gdb: move struct reggroup into reggroups.h header
[binutils-gdb.git] / gdb / nds32-tdep.c
1 /* Target-dependent code for the NDS32 architecture, for GDB.
2
3 Copyright (C) 2013-2022 Free Software Foundation, Inc.
4 Contributed by Andes Technology Corporation.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "frame-unwind.h"
24 #include "frame-base.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "reggroups.h"
30 #include "inferior.h"
31 #include "osabi.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "dis-asm.h"
35 #include "user-regs.h"
36 #include "elf-bfd.h"
37 #include "dwarf2/frame.h"
38 #include "remote.h"
39 #include "target-descriptions.h"
40
41 #include "nds32-tdep.h"
42 #include "elf/nds32.h"
43 #include "opcode/nds32.h"
44 #include <algorithm>
45
46 #include "features/nds32.c"
47
48 /* Simple macros for instruction analysis. */
49 #define CHOP_BITS(insn, n) (insn & ~__MASK (n))
50 #define N32_LSMW_ENABLE4(insn) (((insn) >> 6) & 0xf)
51 #define N32_SMW_ADM \
52 N32_TYPE4 (LSMW, 0, 0, 0, 1, (N32_LSMW_ADM << 2) | N32_LSMW_LSMW)
53 #define N32_LMW_BIM \
54 N32_TYPE4 (LSMW, 0, 0, 0, 0, (N32_LSMW_BIM << 2) | N32_LSMW_LSMW)
55 #define N32_FLDI_SP \
56 N32_TYPE2 (LDC, 0, REG_SP, 0)
57
58 /* Use an invalid address value as 'not available' marker. */
59 enum { REG_UNAVAIL = (CORE_ADDR) -1 };
60
61 /* Use an impossible value as invalid offset. */
62 enum { INVALID_OFFSET = (CORE_ADDR) -1 };
63
64 /* Instruction groups for NDS32 epilogue analysis. */
65 enum
66 {
67 /* Instructions used everywhere, not only in epilogue. */
68 INSN_NORMAL,
69 /* Instructions used to reset sp for local vars, arguments, etc. */
70 INSN_RESET_SP,
71 /* Instructions used to recover saved regs and to recover padding. */
72 INSN_RECOVER,
73 /* Instructions used to return to the caller. */
74 INSN_RETURN,
75 /* Instructions used to recover saved regs and to return to the caller. */
76 INSN_RECOVER_RETURN,
77 };
78
79 static const char *const nds32_register_names[] =
80 {
81 /* 32 GPRs. */
82 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
83 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
84 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
85 "r24", "r25", "r26", "r27", "fp", "gp", "lp", "sp",
86 /* PC. */
87 "pc",
88 };
89
90 static const char *const nds32_fdr_register_names[] =
91 {
92 "fd0", "fd1", "fd2", "fd3", "fd4", "fd5", "fd6", "fd7",
93 "fd8", "fd9", "fd10", "fd11", "fd12", "fd13", "fd14", "fd15",
94 "fd16", "fd17", "fd18", "fd19", "fd20", "fd21", "fd22", "fd23",
95 "fd24", "fd25", "fd26", "fd27", "fd28", "fd29", "fd30", "fd31"
96 };
97
98 static const char *const nds32_fsr_register_names[] =
99 {
100 "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7",
101 "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15",
102 "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23",
103 "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31"
104 };
105
106 /* The number of registers for four FPU configuration options. */
107 const int num_fdr_map[] = { 4, 8, 16, 32 };
108 const int num_fsr_map[] = { 8, 16, 32, 32 };
109
110 /* Aliases for registers. */
111 static const struct
112 {
113 const char *name;
114 const char *alias;
115 } nds32_register_aliases[] =
116 {
117 {"r15", "ta"},
118 {"r26", "p0"},
119 {"r27", "p1"},
120 {"fp", "r28"},
121 {"gp", "r29"},
122 {"lp", "r30"},
123 {"sp", "r31"},
124
125 {"cr0", "cpu_ver"},
126 {"cr1", "icm_cfg"},
127 {"cr2", "dcm_cfg"},
128 {"cr3", "mmu_cfg"},
129 {"cr4", "msc_cfg"},
130 {"cr5", "core_id"},
131 {"cr6", "fucop_exist"},
132 {"cr7", "msc_cfg2"},
133
134 {"ir0", "psw"},
135 {"ir1", "ipsw"},
136 {"ir2", "p_psw"},
137 {"ir3", "ivb"},
138 {"ir4", "eva"},
139 {"ir5", "p_eva"},
140 {"ir6", "itype"},
141 {"ir7", "p_itype"},
142 {"ir8", "merr"},
143 {"ir9", "ipc"},
144 {"ir10", "p_ipc"},
145 {"ir11", "oipc"},
146 {"ir12", "p_p0"},
147 {"ir13", "p_p1"},
148 {"ir14", "int_mask"},
149 {"ir15", "int_pend"},
150 {"ir16", "sp_usr"},
151 {"ir17", "sp_priv"},
152 {"ir18", "int_pri"},
153 {"ir19", "int_ctrl"},
154 {"ir20", "sp_usr1"},
155 {"ir21", "sp_priv1"},
156 {"ir22", "sp_usr2"},
157 {"ir23", "sp_priv2"},
158 {"ir24", "sp_usr3"},
159 {"ir25", "sp_priv3"},
160 {"ir26", "int_mask2"},
161 {"ir27", "int_pend2"},
162 {"ir28", "int_pri2"},
163 {"ir29", "int_trigger"},
164
165 {"mr0", "mmu_ctl"},
166 {"mr1", "l1_pptb"},
167 {"mr2", "tlb_vpn"},
168 {"mr3", "tlb_data"},
169 {"mr4", "tlb_misc"},
170 {"mr5", "vlpt_idx"},
171 {"mr6", "ilmb"},
172 {"mr7", "dlmb"},
173 {"mr8", "cache_ctl"},
174 {"mr9", "hsmp_saddr"},
175 {"mr10", "hsmp_eaddr"},
176 {"mr11", "bg_region"},
177
178 {"dr0", "bpc0"},
179 {"dr1", "bpc1"},
180 {"dr2", "bpc2"},
181 {"dr3", "bpc3"},
182 {"dr4", "bpc4"},
183 {"dr5", "bpc5"},
184 {"dr6", "bpc6"},
185 {"dr7", "bpc7"},
186 {"dr8", "bpa0"},
187 {"dr9", "bpa1"},
188 {"dr10", "bpa2"},
189 {"dr11", "bpa3"},
190 {"dr12", "bpa4"},
191 {"dr13", "bpa5"},
192 {"dr14", "bpa6"},
193 {"dr15", "bpa7"},
194 {"dr16", "bpam0"},
195 {"dr17", "bpam1"},
196 {"dr18", "bpam2"},
197 {"dr19", "bpam3"},
198 {"dr20", "bpam4"},
199 {"dr21", "bpam5"},
200 {"dr22", "bpam6"},
201 {"dr23", "bpam7"},
202 {"dr24", "bpv0"},
203 {"dr25", "bpv1"},
204 {"dr26", "bpv2"},
205 {"dr27", "bpv3"},
206 {"dr28", "bpv4"},
207 {"dr29", "bpv5"},
208 {"dr30", "bpv6"},
209 {"dr31", "bpv7"},
210 {"dr32", "bpcid0"},
211 {"dr33", "bpcid1"},
212 {"dr34", "bpcid2"},
213 {"dr35", "bpcid3"},
214 {"dr36", "bpcid4"},
215 {"dr37", "bpcid5"},
216 {"dr38", "bpcid6"},
217 {"dr39", "bpcid7"},
218 {"dr40", "edm_cfg"},
219 {"dr41", "edmsw"},
220 {"dr42", "edm_ctl"},
221 {"dr43", "edm_dtr"},
222 {"dr44", "bpmtc"},
223 {"dr45", "dimbr"},
224 {"dr46", "tecr0"},
225 {"dr47", "tecr1"},
226
227 {"hspr0", "hsp_ctl"},
228 {"hspr1", "sp_bound"},
229 {"hspr2", "sp_bound_priv"},
230
231 {"pfr0", "pfmc0"},
232 {"pfr1", "pfmc1"},
233 {"pfr2", "pfmc2"},
234 {"pfr3", "pfm_ctl"},
235 {"pfr4", "pft_ctl"},
236
237 {"dmar0", "dma_cfg"},
238 {"dmar1", "dma_gcsw"},
239 {"dmar2", "dma_chnsel"},
240 {"dmar3", "dma_act"},
241 {"dmar4", "dma_setup"},
242 {"dmar5", "dma_isaddr"},
243 {"dmar6", "dma_esaddr"},
244 {"dmar7", "dma_tcnt"},
245 {"dmar8", "dma_status"},
246 {"dmar9", "dma_2dset"},
247 {"dmar10", "dma_2dsctl"},
248 {"dmar11", "dma_rcnt"},
249 {"dmar12", "dma_hstatus"},
250
251 {"racr0", "prusr_acc_ctl"},
252 {"fucpr", "fucop_ctl"},
253
254 {"idr0", "sdz_ctl"},
255 {"idr1", "misc_ctl"},
256 {"idr2", "ecc_misc"},
257
258 {"secur0", "sfcr"},
259 {"secur1", "sign"},
260 {"secur2", "isign"},
261 {"secur3", "p_isign"},
262 };
263
264 /* Value of a register alias. BATON is the regnum of the corresponding
265 register. */
266
267 static struct value *
268 value_of_nds32_reg (struct frame_info *frame, const void *baton)
269 {
270 return value_of_register ((int) (intptr_t) baton, frame);
271 }
272 \f
273 /* Implement the "frame_align" gdbarch method. */
274
275 static CORE_ADDR
276 nds32_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
277 {
278 /* 8-byte aligned. */
279 return align_down (sp, 8);
280 }
281
282 /* The same insn machine code is used for little-endian and big-endian. */
283 constexpr gdb_byte nds32_break_insn[] = { 0xEA, 0x00 };
284
285 typedef BP_MANIPULATION (nds32_break_insn) nds32_breakpoint;
286
287 /* Implement the "dwarf2_reg_to_regnum" gdbarch method. */
288
289 static int
290 nds32_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
291 {
292 nds32_gdbarch_tdep *tdep = (nds32_gdbarch_tdep *) gdbarch_tdep (gdbarch);
293 const int FSR = 38;
294 const int FDR = FSR + 32;
295
296 if (num >= 0 && num < 32)
297 {
298 /* General-purpose registers (R0 - R31). */
299 return num;
300 }
301 else if (num >= FSR && num < FSR + 32)
302 {
