gdb: remove BLOCKVECTOR_MAP macro
[binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2022 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <fcntl.h>
39 #include "gdbsupport/gdb_obstack.h"
40 #include "hashtab.h"
41
42 #include "breakpoint.h"
43 #include "block.h"
44 #include "dictionary.h"
45 #include "source.h"
46 #include "addrmap.h"
47 #include "arch-utils.h"
48 #include "exec.h"
49 #include "observable.h"
50 #include "complaints.h"
51 #include "psymtab.h"
52 #include "solist.h"
53 #include "gdb_bfd.h"
54 #include "btrace.h"
55 #include "gdbsupport/pathstuff.h"
56
57 #include <algorithm>
58 #include <vector>
59
60 /* Keep a registry of per-objfile data-pointers required by other GDB
61 modules. */
62
63 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
64
65 /* Externally visible variables that are owned by this module.
66 See declarations in objfile.h for more info. */
67
68 struct objfile_pspace_info
69 {
70 objfile_pspace_info () = default;
71 ~objfile_pspace_info ();
72
73 struct obj_section **sections = nullptr;
74 int num_sections = 0;
75
76 /* Nonzero if object files have been added since the section map
77 was last updated. */
78 int new_objfiles_available = 0;
79
80 /* Nonzero if the section map MUST be updated before use. */
81 int section_map_dirty = 0;
82
83 /* Nonzero if section map updates should be inhibited if possible. */
84 int inhibit_updates = 0;
85 };
86
87 /* Per-program-space data key. */
88 static const struct program_space_key<objfile_pspace_info>
89 objfiles_pspace_data;
90
91 objfile_pspace_info::~objfile_pspace_info ()
92 {
93 xfree (sections);
94 }
95
96 /* Get the current svr4 data. If none is found yet, add it now. This
97 function always returns a valid object. */
98
99 static struct objfile_pspace_info *
100 get_objfile_pspace_data (struct program_space *pspace)
101 {
102 struct objfile_pspace_info *info;
103
104 info = objfiles_pspace_data.get (pspace);
105 if (info == NULL)
106 info = objfiles_pspace_data.emplace (pspace);
107
108 return info;
109 }
110
111 \f
112
113 /* Per-BFD data key. */
114
115 static const struct bfd_key<objfile_per_bfd_storage> objfiles_bfd_data;
116
117 objfile_per_bfd_storage::~objfile_per_bfd_storage ()
118 {
119 }
120
121 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
122 NULL, and it already has a per-BFD storage object, use that.
123 Otherwise, allocate a new per-BFD storage object. */
124
125 static struct objfile_per_bfd_storage *
126 get_objfile_bfd_data (bfd *abfd)
127 {
128 struct objfile_per_bfd_storage *storage = NULL;
129
130 if (abfd != NULL)
131 storage = objfiles_bfd_data.get (abfd);
132
133 if (storage == NULL)
134 {
135 storage = new objfile_per_bfd_storage (abfd);
136 /* If the object requires gdb to do relocations, we simply fall
137 back to not sharing data across users. These cases are rare
138 enough that this seems reasonable. */
139 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
140 objfiles_bfd_data.set (abfd, storage);
141
142 /* Look up the gdbarch associated with the BFD. */
143 if (abfd != NULL)
144 storage->gdbarch = gdbarch_from_bfd (abfd);
145 }
146
147 return storage;
148 }
149
150 /* See objfiles.h. */
151
152 void
153 set_objfile_per_bfd (struct objfile *objfile)
154 {
155 objfile->per_bfd = get_objfile_bfd_data (objfile->obfd);
156 }
157
158 /* Set the objfile's per-BFD notion of the "main" name and
159 language. */
160
161 void
162 set_objfile_main_name (struct objfile *objfile,
163 const char *name, enum language lang)
164 {
165 if (objfile->per_bfd->name_of_main == NULL
166 || strcmp (objfile->per_bfd->name_of_main, name) != 0)
167 objfile->per_bfd->name_of_main
168 = obstack_strdup (&objfile->per_bfd->storage_obstack, name);
169 objfile->per_bfd->language_of_main = lang;
170 }
171
172 /* Helper structure to map blocks to static link properties in hash tables. */
173
174 struct static_link_htab_entry
175 {
176 const struct block *block;
177 const struct dynamic_prop *static_link;
178 };
179
180 /* Return a hash code for struct static_link_htab_entry *P. */
181
182 static hashval_t
183 static_link_htab_entry_hash (const void *p)
184 {
185 const struct static_link_htab_entry *e
186 = (const struct static_link_htab_entry *) p;
187
188 return htab_hash_pointer (e->block);
189 }
190
191 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are
192 mappings for the same block. */
193
194 static int
195 static_link_htab_entry_eq (const void *p1, const void *p2)
196 {
197 const struct static_link_htab_entry *e1
198 = (const struct static_link_htab_entry *) p1;
199 const struct static_link_htab_entry *e2
200 = (const struct static_link_htab_entry *) p2;
201
202 return e1->block == e2->block;
203 }
204
205 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE.
