2012-01-27 Pedro Alves <palves@redhat.com>
[binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2004, 2007-2012 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "mdebugread.h"
34 #include "expression.h"
35 #include "parser-defs.h"
36
37 #include "gdb_assert.h"
38 #include <sys/types.h>
39 #include "gdb_stat.h"
40 #include <fcntl.h>
41 #include "gdb_obstack.h"
42 #include "gdb_string.h"
43 #include "hashtab.h"
44
45 #include "breakpoint.h"
46 #include "block.h"
47 #include "dictionary.h"
48 #include "source.h"
49 #include "addrmap.h"
50 #include "arch-utils.h"
51 #include "exec.h"
52 #include "observer.h"
53 #include "complaints.h"
54 #include "psymtab.h"
55 #include "solist.h"
56
57 /* Prototypes for local functions */
58
59 static void objfile_alloc_data (struct objfile *objfile);
60 static void objfile_free_data (struct objfile *objfile);
61
62 /* Externally visible variables that are owned by this module.
63 See declarations in objfile.h for more info. */
64
65 struct objfile *rt_common_objfile; /* For runtime common symbols */
66
67 struct objfile_pspace_info
68 {
69 int objfiles_changed_p;
70 struct obj_section **sections;
71 int num_sections;
72 };
73
74 /* Per-program-space data key. */
75 static const struct program_space_data *objfiles_pspace_data;
76
77 static void
78 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
79 {
80 struct objfile_pspace_info *info;
81
82 info = program_space_data (pspace, objfiles_pspace_data);
83 if (info != NULL)
84 {
85 xfree (info->sections);
86 xfree (info);
87 }
88 }
89
90 /* Get the current svr4 data. If none is found yet, add it now. This
91 function always returns a valid object. */
92
93 static struct objfile_pspace_info *
94 get_objfile_pspace_data (struct program_space *pspace)
95 {
96 struct objfile_pspace_info *info;
97
98 info = program_space_data (pspace, objfiles_pspace_data);
99 if (info == NULL)
100 {
101 info = XZALLOC (struct objfile_pspace_info);
102 set_program_space_data (pspace, objfiles_pspace_data, info);
103 }
104
105 return info;
106 }
107
108 /* Records whether any objfiles appeared or disappeared since we last updated
109 address to obj section map. */
110
111 /* Locate all mappable sections of a BFD file.
112 objfile_p_char is a char * to get it through
113 bfd_map_over_sections; we cast it back to its proper type. */
114
115 /* Called via bfd_map_over_sections to build up the section table that
116 the objfile references. The objfile contains pointers to the start
117 of the table (objfile->sections) and to the first location after
118 the end of the table (objfile->sections_end). */
119
120 static void
121 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
122 void *objfile_p_char)
123 {
124 struct objfile *objfile = (struct objfile *) objfile_p_char;
125 struct obj_section section;
126 flagword aflag;
127
128 aflag = bfd_get_section_flags (abfd, asect);
129
130 if (!(aflag & SEC_ALLOC))
131 return;
132
133 if (0 == bfd_section_size (abfd, asect))
134 return;
135 section.objfile = objfile;
136 section.the_bfd_section = asect;
137 section.ovly_mapped = 0;
138 obstack_grow (&objfile->objfile_obstack,
139 (char *) &section, sizeof (section));
140 objfile->sections_end
141 = (struct obj_section *) (((size_t) objfile->sections_end) + 1);
142 }
143
144 /* Builds a section table for OBJFILE.
145 Returns 0 if OK, 1 on error (in which case bfd_error contains the
146 error).
147
148 Note that while we are building the table, which goes into the
149 psymbol obstack, we hijack the sections_end pointer to instead hold
150 a count of the number of sections. When bfd_map_over_sections
151 returns, this count is used to compute the pointer to the end of
152 the sections table, which then overwrites the count.
153
154 Also note that the OFFSET and OVLY_MAPPED in each table entry
155 are initialized to zero.
156
157 Also note that if anything else writes to the psymbol obstack while
158 we are building the table, we're pretty much hosed. */
159
160 int
161 build_objfile_section_table (struct objfile *objfile)
162 {
163 objfile->sections_end = 0;
164 bfd_map_over_sections (objfile->obfd,
165 add_to_objfile_sections, (void *) objfile);
166 objfile->sections = obstack_finish (&objfile->objfile_obstack);
167 objfile->sections_end = objfile->sections + (size_t) objfile->sections_end;
168 return (0);
169 }
170
171 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
172 allocate a new objfile struct, fill it in as best we can, link it
173 into the list of all known objfiles, and return a pointer to the
174 new objfile struct.
