4cc2feab2de4b0fa100f0888ab3575f9554b362e
[binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2004, 2007-2012 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "mdebugread.h"
34 #include "expression.h"
35 #include "parser-defs.h"
36
37 #include "gdb_assert.h"
38 #include <sys/types.h>
39 #include "gdb_stat.h"
40 #include <fcntl.h>
41 #include "gdb_obstack.h"
42 #include "gdb_string.h"
43 #include "hashtab.h"
44
45 #include "breakpoint.h"
46 #include "block.h"
47 #include "dictionary.h"
48 #include "source.h"
49 #include "addrmap.h"
50 #include "arch-utils.h"
51 #include "exec.h"
52 #include "observer.h"
53 #include "complaints.h"
54 #include "psymtab.h"
55 #include "solist.h"
56 #include "gdb_bfd.h"
57
58 /* Keep a registry of per-objfile data-pointers required by other GDB
59 modules. */
60
61 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
62
63 /* Externally visible variables that are owned by this module.
64 See declarations in objfile.h for more info. */
65
66 struct objfile *rt_common_objfile; /* For runtime common symbols */
67
68 struct objfile_pspace_info
69 {
70 int objfiles_changed_p;
71 struct obj_section **sections;
72 int num_sections;
73 };
74
75 /* Per-program-space data key. */
76 static const struct program_space_data *objfiles_pspace_data;
77
78 static void
79 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
80 {
81 struct objfile_pspace_info *info;
82
83 info = program_space_data (pspace, objfiles_pspace_data);
84 if (info != NULL)
85 {
86 xfree (info->sections);
87 xfree (info);
88 }
89 }
90
91 /* Get the current svr4 data. If none is found yet, add it now. This
92 function always returns a valid object. */
93
94 static struct objfile_pspace_info *
95 get_objfile_pspace_data (struct program_space *pspace)
96 {
97 struct objfile_pspace_info *info;
98
99 info = program_space_data (pspace, objfiles_pspace_data);
100 if (info == NULL)
101 {
102 info = XZALLOC (struct objfile_pspace_info);
103 set_program_space_data (pspace, objfiles_pspace_data, info);
104 }
105
106 return info;
107 }
108
109 \f
110
111 /* Per-BFD data key. */
112
113 static const struct bfd_data *objfiles_bfd_data;
114
115 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
116 NULL, and it already has a per-BFD storage object, use that.
117 Otherwise, allocate a new per-BFD storage object. If ABFD is not
118 NULL, the object is allocated on the BFD; otherwise it is allocated
119 on OBJFILE's obstack. Note that it is not safe to call this
120 multiple times for a given OBJFILE -- it can only be called when
121 allocating or re-initializing OBJFILE. */
122
123 static struct objfile_per_bfd_storage *
124 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
125 {
126 struct objfile_per_bfd_storage *storage = NULL;
127
128 if (abfd != NULL)
129 storage = bfd_data (abfd, objfiles_bfd_data);
130
131 if (storage == NULL)
132 {
133 if (abfd != NULL)
134 {
135 storage = bfd_zalloc (abfd, sizeof (struct objfile_per_bfd_storage));
136 set_bfd_data (abfd, objfiles_bfd_data, storage);
137 }
138 else
139 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
140 struct objfile_per_bfd_storage);
141
142 obstack_init (&storage->storage_obstack);
143 storage->filename_cache = bcache_xmalloc (NULL, NULL);
144 storage->macro_cache = bcache_xmalloc (NULL, NULL);
145 }
146
147 return storage;
148 }
149
150 /* Free STORAGE. */
151
152 static void
153 free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage)
154 {
155 bcache_xfree (storage->filename_cache);
156 bcache_xfree (storage->macro_cache);
157 obstack_free (&storage->storage_obstack, 0);
158 }
159
160 /* A wrapper for free_objfile_per_bfd_storage that can be passed as a
161 cleanup function to the BFD registry. */
162
163 static void
164 objfile_bfd_data_free (struct bfd *unused, void *d)
165 {
166 free_objfile_per_bfd_storage (d);
167 }
168
169 /* See objfiles.h. */
170
171 void
172 set_objfile_per_bfd (struct objfile *objfile)
173 {
174 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
175 }
176
177 \f
178
179 /* Called via bfd_map_over_sections to build up the section table that
180 the objfile references. The objfile contains pointers to the start
181 of the table (objfile->sections) and to the first location after
182 the end of the table (objfile->sections_end). */
183
184 static void
185 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
186 void *objfilep)
187 {
188 struct objfile *objfile = (struct objfile *) objfilep;
189 struct obj_section section;
190 flagword aflag;
191
192 aflag = bfd_get_section_flags (abfd, asect);
193 if (!(aflag & SEC_ALLOC))
194 return;
195 if (bfd_section_size (abfd, asect) == 0)
196 return;
197
198 section.objfile = objfile;
199 section.the_bfd_section = asect;
200 section.ovly_mapped = 0;
201 obstack_grow (&objfile->objfile_obstack,
202 (char *) &section, sizeof (section));
203 objfile->sections_end
204 = (struct obj_section *) (((size_t) objfile->sections_end) + 1);
205 }
206
207 /* Builds a section table for OBJFILE.