206 Must not be called more than once for each BLOCK. */
207
208 void
209 objfile_register_static_link (struct objfile *objfile,
210 const struct block *block,
211 const struct dynamic_prop *static_link)
212 {
213 void **slot;
214 struct static_link_htab_entry lookup_entry;
215 struct static_link_htab_entry *entry;
216
217 if (objfile->static_links == NULL)
218 objfile->static_links.reset (htab_create_alloc
219 (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL,
220 xcalloc, xfree));
221
222 /* Create a slot for the mapping, make sure it's the first mapping for this
223 block and then create the mapping itself. */
224 lookup_entry.block = block;
225 slot = htab_find_slot (objfile->static_links.get (), &lookup_entry, INSERT);
226 gdb_assert (*slot == NULL);
227
228 entry = XOBNEW (&objfile->objfile_obstack, static_link_htab_entry);
229 entry->block = block;
230 entry->static_link = static_link;
231 *slot = (void *) entry;
232 }
233
234 /* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if
235 none was found. */
236
237 const struct dynamic_prop *
238 objfile_lookup_static_link (struct objfile *objfile,
239 const struct block *block)
240 {
241 struct static_link_htab_entry *entry;
242 struct static_link_htab_entry lookup_entry;
243
244 if (objfile->static_links == NULL)
245 return NULL;
246 lookup_entry.block = block;
247 entry = ((struct static_link_htab_entry *)
248 htab_find (objfile->static_links.get (), &lookup_entry));
249 if (entry == NULL)
250 return NULL;
251
252 gdb_assert (entry->block == block);
253 return entry->static_link;
254 }
255
256 \f
257
258 /* Build up the section table that the objfile references. The
259 objfile contains pointers to the start of the table
260 (objfile->sections) and to the first location after the end of the
261 table (objfile->sections_end). */
262
263 static void
264 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
265 struct objfile *objfile, int force)
266 {
267 struct obj_section *section;
268
269 if (!force)
270 {
271 flagword aflag;
272
273 aflag = bfd_section_flags (asect);
274 if (!(aflag & SEC_ALLOC))
275 return;
276 }
277
278 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
279 section->objfile = objfile;
280 section->the_bfd_section = asect;
281 section->ovly_mapped = 0;
282 }
283
284 /* Builds a section table for OBJFILE.
285
286 Note that the OFFSET and OVLY_MAPPED in each table entry are
287 initialized to zero. */
288
289 void
290 build_objfile_section_table (struct objfile *objfile)
291 {
292 int count = gdb_bfd_count_sections (objfile->obfd);
293
294 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
295 count,
296 struct obj_section);
297 objfile->sections_end = (objfile->sections + count);
298 for (asection *sect : gdb_bfd_sections (objfile->obfd))
299 add_to_objfile_sections (objfile->obfd, sect, objfile, 0);
300
301 /* See gdb_bfd_section_index. */
302 add_to_objfile_sections (objfile->obfd, bfd_com_section_ptr, objfile, 1);
303 add_to_objfile_sections (objfile->obfd, bfd_und_section_ptr, objfile, 1);
304 add_to_objfile_sections (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
305 add_to_objfile_sections (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
306 }
307
308 /* Given a pointer to an initialized bfd (ABFD) and some flag bits,
309 initialize the new objfile as best we can and link it into the list
310 of all known objfiles.
311
312 NAME should contain original non-canonicalized filename or other
313 identifier as entered by user. If there is no better source use
314 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
315 NAME content is copied into returned objfile.
316
317 The FLAGS word contains various bits (OBJF_*) that can be taken as
318 requests for specific operations. Other bits like OBJF_SHARED are
319 simply copied through to the new objfile flags member. */
320
321 objfile::objfile (bfd *abfd, const char *name, objfile_flags flags_)
322 : flags (flags_),
323 pspace (current_program_space),
324 obfd (abfd)
325 {
326 const char *expanded_name;
327
328 /* We could use obstack_specify_allocation here instead, but
329 gdb_obstack.h specifies the alloc/dealloc functions. */
330 obstack_init (&objfile_obstack);
331
332 objfile_alloc_data (this);
333
334 std::string name_holder;
335 if (name == NULL)
336 {
337 gdb_assert (abfd == NULL);
338 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
339 expanded_name = "<<anonymous objfile>>";
340 }
341 else if ((flags & OBJF_NOT_FILENAME) != 0
342 || is_target_filename (name))
343 expanded_name = name;
344 else
345 {
346 name_holder = gdb_abspath (name);
347 expanded_name = name_holder.c_str ();
348 }
349 original_name = obstack_strdup (&objfile_obstack, expanded_name);
350
351 /* Update the per-objfile information that comes from the bfd, ensuring
352 that any data that is reference is saved in the per-objfile data
353 region. */
354
355 gdb_bfd_ref (abfd);
356 if (abfd != NULL)
357 {
358 mtime = bfd_get_mtime (abfd);
359
360 /* Build section table. */
361 build_objfile_section_table (this);
362 }
363
364 per_bfd = get_objfile_bfd_data (abfd);
365 }
366