175
176 The FLAGS word contains various bits (OBJF_*) that can be taken as
177 requests for specific operations. Other bits like OBJF_SHARED are
178 simply copied through to the new objfile flags member. */
179
180 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
181 by jv-lang.c, to create an artificial objfile used to hold
182 information about dynamically-loaded Java classes. Unfortunately,
183 that branch of this function doesn't get tested very frequently, so
184 it's prone to breakage. (E.g. at one time the name was set to NULL
185 in that situation, which broke a loop over all names in the dynamic
186 library loader.) If you change this function, please try to leave
187 things in a consistent state even if abfd is NULL. */
188
189 struct objfile *
190 allocate_objfile (bfd *abfd, int flags)
191 {
192 struct objfile *objfile;
193
194 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
195 objfile->psymbol_cache = psymbol_bcache_init ();
196 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
197 objfile->filename_cache = bcache_xmalloc (NULL, NULL);
198 /* We could use obstack_specify_allocation here instead, but
199 gdb_obstack.h specifies the alloc/dealloc functions. */
200 obstack_init (&objfile->objfile_obstack);
201 terminate_minimal_symbol_table (objfile);
202
203 objfile_alloc_data (objfile);
204
205 /* Update the per-objfile information that comes from the bfd, ensuring
206 that any data that is reference is saved in the per-objfile data
207 region. */
208
209 objfile->obfd = gdb_bfd_ref (abfd);
210 if (abfd != NULL)
211 {
212 /* Look up the gdbarch associated with the BFD. */
213 objfile->gdbarch = gdbarch_from_bfd (abfd);
214
215 objfile->name = xstrdup (bfd_get_filename (abfd));
216 objfile->mtime = bfd_get_mtime (abfd);
217
218 /* Build section table. */
219
220 if (build_objfile_section_table (objfile))
221 {
222 error (_("Can't find the file sections in `%s': %s"),
223 objfile->name, bfd_errmsg (bfd_get_error ()));
224 }
225 }
226 else
227 {
228 objfile->name = xstrdup ("<<anonymous objfile>>");
229 }
230
231 objfile->pspace = current_program_space;
232
233 /* Initialize the section indexes for this objfile, so that we can
234 later detect if they are used w/o being properly assigned to. */
235
236 objfile->sect_index_text = -1;
237 objfile->sect_index_data = -1;
238 objfile->sect_index_bss = -1;
239 objfile->sect_index_rodata = -1;
240
241 /* Add this file onto the tail of the linked list of other such files. */
242
243 objfile->next = NULL;
244 if (object_files == NULL)
245 object_files = objfile;
246 else
247 {
248 struct objfile *last_one;
249
250 for (last_one = object_files;
251 last_one->next;
252 last_one = last_one->next);
253 last_one->next = objfile;
254 }
255
256 /* Save passed in flag bits. */
257 objfile->flags |= flags;
258
259 /* Rebuild section map next time we need it. */
260 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
261
262 return objfile;
263 }
264
265 /* Retrieve the gdbarch associated with OBJFILE. */
266 struct gdbarch *
267 get_objfile_arch (struct objfile *objfile)
268 {
269 return objfile->gdbarch;
270 }
271
272 /* Initialize entry point information for this objfile. */
273
274 void
275 init_entry_point_info (struct objfile *objfile)
276 {
277 /* Save startup file's range of PC addresses to help blockframe.c
278 decide where the bottom of the stack is. */
279
280 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
281 {
282 /* Executable file -- record its entry point so we'll recognize
283 the startup file because it contains the entry point. */
284 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
285 objfile->ei.entry_point_p = 1;
286 }
287 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
288 && bfd_get_start_address (objfile->obfd) != 0)
289 {
290 /* Some shared libraries may have entry points set and be
291 runnable. There's no clear way to indicate this, so just check
292 for values other than zero. */
293 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
294 objfile->ei.entry_point_p = 1;
295 }
296 else
297 {
298 /* Examination of non-executable.o files. Short-circuit this stuff. */
299 objfile->ei.entry_point_p = 0;
300 }
301 }
302
303 /* If there is a valid and known entry point, function fills *ENTRY_P with it
304 and returns non-zero; otherwise it returns zero. */
305
306 int
307 entry_point_address_query (CORE_ADDR *entry_p)
308 {
309 struct gdbarch *gdbarch;
310 CORE_ADDR entry_point;
311
312 if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
313 return 0;
314
315 gdbarch = get_objfile_arch (symfile_objfile);
316
317 entry_point = symfile_objfile->ei.entry_point;
318
319 /* Make certain that the address points at real code, and not a
320 function descriptor. */
321 entry_point = gdbarch_convert_from_func_ptr_addr (gdbarch, entry_point,
322 &current_target);
323
324 /* Remove any ISA markers, so that this matches entries in the
325 symbol table. */
326 entry_point = gdbarch_addr_bits_remove (gdbarch, entry_point);
327
328 *entry_p = entry_point;
329 return 1;
330 }
331
332 /* Get current entry point address. Call error if it is not known. */
333
334 CORE_ADDR
335 entry_point_address (void)
336 {
337 CORE_ADDR retval;
338
339 if (!entry_point_address_query (&retval))
340 error (_("Entry point address is not known."));
341
342 return retval;
343 }
344
345 /* Iterator on PARENT and every separate debug objfile of PARENT.
346 The usage pattern is:
347 for (objfile = parent;
348 objfile;
349 objfile = objfile_separate_debug_iterate (parent, objfile))
350 ...
351 */
352
353 struct objfile *
354 objfile_separate_debug_iterate (const struct objfile *parent,
355 const struct objfile *objfile)
356 {
357 struct objfile *res;
358
359 /* If any, return the first child. */
360 res = objfile->separate_debug_objfile;
361 if (res)
362 return res;
363
364 /* Common case where there is no separate debug objfile. */
365 if (objfile == parent)
366 return NULL;
367
368 /* Return the brother if any. Note that we don't iterate on brothers of
369 the parents. */
370 res = objfile->separate_debug_objfile_link;
371 if (res)
372 return res;
373
374 for (res = objfile->separate_debug_objfile_backlink;
375 res != parent;
376 res = res->separate_debug_objfile_backlink)
377 {
378 gdb_assert (res != NULL);
379 if (res->separate_debug_objfile_link)
380 return res->separate_debug_objfile_link;
381 }
382 return NULL;
383 }
384
385 /* Put one object file before a specified on in the global list.