303 /* Single precision floating-point registers (FS0 - FS31). */
304 return num - FSR + tdep->fs0_regnum;
305 }
306 else if (num >= FDR && num < FDR + 32)
307 {
308 /* Double precision floating-point registers (FD0 - FD31). */
309 return num - FDR + NDS32_FD0_REGNUM;
310 }
311
312 /* No match, return a inaccessible register number. */
313 return -1;
314 }
315 \f
316 /* NDS32 register groups. */
317 static const reggroup *nds32_cr_reggroup;
318 static const reggroup *nds32_ir_reggroup;
319 static const reggroup *nds32_mr_reggroup;
320 static const reggroup *nds32_dr_reggroup;
321 static const reggroup *nds32_pfr_reggroup;
322 static const reggroup *nds32_hspr_reggroup;
323 static const reggroup *nds32_dmar_reggroup;
324 static const reggroup *nds32_racr_reggroup;
325 static const reggroup *nds32_idr_reggroup;
326 static const reggroup *nds32_secur_reggroup;
327
328 static void
329 nds32_init_reggroups (void)
330 {
331 nds32_cr_reggroup = reggroup_new ("cr", USER_REGGROUP);
332 nds32_ir_reggroup = reggroup_new ("ir", USER_REGGROUP);
333 nds32_mr_reggroup = reggroup_new ("mr", USER_REGGROUP);
334 nds32_dr_reggroup = reggroup_new ("dr", USER_REGGROUP);
335 nds32_pfr_reggroup = reggroup_new ("pfr", USER_REGGROUP);
336 nds32_hspr_reggroup = reggroup_new ("hspr", USER_REGGROUP);
337 nds32_dmar_reggroup = reggroup_new ("dmar", USER_REGGROUP);
338 nds32_racr_reggroup = reggroup_new ("racr", USER_REGGROUP);
339 nds32_idr_reggroup = reggroup_new ("idr", USER_REGGROUP);
340 nds32_secur_reggroup = reggroup_new ("secur", USER_REGGROUP);
341 }
342
343 static void
344 nds32_add_reggroups (struct gdbarch *gdbarch)
345 {
346 /* Add NDS32 register groups. */
347 reggroup_add (gdbarch, nds32_cr_reggroup);
348 reggroup_add (gdbarch, nds32_ir_reggroup);
349 reggroup_add (gdbarch, nds32_mr_reggroup);
350 reggroup_add (gdbarch, nds32_dr_reggroup);
351 reggroup_add (gdbarch, nds32_pfr_reggroup);
352 reggroup_add (gdbarch, nds32_hspr_reggroup);
353 reggroup_add (gdbarch, nds32_dmar_reggroup);
354 reggroup_add (gdbarch, nds32_racr_reggroup);
355 reggroup_add (gdbarch, nds32_idr_reggroup);
356 reggroup_add (gdbarch, nds32_secur_reggroup);
357 }
358
359 /* Implement the "register_reggroup_p" gdbarch method. */
360
361 static int
362 nds32_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
363 const struct reggroup *reggroup)
364 {
365 const char *reg_name;
366 const char *group_name;
367 int ret;
368
369 if (reggroup == all_reggroup)
370 return 1;
371
372 /* General reggroup contains only GPRs and PC. */
373 if (reggroup == general_reggroup)
374 return regnum <= NDS32_PC_REGNUM;
375
376 if (reggroup == float_reggroup || reggroup == save_reggroup
377 || reggroup == restore_reggroup)
378 {
379 ret = tdesc_register_in_reggroup_p (gdbarch, regnum, reggroup);
380 if (ret != -1)
381 return ret;
382
383 return default_register_reggroup_p (gdbarch, regnum, reggroup);
384 }
385
386 if (reggroup == system_reggroup)
387 return (regnum > NDS32_PC_REGNUM)
388 && !nds32_register_reggroup_p (gdbarch, regnum, float_reggroup);
389
390 /* The NDS32 reggroup contains registers whose name is prefixed
391 by reggroup name. */
392 reg_name = gdbarch_register_name (gdbarch, regnum);
393 group_name = reggroup->name ();
394 return !strncmp (reg_name, group_name, strlen (group_name));
395 }
396 \f
397 /* Implement the "pseudo_register_type" tdesc_arch_data method. */
398
399 static struct type *
400 nds32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
401 {
402 regnum -= gdbarch_num_regs (gdbarch);
403
404 /* Currently, only FSRs could be defined as pseudo registers. */
405 if (regnum < gdbarch_num_pseudo_regs (gdbarch))
406 return arch_float_type (gdbarch, -1, "builtin_type_ieee_single",
407 floatformats_ieee_single);
408
409 warning (_("Unknown nds32 pseudo register %d."), regnum);
410 return NULL;
411 }
412
413 /* Implement the "pseudo_register_name" tdesc_arch_data method. */
414
415 static const char *
416 nds32_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
417 {
418 regnum -= gdbarch_num_regs (gdbarch);
419
420 /* Currently, only FSRs could be defined as pseudo registers. */
421 if (regnum < gdbarch_num_pseudo_regs (gdbarch))
422 return nds32_fsr_register_names[regnum];
423
424 warning (_("Unknown nds32 pseudo register %d."), regnum);
425 return NULL;
426 }
427
428 /* Implement the "pseudo_register_read" gdbarch method. */
429
430 static enum register_status
431 nds32_pseudo_register_read (struct gdbarch *gdbarch,
432 readable_regcache *regcache, int regnum,
433 gdb_byte *buf)
434 {
435 nds32_gdbarch_tdep *tdep = (nds32_gdbarch_tdep *) gdbarch_tdep (gdbarch);
436 gdb_byte reg_buf[8];
437 int offset, fdr_regnum;
438 enum register_status status;
439
440 /* This function is registered in nds32_gdbarch_init only after these are
441 set. */
442 gdb_assert (tdep->fpu_freg != -1);
443 gdb_assert (tdep->use_pseudo_fsrs != 0);
444
445 regnum -= gdbarch_num_regs (gdbarch);
446
447 /* Currently, only FSRs could be defined as pseudo registers. */
448 if (regnum < gdbarch_num_pseudo_regs (gdbarch))
449 {
450 /* fs0 is always the most significant half of fd0. */
451 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
452 offset = (regnum & 1) ? 4 : 0;
453 else
454 offset = (regnum & 1) ? 0 : 4;
455
456 fdr_regnum = NDS32_FD0_REGNUM + (regnum >> 1);
457 status = regcache->raw_read (fdr_regnum, reg_buf);
458 if (status == REG_VALID)
459 memcpy (buf, reg_buf + offset, 4);
460
461 return status;
462 }
463
464 gdb_assert_not_reached ("invalid pseudo register number");
465 }
466
467 /* Implement the "pseudo_register_write" gdbarch method. */
468
469 static void
470 nds32_pseudo_register_write (struct gdbarch *gdbarch,
471 struct regcache *regcache, int regnum,
472 const gdb_byte *buf)
473 {
474 nds32_gdbarch_tdep *tdep = (nds32_gdbarch_tdep *) gdbarch_tdep (gdbarch);
475 gdb_byte reg_buf[8];
476 int offset, fdr_regnum;
477
478 /* This function is registered in nds32_gdbarch_init only after these are
479 set. */
480 gdb_assert (tdep->fpu_freg != -1);
481 gdb_assert (tdep->use_pseudo_fsrs != 0);
482
483 regnum -= gdbarch_num_regs (gdbarch);
484
485 /* Currently, only FSRs could be defined as pseudo registers. */
486 if (regnum < gdbarch_num_pseudo_regs (gdbarch))
487 {
488 /* fs0 is always the most significant half of fd0. */
489 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
490 offset = (regnum & 1) ? 4 : 0;
491 else
492 offset = (regnum & 1) ? 0 : 4;
493
494 fdr_regnum = NDS32_FD0_REGNUM + (regnum >> 1);
495 regcache->raw_read (fdr_regnum, reg_buf);
496 memcpy (reg_buf + offset, buf, 4);
497 regcache->raw_write (fdr_regnum, reg_buf);
498 return;
499 }
500
501 gdb_assert_not_reached ("invalid pseudo register number");
502 }
503 \f
504 /* Helper function for NDS32 ABI. Return true if FPRs can be used
505 to pass function arguments and return value. */
506
507 static int
508 nds32_abi_use_fpr (int elf_abi)
509 {
510 return elf_abi == E_NDS_ABI_V2FP_PLUS;
511 }
512
513 /* Helper function for NDS32 ABI. Return true if GPRs and stack
514 can be used together to pass an argument. */
515
516 static int
517 nds32_abi_split (int elf_abi)
518 {
519 return elf_abi == E_NDS_ABI_AABI;
520 }
521
522 #define NDS32_NUM_SAVED_REGS (NDS32_LP_REGNUM + 1)
523
524 struct nds32_frame_cache
525 {
526 /* The previous frame's inner most stack address. Used as this
527 frame ID's stack_addr. */
528 CORE_ADDR prev_sp;
529
530 /* The frame's base, optionally used by the high-level debug info. */
531 CORE_ADDR base;
532
533 /* During prologue analysis, keep how far the SP and FP have been offset
534 from the start of the stack frame (as defined by the previous frame's
535 stack pointer).
