Fix possible Cygwin build problem
[binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2022 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <fcntl.h>
39 #include "gdbsupport/gdb_obstack.h"
40 #include "hashtab.h"
41
42 #include "breakpoint.h"
43 #include "block.h"
44 #include "dictionary.h"
45 #include "source.h"
46 #include "addrmap.h"
47 #include "arch-utils.h"
48 #include "exec.h"
49 #include "observable.h"
50 #include "complaints.h"
51 #include "psymtab.h"
52 #include "solist.h"
53 #include "gdb_bfd.h"
54 #include "btrace.h"
55 #include "gdbsupport/pathstuff.h"
56
57 #include <algorithm>
58 #include <vector>
59
60 /* Keep a registry of per-objfile data-pointers required by other GDB
61 modules. */
62
63 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
64
65 /* Externally visible variables that are owned by this module.
66 See declarations in objfile.h for more info. */
67
68 struct objfile_pspace_info
69 {
70 objfile_pspace_info () = default;
71 ~objfile_pspace_info ();
72
73 struct obj_section **sections = nullptr;
74 int num_sections = 0;
75
76 /* Nonzero if object files have been added since the section map
77 was last updated. */
78 int new_objfiles_available = 0;
79
80 /* Nonzero if the section map MUST be updated before use. */
81 int section_map_dirty = 0;
82
83 /* Nonzero if section map updates should be inhibited if possible. */
84 int inhibit_updates = 0;
85 };
86
87 /* Per-program-space data key. */
88 static const struct program_space_key<objfile_pspace_info>
89 objfiles_pspace_data;
90
91 objfile_pspace_info::~objfile_pspace_info ()
92 {
93 xfree (sections);
94 }
95
96 /* Get the current svr4 data. If none is found yet, add it now. This
97 function always returns a valid object. */
98
99 static struct objfile_pspace_info *
100 get_objfile_pspace_data (struct program_space *pspace)
101 {
102 struct objfile_pspace_info *info;
103
104 info = objfiles_pspace_data.get (pspace);
105 if (info == NULL)
106 info = objfiles_pspace_data.emplace (pspace);
107
108 return info;
109 }
110
111 \f
112
113 /* Per-BFD data key. */
114
115 static const struct bfd_key<objfile_per_bfd_storage> objfiles_bfd_data;
116
117 objfile_per_bfd_storage::~objfile_per_bfd_storage ()
118 {
119 }
120
121 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
122 NULL, and it already has a per-BFD storage object, use that.
123 Otherwise, allocate a new per-BFD storage object. */
124
125 static struct objfile_per_bfd_storage *
126 get_objfile_bfd_data (bfd *abfd)
127 {
128 struct objfile_per_bfd_storage *storage = NULL;
129
130 if (abfd != NULL)
131 storage = objfiles_bfd_data.get (abfd);
132
133 if (storage == NULL)
134 {
135 storage = new objfile_per_bfd_storage (abfd);
136 /* If the object requires gdb to do relocations, we simply fall
137 back to not sharing data across users. These cases are rare
138 enough that this seems reasonable. */
139 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
140 objfiles_bfd_data.set (abfd, storage);
141
142 /* Look up the gdbarch associated with the BFD. */
143 if (abfd != NULL)
144 storage->gdbarch = gdbarch_from_bfd (abfd);
145 }
146
147 return storage;
148 }
149
150 /* See objfiles.h. */
151
152 void
153 set_objfile_per_bfd (struct objfile *objfile)
154 {
155 objfile->per_bfd = get_objfile_bfd_data (objfile->obfd);
156 }
157
158 /* Set the objfile's per-BFD notion of the "main" name and
159 language. */
160
161 void
162 set_objfile_main_name (struct objfile *objfile,
163 const char *name, enum language lang)
164 {
165 if (objfile->per_bfd->name_of_main == NULL
166 || strcmp (objfile->per_bfd->name_of_main, name) != 0)
167 objfile->per_bfd->name_of_main
168 = obstack_strdup (&objfile->per_bfd->storage_obstack, name);
169 objfile->per_bfd->language_of_main = lang;
170 }
171
172 /* Helper structure to map blocks to static link properties in hash tables. */
173
174 struct static_link_htab_entry
175 {
176 const struct block *block;
177 const struct dynamic_prop *static_link;
178 };
179
180 /* Return a hash code for struct static_link_htab_entry *P. */
181
182 static hashval_t
183 static_link_htab_entry_hash (const void *p)
184 {
185 const struct static_link_htab_entry *e
186 = (const struct static_link_htab_entry *) p;
187
188 return htab_hash_pointer (e->block);
189 }
190
191 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are
192 mappings for the same block. */
193
194 static int
195 static_link_htab_entry_eq (const void *p1, const void *p2)
196 {
197 const struct static_link_htab_entry *e1
198 = (const struct static_link_htab_entry *) p1;
199 const struct static_link_htab_entry *e2
200 = (const struct static_link_htab_entry *) p2;
201
202 return e1->block == e2->block;
203 }
204
205 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE.