386 This can be used to make sure an object file is destroyed before
387 another when using ALL_OBJFILES_SAFE to free all objfiles. */
388 void
389 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
390 {
391 struct objfile **objp;
392
393 unlink_objfile (objfile);
394
395 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
396 {
397 if (*objp == before_this)
398 {
399 objfile->next = *objp;
400 *objp = objfile;
401 return;
402 }
403 }
404
405 internal_error (__FILE__, __LINE__,
406 _("put_objfile_before: before objfile not in list"));
407 }
408
409 /* Put OBJFILE at the front of the list. */
410
411 void
412 objfile_to_front (struct objfile *objfile)
413 {
414 struct objfile **objp;
415 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
416 {
417 if (*objp == objfile)
418 {
419 /* Unhook it from where it is. */
420 *objp = objfile->next;
421 /* Put it in the front. */
422 objfile->next = object_files;
423 object_files = objfile;
424 break;
425 }
426 }
427 }
428
429 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
430 list.
431
432 It is not a bug, or error, to call this function if OBJFILE is not known
433 to be in the current list. This is done in the case of mapped objfiles,
434 for example, just to ensure that the mapped objfile doesn't appear twice
435 in the list. Since the list is threaded, linking in a mapped objfile
436 twice would create a circular list.
437
438 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
439 unlinking it, just to ensure that we have completely severed any linkages
440 between the OBJFILE and the list. */
441
442 void
443 unlink_objfile (struct objfile *objfile)
444 {
445 struct objfile **objpp;
446
447 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
448 {
449 if (*objpp == objfile)
450 {
451 *objpp = (*objpp)->next;
452 objfile->next = NULL;
453 return;
454 }
455 }
456
457 internal_error (__FILE__, __LINE__,
458 _("unlink_objfile: objfile already unlinked"));
459 }
460
461 /* Add OBJFILE as a separate debug objfile of PARENT. */
462
463 void
464 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
465 {
466 gdb_assert (objfile && parent);
467
468 /* Must not be already in a list. */
469 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
470 gdb_assert (objfile->separate_debug_objfile_link == NULL);
471
472 objfile->separate_debug_objfile_backlink = parent;
473 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
474 parent->separate_debug_objfile = objfile;
475
476 /* Put the separate debug object before the normal one, this is so that
477 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
478 put_objfile_before (objfile, parent);
479 }
480
481 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
482 itself. */
483
484 void
485 free_objfile_separate_debug (struct objfile *objfile)
486 {
487 struct objfile *child;
488
489 for (child = objfile->separate_debug_objfile; child;)
490 {
491 struct objfile *next_child = child->separate_debug_objfile_link;
492 free_objfile (child);
493 child = next_child;
494 }
495 }
496
497 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
498 that as much as possible is allocated on the objfile_obstack
499 so that the memory can be efficiently freed.
500
501 Things which we do NOT free because they are not in malloc'd memory
502 or not in memory specific to the objfile include:
503
504 objfile -> sf
505
506 FIXME: If the objfile is using reusable symbol information (via mmalloc),
507 then we need to take into account the fact that more than one process
508 may be using the symbol information at the same time (when mmalloc is
509 extended to support cooperative locking). When more than one process
510 is using the mapped symbol info, we need to be more careful about when
511 we free objects in the reusable area. */
512
513 void
514 free_objfile (struct objfile *objfile)
515 {
516 /* Free all separate debug objfiles. */
517 free_objfile_separate_debug (objfile);
518
519 if (objfile->separate_debug_objfile_backlink)
520 {
521 /* We freed the separate debug file, make sure the base objfile
522 doesn't reference it. */
523 struct objfile *child;
524
525 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
526
527 if (child == objfile)
528 {
529 /* OBJFILE is the first child. */
530 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
531 objfile->separate_debug_objfile_link;
532 }
533 else
534 {
535 /* Find OBJFILE in the list. */
536 while (1)
537 {
538 if (child->separate_debug_objfile_link == objfile)
539 {
540 child->separate_debug_objfile_link =
541 objfile->separate_debug_objfile_link;
542 break;
543 }
544 child = child->separate_debug_objfile_link;
545 gdb_assert (child);
546 }
547 }
548 }
549
550 /* Remove any references to this objfile in the global value
551 lists. */
552 preserve_values (objfile);
553
554 /* It still may reference data modules have associated with the objfile and
555 the symbol file data. */
556 forget_cached_source_info_for_objfile (objfile);
557
558 /* First do any symbol file specific actions required when we are
559 finished with a particular symbol file. Note that if the objfile
560 is using reusable symbol information (via mmalloc) then each of
561 these routines is responsible for doing the correct thing, either
562 freeing things which are valid only during this particular gdb
563 execution, or leaving them to be reused during the next one. */
564
565 if (objfile->sf != NULL)
566 {
567 (*objfile->sf->sym_finish) (objfile);
568 }
569
570 /* Discard any data modules have associated with the objfile. The function
571 still may reference objfile->obfd. */
572 objfile_free_data (objfile);
573
574 gdb_bfd_unref (objfile->obfd);
575
576 /* Remove it from the chain of all objfiles. */
577
578 unlink_objfile (objfile);
579
580 if (objfile == symfile_objfile)
581 symfile_objfile = NULL;
582
583 if (objfile == rt_common_objfile)
584 rt_common_objfile = NULL;
585
586 /* Before the symbol table code was redone to make it easier to
587 selectively load and remove information particular to a specific
588 linkage unit, gdb used to do these things whenever the monolithic
589 symbol table was blown away. How much still needs to be done
590 is unknown, but we play it safe for now and keep each action until
591 it is shown to be no longer needed. */
592
593 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
594 for example), so we need to call this here. */
595 clear_pc_function_cache ();
596
597 /* Clear globals which might have pointed into a removed objfile.
