From branch. Bump VERSION number.
[binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2 Copyright 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32
33 #include <sys/types.h>
34 #include "gdb_stat.h"
35 #include <fcntl.h>
36 #include "obstack.h"
37 #include "gdb_string.h"
38
39 #include "breakpoint.h"
40
41 /* Prototypes for local functions */
42
43 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
44
45 static int
46 open_existing_mapped_file PARAMS ((char *, long, int));
47
48 static int
49 open_mapped_file PARAMS ((char *filename, long mtime, int flags));
50
51 static PTR
52 map_to_file PARAMS ((int));
53
54 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
55
56 static void
57 add_to_objfile_sections PARAMS ((bfd *, sec_ptr, PTR));
58
59 /* Externally visible variables that are owned by this module.
60 See declarations in objfile.h for more info. */
61
62 struct objfile *object_files; /* Linked list of all objfiles */
63 struct objfile *current_objfile; /* For symbol file being read in */
64 struct objfile *symfile_objfile; /* Main symbol table loaded from */
65 struct objfile *rt_common_objfile; /* For runtime common symbols */
66
67 int mapped_symbol_files; /* Try to use mapped symbol files */
68
69 /* Locate all mappable sections of a BFD file.
70 objfile_p_char is a char * to get it through
71 bfd_map_over_sections; we cast it back to its proper type. */
72
73 #ifndef TARGET_KEEP_SECTION
74 #define TARGET_KEEP_SECTION(ASECT) 0
75 #endif
76
77 /* Called via bfd_map_over_sections to build up the section table that
78 the objfile references. The objfile contains pointers to the start
79 of the table (objfile->sections) and to the first location after
80 the end of the table (objfile->sections_end). */
81
82 static void
83 add_to_objfile_sections (abfd, asect, objfile_p_char)
84 bfd *abfd;
85 sec_ptr asect;
86 PTR objfile_p_char;
87 {
88 struct objfile *objfile = (struct objfile *) objfile_p_char;
89 struct obj_section section;
90 flagword aflag;
91
92 aflag = bfd_get_section_flags (abfd, asect);
93
94 if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect)))
95 return;
96
97 if (0 == bfd_section_size (abfd, asect))
98 return;
99 section.offset = 0;
100 section.objfile = objfile;
101 section.the_bfd_section = asect;
102 section.ovly_mapped = 0;
103 section.addr = bfd_section_vma (abfd, asect);
104 section.endaddr = section.addr + bfd_section_size (abfd, asect);
105 obstack_grow (&objfile->psymbol_obstack, (char *) &section, sizeof (section));
106 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
107 }
108
109 /* Builds a section table for OBJFILE.
110 Returns 0 if OK, 1 on error (in which case bfd_error contains the
111 error).
112
113 Note that while we are building the table, which goes into the
114 psymbol obstack, we hijack the sections_end pointer to instead hold
115 a count of the number of sections. When bfd_map_over_sections
116 returns, this count is used to compute the pointer to the end of
117 the sections table, which then overwrites the count.
118
119 Also note that the OFFSET and OVLY_MAPPED in each table entry
120 are initialized to zero.
121
122 Also note that if anything else writes to the psymbol obstack while
123 we are building the table, we're pretty much hosed. */
124
125 int
126 build_objfile_section_table (objfile)
127 struct objfile *objfile;
128 {
129 /* objfile->sections can be already set when reading a mapped symbol
130 file. I believe that we do need to rebuild the section table in
131 this case (we rebuild other things derived from the bfd), but we
132 can't free the old one (it's in the psymbol_obstack). So we just
133 waste some memory. */
134
135 objfile->sections_end = 0;
136 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile);
137 objfile->sections = (struct obj_section *)
138 obstack_finish (&objfile->psymbol_obstack);
139 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
140 return (0);
141 }
142
143 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
144 allocate a new objfile struct, fill it in as best we can, link it
145 into the list of all known objfiles, and return a pointer to the
146 new objfile struct.
