Memory error when reading wrong core file.
[binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* This file contains support routines for creating, manipulating, and
24 destroying objfile structures. */
25
26 #include "defs.h"
27 #include "bfd.h" /* Binary File Description */
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdb-stabs.h"
32 #include "target.h"
33 #include "bcache.h"
34 #include "mdebugread.h"
35 #include "expression.h"
36 #include "parser-defs.h"
37
38 #include "gdb_assert.h"
39 #include <sys/types.h>
40 #include "gdb_stat.h"
41 #include <fcntl.h>
42 #include "gdb_obstack.h"
43 #include "gdb_string.h"
44 #include "hashtab.h"
45
46 #include "breakpoint.h"
47 #include "block.h"
48 #include "dictionary.h"
49 #include "source.h"
50 #include "addrmap.h"
51 #include "arch-utils.h"
52 #include "exec.h"
53 #include "observer.h"
54 #include "complaints.h"
55
56 /* Prototypes for local functions */
57
58 static void objfile_alloc_data (struct objfile *objfile);
59 static void objfile_free_data (struct objfile *objfile);
60
61 /* Externally visible variables that are owned by this module.
62 See declarations in objfile.h for more info. */
63
64 struct objfile *current_objfile; /* For symbol file being read in */
65 struct objfile *rt_common_objfile; /* For runtime common symbols */
66
67 struct objfile_pspace_info
68 {
69 int objfiles_changed_p;
70 struct obj_section **sections;
71 int num_sections;
72 };
73
74 /* Per-program-space data key. */
75 static const struct program_space_data *objfiles_pspace_data;
76
77 static void
78 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
79 {
80 struct objfile_pspace_info *info;
81
82 info = program_space_data (pspace, objfiles_pspace_data);
83 if (info != NULL)
84 {
85 xfree (info->sections);
86 xfree (info);
87 }
88 }
89
90 /* Get the current svr4 data. If none is found yet, add it now. This
91 function always returns a valid object. */
92
93 static struct objfile_pspace_info *
94 get_objfile_pspace_data (struct program_space *pspace)
95 {
96 struct objfile_pspace_info *info;
97
98 info = program_space_data (pspace, objfiles_pspace_data);
99 if (info == NULL)
100 {
101 info = XZALLOC (struct objfile_pspace_info);
102 set_program_space_data (pspace, objfiles_pspace_data, info);
103 }
104
105 return info;
106 }
107
108 /* Records whether any objfiles appeared or disappeared since we last updated
109 address to obj section map. */
110
111 /* Locate all mappable sections of a BFD file.
112 objfile_p_char is a char * to get it through
113 bfd_map_over_sections; we cast it back to its proper type. */
114
115 /* Called via bfd_map_over_sections to build up the section table that
116 the objfile references. The objfile contains pointers to the start
117 of the table (objfile->sections) and to the first location after
118 the end of the table (objfile->sections_end). */
119
120 static void
121 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
122 void *objfile_p_char)
123 {
124 struct objfile *objfile = (struct objfile *) objfile_p_char;
125 struct obj_section section;
126 flagword aflag;
127
128 aflag = bfd_get_section_flags (abfd, asect);
129
130 if (!(aflag & SEC_ALLOC))
131 return;
132
133 if (0 == bfd_section_size (abfd, asect))
134 return;
135 section.objfile = objfile;
136 section.the_bfd_section = asect;
137 section.ovly_mapped = 0;
138 obstack_grow (&objfile->objfile_obstack, (char *) &section, sizeof (section));
139 objfile->sections_end
140 = (struct obj_section *) (((size_t) objfile->sections_end) + 1);
141 }
142
143 /* Builds a section table for OBJFILE.
144 Returns 0 if OK, 1 on error (in which case bfd_error contains the
145 error).
146
147 Note that while we are building the table, which goes into the
148 psymbol obstack, we hijack the sections_end pointer to instead hold
149 a count of the number of sections. When bfd_map_over_sections
150 returns, this count is used to compute the pointer to the end of
151 the sections table, which then overwrites the count.
152
153 Also note that the OFFSET and OVLY_MAPPED in each table entry
154 are initialized to zero.
155
156 Also note that if anything else writes to the psymbol obstack while
157 we are building the table, we're pretty much hosed. */
158
159 int
160 build_objfile_section_table (struct objfile *objfile)
161 {
162 /* objfile->sections can be already set when reading a mapped symbol
163 file. I believe that we do need to rebuild the section table in
164 this case (we rebuild other things derived from the bfd), but we
165 can't free the old one (it's in the objfile_obstack). So we just
166 waste some memory. */
167
168 objfile->sections_end = 0;
169 bfd_map_over_sections (objfile->obfd,
170 add_to_objfile_sections, (void *) objfile);
171 objfile->sections = obstack_finish (&objfile->objfile_obstack);
172 objfile->sections_end = objfile->sections + (size_t) objfile->sections_end;
173 return (0);
174 }
175
176 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
177 allocate a new objfile struct, fill it in as best we can, link it
178 into the list of all known objfiles, and return a pointer to the
179 new objfile struct.