208
209 Note that while we are building the table, which goes into the
210 objfile obstack, we hijack the sections_end pointer to instead hold
211 a count of the number of sections. When bfd_map_over_sections
212 returns, this count is used to compute the pointer to the end of
213 the sections table, which then overwrites the count.
214
215 Also note that the OFFSET and OVLY_MAPPED in each table entry
216 are initialized to zero.
217
218 Also note that if anything else writes to the objfile obstack while
219 we are building the table, we're pretty much hosed. */
220
221 void
222 build_objfile_section_table (struct objfile *objfile)
223 {
224 objfile->sections_end = 0;
225 bfd_map_over_sections (objfile->obfd,
226 add_to_objfile_sections, (void *) objfile);
227 objfile->sections = obstack_finish (&objfile->objfile_obstack);
228 objfile->sections_end = objfile->sections + (size_t) objfile->sections_end;
229 }
230
231 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
232 allocate a new objfile struct, fill it in as best we can, link it
233 into the list of all known objfiles, and return a pointer to the
234 new objfile struct.
235
236 The FLAGS word contains various bits (OBJF_*) that can be taken as
237 requests for specific operations. Other bits like OBJF_SHARED are
238 simply copied through to the new objfile flags member. */
239
240 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
241 by jv-lang.c, to create an artificial objfile used to hold
242 information about dynamically-loaded Java classes. Unfortunately,
243 that branch of this function doesn't get tested very frequently, so
244 it's prone to breakage. (E.g. at one time the name was set to NULL
245 in that situation, which broke a loop over all names in the dynamic
246 library loader.) If you change this function, please try to leave
247 things in a consistent state even if abfd is NULL. */
248
249 struct objfile *
250 allocate_objfile (bfd *abfd, int flags)
251 {
252 struct objfile *objfile;
253
254 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
255 objfile->psymbol_cache = psymbol_bcache_init ();
256 /* We could use obstack_specify_allocation here instead, but
257 gdb_obstack.h specifies the alloc/dealloc functions. */
258 obstack_init (&objfile->objfile_obstack);
259 terminate_minimal_symbol_table (objfile);
260
261 objfile_alloc_data (objfile);
262
263 /* Update the per-objfile information that comes from the bfd, ensuring
264 that any data that is reference is saved in the per-objfile data
265 region. */
266
267 objfile->obfd = abfd;
268 gdb_bfd_ref (abfd);
269 if (abfd != NULL)
270 {
271 /* Look up the gdbarch associated with the BFD. */
272 objfile->gdbarch = gdbarch_from_bfd (abfd);
273
274 objfile->name = bfd_get_filename (abfd);
275 objfile->mtime = bfd_get_mtime (abfd);
276
277 /* Build section table. */
278 build_objfile_section_table (objfile);
279 }
280 else
281 {
282 objfile->name = "<<anonymous objfile>>";
283 }
284
285 objfile->per_bfd = get_objfile_bfd_data (objfile, abfd);
286 objfile->pspace = current_program_space;
287
288 /* Initialize the section indexes for this objfile, so that we can
289 later detect if they are used w/o being properly assigned to. */
290
291 objfile->sect_index_text = -1;
292 objfile->sect_index_data = -1;
293 objfile->sect_index_bss = -1;
294 objfile->sect_index_rodata = -1;
295
296 /* Add this file onto the tail of the linked list of other such files. */
297
298 objfile->next = NULL;
299 if (object_files == NULL)
300 object_files = objfile;
301 else
302 {
303 struct objfile *last_one;
304
305 for (last_one = object_files;
306 last_one->next;
307 last_one = last_one->next);
308 last_one->next = objfile;
309 }
310
311 /* Save passed in flag bits. */
312 objfile->flags |= flags;
313
314 /* Rebuild section map next time we need it. */
315 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
316
317 return objfile;
318 }
319
320 /* Retrieve the gdbarch associated with OBJFILE. */
321 struct gdbarch *
322 get_objfile_arch (struct objfile *objfile)
323 {
324 return objfile->gdbarch;
325 }
326
327 /* Initialize entry point information for this objfile. */
328
329 void
330 init_entry_point_info (struct objfile *objfile)
331 {
332 /* Save startup file's range of PC addresses to help blockframe.c
333 decide where the bottom of the stack is. */
334
335 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
336 {
337 /* Executable file -- record its entry point so we'll recognize
338 the startup file because it contains the entry point. */
339 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
340 objfile->ei.entry_point_p = 1;
341 }
342 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
343 && bfd_get_start_address (objfile->obfd) != 0)
344 {
345 /* Some shared libraries may have entry points set and be
346 runnable. There's no clear way to indicate this, so just check
347 for values other than zero. */
348 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
349 objfile->ei.entry_point_p = 1;
350 }
351 else
352 {
353 /* Examination of non-executable.o files. Short-circuit this stuff. */
354 objfile->ei.entry_point_p = 0;
355 }
356 }
357
358 /* If there is a valid and known entry point, function fills *ENTRY_P with it
359 and returns non-zero; otherwise it returns zero. */
360
361 int
362 entry_point_address_query (CORE_ADDR *entry_p)
363 {
364 struct gdbarch *gdbarch;
365 CORE_ADDR entry_point;
366
367 if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
368 return 0;
369
370 gdbarch = get_objfile_arch (symfile_objfile);
371
372 entry_point = symfile_objfile->ei.entry_point;
373
374 /* Make certain that the address points at real code, and not a
375 function descriptor. */
376 entry_point = gdbarch_convert_from_func_ptr_addr (gdbarch, entry_point,
377 &current_target);
378
379 /* Remove any ISA markers, so that this matches entries in the
380 symbol table. */
381 entry_point = gdbarch_addr_bits_remove (gdbarch, entry_point);
382
383 *entry_p = entry_point;
384 return 1;
385 }
386
387 /* Get current entry point address. Call error if it is not known. */
388
389 CORE_ADDR
390 entry_point_address (void)
391 {
392 CORE_ADDR retval;
393
394 if (!entry_point_address_query (&retval))
395 error (_("Entry point address is not known."));
396
397 return retval;
398 }
399
400 /* Iterator on PARENT and every separate debug objfile of PARENT.