206 Must not be called more than once for each BLOCK. */
207
208 void
209 objfile_register_static_link (struct objfile *objfile,
210 const struct block *block,
211 const struct dynamic_prop *static_link)
212 {
213 void **slot;
214 struct static_link_htab_entry lookup_entry;
215 struct static_link_htab_entry *entry;
216
217 if (objfile->static_links == NULL)
218 objfile->static_links.reset (htab_create_alloc
219 (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL,
220 xcalloc, xfree));
221
222 /* Create a slot for the mapping, make sure it's the first mapping for this
223 block and then create the mapping itself. */
224 lookup_entry.block = block;
225 slot = htab_find_slot (objfile->static_links.get (), &lookup_entry, INSERT);
226 gdb_assert (*slot == NULL);
227
228 entry = XOBNEW (&objfile->objfile_obstack, static_link_htab_entry);
229 entry->block = block;
230 entry->static_link = static_link;
231 *slot = (void *) entry;
232 }
233
234 /* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if
235 none was found. */
236
237 const struct dynamic_prop *
238 objfile_lookup_static_link (struct objfile *objfile,
239 const struct block *block)
240 {
241 struct static_link_htab_entry *entry;
242 struct static_link_htab_entry lookup_entry;
243
244 if (objfile->static_links == NULL)
245 return NULL;
246 lookup_entry.block = block;
247 entry = ((struct static_link_htab_entry *)
248 htab_find (objfile->static_links.get (), &lookup_entry));
249 if (entry == NULL)
250 return NULL;
251
252 gdb_assert (entry->block == block);
253 return entry->static_link;
254 }
255
256 \f
257
258 /* Build up the section table that the objfile references. The
259 objfile contains pointers to the start of the table
260 (objfile->sections) and to the first location after the end of the
261 table (objfile->sections_end). */
262
263 static void
264 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
265 struct objfile *objfile, int force)
266 {
267 struct obj_section *section;
268
269 if (!force)
270 {
271 flagword aflag;
272
273 aflag = bfd_section_flags (asect);
274 if (!(aflag & SEC_ALLOC))
275 return;
276 }
277
278 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
279 section->objfile = objfile;
280 section->the_bfd_section = asect;
281 section->ovly_mapped = 0;
282 }
283
284 /* Builds a section table for OBJFILE.
285
286 Note that the OFFSET and OVLY_MAPPED in each table entry are
287 initialized to zero. */
288
289 void
290 build_objfile_section_table (struct objfile *objfile)
291 {
292 int count = gdb_bfd_count_sections (objfile->obfd);
293
294 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
295 count,
296 struct obj_section);
297 objfile->sections_end = (objfile->sections + count);
298 for (asection *sect : gdb_bfd_sections (objfile->obfd))
299 add_to_objfile_sections (objfile->obfd, sect, objfile, 0);
300
301 /* See gdb_bfd_section_index. */
302 add_to_objfile_sections (objfile->obfd, bfd_com_section_ptr, objfile, 1);
303 add_to_objfile_sections (objfile->obfd, bfd_und_section_ptr, objfile, 1);
304 add_to_objfile_sections (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
305 add_to_objfile_sections (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
306 }
307
308 /* Given a pointer to an initialized bfd (ABFD) and some flag bits,
309 initialize the new objfile as best we can and link it into the list
310 of all known objfiles.
311
312 NAME should contain original non-canonicalized filename or other
313 identifier as entered by user. If there is no better source use
314 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
315 NAME content is copied into returned objfile.
316
317 The FLAGS word contains various bits (OBJF_*) that can be taken as
318 requests for specific operations. Other bits like OBJF_SHARED are
319 simply copied through to the new objfile flags member. */
320
321 objfile::objfile (bfd *abfd, const char *name, objfile_flags flags_)
322 : flags (flags_),
323 pspace (current_program_space),
324 obfd (abfd)
325 {
326 const char *expanded_name;
327
328 /* We could use obstack_specify_allocation here instead, but
329 gdb_obstack.h specifies the alloc/dealloc functions. */
330 obstack_init (&objfile_obstack);
331
332 objfile_alloc_data (this);
333
334 gdb::unique_xmalloc_ptr<char> name_holder;
335 if (name == NULL)
336 {
337 gdb_assert (abfd == NULL);
338 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
339 expanded_name = "<<anonymous objfile>>";
340 }
341 else if ((flags & OBJF_NOT_FILENAME) != 0
342 || is_target_filename (name))
343 expanded_name = name;
344 else
345 {
346 name_holder = gdb_abspath (name);
347 expanded_name = name_holder.get ();
348 }
349 original_name = obstack_strdup (&objfile_obstack, expanded_name);
350
351 /* Update the per-objfile information that comes from the bfd, ensuring
352 that any data that is reference is saved in the per-objfile data
353 region. */
354
355 gdb_bfd_ref (abfd);
356 if (abfd != NULL)
357 {
358 mtime = bfd_get_mtime (abfd);
359
360 /* Build section table. */
361 build_objfile_section_table (this);
362 }
363
364 per_bfd = get_objfile_bfd_data (abfd);
365 }
366
367 /* If there is a valid and known entry point, function fills *ENTRY_P with it