180
181 The FLAGS word contains various bits (OBJF_*) that can be taken as
182 requests for specific operations. Other bits like OBJF_SHARED are
183 simply copied through to the new objfile flags member. */
184
185 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
186 by jv-lang.c, to create an artificial objfile used to hold
187 information about dynamically-loaded Java classes. Unfortunately,
188 that branch of this function doesn't get tested very frequently, so
189 it's prone to breakage. (E.g. at one time the name was set to NULL
190 in that situation, which broke a loop over all names in the dynamic
191 library loader.) If you change this function, please try to leave
192 things in a consistent state even if abfd is NULL. */
193
194 struct objfile *
195 allocate_objfile (bfd *abfd, int flags)
196 {
197 struct objfile *objfile;
198
199 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
200 objfile->psymbol_cache = bcache_xmalloc ();
201 objfile->macro_cache = bcache_xmalloc ();
202 objfile->filename_cache = bcache_xmalloc ();
203 /* We could use obstack_specify_allocation here instead, but
204 gdb_obstack.h specifies the alloc/dealloc functions. */
205 obstack_init (&objfile->objfile_obstack);
206 terminate_minimal_symbol_table (objfile);
207
208 objfile_alloc_data (objfile);
209
210 /* Update the per-objfile information that comes from the bfd, ensuring
211 that any data that is reference is saved in the per-objfile data
212 region. */
213
214 objfile->obfd = gdb_bfd_ref (abfd);
215 if (objfile->name != NULL)
216 {
217 xfree (objfile->name);
218 }
219 if (abfd != NULL)
220 {
221 /* Look up the gdbarch associated with the BFD. */
222 objfile->gdbarch = gdbarch_from_bfd (abfd);
223
224 objfile->name = xstrdup (bfd_get_filename (abfd));
225 objfile->mtime = bfd_get_mtime (abfd);
226
227 /* Build section table. */
228
229 if (build_objfile_section_table (objfile))
230 {
231 error (_("Can't find the file sections in `%s': %s"),
232 objfile->name, bfd_errmsg (bfd_get_error ()));
233 }
234 }
235 else
236 {
237 objfile->name = xstrdup ("<<anonymous objfile>>");
238 }
239
240 objfile->pspace = current_program_space;
241
242 /* Initialize the section indexes for this objfile, so that we can
243 later detect if they are used w/o being properly assigned to. */
244
245 objfile->sect_index_text = -1;
246 objfile->sect_index_data = -1;
247 objfile->sect_index_bss = -1;
248 objfile->sect_index_rodata = -1;
249
250 /* We don't yet have a C++-specific namespace symtab. */
251
252 objfile->cp_namespace_symtab = NULL;
253
254 /* Add this file onto the tail of the linked list of other such files. */
255
256 objfile->next = NULL;
257 if (object_files == NULL)
258 object_files = objfile;
259 else
260 {
261 struct objfile *last_one;
262
263 for (last_one = object_files;
264 last_one->next;
265 last_one = last_one->next);
266 last_one->next = objfile;
267 }
268
269 /* Save passed in flag bits. */
270 objfile->flags |= flags;
271
272 /* Rebuild section map next time we need it. */
273 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
274
275 return objfile;
276 }
277
278 /* Retrieve the gdbarch associated with OBJFILE. */
279 struct gdbarch *
280 get_objfile_arch (struct objfile *objfile)
281 {
282 return objfile->gdbarch;
283 }
284
285 /* Initialize entry point information for this objfile. */
286
287 void
288 init_entry_point_info (struct objfile *objfile)
289 {
290 /* Save startup file's range of PC addresses to help blockframe.c
291 decide where the bottom of the stack is. */
292
293 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
294 {
295 /* Executable file -- record its entry point so we'll recognize
296 the startup file because it contains the entry point. */
297 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
298 objfile->ei.entry_point_p = 1;
299 }
300 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
301 && bfd_get_start_address (objfile->obfd) != 0)
302 {
303 /* Some shared libraries may have entry points set and be
304 runnable. There's no clear way to indicate this, so just check
305 for values other than zero. */
306 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
307 objfile->ei.entry_point_p = 1;
308 }
309 else
310 {
311 /* Examination of non-executable.o files. Short-circuit this stuff. */
312 objfile->ei.entry_point_p = 0;
313 }
314 }
315
316 /* If there is a valid and known entry point, function fills *ENTRY_P with it
317 and returns non-zero; otherwise it returns zero. */
318
319 int
320 entry_point_address_query (CORE_ADDR *entry_p)
321 {
322 struct gdbarch *gdbarch;
323 CORE_ADDR entry_point;
324
325 if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
326 return 0;
327
328 gdbarch = get_objfile_arch (symfile_objfile);
329
330 entry_point = symfile_objfile->ei.entry_point;
331
332 /* Make certain that the address points at real code, and not a
333 function descriptor. */
334 entry_point = gdbarch_convert_from_func_ptr_addr (gdbarch, entry_point,
335 &current_target);
336
337 /* Remove any ISA markers, so that this matches entries in the
338 symbol table. */
339 entry_point = gdbarch_addr_bits_remove (gdbarch, entry_point);
340
341 *entry_p = entry_point;
342 return 1;
343 }
344
345 /* Get current entry point address. Call error if it is not known. */
346
347 CORE_ADDR
348 entry_point_address (void)
349 {
350 CORE_ADDR retval;
351
352 if (!entry_point_address_query (&retval))
353 error (_("Entry point address is not known."));
354
355 return retval;
356 }
357
358 /* Create the terminating entry of OBJFILE's minimal symbol table.
359 If OBJFILE->msymbols is zero, allocate a single entry from
360 OBJFILE->objfile_obstack; otherwise, just initialize
361 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
362 void
363 terminate_minimal_symbol_table (struct objfile *objfile)
364 {
365 if (! objfile->msymbols)
366 objfile->msymbols = ((struct minimal_symbol *)
367 obstack_alloc (&objfile->objfile_obstack,
368 sizeof (objfile->msymbols[0])));
369
370 {
371 struct minimal_symbol *m
372 = &objfile->msymbols[objfile->minimal_symbol_count];
373
374 memset (m, 0, sizeof (*m));
375 /* Don't rely on these enumeration values being 0's. */
376 MSYMBOL_TYPE (m) = mst_unknown;
377 SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
378 }
379 }
380
381 /* Iterator on PARENT and every separate debug objfile of PARENT.