401 The usage pattern is:
402 for (objfile = parent;
403 objfile;
404 objfile = objfile_separate_debug_iterate (parent, objfile))
405 ...
406 */
407
408 struct objfile *
409 objfile_separate_debug_iterate (const struct objfile *parent,
410 const struct objfile *objfile)
411 {
412 struct objfile *res;
413
414 /* If any, return the first child. */
415 res = objfile->separate_debug_objfile;
416 if (res)
417 return res;
418
419 /* Common case where there is no separate debug objfile. */
420 if (objfile == parent)
421 return NULL;
422
423 /* Return the brother if any. Note that we don't iterate on brothers of
424 the parents. */
425 res = objfile->separate_debug_objfile_link;
426 if (res)
427 return res;
428
429 for (res = objfile->separate_debug_objfile_backlink;
430 res != parent;
431 res = res->separate_debug_objfile_backlink)
432 {
433 gdb_assert (res != NULL);
434 if (res->separate_debug_objfile_link)
435 return res->separate_debug_objfile_link;
436 }
437 return NULL;
438 }
439
440 /* Put one object file before a specified on in the global list.
441 This can be used to make sure an object file is destroyed before
442 another when using ALL_OBJFILES_SAFE to free all objfiles. */
443 void
444 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
445 {
446 struct objfile **objp;
447
448 unlink_objfile (objfile);
449
450 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
451 {
452 if (*objp == before_this)
453 {
454 objfile->next = *objp;
455 *objp = objfile;
456 return;
457 }
458 }
459
460 internal_error (__FILE__, __LINE__,
461 _("put_objfile_before: before objfile not in list"));
462 }
463
464 /* Put OBJFILE at the front of the list. */
465
466 void
467 objfile_to_front (struct objfile *objfile)
468 {
469 struct objfile **objp;
470 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
471 {
472 if (*objp == objfile)
473 {
474 /* Unhook it from where it is. */
475 *objp = objfile->next;
476 /* Put it in the front. */
477 objfile->next = object_files;
478 object_files = objfile;
479 break;
480 }
481 }
482 }
483
484 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
485 list.
486
487 It is not a bug, or error, to call this function if OBJFILE is not known
488 to be in the current list. This is done in the case of mapped objfiles,
489 for example, just to ensure that the mapped objfile doesn't appear twice
490 in the list. Since the list is threaded, linking in a mapped objfile
491 twice would create a circular list.
492
493 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
494 unlinking it, just to ensure that we have completely severed any linkages
495 between the OBJFILE and the list. */
496
497 void
498 unlink_objfile (struct objfile *objfile)
499 {
500 struct objfile **objpp;
501
502 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
503 {
504 if (*objpp == objfile)
505 {
506 *objpp = (*objpp)->next;
507 objfile->next = NULL;
508 return;
509 }
510 }
511
512 internal_error (__FILE__, __LINE__,
513 _("unlink_objfile: objfile already unlinked"));
514 }
515
516 /* Add OBJFILE as a separate debug objfile of PARENT. */
517
518 void
519 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
520 {
521 gdb_assert (objfile && parent);
522
523 /* Must not be already in a list. */
524 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
525 gdb_assert (objfile->separate_debug_objfile_link == NULL);
526
527 objfile->separate_debug_objfile_backlink = parent;
528 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
529 parent->separate_debug_objfile = objfile;
530
531 /* Put the separate debug object before the normal one, this is so that
532 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
533 put_objfile_before (objfile, parent);
534 }
535
536 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
537 itself. */
538
539 void
540 free_objfile_separate_debug (struct objfile *objfile)
541 {
542 struct objfile *child;
543
544 for (child = objfile->separate_debug_objfile; child;)
545 {
546 struct objfile *next_child = child->separate_debug_objfile_link;
547 free_objfile (child);
548 child = next_child;
549 }
550 }
551
552 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
553 that as much as possible is allocated on the objfile_obstack
554 so that the memory can be efficiently freed.
