Split out eval_op_ternop
[binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2021 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <fcntl.h>
39 #include "gdb_obstack.h"
40 #include "hashtab.h"
41
42 #include "breakpoint.h"
43 #include "block.h"
44 #include "dictionary.h"
45 #include "source.h"
46 #include "addrmap.h"
47 #include "arch-utils.h"
48 #include "exec.h"
49 #include "observable.h"
50 #include "complaints.h"
51 #include "psymtab.h"
52 #include "solist.h"
53 #include "gdb_bfd.h"
54 #include "btrace.h"
55 #include "gdbsupport/pathstuff.h"
56
57 #include <algorithm>
58 #include <vector>
59
60 /* Keep a registry of per-objfile data-pointers required by other GDB
61 modules. */
62
63 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
64
65 /* Externally visible variables that are owned by this module.
66 See declarations in objfile.h for more info. */
67
68 struct objfile_pspace_info
69 {
70 objfile_pspace_info () = default;
71 ~objfile_pspace_info ();
72
73 struct obj_section **sections = nullptr;
74 int num_sections = 0;
75
76 /* Nonzero if object files have been added since the section map
77 was last updated. */
78 int new_objfiles_available = 0;
79
80 /* Nonzero if the section map MUST be updated before use. */
81 int section_map_dirty = 0;
82
83 /* Nonzero if section map updates should be inhibited if possible. */
84 int inhibit_updates = 0;
85 };
86
87 /* Per-program-space data key. */
88 static const struct program_space_key<objfile_pspace_info>
89 objfiles_pspace_data;
90
91 objfile_pspace_info::~objfile_pspace_info ()
92 {
93 xfree (sections);
94 }
95
96 /* Get the current svr4 data. If none is found yet, add it now. This
97 function always returns a valid object. */
98
99 static struct objfile_pspace_info *
100 get_objfile_pspace_data (struct program_space *pspace)
101 {
102 struct objfile_pspace_info *info;
103
104 info = objfiles_pspace_data.get (pspace);
105 if (info == NULL)
106 info = objfiles_pspace_data.emplace (pspace);
107
108 return info;
109 }
110
111 \f
112
113 /* Per-BFD data key. */
114
115 static const struct bfd_key<objfile_per_bfd_storage> objfiles_bfd_data;
116
117 objfile_per_bfd_storage::~objfile_per_bfd_storage ()
118 {
119 }
120
121 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
122 NULL, and it already has a per-BFD storage object, use that.
123 Otherwise, allocate a new per-BFD storage object. Note that it is
124 not safe to call this multiple times for a given OBJFILE -- it can
125 only be called when allocating or re-initializing OBJFILE. */
126
127 static struct objfile_per_bfd_storage *
128 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
129 {
130 struct objfile_per_bfd_storage *storage = NULL;
131
132 if (abfd != NULL)
133 storage = objfiles_bfd_data.get (abfd);
134
135 if (storage == NULL)
136 {
137 storage = new objfile_per_bfd_storage;
138 /* If the object requires gdb to do relocations, we simply fall
139 back to not sharing data across users. These cases are rare
140 enough that this seems reasonable. */
141 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
142 objfiles_bfd_data.set (abfd, storage);
143
144 /* Look up the gdbarch associated with the BFD. */
145 if (abfd != NULL)
146 storage->gdbarch = gdbarch_from_bfd (abfd);
147 }
148
149 return storage;
150 }
151
152 /* See objfiles.h. */
153
154 void
155 set_objfile_per_bfd (struct objfile *objfile)
156 {
157 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
158 }
159
160 /* Set the objfile's per-BFD notion of the "main" name and
161 language. */
162
163 void
164 set_objfile_main_name (struct objfile *objfile,
165 const char *name, enum language lang)
166 {
167 if (objfile->per_bfd->name_of_main == NULL
168 || strcmp (objfile->per_bfd->name_of_main, name) != 0)
169 objfile->per_bfd->name_of_main
170 = obstack_strdup (&objfile->per_bfd->storage_obstack, name);
171 objfile->per_bfd->language_of_main = lang;
172 }
173
174 /* Helper structure to map blocks to static link properties in hash tables. */
175
176 struct static_link_htab_entry
177 {
178 const struct block *block;
179 const struct dynamic_prop *static_link;
180 };
181
182 /* Return a hash code for struct static_link_htab_entry *P. */
183
184 static hashval_t
185 static_link_htab_entry_hash (const void *p)
186 {
187 const struct static_link_htab_entry *e
188 = (const struct static_link_htab_entry *) p;
189
190 return htab_hash_pointer (e->block);
191 }
192
193 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are
194 mappings for the same block. */
195
196 static int
197 static_link_htab_entry_eq (const void *p1, const void *p2)
198 {
199 const struct static_link_htab_entry *e1
200 = (const struct static_link_htab_entry *) p1;
201 const struct static_link_htab_entry *e2
202 = (const struct static_link_htab_entry *) p2;
203
204 return e1->block == e2->block;
205 }
206
207 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE.