382 The usage pattern is:
383 for (objfile = parent;
384 objfile;
385 objfile = objfile_separate_debug_iterate (parent, objfile))
386 ...
387 */
388
389 struct objfile *
390 objfile_separate_debug_iterate (const struct objfile *parent,
391 const struct objfile *objfile)
392 {
393 struct objfile *res;
394
395 /* If any, return the first child. */
396 res = objfile->separate_debug_objfile;
397 if (res)
398 return res;
399
400 /* Common case where there is no separate debug objfile. */
401 if (objfile == parent)
402 return NULL;
403
404 /* Return the brother if any. Note that we don't iterate on brothers of
405 the parents. */
406 res = objfile->separate_debug_objfile_link;
407 if (res)
408 return res;
409
410 for (res = objfile->separate_debug_objfile_backlink;
411 res != parent;
412 res = res->separate_debug_objfile_backlink)
413 {
414 gdb_assert (res != NULL);
415 if (res->separate_debug_objfile_link)
416 return res->separate_debug_objfile_link;
417 }
418 return NULL;
419 }
420
421 /* Put one object file before a specified on in the global list.
422 This can be used to make sure an object file is destroyed before
423 another when using ALL_OBJFILES_SAFE to free all objfiles. */
424 void
425 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
426 {
427 struct objfile **objp;
428
429 unlink_objfile (objfile);
430
431 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
432 {
433 if (*objp == before_this)
434 {
435 objfile->next = *objp;
436 *objp = objfile;
437 return;
438 }
439 }
440
441 internal_error (__FILE__, __LINE__,
442 _("put_objfile_before: before objfile not in list"));
443 }
444
445 /* Put OBJFILE at the front of the list. */
446
447 void
448 objfile_to_front (struct objfile *objfile)
449 {
450 struct objfile **objp;
451 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
452 {
453 if (*objp == objfile)
454 {
455 /* Unhook it from where it is. */
456 *objp = objfile->next;
457 /* Put it in the front. */
458 objfile->next = object_files;
459 object_files = objfile;
460 break;
461 }
462 }
463 }
464
465 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
466 list.
467
468 It is not a bug, or error, to call this function if OBJFILE is not known
469 to be in the current list. This is done in the case of mapped objfiles,
470 for example, just to ensure that the mapped objfile doesn't appear twice
471 in the list. Since the list is threaded, linking in a mapped objfile
472 twice would create a circular list.
473
474 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
475 unlinking it, just to ensure that we have completely severed any linkages
476 between the OBJFILE and the list. */
477
478 void
479 unlink_objfile (struct objfile *objfile)
480 {
481 struct objfile **objpp;
482
483 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
484 {
485 if (*objpp == objfile)
486 {
487 *objpp = (*objpp)->next;
488 objfile->next = NULL;
489 return;
490 }
491 }
492
493 internal_error (__FILE__, __LINE__,
494 _("unlink_objfile: objfile already unlinked"));
495 }
496
497 /* Add OBJFILE as a separate debug objfile of PARENT. */
498
499 void
500 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
501 {
502 gdb_assert (objfile && parent);
503
504 /* Must not be already in a list. */
505 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
506 gdb_assert (objfile->separate_debug_objfile_link == NULL);
507
508 objfile->separate_debug_objfile_backlink = parent;
509 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
510 parent->separate_debug_objfile = objfile;
511
512 /* Put the separate debug object before the normal one, this is so that
513 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
514 put_objfile_before (objfile, parent);
515 }
516
517 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
518 itself. */
519
520 void
521 free_objfile_separate_debug (struct objfile *objfile)
522 {
523 struct objfile *child;
524
525 for (child = objfile->separate_debug_objfile; child;)
526 {
527 struct objfile *next_child = child->separate_debug_objfile_link;
528 free_objfile (child);
529 child = next_child;
530 }
531 }
532
533 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
534 that as much as possible is allocated on the objfile_obstack
535 so that the memory can be efficiently freed.
536
537 Things which we do NOT free because they are not in malloc'd memory
538 or not in memory specific to the objfile include:
539
540 objfile -> sf
541
542 FIXME: If the objfile is using reusable symbol information (via mmalloc),
543 then we need to take into account the fact that more than one process
544 may be using the symbol information at the same time (when mmalloc is
545 extended to support cooperative locking). When more than one process
546 is using the mapped symbol info, we need to be more careful about when
547 we free objects in the reusable area. */
548
549 void
550 free_objfile (struct objfile *objfile)
551 {
552 /* Free all separate debug objfiles. */
553 free_objfile_separate_debug (objfile);
554
555 if (objfile->separate_debug_objfile_backlink)
556 {
557 /* We freed the separate debug file, make sure the base objfile
558 doesn't reference it. */
559 struct objfile *child;
560
561 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
562
563 if (child == objfile)
564 {
565 /* OBJFILE is the first child. */
566 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
567 objfile->separate_debug_objfile_link;
568 }
569 else
570 {
571 /* Find OBJFILE in the list. */
572 while (1)
573 {
574 if (child->separate_debug_objfile_link == objfile)
575 {
576 child->separate_debug_objfile_link =
577 objfile->separate_debug_objfile_link;
578 break;
579 }
580 child = child->separate_debug_objfile_link;
581 gdb_assert (child);
582 }
583 }
584 }
585
586 /* Remove any references to this objfile in the global value
587 lists. */
588 preserve_values (objfile);
589
590 /* First do any symbol file specific actions required when we are
591 finished with a particular symbol file. Note that if the objfile
592 is using reusable symbol information (via mmalloc) then each of
593 these routines is responsible for doing the correct thing, either
594 freeing things which are valid only during this particular gdb
595 execution, or leaving them to be reused during the next one. */
596
597 if (objfile->sf != NULL)
598 {
599 (*objfile->sf->sym_finish) (objfile);
600 }
601
602 /* Discard any data modules have associated with the objfile. */
603 objfile_free_data (objfile);
604
605 gdb_bfd_unref (objfile->obfd);
606
607 /* Remove it from the chain of all objfiles. */
608
609 unlink_objfile (objfile);
610
611 if (objfile == symfile_objfile)
612 symfile_objfile = NULL;
613
614 if (objfile == rt_common_objfile)
615 rt_common_objfile = NULL;
616
617 /* Before the symbol table code was redone to make it easier to
618 selectively load and remove information particular to a specific
619 linkage unit, gdb used to do these things whenever the monolithic
620 symbol table was blown away. How much still needs to be done
621 is unknown, but we play it safe for now and keep each action until
622 it is shown to be no longer needed. */
623
624 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
625 for example), so we need to call this here. */
626 clear_pc_function_cache ();
627
628 /* Clear globals which might have pointed into a removed objfile.