555
556 Things which we do NOT free because they are not in malloc'd memory
557 or not in memory specific to the objfile include:
558
559 objfile -> sf
560
561 FIXME: If the objfile is using reusable symbol information (via mmalloc),
562 then we need to take into account the fact that more than one process
563 may be using the symbol information at the same time (when mmalloc is
564 extended to support cooperative locking). When more than one process
565 is using the mapped symbol info, we need to be more careful about when
566 we free objects in the reusable area. */
567
568 void
569 free_objfile (struct objfile *objfile)
570 {
571 /* Free all separate debug objfiles. */
572 free_objfile_separate_debug (objfile);
573
574 if (objfile->separate_debug_objfile_backlink)
575 {
576 /* We freed the separate debug file, make sure the base objfile
577 doesn't reference it. */
578 struct objfile *child;
579
580 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
581
582 if (child == objfile)
583 {
584 /* OBJFILE is the first child. */
585 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
586 objfile->separate_debug_objfile_link;
587 }
588 else
589 {
590 /* Find OBJFILE in the list. */
591 while (1)
592 {
593 if (child->separate_debug_objfile_link == objfile)
594 {
595 child->separate_debug_objfile_link =
596 objfile->separate_debug_objfile_link;
597 break;
598 }
599 child = child->separate_debug_objfile_link;
600 gdb_assert (child);
601 }
602 }
603 }
604
605 /* Remove any references to this objfile in the global value
606 lists. */
607 preserve_values (objfile);
608
609 /* It still may reference data modules have associated with the objfile and
610 the symbol file data. */
611 forget_cached_source_info_for_objfile (objfile);
612
613 /* First do any symbol file specific actions required when we are
614 finished with a particular symbol file. Note that if the objfile
615 is using reusable symbol information (via mmalloc) then each of
616 these routines is responsible for doing the correct thing, either
617 freeing things which are valid only during this particular gdb
618 execution, or leaving them to be reused during the next one. */
619
620 if (objfile->sf != NULL)
621 {
622 (*objfile->sf->sym_finish) (objfile);
623 }
624
625 /* Discard any data modules have associated with the objfile. The function
626 still may reference objfile->obfd. */
627 objfile_free_data (objfile);
628
629 if (objfile->obfd)
630 gdb_bfd_unref (objfile->obfd);
631 else
632 free_objfile_per_bfd_storage (objfile->per_bfd);
633
634 /* Remove it from the chain of all objfiles. */
635
636 unlink_objfile (objfile);
637
638 if (objfile == symfile_objfile)
639 symfile_objfile = NULL;
640
641 if (objfile == rt_common_objfile)
642 rt_common_objfile = NULL;
643
644 /* Before the symbol table code was redone to make it easier to
645 selectively load and remove information particular to a specific
646 linkage unit, gdb used to do these things whenever the monolithic
647 symbol table was blown away. How much still needs to be done
648 is unknown, but we play it safe for now and keep each action until
649 it is shown to be no longer needed. */
650
651 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
652 for example), so we need to call this here. */
653 clear_pc_function_cache ();
654
655 /* Clear globals which might have pointed into a removed objfile.
656 FIXME: It's not clear which of these are supposed to persist
657 between expressions and which ought to be reset each time. */
658 expression_context_block = NULL;
659 innermost_block = NULL;
660
661 /* Check to see if the current_source_symtab belongs to this objfile,
662 and if so, call clear_current_source_symtab_and_line. */
663
664 {
665 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
666
667 if (cursal.symtab && cursal.symtab->objfile == objfile)
668 clear_current_source_symtab_and_line ();
669 }
670
671 /* The last thing we do is free the objfile struct itself. */
672
673 if (objfile->global_psymbols.list)
674 xfree (objfile->global_psymbols.list);
675 if (objfile->static_psymbols.list)
676 xfree (objfile->static_psymbols.list);
677 /* Free the obstacks for non-reusable objfiles. */
678 psymbol_bcache_free (objfile->psymbol_cache);
679 if (objfile->demangled_names_hash)
680 htab_delete (objfile->demangled_names_hash);
681 obstack_free (&objfile->objfile_obstack, 0);
682
683 /* Rebuild section map next time we need it. */
684 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
685
686 xfree (objfile);
687 }
688
689 static void
690 do_free_objfile_cleanup (void *obj)
691 {
692 free_objfile (obj);
693 }
694
695 struct cleanup *
696 make_cleanup_free_objfile (struct objfile *obj)
697 {
698 return make_cleanup (do_free_objfile_cleanup, obj);
699 }
700
701 /* Free all the object files at once and clean up their users. */
702
703 void
704 free_all_objfiles (void)
705 {
706 struct objfile *objfile, *temp;
707 struct so_list *so;
708
709 /* Any objfile referencewould become stale. */
710 for (so = master_so_list (); so; so = so->next)
711 gdb_assert (so->objfile == NULL);
712
713 ALL_OBJFILES_SAFE (objfile, temp)
714 {
715 free_objfile (objfile);
716 }
717 clear_symtab_users (0);
718 }
719 \f
720 /* A helper function for objfile_relocate1 that relocates a single
721 symbol. */
722
723 static void
724 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
725 struct section_offsets *delta)
726 {
727 fixup_symbol_section (sym, objfile);
728
729 /* The RS6000 code from which this was taken skipped
730 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
731 But I'm leaving out that test, on the theory that