208 Must not be called more than once for each BLOCK. */
209
210 void
211 objfile_register_static_link (struct objfile *objfile,
212 const struct block *block,
213 const struct dynamic_prop *static_link)
214 {
215 void **slot;
216 struct static_link_htab_entry lookup_entry;
217 struct static_link_htab_entry *entry;
218
219 if (objfile->static_links == NULL)
220 objfile->static_links.reset (htab_create_alloc
221 (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL,
222 xcalloc, xfree));
223
224 /* Create a slot for the mapping, make sure it's the first mapping for this
225 block and then create the mapping itself. */
226 lookup_entry.block = block;
227 slot = htab_find_slot (objfile->static_links.get (), &lookup_entry, INSERT);
228 gdb_assert (*slot == NULL);
229
230 entry = XOBNEW (&objfile->objfile_obstack, static_link_htab_entry);
231 entry->block = block;
232 entry->static_link = static_link;
233 *slot = (void *) entry;
234 }
235
236 /* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if
237 none was found. */
238
239 const struct dynamic_prop *
240 objfile_lookup_static_link (struct objfile *objfile,
241 const struct block *block)
242 {
243 struct static_link_htab_entry *entry;
244 struct static_link_htab_entry lookup_entry;
245
246 if (objfile->static_links == NULL)
247 return NULL;
248 lookup_entry.block = block;
249 entry = ((struct static_link_htab_entry *)
250 htab_find (objfile->static_links.get (), &lookup_entry));
251 if (entry == NULL)
252 return NULL;
253
254 gdb_assert (entry->block == block);
255 return entry->static_link;
256 }
257
258 \f
259
260 /* Build up the section table that the objfile references. The
261 objfile contains pointers to the start of the table
262 (objfile->sections) and to the first location after the end of the
263 table (objfile->sections_end). */
264
265 static void
266 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
267 struct objfile *objfile, int force)
268 {
269 struct obj_section *section;
270
271 if (!force)
272 {
273 flagword aflag;
274
275 aflag = bfd_section_flags (asect);
276 if (!(aflag & SEC_ALLOC))
277 return;
278 }
279
280 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
281 section->objfile = objfile;
282 section->the_bfd_section = asect;
283 section->ovly_mapped = 0;
284 }
285
286 /* Builds a section table for OBJFILE.
287
288 Note that the OFFSET and OVLY_MAPPED in each table entry are
289 initialized to zero. */
290
291 void
292 build_objfile_section_table (struct objfile *objfile)
293 {
294 int count = gdb_bfd_count_sections (objfile->obfd);
295
296 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
297 count,
298 struct obj_section);
299 objfile->sections_end = (objfile->sections + count);
300 for (asection *sect : gdb_bfd_sections (objfile->obfd))
301 add_to_objfile_sections (objfile->obfd, sect, objfile, 0);
302
303 /* See gdb_bfd_section_index. */
304 add_to_objfile_sections (objfile->obfd, bfd_com_section_ptr, objfile, 1);
305 add_to_objfile_sections (objfile->obfd, bfd_und_section_ptr, objfile, 1);
306 add_to_objfile_sections (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
307 add_to_objfile_sections (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
308 }
309
310 /* Given a pointer to an initialized bfd (ABFD) and some flag bits,
311 initialize the new objfile as best we can and link it into the list
312 of all known objfiles.
313
314 NAME should contain original non-canonicalized filename or other
315 identifier as entered by user. If there is no better source use
316 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
317 NAME content is copied into returned objfile.
318
319 The FLAGS word contains various bits (OBJF_*) that can be taken as
320 requests for specific operations. Other bits like OBJF_SHARED are
321 simply copied through to the new objfile flags member. */
322
323 objfile::objfile (bfd *abfd, const char *name, objfile_flags flags_)
324 : flags (flags_),
325 pspace (current_program_space),
326 partial_symtabs (new psymtab_storage ()),
327 obfd (abfd)
328 {
329 const char *expanded_name;
330
331 /* We could use obstack_specify_allocation here instead, but
332 gdb_obstack.h specifies the alloc/dealloc functions. */
333 obstack_init (&objfile_obstack);
334
335 objfile_alloc_data (this);
336
337 gdb::unique_xmalloc_ptr<char> name_holder;
338 if (name == NULL)
339 {
340 gdb_assert (abfd == NULL);
341 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
342 expanded_name = "<<anonymous objfile>>";
343 }
344 else if ((flags & OBJF_NOT_FILENAME) != 0
345 || is_target_filename (name))
346 expanded_name = name;
347 else
348 {
349 name_holder = gdb_abspath (name);
350 expanded_name = name_holder.get ();
351 }
352 original_name = obstack_strdup (&objfile_obstack, expanded_name);
353
354 /* Update the per-objfile information that comes from the bfd, ensuring
355 that any data that is reference is saved in the per-objfile data
356 region. */
357
358 gdb_bfd_ref (abfd);
359 if (abfd != NULL)
360 {
361 mtime = bfd_get_mtime (abfd);
362
363 /* Build section table. */
364 build_objfile_section_table (this);
365 }
366
367 per_bfd = get_objfile_bfd_data (this, abfd);
368 }
369
370 /* If there is a valid and known entry point, function fills *ENTRY_P with it