147
148 The FLAGS word contains various bits (OBJF_*) that can be taken as
149 requests for specific operations, like trying to open a mapped
150 version of the objfile (OBJF_MAPPED). Other bits like
151 OBJF_SHARED are simply copied through to the new objfile flags
152 member. */
153
154 struct objfile *
155 allocate_objfile (abfd, flags)
156 bfd *abfd;
157 int flags;
158 {
159 struct objfile *objfile = NULL;
160 struct objfile *last_one = NULL;
161
162 if (mapped_symbol_files)
163 flags |= OBJF_MAPPED;
164
165 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
166 if (abfd != NULL)
167 {
168
169 /* If we can support mapped symbol files, try to open/reopen the
170 mapped file that corresponds to the file from which we wish to
171 read symbols. If the objfile is to be mapped, we must malloc
172 the structure itself using the mmap version, and arrange that
173 all memory allocation for the objfile uses the mmap routines.
174 If we are reusing an existing mapped file, from which we get
175 our objfile pointer, we have to make sure that we update the
176 pointers to the alloc/free functions in the obstack, in case
177 these functions have moved within the current gdb. */
178
179 int fd;
180
181 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
182 flags);
183 if (fd >= 0)
184 {
185 PTR md;
186
187 if ((md = map_to_file (fd)) == NULL)
188 {
189 close (fd);
190 }
191 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
192 {
193 /* Update memory corruption handler function addresses. */
194 init_malloc (md);
195 objfile->md = md;
196 objfile->mmfd = fd;
197 /* Update pointers to functions to *our* copies */
198 obstack_chunkfun (&objfile->psymbol_cache.cache, xmmalloc);
199 obstack_freefun (&objfile->psymbol_cache.cache, mfree);
200 obstack_chunkfun (&objfile->psymbol_obstack, xmmalloc);
201 obstack_freefun (&objfile->psymbol_obstack, mfree);
202 obstack_chunkfun (&objfile->symbol_obstack, xmmalloc);
203 obstack_freefun (&objfile->symbol_obstack, mfree);
204 obstack_chunkfun (&objfile->type_obstack, xmmalloc);
205 obstack_freefun (&objfile->type_obstack, mfree);
206 /* If already in objfile list, unlink it. */
207 unlink_objfile (objfile);
208 /* Forget things specific to a particular gdb, may have changed. */
209 objfile->sf = NULL;
210 }
211 else
212 {
213
214 /* Set up to detect internal memory corruption. MUST be
215 done before the first malloc. See comments in
216 init_malloc() and mmcheck(). */
217
218 init_malloc (md);
219
220 objfile = (struct objfile *)
221 xmmalloc (md, sizeof (struct objfile));
222 memset (objfile, 0, sizeof (struct objfile));
223 objfile->md = md;
224 objfile->mmfd = fd;
225 objfile->flags |= OBJF_MAPPED;
226 mmalloc_setkey (objfile->md, 0, objfile);
227 obstack_specify_allocation_with_arg (&objfile->psymbol_cache.cache,
228 0, 0, xmmalloc, mfree,
229 objfile->md);
230 obstack_specify_allocation_with_arg (&objfile->psymbol_obstack,
231 0, 0, xmmalloc, mfree,
232 objfile->md);
233 obstack_specify_allocation_with_arg (&objfile->symbol_obstack,
234 0, 0, xmmalloc, mfree,
235 objfile->md);
236 obstack_specify_allocation_with_arg (&objfile->type_obstack,
237 0, 0, xmmalloc, mfree,
238 objfile->md);
239 }
240 }
241
242 if ((flags & OBJF_MAPPED) && (objfile == NULL))
243 {
244 warning ("symbol table for '%s' will not be mapped",
245 bfd_get_filename (abfd));
246 flags &= ~OBJF_MAPPED;
247 }
248 }
249 #else /* !defined(USE_MMALLOC) || !defined(HAVE_MMAP) */
250
251 if (flags & OBJF_MAPPED)
252 {
253 warning ("mapped symbol tables are not supported on this machine; missing or broken mmap().");
254
255 /* Turn off the global flag so we don't try to do mapped symbol tables
256 any more, which shuts up gdb unless the user specifically gives the
257 "mapped" keyword again. */