732 they can't possibly pass the tests below. */
733 if ((SYMBOL_CLASS (sym) == LOC_LABEL
734 || SYMBOL_CLASS (sym) == LOC_STATIC)
735 && SYMBOL_SECTION (sym) >= 0)
736 {
737 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
738 }
739 }
740
741 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
742 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
743 Return non-zero iff any change happened. */
744
745 static int
746 objfile_relocate1 (struct objfile *objfile,
747 struct section_offsets *new_offsets)
748 {
749 struct obj_section *s;
750 struct section_offsets *delta =
751 ((struct section_offsets *)
752 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
753
754 int i;
755 int something_changed = 0;
756
757 for (i = 0; i < objfile->num_sections; ++i)
758 {
759 delta->offsets[i] =
760 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
761 if (ANOFFSET (delta, i) != 0)
762 something_changed = 1;
763 }
764 if (!something_changed)
765 return 0;
766
767 /* OK, get all the symtabs. */
768 {
769 struct symtab *s;
770
771 ALL_OBJFILE_SYMTABS (objfile, s)
772 {
773 struct linetable *l;
774 struct blockvector *bv;
775 int i;
776
777 /* First the line table. */
778 l = LINETABLE (s);
779 if (l)
780 {
781 for (i = 0; i < l->nitems; ++i)
782 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
783 }
784
785 /* Don't relocate a shared blockvector more than once. */
786 if (!s->primary)
787 continue;
788
789 bv = BLOCKVECTOR (s);
790 if (BLOCKVECTOR_MAP (bv))
791 addrmap_relocate (BLOCKVECTOR_MAP (bv),
792 ANOFFSET (delta, s->block_line_section));
793
794 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
795 {
796 struct block *b;
797 struct symbol *sym;
798 struct dict_iterator iter;
799
800 b = BLOCKVECTOR_BLOCK (bv, i);
801 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
802 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
803
804 /* We only want to iterate over the local symbols, not any
805 symbols in included symtabs. */
806 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym)
807 {
808 relocate_one_symbol (sym, objfile, delta);
809 }
810 }
811 }
812 }
813
814 /* Relocate isolated symbols. */
815 {
816 struct symbol *iter;
817
818 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
819 relocate_one_symbol (iter, objfile, delta);
820 }
821
822 if (objfile->psymtabs_addrmap)
823 addrmap_relocate (objfile->psymtabs_addrmap,
824 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
825
826 if (objfile->sf)
827 objfile->sf->qf->relocate (objfile, new_offsets, delta);
828
829 {
830 struct minimal_symbol *msym;
831
832 ALL_OBJFILE_MSYMBOLS (objfile, msym)
833 if (SYMBOL_SECTION (msym) >= 0)
834 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
835 }
836 /* Relocating different sections by different amounts may cause the symbols
837 to be out of order. */
838 msymbols_sort (objfile);
839
840 if (objfile->ei.entry_point_p)
841 {
842 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
843 only as a fallback. */
844 struct obj_section *s;
845 s = find_pc_section (objfile->ei.entry_point);
846 if (s)
847 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
848 else
849 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
850 }
851
852 {
853 int i;
854
855 for (i = 0; i < objfile->num_sections; ++i)
856 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
857 }
858
859 /* Rebuild section map next time we need it. */
860 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
861
862 /* Update the table in exec_ops, used to read memory. */
863 ALL_OBJFILE_OSECTIONS (objfile, s)
864 {
865 int idx = s->the_bfd_section->index;
866
867 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
868 obj_section_addr (s));
869 }
870
871 /* Relocating probes. */
872 if (objfile->sf && objfile->sf->sym_probe_fns)
873 objfile->sf->sym_probe_fns->sym_relocate_probe (objfile,
874 new_offsets, delta);
875
876 /* Data changed. */
877 return 1;
878 }
879
880 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
881 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
882
883 The number and ordering of sections does differ between the two objfiles.
884 Only their names match. Also the file offsets will differ (objfile being
885 possibly prelinked but separate_debug_objfile is probably not prelinked) but
886 the in-memory absolute address as specified by NEW_OFFSETS must match both
887 files. */
888
889 void
890 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
891 {
892 struct objfile *debug_objfile;
893 int changed = 0;
894
895 changed |= objfile_relocate1 (objfile, new_offsets);
896
897 for (debug_objfile = objfile->separate_debug_objfile;
898 debug_objfile;
899 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
900 {
901 struct section_addr_info *objfile_addrs;
902 struct section_offsets *new_debug_offsets;
903 struct cleanup *my_cleanups;
904
905 objfile_addrs = build_section_addr_info_from_objfile (objfile);
906 my_cleanups = make_cleanup (xfree, objfile_addrs);
907
908 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
909 relative ones must be already created according to debug_objfile. */
910
911 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
912
913 gdb_assert (debug_objfile->num_sections
914 == bfd_count_sections (debug_objfile->obfd));
915 new_debug_offsets =
916 xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
917 make_cleanup (xfree, new_debug_offsets);
918 relative_addr_info_to_section_offsets (new_debug_offsets,
919 debug_objfile->num_sections,
920 objfile_addrs);
921
922 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
923
924 do_cleanups (my_cleanups);
925 }
926
927 /* Relocate breakpoints as necessary, after things are relocated. */