371 and returns non-zero; otherwise it returns zero. */
372
373 int
374 entry_point_address_query (CORE_ADDR *entry_p)
375 {
376 objfile *objf = current_program_space->symfile_object_file;
377 if (objf == NULL || !objf->per_bfd->ei.entry_point_p)
378 return 0;
379
380 int idx = objf->per_bfd->ei.the_bfd_section_index;
381 *entry_p = objf->per_bfd->ei.entry_point + objf->section_offsets[idx];
382
383 return 1;
384 }
385
386 /* Get current entry point address. Call error if it is not known. */
387
388 CORE_ADDR
389 entry_point_address (void)
390 {
391 CORE_ADDR retval;
392
393 if (!entry_point_address_query (&retval))
394 error (_("Entry point address is not known."));
395
396 return retval;
397 }
398
399 separate_debug_iterator &
400 separate_debug_iterator::operator++ ()
401 {
402 gdb_assert (m_objfile != nullptr);
403
404 struct objfile *res;
405
406 /* If any, return the first child. */
407 res = m_objfile->separate_debug_objfile;
408 if (res != nullptr)
409 {
410 m_objfile = res;
411 return *this;
412 }
413
414 /* Common case where there is no separate debug objfile. */
415 if (m_objfile == m_parent)
416 {
417 m_objfile = nullptr;
418 return *this;
419 }
420
421 /* Return the brother if any. Note that we don't iterate on brothers of
422 the parents. */
423 res = m_objfile->separate_debug_objfile_link;
424 if (res != nullptr)
425 {
426 m_objfile = res;
427 return *this;
428 }
429
430 for (res = m_objfile->separate_debug_objfile_backlink;
431 res != m_parent;
432 res = res->separate_debug_objfile_backlink)
433 {
434 gdb_assert (res != nullptr);
435 if (res->separate_debug_objfile_link != nullptr)
436 {
437 m_objfile = res->separate_debug_objfile_link;
438 return *this;
439 }
440 }
441 m_objfile = nullptr;
442 return *this;
443 }
444
445 /* Add OBJFILE as a separate debug objfile of PARENT. */
446
447 static void
448 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
449 {
450 gdb_assert (objfile && parent);
451
452 /* Must not be already in a list. */
453 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
454 gdb_assert (objfile->separate_debug_objfile_link == NULL);
455 gdb_assert (objfile->separate_debug_objfile == NULL);
456 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
457 gdb_assert (parent->separate_debug_objfile_link == NULL);
458
459 objfile->separate_debug_objfile_backlink = parent;
460 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
461 parent->separate_debug_objfile = objfile;
462 }
463
464 /* See objfiles.h. */
465
466 objfile *
467 objfile::make (bfd *bfd_, const char *name_, objfile_flags flags_,
468 objfile *parent)
469 {
470 objfile *result = new objfile (bfd_, name_, flags_);
471 if (parent != nullptr)
472 add_separate_debug_objfile (result, parent);
473
474 /* Using std::make_shared might be a bit nicer here, but that would
475 require making the constructor public. */
476 current_program_space->add_objfile (std::shared_ptr<objfile> (result),
477 parent);
478
479 /* Rebuild section map next time we need it. */
480 get_objfile_pspace_data (current_program_space)->new_objfiles_available = 1;
481
482 return result;
483 }
484
485 /* See objfiles.h. */
486
487 void
488 objfile::unlink ()
489 {
490 current_program_space->remove_objfile (this);
491 }
492
493 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
494 itself. */
495
496 void
497 free_objfile_separate_debug (struct objfile *objfile)
498 {
499 struct objfile *child;
500
501 for (child = objfile->separate_debug_objfile; child;)
502 {
503 struct objfile *next_child = child->separate_debug_objfile_link;
504 child->unlink ();
505 child = next_child;
506 }
507 }
508
509 /* Destroy an objfile and all the symtabs and psymtabs under it. */
510
511 objfile::~objfile ()
512 {
513 /* First notify observers that this objfile is about to be freed. */
514 gdb::observers::free_objfile.notify (this);
515
516 /* Free all separate debug objfiles. */
517 free_objfile_separate_debug (this);
518
519 if (separate_debug_objfile_backlink)
520 {
521 /* We freed the separate debug file, make sure the base objfile
522 doesn't reference it. */
523 struct objfile *child;
524
525 child = separate_debug_objfile_backlink->separate_debug_objfile;
526
527 if (child == this)
528 {
529 /* THIS is the first child. */
530 separate_debug_objfile_backlink->separate_debug_objfile =
531 separate_debug_objfile_link;
532 }
533 else
534 {
535 /* Find THIS in the list. */
536 while (1)
537 {
538 if (child->separate_debug_objfile_link == this)
539 {
540 child->separate_debug_objfile_link =
541 separate_debug_objfile_link;
542 break;
543 }
544 child = child->separate_debug_objfile_link;
545 gdb_assert (child);
546 }
547 }
548 }
549
550 /* Remove any references to this objfile in the global value
551 lists. */
552 preserve_values (this);
553
554 /* It still may reference data modules have associated with the objfile and
555 the symbol file data. */
556 forget_cached_source_info_for_objfile (this);
557
558 breakpoint_free_objfile (this);
559 btrace_free_objfile (this);
560
561 /* First do any symbol file specific actions required when we are
562 finished with a particular symbol file. Note that if the objfile
563 is using reusable symbol information (via mmalloc) then each of