367 /* If there is a valid and known entry point, function fills *ENTRY_P with it
368 and returns non-zero; otherwise it returns zero. */
369
370 int
371 entry_point_address_query (CORE_ADDR *entry_p)
372 {
373 objfile *objf = current_program_space->symfile_object_file;
374 if (objf == NULL || !objf->per_bfd->ei.entry_point_p)
375 return 0;
376
377 int idx = objf->per_bfd->ei.the_bfd_section_index;
378 *entry_p = objf->per_bfd->ei.entry_point + objf->section_offsets[idx];
379
380 return 1;
381 }
382
383 /* Get current entry point address. Call error if it is not known. */
384
385 CORE_ADDR
386 entry_point_address (void)
387 {
388 CORE_ADDR retval;
389
390 if (!entry_point_address_query (&retval))
391 error (_("Entry point address is not known."));
392
393 return retval;
394 }
395
396 separate_debug_iterator &
397 separate_debug_iterator::operator++ ()
398 {
399 gdb_assert (m_objfile != nullptr);
400
401 struct objfile *res;
402
403 /* If any, return the first child. */
404 res = m_objfile->separate_debug_objfile;
405 if (res != nullptr)
406 {
407 m_objfile = res;
408 return *this;
409 }
410
411 /* Common case where there is no separate debug objfile. */
412 if (m_objfile == m_parent)
413 {
414 m_objfile = nullptr;
415 return *this;
416 }
417
418 /* Return the brother if any. Note that we don't iterate on brothers of
419 the parents. */
420 res = m_objfile->separate_debug_objfile_link;
421 if (res != nullptr)
422 {
423 m_objfile = res;
424 return *this;
425 }
426
427 for (res = m_objfile->separate_debug_objfile_backlink;
428 res != m_parent;
429 res = res->separate_debug_objfile_backlink)
430 {
431 gdb_assert (res != nullptr);
432 if (res->separate_debug_objfile_link != nullptr)
433 {
434 m_objfile = res->separate_debug_objfile_link;
435 return *this;
436 }
437 }
438 m_objfile = nullptr;
439 return *this;
440 }
441
442 /* Add OBJFILE as a separate debug objfile of PARENT. */
443
444 static void
445 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
446 {
447 gdb_assert (objfile && parent);
448
449 /* Must not be already in a list. */
450 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
451 gdb_assert (objfile->separate_debug_objfile_link == NULL);
452 gdb_assert (objfile->separate_debug_objfile == NULL);
453 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
454 gdb_assert (parent->separate_debug_objfile_link == NULL);
455
456 objfile->separate_debug_objfile_backlink = parent;
457 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
458 parent->separate_debug_objfile = objfile;
459 }
460
461 /* See objfiles.h. */
462
463 objfile *
464 objfile::make (bfd *bfd_, const char *name_, objfile_flags flags_,
465 objfile *parent)
466 {
467 objfile *result = new objfile (bfd_, name_, flags_);
468 if (parent != nullptr)
469 add_separate_debug_objfile (result, parent);
470
471 /* Using std::make_shared might be a bit nicer here, but that would
472 require making the constructor public. */
473 current_program_space->add_objfile (std::shared_ptr<objfile> (result),
474 parent);
475
476 /* Rebuild section map next time we need it. */
477 get_objfile_pspace_data (current_program_space)->new_objfiles_available = 1;
478
479 return result;
480 }
481
482 /* See objfiles.h. */
483
484 void
485 objfile::unlink ()
486 {
487 current_program_space->remove_objfile (this);
488 }
489
490 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
491 itself. */
492
493 void
494 free_objfile_separate_debug (struct objfile *objfile)
495 {
496 struct objfile *child;
497
498 for (child = objfile->separate_debug_objfile; child;)
499 {
500 struct objfile *next_child = child->separate_debug_objfile_link;
501 child->unlink ();
502 child = next_child;
503 }
504 }
505
506 /* Destroy an objfile and all the symtabs and psymtabs under it. */
507
508 objfile::~objfile ()
509 {
510 /* First notify observers that this objfile is about to be freed. */
511 gdb::observers::free_objfile.notify (this);
512
513 /* Free all separate debug objfiles. */
514 free_objfile_separate_debug (this);
515
516 if (separate_debug_objfile_backlink)
517 {
518 /* We freed the separate debug file, make sure the base objfile
519 doesn't reference it. */
520 struct objfile *child;
521
522 child = separate_debug_objfile_backlink->separate_debug_objfile;
523
524 if (child == this)
525 {
526 /* THIS is the first child. */
527 separate_debug_objfile_backlink->separate_debug_objfile =
528 separate_debug_objfile_link;
529 }
530 else
531 {
532 /* Find THIS in the list. */
533 while (1)
534 {
535 if (child->separate_debug_objfile_link == this)
536 {
537 child->separate_debug_objfile_link =
538 separate_debug_objfile_link;
539 break;
540 }
541 child = child->separate_debug_objfile_link;
542 gdb_assert (child);
543 }
544 }
545 }
546
547 /* Remove any references to this objfile in the global value
548 lists. */
549 preserve_values (this);
550
551 /* It still may reference data modules have associated with the objfile and
552 the symbol file data. */
553 forget_cached_source_info_for_objfile (this);
554
555 breakpoint_free_objfile (this);
556 btrace_free_objfile (this);
557
558 /* First do any symbol file specific actions required when we are
