOS value saved by
1053 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1054
1055 static struct frame_id
1056 mt_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1057 {
1058 CORE_ADDR sp = get_frame_register_unsigned (this_frame, MT_SP_REGNUM);
1059 return frame_id_build (sp, get_frame_pc (this_frame));
1060 }
1061
1062 /* Given a GDB frame, determine the address of the calling function's
1063 frame. This will be used to create a new GDB frame struct. */
1064
1065 static void
1066 mt_frame_this_id (struct frame_info *this_frame,
1067 void **this_prologue_cache, struct frame_id *this_id)
1068 {
1069 struct mt_unwind_cache *info =
1070 mt_frame_unwind_cache (this_frame, this_prologue_cache);
1071
1072 if (!(info == NULL || info->prev_sp == 0))
1073 (*this_id) = frame_id_build (info->prev_sp, get_frame_func (this_frame));
1074
1075 return;
1076 }
1077
1078 static struct value *
1079 mt_frame_prev_register (struct frame_info *this_frame,
1080 void **this_prologue_cache, int regnum)
1081 {
1082 struct mt_unwind_cache *info =
1083 mt_frame_unwind_cache (this_frame, this_prologue_cache);
1084
1085 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1086 }
1087
1088 static CORE_ADDR
1089 mt_frame_base_address (struct frame_info *this_frame,
1090 void **this_prologue_cache)
1091 {
1092 struct mt_unwind_cache *info =
1093 mt_frame_unwind_cache (this_frame, this_prologue_cache);
1094
1095 return info->frame_base;
1096 }
1097
1098 /* This is a shared interface: the 'frame_unwind' object is what's
1099 returned by the 'sniffer' function, and in turn specifies how to
1100 get a frame's ID and prev_regs.
1101
1102 This exports the 'prev_register' and 'this_id' methods. */
1103
1104 static const struct frame_unwind mt_frame_unwind = {
1105 NORMAL_FRAME,
1106 mt_frame_this_id,
1107 mt_frame_prev_register,
1108 NULL,
1109 default_frame_sniffer
1110 };
1111
1112 /* Another shared interface: the 'frame_base' object specifies how to
1113 unwind a frame and secure the base addresses for frame objects
1114 (locals, args). */
1115
1116 static struct frame_base mt_frame_base = {
1117 &mt_frame_unwind,
1118 mt_frame_base_address,
1119 mt_frame_base_address,
1120 mt_frame_base_address
1121 };
1122
1123 static struct gdbarch *
1124 mt_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1125 {
1126 struct gdbarch *gdbarch;
1127 struct gdbarch_tdep *tdep;
1128
1129 /* Find a candidate among the list of pre-declared architectures. */
1130 arches = gdbarch_list_lookup_by_info (arches, &info);
1131 if (arches != NULL)
1132 return arches->gdbarch;
1133
1134 /* None found, create a new architecture from the information
1135 provided. */
1136 tdep = XCALLOC (1, struct gdbarch_tdep);
1137 gdbarch = gdbarch_alloc (&info, tdep);
1138
1139 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1140 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1141 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
1142
1143 set_gdbarch_register_name (gdbarch, mt_register_name);
1144 set_gdbarch_num_regs (gdbarch, MT_NUM_REGS);
1145 set_gdbarch_num_pseudo_regs (gdbarch, MT_NUM_PSEUDO_REGS);
1146 set_gdbarch_pc_regnum (gdbarch, MT_PC_REGNUM);
1147 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1148 set_gdbarch_pseudo_register_read (gdbarch, mt_pseudo_register_read);
1149 set_gdbarch_pseudo_register_write (gdbarch, mt_pseudo_register_write);
1150 set_gdbarch_skip_prologue (gdbarch, mt_skip_prologue);
1151 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1152 set_gdbarch_breakpoint_from_pc (gdbarch, mt_breakpoint_from_pc);
1153 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1154 set_gdbarch_frame_args_skip (gdbarch, 0);
1155 set_gdbarch_print_insn (gdbarch, print_insn_mt);
1156 set_gdbarch_register_type (gdbarch, mt_register_type);
1157 set_gdbarch_register_reggroup_p (gdbarch, mt_register_reggroup_p);
1158
1159 set_gdbarch_return_value (gdbarch, mt_return_value);
1160 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1161
1162 set_gdbarch_frame_align (gdbarch, mt_frame_align);
1163
1164 set_gdbarch_print_registers_info (gdbarch, mt_registers_info);
1165
1166 set_gdbarch_push_dummy_call (gdbarch, mt_push_dummy_call);
1167
1168 /* Target builtin data types. */
1169 set_gdbarch_short_bit (gdbarch, 16);
1170 set_gdbarch_int_bit (gdbarch, 32);
1171 set_gdbarch_long_bit (gdbarch, 32);
1172 set_gdbarch_long_long_bit (gdbarch, 64);
1173 set_gdbarch_float_bit (gdbarch, 32);
1174 set_gdbarch_double_bit (gdbarch, 64);
1175 set_gdbarch_long_double_bit (gdbarch, 64);
1176 set_gdbarch_ptr_bit (gdbarch, 32);
1177
1178 /* Register the DWARF 2 sniffer first, and then the traditional prologue
1179 based sniffer. */
1180 dwarf2_append_unwinders (gdbarch);
1181 frame_unwind_append_unwinder (gdbarch, &mt_frame_unwind);
1182 frame_base_set_default (gdbarch, &mt_frame_base);
1183
1184 /* Register the 'unwind_pc' method. */
1185 set_gdbarch_unwind_pc (gdbarch, mt_unwind_pc);
1186 set_gdbarch_unwind_sp (gdbarch, mt_unwind_sp);
1187
1188 /* Methods for saving / extracting a dummy frame's ID.
1189 The ID's stack address must match the SP value returned by
1190 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1191 set_gdbarch_dummy_id (gdbarch, mt_dummy_id);
1192
1193 return gdbarch;
1194 }
1195
1196 /* Provide a prototype to silence -Wmissing-prototypes. */
1197 extern initialize_file_ftype _initialize_mt_tdep;
1198
1199 void
1200 _initialize_mt_tdep (void)
1201 {
1202 register_gdbarch_init (bfd_arch_mt, mt_gdbarch_init);
1203 }