629 FIXME: It's not clear which of these are supposed to persist
630 between expressions and which ought to be reset each time. */
631 expression_context_block = NULL;
632 innermost_block = NULL;
633
634 /* Check to see if the current_source_symtab belongs to this objfile,
635 and if so, call clear_current_source_symtab_and_line. */
636
637 {
638 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
639 struct symtab *s;
640
641 ALL_OBJFILE_SYMTABS (objfile, s)
642 {
643 if (s == cursal.symtab)
644 clear_current_source_symtab_and_line ();
645 }
646 }
647
648 /* The last thing we do is free the objfile struct itself. */
649
650 if (objfile->name != NULL)
651 {
652 xfree (objfile->name);
653 }
654 if (objfile->global_psymbols.list)
655 xfree (objfile->global_psymbols.list);
656 if (objfile->static_psymbols.list)
657 xfree (objfile->static_psymbols.list);
658 /* Free the obstacks for non-reusable objfiles */
659 bcache_xfree (objfile->psymbol_cache);
660 bcache_xfree (objfile->macro_cache);
661 bcache_xfree (objfile->filename_cache);
662 if (objfile->demangled_names_hash)
663 htab_delete (objfile->demangled_names_hash);
664 obstack_free (&objfile->objfile_obstack, 0);
665
666 /* Rebuild section map next time we need it. */
667 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
668
669 xfree (objfile);
670 }
671
672 static void
673 do_free_objfile_cleanup (void *obj)
674 {
675 free_objfile (obj);
676 }
677
678 struct cleanup *
679 make_cleanup_free_objfile (struct objfile *obj)
680 {
681 return make_cleanup (do_free_objfile_cleanup, obj);
682 }
683
684 /* Free all the object files at once and clean up their users. */
685
686 void
687 free_all_objfiles (void)
688 {
689 struct objfile *objfile, *temp;
690
691 ALL_OBJFILES_SAFE (objfile, temp)
692 {
693 free_objfile (objfile);
694 }
695 clear_symtab_users ();
696 }
697 \f
698 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
699 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
700 Return non-zero iff any change happened. */
701
702 static int
703 objfile_relocate1 (struct objfile *objfile, struct section_offsets *new_offsets)
704 {
705 struct obj_section *s;
706 struct section_offsets *delta =
707 ((struct section_offsets *)
708 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
709
710 {
711 int i;
712 int something_changed = 0;
713 for (i = 0; i < objfile->num_sections; ++i)
714 {
715 delta->offsets[i] =
716 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
717 if (ANOFFSET (delta, i) != 0)
718 something_changed = 1;
719 }
720 if (!something_changed)
721 return 0;
722 }
723
724 /* OK, get all the symtabs. */
725 {
726 struct symtab *s;
727
728 ALL_OBJFILE_SYMTABS (objfile, s)
729 {
730 struct linetable *l;
731 struct blockvector *bv;
732 int i;
733
734 /* First the line table. */
735 l = LINETABLE (s);
736 if (l)
737 {
738 for (i = 0; i < l->nitems; ++i)
739 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
740 }
741
742 /* Don't relocate a shared blockvector more than once. */
743 if (!s->primary)
744 continue;
745
746 bv = BLOCKVECTOR (s);
747 if (BLOCKVECTOR_MAP (bv))
748 addrmap_relocate (BLOCKVECTOR_MAP (bv),
749 ANOFFSET (delta, s->block_line_section));
750
751 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
752 {
753 struct block *b;
754 struct symbol *sym;
755 struct dict_iterator iter;
756
757 b = BLOCKVECTOR_BLOCK (bv, i);
758 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
759 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
760
761 ALL_BLOCK_SYMBOLS (b, iter, sym)
762 {
763 fixup_symbol_section (sym, objfile);
764
765 /* The RS6000 code from which this was taken skipped
766 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
767 But I'm leaving out that test, on the theory that
768 they can't possibly pass the tests below. */
769 if ((SYMBOL_CLASS (sym) == LOC_LABEL
770 || SYMBOL_CLASS (sym) == LOC_STATIC)
771 && SYMBOL_SECTION (sym) >= 0)
772 {
773 SYMBOL_VALUE_ADDRESS (sym) +=
774 ANOFFSET (delta, SYMBOL_SECTION (sym));
775 }
776 }
777 }
778 }
779 }
780
781 if (objfile->psymtabs_addrmap)
782 addrmap_relocate (objfile->psymtabs_addrmap,
783 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
784
785 {
786 struct partial_symtab *p;
787
788 ALL_OBJFILE_PSYMTABS (objfile, p)
789 {
790 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
791 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
792 }
793 }
794
795 {
796 struct partial_symbol **psym;
797
798 for (psym = objfile->global_psymbols.list;
799 psym < objfile->global_psymbols.next;
800 psym++)
801 {
802 fixup_psymbol_section (*psym, objfile);
803 if (SYMBOL_SECTION (*psym) >= 0)
804 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
805 SYMBOL_SECTION (*psym));
806 }
807 for (psym = objfile->static_psymbols.list;
808 psym < objfile->static_psymbols.next;
809 psym++)
810 {
811 fixup_psymbol_section (*psym, objfile);
812 if (SYMBOL_SECTION (*psym) >= 0)
813 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
814 SYMBOL_SECTION (*psym));
815 }
816 }
817
818 {
819 struct minimal_symbol *msym;
820 ALL_OBJFILE_MSYMBOLS (objfile, msym)
821 if (SYMBOL_SECTION (msym) >= 0)
822 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
823 }
824 /* Relocating different sections by different amounts may cause the symbols
825 to be out of order. */
826 msymbols_sort (objfile);
827
828 if (objfile->ei.entry_point_p)
829 {
830 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
831 only as a fallback. */
832 struct obj_section *s;
833 s = find_pc_section (objfile->ei.entry_point);
834 if (s)
835 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
836 else
837 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
838 }
839
840 {
841 int i;
842 for (i = 0; i < objfile->num_sections; ++i)
843 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
844 }
845
846 /* Rebuild section map next time we need it. */
847 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
848
849 /* Update the table in exec_ops, used to read memory. */
850 ALL_OBJFILE_OSECTIONS (objfile, s)
851 {
852 int idx = s->the_bfd_section->index;
853
854 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
855 obj_section_addr (s));
856 }
857
858 /* Data changed. */
859 return 1;