598 FIXME: It's not clear which of these are supposed to persist
599 between expressions and which ought to be reset each time. */
600 expression_context_block = NULL;
601 innermost_block = NULL;
602
603 /* Check to see if the current_source_symtab belongs to this objfile,
604 and if so, call clear_current_source_symtab_and_line. */
605
606 {
607 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
608
609 if (cursal.symtab && cursal.symtab->objfile == objfile)
610 clear_current_source_symtab_and_line ();
611 }
612
613 /* The last thing we do is free the objfile struct itself. */
614
615 xfree (objfile->name);
616 if (objfile->global_psymbols.list)
617 xfree (objfile->global_psymbols.list);
618 if (objfile->static_psymbols.list)
619 xfree (objfile->static_psymbols.list);
620 /* Free the obstacks for non-reusable objfiles. */
621 psymbol_bcache_free (objfile->psymbol_cache);
622 bcache_xfree (objfile->macro_cache);
623 bcache_xfree (objfile->filename_cache);
624 if (objfile->demangled_names_hash)
625 htab_delete (objfile->demangled_names_hash);
626 obstack_free (&objfile->objfile_obstack, 0);
627
628 /* Rebuild section map next time we need it. */
629 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
630
631 xfree (objfile);
632 }
633
634 static void
635 do_free_objfile_cleanup (void *obj)
636 {
637 free_objfile (obj);
638 }
639
640 struct cleanup *
641 make_cleanup_free_objfile (struct objfile *obj)
642 {
643 return make_cleanup (do_free_objfile_cleanup, obj);
644 }
645
646 /* Free all the object files at once and clean up their users. */
647
648 void
649 free_all_objfiles (void)
650 {
651 struct objfile *objfile, *temp;
652 struct so_list *so;
653
654 /* Any objfile referencewould become stale. */
655 for (so = master_so_list (); so; so = so->next)
656 gdb_assert (so->objfile == NULL);
657
658 ALL_OBJFILES_SAFE (objfile, temp)
659 {
660 free_objfile (objfile);
661 }
662 clear_symtab_users (0);
663 }
664 \f
665 /* A helper function for objfile_relocate1 that relocates a single
666 symbol. */
667
668 static void
669 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
670 struct section_offsets *delta)
671 {
672 fixup_symbol_section (sym, objfile);
673
674 /* The RS6000 code from which this was taken skipped
675 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
676 But I'm leaving out that test, on the theory that
677 they can't possibly pass the tests below. */
678 if ((SYMBOL_CLASS (sym) == LOC_LABEL
679 || SYMBOL_CLASS (sym) == LOC_STATIC)
680 && SYMBOL_SECTION (sym) >= 0)
681 {
682 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
683 }
684 }
685
686 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
687 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
688 Return non-zero iff any change happened. */
689
690 static int
691 objfile_relocate1 (struct objfile *objfile,
692 struct section_offsets *new_offsets)
693 {
694 struct obj_section *s;
695 struct section_offsets *delta =
696 ((struct section_offsets *)
697 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
698
699 int i;
700 int something_changed = 0;
701
702 for (i = 0; i < objfile->num_sections; ++i)
703 {
704 delta->offsets[i] =
705 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
706 if (ANOFFSET (delta, i) != 0)
707 something_changed = 1;
708 }
709 if (!something_changed)
710 return 0;
711
712 /* OK, get all the symtabs. */
713 {
714 struct symtab *s;
715
716 ALL_OBJFILE_SYMTABS (objfile, s)
717 {
718 struct linetable *l;
719 struct blockvector *bv;
720 int i;
721
722 /* First the line table. */
723 l = LINETABLE (s);
724 if (l)
725 {
726 for (i = 0; i < l->nitems; ++i)
727 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
728 }
729
730 /* Don't relocate a shared blockvector more than once. */
731 if (!s->primary)
732 continue;
733
734 bv = BLOCKVECTOR (s);
735 if (BLOCKVECTOR_MAP (bv))
736 addrmap_relocate (BLOCKVECTOR_MAP (bv),
737 ANOFFSET (delta, s->block_line_section));
738
739 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
740 {
741 struct block *b;
742 struct symbol *sym;
743 struct dict_iterator iter;
744
745 b = BLOCKVECTOR_BLOCK (bv, i);
746 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
747 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
748
749 ALL_BLOCK_SYMBOLS (b, iter, sym)
750 {
751 relocate_one_symbol (sym, objfile, delta);
752 }
753 }
754 }
755 }
756
757 /* Relocate isolated symbols. */
758 {
759 struct symbol *iter;
760
761 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
762 relocate_one_symbol (iter, objfile, delta);
763 }
764
765 if (objfile->psymtabs_addrmap)
766 addrmap_relocate (objfile->psymtabs_addrmap,
767 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
768
769 if (objfile->sf)
770 objfile->sf->qf->relocate (objfile, new_offsets, delta);
771
772 {
773 struct minimal_symbol *msym;
774
775 ALL_OBJFILE_MSYMBOLS (objfile, msym)
776 if (SYMBOL_SECTION (msym) >= 0)
777 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
778 }
779 /* Relocating different sections by different amounts may cause the symbols
780 to be out of order. */
781 msymbols_sort (objfile);
782
783 if (objfile->ei.entry_point_p)
784 {
785 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
786 only as a fallback. */
787 struct obj_section *s;
788 s = find_pc_section (objfile->ei.entry_point);
789 if (s)
790 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
791 else
792 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
793 }
794
795 {
796 int i;
797
798 for (i = 0; i < objfile->num_sections; ++i)
799 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
800 }
801
802 /* Rebuild section map next time we need it. */
803 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
804
805 /* Update the table in exec_ops, used to read memory. */
806 ALL_OBJFILE_OSECTIONS (objfile, s)
807 {
808 int idx = s->the_bfd_section->index;
809
810 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
811 obj_section_addr (s));
812 }
813
814 /* Data changed. */
815 return 1;