536 During epilogue analysis, keep how far the SP has been offset from the
537 current stack pointer. */
538 CORE_ADDR sp_offset;
539 CORE_ADDR fp_offset;
540
541 /* The address of the first instruction in this function. */
542 CORE_ADDR pc;
543
544 /* Saved registers. */
545 CORE_ADDR saved_regs[NDS32_NUM_SAVED_REGS];
546 };
547
548 /* Allocate and initialize a frame cache. */
549
550 static struct nds32_frame_cache *
551 nds32_alloc_frame_cache (void)
552 {
553 struct nds32_frame_cache *cache;
554 int i;
555
556 cache = FRAME_OBSTACK_ZALLOC (struct nds32_frame_cache);
557
558 /* Initialize fp_offset to check if FP is set in prologue. */
559 cache->fp_offset = INVALID_OFFSET;
560
561 /* Saved registers. We initialize these to -1 since zero is a valid
562 offset. */
563 for (i = 0; i < NDS32_NUM_SAVED_REGS; i++)
564 cache->saved_regs[i] = REG_UNAVAIL;
565
566 return cache;
567 }
568
569 /* Helper function for instructions used to push multiple words. */
570
571 static void
572 nds32_push_multiple_words (struct nds32_frame_cache *cache, int rb, int re,
573 int enable4)
574 {
575 CORE_ADDR sp_offset = cache->sp_offset;
576 int i;
577
578 /* Check LP, GP, FP in enable4. */
579 for (i = 1; i <= 3; i++)
580 {
581 if ((enable4 >> i) & 0x1)
582 {
583 sp_offset += 4;
584 cache->saved_regs[NDS32_SP_REGNUM - i] = sp_offset;
585 }
586 }
587
588 /* Skip case where re == rb == sp. */
589 if ((rb < REG_FP) && (re < REG_FP))
590 {
591 for (i = re; i >= rb; i--)
592 {
593 sp_offset += 4;
594 cache->saved_regs[i] = sp_offset;
595 }
596 }
597
598 /* For sp, update the offset. */
599 cache->sp_offset = sp_offset;
600 }
601
602 /* Analyze the instructions within the given address range. If CACHE
603 is non-NULL, fill it in. Return the first address beyond the given
604 address range. If CACHE is NULL, return the first address not
605 recognized as a prologue instruction. */
606
607 static CORE_ADDR
608 nds32_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
609 CORE_ADDR limit_pc, struct nds32_frame_cache *cache)
610 {
611 nds32_gdbarch_tdep *tdep = (nds32_gdbarch_tdep *) gdbarch_tdep (gdbarch);
612 int abi_use_fpr = nds32_abi_use_fpr (tdep->elf_abi);
613 /* Current scanning status. */
614 int in_prologue_bb = 0;
615 int val_ta = 0;
616 uint32_t insn, insn_len;
617
618 for (; pc < limit_pc; pc += insn_len)
619 {
620 insn = read_memory_unsigned_integer (pc, 4, BFD_ENDIAN_BIG);
621
622 if ((insn & 0x80000000) == 0)
623 {
624 /* 32-bit instruction */
625 insn_len = 4;
626
627 if (CHOP_BITS (insn, 15) == N32_TYPE2 (ADDI, REG_SP, REG_SP, 0))
628 {
629 /* addi $sp, $sp, imm15s */
630 int imm15s = N32_IMM15S (insn);
631
632 if (imm15s < 0)
633 {
634 if (cache != NULL)
635 cache->sp_offset += -imm15s;
636
637 in_prologue_bb = 1;
638 continue;
639 }
640 }
641 else if (CHOP_BITS (insn, 15) == N32_TYPE2 (ADDI, REG_FP, REG_SP, 0))
642 {
643 /* addi $fp, $sp, imm15s */
644 int imm15s = N32_IMM15S (insn);
645
646 if (imm15s > 0)
647 {
648 if (cache != NULL)
649 cache->fp_offset = cache->sp_offset - imm15s;
650
651 in_prologue_bb = 1;
652 continue;
653 }
654 }
655 else if ((insn & ~(__MASK (19) << 6)) == N32_SMW_ADM
656 && N32_RA5 (insn) == REG_SP)
657 {
658 /* smw.adm Rb, [$sp], Re, enable4 */
659 if (cache != NULL)
660 nds32_push_multiple_words (cache, N32_RT5 (insn),
661 N32_RB5 (insn),
662 N32_LSMW_ENABLE4 (insn));
663 in_prologue_bb = 1;
664 continue;
665 }
666 else if (insn == N32_ALU1 (ADD, REG_SP, REG_SP, REG_TA)
667 || insn == N32_ALU1 (ADD, REG_SP, REG_TA, REG_SP))
668 {
669 /* add $sp, $sp, $ta */
670 /* add $sp, $ta, $sp */
671 if (val_ta < 0)
672 {
673 if (cache != NULL)
674 cache->sp_offset += -val_ta;
675
676 in_prologue_bb = 1;
677 continue;
678 }
679 }
680 else if (CHOP_BITS (insn, 20) == N32_TYPE1 (MOVI, REG_TA, 0))
681 {
682 /* movi $ta, imm20s */
683 if (cache != NULL)
684 val_ta = N32_IMM20S (insn);
685
686 continue;
687 }
688 else if (CHOP_BITS (insn, 20) == N32_TYPE1 (SETHI, REG_TA, 0))
689 {
690 /* sethi $ta, imm20u */
691 if (cache != NULL)
692 val_ta = N32_IMM20U (insn) << 12;
693
694 continue;
695 }
696 else if (CHOP_BITS (insn, 15) == N32_TYPE2 (ORI, REG_TA, REG_TA, 0))
697 {
698 /* ori $ta, $ta, imm15u */
699 if (cache != NULL)
700 val_ta |= N32_IMM15U (insn);
701
702 continue;
703 }
704 else if (CHOP_BITS (insn, 15) == N32_TYPE2 (ADDI, REG_TA, REG_TA, 0))
705 {
706 /* addi $ta, $ta, imm15s */
707 if (cache != NULL)
708 val_ta += N32_IMM15S (insn);
709
710 continue;
711 }
712 if (insn == N32_ALU1 (ADD, REG_GP, REG_TA, REG_GP)
713 || insn == N32_ALU1 (ADD, REG_GP, REG_GP, REG_TA))
714 {
715 /* add $gp, $ta, $gp */
716 /* add $gp, $gp, $ta */
717 in_prologue_bb = 1;
718 continue;
719 }
720 else if (CHOP_BITS (insn, 20) == N32_TYPE1 (MOVI, REG_GP, 0))
721 {
722 /* movi $gp, imm20s */
723 in_prologue_bb = 1;
724 continue;
725 }
726 else if (CHOP_BITS (insn, 20) == N32_TYPE1 (SETHI, REG_GP, 0))
727 {
728 /* sethi $gp, imm20u */
729 in_prologue_bb = 1;
730 continue;
731 }
732 else if (CHOP_BITS (insn, 15) == N32_TYPE2 (ORI, REG_GP, REG_GP, 0))
733 {
734 /* ori $gp, $gp, imm15u */
735 in_prologue_bb = 1;
736 continue;
737 }
738 else
739 {
740 /* Jump/Branch insns never appear in prologue basic block.
741 The loop can be escaped early when these insns are met. */
742 if (in_prologue_bb == 1)
743 {
744 int op = N32_OP6 (insn);
745
746 if (op == N32_OP6_JI
747 || op == N32_OP6_JREG
748 || op == N32_OP6_BR1
749 || op == N32_OP6_BR2
750 || op == N32_OP6_BR3)
751 break;
752 }
753 }
754
755 if (abi_use_fpr && N32_OP6 (insn) == N32_OP6_SDC
756 && __GF (insn, 12, 3) == 0)
757 {
758 /* For FPU insns, CP (bit [13:14]) should be CP0, and only
759 normal form (bit [12] == 0) is used. */
760
761 /* fsdi FDt, [$sp + (imm12s << 2)] */
762 if (N32_RA5 (insn) == REG_SP)
763 continue;
764 }
765
766 /* The optimizer might shove anything into the prologue, if
767 we build up cache (cache != NULL) from analyzing prologue,
768 we just skip what we don't recognize and analyze further to
769 make cache as complete as possible. However, if we skip
770 prologue, we'll stop immediately on unrecognized
771 instruction. */
772 if (cache == NULL)
773 break;
774 }
775 else
776 {
777 /* 16-bit instruction */
778 insn_len = 2;
779
780 insn >>= 16;
781
782 if (CHOP_BITS (insn, 10) == N16_TYPE10 (ADDI10S, 0))
783 {
784 /* addi10s.sp */
785 int imm10s = N16_IMM10S (insn);
786
787 if (imm10s < 0)
788 {
789 if (cache != NULL)
790 cache->sp_offset += -imm10s;
791
792 in_prologue_bb = 1;
793 continue;
794 }
795 }
796 else if (__GF (insn, 7, 8) == N16_T25_PUSH25)
797 {
798 /* push25 */
799 if (cache != NULL)
800 {
801 int imm8u = (insn & 0x1f) << 3;
802 int re = (insn >> 5) & 0x3;
803 const int reg_map[] = { 6, 8, 10, 14 };
804
805 /* Operation 1 -- smw.adm R6, [$sp], Re, #0xe */
806 nds32_push_multiple_words (cache, 6, reg_map[re], 0xe);
807
808 /* Operation 2 -- sp = sp - (imm5u << 3) */
809 cache->sp_offset += imm8u;
810 }
811
812 in_prologue_bb = 1;
813 continue;
814 }
815 else if (insn == N16_TYPE5 (ADD5PC, REG_GP))
816 {
817 /* add5.pc $gp */
818 in_prologue_bb = 1;
819 continue;
820 }
821 else if (CHOP_BITS (insn, 5) == N16_TYPE55 (MOVI55, REG_GP, 0))
822 {
823 /* movi55 $gp, imm5s */
824 in_prologue_bb = 1;
825 continue;
826 }
827 else
828 {
829 /* Jump/Branch insns never appear in prologue basic block.