368 and returns non-zero; otherwise it returns zero. */
369
370 int
371 entry_point_address_query (CORE_ADDR *entry_p)
372 {
373 objfile *objf = current_program_space->symfile_object_file;
374 if (objf == NULL || !objf->per_bfd->ei.entry_point_p)
375 return 0;
376
377 int idx = objf->per_bfd->ei.the_bfd_section_index;
378 *entry_p = objf->per_bfd->ei.entry_point + objf->section_offsets[idx];
379
380 return 1;
381 }
382
383 /* Get current entry point address. Call error if it is not known. */
384
385 CORE_ADDR
386 entry_point_address (void)
387 {
388 CORE_ADDR retval;
389
390 if (!entry_point_address_query (&retval))
391 error (_("Entry point address is not known."));
392
393 return retval;
394 }
395
396 separate_debug_iterator &
397 separate_debug_iterator::operator++ ()
398 {
399 gdb_assert (m_objfile != nullptr);
400
401 struct objfile *res;
402
403 /* If any, return the first child. */
404 res = m_objfile->separate_debug_objfile;
405 if (res != nullptr)
406 {
407 m_objfile = res;
408 return *this;
409 }
410
411 /* Common case where there is no separate debug objfile. */
412 if (m_objfile == m_parent)
413 {
414 m_objfile = nullptr;
415 return *this;
416 }
417
418 /* Return the brother if any. Note that we don't iterate on brothers of
419 the parents. */
420 res = m_objfile->separate_debug_objfile_link;
421 if (res != nullptr)
422 {
423 m_objfile = res;
424 return *this;
425 }
426
427 for (res = m_objfile->separate_debug_objfile_backlink;
428 res != m_parent;
429 res = res->separate_debug_objfile_backlink)
430 {
431 gdb_assert (res != nullptr);
432 if (res->separate_debug_objfile_link != nullptr)
433 {
434 m_objfile = res->separate_debug_objfile_link;
435 return *this;
436 }
437 }
438 m_objfile = nullptr;
439 return *this;
440 }
441
442 /* Add OBJFILE as a separate debug objfile of PARENT. */
443
444 static void
445 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
446 {
447 gdb_assert (objfile && parent);
448
449 /* Must not be already in a list. */
450 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
451 gdb_assert (objfile->separate_debug_objfile_link == NULL);
452 gdb_assert (objfile->separate_debug_objfile == NULL);
453 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
454 gdb_assert (parent->separate_debug_objfile_link == NULL);
455
456 objfile->separate_debug_objfile_backlink = parent;
457 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
458 parent->separate_debug_objfile = objfile;
459 }
460
461 /* See objfiles.h. */
462
463 objfile *
464 objfile::make (bfd *bfd_, const char *name_, objfile_flags flags_,
465 objfile *parent)
466 {
467 objfile *result = new objfile (bfd_, name_, flags_);
468 if (parent != nullptr)
469 add_separate_debug_objfile (result, parent);
470
471 /* Using std::make_shared might be a bit nicer here, but that would
472 require making the constructor public. */
473 current_program_space->add_objfile (std::shared_ptr<objfile> (result),
474 parent);
475
476 /* Rebuild section map next time we need it. */
477 get_objfile_pspace_data (current_program_space)->new_objfiles_available = 1;
478
479 return result;
480 }
481
482 /* See objfiles.h. */
483
484 void
485 objfile::unlink ()
486 {
487 current_program_space->remove_objfile (this);
488 }
489
490 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
491 itself. */
492
493 void
494 free_objfile_separate_debug (struct objfile *objfile)
495 {
496 struct objfile *child;
497
498 for (child = objfile->separate_debug_objfile; child;)
499 {
500 struct objfile *next_child = child->separate_debug_objfile_link;
501 child->unlink ();
502 child = next_child;
503 }
504 }
505
506 /* Destroy an objfile and all the symtabs and psymtabs under it. */
507
508 objfile::~objfile ()
509 {
510 /* First notify observers that this objfile is about to be freed. */
511 gdb::observers::free_objfile.notify (this);
512
513 /* Free all separate debug objfiles. */
514 free_objfile_separate_debug (this);
515
516 if (separate_debug_objfile_backlink)
517 {
518 /* We freed the separate debug file, make sure the base objfile
519 doesn't reference it. */
520 struct objfile *child;
521
522 child = separate_debug_objfile_backlink->separate_debug_objfile;
523
524 if (child == this)
525 {
526 /* THIS is the first child. */
527 separate_debug_objfile_backlink->separate_debug_objfile =
528 separate_debug_objfile_link;
529 }
530 else
531 {
532 /* Find THIS in the list. */
533 while (1)
534 {
535 if (child->separate_debug_objfile_link == this)
536 {
537 child->separate_debug_objfile_link =
538 separate_debug_objfile_link;
539 break;
540 }
541 child = child->separate_debug_objfile_link;
542 gdb_assert (child);
543 }
544 }
545 }
546
547 /* Remove any references to this objfile in the global value
548 lists. */
549 preserve_values (this);
550
551 /* It still may reference data modules have associated with the objfile and
552 the symbol file data. */
553 forget_cached_source_info_for_objfile (this);
554
555 breakpoint_free_objfile (this);
556 btrace_free_objfile (this);
557
558 /* First do any symbol file specific actions required when we are
559 finished with a particular symbol file. Note that if the objfile