559 finished with a particular symbol file. Note that if the objfile
560 is using reusable symbol information (via mmalloc) then each of
561 these routines is responsible for doing the correct thing, either
562 freeing things which are valid only during this particular gdb
563 execution, or leaving them to be reused during the next one. */
564
565 if (sf != NULL)
566 (*sf->sym_finish) (this);
567
568 /* Discard any data modules have associated with the objfile. The function
569 still may reference obfd. */
570 objfile_free_data (this);
571
572 if (obfd)
573 gdb_bfd_unref (obfd);
574 else
575 delete per_bfd;
576
577 /* Before the symbol table code was redone to make it easier to
578 selectively load and remove information particular to a specific
579 linkage unit, gdb used to do these things whenever the monolithic
580 symbol table was blown away. How much still needs to be done
581 is unknown, but we play it safe for now and keep each action until
582 it is shown to be no longer needed. */
583
584 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
585 for example), so we need to call this here. */
586 clear_pc_function_cache ();
587
588 /* Check to see if the current_source_symtab belongs to this objfile,
589 and if so, call clear_current_source_symtab_and_line. */
590
591 {
592 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
593
594 if (cursal.symtab && cursal.symtab->compunit ()->objfile () == this)
595 clear_current_source_symtab_and_line ();
596 }
597
598 /* Free the obstacks for non-reusable objfiles. */
599 obstack_free (&objfile_obstack, 0);
600
601 /* Rebuild section map next time we need it. */
602 get_objfile_pspace_data (pspace)->section_map_dirty = 1;
603 }
604
605 \f
606 /* A helper function for objfile_relocate1 that relocates a single
607 symbol. */
608
609 static void
610 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
611 const section_offsets &delta)
612 {
613 fixup_symbol_section (sym, objfile);
614
615 /* The RS6000 code from which this was taken skipped
616 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
617 But I'm leaving out that test, on the theory that
618 they can't possibly pass the tests below. */
619 if ((sym->aclass () == LOC_LABEL
620 || sym->aclass () == LOC_STATIC)
621 && sym->section_index () >= 0)
622 sym->set_value_address (sym->value_address ()
623 + delta[sym->section_index ()]);
624 }
625
626 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
627 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
628 Return non-zero iff any change happened. */
629
630 static int
631 objfile_relocate1 (struct objfile *objfile,
632 const section_offsets &new_offsets)
633 {
634 section_offsets delta (objfile->section_offsets.size ());
635
636 int something_changed = 0;
637
638 for (int i = 0; i < objfile->section_offsets.size (); ++i)
639 {
640 delta[i] = new_offsets[i] - objfile->section_offsets[i];
641 if (delta[i] != 0)
642 something_changed = 1;
643 }
644 if (!something_changed)
645 return 0;
646
647 /* OK, get all the symtabs. */
648 {
649 for (compunit_symtab *cust : objfile->compunits ())
650 {
651 for (symtab *s : cust->filetabs ())
652 {
653 struct linetable *l;
654
655 /* First the line table. */
656 l = s->linetable ();
657 if (l)
658 {
659 for (int i = 0; i < l->nitems; ++i)
660 l->item[i].pc += delta[cust->block_line_section ()];
661 }
662 }
663 }
664
665 for (compunit_symtab *cust : objfile->compunits ())
666 {
667 struct blockvector *bv = cust->blockvector ();
668 int block_line_section = cust->block_line_section ();
669
670 if (bv->map () != nullptr)
671 addrmap_relocate (bv->map (), delta[block_line_section]);
672
673 for (block *b : bv->blocks ())
674 {
675 struct symbol *sym;
676 struct mdict_iterator miter;
677
678 b->set_start (b->start () + delta[block_line_section]);
679 b->set_end (b->end () + delta[block_line_section]);
680
681 for (blockrange &r : b->ranges ())
682 {
683 r.set_start (r.start () + delta[block_line_section]);
684 r.set_end (r.end () + delta[block_line_section]);
685 }
686
687 /* We only want to iterate over the local symbols, not any
688 symbols in included symtabs. */
689 ALL_DICT_SYMBOLS (b->multidict (), miter, sym)
690 {
691 relocate_one_symbol (sym, objfile, delta);
692 }
693 }
694 }
695 }
696
697 /* Notify the quick symbol object. */
698 for (const auto &iter : objfile->qf)
699 iter->relocated ();
700
701 /* Relocate isolated symbols. */
702 {
703 struct symbol *iter;
704
705 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
706 relocate_one_symbol (iter, objfile, delta);
707 }
708
709 {
710 int i;
711
712 for (i = 0; i < objfile->section_offsets.size (); ++i)
713 objfile->section_offsets[i] = new_offsets[i];
714 }
715
716 /* Rebuild section map next time we need it. */
717 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
718
719 /* Update the table in exec_ops, used to read memory. */
720 struct obj_section *s;
721 ALL_OBJFILE_OSECTIONS (objfile, s)
722 {
723 int idx = s - objfile->sections;
724
725 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
726 s->addr ());
727 }
728
729 /* Data changed. */
730 return 1;