816 }
817
818 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
819 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
820
821 The number and ordering of sections does differ between the two objfiles.
822 Only their names match. Also the file offsets will differ (objfile being
823 possibly prelinked but separate_debug_objfile is probably not prelinked) but
824 the in-memory absolute address as specified by NEW_OFFSETS must match both
825 files. */
826
827 void
828 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
829 {
830 struct objfile *debug_objfile;
831 int changed = 0;
832
833 changed |= objfile_relocate1 (objfile, new_offsets);
834
835 for (debug_objfile = objfile->separate_debug_objfile;
836 debug_objfile;
837 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
838 {
839 struct section_addr_info *objfile_addrs;
840 struct section_offsets *new_debug_offsets;
841 struct cleanup *my_cleanups;
842
843 objfile_addrs = build_section_addr_info_from_objfile (objfile);
844 my_cleanups = make_cleanup (xfree, objfile_addrs);
845
846 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
847 relative ones must be already created according to debug_objfile. */
848
849 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
850
851 gdb_assert (debug_objfile->num_sections
852 == bfd_count_sections (debug_objfile->obfd));
853 new_debug_offsets =
854 xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
855 make_cleanup (xfree, new_debug_offsets);
856 relative_addr_info_to_section_offsets (new_debug_offsets,
857 debug_objfile->num_sections,
858 objfile_addrs);
859
860 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
861
862 do_cleanups (my_cleanups);
863 }
864
865 /* Relocate breakpoints as necessary, after things are relocated. */
866 if (changed)
867 breakpoint_re_set ();
868 }
869 \f
870 /* Return non-zero if OBJFILE has partial symbols. */
871
872 int
873 objfile_has_partial_symbols (struct objfile *objfile)
874 {
875 if (!objfile->sf)
876 return 0;
877
878 /* If we have not read psymbols, but we have a function capable of reading
879 them, then that is an indication that they are in fact available. Without
880 this function the symbols may have been already read in but they also may
881 not be present in this objfile. */
882 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
883 && objfile->sf->sym_read_psymbols != NULL)
884 return 1;
885
886 return objfile->sf->qf->has_symbols (objfile);
887 }
888
889 /* Return non-zero if OBJFILE has full symbols. */
890
891 int
892 objfile_has_full_symbols (struct objfile *objfile)
893 {
894 return objfile->symtabs != NULL;
895 }
896
897 /* Return non-zero if OBJFILE has full or partial symbols, either directly
898 or through a separate debug file. */
899
900 int
901 objfile_has_symbols (struct objfile *objfile)
902 {
903 struct objfile *o;
904
905 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
906 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
907 return 1;
908 return 0;
909 }
910
911
912 /* Many places in gdb want to test just to see if we have any partial
913 symbols available. This function returns zero if none are currently
914 available, nonzero otherwise. */
915
916 int
917 have_partial_symbols (void)
918 {
919 struct objfile *ofp;
920
921 ALL_OBJFILES (ofp)
922 {
923 if (objfile_has_partial_symbols (ofp))
924 return 1;
925 }
926 return 0;
927 }
928
929 /* Many places in gdb want to test just to see if we have any full
930 symbols available. This function returns zero if none are currently
931 available, nonzero otherwise. */
932
933 int
934 have_full_symbols (void)
935 {
936 struct objfile *ofp;
937
938 ALL_OBJFILES (ofp)
939 {
940 if (objfile_has_full_symbols (ofp))
941 return 1;
942 }
943 return 0;
944 }
945
946
947 /* This operations deletes all objfile entries that represent solibs that
948 weren't explicitly loaded by the user, via e.g., the add-symbol-file
949 command. */
950
951 void
952 objfile_purge_solibs (void)
953 {
954 struct objfile *objf;
955 struct objfile *temp;
956
957 ALL_OBJFILES_SAFE (objf, temp)
958 {
959 /* We assume that the solib package has been purged already, or will
960 be soon. */
961
962 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
963 free_objfile (objf);
964 }
965 }
966
967
968 /* Many places in gdb want to test just to see if we have any minimal
969 symbols available. This function returns zero if none are currently
970 available, nonzero otherwise. */
971
972 int
973 have_minimal_symbols (void)
974 {
975 struct objfile *ofp;
976
977 ALL_OBJFILES (ofp)
978 {
979 if (ofp->minimal_symbol_count > 0)
980 {
981 return 1;
982 }
983 }
984 return 0;
985 }
986
987 /* Qsort comparison function. */
988
989 static int
990 qsort_cmp (const void *a, const void *b)
991 {
992 const struct obj_section *sect1 = *(const struct obj_section **) a;
993 const struct obj_section *sect2 = *(const struct obj_section **) b;
994 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
995 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
996
997 if (sect1_addr < sect2_addr)
998 return -1;
999 else if (sect1_addr > sect2_addr)
1000 return 1;
1001 else
1002 {
1003 /* Sections are at the same address. This could happen if
1004 A) we have an objfile and a separate debuginfo.
1005 B) we are confused, and have added sections without proper relocation,
1006 or something like that. */
1007
1008 const struct objfile *const objfile1 = sect1->objfile;
1009 const struct objfile *const objfile2 = sect2->objfile;
1010
1011 if (objfile1->separate_debug_objfile == objfile2
1012 || objfile2->separate_debug_objfile == objfile1)
1013 {
1014 /* Case A. The ordering doesn't matter: separate debuginfo files
1015 will be filtered out later. */
1016
1017 return 0;
1018 }
1019
1020 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1021 triage. This section could be slow (since we iterate over all
1022 objfiles in each call to qsort_cmp), but this shouldn't happen
1023 very often (GDB is already in a confused state; one hopes this
1024 doesn't happen at all). If you discover that significant time is
1025 spent in the loops below, do 'set complaints 100' and examine the
1026 resulting complaints. */
1027
1028 if (objfile1 == objfile2)
1029 {
1030 /* Both sections came from the same objfile. We are really confused.