564 these routines is responsible for doing the correct thing, either
565 freeing things which are valid only during this particular gdb
566 execution, or leaving them to be reused during the next one. */
567
568 if (sf != NULL)
569 (*sf->sym_finish) (this);
570
571 /* Discard any data modules have associated with the objfile. The function
572 still may reference obfd. */
573 objfile_free_data (this);
574
575 if (obfd)
576 gdb_bfd_unref (obfd);
577 else
578 delete per_bfd;
579
580 /* Before the symbol table code was redone to make it easier to
581 selectively load and remove information particular to a specific
582 linkage unit, gdb used to do these things whenever the monolithic
583 symbol table was blown away. How much still needs to be done
584 is unknown, but we play it safe for now and keep each action until
585 it is shown to be no longer needed. */
586
587 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
588 for example), so we need to call this here. */
589 clear_pc_function_cache ();
590
591 /* Check to see if the current_source_symtab belongs to this objfile,
592 and if so, call clear_current_source_symtab_and_line. */
593
594 {
595 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
596
597 if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == this)
598 clear_current_source_symtab_and_line ();
599 }
600
601 /* Free the obstacks for non-reusable objfiles. */
602 obstack_free (&objfile_obstack, 0);
603
604 /* Rebuild section map next time we need it. */
605 get_objfile_pspace_data (pspace)->section_map_dirty = 1;
606 }
607
608 \f
609 /* A helper function for objfile_relocate1 that relocates a single
610 symbol. */
611
612 static void
613 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
614 const section_offsets &delta)
615 {
616 fixup_symbol_section (sym, objfile);
617
618 /* The RS6000 code from which this was taken skipped
619 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
620 But I'm leaving out that test, on the theory that
621 they can't possibly pass the tests below. */
622 if ((SYMBOL_CLASS (sym) == LOC_LABEL
623 || SYMBOL_CLASS (sym) == LOC_STATIC)
624 && sym->section_index () >= 0)
625 {
626 SET_SYMBOL_VALUE_ADDRESS (sym,
627 SYMBOL_VALUE_ADDRESS (sym)
628 + delta[sym->section_index ()]);
629 }
630 }
631
632 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
633 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
634 Return non-zero iff any change happened. */
635
636 static int
637 objfile_relocate1 (struct objfile *objfile,
638 const section_offsets &new_offsets)
639 {
640 section_offsets delta (objfile->section_offsets.size ());
641
642 int something_changed = 0;
643
644 for (int i = 0; i < objfile->section_offsets.size (); ++i)
645 {
646 delta[i] = new_offsets[i] - objfile->section_offsets[i];
647 if (delta[i] != 0)
648 something_changed = 1;
649 }
650 if (!something_changed)
651 return 0;
652
653 /* OK, get all the symtabs. */
654 {
655 for (compunit_symtab *cust : objfile->compunits ())
656 {
657 for (symtab *s : compunit_filetabs (cust))
658 {
659 struct linetable *l;
660
661 /* First the line table. */
662 l = SYMTAB_LINETABLE (s);
663 if (l)
664 {
665 for (int i = 0; i < l->nitems; ++i)
666 l->item[i].pc += delta[COMPUNIT_BLOCK_LINE_SECTION (cust)];
667 }
668 }
669 }
670
671 for (compunit_symtab *cust : objfile->compunits ())
672 {
673 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
674 int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust);
675
676 if (BLOCKVECTOR_MAP (bv))
677 addrmap_relocate (BLOCKVECTOR_MAP (bv), delta[block_line_section]);
678
679 for (int i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
680 {
681 struct block *b;
682 struct symbol *sym;
683 struct mdict_iterator miter;
684
685 b = BLOCKVECTOR_BLOCK (bv, i);
686 BLOCK_START (b) += delta[block_line_section];
687 BLOCK_END (b) += delta[block_line_section];
688
689 if (BLOCK_RANGES (b) != nullptr)
690 for (int j = 0; j < BLOCK_NRANGES (b); j++)
691 {
692 BLOCK_RANGE_START (b, j) += delta[block_line_section];
693 BLOCK_RANGE_END (b, j) += delta[block_line_section];
694 }
695
696 /* We only want to iterate over the local symbols, not any
697 symbols in included symtabs. */
698 ALL_DICT_SYMBOLS (BLOCK_MULTIDICT (b), miter, sym)
699 {
700 relocate_one_symbol (sym, objfile, delta);
701 }
702 }
703 }
704 }
705
706 /* This stores relocated addresses and so must be cleared. This
707 will cause it to be recreated on demand. */
708 objfile->psymbol_map.clear ();
709
710 /* Relocate isolated symbols. */
711 {
712 struct symbol *iter;
713
714 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
715 relocate_one_symbol (iter, objfile, delta);
716 }
717
718 {
719 int i;
720
721 for (i = 0; i < objfile->section_offsets.size (); ++i)
722 objfile->section_offsets[i] = new_offsets[i];
723 }
724
725 /* Rebuild section map next time we need it. */
726 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
727
728 /* Update the table in exec_ops, used to read memory. */
729 struct obj_section *s;
730 ALL_OBJFILE_OSECTIONS (objfile, s)
731 {
732 int idx = s - objfile->sections;
733
734 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
735 obj_section_addr (s));
736 }
737
738 /* Data changed. */
739 return 1;