830 The loop can be escaped early when these insns are met. */
831 if (in_prologue_bb == 1)
832 {
833 uint32_t insn5 = CHOP_BITS (insn, 5);
834 uint32_t insn8 = CHOP_BITS (insn, 8);
835 uint32_t insn38 = CHOP_BITS (insn, 11);
836
837 if (insn5 == N16_TYPE5 (JR5, 0)
838 || insn5 == N16_TYPE5 (JRAL5, 0)
839 || insn5 == N16_TYPE5 (RET5, 0)
840 || insn8 == N16_TYPE8 (J8, 0)
841 || insn8 == N16_TYPE8 (BEQZS8, 0)
842 || insn8 == N16_TYPE8 (BNEZS8, 0)
843 || insn38 == N16_TYPE38 (BEQZ38, 0, 0)
844 || insn38 == N16_TYPE38 (BNEZ38, 0, 0)
845 || insn38 == N16_TYPE38 (BEQS38, 0, 0)
846 || insn38 == N16_TYPE38 (BNES38, 0, 0))
847 break;
848 }
849 }
850
851 /* The optimizer might shove anything into the prologue, if
852 we build up cache (cache != NULL) from analyzing prologue,
853 we just skip what we don't recognize and analyze further to
854 make cache as complete as possible. However, if we skip
855 prologue, we'll stop immediately on unrecognized
856 instruction. */
857 if (cache == NULL)
858 break;
859 }
860 }
861
862 return pc;
863 }
864
865 /* Implement the "skip_prologue" gdbarch method.
866
867 Find the end of function prologue. */
868
869 static CORE_ADDR
870 nds32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
871 {
872 CORE_ADDR func_addr, limit_pc;
873
874 /* See if we can determine the end of the prologue via the symbol table.
875 If so, then return either PC, or the PC after the prologue, whichever
876 is greater. */
877 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
878 {
879 CORE_ADDR post_prologue_pc
880 = skip_prologue_using_sal (gdbarch, func_addr);
881 if (post_prologue_pc != 0)
882 return std::max (pc, post_prologue_pc);
883 }
884
885 /* Can't determine prologue from the symbol table, need to examine
886 instructions. */
887
888 /* Find an upper limit on the function prologue using the debug
889 information. If the debug information could not be used to provide
890 that bound, then use an arbitrary large number as the upper bound. */
891 limit_pc = skip_prologue_using_sal (gdbarch, pc);
892 if (limit_pc == 0)
893 limit_pc = pc + 128; /* Magic. */
894
895 /* Find the end of prologue. */
896 return nds32_analyze_prologue (gdbarch, pc, limit_pc, NULL);
897 }
898
899 /* Allocate and fill in *THIS_CACHE with information about the prologue of
900 *THIS_FRAME. Do not do this if *THIS_CACHE was already allocated. Return
901 a pointer to the current nds32_frame_cache in *THIS_CACHE. */
902
903 static struct nds32_frame_cache *
904 nds32_frame_cache (struct frame_info *this_frame, void **this_cache)
905 {
906 struct gdbarch *gdbarch = get_frame_arch (this_frame);
907 struct nds32_frame_cache *cache;
908 CORE_ADDR current_pc;
909 ULONGEST prev_sp;
910 ULONGEST this_base;
911 int i;
912
913 if (*this_cache)
914 return (struct nds32_frame_cache *) *this_cache;
915
916 cache = nds32_alloc_frame_cache ();
917 *this_cache = cache;
918
919 cache->pc = get_frame_func (this_frame);
920 current_pc = get_frame_pc (this_frame);
921 nds32_analyze_prologue (gdbarch, cache->pc, current_pc, cache);
922
923 /* Compute the previous frame's stack pointer (which is also the
924 frame's ID's stack address), and this frame's base pointer. */
925 if (cache->fp_offset != INVALID_OFFSET)
926 {
927 /* FP is set in prologue, so it can be used to calculate other info. */
928 this_base = get_frame_register_unsigned (this_frame, NDS32_FP_REGNUM);
929 prev_sp = this_base + cache->fp_offset;
930 }
931 else
932 {
933 this_base = get_frame_register_unsigned (this_frame, NDS32_SP_REGNUM);
934 prev_sp = this_base + cache->sp_offset;
935 }
936
937 cache->prev_sp = prev_sp;
938 cache->base = this_base;
939
940 /* Adjust all the saved registers such that they contain addresses
941 instead of offsets. */
942 for (i = 0; i < NDS32_NUM_SAVED_REGS; i++)
943 if (cache->saved_regs[i] != REG_UNAVAIL)
944 cache->saved_regs[i] = cache->prev_sp - cache->saved_regs[i];
945
946 return cache;
947 }
948
949 /* Implement the "this_id" frame_unwind method.
950
951 Our frame ID for a normal frame is the current function's starting
952 PC and the caller's SP when we were called. */
953
954 static void
955 nds32_frame_this_id (struct frame_info *this_frame,
956 void **this_cache, struct frame_id *this_id)
957 {
958 struct nds32_frame_cache *cache = nds32_frame_cache (this_frame, this_cache);
959
960 /* This marks the outermost frame. */
961 if (cache->prev_sp == 0)
962 return;
963
964 *this_id = frame_id_build (cache->prev_sp, cache->pc);
965 }
966
967 /* Implement the "prev_register" frame_unwind method. */
968
969 static struct value *
970 nds32_frame_prev_register (struct frame_info *this_frame, void **this_cache,
971 int regnum)
972 {
973 struct nds32_frame_cache *cache = nds32_frame_cache (this_frame, this_cache);
974
975 if (regnum == NDS32_SP_REGNUM)
976 return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp);
977
978 /* The PC of the previous frame is stored in the LP register of
979 the current frame. */
980 if (regnum == NDS32_PC_REGNUM)
981 regnum = NDS32_LP_REGNUM;
982
983 if (regnum < NDS32_NUM_SAVED_REGS && cache->saved_regs[regnum] != REG_UNAVAIL)
984 return frame_unwind_got_memory (this_frame, regnum,
985 cache->saved_regs[regnum]);
986
987 return frame_unwind_got_register (this_frame, regnum, regnum);
988 }
989
990 static const struct frame_unwind nds32_frame_unwind =
991 {
992 "nds32 prologue",
993 NORMAL_FRAME,
994 default_frame_unwind_stop_reason,
995 nds32_frame_this_id,
996 nds32_frame_prev_register,
997 NULL,
998 default_frame_sniffer,
999 };
1000
1001 /* Return the frame base address of *THIS_FRAME. */
1002
1003 static CORE_ADDR
1004 nds32_frame_base_address (struct frame_info *this_frame, void **this_cache)
1005 {
1006 struct nds32_frame_cache *cache = nds32_frame_cache (this_frame, this_cache);
1007
1008 return cache->base;
1009 }
1010
1011 static const struct frame_base nds32_frame_base =
1012 {
1013 &nds32_frame_unwind,
1014 nds32_frame_base_address,
1015 nds32_frame_base_address,
1016 nds32_frame_base_address
1017 };
1018 \f
1019 /* Helper function for instructions used to pop multiple words. */
1020
1021 static void
1022 nds32_pop_multiple_words (struct nds32_frame_cache *cache, int rb, int re,
1023 int enable4)
1024 {
1025 CORE_ADDR sp_offset = cache->sp_offset;
1026 int i;
1027
1028 /* Skip case where re == rb == sp. */
1029 if ((rb < REG_FP) && (re < REG_FP))
1030 {
1031 for (i = rb; i <= re; i++)
1032 {
1033 cache->saved_regs[i] = sp_offset;
1034 sp_offset += 4;
1035 }
1036 }
1037
1038 /* Check FP, GP, LP in enable4. */
1039 for (i = 3; i >= 1; i--)
1040 {
1041 if ((enable4 >> i) & 0x1)
1042 {
1043 cache->saved_regs[NDS32_SP_REGNUM - i] = sp_offset;
1044 sp_offset += 4;
1045 }
1046 }
1047
1048 /* For sp, update the offset. */
1049 cache->sp_offset = sp_offset;
1050 }
1051
1052 /* The instruction sequences in NDS32 epilogue are
1053
1054 INSN_RESET_SP (optional)
1055 (If exists, this must be the first instruction in epilogue
1056 and the stack has not been destroyed.).