928 if (changed)
929 breakpoint_re_set ();
930 }
931 \f
932 /* Return non-zero if OBJFILE has partial symbols. */
933
934 int
935 objfile_has_partial_symbols (struct objfile *objfile)
936 {
937 if (!objfile->sf)
938 return 0;
939
940 /* If we have not read psymbols, but we have a function capable of reading
941 them, then that is an indication that they are in fact available. Without
942 this function the symbols may have been already read in but they also may
943 not be present in this objfile. */
944 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
945 && objfile->sf->sym_read_psymbols != NULL)
946 return 1;
947
948 return objfile->sf->qf->has_symbols (objfile);
949 }
950
951 /* Return non-zero if OBJFILE has full symbols. */
952
953 int
954 objfile_has_full_symbols (struct objfile *objfile)
955 {
956 return objfile->symtabs != NULL;
957 }
958
959 /* Return non-zero if OBJFILE has full or partial symbols, either directly
960 or through a separate debug file. */
961
962 int
963 objfile_has_symbols (struct objfile *objfile)
964 {
965 struct objfile *o;
966
967 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
968 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
969 return 1;
970 return 0;
971 }
972
973
974 /* Many places in gdb want to test just to see if we have any partial
975 symbols available. This function returns zero if none are currently
976 available, nonzero otherwise. */
977
978 int
979 have_partial_symbols (void)
980 {
981 struct objfile *ofp;
982
983 ALL_OBJFILES (ofp)
984 {
985 if (objfile_has_partial_symbols (ofp))
986 return 1;
987 }
988 return 0;
989 }
990
991 /* Many places in gdb want to test just to see if we have any full
992 symbols available. This function returns zero if none are currently
993 available, nonzero otherwise. */
994
995 int
996 have_full_symbols (void)
997 {
998 struct objfile *ofp;
999
1000 ALL_OBJFILES (ofp)
1001 {
1002 if (objfile_has_full_symbols (ofp))
1003 return 1;
1004 }
1005 return 0;
1006 }
1007
1008
1009 /* This operations deletes all objfile entries that represent solibs that
1010 weren't explicitly loaded by the user, via e.g., the add-symbol-file
1011 command. */
1012
1013 void
1014 objfile_purge_solibs (void)
1015 {
1016 struct objfile *objf;
1017 struct objfile *temp;
1018
1019 ALL_OBJFILES_SAFE (objf, temp)
1020 {
1021 /* We assume that the solib package has been purged already, or will
1022 be soon. */
1023
1024 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1025 free_objfile (objf);
1026 }
1027 }
1028
1029
1030 /* Many places in gdb want to test just to see if we have any minimal
1031 symbols available. This function returns zero if none are currently
1032 available, nonzero otherwise. */
1033
1034 int
1035 have_minimal_symbols (void)
1036 {
1037 struct objfile *ofp;
1038
1039 ALL_OBJFILES (ofp)
1040 {
1041 if (ofp->minimal_symbol_count > 0)
1042 {
1043 return 1;
1044 }
1045 }
1046 return 0;
1047 }
1048
1049 /* Qsort comparison function. */
1050
1051 static int
1052 qsort_cmp (const void *a, const void *b)
1053 {
1054 const struct obj_section *sect1 = *(const struct obj_section **) a;
1055 const struct obj_section *sect2 = *(const struct obj_section **) b;
1056 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1057 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1058
1059 if (sect1_addr < sect2_addr)
1060 return -1;
1061 else if (sect1_addr > sect2_addr)
1062 return 1;
1063 else
1064 {
1065 /* Sections are at the same address. This could happen if
1066 A) we have an objfile and a separate debuginfo.
1067 B) we are confused, and have added sections without proper relocation,
1068 or something like that. */
1069
1070 const struct objfile *const objfile1 = sect1->objfile;
1071 const struct objfile *const objfile2 = sect2->objfile;
1072
1073 if (objfile1->separate_debug_objfile == objfile2
1074 || objfile2->separate_debug_objfile == objfile1)
1075 {
1076 /* Case A. The ordering doesn't matter: separate debuginfo files
1077 will be filtered out later. */
1078
1079 return 0;
1080 }
1081
1082 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1083 triage. This section could be slow (since we iterate over all
1084 objfiles in each call to qsort_cmp), but this shouldn't happen
1085 very often (GDB is already in a confused state; one hopes this
1086 doesn't happen at all). If you discover that significant time is
1087 spent in the loops below, do 'set complaints 100' and examine the
1088 resulting complaints. */
1089
1090 if (objfile1 == objfile2)
1091 {
1092 /* Both sections came from the same objfile. We are really confused.
1093 Sort on sequence order of sections within the objfile. */
1094
1095 const struct obj_section *osect;
1096
1097 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1098 if (osect == sect1)
1099 return -1;
1100 else if (osect == sect2)
1101 return 1;
1102
1103 /* We should have found one of the sections before getting here. */
1104 gdb_assert_not_reached ("section not found");
1105 }
1106 else
1107 {
1108 /* Sort on sequence number of the objfile in the chain. */
1109
1110 const struct objfile *objfile;
1111
1112 ALL_OBJFILES (objfile)
1113 if (objfile == objfile1)
1114 return -1;
1115 else if (objfile == objfile2)
1116 return 1;
1117
1118 /* We should have found one of the objfiles before getting here. */
1119 gdb_assert_not_reached ("objfile not found");
1120 }
1121 }
1122
1123 /* Unreachable. */
1124 gdb_assert_not_reached ("unexpected code path");
1125 return 0;
1126 }
1127
1128 /* Select "better" obj_section to keep. We prefer the one that came from
1129 the real object, rather than the one from separate debuginfo.