560 is using reusable symbol information (via mmalloc) then each of
561 these routines is responsible for doing the correct thing, either
562 freeing things which are valid only during this particular gdb
563 execution, or leaving them to be reused during the next one. */
564
565 if (sf != NULL)
566 (*sf->sym_finish) (this);
567
568 /* Discard any data modules have associated with the objfile. The function
569 still may reference obfd. */
570 objfile_free_data (this);
571
572 if (obfd)
573 gdb_bfd_unref (obfd);
574 else
575 delete per_bfd;
576
577 /* Before the symbol table code was redone to make it easier to
578 selectively load and remove information particular to a specific
579 linkage unit, gdb used to do these things whenever the monolithic
580 symbol table was blown away. How much still needs to be done
581 is unknown, but we play it safe for now and keep each action until
582 it is shown to be no longer needed. */
583
584 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
585 for example), so we need to call this here. */
586 clear_pc_function_cache ();
587
588 /* Check to see if the current_source_symtab belongs to this objfile,
589 and if so, call clear_current_source_symtab_and_line. */
590
591 {
592 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
593
594 if (cursal.symtab && cursal.symtab->compunit ()->objfile () == this)
595 clear_current_source_symtab_and_line ();
596 }
597
598 /* Free the obstacks for non-reusable objfiles. */
599 obstack_free (&objfile_obstack, 0);
600
601 /* Rebuild section map next time we need it. */
602 get_objfile_pspace_data (pspace)->section_map_dirty = 1;
603 }
604
605 \f
606 /* A helper function for objfile_relocate1 that relocates a single
607 symbol. */
608
609 static void
610 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
611 const section_offsets &delta)
612 {
613 fixup_symbol_section (sym, objfile);
614
615 /* The RS6000 code from which this was taken skipped
616 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
617 But I'm leaving out that test, on the theory that
618 they can't possibly pass the tests below. */
619 if ((sym->aclass () == LOC_LABEL
620 || sym->aclass () == LOC_STATIC)
621 && sym->section_index () >= 0)
622 sym->set_value_address (sym->value_address ()
623 + delta[sym->section_index ()]);
624 }
625
626 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
627 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
628 Return non-zero iff any change happened. */
629
630 static int
631 objfile_relocate1 (struct objfile *objfile,
632 const section_offsets &new_offsets)
633 {
634 section_offsets delta (objfile->section_offsets.size ());
635
636 int something_changed = 0;
637
638 for (int i = 0; i < objfile->section_offsets.size (); ++i)
639 {
640 delta[i] = new_offsets[i] - objfile->section_offsets[i];
641 if (delta[i] != 0)
642 something_changed = 1;
643 }
644 if (!something_changed)
645 return 0;
646
647 /* OK, get all the symtabs. */
648 {
649 for (compunit_symtab *cust : objfile->compunits ())
650 {
651 for (symtab *s : cust->filetabs ())
652 {
653 struct linetable *l;
654
655 /* First the line table. */
656 l = s->linetable ();
657 if (l)
658 {
659 for (int i = 0; i < l->nitems; ++i)
660 l->item[i].pc += delta[cust->block_line_section ()];
661 }
662 }
663 }
664
665 for (compunit_symtab *cust : objfile->compunits ())
666 {
667 const struct blockvector *bv = cust->blockvector ();
668 int block_line_section = cust->block_line_section ();
669
670 if (BLOCKVECTOR_MAP (bv))
671 addrmap_relocate (BLOCKVECTOR_MAP (bv), delta[block_line_section]);
672
673 for (int i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
674 {
675 struct block *b;
676 struct symbol *sym;
677 struct mdict_iterator miter;
678
679 b = BLOCKVECTOR_BLOCK (bv, i);
680 BLOCK_START (b) += delta[block_line_section];
681 BLOCK_END (b) += delta[block_line_section];
682
683 if (BLOCK_RANGES (b) != nullptr)
684 for (int j = 0; j < BLOCK_NRANGES (b); j++)
685 {
686 BLOCK_RANGE_START (b, j) += delta[block_line_section];
687 BLOCK_RANGE_END (b, j) += delta[block_line_section];
688 }
689
690 /* We only want to iterate over the local symbols, not any
691 symbols in included symtabs. */
692 ALL_DICT_SYMBOLS (BLOCK_MULTIDICT (b), miter, sym)
693 {
694 relocate_one_symbol (sym, objfile, delta);
695 }
696 }
697 }
698 }
699
700 /* Notify the quick symbol object. */
701 for (const auto &iter : objfile->qf)
702 iter->relocated ();
703
704 /* Relocate isolated symbols. */
705 {
706 struct symbol *iter;
707
708 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
709 relocate_one_symbol (iter, objfile, delta);
710 }
711
712 {
713 int i;
714
715 for (i = 0; i < objfile->section_offsets.size (); ++i)
716 objfile->section_offsets[i] = new_offsets[i];
717 }
718
719 /* Rebuild section map next time we need it. */
720 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
721
722 /* Update the table in exec_ops, used to read memory. */
723 struct obj_section *s;
724 ALL_OBJFILE_OSECTIONS (objfile, s)
725 {
726 int idx = s - objfile->sections;
727
728 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
729 s->addr ());
730 }
731
732 /* Data changed. */
733 return 1;