258
259 mapped_symbol_files = 0;
260 flags &= ~OBJF_MAPPED;
261 }
262
263 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
264
265 /* If we don't support mapped symbol files, didn't ask for the file to be
266 mapped, or failed to open the mapped file for some reason, then revert
267 back to an unmapped objfile. */
268
269 if (objfile == NULL)
270 {
271 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
272 memset (objfile, 0, sizeof (struct objfile));
273 objfile->md = NULL;
274 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
275 xmalloc, free);
276 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
277 free);
278 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
279 free);
280 obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
281 free);
282 flags &= ~OBJF_MAPPED;
283 }
284
285 /* Update the per-objfile information that comes from the bfd, ensuring
286 that any data that is reference is saved in the per-objfile data
287 region. */
288
289 objfile->obfd = abfd;
290 if (objfile->name != NULL)
291 {
292 mfree (objfile->md, objfile->name);
293 }
294 if (abfd != NULL)
295 {
296 objfile->name = mstrsave (objfile->md, bfd_get_filename (abfd));
297 objfile->mtime = bfd_get_mtime (abfd);
298
299 /* Build section table. */
300
301 if (build_objfile_section_table (objfile))
302 {
303 error ("Can't find the file sections in `%s': %s",
304 objfile->name, bfd_errmsg (bfd_get_error ()));
305 }
306 }
307
308 /* Initialize the section indexes for this objfile, so that we can
309 later detect if they are used w/o being properly assigned to. */
310
311 objfile->sect_index_text = -1;
312 objfile->sect_index_data = -1;
313 objfile->sect_index_bss = -1;
314 objfile->sect_index_rodata = -1;
315
316 /* Add this file onto the tail of the linked list of other such files. */
317
318 objfile->next = NULL;
319 if (object_files == NULL)
320 object_files = objfile;
321 else
322 {
323 for (last_one = object_files;
324 last_one->next;
325 last_one = last_one->next);
326 last_one->next = objfile;
327 }
328
329 /* Save passed in flag bits. */
330 objfile->flags |= flags;
331
332 return (objfile);
333 }
334
335 /* Put OBJFILE at the front of the list. */
336
337 void
338 objfile_to_front (objfile)
339 struct objfile *objfile;
340 {
341 struct objfile **objp;
342 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
343 {
344 if (*objp == objfile)
345 {
346 /* Unhook it from where it is. */
347 *objp = objfile->next;
348 /* Put it in the front. */
349 objfile->next = object_files;
350 object_files = objfile;
351 break;
352 }
353 }
354 }
355
356 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
357 list.
358
359 It is not a bug, or error, to call this function if OBJFILE is not known
360 to be in the current list. This is done in the case of mapped objfiles,
361 for example, just to ensure that the mapped objfile doesn't appear twice
362 in the list. Since the list is threaded, linking in a mapped objfile
363 twice would create a circular list.
364
365 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
366 unlinking it, just to ensure that we have completely severed any linkages
367 between the OBJFILE and the list. */
368
369 void
370 unlink_objfile (objfile)
371 struct objfile *objfile;
372 {
373 struct objfile **objpp;
374
375 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
376 {
377 if (*objpp == objfile)
378 {
379 *objpp = (*objpp)->next;
380 objfile->next = NULL;
381 return;
382 }
383 }
384
385 internal_error ("objfiles.c (unlink_objfile): objfile already unlinked");
386 }
387
388
389 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
390 that as much as possible is allocated on the symbol_obstack and
391 psymbol_obstack, so that the memory can be efficiently freed.