860 }
861
862 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
863 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
864
865 The number and ordering of sections does differ between the two objfiles.
866 Only their names match. Also the file offsets will differ (objfile being
867 possibly prelinked but separate_debug_objfile is probably not prelinked) but
868 the in-memory absolute address as specified by NEW_OFFSETS must match both
869 files. */
870
871 void
872 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
873 {
874 struct objfile *debug_objfile;
875 int changed = 0;
876
877 changed |= objfile_relocate1 (objfile, new_offsets);
878
879 for (debug_objfile = objfile->separate_debug_objfile;
880 debug_objfile;
881 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
882 {
883 struct section_addr_info *objfile_addrs;
884 struct section_offsets *new_debug_offsets;
885 int new_debug_num_sections;
886 struct cleanup *my_cleanups;
887
888 objfile_addrs = build_section_addr_info_from_objfile (objfile);
889 my_cleanups = make_cleanup (xfree, objfile_addrs);
890
891 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
892 relative ones must be already created according to debug_objfile. */
893
894 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
895
896 gdb_assert (debug_objfile->num_sections
897 == bfd_count_sections (debug_objfile->obfd));
898 new_debug_offsets = xmalloc (SIZEOF_N_SECTION_OFFSETS
899 (debug_objfile->num_sections));
900 make_cleanup (xfree, new_debug_offsets);
901 relative_addr_info_to_section_offsets (new_debug_offsets,
902 debug_objfile->num_sections,
903 objfile_addrs);
904
905 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
906
907 do_cleanups (my_cleanups);
908 }
909
910 /* Relocate breakpoints as necessary, after things are relocated. */
911 if (changed)
912 breakpoint_re_set ();
913 }
914 \f
915 /* Return non-zero if OBJFILE has partial symbols. */
916
917 int
918 objfile_has_partial_symbols (struct objfile *objfile)
919 {
920 return objfile->psymtabs != NULL;
921 }
922
923 /* Return non-zero if OBJFILE has full symbols. */
924
925 int
926 objfile_has_full_symbols (struct objfile *objfile)
927 {
928 return objfile->symtabs != NULL;
929 }
930
931 /* Return non-zero if OBJFILE has full or partial symbols, either directly
932 or through a separate debug file. */
933
934 int
935 objfile_has_symbols (struct objfile *objfile)
936 {
937 struct objfile *o;
938
939 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
940 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
941 return 1;
942 return 0;
943 }
944
945
946 /* Many places in gdb want to test just to see if we have any partial
947 symbols available. This function returns zero if none are currently
948 available, nonzero otherwise. */
949
950 int
951 have_partial_symbols (void)
952 {
953 struct objfile *ofp;
954
955 ALL_OBJFILES (ofp)
956 {
957 if (objfile_has_partial_symbols (ofp))
958 return 1;
959 }
960 return 0;
961 }
962
963 /* Many places in gdb want to test just to see if we have any full
964 symbols available. This function returns zero if none are currently
965 available, nonzero otherwise. */
966
967 int
968 have_full_symbols (void)
969 {
970 struct objfile *ofp;
971
972 ALL_OBJFILES (ofp)
973 {
974 if (objfile_has_full_symbols (ofp))
975 return 1;
976 }
977 return 0;
978 }
979
980
981 /* This operations deletes all objfile entries that represent solibs that
982 weren't explicitly loaded by the user, via e.g., the add-symbol-file
983 command.
984 */
985 void
986 objfile_purge_solibs (void)
987 {
988 struct objfile *objf;
989 struct objfile *temp;
990
991 ALL_OBJFILES_SAFE (objf, temp)
992 {
993 /* We assume that the solib package has been purged already, or will
994 be soon.