740 }
741
742 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
743 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
744
745 The number and ordering of sections does differ between the two objfiles.
746 Only their names match. Also the file offsets will differ (objfile being
747 possibly prelinked but separate_debug_objfile is probably not prelinked) but
748 the in-memory absolute address as specified by NEW_OFFSETS must match both
749 files. */
750
751 void
752 objfile_relocate (struct objfile *objfile,
753 const section_offsets &new_offsets)
754 {
755 int changed = 0;
756
757 changed |= objfile_relocate1 (objfile, new_offsets);
758
759 for (::objfile *debug_objfile : objfile->separate_debug_objfiles ())
760 {
761 if (debug_objfile == objfile)
762 continue;
763
764 section_addr_info objfile_addrs
765 = build_section_addr_info_from_objfile (objfile);
766
767 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
768 relative ones must be already created according to debug_objfile. */
769
770 addr_info_make_relative (&objfile_addrs, debug_objfile->obfd);
771
772 gdb_assert (debug_objfile->section_offsets.size ()
773 == gdb_bfd_count_sections (debug_objfile->obfd));
774 section_offsets new_debug_offsets
775 (debug_objfile->section_offsets.size ());
776 relative_addr_info_to_section_offsets (new_debug_offsets, objfile_addrs);
777
778 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
779 }
780
781 /* Relocate breakpoints as necessary, after things are relocated. */
782 if (changed)
783 breakpoint_re_set ();
784 }
785
786 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
787 not touched here.
788 Return non-zero iff any change happened. */
789
790 static int
791 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
792 {
793 section_offsets new_offsets (objfile->section_offsets.size (), slide);
794 return objfile_relocate1 (objfile, new_offsets);
795 }
796
797 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
798 SEPARATE_DEBUG_OBJFILEs. */
799
800 void
801 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
802 {
803 int changed = 0;
804
805 for (::objfile *debug_objfile : objfile->separate_debug_objfiles ())
806 changed |= objfile_rebase1 (debug_objfile, slide);
807
808 /* Relocate breakpoints as necessary, after things are relocated. */
809 if (changed)
810 breakpoint_re_set ();
811 }
812 \f
813 /* Return non-zero if OBJFILE has partial symbols. */
814
815 int
816 objfile_has_partial_symbols (struct objfile *objfile)
817 {
818 if (!objfile->sf)
819 return 0;
820
821 /* If we have not read psymbols, but we have a function capable of reading
822 them, then that is an indication that they are in fact available. Without
823 this function the symbols may have been already read in but they also may
824 not be present in this objfile. */
825 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
826 && objfile->sf->sym_read_psymbols != NULL)
827 return 1;
828
829 return objfile->sf->qf->has_symbols (objfile);
830 }
831
832 /* Return non-zero if OBJFILE has full symbols. */
833
834 int
835 objfile_has_full_symbols (struct objfile *objfile)
836 {
837 return objfile->compunit_symtabs != NULL;
838 }
839
840 /* Return non-zero if OBJFILE has full or partial symbols, either directly
841 or through a separate debug file. */
842
843 int
844 objfile_has_symbols (struct objfile *objfile)
845 {
846 for (::objfile *o : objfile->separate_debug_objfiles ())
847 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
848 return 1;
849 return 0;
850 }
851
852
853 /* Many places in gdb want to test just to see if we have any partial
854 symbols available. This function returns zero if none are currently
855 available, nonzero otherwise. */
856
857 int
858 have_partial_symbols (void)
859 {
860 for (objfile *ofp : current_program_space->objfiles ())
861 {
862 if (objfile_has_partial_symbols (ofp))
863 return 1;
864 }
865 return 0;
866 }
867
868 /* Many places in gdb want to test just to see if we have any full
869 symbols available. This function returns zero if none are currently
870 available, nonzero otherwise. */
871
872 int
873 have_full_symbols (void)
874 {
875 for (objfile *ofp : current_program_space->objfiles ())
876 {
877 if (objfile_has_full_symbols (ofp))
878 return 1;
879 }
880 return 0;
881 }
882
883
884 /* This operations deletes all objfile entries that represent solibs that
885 weren't explicitly loaded by the user, via e.g., the add-symbol-file
886 command. */
887
888 void
889 objfile_purge_solibs (void)
890 {
891 for (objfile *objf : current_program_space->objfiles_safe ())
892 {
893 /* We assume that the solib package has been purged already, or will
894 be soon. */
895
896 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
897 objf->unlink ();
898 }
899 }
900
901
902 /* Many places in gdb want to test just to see if we have any minimal
903 symbols available. This function returns zero if none are currently
904 available, nonzero otherwise. */
905
906 int
907 have_minimal_symbols (void)
908 {
909 for (objfile *ofp : current_program_space->objfiles ())
910 {
911 if (ofp->per_bfd->minimal_symbol_count > 0)
912 {
913 return 1;
914 }
915 }
916 return 0;
917 }
918
919 /* Qsort comparison function. */
920
921 static bool
922 sort_cmp (const struct obj_section *sect1, const obj_section *sect2)
923 {
924 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
925 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
926
927 if (sect1_addr < sect2_addr)
928 return true;
929 else if (sect1_addr > sect2_addr)
930 return false;