392
393 Things which we do NOT free because they are not in malloc'd memory
394 or not in memory specific to the objfile include:
395
396 objfile -> sf
397
398 FIXME: If the objfile is using reusable symbol information (via mmalloc),
399 then we need to take into account the fact that more than one process
400 may be using the symbol information at the same time (when mmalloc is
401 extended to support cooperative locking). When more than one process
402 is using the mapped symbol info, we need to be more careful about when
403 we free objects in the reusable area. */
404
405 void
406 free_objfile (objfile)
407 struct objfile *objfile;
408 {
409 /* First do any symbol file specific actions required when we are
410 finished with a particular symbol file. Note that if the objfile
411 is using reusable symbol information (via mmalloc) then each of
412 these routines is responsible for doing the correct thing, either
413 freeing things which are valid only during this particular gdb
414 execution, or leaving them to be reused during the next one. */
415
416 if (objfile->sf != NULL)
417 {
418 (*objfile->sf->sym_finish) (objfile);
419 }
420
421 /* We always close the bfd. */
422
423 if (objfile->obfd != NULL)
424 {
425 char *name = bfd_get_filename (objfile->obfd);
426 if (!bfd_close (objfile->obfd))
427 warning ("cannot close \"%s\": %s",
428 name, bfd_errmsg (bfd_get_error ()));
429 free (name);
430 }
431
432 /* Remove it from the chain of all objfiles. */
433
434 unlink_objfile (objfile);
435
436 /* If we are going to free the runtime common objfile, mark it
437 as unallocated. */
438
439 if (objfile == rt_common_objfile)
440 rt_common_objfile = NULL;
441
442 /* Before the symbol table code was redone to make it easier to
443 selectively load and remove information particular to a specific
444 linkage unit, gdb used to do these things whenever the monolithic
445 symbol table was blown away. How much still needs to be done
446 is unknown, but we play it safe for now and keep each action until
447 it is shown to be no longer needed. */
448
449 /* I *think* all our callers call clear_symtab_users. If so, no need
450 to call this here. */
451 clear_pc_function_cache ();
452
453 /* The last thing we do is free the objfile struct itself for the
454 non-reusable case, or detach from the mapped file for the reusable
455 case. Note that the mmalloc_detach or the mfree is the last thing
456 we can do with this objfile. */
457
458 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
459
460 if (objfile->flags & OBJF_MAPPED)
461 {
462 /* Remember the fd so we can close it. We can't close it before
463 doing the detach, and after the detach the objfile is gone. */
464 int mmfd;
465
466 mmfd = objfile->mmfd;
467 mmalloc_detach (objfile->md);
468 objfile = NULL;
469 close (mmfd);
470 }
471
472 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
473
474 /* If we still have an objfile, then either we don't support reusable
475 objfiles or this one was not reusable. So free it normally. */
476
477 if (objfile != NULL)
478 {
479 if (objfile->name != NULL)
480 {
481 mfree (objfile->md, objfile->name);
482 }
483 if (objfile->global_psymbols.list)
484 mfree (objfile->md, objfile->global_psymbols.list);
485 if (objfile->static_psymbols.list)
486 mfree (objfile->md, objfile->static_psymbols.list);
487 /* Free the obstacks for non-reusable objfiles */
488 free_bcache (&objfile->psymbol_cache);
489 obstack_free (&objfile->psymbol_obstack, 0);
490 obstack_free (&objfile->symbol_obstack, 0);
491 obstack_free (&objfile->type_obstack, 0);
492 mfree (objfile->md, objfile);
493 objfile = NULL;
494 }
495 }
496
497 static void
498 do_free_objfile_cleanup (void *obj)
499 {
500 free_objfile (obj);
501 }
502
503 struct cleanup *
504 make_cleanup_free_objfile (struct objfile *obj)
505 {
506 return make_cleanup (do_free_objfile_cleanup, obj);
507 }
508
509 /* Free all the object files at once and clean up their users. */
510
511 void
512 free_all_objfiles ()
513 {
514 struct objfile *objfile, *temp;
515
516 ALL_OBJFILES_SAFE (objfile, temp)
517 {
518 free_objfile (objfile);
519 }
520 clear_symtab_users ();
521 }
522 \f
523 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
524 entries in new_offsets. */
525 void
526 objfile_relocate (objfile, new_offsets)
527 struct objfile *objfile;
528 struct section_offsets *new_offsets;
529 {
530 struct section_offsets *delta =
531 (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
532
533 {
534 int i;
535 int something_changed = 0;
536 for (i = 0; i < objfile->num_sections; ++i)
537 {
538 ANOFFSET (delta, i) =
539 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
540 if (ANOFFSET (delta, i) != 0)
541 something_changed = 1;
542 }
543 if (!something_changed)
544 return;
545 }
546
547 /* OK, get all the symtabs. */
548 {
549 struct symtab *s;
550
551 ALL_OBJFILE_SYMTABS (objfile, s)
552 {
553 struct linetable *l;
554 struct blockvector *bv;
555 int i;
556
557 /* First the line table. */
558 l = LINETABLE (s);
559 if (l)
560 {
561 for (i = 0; i < l->nitems; ++i)