995 */
996 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
997 free_objfile (objf);
998 }
999 }
1000
1001
1002 /* Many places in gdb want to test just to see if we have any minimal
1003 symbols available. This function returns zero if none are currently
1004 available, nonzero otherwise. */
1005
1006 int
1007 have_minimal_symbols (void)
1008 {
1009 struct objfile *ofp;
1010
1011 ALL_OBJFILES (ofp)
1012 {
1013 if (ofp->minimal_symbol_count > 0)
1014 {
1015 return 1;
1016 }
1017 }
1018 return 0;
1019 }
1020
1021 /* Qsort comparison function. */
1022
1023 static int
1024 qsort_cmp (const void *a, const void *b)
1025 {
1026 const struct obj_section *sect1 = *(const struct obj_section **) a;
1027 const struct obj_section *sect2 = *(const struct obj_section **) b;
1028 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1029 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1030
1031 if (sect1_addr < sect2_addr)
1032 return -1;
1033 else if (sect1_addr > sect2_addr)
1034 return 1;
1035 else
1036 {
1037 /* Sections are at the same address. This could happen if
1038 A) we have an objfile and a separate debuginfo.
1039 B) we are confused, and have added sections without proper relocation,
1040 or something like that. */
1041
1042 const struct objfile *const objfile1 = sect1->objfile;
1043 const struct objfile *const objfile2 = sect2->objfile;
1044
1045 if (objfile1->separate_debug_objfile == objfile2
1046 || objfile2->separate_debug_objfile == objfile1)
1047 {
1048 /* Case A. The ordering doesn't matter: separate debuginfo files
1049 will be filtered out later. */
1050
1051 return 0;
1052 }
1053
1054 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1055 triage. This section could be slow (since we iterate over all
1056 objfiles in each call to qsort_cmp), but this shouldn't happen
1057 very often (GDB is already in a confused state; one hopes this
1058 doesn't happen at all). If you discover that significant time is
1059 spent in the loops below, do 'set complaints 100' and examine the
1060 resulting complaints. */
1061
1062 if (objfile1 == objfile2)
1063 {
1064 /* Both sections came from the same objfile. We are really confused.
1065 Sort on sequence order of sections within the objfile. */
1066
1067 const struct obj_section *osect;
1068
1069 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1070 if (osect == sect1)
1071 return -1;
1072 else if (osect == sect2)
1073 return 1;
1074
1075 /* We should have found one of the sections before getting here. */
1076 gdb_assert (0);
1077 }
1078 else
1079 {
1080 /* Sort on sequence number of the objfile in the chain. */
1081
1082 const struct objfile *objfile;
1083
1084 ALL_OBJFILES (objfile)
1085 if (objfile == objfile1)
1086 return -1;
1087 else if (objfile == objfile2)
1088 return 1;
1089
1090 /* We should have found one of the objfiles before getting here. */
1091 gdb_assert (0);
1092 }
1093
1094 }
1095
1096 /* Unreachable. */
1097 gdb_assert (0);
1098 return 0;
1099 }
1100
1101 /* Select "better" obj_section to keep. We prefer the one that came from
1102 the real object, rather than the one from separate debuginfo.
1103 Most of the time the two sections are exactly identical, but with
1104 prelinking the .rel.dyn section in the real object may have different
1105 size. */
1106
1107 static struct obj_section *
1108 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1109 {
1110 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1111 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1112 || (b->objfile->separate_debug_objfile == a->objfile));
1113 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1114 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1115
1116 if (a->objfile->separate_debug_objfile != NULL)
1117 return a;
1118 return b;
1119 }
1120
1121 /* Return 1 if SECTION should be inserted into the section map.
1122 We want to insert only non-overlay and non-TLS section. */
1123
1124 static int
1125 insert_section_p (const struct bfd *abfd,
1126 const struct bfd_section *section)
1127 {
1128 const bfd_vma lma = bfd_section_lma (abfd, section);
1129
1130 if (lma != 0 && lma != bfd_section_vma (abfd, section)
1131 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1132 /* This is an overlay section. IN_MEMORY check is needed to avoid
1133 discarding sections from the "system supplied DSO" (aka vdso)
1134 on some Linux systems (e.g. Fedora 11). */
1135 return 0;
1136 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1137 /* This is a TLS section. */
1138 return 0;
1139
1140 return 1;
1141 }
1142
1143 /* Filter out overlapping sections where one section came from the real
1144 objfile, and the other from a separate debuginfo file.
1145 Return the size of table after redundant sections have been eliminated. */
1146
1147 static int
1148 filter_debuginfo_sections (struct obj_section **map, int map_size)
1149 {
1150 int i, j;
1151
1152 for (i = 0, j = 0; i < map_size - 1; i++)
1153 {
1154 struct obj_section *const sect1 = map[i];
1155 struct obj_section *const sect2 = map[i + 1];
1156 const struct objfile *const objfile1 = sect1->objfile;
1157 const struct objfile *const objfile2 = sect2->objfile;
1158 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1159 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1160
1161 if (sect1_addr == sect2_addr
1162 && (objfile1->separate_debug_objfile == objfile2
1163 || objfile2->separate_debug_objfile == objfile1))
1164 {
1165 map[j++] = preferred_obj_section (sect1, sect2);
1166 ++i;
1167 }
1168 else
1169 map[j++] = sect1;
1170 }
1171
1172 if (i < map_size)
1173 {
1174 gdb_assert (i == map_size - 1);
1175 map[j++] = map[i];
1176 }
1177
1178 /* The map should not have shrunk to less than half the original size. */
1179 gdb_assert (map_size / 2 <= j);
1180
1181 return j;
1182 }
1183
1184 /* Filter out overlapping sections, issuing a warning if any are found.