931 else
932 {
933 /* Sections are at the same address. This could happen if
934 A) we have an objfile and a separate debuginfo.
935 B) we are confused, and have added sections without proper relocation,
936 or something like that. */
937
938 const struct objfile *const objfile1 = sect1->objfile;
939 const struct objfile *const objfile2 = sect2->objfile;
940
941 if (objfile1->separate_debug_objfile == objfile2
942 || objfile2->separate_debug_objfile == objfile1)
943 {
944 /* Case A. The ordering doesn't matter: separate debuginfo files
945 will be filtered out later. */
946
947 return false;
948 }
949
950 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
951 triage. This section could be slow (since we iterate over all
952 objfiles in each call to sort_cmp), but this shouldn't happen
953 very often (GDB is already in a confused state; one hopes this
954 doesn't happen at all). If you discover that significant time is
955 spent in the loops below, do 'set complaints 100' and examine the
956 resulting complaints. */
957 if (objfile1 == objfile2)
958 {
959 /* Both sections came from the same objfile. We are really
960 confused. Sort on sequence order of sections within the
961 objfile. The order of checks is important here, if we find a
962 match on SECT2 first then either SECT2 is before SECT1, or,
963 SECT2 == SECT1, in both cases we should return false. The
964 second case shouldn't occur during normal use, but std::sort
965 does check that '!(a < a)' when compiled in debug mode. */
966
967 const struct obj_section *osect;
968
969 ALL_OBJFILE_OSECTIONS (objfile1, osect)
970 if (osect == sect2)
971 return false;
972 else if (osect == sect1)
973 return true;
974
975 /* We should have found one of the sections before getting here. */
976 gdb_assert_not_reached ("section not found");
977 }
978 else
979 {
980 /* Sort on sequence number of the objfile in the chain. */
981
982 for (objfile *objfile : current_program_space->objfiles ())
983 if (objfile == objfile1)
984 return true;
985 else if (objfile == objfile2)
986 return false;
987
988 /* We should have found one of the objfiles before getting here. */
989 gdb_assert_not_reached ("objfile not found");
990 }
991 }
992
993 /* Unreachable. */
994 gdb_assert_not_reached ("unexpected code path");
995 return false;
996 }
997
998 /* Select "better" obj_section to keep. We prefer the one that came from
999 the real object, rather than the one from separate debuginfo.
1000 Most of the time the two sections are exactly identical, but with
1001 prelinking the .rel.dyn section in the real object may have different
1002 size. */
1003
1004 static struct obj_section *
1005 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1006 {
1007 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1008 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1009 || (b->objfile->separate_debug_objfile == a->objfile));
1010 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1011 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1012
1013 if (a->objfile->separate_debug_objfile != NULL)
1014 return a;
1015 return b;
1016 }
1017
1018 /* Return 1 if SECTION should be inserted into the section map.
1019 We want to insert only non-overlay and non-TLS section. */
1020
1021 static int
1022 insert_section_p (const struct bfd *abfd,
1023 const struct bfd_section *section)
1024 {
1025 const bfd_vma lma = bfd_section_lma (section);
1026
1027 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (section)
1028 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1029 /* This is an overlay section. IN_MEMORY check is needed to avoid
1030 discarding sections from the "system supplied DSO" (aka vdso)
1031 on some Linux systems (e.g. Fedora 11). */
1032 return 0;
1033 if ((bfd_section_flags (section) & SEC_THREAD_LOCAL) != 0)
1034 /* This is a TLS section. */
1035 return 0;
1036
1037 return 1;
1038 }
1039
1040 /* Filter out overlapping sections where one section came from the real
1041 objfile, and the other from a separate debuginfo file.
1042 Return the size of table after redundant sections have been eliminated. */
1043
1044 static int
1045 filter_debuginfo_sections (struct obj_section **map, int map_size)
1046 {
1047 int i, j;
1048
1049 for (i = 0, j = 0; i < map_size - 1; i++)
1050 {
1051 struct obj_section *const sect1 = map[i];
1052 struct obj_section *const sect2 = map[i + 1];
1053 const struct objfile *const objfile1 = sect1->objfile;
1054 const struct objfile *const objfile2 = sect2->objfile;
1055 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1056 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1057
1058 if (sect1_addr == sect2_addr
1059 && (objfile1->separate_debug_objfile == objfile2
1060 || objfile2->separate_debug_objfile == objfile1))
1061 {
1062 map[j++] = preferred_obj_section (sect1, sect2);
1063 ++i;
1064 }
1065 else
1066 map[j++] = sect1;
1067 }
1068
1069 if (i < map_size)
1070 {
1071 gdb_assert (i == map_size - 1);
1072 map[j++] = map[i];
1073 }
1074
1075 /* The map should not have shrunk to less than half the original size. */
1076 gdb_assert (map_size / 2 <= j);
1077
1078 return j;
1079 }
1080
1081 /* Filter out overlapping sections, issuing a warning if any are found.