562 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
563 }
564
565 /* Don't relocate a shared blockvector more than once. */
566 if (!s->primary)
567 continue;
568
569 bv = BLOCKVECTOR (s);
570 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
571 {
572 struct block *b;
573 int j;
574
575 b = BLOCKVECTOR_BLOCK (bv, i);
576 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
577 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
578
579 for (j = 0; j < BLOCK_NSYMS (b); ++j)
580 {
581 struct symbol *sym = BLOCK_SYM (b, j);
582 /* The RS6000 code from which this was taken skipped
583 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
584 But I'm leaving out that test, on the theory that
585 they can't possibly pass the tests below. */
586 if ((SYMBOL_CLASS (sym) == LOC_LABEL
587 || SYMBOL_CLASS (sym) == LOC_STATIC
588 || SYMBOL_CLASS (sym) == LOC_INDIRECT)
589 && SYMBOL_SECTION (sym) >= 0)
590 {
591 SYMBOL_VALUE_ADDRESS (sym) +=
592 ANOFFSET (delta, SYMBOL_SECTION (sym));
593 }
594 #ifdef MIPS_EFI_SYMBOL_NAME
595 /* Relocate Extra Function Info for ecoff. */
596
597 else if (SYMBOL_CLASS (sym) == LOC_CONST
598 && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE
599 && STRCMP (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
600 ecoff_relocate_efi (sym, ANOFFSET (delta,
601 s->block_line_section));
602 #endif
603 }
604 }
605 }
606 }
607
608 {
609 struct partial_symtab *p;
610
611 ALL_OBJFILE_PSYMTABS (objfile, p)
612 {
613 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
614 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
615 }
616 }
617
618 {
619 struct partial_symbol **psym;
620
621 for (psym = objfile->global_psymbols.list;
622 psym < objfile->global_psymbols.next;
623 psym++)
624 if (SYMBOL_SECTION (*psym) >= 0)
625 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
626 SYMBOL_SECTION (*psym));
627 for (psym = objfile->static_psymbols.list;
628 psym < objfile->static_psymbols.next;
629 psym++)
630 if (SYMBOL_SECTION (*psym) >= 0)
631 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
632 SYMBOL_SECTION (*psym));
633 }
634
635 {
636 struct minimal_symbol *msym;
637 ALL_OBJFILE_MSYMBOLS (objfile, msym)
638 if (SYMBOL_SECTION (msym) >= 0)
639 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
640 }
641 /* Relocating different sections by different amounts may cause the symbols
642 to be out of order. */
643 msymbols_sort (objfile);
644
645 {
646 int i;
647 for (i = 0; i < objfile->num_sections; ++i)
648 ANOFFSET (objfile->section_offsets, i) = ANOFFSET (new_offsets, i);
649 }
650
651 {
652 struct obj_section *s;
653 bfd *abfd;
654
655 abfd = objfile->obfd;
656
657 ALL_OBJFILE_OSECTIONS (objfile, s)
658 {
659 flagword flags;
660
661 flags = bfd_get_section_flags (abfd, s->the_bfd_section);
662
663 if (flags & SEC_CODE)
664 {
665 s->addr += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
666 s->endaddr += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
667 }
668 else if (flags & (SEC_DATA | SEC_LOAD))
669 {
670 s->addr += ANOFFSET (delta, SECT_OFF_DATA (objfile));
671 s->endaddr += ANOFFSET (delta, SECT_OFF_DATA (objfile));
672 }
673 else if (flags & SEC_ALLOC)
674 {
675 s->addr += ANOFFSET (delta, SECT_OFF_BSS (objfile));
676 s->endaddr += ANOFFSET (delta, SECT_OFF_BSS (objfile));
677 }
678 }
679 }
680
681 if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
682 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
683
684 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
685 {
686 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
687 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
688 }
689
690 if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
691 {
692 objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
693 objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
694 }
695
696 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
697 {
698 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
699 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
700 }
701
702 /* Relocate breakpoints as necessary, after things are relocated. */
703 breakpoint_re_set ();
704 }
705 \f
706 /* Many places in gdb want to test just to see if we have any partial
707 symbols available. This function returns zero if none are currently
708 available, nonzero otherwise. */
709
710 int
711 have_partial_symbols ()
712 {
713 struct objfile *ofp;
714
715 ALL_OBJFILES (ofp)
716 {
717 if (ofp->psymtabs != NULL)
718 {
719 return 1;
720 }
721 }
722 return 0;
723 }
724
725 /* Many places in gdb want to test just to see if we have any full
726 symbols available. This function returns zero if none are currently
727 available, nonzero otherwise. */
728
729 int
730 have_full_symbols ()
731 {
732 struct objfile *ofp;
733
734 ALL_OBJFILES (ofp)
735 {
736 if (ofp->symtabs != NULL)
737 {
738 return 1;
739 }
740 }
741 return 0;
742 }
743
744
745 /* This operations deletes all objfile entries that represent solibs that
746 weren't explicitly loaded by the user, via e.g., the add-symbol-file
747 command.