1031 Sort on sequence order of sections within the objfile. */
1032
1033 const struct obj_section *osect;
1034
1035 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1036 if (osect == sect1)
1037 return -1;
1038 else if (osect == sect2)
1039 return 1;
1040
1041 /* We should have found one of the sections before getting here. */
1042 gdb_assert_not_reached ("section not found");
1043 }
1044 else
1045 {
1046 /* Sort on sequence number of the objfile in the chain. */
1047
1048 const struct objfile *objfile;
1049
1050 ALL_OBJFILES (objfile)
1051 if (objfile == objfile1)
1052 return -1;
1053 else if (objfile == objfile2)
1054 return 1;
1055
1056 /* We should have found one of the objfiles before getting here. */
1057 gdb_assert_not_reached ("objfile not found");
1058 }
1059 }
1060
1061 /* Unreachable. */
1062 gdb_assert_not_reached ("unexpected code path");
1063 return 0;
1064 }
1065
1066 /* Select "better" obj_section to keep. We prefer the one that came from
1067 the real object, rather than the one from separate debuginfo.
1068 Most of the time the two sections are exactly identical, but with
1069 prelinking the .rel.dyn section in the real object may have different
1070 size. */
1071
1072 static struct obj_section *
1073 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1074 {
1075 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1076 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1077 || (b->objfile->separate_debug_objfile == a->objfile));
1078 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1079 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1080
1081 if (a->objfile->separate_debug_objfile != NULL)
1082 return a;
1083 return b;
1084 }
1085
1086 /* Return 1 if SECTION should be inserted into the section map.
1087 We want to insert only non-overlay and non-TLS section. */
1088
1089 static int
1090 insert_section_p (const struct bfd *abfd,
1091 const struct bfd_section *section)
1092 {
1093 const bfd_vma lma = bfd_section_lma (abfd, section);
1094
1095 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1096 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1097 /* This is an overlay section. IN_MEMORY check is needed to avoid
1098 discarding sections from the "system supplied DSO" (aka vdso)
1099 on some Linux systems (e.g. Fedora 11). */
1100 return 0;
1101 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1102 /* This is a TLS section. */
1103 return 0;
1104
1105 return 1;
1106 }
1107
1108 /* Filter out overlapping sections where one section came from the real
1109 objfile, and the other from a separate debuginfo file.
1110 Return the size of table after redundant sections have been eliminated. */
1111
1112 static int
1113 filter_debuginfo_sections (struct obj_section **map, int map_size)
1114 {
1115 int i, j;
1116
1117 for (i = 0, j = 0; i < map_size - 1; i++)
1118 {
1119 struct obj_section *const sect1 = map[i];
1120 struct obj_section *const sect2 = map[i + 1];
1121 const struct objfile *const objfile1 = sect1->objfile;
1122 const struct objfile *const objfile2 = sect2->objfile;
1123 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1124 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1125
1126 if (sect1_addr == sect2_addr
1127 && (objfile1->separate_debug_objfile == objfile2
1128 || objfile2->separate_debug_objfile == objfile1))
1129 {
1130 map[j++] = preferred_obj_section (sect1, sect2);
1131 ++i;
1132 }
1133 else
1134 map[j++] = sect1;
1135 }
1136
1137 if (i < map_size)
1138 {
1139 gdb_assert (i == map_size - 1);
1140 map[j++] = map[i];
1141 }
1142
1143 /* The map should not have shrunk to less than half the original size. */
1144 gdb_assert (map_size / 2 <= j);
1145
1146 return j;
1147 }
1148
1149 /* Filter out overlapping sections, issuing a warning if any are found.