1057 INSN_RECOVER (optional).
1058 INSN_RETURN/INSN_RECOVER_RETURN (required). */
1059
1060 /* Helper function for analyzing the given 32-bit INSN. If CACHE is non-NULL,
1061 the necessary information will be recorded. */
1062
1063 static inline int
1064 nds32_analyze_epilogue_insn32 (int abi_use_fpr, uint32_t insn,
1065 struct nds32_frame_cache *cache)
1066 {
1067 if (CHOP_BITS (insn, 15) == N32_TYPE2 (ADDI, REG_SP, REG_SP, 0)
1068 && N32_IMM15S (insn) > 0)
1069 /* addi $sp, $sp, imm15s */
1070 return INSN_RESET_SP;
1071 else if (CHOP_BITS (insn, 15) == N32_TYPE2 (ADDI, REG_SP, REG_FP, 0)
1072 && N32_IMM15S (insn) < 0)
1073 /* addi $sp, $fp, imm15s */
1074 return INSN_RESET_SP;
1075 else if ((insn & ~(__MASK (19) << 6)) == N32_LMW_BIM
1076 && N32_RA5 (insn) == REG_SP)
1077 {
1078 /* lmw.bim Rb, [$sp], Re, enable4 */
1079 if (cache != NULL)
1080 nds32_pop_multiple_words (cache, N32_RT5 (insn),
1081 N32_RB5 (insn), N32_LSMW_ENABLE4 (insn));
1082
1083 return INSN_RECOVER;
1084 }
1085 else if (insn == N32_JREG (JR, 0, REG_LP, 0, 1))
1086 /* ret $lp */
1087 return INSN_RETURN;
1088 else if (insn == N32_ALU1 (ADD, REG_SP, REG_SP, REG_TA)
1089 || insn == N32_ALU1 (ADD, REG_SP, REG_TA, REG_SP))
1090 /* add $sp, $sp, $ta */
1091 /* add $sp, $ta, $sp */
1092 return INSN_RESET_SP;
1093 else if (abi_use_fpr
1094 && (insn & ~(__MASK (5) << 20 | __MASK (13))) == N32_FLDI_SP)
1095 {
1096 if (__GF (insn, 12, 1) == 0)
1097 /* fldi FDt, [$sp + (imm12s << 2)] */
1098 return INSN_RECOVER;
1099 else
1100 {
1101 /* fldi.bi FDt, [$sp], (imm12s << 2) */
1102 int offset = N32_IMM12S (insn) << 2;
1103
1104 if (offset == 8 || offset == 12)
1105 {
1106 if (cache != NULL)
1107 cache->sp_offset += offset;
1108
1109 return INSN_RECOVER;
1110 }
1111 }
1112 }
1113
1114 return INSN_NORMAL;
1115 }
1116
1117 /* Helper function for analyzing the given 16-bit INSN. If CACHE is non-NULL,
1118 the necessary information will be recorded. */
1119
1120 static inline int
1121 nds32_analyze_epilogue_insn16 (uint32_t insn, struct nds32_frame_cache *cache)
1122 {
1123 if (insn == N16_TYPE5 (RET5, REG_LP))
1124 /* ret5 $lp */
1125 return INSN_RETURN;
1126 else if (CHOP_BITS (insn, 10) == N16_TYPE10 (ADDI10S, 0))
1127 {
1128 /* addi10s.sp */
1129 int imm10s = N16_IMM10S (insn);
1130
1131 if (imm10s > 0)
1132 {
1133 if (cache != NULL)
1134 cache->sp_offset += imm10s;
1135
1136 return INSN_RECOVER;
1137 }
1138 }
1139 else if (__GF (insn, 7, 8) == N16_T25_POP25)
1140 {
1141 /* pop25 */
1142 if (cache != NULL)
1143 {
1144 int imm8u = (insn & 0x1f) << 3;
1145 int re = (insn >> 5) & 0x3;
1146 const int reg_map[] = { 6, 8, 10, 14 };
1147
1148 /* Operation 1 -- sp = sp + (imm5u << 3) */
1149 cache->sp_offset += imm8u;
1150
1151 /* Operation 2 -- lmw.bim R6, [$sp], Re, #0xe */
1152 nds32_pop_multiple_words (cache, 6, reg_map[re], 0xe);
1153 }
1154
1155 /* Operation 3 -- ret $lp */
1156 return INSN_RECOVER_RETURN;
1157 }
1158
1159 return INSN_NORMAL;
1160 }
1161
1162 /* Analyze a reasonable amount of instructions from the given PC to find
1163 the instruction used to return to the caller. Return 1 if the 'return'
1164 instruction could be found, 0 otherwise.
1165
1166 If CACHE is non-NULL, fill it in. */
1167
1168 static int
1169 nds32_analyze_epilogue (struct gdbarch *gdbarch, CORE_ADDR pc,
1170 struct nds32_frame_cache *cache)
1171 {
1172 nds32_gdbarch_tdep *tdep = (nds32_gdbarch_tdep *) gdbarch_tdep (gdbarch);
1173 int abi_use_fpr = nds32_abi_use_fpr (tdep->elf_abi);
1174 CORE_ADDR limit_pc;
1175 uint32_t insn, insn_len;
1176 int insn_type = INSN_NORMAL;
1177
1178 if (abi_use_fpr)
1179 limit_pc = pc + 48;
1180 else
1181 limit_pc = pc + 16;
1182
1183 for (; pc < limit_pc; pc += insn_len)
1184 {
1185 insn = read_memory_unsigned_integer (pc, 4, BFD_ENDIAN_BIG);
1186
1187 if ((insn & 0x80000000) == 0)
1188 {
1189 /* 32-bit instruction */
1190 insn_len = 4;
1191
1192 insn_type = nds32_analyze_epilogue_insn32 (abi_use_fpr, insn, cache);
1193 if (insn_type == INSN_RETURN)
1194 return 1;
1195 else if (insn_type == INSN_RECOVER)
1196 continue;
1197 }
1198 else
1199 {
1200 /* 16-bit instruction */
1201 insn_len = 2;
1202
1203 insn >>= 16;
1204 insn_type = nds32_analyze_epilogue_insn16 (insn, cache);
1205 if (insn_type == INSN_RETURN || insn_type == INSN_RECOVER_RETURN)
1206 return 1;
1207 else if (insn_type == INSN_RECOVER)
1208 continue;
1209 }
1210
1211 /* Stop the scan if this is an unexpected instruction. */
1212 break;
1213 }
1214
1215 return 0;
1216 }
1217
1218 /* Implement the "stack_frame_destroyed_p" gdbarch method. */
1219
1220 static int
1221 nds32_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR addr)
1222 {
1223 nds32_gdbarch_tdep *tdep = (nds32_gdbarch_tdep *) gdbarch_tdep (gdbarch);
1224 int abi_use_fpr = nds32_abi_use_fpr (tdep->elf_abi);
1225 int insn_type = INSN_NORMAL;
1226 int ret_found = 0;
1227 uint32_t insn;
1228
1229 insn = read_memory_unsigned_integer (addr, 4, BFD_ENDIAN_BIG);
1230
1231 if ((insn & 0x80000000) == 0)
1232 {
1233 /* 32-bit instruction */
1234
1235 insn_type = nds32_analyze_epilogue_insn32 (abi_use_fpr, insn, NULL);
1236 }
1237 else
1238 {
1239 /* 16-bit instruction */
1240
1241 insn >>= 16;
1242 insn_type = nds32_analyze_epilogue_insn16 (insn, NULL);
1243 }
1244
1245 if (insn_type == INSN_NORMAL || insn_type == INSN_RESET_SP)
1246 return 0;
1247
1248 /* Search the required 'return' instruction within the following reasonable
1249 instructions. */
1250 ret_found = nds32_analyze_epilogue (gdbarch, addr, NULL);
1251 if (ret_found == 0)
1252 return 0;
1253
1254 /* Scan backwards to make sure that the last instruction has adjusted
1255 stack. Both a 16-bit and a 32-bit instruction will be tried. This is
1256 just a heuristic, so the false positives will be acceptable. */
1257 insn = read_memory_unsigned_integer (addr - 2, 4, BFD_ENDIAN_BIG);
1258
1259 /* Only 16-bit instructions are possible at addr - 2. */
1260 if ((insn & 0x80000000) != 0)
1261 {
1262 /* This may be a 16-bit instruction or part of a 32-bit instruction. */
1263
1264 insn_type = nds32_analyze_epilogue_insn16 (insn >> 16, NULL);
1265 if (insn_type == INSN_RECOVER)
1266 return 1;
1267 }
1268
1269 insn = read_memory_unsigned_integer (addr - 4, 4, BFD_ENDIAN_BIG);
1270
1271 /* If this is a 16-bit instruction at addr - 4, then there must be another
1272 16-bit instruction at addr - 2, so only 32-bit instructions need to
1273 be analyzed here. */
1274 if ((insn & 0x80000000) == 0)
1275 {
1276 /* This may be a 32-bit instruction or part of a 32-bit instruction. */
1277
1278 insn_type = nds32_analyze_epilogue_insn32 (abi_use_fpr, insn, NULL);
1279 if (insn_type == INSN_RECOVER || insn_type == INSN_RESET_SP)
1280 return 1;
1281 }
1282
1283 return 0;
1284 }
1285
1286 /* Implement the "sniffer" frame_unwind method. */
1287
1288 static int
1289 nds32_epilogue_frame_sniffer (const struct frame_unwind *self,
1290 struct frame_info *this_frame, void **this_cache)
1291 {
1292 if (frame_relative_level (this_frame) == 0)
1293 return nds32_stack_frame_destroyed_p (get_frame_arch (this_frame),
1294 get_frame_pc (this_frame));
1295 else
1296 return 0;
1297 }
1298
1299 /* Allocate and fill in *THIS_CACHE with information needed to unwind
1300 *THIS_FRAME within epilogue. Do not do this if *THIS_CACHE was already
1301 allocated. Return a pointer to the current nds32_frame_cache in
1302 *THIS_CACHE. */
1303
1304 static struct nds32_frame_cache *
1305 nds32_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1306 {
1307 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1308 struct nds32_frame_cache *cache;
1309 CORE_ADDR current_pc, current_sp;
1310 int i;
1311
1312 if (*this_cache)
1313 return (struct nds32_frame_cache *) *this_cache;
1314
1315 cache = nds32_alloc_frame_cache ();
1316 *this_cache = cache;
1317
1318 cache->pc = get_frame_func (this_frame);
1319 current_pc = get_frame_pc (this_frame);
1320 nds32_analyze_epilogue (gdbarch, current_pc, cache);
1321
1322 current_sp = get_frame_register_unsigned (this_frame, NDS32_SP_REGNUM);
1323 cache->prev_sp = current_sp + cache->sp_offset;
1324