748 */
749 void
750 objfile_purge_solibs ()
751 {
752 struct objfile *objf;
753 struct objfile *temp;
754
755 ALL_OBJFILES_SAFE (objf, temp)
756 {
757 /* We assume that the solib package has been purged already, or will
758 be soon.
759 */
760 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
761 free_objfile (objf);
762 }
763 }
764
765
766 /* Many places in gdb want to test just to see if we have any minimal
767 symbols available. This function returns zero if none are currently
768 available, nonzero otherwise. */
769
770 int
771 have_minimal_symbols ()
772 {
773 struct objfile *ofp;
774
775 ALL_OBJFILES (ofp)
776 {
777 if (ofp->msymbols != NULL)
778 {
779 return 1;
780 }
781 }
782 return 0;
783 }
784
785 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
786
787 /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
788 of the corresponding symbol file in MTIME, try to open an existing file
789 with the name SYMSFILENAME and verify it is more recent than the base
790 file by checking it's timestamp against MTIME.
791
792 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
793
794 If SYMSFILENAME does exist, but is out of date, we check to see if the
795 user has specified creation of a mapped file. If so, we don't issue
796 any warning message because we will be creating a new mapped file anyway,
797 overwriting the old one. If not, then we issue a warning message so that
798 the user will know why we aren't using this existing mapped symbol file.
799 In either case, we return -1.
800
801 If SYMSFILENAME does exist and is not out of date, but can't be opened for
802 some reason, then prints an appropriate system error message and returns -1.
803
804 Otherwise, returns the open file descriptor. */
805
806 static int
807 open_existing_mapped_file (symsfilename, mtime, flags)
808 char *symsfilename;
809 long mtime;
810 int flags;
811 {
812 int fd = -1;
813 struct stat sbuf;
814
815 if (stat (symsfilename, &sbuf) == 0)
816 {
817 if (sbuf.st_mtime < mtime)
818 {
819 if (!(flags & OBJF_MAPPED))
820 {
821 warning ("mapped symbol file `%s' is out of date, ignored it",
822 symsfilename);
823 }
824 }
825 else if ((fd = open (symsfilename, O_RDWR)) < 0)
826 {
827 if (error_pre_print)
828 {
829 printf_unfiltered (error_pre_print);
830 }
831 print_sys_errmsg (symsfilename, errno);
832 }
833 }
834 return (fd);
835 }
836
837 /* Look for a mapped symbol file that corresponds to FILENAME and is more
838 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
839 use a mapped symbol file for this file, so create a new one if one does
840 not currently exist.
841
842 If found, then return an open file descriptor for the file, otherwise
843 return -1.
844
845 This routine is responsible for implementing the policy that generates
846 the name of the mapped symbol file from the name of a file containing
847 symbols that gdb would like to read. Currently this policy is to append
848 ".syms" to the name of the file.
849
850 This routine is also responsible for implementing the policy that
851 determines where the mapped symbol file is found (the search path).
852 This policy is that when reading an existing mapped file, a file of
853 the correct name in the current directory takes precedence over a
854 file of the correct name in the same directory as the symbol file.
855 When creating a new mapped file, it is always created in the current
856 directory. This helps to minimize the chances of a user unknowingly
857 creating big mapped files in places like /bin and /usr/local/bin, and
858 allows a local copy to override a manually installed global copy (in
859 /bin for example). */
860
861 static int
862 open_mapped_file (filename, mtime, flags)
863 char *filename;
864 long mtime;
865 int flags;
866 {
867 int fd;
868 char *symsfilename;
869
870 /* First try to open an existing file in the current directory, and
871 then try the directory where the symbol file is located. */
872
873 symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL);
874 if ((fd = open_existing_mapped_file (symsfilename, mtime, flags)) < 0)
875 {
876 free (symsfilename);
877 symsfilename = concat (filename, ".syms", (char *) NULL);
878 fd = open_existing_mapped_file (symsfilename, mtime, flags);
879 }
880
881 /* If we don't have an open file by now, then either the file does not
882 already exist, or the base file has changed since it was created. In
883 either case, if the user has specified use of a mapped file, then
884 create a new mapped file, truncating any existing one. If we can't
885 create one, print a system error message saying why we can't.