1130 Most of the time the two sections are exactly identical, but with
1131 prelinking the .rel.dyn section in the real object may have different
1132 size. */
1133
1134 static struct obj_section *
1135 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1136 {
1137 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1138 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1139 || (b->objfile->separate_debug_objfile == a->objfile));
1140 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1141 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1142
1143 if (a->objfile->separate_debug_objfile != NULL)
1144 return a;
1145 return b;
1146 }
1147
1148 /* Return 1 if SECTION should be inserted into the section map.
1149 We want to insert only non-overlay and non-TLS section. */
1150
1151 static int
1152 insert_section_p (const struct bfd *abfd,
1153 const struct bfd_section *section)
1154 {
1155 const bfd_vma lma = bfd_section_lma (abfd, section);
1156
1157 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1158 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1159 /* This is an overlay section. IN_MEMORY check is needed to avoid
1160 discarding sections from the "system supplied DSO" (aka vdso)
1161 on some Linux systems (e.g. Fedora 11). */
1162 return 0;
1163 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1164 /* This is a TLS section. */
1165 return 0;
1166
1167 return 1;
1168 }
1169
1170 /* Filter out overlapping sections where one section came from the real
1171 objfile, and the other from a separate debuginfo file.
1172 Return the size of table after redundant sections have been eliminated. */
1173
1174 static int
1175 filter_debuginfo_sections (struct obj_section **map, int map_size)
1176 {
1177 int i, j;
1178
1179 for (i = 0, j = 0; i < map_size - 1; i++)
1180 {
1181 struct obj_section *const sect1 = map[i];
1182 struct obj_section *const sect2 = map[i + 1];
1183 const struct objfile *const objfile1 = sect1->objfile;
1184 const struct objfile *const objfile2 = sect2->objfile;
1185 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1186 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1187
1188 if (sect1_addr == sect2_addr
1189 && (objfile1->separate_debug_objfile == objfile2
1190 || objfile2->separate_debug_objfile == objfile1))
1191 {
1192 map[j++] = preferred_obj_section (sect1, sect2);
1193 ++i;
1194 }
1195 else
1196 map[j++] = sect1;
1197 }
1198
1199 if (i < map_size)
1200 {
1201 gdb_assert (i == map_size - 1);
1202 map[j++] = map[i];
1203 }
1204
1205 /* The map should not have shrunk to less than half the original size. */
1206 gdb_assert (map_size / 2 <= j);
1207
1208 return j;
1209 }
1210
1211 /* Filter out overlapping sections, issuing a warning if any are found.
1212 Overlapping sections could really be overlay sections which we didn't
1213 classify as such in insert_section_p, or we could be dealing with a
1214 corrupt binary. */
1215
1216 static int
1217 filter_overlapping_sections (struct obj_section **map, int map_size)
1218 {
1219 int i, j;
1220
1221 for (i = 0, j = 0; i < map_size - 1; )
1222 {
1223 int k;
1224
1225 map[j++] = map[i];
1226 for (k = i + 1; k < map_size; k++)
1227 {
1228 struct obj_section *const sect1 = map[i];
1229 struct obj_section *const sect2 = map[k];
1230 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1231 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1232 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1233
1234 gdb_assert (sect1_addr <= sect2_addr);
1235
1236 if (sect1_endaddr <= sect2_addr)
1237 break;
1238 else
1239 {
1240 /* We have an overlap. Report it. */
1241
1242 struct objfile *const objf1 = sect1->objfile;
1243 struct objfile *const objf2 = sect2->objfile;
1244
1245 const struct bfd *const abfd1 = objf1->obfd;
1246 const struct bfd *const abfd2 = objf2->obfd;
1247
1248 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1249 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1250
1251 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1252
1253 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1254
1255 complaint (&symfile_complaints,
1256 _("unexpected overlap between:\n"
1257 " (A) section `%s' from `%s' [%s, %s)\n"
1258 " (B) section `%s' from `%s' [%s, %s).\n"
1259 "Will ignore section B"),
1260 bfd_section_name (abfd1, bfds1), objf1->name,
1261 paddress (gdbarch, sect1_addr),
1262 paddress (gdbarch, sect1_endaddr),
1263 bfd_section_name (abfd2, bfds2), objf2->name,
1264 paddress (gdbarch, sect2_addr),
1265 paddress (gdbarch, sect2_endaddr));
1266 }
1267 }
1268 i = k;
1269 }
1270
1271 if (i < map_size)
1272 {
1273 gdb_assert (i == map_size - 1);
1274 map[j++] = map[i];
1275 }
1276
1277 return j;
1278 }
1279
1280
1281 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1282 TLS, overlay and overlapping sections. */
1283
1284 static void