1325 /* Adjust all the saved registers such that they contain addresses
1326 instead of offsets. */
1327 for (i = 0; i < NDS32_NUM_SAVED_REGS; i++)
1328 if (cache->saved_regs[i] != REG_UNAVAIL)
1329 cache->saved_regs[i] = current_sp + cache->saved_regs[i];
1330
1331 return cache;
1332 }
1333
1334 /* Implement the "this_id" frame_unwind method. */
1335
1336 static void
1337 nds32_epilogue_frame_this_id (struct frame_info *this_frame,
1338 void **this_cache, struct frame_id *this_id)
1339 {
1340 struct nds32_frame_cache *cache
1341 = nds32_epilogue_frame_cache (this_frame, this_cache);
1342
1343 /* This marks the outermost frame. */
1344 if (cache->prev_sp == 0)
1345 return;
1346
1347 *this_id = frame_id_build (cache->prev_sp, cache->pc);
1348 }
1349
1350 /* Implement the "prev_register" frame_unwind method. */
1351
1352 static struct value *
1353 nds32_epilogue_frame_prev_register (struct frame_info *this_frame,
1354 void **this_cache, int regnum)
1355 {
1356 struct nds32_frame_cache *cache
1357 = nds32_epilogue_frame_cache (this_frame, this_cache);
1358
1359 if (regnum == NDS32_SP_REGNUM)
1360 return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp);
1361
1362 /* The PC of the previous frame is stored in the LP register of
1363 the current frame. */
1364 if (regnum == NDS32_PC_REGNUM)
1365 regnum = NDS32_LP_REGNUM;
1366
1367 if (regnum < NDS32_NUM_SAVED_REGS && cache->saved_regs[regnum] != REG_UNAVAIL)
1368 return frame_unwind_got_memory (this_frame, regnum,
1369 cache->saved_regs[regnum]);
1370
1371 return frame_unwind_got_register (this_frame, regnum, regnum);
1372 }
1373
1374 static const struct frame_unwind nds32_epilogue_frame_unwind =
1375 {
1376 "nds32 epilogue",
1377 NORMAL_FRAME,
1378 default_frame_unwind_stop_reason,
1379 nds32_epilogue_frame_this_id,
1380 nds32_epilogue_frame_prev_register,
1381 NULL,
1382 nds32_epilogue_frame_sniffer
1383 };
1384
1385 \f
1386 /* Floating type and struct type that has only one floating type member
1387 can pass value using FPU registers (when FPU ABI is used). */
1388
1389 static int
1390 nds32_check_calling_use_fpr (struct type *type)
1391 {
1392 struct type *t;
1393 enum type_code typecode;
1394
1395 t = type;
1396 while (1)
1397 {
1398 t = check_typedef (t);
1399 typecode = t->code ();
1400 if (typecode != TYPE_CODE_STRUCT)
1401 break;
1402 else if (t->num_fields () != 1)
1403 return 0;
1404 else
1405 t = t->field (0).type ();
1406 }
1407
1408 return typecode == TYPE_CODE_FLT;
1409 }
1410
1411 /* Implement the "push_dummy_call" gdbarch method. */
1412
1413 static CORE_ADDR
1414 nds32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1415 struct regcache *regcache, CORE_ADDR bp_addr,
1416 int nargs, struct value **args, CORE_ADDR sp,
1417 function_call_return_method return_method,
1418 CORE_ADDR struct_addr)
1419 {
1420 const int REND = 6; /* End for register offset. */
1421 int goff = 0; /* Current gpr offset for argument. */
1422 int foff = 0; /* Current fpr offset for argument. */
1423 int soff = 0; /* Current stack offset for argument. */
1424 int i;
1425 ULONGEST regval;
1426 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1427 nds32_gdbarch_tdep *tdep = (nds32_gdbarch_tdep *) gdbarch_tdep (gdbarch);
1428 struct type *func_type = value_type (function);
1429 int abi_use_fpr = nds32_abi_use_fpr (tdep->elf_abi);
1430 int abi_split = nds32_abi_split (tdep->elf_abi);
1431
1432 /* Set the return address. For the NDS32, the return breakpoint is
1433 always at BP_ADDR. */
1434 regcache_cooked_write_unsigned (regcache, NDS32_LP_REGNUM, bp_addr);
1435
1436 /* If STRUCT_RETURN is true, then the struct return address (in
1437 STRUCT_ADDR) will consume the first argument-passing register.
1438 Both adjust the register count and store that value. */
1439 if (return_method == return_method_struct)
1440 {
1441 regcache_cooked_write_unsigned (regcache, NDS32_R0_REGNUM, struct_addr);
1442 goff++;
1443 }
1444
1445 /* Now make sure there's space on the stack */
1446 for (i = 0; i < nargs; i++)
1447 {
1448 struct type *type = value_type (args[i]);
1449 int align = type_align (type);
1450
1451 /* If align is zero, it may be an empty struct.
1452 Just ignore the argument of empty struct. */
1453 if (align == 0)
1454 continue;
1455
1456 sp -= TYPE_LENGTH (type);
1457 sp = align_down (sp, align);
1458 }
1459
1460 /* Stack must be 8-byte aligned. */
1461 sp = align_down (sp, 8);
1462
1463 soff = 0;
1464 for (i = 0; i < nargs; i++)
1465 {
1466 const gdb_byte *val;
1467 int align, len;
1468 struct type *type;
1469 int calling_use_fpr;
1470 int use_fpr = 0;
1471
1472 type = value_type (args[i]);
1473 calling_use_fpr = nds32_check_calling_use_fpr (type);
1474 len = TYPE_LENGTH (type);
1475 align = type_align (type);
1476 val = value_contents (args[i]).data ();
1477
1478 /* The size of a composite type larger than 4 bytes will be rounded
1479 up to the nearest multiple of 4. */
1480 if (len > 4)
1481 len = align_up (len, 4);
1482
1483 /* Variadic functions are handled differently between AABI and ABI2FP+.
1484
1485 For AABI, the caller pushes arguments in registers, callee stores
1486 unnamed arguments in stack, and then va_arg fetch arguments in stack.
1487 Therefore, we don't have to handle variadic functions specially.
1488
1489 For ABI2FP+, the caller pushes only named arguments in registers
1490 and pushes all unnamed arguments in stack. */
1491
1492 if (abi_use_fpr && func_type->has_varargs ()
1493 && i >= func_type->num_fields ())
1494 goto use_stack;
1495
1496 /* Try to use FPRs to pass arguments only when
1497 1. The program is built using toolchain with FPU support.
1498 2. The type of this argument can use FPR to pass value. */
1499 use_fpr = abi_use_fpr && calling_use_fpr;
1500
1501 if (use_fpr)
1502 {
1503 if (tdep->fpu_freg == -1)
1504 goto error_no_fpr;
1505
1506 /* Adjust alignment. */
1507 if ((align >> 2) > 0)
1508 foff = align_up (foff, align >> 2);
1509
1510 if (foff < REND)
1511 {
1512 switch (len)
1513 {
1514 case 4:
1515 regcache->cooked_write (tdep->fs0_regnum + foff, val);
1516 foff++;
1517 break;
1518 case 8:
1519 regcache->cooked_write (NDS32_FD0_REGNUM + (foff >> 1), val);
1520 foff += 2;
1521 break;
1522 default:
1523 /* Long double? */
1524 internal_error (__FILE__, __LINE__,
1525 "Do not know how to handle %d-byte double.\n",
1526 len);
1527 break;
1528 }
1529 continue;
1530 }
1531 }
1532 else
1533 {
1534 /*
1535 When passing arguments using GPRs,
1536
1537 * A composite type not larger than 4 bytes is passed in $rN.
1538 The format is as if the value is loaded with load instruction
1539 of corresponding size (e.g., LB, LH, LW).
1540
1541 For example,
1542
1543 r0
1544 31 0
1545 LITTLE: [x x b a]
1546 BIG: [x x a b]
1547
1548 * Otherwise, a composite type is passed in consecutive registers.
1549 The size is rounded up to the nearest multiple of 4.
1550 The successive registers hold the parts of the argument as if
1551 were loaded using lmw instructions.
1552
1553 For example,
1554
1555 r0 r1
1556 31 0 31 0
1557 LITTLE: [d c b a] [x x x e]
1558 BIG: [a b c d] [e x x x]
1559 */
1560
1561 /* Adjust alignment. */
1562 if ((align >> 2) > 0)
1563 goff = align_up (goff, align >> 2);
1564
1565 if (len <= (REND - goff) * 4)
1566 {
1567 /* This argument can be passed wholly via GPRs. */
1568 while (len > 0)
1569 {
1570 regval = extract_unsigned_integer (val, (len > 4) ? 4 : len,
1571 byte_order);
1572 regcache_cooked_write_unsigned (regcache,
1573 NDS32_R0_REGNUM + goff,
1574 regval);
1575 len -= 4;
1576 val += 4;
1577 goff++;
1578 }
1579 continue;
1580 }
1581 else if (abi_split)
1582 {
1583 /* Some parts of this argument can be passed via GPRs. */
1584 while (goff < REND)
1585 {
1586 regval = extract_unsigned_integer (val, (len > 4) ? 4 : len,
1587 byte_order);
1588 regcache_cooked_write_unsigned (regcache,
1589 NDS32_R0_REGNUM + goff,
1590 regval);
1591 len -= 4;
1592 val += 4;
1593 goff++;
1594 }
1595 }
1596 }
1597
1598 use_stack:
1599 /*
1600 When pushing (split parts of) an argument into stack,
1601
1602 * A composite type not larger than 4 bytes is copied to different
1603 base address.