1150 Overlapping sections could really be overlay sections which we didn't
1151 classify as such in insert_section_p, or we could be dealing with a
1152 corrupt binary. */
1153
1154 static int
1155 filter_overlapping_sections (struct obj_section **map, int map_size)
1156 {
1157 int i, j;
1158
1159 for (i = 0, j = 0; i < map_size - 1; )
1160 {
1161 int k;
1162
1163 map[j++] = map[i];
1164 for (k = i + 1; k < map_size; k++)
1165 {
1166 struct obj_section *const sect1 = map[i];
1167 struct obj_section *const sect2 = map[k];
1168 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1169 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1170 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1171
1172 gdb_assert (sect1_addr <= sect2_addr);
1173
1174 if (sect1_endaddr <= sect2_addr)
1175 break;
1176 else
1177 {
1178 /* We have an overlap. Report it. */
1179
1180 struct objfile *const objf1 = sect1->objfile;
1181 struct objfile *const objf2 = sect2->objfile;
1182
1183 const struct bfd *const abfd1 = objf1->obfd;
1184 const struct bfd *const abfd2 = objf2->obfd;
1185
1186 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1187 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1188
1189 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1190
1191 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1192
1193 complaint (&symfile_complaints,
1194 _("unexpected overlap between:\n"
1195 " (A) section `%s' from `%s' [%s, %s)\n"
1196 " (B) section `%s' from `%s' [%s, %s).\n"
1197 "Will ignore section B"),
1198 bfd_section_name (abfd1, bfds1), objf1->name,
1199 paddress (gdbarch, sect1_addr),
1200 paddress (gdbarch, sect1_endaddr),
1201 bfd_section_name (abfd2, bfds2), objf2->name,
1202 paddress (gdbarch, sect2_addr),
1203 paddress (gdbarch, sect2_endaddr));
1204 }
1205 }
1206 i = k;
1207 }
1208
1209 if (i < map_size)
1210 {
1211 gdb_assert (i == map_size - 1);
1212 map[j++] = map[i];
1213 }
1214
1215 return j;
1216 }
1217
1218
1219 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1220 TLS, overlay and overlapping sections. */
1221
1222 static void
1223 update_section_map (struct program_space *pspace,
1224 struct obj_section ***pmap, int *pmap_size)
1225 {
1226 int alloc_size, map_size, i;
1227 struct obj_section *s, **map;
1228 struct objfile *objfile;
1229
1230 gdb_assert (get_objfile_pspace_data (pspace)->objfiles_changed_p != 0);
1231
1232 map = *pmap;
1233 xfree (map);
1234
1235 alloc_size = 0;
1236 ALL_PSPACE_OBJFILES (pspace, objfile)
1237 ALL_OBJFILE_OSECTIONS (objfile, s)
1238 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1239 alloc_size += 1;
1240
1241 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1242 if (alloc_size == 0)
1243 {
1244 *pmap = NULL;
1245 *pmap_size = 0;
1246 return;
1247 }
1248
1249 map = xmalloc (alloc_size * sizeof (*map));
1250
1251 i = 0;
1252 ALL_PSPACE_OBJFILES (pspace, objfile)
1253 ALL_OBJFILE_OSECTIONS (objfile, s)
1254 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1255 map[i++] = s;
1256
1257 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1258 map_size = filter_debuginfo_sections(map, alloc_size);
1259 map_size = filter_overlapping_sections(map, map_size);
1260
1261 if (map_size < alloc_size)
1262 /* Some sections were eliminated. Trim excess space. */
1263 map = xrealloc (map, map_size * sizeof (*map));
1264 else
1265 gdb_assert (alloc_size == map_size);
1266
1267 *pmap = map;
1268 *pmap_size = map_size;
1269 }
1270
1271 /* Bsearch comparison function. */
1272
1273 static int
1274 bsearch_cmp (const void *key, const void *elt)
1275 {
1276 const CORE_ADDR pc = *(CORE_ADDR *) key;
1277 const struct obj_section *section = *(const struct obj_section **) elt;
1278
1279 if (pc < obj_section_addr (section))
1280 return -1;
1281 if (pc < obj_section_endaddr (section))
1282 return 0;
1283 return 1;
1284 }
1285
1286 /* Returns a section whose range includes PC or NULL if none found. */
1287
1288 struct obj_section *
1289 find_pc_section (CORE_ADDR pc)
1290 {
1291 struct objfile_pspace_info *pspace_info;
1292 struct obj_section *s, **sp;
1293
1294 /* Check for mapped overlay section first. */
1295 s = find_pc_mapped_section (pc);
1296 if (s)
1297 return s;
1298
1299 pspace_info = get_objfile_pspace_data (current_program_space);
1300 if (pspace_info->objfiles_changed_p != 0)
1301 {
1302 update_section_map (current_program_space,
1303 &pspace_info->sections,
1304 &pspace_info->num_sections);
1305
1306 /* Don't need updates to section map until objfiles are added,
1307 removed or relocated. */
1308 pspace_info->objfiles_changed_p = 0;
1309 }
1310
1311 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1312 bsearch be non-NULL. */
1313 if (pspace_info->sections == NULL)
1314 {
1315 gdb_assert (pspace_info->num_sections == 0);
1316 return NULL;
1317 }
1318
1319 sp = (struct obj_section **) bsearch (&pc,
1320 pspace_info->sections,
1321 pspace_info->num_sections,
1322 sizeof (*pspace_info->sections),
1323 bsearch_cmp);
1324 if (sp != NULL)
1325 return *sp;
1326 return NULL;
1327 }
1328
1329
1330 /* In SVR4, we recognize a trampoline by it's section name.