1285 update_section_map (struct program_space *pspace,
1286 struct obj_section ***pmap, int *pmap_size)
1287 {
1288 int alloc_size, map_size, i;
1289 struct obj_section *s, **map;
1290 struct objfile *objfile;
1291
1292 gdb_assert (get_objfile_pspace_data (pspace)->objfiles_changed_p != 0);
1293
1294 map = *pmap;
1295 xfree (map);
1296
1297 alloc_size = 0;
1298 ALL_PSPACE_OBJFILES (pspace, objfile)
1299 ALL_OBJFILE_OSECTIONS (objfile, s)
1300 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1301 alloc_size += 1;
1302
1303 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1304 if (alloc_size == 0)
1305 {
1306 *pmap = NULL;
1307 *pmap_size = 0;
1308 return;
1309 }
1310
1311 map = xmalloc (alloc_size * sizeof (*map));
1312
1313 i = 0;
1314 ALL_PSPACE_OBJFILES (pspace, objfile)
1315 ALL_OBJFILE_OSECTIONS (objfile, s)
1316 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1317 map[i++] = s;
1318
1319 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1320 map_size = filter_debuginfo_sections(map, alloc_size);
1321 map_size = filter_overlapping_sections(map, map_size);
1322
1323 if (map_size < alloc_size)
1324 /* Some sections were eliminated. Trim excess space. */
1325 map = xrealloc (map, map_size * sizeof (*map));
1326 else
1327 gdb_assert (alloc_size == map_size);
1328
1329 *pmap = map;
1330 *pmap_size = map_size;
1331 }
1332
1333 /* Bsearch comparison function. */
1334
1335 static int
1336 bsearch_cmp (const void *key, const void *elt)
1337 {
1338 const CORE_ADDR pc = *(CORE_ADDR *) key;
1339 const struct obj_section *section = *(const struct obj_section **) elt;
1340
1341 if (pc < obj_section_addr (section))
1342 return -1;
1343 if (pc < obj_section_endaddr (section))
1344 return 0;
1345 return 1;
1346 }
1347
1348 /* Returns a section whose range includes PC or NULL if none found. */
1349
1350 struct obj_section *
1351 find_pc_section (CORE_ADDR pc)
1352 {
1353 struct objfile_pspace_info *pspace_info;
1354 struct obj_section *s, **sp;
1355
1356 /* Check for mapped overlay section first. */
1357 s = find_pc_mapped_section (pc);
1358 if (s)
1359 return s;
1360
1361 pspace_info = get_objfile_pspace_data (current_program_space);
1362 if (pspace_info->objfiles_changed_p != 0)
1363 {
1364 update_section_map (current_program_space,
1365 &pspace_info->sections,
1366 &pspace_info->num_sections);
1367
1368 /* Don't need updates to section map until objfiles are added,
1369 removed or relocated. */
1370 pspace_info->objfiles_changed_p = 0;
1371 }
1372
1373 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1374 bsearch be non-NULL. */
1375 if (pspace_info->sections == NULL)
1376 {
1377 gdb_assert (pspace_info->num_sections == 0);
1378 return NULL;
1379 }
1380
1381 sp = (struct obj_section **) bsearch (&pc,
1382 pspace_info->sections,
1383 pspace_info->num_sections,
1384 sizeof (*pspace_info->sections),
1385 bsearch_cmp);
1386 if (sp != NULL)
1387 return *sp;
1388 return NULL;
1389 }
1390
1391
1392 /* In SVR4, we recognize a trampoline by it's section name.
1393 That is, if the pc is in a section named ".plt" then we are in
1394 a trampoline. */
1395
1396 int
1397 in_plt_section (CORE_ADDR pc, char *name)
1398 {
1399 struct obj_section *s;
1400 int retval = 0;
1401
1402 s = find_pc_section (pc);
1403
1404 retval = (s != NULL
1405 && s->the_bfd_section->name != NULL
1406 && strcmp (s->the_bfd_section->name, ".plt") == 0);
1407 return (retval);
1408 }
1409 \f
1410
1411 /* Set objfiles_changed_p so section map will be rebuilt next time it
1412 is used. Called by reread_symbols. */
1413
1414 void
1415 objfiles_changed (void)
1416 {
1417 /* Rebuild section map next time we need it. */
1418 get_objfile_pspace_data (current_program_space)->objfiles_changed_p = 1;
1419 }
1420
1421 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1422 gdbarch method. It is equivalent to use the ALL_OBJFILES macro,
1423 searching the objfiles in the order they are stored internally,
1424 ignoring CURRENT_OBJFILE.
1425
1426 On most platorms, it should be close enough to doing the best
1427 we can without some knowledge specific to the architecture. */
1428
1429 void
1430 default_iterate_over_objfiles_in_search_order
1431 (struct gdbarch *gdbarch,
1432 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1433 void *cb_data, struct objfile *current_objfile)
1434 {
1435 int stop = 0;
1436 struct objfile *objfile;
1437
1438 ALL_OBJFILES (objfile)
1439 {
1440 stop = cb (objfile, cb_data);
1441 if (stop)
1442 return;
1443 }
1444 }
1445
1446 /* Provide a prototype to silence -Wmissing-prototypes. */
1447 extern initialize_file_ftype _initialize_objfiles;
1448
1449 void
1450 _initialize_objfiles (void)
1451 {
1452 objfiles_pspace_data
1453 = register_program_space_data_with_cleanup (NULL,
1454 objfiles_pspace_data_cleanup);
1455
1456 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
1457 objfile_bfd_data_free);
1458 }