1604 In little-endian, the first byte of this argument is aligned
1605 at the low address of the next free word.
1606 In big-endian, the last byte of this argument is aligned
1607 at the high address of the next free word.
1608
1609 For example,
1610
1611 sp [ - ] [ c ] hi
1612 [ c ] [ b ]
1613 [ b ] [ a ]
1614 [ a ] [ - ] lo
1615 LITTLE BIG
1616 */
1617
1618 /* Adjust alignment. */
1619 soff = align_up (soff, align);
1620
1621 while (len > 0)
1622 {
1623 int rlen = (len > 4) ? 4 : len;
1624
1625 if (byte_order == BFD_ENDIAN_BIG)
1626 write_memory (sp + soff + 4 - rlen, val, rlen);
1627 else
1628 write_memory (sp + soff, val, rlen);
1629
1630 len -= 4;
1631 val += 4;
1632 soff += 4;
1633 }
1634 }
1635
1636 /* Finally, update the SP register. */
1637 regcache_cooked_write_unsigned (regcache, NDS32_SP_REGNUM, sp);
1638
1639 return sp;
1640
1641 error_no_fpr:
1642 /* If use_fpr, but no floating-point register exists,
1643 then it is an error. */
1644 error (_("Fail to call. FPU registers are required."));
1645 }
1646 \f
1647 /* Read, for architecture GDBARCH, a function return value of TYPE
1648 from REGCACHE, and copy that into VALBUF. */
1649
1650 static void
1651 nds32_extract_return_value (struct gdbarch *gdbarch, struct type *type,
1652 struct regcache *regcache, gdb_byte *valbuf)
1653 {
1654 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1655 nds32_gdbarch_tdep *tdep = (nds32_gdbarch_tdep *) gdbarch_tdep (gdbarch);
1656 int abi_use_fpr = nds32_abi_use_fpr (tdep->elf_abi);
1657 int calling_use_fpr;
1658 int len;
1659
1660 calling_use_fpr = nds32_check_calling_use_fpr (type);
1661 len = TYPE_LENGTH (type);
1662
1663 if (abi_use_fpr && calling_use_fpr)
1664 {
1665 if (len == 4)
1666 regcache->cooked_read (tdep->fs0_regnum, valbuf);
1667 else if (len == 8)
1668 regcache->cooked_read (NDS32_FD0_REGNUM, valbuf);
1669 else
1670 internal_error (__FILE__, __LINE__,
1671 _("Cannot extract return value of %d bytes "
1672 "long floating-point."), len);
1673 }
1674 else
1675 {
1676 /*
1677 When returning result,
1678
1679 * A composite type not larger than 4 bytes is returned in $r0.
1680 The format is as if the result is loaded with load instruction
1681 of corresponding size (e.g., LB, LH, LW).
1682
1683 For example,
1684
1685 r0
1686 31 0
1687 LITTLE: [x x b a]
1688 BIG: [x x a b]
1689
1690 * Otherwise, a composite type not larger than 8 bytes is returned
1691 in $r0 and $r1.
1692 In little-endian, the first word is loaded in $r0.
1693 In big-endian, the last word is loaded in $r1.
1694
1695 For example,
1696
1697 r0 r1
1698 31 0 31 0
1699 LITTLE: [d c b a] [x x x e]
1700 BIG: [x x x a] [b c d e]
1701 */
1702
1703 ULONGEST tmp;
1704
1705 if (len < 4)
1706 {
1707 /* By using store_unsigned_integer we avoid having to do
1708 anything special for small big-endian values. */
1709 regcache_cooked_read_unsigned (regcache, NDS32_R0_REGNUM, &tmp);
1710 store_unsigned_integer (valbuf, len, byte_order, tmp);
1711 }
1712 else if (len == 4)
1713 {
1714 regcache->cooked_read (NDS32_R0_REGNUM, valbuf);
1715 }
1716 else if (len < 8)
1717 {
1718 int len1, len2;
1719
1720 len1 = byte_order == BFD_ENDIAN_BIG ? len - 4 : 4;
1721 len2 = len - len1;
1722
1723 regcache_cooked_read_unsigned (regcache, NDS32_R0_REGNUM, &tmp);
1724 store_unsigned_integer (valbuf, len1, byte_order, tmp);
1725
1726 regcache_cooked_read_unsigned (regcache, NDS32_R0_REGNUM + 1, &tmp);
1727 store_unsigned_integer (valbuf + len1, len2, byte_order, tmp);
1728 }
1729 else
1730 {
1731 regcache->cooked_read (NDS32_R0_REGNUM, valbuf);
1732 regcache->cooked_read (NDS32_R0_REGNUM + 1, valbuf + 4);
1733 }
1734 }
1735 }
1736
1737 /* Write, for architecture GDBARCH, a function return value of TYPE
1738 from VALBUF into REGCACHE. */
1739
1740 static void
1741 nds32_store_return_value (struct gdbarch *gdbarch, struct type *type,
1742 struct regcache *regcache, const gdb_byte *valbuf)
1743 {
1744 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1745 nds32_gdbarch_tdep *tdep = (nds32_gdbarch_tdep *) gdbarch_tdep (gdbarch);
1746 int abi_use_fpr = nds32_abi_use_fpr (tdep->elf_abi);
1747 int calling_use_fpr;
1748 int len;
1749
1750 calling_use_fpr = nds32_check_calling_use_fpr (type);
1751 len = TYPE_LENGTH (type);
1752
1753 if (abi_use_fpr && calling_use_fpr)
1754 {
1755 if (len == 4)
1756 regcache->cooked_write (tdep->fs0_regnum, valbuf);
1757 else if (len == 8)
1758 regcache->cooked_write (NDS32_FD0_REGNUM, valbuf);
1759 else
1760 internal_error (__FILE__, __LINE__,
1761 _("Cannot store return value of %d bytes "
1762 "long floating-point."), len);
1763 }
1764 else
1765 {
1766 ULONGEST regval;
1767
1768 if (len < 4)
1769 {
1770 regval = extract_unsigned_integer (valbuf, len, byte_order);
1771 regcache_cooked_write_unsigned (regcache, NDS32_R0_REGNUM, regval);
1772 }
1773 else if (len == 4)
1774 {
1775 regcache->cooked_write (NDS32_R0_REGNUM, valbuf);
1776 }
1777 else if (len < 8)
1778 {
1779 int len1, len2;
1780
1781 len1 = byte_order == BFD_ENDIAN_BIG ? len - 4 : 4;
1782 len2 = len - len1;
1783
1784 regval = extract_unsigned_integer (valbuf, len1, byte_order);
1785 regcache_cooked_write_unsigned (regcache, NDS32_R0_REGNUM, regval);
1786
1787 regval = extract_unsigned_integer (valbuf + len1, len2, byte_order);
1788 regcache_cooked_write_unsigned (regcache, NDS32_R0_REGNUM + 1,
1789 regval);
1790 }
1791 else
1792 {
1793 regcache->cooked_write (NDS32_R0_REGNUM, valbuf);
1794 regcache->cooked_write (NDS32_R0_REGNUM + 1, valbuf + 4);
1795 }
1796 }
1797 }
1798
1799 /* Implement the "return_value" gdbarch method.
1800
1801 Determine, for architecture GDBARCH, how a return value of TYPE
1802 should be returned. If it is supposed to be returned in registers,
1803 and READBUF is non-zero, read the appropriate value from REGCACHE,
1804 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1805 from WRITEBUF into REGCACHE. */
1806
1807 static enum return_value_convention
1808 nds32_return_value (struct gdbarch *gdbarch, struct value *func_type,
1809 struct type *type, struct regcache *regcache,
1810 gdb_byte *readbuf, const gdb_byte *writebuf)
1811 {
1812 if (TYPE_LENGTH (type) > 8)
1813 {
1814 return RETURN_VALUE_STRUCT_CONVENTION;
1815 }
1816 else
1817 {
1818 if (readbuf != NULL)
1819 nds32_extract_return_value (gdbarch, type, regcache, readbuf);
1820 if (writebuf != NULL)
1821 nds32_store_return_value (gdbarch, type, regcache, writebuf);
1822
1823 return RETURN_VALUE_REGISTER_CONVENTION;
1824 }
1825 }
1826 \f
1827 /* Implement the "get_longjmp_target" gdbarch method. */
1828
1829 static int
1830 nds32_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1831 {
1832 gdb_byte buf[4];
1833 CORE_ADDR jb_addr;
1834 struct gdbarch *gdbarch = get_frame_arch (frame);
1835 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1836
1837 jb_addr = get_frame_register_unsigned (frame, NDS32_R0_REGNUM);
1838
1839 if (target_read_memory (jb_addr + 11 * 4, buf, 4))
1840 return 0;
1841
1842 *pc = extract_unsigned_integer (buf, 4, byte_order);
1843 return 1;
1844 }
1845 \f
1846 /* Validate the given TDESC, and fixed-number some registers in it.