1185 Overlapping sections could really be overlay sections which we didn't
1186 classify as such in insert_section_p, or we could be dealing with a
1187 corrupt binary. */
1188
1189 static int
1190 filter_overlapping_sections (struct obj_section **map, int map_size)
1191 {
1192 int i, j;
1193
1194 for (i = 0, j = 0; i < map_size - 1; )
1195 {
1196 int k;
1197
1198 map[j++] = map[i];
1199 for (k = i + 1; k < map_size; k++)
1200 {
1201 struct obj_section *const sect1 = map[i];
1202 struct obj_section *const sect2 = map[k];
1203 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1204 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1205 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1206
1207 gdb_assert (sect1_addr <= sect2_addr);
1208
1209 if (sect1_endaddr <= sect2_addr)
1210 break;
1211 else
1212 {
1213 /* We have an overlap. Report it. */
1214
1215 struct objfile *const objf1 = sect1->objfile;
1216 struct objfile *const objf2 = sect2->objfile;
1217
1218 const struct bfd *const abfd1 = objf1->obfd;
1219 const struct bfd *const abfd2 = objf2->obfd;
1220
1221 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1222 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1223
1224 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1225
1226 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1227
1228 complaint (&symfile_complaints,
1229 _("unexpected overlap between:\n"
1230 " (A) section `%s' from `%s' [%s, %s)\n"
1231 " (B) section `%s' from `%s' [%s, %s).\n"
1232 "Will ignore section B"),
1233 bfd_section_name (abfd1, bfds1), objf1->name,
1234 paddress (gdbarch, sect1_addr),
1235 paddress (gdbarch, sect1_endaddr),
1236 bfd_section_name (abfd2, bfds2), objf2->name,
1237 paddress (gdbarch, sect2_addr),
1238 paddress (gdbarch, sect2_endaddr));
1239 }
1240 }
1241 i = k;
1242 }
1243
1244 if (i < map_size)
1245 {
1246 gdb_assert (i == map_size - 1);
1247 map[j++] = map[i];
1248 }
1249
1250 return j;
1251 }
1252
1253
1254 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1255 TLS, overlay and overlapping sections. */
1256
1257 static void
1258 update_section_map (struct program_space *pspace,
1259 struct obj_section ***pmap, int *pmap_size)
1260 {
1261 int alloc_size, map_size, i;
1262 struct obj_section *s, **map;
1263 struct objfile *objfile;
1264
1265 gdb_assert (get_objfile_pspace_data (pspace)->objfiles_changed_p != 0);
1266
1267 map = *pmap;
1268 xfree (map);
1269
1270 alloc_size = 0;
1271 ALL_PSPACE_OBJFILES (pspace, objfile)
1272 ALL_OBJFILE_OSECTIONS (objfile, s)
1273 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1274 alloc_size += 1;
1275
1276 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1277 if (alloc_size == 0)
1278 {
1279 *pmap = NULL;
1280 *pmap_size = 0;
1281 return;
1282 }
1283
1284 map = xmalloc (alloc_size * sizeof (*map));
1285
1286 i = 0;
1287 ALL_PSPACE_OBJFILES (pspace, objfile)
1288 ALL_OBJFILE_OSECTIONS (objfile, s)
1289 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1290 map[i++] = s;
1291
1292 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1293 map_size = filter_debuginfo_sections(map, alloc_size);
1294 map_size = filter_overlapping_sections(map, map_size);
1295
1296 if (map_size < alloc_size)
1297 /* Some sections were eliminated. Trim excess space. */
1298 map = xrealloc (map, map_size * sizeof (*map));
1299 else
1300 gdb_assert (alloc_size == map_size);
1301
1302 *pmap = map;
1303 *pmap_size = map_size;
1304 }
1305
1306 /* Bsearch comparison function. */
1307
1308 static int
1309 bsearch_cmp (const void *key, const void *elt)
1310 {
1311 const CORE_ADDR pc = *(CORE_ADDR *) key;
1312 const struct obj_section *section = *(const struct obj_section **) elt;
1313
1314 if (pc < obj_section_addr (section))
1315 return -1;
1316 if (pc < obj_section_endaddr (section))
1317 return 0;
1318 return 1;
1319 }
1320
1321 /* Returns a section whose range includes PC or NULL if none found. */
1322
1323 struct obj_section *
1324 find_pc_section (CORE_ADDR pc)
1325 {
1326 struct objfile_pspace_info *pspace_info;
1327 struct obj_section *s, **sp;
1328
1329 /* Check for mapped overlay section first. */
1330 s = find_pc_mapped_section (pc);
1331 if (s)
1332 return s;
1333
1334 pspace_info = get_objfile_pspace_data (current_program_space);
1335 if (pspace_info->objfiles_changed_p != 0)
1336 {
1337 update_section_map (current_program_space,
1338 &pspace_info->sections,
1339 &pspace_info->num_sections);
1340
1341 /* Don't need updates to section map until objfiles are added,
1342 removed or relocated. */
1343 pspace_info->objfiles_changed_p = 0;
1344 }
1345
1346 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1347 bsearch be non-NULL. */
1348 if (pspace_info->sections == NULL)
1349 {
1350 gdb_assert (pspace_info->num_sections == 0);
1351 return NULL;
1352 }
1353
1354 sp = (struct obj_section **) bsearch (&pc,
1355 pspace_info->sections,
1356 pspace_info->num_sections,
1357 sizeof (*pspace_info->sections),
1358 bsearch_cmp);
1359 if (sp != NULL)
1360 return *sp;
1361 return NULL;
1362 }
1363
1364
1365 /* In SVR4, we recognize a trampoline by it's section name.