734 }
735
736 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
737 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
738
739 The number and ordering of sections does differ between the two objfiles.
740 Only their names match. Also the file offsets will differ (objfile being
741 possibly prelinked but separate_debug_objfile is probably not prelinked) but
742 the in-memory absolute address as specified by NEW_OFFSETS must match both
743 files. */
744
745 void
746 objfile_relocate (struct objfile *objfile,
747 const section_offsets &new_offsets)
748 {
749 int changed = 0;
750
751 changed |= objfile_relocate1 (objfile, new_offsets);
752
753 for (::objfile *debug_objfile : objfile->separate_debug_objfiles ())
754 {
755 if (debug_objfile == objfile)
756 continue;
757
758 section_addr_info objfile_addrs
759 = build_section_addr_info_from_objfile (objfile);
760
761 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
762 relative ones must be already created according to debug_objfile. */
763
764 addr_info_make_relative (&objfile_addrs, debug_objfile->obfd);
765
766 gdb_assert (debug_objfile->section_offsets.size ()
767 == gdb_bfd_count_sections (debug_objfile->obfd));
768 section_offsets new_debug_offsets
769 (debug_objfile->section_offsets.size ());
770 relative_addr_info_to_section_offsets (new_debug_offsets, objfile_addrs);
771
772 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
773 }
774
775 /* Relocate breakpoints as necessary, after things are relocated. */
776 if (changed)
777 breakpoint_re_set ();
778 }
779
780 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
781 not touched here.
782 Return non-zero iff any change happened. */
783
784 static int
785 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
786 {
787 section_offsets new_offsets (objfile->section_offsets.size (), slide);
788 return objfile_relocate1 (objfile, new_offsets);
789 }
790
791 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
792 SEPARATE_DEBUG_OBJFILEs. */
793
794 void
795 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
796 {
797 int changed = 0;
798
799 for (::objfile *debug_objfile : objfile->separate_debug_objfiles ())
800 changed |= objfile_rebase1 (debug_objfile, slide);
801
802 /* Relocate breakpoints as necessary, after things are relocated. */
803 if (changed)
804 breakpoint_re_set ();
805 }
806 \f
807 /* Return non-zero if OBJFILE has full symbols. */
808
809 int
810 objfile_has_full_symbols (struct objfile *objfile)
811 {
812 return objfile->compunit_symtabs != NULL;
813 }
814
815 /* Return non-zero if OBJFILE has full or partial symbols, either directly
816 or through a separate debug file. */
817
818 int
819 objfile_has_symbols (struct objfile *objfile)
820 {
821 for (::objfile *o : objfile->separate_debug_objfiles ())
822 if (o->has_partial_symbols () || objfile_has_full_symbols (o))
823 return 1;
824 return 0;
825 }
826
827
828 /* Many places in gdb want to test just to see if we have any partial
829 symbols available. This function returns zero if none are currently
830 available, nonzero otherwise. */
831
832 int
833 have_partial_symbols (void)
834 {
835 for (objfile *ofp : current_program_space->objfiles ())
836 {
837 if (ofp->has_partial_symbols ())
838 return 1;
839 }
840 return 0;
841 }
842
843 /* Many places in gdb want to test just to see if we have any full
844 symbols available. This function returns zero if none are currently
845 available, nonzero otherwise. */
846
847 int
848 have_full_symbols (void)
849 {
850 for (objfile *ofp : current_program_space->objfiles ())
851 {
852 if (objfile_has_full_symbols (ofp))
853 return 1;
854 }
855 return 0;
856 }
857
858
859 /* This operations deletes all objfile entries that represent solibs that
860 weren't explicitly loaded by the user, via e.g., the add-symbol-file
861 command. */
862
863 void
864 objfile_purge_solibs (void)
865 {
866 for (objfile *objf : current_program_space->objfiles_safe ())
867 {
868 /* We assume that the solib package has been purged already, or will
869 be soon. */
870
871 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
872 objf->unlink ();
873 }
874 }
875
876
877 /* Many places in gdb want to test just to see if we have any minimal
878 symbols available. This function returns zero if none are currently
879 available, nonzero otherwise. */
880
881 int
882 have_minimal_symbols (void)
883 {
884 for (objfile *ofp : current_program_space->objfiles ())
885 {
886 if (ofp->per_bfd->minimal_symbol_count > 0)
887 {
888 return 1;
889 }
890 }
891 return 0;
892 }
893
894 /* Qsort comparison function. */
895
896 static bool
897 sort_cmp (const struct obj_section *sect1, const obj_section *sect2)
898 {
899 const CORE_ADDR sect1_addr = sect1->addr ();
900 const CORE_ADDR sect2_addr = sect2->addr ();
901
902 if (sect1_addr < sect2_addr)
903 return true;
904 else if (sect1_addr > sect2_addr)
905 return false;