886
887 By default the file is rw for everyone, with the user's umask taking
888 care of turning off the permissions the user wants off. */
889
890 if ((fd < 0) && (flags & OBJF_MAPPED))
891 {
892 free (symsfilename);
893 symsfilename = concat ("./", basename (filename), ".syms",
894 (char *) NULL);
895 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
896 {
897 if (error_pre_print)
898 {
899 printf_unfiltered (error_pre_print);
900 }
901 print_sys_errmsg (symsfilename, errno);
902 }
903 }
904
905 free (symsfilename);
906 return (fd);
907 }
908
909 static PTR
910 map_to_file (fd)
911 int fd;
912 {
913 PTR md;
914 CORE_ADDR mapto;
915
916 md = mmalloc_attach (fd, (PTR) 0);
917 if (md != NULL)
918 {
919 mapto = (CORE_ADDR) mmalloc_getkey (md, 1);
920 md = mmalloc_detach (md);
921 if (md != NULL)
922 {
923 /* FIXME: should figure out why detach failed */
924 md = NULL;
925 }
926 else if (mapto != (CORE_ADDR) NULL)
927 {
928 /* This mapping file needs to be remapped at "mapto" */
929 md = mmalloc_attach (fd, (PTR) mapto);
930 }
931 else
932 {
933 /* This is a freshly created mapping file. */
934 mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024);
935 if (mapto != 0)
936 {
937 /* To avoid reusing the freshly created mapping file, at the
938 address selected by mmap, we must truncate it before trying
939 to do an attach at the address we want. */
940 ftruncate (fd, 0);
941 md = mmalloc_attach (fd, (PTR) mapto);
942 if (md != NULL)
943 {
944 mmalloc_setkey (md, 1, (PTR) mapto);
945 }
946 }
947 }
948 }
949 return (md);
950 }
951
952 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
953
954 /* Returns a section whose range includes PC and SECTION,
955 or NULL if none found. Note the distinction between the return type,
956 struct obj_section (which is defined in gdb), and the input type
957 struct sec (which is a bfd-defined data type). The obj_section
958 contains a pointer to the bfd struct sec section. */
959
960 struct obj_section *
961 find_pc_sect_section (pc, section)
962 CORE_ADDR pc;
963 struct sec *section;
964 {
965 struct obj_section *s;
966 struct objfile *objfile;
967
968 ALL_OBJSECTIONS (objfile, s)
969 if ((section == 0 || section == s->the_bfd_section) &&
970 s->addr <= pc && pc < s->endaddr)
971 return (s);
972
973 return (NULL);
974 }
975
976 /* Returns a section whose range includes PC or NULL if none found.
977 Backward compatibility, no section. */
978
979 struct obj_section *
980 find_pc_section (pc)
981 CORE_ADDR pc;
982 {
983 return find_pc_sect_section (pc, find_pc_mapped_section (pc));
984 }
985
986
987 /* In SVR4, we recognize a trampoline by it's section name.
988 That is, if the pc is in a section named ".plt" then we are in
989 a trampoline. */
990
991 int
992 in_plt_section (pc, name)
993 CORE_ADDR pc;
994 char *name;
995 {
996 struct obj_section *s;
997 int retval = 0;
998
999 s = find_pc_section (pc);
1000
1001 retval = (s != NULL
1002 && s->the_bfd_section->name != NULL
1003 && STREQ (s->the_bfd_section->name, ".plt"));
1004 return (retval);
1005 }
1006
1007 /* Return nonzero if NAME is in the import list of OBJFILE. Else
1008 return zero. */
1009
1010 int
1011 is_in_import_list (name, objfile)
1012 char *name;
1013 struct objfile *objfile;
1014 {
1015 register int i;
1016
1017 if (!objfile || !name || !*name)
1018 return 0;
1019
1020 for (i = 0; i < objfile->import_list_size; i++)
1021 if (objfile->import_list[i] && STREQ (name, objfile->import_list[i]))
1022 return 1;
1023 return 0;
1024 }
1025