731 }
732
733 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
734 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
735
736 The number and ordering of sections does differ between the two objfiles.
737 Only their names match. Also the file offsets will differ (objfile being
738 possibly prelinked but separate_debug_objfile is probably not prelinked) but
739 the in-memory absolute address as specified by NEW_OFFSETS must match both
740 files. */
741
742 void
743 objfile_relocate (struct objfile *objfile,
744 const section_offsets &new_offsets)
745 {
746 int changed = 0;
747
748 changed |= objfile_relocate1 (objfile, new_offsets);
749
750 for (::objfile *debug_objfile : objfile->separate_debug_objfiles ())
751 {
752 if (debug_objfile == objfile)
753 continue;
754
755 section_addr_info objfile_addrs
756 = build_section_addr_info_from_objfile (objfile);
757
758 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
759 relative ones must be already created according to debug_objfile. */
760
761 addr_info_make_relative (&objfile_addrs, debug_objfile->obfd);
762
763 gdb_assert (debug_objfile->section_offsets.size ()
764 == gdb_bfd_count_sections (debug_objfile->obfd));
765 section_offsets new_debug_offsets
766 (debug_objfile->section_offsets.size ());
767 relative_addr_info_to_section_offsets (new_debug_offsets, objfile_addrs);
768
769 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
770 }
771
772 /* Relocate breakpoints as necessary, after things are relocated. */
773 if (changed)
774 breakpoint_re_set ();
775 }
776
777 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
778 not touched here.
779 Return non-zero iff any change happened. */
780
781 static int
782 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
783 {
784 section_offsets new_offsets (objfile->section_offsets.size (), slide);
785 return objfile_relocate1 (objfile, new_offsets);
786 }
787
788 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
789 SEPARATE_DEBUG_OBJFILEs. */
790
791 void
792 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
793 {
794 int changed = 0;
795
796 for (::objfile *debug_objfile : objfile->separate_debug_objfiles ())
797 changed |= objfile_rebase1 (debug_objfile, slide);
798
799 /* Relocate breakpoints as necessary, after things are relocated. */
800 if (changed)
801 breakpoint_re_set ();
802 }
803 \f
804 /* Return non-zero if OBJFILE has full symbols. */
805
806 int
807 objfile_has_full_symbols (struct objfile *objfile)
808 {
809 return objfile->compunit_symtabs != NULL;
810 }
811
812 /* Return non-zero if OBJFILE has full or partial symbols, either directly
813 or through a separate debug file. */
814
815 int
816 objfile_has_symbols (struct objfile *objfile)
817 {
818 for (::objfile *o : objfile->separate_debug_objfiles ())
819 if (o->has_partial_symbols () || objfile_has_full_symbols (o))
820 return 1;
821 return 0;
822 }
823
824
825 /* Many places in gdb want to test just to see if we have any partial
826 symbols available. This function returns zero if none are currently
827 available, nonzero otherwise. */
828
829 int
830 have_partial_symbols (void)
831 {
832 for (objfile *ofp : current_program_space->objfiles ())
833 {
834 if (ofp->has_partial_symbols ())
835 return 1;
836 }
837 return 0;
838 }
839
840 /* Many places in gdb want to test just to see if we have any full
841 symbols available. This function returns zero if none are currently
842 available, nonzero otherwise. */
843
844 int
845 have_full_symbols (void)
846 {
847 for (objfile *ofp : current_program_space->objfiles ())
848 {
849 if (objfile_has_full_symbols (ofp))
850 return 1;
851 }
852 return 0;
853 }
854
855
856 /* This operations deletes all objfile entries that represent solibs that
857 weren't explicitly loaded by the user, via e.g., the add-symbol-file
858 command. */
859
860 void
861 objfile_purge_solibs (void)
862 {
863 for (objfile *objf : current_program_space->objfiles_safe ())
864 {
865 /* We assume that the solib package has been purged already, or will
866 be soon. */
867
868 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
869 objf->unlink ();
870 }
871 }
872
873
874 /* Many places in gdb want to test just to see if we have any minimal
875 symbols available. This function returns zero if none are currently
876 available, nonzero otherwise. */
877
878 int
879 have_minimal_symbols (void)
880 {
881 for (objfile *ofp : current_program_space->objfiles ())
882 {
883 if (ofp->per_bfd->minimal_symbol_count > 0)
884 {
885 return 1;
886 }
887 }
888 return 0;
889 }
890
891 /* Qsort comparison function. */
892
893 static bool
894 sort_cmp (const struct obj_section *sect1, const obj_section *sect2)
895 {
896 const CORE_ADDR sect1_addr = sect1->addr ();
897 const CORE_ADDR sect2_addr = sect2->addr ();
898
899 if (sect1_addr < sect2_addr)
900 return true;
901 else if (sect1_addr > sect2_addr)
902 return false;