906 else
907 {
908 /* Sections are at the same address. This could happen if
909 A) we have an objfile and a separate debuginfo.
910 B) we are confused, and have added sections without proper relocation,
911 or something like that. */
912
913 const struct objfile *const objfile1 = sect1->objfile;
914 const struct objfile *const objfile2 = sect2->objfile;
915
916 if (objfile1->separate_debug_objfile == objfile2
917 || objfile2->separate_debug_objfile == objfile1)
918 {
919 /* Case A. The ordering doesn't matter: separate debuginfo files
920 will be filtered out later. */
921
922 return false;
923 }
924
925 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
926 triage. This section could be slow (since we iterate over all
927 objfiles in each call to sort_cmp), but this shouldn't happen
928 very often (GDB is already in a confused state; one hopes this
929 doesn't happen at all). If you discover that significant time is
930 spent in the loops below, do 'set complaints 100' and examine the
931 resulting complaints. */
932 if (objfile1 == objfile2)
933 {
934 /* Both sections came from the same objfile. We are really
935 confused. Sort on sequence order of sections within the
936 objfile. The order of checks is important here, if we find a
937 match on SECT2 first then either SECT2 is before SECT1, or,
938 SECT2 == SECT1, in both cases we should return false. The
939 second case shouldn't occur during normal use, but std::sort
940 does check that '!(a < a)' when compiled in debug mode. */
941
942 const struct obj_section *osect;
943
944 ALL_OBJFILE_OSECTIONS (objfile1, osect)
945 if (osect == sect2)
946 return false;
947 else if (osect == sect1)
948 return true;
949
950 /* We should have found one of the sections before getting here. */
951 gdb_assert_not_reached ("section not found");
952 }
953 else
954 {
955 /* Sort on sequence number of the objfile in the chain. */
956
957 for (objfile *objfile : current_program_space->objfiles ())
958 if (objfile == objfile1)
959 return true;
960 else if (objfile == objfile2)
961 return false;
962
963 /* We should have found one of the objfiles before getting here. */
964 gdb_assert_not_reached ("objfile not found");
965 }
966 }
967
968 /* Unreachable. */
969 gdb_assert_not_reached ("unexpected code path");
970 return false;
971 }
972
973 /* Select "better" obj_section to keep. We prefer the one that came from
974 the real object, rather than the one from separate debuginfo.
975 Most of the time the two sections are exactly identical, but with
976 prelinking the .rel.dyn section in the real object may have different
977 size. */
978
979 static struct obj_section *
980 preferred_obj_section (struct obj_section *a, struct obj_section *b)
981 {
982 gdb_assert (a->addr () == b->addr ());
983 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
984 || (b->objfile->separate_debug_objfile == a->objfile));
985 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
986 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
987
988 if (a->objfile->separate_debug_objfile != NULL)
989 return a;
990 return b;
991 }
992
993 /* Return 1 if SECTION should be inserted into the section map.
994 We want to insert only non-overlay and non-TLS section. */
995
996 static int
997 insert_section_p (const struct bfd *abfd,
998 const struct bfd_section *section)
999 {
1000 const bfd_vma lma = bfd_section_lma (section);
1001
1002 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (section)
1003 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1004 /* This is an overlay section. IN_MEMORY check is needed to avoid
1005 discarding sections from the "system supplied DSO" (aka vdso)
1006 on some Linux systems (e.g. Fedora 11). */
1007 return 0;
1008 if ((bfd_section_flags (section) & SEC_THREAD_LOCAL) != 0)
1009 /* This is a TLS section. */
1010 return 0;
1011
1012 return 1;
1013 }
1014
1015 /* Filter out overlapping sections where one section came from the real
1016 objfile, and the other from a separate debuginfo file.
1017 Return the size of table after redundant sections have been eliminated. */
1018
1019 static int
1020 filter_debuginfo_sections (struct obj_section **map, int map_size)
1021 {
1022 int i, j;
1023
1024 for (i = 0, j = 0; i < map_size - 1; i++)
1025 {
1026 struct obj_section *const sect1 = map[i];
1027 struct obj_section *const sect2 = map[i + 1];
1028 const struct objfile *const objfile1 = sect1->objfile;
1029 const struct objfile *const objfile2 = sect2->objfile;
1030 const CORE_ADDR sect1_addr = sect1->addr ();
1031 const CORE_ADDR sect2_addr = sect2->addr ();
1032
1033 if (sect1_addr == sect2_addr
1034 && (objfile1->separate_debug_objfile == objfile2
1035 || objfile2->separate_debug_objfile == objfile1))
1036 {
1037 map[j++] = preferred_obj_section (sect1, sect2);
1038 ++i;
1039 }
1040 else
1041 map[j++] = sect1;
1042 }
1043
1044 if (i < map_size)
1045 {
1046 gdb_assert (i == map_size - 1);
1047 map[j++] = map[i];
1048 }
1049
1050 /* The map should not have shrunk to less than half the original size. */
1051 gdb_assert (map_size / 2 <= j);
1052
1053 return j;
1054 }
1055
1056 /* Filter out overlapping sections, issuing a warning if any are found.