1366 That is, if the pc is in a section named ".plt" then we are in
1367 a trampoline. */
1368
1369 int
1370 in_plt_section (CORE_ADDR pc, char *name)
1371 {
1372 struct obj_section *s;
1373 int retval = 0;
1374
1375 s = find_pc_section (pc);
1376
1377 retval = (s != NULL
1378 && s->the_bfd_section->name != NULL
1379 && strcmp (s->the_bfd_section->name, ".plt") == 0);
1380 return (retval);
1381 }
1382 \f
1383
1384 /* Keep a registry of per-objfile data-pointers required by other GDB
1385 modules. */
1386
1387 struct objfile_data
1388 {
1389 unsigned index;
1390 void (*save) (struct objfile *, void *);
1391 void (*free) (struct objfile *, void *);
1392 };
1393
1394 struct objfile_data_registration
1395 {
1396 struct objfile_data *data;
1397 struct objfile_data_registration *next;
1398 };
1399
1400 struct objfile_data_registry
1401 {
1402 struct objfile_data_registration *registrations;
1403 unsigned num_registrations;
1404 };
1405
1406 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
1407
1408 const struct objfile_data *
1409 register_objfile_data_with_cleanup (void (*save) (struct objfile *, void *),
1410 void (*free) (struct objfile *, void *))
1411 {
1412 struct objfile_data_registration **curr;
1413
1414 /* Append new registration. */
1415 for (curr = &objfile_data_registry.registrations;
1416 *curr != NULL; curr = &(*curr)->next);
1417
1418 *curr = XMALLOC (struct objfile_data_registration);
1419 (*curr)->next = NULL;
1420 (*curr)->data = XMALLOC (struct objfile_data);
1421 (*curr)->data->index = objfile_data_registry.num_registrations++;
1422 (*curr)->data->save = save;
1423 (*curr)->data->free = free;
1424
1425 return (*curr)->data;
1426 }
1427
1428 const struct objfile_data *
1429 register_objfile_data (void)
1430 {
1431 return register_objfile_data_with_cleanup (NULL, NULL);
1432 }
1433
1434 static void
1435 objfile_alloc_data (struct objfile *objfile)
1436 {
1437 gdb_assert (objfile->data == NULL);
1438 objfile->num_data = objfile_data_registry.num_registrations;
1439 objfile->data = XCALLOC (objfile->num_data, void *);
1440 }
1441
1442 static void
1443 objfile_free_data (struct objfile *objfile)
1444 {
1445 gdb_assert (objfile->data != NULL);
1446 clear_objfile_data (objfile);
1447 xfree (objfile->data);
1448 objfile->data = NULL;
1449 }
1450
1451 void
1452 clear_objfile_data (struct objfile *objfile)
1453 {
1454 struct objfile_data_registration *registration;
1455 int i;
1456
1457 gdb_assert (objfile->data != NULL);
1458
1459 /* Process all the save handlers. */
1460
1461 for (registration = objfile_data_registry.registrations, i = 0;
1462 i < objfile->num_data;
1463 registration = registration->next, i++)
1464 if (objfile->data[i] != NULL && registration->data->save != NULL)
1465 registration->data->save (objfile, objfile->data[i]);
1466
1467 /* Now process all the free handlers. */
1468
1469 for (registration = objfile_data_registry.registrations, i = 0;
1470 i < objfile->num_data;
1471 registration = registration->next, i++)
1472 if (objfile->data[i] != NULL && registration->data->free != NULL)
1473 registration->data->free (objfile, objfile->data[i]);
1474
1475 memset (objfile->data, 0, objfile->num_data * sizeof (void *));
1476 }
1477
1478 void
1479 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
1480 void *value)
1481 {
1482 gdb_assert (data->index < objfile->num_data);
1483 objfile->data[data->index] = value;
1484 }
1485
1486 void *
1487 objfile_data (struct objfile *objfile, const struct objfile_data *data)
1488 {
1489 gdb_assert (data->index < objfile->num_data);
1490 return objfile->data[data->index];
1491 }
1492
1493 /* Set objfiles_changed_p so section map will be rebuilt next time it
1494 is used. Called by reread_symbols. */
1495
1496 void
1497 objfiles_changed (void)
1498 {
1499 /* Rebuild section map next time we need it. */
1500 get_objfile_pspace_data (current_program_space)->objfiles_changed_p = 1;
1501 }
1502
1503 /* Add reference to ABFD. Returns ABFD. */
1504 struct bfd *
1505 gdb_bfd_ref (struct bfd *abfd)
1506 {
1507 int *p_refcount;
1508
1509 if (abfd == NULL)
1510 return NULL;
1511
1512 p_refcount = bfd_usrdata (abfd);
1513
1514 if (p_refcount != NULL)
1515 {
1516 *p_refcount += 1;
1517 return abfd;
1518 }
1519
1520 p_refcount = xmalloc (sizeof (*p_refcount));
1521 *p_refcount = 1;
1522 bfd_usrdata (abfd) = p_refcount;
1523
1524 return abfd;
1525 }
1526
1527 /* Unreference and possibly close ABFD. */
1528 void
1529 gdb_bfd_unref (struct bfd *abfd)
1530 {
1531 int *p_refcount;
1532 char *name;
1533
1534 if (abfd == NULL)
1535 return;
1536
1537 p_refcount = bfd_usrdata (abfd);
1538
1539 /* Valid range for p_refcount: a pointer to int counter, which has a
1540 value of 1 (single owner) or 2 (shared). */
1541 gdb_assert (*p_refcount == 1 || *p_refcount == 2);
1542
1543 *p_refcount -= 1;
1544 if (*p_refcount > 0)
1545 return;
1546
1547 xfree (p_refcount);
1548 bfd_usrdata (abfd) = NULL; /* Paranoia. */
1549
1550 name = bfd_get_filename (abfd);
1551 if (!bfd_close (abfd))
1552 warning (_("cannot close \"%s\": %s"),
1553 name, bfd_errmsg (bfd_get_error ()));
1554 xfree (name);
1555 }
1556
1557 /* Provide a prototype to silence -Wmissing-prototypes. */
1558 extern initialize_file_ftype _initialize_objfiles;
1559
1560 void
1561 _initialize_objfiles (void)
1562 {
1563 objfiles_pspace_data
1564 = register_program_space_data_with_cleanup (objfiles_pspace_data_cleanup);
1565 }