1331 That is, if the pc is in a section named ".plt" then we are in
1332 a trampoline. */
1333
1334 int
1335 in_plt_section (CORE_ADDR pc, char *name)
1336 {
1337 struct obj_section *s;
1338 int retval = 0;
1339
1340 s = find_pc_section (pc);
1341
1342 retval = (s != NULL
1343 && s->the_bfd_section->name != NULL
1344 && strcmp (s->the_bfd_section->name, ".plt") == 0);
1345 return (retval);
1346 }
1347 \f
1348
1349 /* Keep a registry of per-objfile data-pointers required by other GDB
1350 modules. */
1351
1352 struct objfile_data
1353 {
1354 unsigned index;
1355 void (*save) (struct objfile *, void *);
1356 void (*free) (struct objfile *, void *);
1357 };
1358
1359 struct objfile_data_registration
1360 {
1361 struct objfile_data *data;
1362 struct objfile_data_registration *next;
1363 };
1364
1365 struct objfile_data_registry
1366 {
1367 struct objfile_data_registration *registrations;
1368 unsigned num_registrations;
1369 };
1370
1371 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
1372
1373 const struct objfile_data *
1374 register_objfile_data_with_cleanup (void (*save) (struct objfile *, void *),
1375 void (*free) (struct objfile *, void *))
1376 {
1377 struct objfile_data_registration **curr;
1378
1379 /* Append new registration. */
1380 for (curr = &objfile_data_registry.registrations;
1381 *curr != NULL; curr = &(*curr)->next);
1382
1383 *curr = XMALLOC (struct objfile_data_registration);
1384 (*curr)->next = NULL;
1385 (*curr)->data = XMALLOC (struct objfile_data);
1386 (*curr)->data->index = objfile_data_registry.num_registrations++;
1387 (*curr)->data->save = save;
1388 (*curr)->data->free = free;
1389
1390 return (*curr)->data;
1391 }
1392
1393 const struct objfile_data *
1394 register_objfile_data (void)
1395 {
1396 return register_objfile_data_with_cleanup (NULL, NULL);
1397 }
1398
1399 static void
1400 objfile_alloc_data (struct objfile *objfile)
1401 {
1402 gdb_assert (objfile->data == NULL);
1403 objfile->num_data = objfile_data_registry.num_registrations;
1404 objfile->data = XCALLOC (objfile->num_data, void *);
1405 }
1406
1407 static void
1408 objfile_free_data (struct objfile *objfile)
1409 {
1410 gdb_assert (objfile->data != NULL);
1411 clear_objfile_data (objfile);
1412 xfree (objfile->data);
1413 objfile->data = NULL;
1414 }
1415
1416 void
1417 clear_objfile_data (struct objfile *objfile)
1418 {
1419 struct objfile_data_registration *registration;
1420 int i;
1421
1422 gdb_assert (objfile->data != NULL);
1423
1424 /* Process all the save handlers. */
1425
1426 for (registration = objfile_data_registry.registrations, i = 0;
1427 i < objfile->num_data;
1428 registration = registration->next, i++)
1429 if (objfile->data[i] != NULL && registration->data->save != NULL)
1430 registration->data->save (objfile, objfile->data[i]);
1431
1432 /* Now process all the free handlers. */
1433
1434 for (registration = objfile_data_registry.registrations, i = 0;
1435 i < objfile->num_data;
1436 registration = registration->next, i++)
1437 if (objfile->data[i] != NULL && registration->data->free != NULL)
1438 registration->data->free (objfile, objfile->data[i]);
1439
1440 memset (objfile->data, 0, objfile->num_data * sizeof (void *));
1441 }
1442
1443 void
1444 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
1445 void *value)
1446 {
1447 gdb_assert (data->index < objfile->num_data);
1448 objfile->data[data->index] = value;
1449 }
1450
1451 void *
1452 objfile_data (struct objfile *objfile, const struct objfile_data *data)
1453 {
1454 gdb_assert (data->index < objfile->num_data);
1455 return objfile->data[data->index];
1456 }
1457
1458 /* Set objfiles_changed_p so section map will be rebuilt next time it
1459 is used. Called by reread_symbols. */
1460
1461 void
1462 objfiles_changed (void)
1463 {
1464 /* Rebuild section map next time we need it. */
1465 get_objfile_pspace_data (current_program_space)->objfiles_changed_p = 1;
1466 }
1467
1468 /* Close ABFD, and warn if that fails. */
1469
1470 int
1471 gdb_bfd_close_or_warn (struct bfd *abfd)
1472 {
1473 int ret;
1474 char *name = bfd_get_filename (abfd);
1475
1476 ret = bfd_close (abfd);
1477
1478 if (!ret)
1479 warning (_("cannot close \"%s\": %s"),
1480 name, bfd_errmsg (bfd_get_error ()));
1481
1482 return ret;
1483 }
1484
1485 /* Add reference to ABFD. Returns ABFD. */
1486 struct bfd *
1487 gdb_bfd_ref (struct bfd *abfd)
1488 {
1489 int *p_refcount;
1490
1491 if (abfd == NULL)
1492 return NULL;
1493
1494 p_refcount = bfd_usrdata (abfd);
1495
1496 if (p_refcount != NULL)
1497 {
1498 *p_refcount += 1;
1499 return abfd;
1500 }
1501
1502 p_refcount = xmalloc (sizeof (*p_refcount));
1503 *p_refcount = 1;
1504 bfd_usrdata (abfd) = p_refcount;
1505
1506 return abfd;
1507 }
1508
1509 /* Unreference and possibly close ABFD. */
1510 void
1511 gdb_bfd_unref (struct bfd *abfd)
1512 {
1513 int *p_refcount;
1514 char *name;
1515
1516 if (abfd == NULL)
1517 return;
1518
1519 p_refcount = bfd_usrdata (abfd);
1520
1521 /* Valid range for p_refcount: a pointer to int counter, which has a
1522 value of 1 (single owner) or 2 (shared). */
1523 gdb_assert (*p_refcount == 1 || *p_refcount == 2);
1524
1525 *p_refcount -= 1;
1526 if (*p_refcount > 0)
1527 return;
1528
1529 xfree (p_refcount);
1530 bfd_usrdata (abfd) = NULL; /* Paranoia. */
1531
1532 name = bfd_get_filename (abfd);
1533 gdb_bfd_close_or_warn (abfd);
1534 xfree (name);
1535 }
1536
1537 /* Provide a prototype to silence -Wmissing-prototypes. */
1538 extern initialize_file_ftype _initialize_objfiles;
1539
1540 void
1541 _initialize_objfiles (void)
1542 {
1543 objfiles_pspace_data
1544 = register_program_space_data_with_cleanup (objfiles_pspace_data_cleanup);
1545 }