1847 Return 0 if the given TDESC does not contain the required feature
1848 or not contain required registers. */
1849
1850 static int
1851 nds32_validate_tdesc_p (const struct target_desc *tdesc,
1852 struct tdesc_arch_data *tdesc_data,
1853 int *fpu_freg, int *use_pseudo_fsrs)
1854 {
1855 const struct tdesc_feature *feature;
1856 int i, valid_p;
1857
1858 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.nds32.core");
1859 if (feature == NULL)
1860 return 0;
1861
1862 valid_p = 1;
1863 /* Validate and fixed-number R0-R10. */
1864 for (i = NDS32_R0_REGNUM; i <= NDS32_R0_REGNUM + 10; i++)
1865 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1866 nds32_register_names[i]);
1867
1868 /* Validate R15. */
1869 valid_p &= tdesc_unnumbered_register (feature,
1870 nds32_register_names[NDS32_TA_REGNUM]);
1871
1872 /* Validate and fixed-number FP, GP, LP, SP, PC. */
1873 for (i = NDS32_FP_REGNUM; i <= NDS32_PC_REGNUM; i++)
1874 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1875 nds32_register_names[i]);
1876
1877 if (!valid_p)
1878 return 0;
1879
1880 /* Fixed-number R11-R27. */
1881 for (i = NDS32_R0_REGNUM + 11; i <= NDS32_R0_REGNUM + 27; i++)
1882 tdesc_numbered_register (feature, tdesc_data, i, nds32_register_names[i]);
1883
1884 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.nds32.fpu");
1885 if (feature != NULL)
1886 {
1887 int num_fdr_regs, num_fsr_regs, fs0_regnum, num_listed_fsr;
1888 int freg = -1;
1889
1890 /* Guess FPU configuration via listed registers. */
1891 if (tdesc_unnumbered_register (feature, "fd31"))
1892 freg = 3;
1893 else if (tdesc_unnumbered_register (feature, "fd15"))
1894 freg = 2;
1895 else if (tdesc_unnumbered_register (feature, "fd7"))
1896 freg = 1;
1897 else if (tdesc_unnumbered_register (feature, "fd3"))
1898 freg = 0;
1899
1900 if (freg == -1)
1901 /* Required FDR is not found. */
1902 return 0;
1903 else
1904 *fpu_freg = freg;
1905
1906 /* Validate and fixed-number required FDRs. */
1907 num_fdr_regs = num_fdr_map[freg];
1908 for (i = 0; i < num_fdr_regs; i++)
1909 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1910 NDS32_FD0_REGNUM + i,
1911 nds32_fdr_register_names[i]);
1912 if (!valid_p)
1913 return 0;
1914
1915 /* Count the number of listed FSRs, and fixed-number them if present. */
1916 num_fsr_regs = num_fsr_map[freg];
1917 fs0_regnum = NDS32_FD0_REGNUM + num_fdr_regs;
1918 num_listed_fsr = 0;
1919 for (i = 0; i < num_fsr_regs; i++)
1920 num_listed_fsr += tdesc_numbered_register (feature, tdesc_data,
1921 fs0_regnum + i,
1922 nds32_fsr_register_names[i]);
1923
1924 if (num_listed_fsr == 0)
1925 /* No required FSRs are listed explicitly, make them pseudo registers
1926 of FDRs. */
1927 *use_pseudo_fsrs = 1;
1928 else if (num_listed_fsr == num_fsr_regs)
1929 /* All required FSRs are listed explicitly. */
1930 *use_pseudo_fsrs = 0;
1931 else
1932 /* Some required FSRs are missing. */
1933 return 0;
1934 }
1935
1936 return 1;
1937 }
1938
1939 /* Initialize the current architecture based on INFO. If possible,
1940 re-use an architecture from ARCHES, which is a list of
1941 architectures already created during this debugging session.
1942
1943 Called e.g. at program startup, when reading a core file, and when
1944 reading a binary file. */
1945
1946 static struct gdbarch *
1947 nds32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1948 {
1949 struct gdbarch *gdbarch;
1950 struct gdbarch_list *best_arch;
1951 tdesc_arch_data_up tdesc_data;
1952 const struct target_desc *tdesc = info.target_desc;
1953 int elf_abi = E_NDS_ABI_AABI;
1954 int fpu_freg = -1;
1955 int use_pseudo_fsrs = 0;
1956 int i, num_regs, maxregs;
1957
1958 /* Extract the elf_flags if available. */
1959 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1960 elf_abi = elf_elfheader (info.abfd)->e_flags & EF_NDS_ABI;
1961
1962 /* If there is already a candidate, use it. */
1963 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1964 best_arch != NULL;
1965 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1966 {
1967 nds32_gdbarch_tdep *idep
1968 = (nds32_gdbarch_tdep *) gdbarch_tdep (best_arch->gdbarch);
1969
1970 if (idep->elf_abi != elf_abi)
1971 continue;
1972
1973 /* Found a match. */
1974 break;
1975 }
1976
1977 if (best_arch != NULL)
1978 return best_arch->gdbarch;
1979
1980 if (!tdesc_has_registers (tdesc))
1981 tdesc = tdesc_nds32;
1982
1983 tdesc_data = tdesc_data_alloc ();
1984
1985 if (!nds32_validate_tdesc_p (tdesc, tdesc_data.get (), &fpu_freg,
1986 &use_pseudo_fsrs))
1987 return NULL;
1988
1989 /* Allocate space for the new architecture. */
1990 nds32_gdbarch_tdep *tdep = new nds32_gdbarch_tdep;
1991 tdep->fpu_freg = fpu_freg;
1992 tdep->use_pseudo_fsrs = use_pseudo_fsrs;
1993 tdep->fs0_regnum = -1;
1994 tdep->elf_abi = elf_abi;
1995
1996 gdbarch = gdbarch_alloc (&info, tdep);
1997
1998 set_gdbarch_wchar_bit (gdbarch, 16);
1999 set_gdbarch_wchar_signed (gdbarch, 0);
2000
2001 if (fpu_freg == -1)
2002 num_regs = NDS32_NUM_REGS;
2003 else if (use_pseudo_fsrs == 1)
2004 {
2005 set_gdbarch_pseudo_register_read (gdbarch, nds32_pseudo_register_read);
2006 set_gdbarch_pseudo_register_write (gdbarch, nds32_pseudo_register_write);
2007 set_tdesc_pseudo_register_name (gdbarch, nds32_pseudo_register_name);
2008 set_tdesc_pseudo_register_type (gdbarch, nds32_pseudo_register_type);
2009 set_gdbarch_num_pseudo_regs (gdbarch, num_fsr_map[fpu_freg]);
2010
2011 num_regs = NDS32_NUM_REGS + num_fdr_map[fpu_freg];
2012 }
2013 else
2014 num_regs = NDS32_NUM_REGS + num_fdr_map[fpu_freg] + num_fsr_map[fpu_freg];
2015
2016 set_gdbarch_num_regs (gdbarch, num_regs);
2017 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
2018
2019 /* Cache the register number of fs0. */
2020 if (fpu_freg != -1)
2021 tdep->fs0_regnum = user_reg_map_name_to_regnum (gdbarch, "fs0", -1);
2022
2023 /* Add NDS32 register aliases. To avoid search in user register name space,
2024 user_reg_map_name_to_regnum is not used. */
2025 maxregs = gdbarch_num_cooked_regs (gdbarch);
2026 for (i = 0; i < ARRAY_SIZE (nds32_register_aliases); i++)
2027 {
2028 int regnum, j;
2029
2030 regnum = -1;
2031 /* Search register name space. */
2032 for (j = 0; j < maxregs; j++)
2033 {
2034 const char *regname = gdbarch_register_name (gdbarch, j);
2035
2036 if (regname != NULL
2037 && strcmp (regname, nds32_register_aliases[i].name) == 0)
2038 {
2039 regnum = j;
2040 break;
2041 }
2042 }
2043
2044 /* Try next alias entry if the given name can not be found in register
2045 name space. */
2046 if (regnum == -1)
2047 continue;
2048
2049 user_reg_add (gdbarch, nds32_register_aliases[i].alias,
2050 value_of_nds32_reg, (const void *) (intptr_t) regnum);
2051 }
2052
2053 nds32_add_reggroups (gdbarch);
2054
2055 /* Hook in ABI-specific overrides, if they have been registered. */
2056 info.tdesc_data = tdesc_data.get ();
2057 gdbarch_init_osabi (info, gdbarch);
2058
2059 /* Override tdesc_register callbacks for system registers. */
2060 set_gdbarch_register_reggroup_p (gdbarch, nds32_register_reggroup_p);
2061
2062 set_gdbarch_sp_regnum (gdbarch, NDS32_SP_REGNUM);
2063 set_gdbarch_pc_regnum (gdbarch, NDS32_PC_REGNUM);
2064 set_gdbarch_stack_frame_destroyed_p (gdbarch, nds32_stack_frame_destroyed_p);
2065 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, nds32_dwarf2_reg_to_regnum);
2066
2067 set_gdbarch_push_dummy_call (gdbarch, nds32_push_dummy_call);
2068 set_gdbarch_return_value (gdbarch, nds32_return_value);
2069
2070 set_gdbarch_skip_prologue (gdbarch, nds32_skip_prologue);
2071 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2072 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
2073 nds32_breakpoint::kind_from_pc);
2074 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
2075 nds32_breakpoint::bp_from_kind);
2076
2077 set_gdbarch_frame_align (gdbarch, nds32_frame_align);
2078 frame_base_set_default (gdbarch, &nds32_frame_base);
2079
2080 /* Handle longjmp. */
2081 set_gdbarch_get_longjmp_target (gdbarch, nds32_get_longjmp_target);
2082
2083 /* The order of appending is the order it check frame. */
2084 dwarf2_append_unwinders (gdbarch);
2085 frame_unwind_append_unwinder (gdbarch, &nds32_epilogue_frame_unwind);
2086 frame_unwind_append_unwinder (gdbarch, &nds32_frame_unwind);
2087
2088 return gdbarch;
2089 }
2090
2091 void _initialize_nds32_tdep ();
2092 void
2093 _initialize_nds32_tdep ()
2094 {
2095 /* Initialize gdbarch. */
2096 register_gdbarch_init (bfd_arch_nds32, nds32_gdbarch_init);
2097
2098 initialize_tdesc_nds32 ();
2099 nds32_init_reggroups ();
2100 }