903 else
904 {
905 /* Sections are at the same address. This could happen if
906 A) we have an objfile and a separate debuginfo.
907 B) we are confused, and have added sections without proper relocation,
908 or something like that. */
909
910 const struct objfile *const objfile1 = sect1->objfile;
911 const struct objfile *const objfile2 = sect2->objfile;
912
913 if (objfile1->separate_debug_objfile == objfile2
914 || objfile2->separate_debug_objfile == objfile1)
915 {
916 /* Case A. The ordering doesn't matter: separate debuginfo files
917 will be filtered out later. */
918
919 return false;
920 }
921
922 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
923 triage. This section could be slow (since we iterate over all
924 objfiles in each call to sort_cmp), but this shouldn't happen
925 very often (GDB is already in a confused state; one hopes this
926 doesn't happen at all). If you discover that significant time is
927 spent in the loops below, do 'set complaints 100' and examine the
928 resulting complaints. */
929 if (objfile1 == objfile2)
930 {
931 /* Both sections came from the same objfile. We are really
932 confused. Sort on sequence order of sections within the
933 objfile. The order of checks is important here, if we find a
934 match on SECT2 first then either SECT2 is before SECT1, or,
935 SECT2 == SECT1, in both cases we should return false. The
936 second case shouldn't occur during normal use, but std::sort
937 does check that '!(a < a)' when compiled in debug mode. */
938
939 const struct obj_section *osect;
940
941 ALL_OBJFILE_OSECTIONS (objfile1, osect)
942 if (osect == sect2)
943 return false;
944 else if (osect == sect1)
945 return true;
946
947 /* We should have found one of the sections before getting here. */
948 gdb_assert_not_reached ("section not found");
949 }
950 else
951 {
952 /* Sort on sequence number of the objfile in the chain. */
953
954 for (objfile *objfile : current_program_space->objfiles ())
955 if (objfile == objfile1)
956 return true;
957 else if (objfile == objfile2)
958 return false;
959
960 /* We should have found one of the objfiles before getting here. */
961 gdb_assert_not_reached ("objfile not found");
962 }
963 }
964
965 /* Unreachable. */
966 gdb_assert_not_reached ("unexpected code path");
967 return false;
968 }
969
970 /* Select "better" obj_section to keep. We prefer the one that came from
971 the real object, rather than the one from separate debuginfo.
972 Most of the time the two sections are exactly identical, but with
973 prelinking the .rel.dyn section in the real object may have different
974 size. */
975
976 static struct obj_section *
977 preferred_obj_section (struct obj_section *a, struct obj_section *b)
978 {
979 gdb_assert (a->addr () == b->addr ());
980 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
981 || (b->objfile->separate_debug_objfile == a->objfile));
982 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
983 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
984
985 if (a->objfile->separate_debug_objfile != NULL)
986 return a;
987 return b;
988 }
989
990 /* Return 1 if SECTION should be inserted into the section map.
991 We want to insert only non-overlay and non-TLS section. */
992
993 static int
994 insert_section_p (const struct bfd *abfd,
995 const struct bfd_section *section)
996 {
997 const bfd_vma lma = bfd_section_lma (section);
998
999 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (section)
1000 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1001 /* This is an overlay section. IN_MEMORY check is needed to avoid
1002 discarding sections from the "system supplied DSO" (aka vdso)
1003 on some Linux systems (e.g. Fedora 11). */
1004 return 0;
1005 if ((bfd_section_flags (section) & SEC_THREAD_LOCAL) != 0)
1006 /* This is a TLS section. */
1007 return 0;
1008
1009 return 1;
1010 }
1011
1012 /* Filter out overlapping sections where one section came from the real
1013 objfile, and the other from a separate debuginfo file.
1014 Return the size of table after redundant sections have been eliminated. */
1015
1016 static int
1017 filter_debuginfo_sections (struct obj_section **map, int map_size)
1018 {
1019 int i, j;
1020
1021 for (i = 0, j = 0; i < map_size - 1; i++)
1022 {
1023 struct obj_section *const sect1 = map[i];
1024 struct obj_section *const sect2 = map[i + 1];
1025 const struct objfile *const objfile1 = sect1->objfile;
1026 const struct objfile *const objfile2 = sect2->objfile;
1027 const CORE_ADDR sect1_addr = sect1->addr ();
1028 const CORE_ADDR sect2_addr = sect2->addr ();
1029
1030 if (sect1_addr == sect2_addr
1031 && (objfile1->separate_debug_objfile == objfile2
1032 || objfile2->separate_debug_objfile == objfile1))
1033 {
1034 map[j++] = preferred_obj_section (sect1, sect2);
1035 ++i;
1036 }
1037 else
1038 map[j++] = sect1;
1039 }
1040
1041 if (i < map_size)
1042 {
1043 gdb_assert (i == map_size - 1);
1044 map[j++] = map[i];
1045 }
1046
1047 /* The map should not have shrunk to less than half the original size. */
1048 gdb_assert (map_size / 2 <= j);
1049
1050 return j;
1051 }
1052
1053 /* Filter out overlapping sections, issuing a warning if any are found.