1057 Overlapping sections could really be overlay sections which we didn't
1058 classify as such in insert_section_p, or we could be dealing with a
1059 corrupt binary. */
1060
1061 static int
1062 filter_overlapping_sections (struct obj_section **map, int map_size)
1063 {
1064 int i, j;
1065
1066 for (i = 0, j = 0; i < map_size - 1; )
1067 {
1068 int k;
1069
1070 map[j++] = map[i];
1071 for (k = i + 1; k < map_size; k++)
1072 {
1073 struct obj_section *const sect1 = map[i];
1074 struct obj_section *const sect2 = map[k];
1075 const CORE_ADDR sect1_addr = sect1->addr ();
1076 const CORE_ADDR sect2_addr = sect2->addr ();
1077 const CORE_ADDR sect1_endaddr = sect1->endaddr ();
1078
1079 gdb_assert (sect1_addr <= sect2_addr);
1080
1081 if (sect1_endaddr <= sect2_addr)
1082 break;
1083 else
1084 {
1085 /* We have an overlap. Report it. */
1086
1087 struct objfile *const objf1 = sect1->objfile;
1088 struct objfile *const objf2 = sect2->objfile;
1089
1090 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1091 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1092
1093 const CORE_ADDR sect2_endaddr = sect2->endaddr ();
1094
1095 struct gdbarch *const gdbarch = objf1->arch ();
1096
1097 complaint (_("unexpected overlap between:\n"
1098 " (A) section `%s' from `%s' [%s, %s)\n"
1099 " (B) section `%s' from `%s' [%s, %s).\n"
1100 "Will ignore section B"),
1101 bfd_section_name (bfds1), objfile_name (objf1),
1102 paddress (gdbarch, sect1_addr),
1103 paddress (gdbarch, sect1_endaddr),
1104 bfd_section_name (bfds2), objfile_name (objf2),
1105 paddress (gdbarch, sect2_addr),
1106 paddress (gdbarch, sect2_endaddr));
1107 }
1108 }
1109 i = k;
1110 }
1111
1112 if (i < map_size)
1113 {
1114 gdb_assert (i == map_size - 1);
1115 map[j++] = map[i];
1116 }
1117
1118 return j;
1119 }
1120
1121
1122 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1123 TLS, overlay and overlapping sections. */
1124
1125 static void
1126 update_section_map (struct program_space *pspace,
1127 struct obj_section ***pmap, int *pmap_size)
1128 {
1129 struct objfile_pspace_info *pspace_info;
1130 int alloc_size, map_size, i;
1131 struct obj_section *s, **map;
1132
1133 pspace_info = get_objfile_pspace_data (pspace);
1134 gdb_assert (pspace_info->section_map_dirty != 0
1135 || pspace_info->new_objfiles_available != 0);
1136
1137 map = *pmap;
1138 xfree (map);
1139
1140 alloc_size = 0;
1141 for (objfile *objfile : pspace->objfiles ())
1142 ALL_OBJFILE_OSECTIONS (objfile, s)
1143 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1144 alloc_size += 1;
1145
1146 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1147 if (alloc_size == 0)
1148 {
1149 *pmap = NULL;
1150 *pmap_size = 0;
1151 return;
1152 }
1153
1154 map = XNEWVEC (struct obj_section *, alloc_size);
1155
1156 i = 0;
1157 for (objfile *objfile : pspace->objfiles ())
1158 ALL_OBJFILE_OSECTIONS (objfile, s)
1159 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1160 map[i++] = s;
1161
1162 std::sort (map, map + alloc_size, sort_cmp);
1163 map_size = filter_debuginfo_sections(map, alloc_size);
1164 map_size = filter_overlapping_sections(map, map_size);
1165
1166 if (map_size < alloc_size)
1167 /* Some sections were eliminated. Trim excess space. */
1168 map = XRESIZEVEC (struct obj_section *, map, map_size);
1169 else
1170 gdb_assert (alloc_size == map_size);
1171
1172 *pmap = map;
1173 *pmap_size = map_size;
1174 }
1175
1176 /* Bsearch comparison function. */
1177
1178 static int
1179 bsearch_cmp (const void *key, const void *elt)
1180 {
1181 const CORE_ADDR pc = *(CORE_ADDR *) key;
1182 const struct obj_section *section = *(const struct obj_section **) elt;
1183
1184 if (pc < section->addr ())
1185 return -1;
1186 if (pc < section->endaddr ())
1187 return 0;
1188 return 1;
1189 }
1190
1191 /* Returns a section whose range includes PC or NULL if none found. */
1192
1193 struct obj_section *
1194 find_pc_section (CORE_ADDR pc)
1195 {
1196 struct objfile_pspace_info *pspace_info;
1197 struct obj_section *s, **sp;
1198
1199 /* Check for mapped overlay section first. */
1200 s = find_pc_mapped_section (pc);
1201 if (s)
1202 return s;
1203
1204 pspace_info = get_objfile_pspace_data (current_program_space);
1205 if (pspace_info->section_map_dirty
1206 || (pspace_info->new_objfiles_available
1207 && !pspace_info->inhibit_updates))
1208 {
1209 update_section_map (current_program_space,
1210 &pspace_info->sections,
1211 &pspace_info->num_sections);
1212
1213 /* Don't need updates to section map until objfiles are added,
1214 removed or relocated. */
1215 pspace_info->new_objfiles_available = 0;