1082 Overlapping sections could really be overlay sections which we didn't
1083 classify as such in insert_section_p, or we could be dealing with a
1084 corrupt binary. */
1085
1086 static int
1087 filter_overlapping_sections (struct obj_section **map, int map_size)
1088 {
1089 int i, j;
1090
1091 for (i = 0, j = 0; i < map_size - 1; )
1092 {
1093 int k;
1094
1095 map[j++] = map[i];
1096 for (k = i + 1; k < map_size; k++)
1097 {
1098 struct obj_section *const sect1 = map[i];
1099 struct obj_section *const sect2 = map[k];
1100 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1101 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1102 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1103
1104 gdb_assert (sect1_addr <= sect2_addr);
1105
1106 if (sect1_endaddr <= sect2_addr)
1107 break;
1108 else
1109 {
1110 /* We have an overlap. Report it. */
1111
1112 struct objfile *const objf1 = sect1->objfile;
1113 struct objfile *const objf2 = sect2->objfile;
1114
1115 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1116 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1117
1118 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1119
1120 struct gdbarch *const gdbarch = objf1->arch ();
1121
1122 complaint (_("unexpected overlap between:\n"
1123 " (A) section `%s' from `%s' [%s, %s)\n"
1124 " (B) section `%s' from `%s' [%s, %s).\n"
1125 "Will ignore section B"),
1126 bfd_section_name (bfds1), objfile_name (objf1),
1127 paddress (gdbarch, sect1_addr),
1128 paddress (gdbarch, sect1_endaddr),
1129 bfd_section_name (bfds2), objfile_name (objf2),
1130 paddress (gdbarch, sect2_addr),
1131 paddress (gdbarch, sect2_endaddr));
1132 }
1133 }
1134 i = k;
1135 }
1136
1137 if (i < map_size)
1138 {
1139 gdb_assert (i == map_size - 1);
1140 map[j++] = map[i];
1141 }
1142
1143 return j;
1144 }
1145
1146
1147 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1148 TLS, overlay and overlapping sections. */
1149
1150 static void
1151 update_section_map (struct program_space *pspace,
1152 struct obj_section ***pmap, int *pmap_size)
1153 {
1154 struct objfile_pspace_info *pspace_info;
1155 int alloc_size, map_size, i;
1156 struct obj_section *s, **map;
1157
1158 pspace_info = get_objfile_pspace_data (pspace);
1159 gdb_assert (pspace_info->section_map_dirty != 0
1160 || pspace_info->new_objfiles_available != 0);
1161
1162 map = *pmap;
1163 xfree (map);
1164
1165 alloc_size = 0;
1166 for (objfile *objfile : pspace->objfiles ())
1167 ALL_OBJFILE_OSECTIONS (objfile, s)
1168 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1169 alloc_size += 1;
1170
1171 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1172 if (alloc_size == 0)
1173 {
1174 *pmap = NULL;
1175 *pmap_size = 0;
1176 return;
1177 }
1178
1179 map = XNEWVEC (struct obj_section *, alloc_size);
1180
1181 i = 0;
1182 for (objfile *objfile : pspace->objfiles ())
1183 ALL_OBJFILE_OSECTIONS (objfile, s)
1184 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1185 map[i++] = s;
1186
1187 std::sort (map, map + alloc_size, sort_cmp);
1188 map_size = filter_debuginfo_sections(map, alloc_size);
1189 map_size = filter_overlapping_sections(map, map_size);
1190
1191 if (map_size < alloc_size)
1192 /* Some sections were eliminated. Trim excess space. */
1193 map = XRESIZEVEC (struct obj_section *, map, map_size);
1194 else
1195 gdb_assert (alloc_size == map_size);
1196
1197 *pmap = map;
1198 *pmap_size = map_size;
1199 }
1200
1201 /* Bsearch comparison function. */
1202
1203 static int
1204 bsearch_cmp (const void *key, const void *elt)
1205 {
1206 const CORE_ADDR pc = *(CORE_ADDR *) key;
1207 const struct obj_section *section = *(const struct obj_section **) elt;
1208
1209 if (pc < obj_section_addr (section))
1210 return -1;
1211 if (pc < obj_section_endaddr (section))
1212 return 0;
1213 return 1;
1214 }
1215
1216 /* Returns a section whose range includes PC or NULL if none found. */
1217
1218 struct obj_section *
1219 find_pc_section (CORE_ADDR pc)
1220 {
1221 struct objfile_pspace_info *pspace_info;
1222 struct obj_section *s, **sp;
1223
1224 /* Check for mapped overlay section first. */
1225 s = find_pc_mapped_section (pc);
1226 if (s)
1227 return s;
1228
1229 pspace_info = get_objfile_pspace_data (current_program_space);