1054 Overlapping sections could really be overlay sections which we didn't
1055 classify as such in insert_section_p, or we could be dealing with a
1056 corrupt binary. */
1057
1058 static int
1059 filter_overlapping_sections (struct obj_section **map, int map_size)
1060 {
1061 int i, j;
1062
1063 for (i = 0, j = 0; i < map_size - 1; )
1064 {
1065 int k;
1066
1067 map[j++] = map[i];
1068 for (k = i + 1; k < map_size; k++)
1069 {
1070 struct obj_section *const sect1 = map[i];
1071 struct obj_section *const sect2 = map[k];
1072 const CORE_ADDR sect1_addr = sect1->addr ();
1073 const CORE_ADDR sect2_addr = sect2->addr ();
1074 const CORE_ADDR sect1_endaddr = sect1->endaddr ();
1075
1076 gdb_assert (sect1_addr <= sect2_addr);
1077
1078 if (sect1_endaddr <= sect2_addr)
1079 break;
1080 else
1081 {
1082 /* We have an overlap. Report it. */
1083
1084 struct objfile *const objf1 = sect1->objfile;
1085 struct objfile *const objf2 = sect2->objfile;
1086
1087 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1088 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1089
1090 const CORE_ADDR sect2_endaddr = sect2->endaddr ();
1091
1092 struct gdbarch *const gdbarch = objf1->arch ();
1093
1094 complaint (_("unexpected overlap between:\n"
1095 " (A) section `%s' from `%s' [%s, %s)\n"
1096 " (B) section `%s' from `%s' [%s, %s).\n"
1097 "Will ignore section B"),
1098 bfd_section_name (bfds1), objfile_name (objf1),
1099 paddress (gdbarch, sect1_addr),
1100 paddress (gdbarch, sect1_endaddr),
1101 bfd_section_name (bfds2), objfile_name (objf2),
1102 paddress (gdbarch, sect2_addr),
1103 paddress (gdbarch, sect2_endaddr));
1104 }
1105 }
1106 i = k;
1107 }
1108
1109 if (i < map_size)
1110 {
1111 gdb_assert (i == map_size - 1);
1112 map[j++] = map[i];
1113 }
1114
1115 return j;
1116 }
1117
1118
1119 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1120 TLS, overlay and overlapping sections. */
1121
1122 static void
1123 update_section_map (struct program_space *pspace,
1124 struct obj_section ***pmap, int *pmap_size)
1125 {
1126 struct objfile_pspace_info *pspace_info;
1127 int alloc_size, map_size, i;
1128 struct obj_section *s, **map;
1129
1130 pspace_info = get_objfile_pspace_data (pspace);
1131 gdb_assert (pspace_info->section_map_dirty != 0
1132 || pspace_info->new_objfiles_available != 0);
1133
1134 map = *pmap;
1135 xfree (map);
1136
1137 alloc_size = 0;
1138 for (objfile *objfile : pspace->objfiles ())
1139 ALL_OBJFILE_OSECTIONS (objfile, s)
1140 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1141 alloc_size += 1;
1142
1143 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1144 if (alloc_size == 0)
1145 {
1146 *pmap = NULL;
1147 *pmap_size = 0;
1148 return;
1149 }
1150
1151 map = XNEWVEC (struct obj_section *, alloc_size);
1152
1153 i = 0;
1154 for (objfile *objfile : pspace->objfiles ())
1155 ALL_OBJFILE_OSECTIONS (objfile, s)
1156 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1157 map[i++] = s;
1158
1159 std::sort (map, map + alloc_size, sort_cmp);
1160 map_size = filter_debuginfo_sections(map, alloc_size);
1161 map_size = filter_overlapping_sections(map, map_size);
1162
1163 if (map_size < alloc_size)
1164 /* Some sections were eliminated. Trim excess space. */
1165 map = XRESIZEVEC (struct obj_section *, map, map_size);
1166 else
1167 gdb_assert (alloc_size == map_size);
1168
1169 *pmap = map;
1170 *pmap_size = map_size;
1171 }
1172
1173 /* Bsearch comparison function. */
1174
1175 static int
1176 bsearch_cmp (const void *key, const void *elt)
1177 {
1178 const CORE_ADDR pc = *(CORE_ADDR *) key;
1179 const struct obj_section *section = *(const struct obj_section **) elt;
1180
1181 if (pc < section->addr ())
1182 return -1;
1183 if (pc < section->endaddr ())
1184 return 0;
1185 return 1;
1186 }
1187
1188 /* Returns a section whose range includes PC or NULL if none found. */
1189
1190 struct obj_section *
1191 find_pc_section (CORE_ADDR pc)
1192 {
1193 struct objfile_pspace_info *pspace_info;
1194 struct obj_section *s, **sp;
1195
1196 /* Check for mapped overlay section first. */
1197 s = find_pc_mapped_section (pc);
1198 if (s)
1199 return s;
1200
1201 pspace_info = get_objfile_pspace_data (current_program_space);
1202 if (pspace_info->section_map_dirty
1203 || (pspace_info->new_objfiles_available
1204 && !pspace_info->inhibit_updates))
1205 {
1206 update_section_map (current_program_space,
1207 &pspace_info->sections,
1208 &pspace_info->num_sections);
1209
1210 /* Don't need updates to section map until objfiles are added,
1211 removed or relocated. */
1212 pspace_info->new_objfiles_available = 0;