1216 pspace_info->section_map_dirty = 0;
1217 }
1218
1219 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1220 bsearch be non-NULL. */
1221 if (pspace_info->sections == NULL)
1222 {
1223 gdb_assert (pspace_info->num_sections == 0);
1224 return NULL;
1225 }
1226
1227 sp = (struct obj_section **) bsearch (&pc,
1228 pspace_info->sections,
1229 pspace_info->num_sections,
1230 sizeof (*pspace_info->sections),
1231 bsearch_cmp);
1232 if (sp != NULL)
1233 return *sp;
1234 return NULL;
1235 }
1236
1237
1238 /* Return non-zero if PC is in a section called NAME. */
1239
1240 int
1241 pc_in_section (CORE_ADDR pc, const char *name)
1242 {
1243 struct obj_section *s;
1244 int retval = 0;
1245
1246 s = find_pc_section (pc);
1247
1248 retval = (s != NULL
1249 && s->the_bfd_section->name != NULL
1250 && strcmp (s->the_bfd_section->name, name) == 0);
1251 return (retval);
1252 }
1253 \f
1254
1255 /* Set section_map_dirty so section map will be rebuilt next time it
1256 is used. Called by reread_symbols. */
1257
1258 void
1259 objfiles_changed (void)
1260 {
1261 /* Rebuild section map next time we need it. */
1262 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1263 }
1264
1265 /* See comments in objfiles.h. */
1266
1267 scoped_restore_tmpl<int>
1268 inhibit_section_map_updates (struct program_space *pspace)
1269 {
1270 return scoped_restore_tmpl<int>
1271 (&get_objfile_pspace_data (pspace)->inhibit_updates, 1);
1272 }
1273
1274 /* See objfiles.h. */
1275
1276 bool
1277 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1278 {
1279 struct obj_section *osect;
1280
1281 if (objfile == NULL)
1282 return false;
1283
1284 ALL_OBJFILE_OSECTIONS (objfile, osect)
1285 {
1286 if (section_is_overlay (osect) && !section_is_mapped (osect))
1287 continue;
1288
1289 if (osect->addr () <= addr && addr < osect->endaddr ())
1290 return true;
1291 }
1292 return false;
1293 }
1294
1295 /* See objfiles.h. */
1296
1297 bool
1298 shared_objfile_contains_address_p (struct program_space *pspace,
1299 CORE_ADDR address)
1300 {
1301 for (objfile *objfile : pspace->objfiles ())
1302 {
1303 if ((objfile->flags & OBJF_SHARED) != 0
1304 && is_addr_in_objfile (address, objfile))
1305 return true;
1306 }
1307
1308 return false;
1309 }
1310
1311 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1312 gdbarch method. It is equivalent to use the objfiles iterable,
1313 searching the objfiles in the order they are stored internally,
1314 ignoring CURRENT_OBJFILE.
1315
1316 On most platforms, it should be close enough to doing the best
1317 we can without some knowledge specific to the architecture. */
1318
1319 void
1320 default_iterate_over_objfiles_in_search_order
1321 (struct gdbarch *gdbarch,
1322 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1323 void *cb_data, struct objfile *current_objfile)
1324 {
1325 int stop = 0;
1326
1327 for (objfile *objfile : current_program_space->objfiles ())
1328 {
1329 stop = cb (objfile, cb_data);
1330 if (stop)
1331 return;
1332 }
1333 }
1334
1335 /* See objfiles.h. */
1336
1337 const char *
1338 objfile_name (const struct objfile *objfile)
1339 {
1340 if (objfile->obfd != NULL)
1341 return bfd_get_filename (objfile->obfd);
1342
1343 return objfile->original_name;
1344 }
1345
1346 /* See objfiles.h. */
1347
1348 const char *
1349 objfile_filename (const struct objfile *objfile)
1350 {
1351 if (objfile->obfd != NULL)
1352 return bfd_get_filename (objfile->obfd);
1353
1354 return NULL;
1355 }
1356
1357 /* See objfiles.h. */
1358
1359 const char *
1360 objfile_debug_name (const struct objfile *objfile)
1361 {
1362 return lbasename (objfile->original_name);
1363 }
1364
1365 /* See objfiles.h. */
1366
1367 const char *
1368 objfile_flavour_name (struct objfile *objfile)
1369 {
1370 if (objfile->obfd != NULL)
1371 return bfd_flavour_name (bfd_get_flavour (objfile->obfd));
1372 return NULL;
1373 }
1374
1375 /* See objfiles.h. */
1376
1377 struct type *
1378 objfile_int_type (struct objfile *of, int size_in_bytes, bool unsigned_p)
1379 {
1380 struct type *int_type;
1381
1382 /* Helper macro to examine the various builtin types. */
1383 #define TRY_TYPE(F) \
1384 int_type = (unsigned_p \
1385 ? objfile_type (of)->builtin_unsigned_ ## F \
1386 : objfile_type (of)->builtin_ ## F); \
1387 if (int_type != NULL && TYPE_LENGTH (int_type) == size_in_bytes) \
1388 return int_type
1389
1390 TRY_TYPE (char);
1391 TRY_TYPE (short);
1392 TRY_TYPE (int);
1393 TRY_TYPE (long);
1394 TRY_TYPE (long_long);
1395
1396 #undef TRY_TYPE
1397
1398 gdb_assert_not_reached ("unable to find suitable integer type");
1399 }