1230 if (pspace_info->section_map_dirty
1231 || (pspace_info->new_objfiles_available
1232 && !pspace_info->inhibit_updates))
1233 {
1234 update_section_map (current_program_space,
1235 &pspace_info->sections,
1236 &pspace_info->num_sections);
1237
1238 /* Don't need updates to section map until objfiles are added,
1239 removed or relocated. */
1240 pspace_info->new_objfiles_available = 0;
1241 pspace_info->section_map_dirty = 0;
1242 }
1243
1244 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1245 bsearch be non-NULL. */
1246 if (pspace_info->sections == NULL)
1247 {
1248 gdb_assert (pspace_info->num_sections == 0);
1249 return NULL;
1250 }
1251
1252 sp = (struct obj_section **) bsearch (&pc,
1253 pspace_info->sections,
1254 pspace_info->num_sections,
1255 sizeof (*pspace_info->sections),
1256 bsearch_cmp);
1257 if (sp != NULL)
1258 return *sp;
1259 return NULL;
1260 }
1261
1262
1263 /* Return non-zero if PC is in a section called NAME. */
1264
1265 int
1266 pc_in_section (CORE_ADDR pc, const char *name)
1267 {
1268 struct obj_section *s;
1269 int retval = 0;
1270
1271 s = find_pc_section (pc);
1272
1273 retval = (s != NULL
1274 && s->the_bfd_section->name != NULL
1275 && strcmp (s->the_bfd_section->name, name) == 0);
1276 return (retval);
1277 }
1278 \f
1279
1280 /* Set section_map_dirty so section map will be rebuilt next time it
1281 is used. Called by reread_symbols. */
1282
1283 void
1284 objfiles_changed (void)
1285 {
1286 /* Rebuild section map next time we need it. */
1287 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1288 }
1289
1290 /* See comments in objfiles.h. */
1291
1292 scoped_restore_tmpl<int>
1293 inhibit_section_map_updates (struct program_space *pspace)
1294 {
1295 return scoped_restore_tmpl<int>
1296 (&get_objfile_pspace_data (pspace)->inhibit_updates, 1);
1297 }
1298
1299 /* See objfiles.h. */
1300
1301 bool
1302 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1303 {
1304 struct obj_section *osect;
1305
1306 if (objfile == NULL)
1307 return false;
1308
1309 ALL_OBJFILE_OSECTIONS (objfile, osect)
1310 {
1311 if (section_is_overlay (osect) && !section_is_mapped (osect))
1312 continue;
1313
1314 if (obj_section_addr (osect) <= addr
1315 && addr < obj_section_endaddr (osect))
1316 return true;
1317 }
1318 return false;
1319 }
1320
1321 /* See objfiles.h. */
1322
1323 bool
1324 shared_objfile_contains_address_p (struct program_space *pspace,
1325 CORE_ADDR address)
1326 {
1327 for (objfile *objfile : pspace->objfiles ())
1328 {
1329 if ((objfile->flags & OBJF_SHARED) != 0
1330 && is_addr_in_objfile (address, objfile))
1331 return true;
1332 }
1333
1334 return false;
1335 }
1336
1337 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1338 gdbarch method. It is equivalent to use the objfiles iterable,
1339 searching the objfiles in the order they are stored internally,
1340 ignoring CURRENT_OBJFILE.
1341
1342 On most platforms, it should be close enough to doing the best
1343 we can without some knowledge specific to the architecture. */
1344
1345 void
1346 default_iterate_over_objfiles_in_search_order
1347 (struct gdbarch *gdbarch,
1348 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1349 void *cb_data, struct objfile *current_objfile)
1350 {
1351 int stop = 0;
1352
1353 for (objfile *objfile : current_program_space->objfiles ())
1354 {
1355 stop = cb (objfile, cb_data);
1356 if (stop)
1357 return;
1358 }
1359 }
1360
1361 /* See objfiles.h. */
1362
1363 const char *
1364 objfile_name (const struct objfile *objfile)
1365 {
1366 if (objfile->obfd != NULL)
1367 return bfd_get_filename (objfile->obfd);
1368
1369 return objfile->original_name;
1370 }
1371
1372 /* See objfiles.h. */
1373
1374 const char *
1375 objfile_filename (const struct objfile *objfile)
1376 {
1377 if (objfile->obfd != NULL)
1378 return bfd_get_filename (objfile->obfd);
1379
1380 return NULL;
1381 }
1382
1383 /* See objfiles.h. */
1384
1385 const char *
1386 objfile_debug_name (const struct objfile *objfile)
1387 {
1388 return lbasename (objfile->original_name);
1389 }
1390
1391 /* See objfiles.h. */
1392
1393 const char *
1394 objfile_flavour_name (struct objfile *objfile)
1395 {
1396 if (objfile->obfd != NULL)
1397 return bfd_flavour_name (bfd_get_flavour (objfile->obfd));
1398 return NULL;
1399 }