1213 pspace_info->section_map_dirty = 0;
1214 }
1215
1216 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1217 bsearch be non-NULL. */
1218 if (pspace_info->sections == NULL)
1219 {
1220 gdb_assert (pspace_info->num_sections == 0);
1221 return NULL;
1222 }
1223
1224 sp = (struct obj_section **) bsearch (&pc,
1225 pspace_info->sections,
1226 pspace_info->num_sections,
1227 sizeof (*pspace_info->sections),
1228 bsearch_cmp);
1229 if (sp != NULL)
1230 return *sp;
1231 return NULL;
1232 }
1233
1234
1235 /* Return non-zero if PC is in a section called NAME. */
1236
1237 int
1238 pc_in_section (CORE_ADDR pc, const char *name)
1239 {
1240 struct obj_section *s;
1241 int retval = 0;
1242
1243 s = find_pc_section (pc);
1244
1245 retval = (s != NULL
1246 && s->the_bfd_section->name != NULL
1247 && strcmp (s->the_bfd_section->name, name) == 0);
1248 return (retval);
1249 }
1250 \f
1251
1252 /* Set section_map_dirty so section map will be rebuilt next time it
1253 is used. Called by reread_symbols. */
1254
1255 void
1256 objfiles_changed (void)
1257 {
1258 /* Rebuild section map next time we need it. */
1259 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1260 }
1261
1262 /* See comments in objfiles.h. */
1263
1264 scoped_restore_tmpl<int>
1265 inhibit_section_map_updates (struct program_space *pspace)
1266 {
1267 return scoped_restore_tmpl<int>
1268 (&get_objfile_pspace_data (pspace)->inhibit_updates, 1);
1269 }
1270
1271 /* See objfiles.h. */
1272
1273 bool
1274 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1275 {
1276 struct obj_section *osect;
1277
1278 if (objfile == NULL)
1279 return false;
1280
1281 ALL_OBJFILE_OSECTIONS (objfile, osect)
1282 {
1283 if (section_is_overlay (osect) && !section_is_mapped (osect))
1284 continue;
1285
1286 if (osect->addr () <= addr && addr < osect->endaddr ())
1287 return true;
1288 }
1289 return false;
1290 }
1291
1292 /* See objfiles.h. */
1293
1294 bool
1295 shared_objfile_contains_address_p (struct program_space *pspace,
1296 CORE_ADDR address)
1297 {
1298 for (objfile *objfile : pspace->objfiles ())
1299 {
1300 if ((objfile->flags & OBJF_SHARED) != 0
1301 && is_addr_in_objfile (address, objfile))
1302 return true;
1303 }
1304
1305 return false;
1306 }
1307
1308 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1309 gdbarch method. It is equivalent to use the objfiles iterable,
1310 searching the objfiles in the order they are stored internally,
1311 ignoring CURRENT_OBJFILE.
1312
1313 On most platforms, it should be close enough to doing the best
1314 we can without some knowledge specific to the architecture. */
1315
1316 void
1317 default_iterate_over_objfiles_in_search_order
1318 (struct gdbarch *gdbarch,
1319 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1320 void *cb_data, struct objfile *current_objfile)
1321 {
1322 int stop = 0;
1323
1324 for (objfile *objfile : current_program_space->objfiles ())
1325 {
1326 stop = cb (objfile, cb_data);
1327 if (stop)
1328 return;
1329 }
1330 }
1331
1332 /* See objfiles.h. */
1333
1334 const char *
1335 objfile_name (const struct objfile *objfile)
1336 {
1337 if (objfile->obfd != NULL)
1338 return bfd_get_filename (objfile->obfd);
1339
1340 return objfile->original_name;
1341 }
1342
1343 /* See objfiles.h. */
1344
1345 const char *
1346 objfile_filename (const struct objfile *objfile)
1347 {
1348 if (objfile->obfd != NULL)
1349 return bfd_get_filename (objfile->obfd);
1350
1351 return NULL;
1352 }
1353
1354 /* See objfiles.h. */
1355
1356 const char *
1357 objfile_debug_name (const struct objfile *objfile)
1358 {
1359 return lbasename (objfile->original_name);
1360 }
1361
1362 /* See objfiles.h. */
1363
1364 const char *
1365 objfile_flavour_name (struct objfile *objfile)
1366 {
1367 if (objfile->obfd != NULL)
1368 return bfd_flavour_name (bfd_get_flavour (objfile->obfd));
1369 return NULL;
1370 }
1371
1372 /* See objfiles.h. */
1373
1374 struct type *
1375 objfile_int_type (struct objfile *of, int size_in_bytes, bool unsigned_p)
1376 {
1377 struct type *int_type;
1378
1379 /* Helper macro to examine the various builtin types. */
1380 #define TRY_TYPE(F) \
1381 int_type = (unsigned_p \
1382 ? objfile_type (of)->builtin_unsigned_ ## F \
1383 : objfile_type (of)->builtin_ ## F); \
1384 if (int_type != NULL && TYPE_LENGTH (int_type) == size_in_bytes) \
1385 return int_type
1386
1387 TRY_TYPE (char);
1388 TRY_TYPE (short);
1389 TRY_TYPE (int);
1390 TRY_TYPE (long);
1391 TRY_TYPE (long_long);
1392
1393 #undef TRY_TYPE
1394
1395 gdb_assert_not_reached ("unable to find suitable integer type");
1396 }