Add a target for branch trace recording.
[binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include "gdb_assert.h"
37 #include <sys/types.h>
38 #include "gdb_stat.h"
39 #include <fcntl.h>
40 #include "gdb_obstack.h"
41 #include "gdb_string.h"
42 #include "hashtab.h"
43
44 #include "breakpoint.h"
45 #include "block.h"
46 #include "dictionary.h"
47 #include "source.h"
48 #include "addrmap.h"
49 #include "arch-utils.h"
50 #include "exec.h"
51 #include "observer.h"
52 #include "complaints.h"
53 #include "psymtab.h"
54 #include "solist.h"
55 #include "gdb_bfd.h"
56 #include "btrace.h"
57
58 /* Keep a registry of per-objfile data-pointers required by other GDB
59 modules. */
60
61 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
62
63 /* Externally visible variables that are owned by this module.
64 See declarations in objfile.h for more info. */
65
66 struct objfile *rt_common_objfile; /* For runtime common symbols */
67
68 struct objfile_pspace_info
69 {
70 int objfiles_changed_p;
71 struct obj_section **sections;
72 int num_sections;
73 };
74
75 /* Per-program-space data key. */
76 static const struct program_space_data *objfiles_pspace_data;
77
78 static void
79 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
80 {
81 struct objfile_pspace_info *info;
82
83 info = program_space_data (pspace, objfiles_pspace_data);
84 if (info != NULL)
85 {
86 xfree (info->sections);
87 xfree (info);
88 }
89 }
90
91 /* Get the current svr4 data. If none is found yet, add it now. This
92 function always returns a valid object. */
93
94 static struct objfile_pspace_info *
95 get_objfile_pspace_data (struct program_space *pspace)
96 {
97 struct objfile_pspace_info *info;
98
99 info = program_space_data (pspace, objfiles_pspace_data);
100 if (info == NULL)
101 {
102 info = XZALLOC (struct objfile_pspace_info);
103 set_program_space_data (pspace, objfiles_pspace_data, info);
104 }
105
106 return info;
107 }
108
109 \f
110
111 /* Per-BFD data key. */
112
113 static const struct bfd_data *objfiles_bfd_data;
114
115 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
116 NULL, and it already has a per-BFD storage object, use that.
117 Otherwise, allocate a new per-BFD storage object. If ABFD is not
118 NULL, the object is allocated on the BFD; otherwise it is allocated
119 on OBJFILE's obstack. Note that it is not safe to call this
120 multiple times for a given OBJFILE -- it can only be called when
121 allocating or re-initializing OBJFILE. */
122
123 static struct objfile_per_bfd_storage *
124 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
125 {
126 struct objfile_per_bfd_storage *storage = NULL;
127
128 if (abfd != NULL)
129 storage = bfd_data (abfd, objfiles_bfd_data);
130
131 if (storage == NULL)
132 {
133 if (abfd != NULL)
134 {
135 storage = bfd_zalloc (abfd, sizeof (struct objfile_per_bfd_storage));
136 set_bfd_data (abfd, objfiles_bfd_data, storage);
137 }
138 else
139 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
140 struct objfile_per_bfd_storage);
141
142 obstack_init (&storage->storage_obstack);
143 storage->filename_cache = bcache_xmalloc (NULL, NULL);
144 storage->macro_cache = bcache_xmalloc (NULL, NULL);
145 }
146
147 return storage;
148 }
149
150 /* Free STORAGE. */
151
152 static void
153 free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage)
154 {
155 bcache_xfree (storage->filename_cache);
156 bcache_xfree (storage->macro_cache);
157 obstack_free (&storage->storage_obstack, 0);
158 }
159
160 /* A wrapper for free_objfile_per_bfd_storage that can be passed as a
161 cleanup function to the BFD registry. */
162
163 static void
164 objfile_bfd_data_free (struct bfd *unused, void *d)
165 {
166 free_objfile_per_bfd_storage (d);
167 }
168
169 /* See objfiles.h. */
170
171 void
172 set_objfile_per_bfd (struct objfile *objfile)
173 {
174 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
175 }
176
177 \f
178
179 /* Called via bfd_map_over_sections to build up the section table that
180 the objfile references. The objfile contains pointers to the start
181 of the table (objfile->sections) and to the first location after
182 the end of the table (objfile->sections_end). */
183
184 static void
185 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
186 void *objfilep)
187 {
188 struct objfile *objfile = (struct objfile *) objfilep;
189 struct obj_section section;
190 flagword aflag;
191
192 aflag = bfd_get_section_flags (abfd, asect);
193 if (!(aflag & SEC_ALLOC))
194 return;
195 if (bfd_section_size (abfd, asect) == 0)
196 return;
197
198 section.objfile = objfile;
199 section.the_bfd_section = asect;
200 section.ovly_mapped = 0;
201 obstack_grow (&objfile->objfile_obstack,
202 (char *) &section, sizeof (section));
203 objfile->sections_end
204 = (struct obj_section *) (((size_t) objfile->sections_end) + 1);
205 }
206
207 /* Builds a section table for OBJFILE.
208
209 Note that while we are building the table, which goes into the
210 objfile obstack, we hijack the sections_end pointer to instead hold
211 a count of the number of sections. When bfd_map_over_sections
212 returns, this count is used to compute the pointer to the end of
213 the sections table, which then overwrites the count.
214
215 Also note that the OFFSET and OVLY_MAPPED in each table entry
216 are initialized to zero.
217
218 Also note that if anything else writes to the objfile obstack while
219 we are building the table, we're pretty much hosed. */
220
221 void
222 build_objfile_section_table (struct objfile *objfile)
223 {
224 objfile->sections_end = 0;
225 bfd_map_over_sections (objfile->obfd,
226 add_to_objfile_sections, (void *) objfile);
227 objfile->sections = obstack_finish (&objfile->objfile_obstack);
228 objfile->sections_end = objfile->sections + (size_t) objfile->sections_end;
229 }
230
231 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
232 allocate a new objfile struct, fill it in as best we can, link it
233 into the list of all known objfiles, and return a pointer to the
234 new objfile struct.
235
236 The FLAGS word contains various bits (OBJF_*) that can be taken as
237 requests for specific operations. Other bits like OBJF_SHARED are
238 simply copied through to the new objfile flags member. */
239
240 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
241 by jv-lang.c, to create an artificial objfile used to hold
242 information about dynamically-loaded Java classes. Unfortunately,
243 that branch of this function doesn't get tested very frequently, so
244 it's prone to breakage. (E.g. at one time the name was set to NULL
245 in that situation, which broke a loop over all names in the dynamic
246 library loader.) If you change this function, please try to leave
247 things in a consistent state even if abfd is NULL. */
248
249 struct objfile *
250 allocate_objfile (bfd *abfd, int flags)
251 {
252 struct objfile *objfile;
253
254 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
255 objfile->psymbol_cache = psymbol_bcache_init ();
256 /* We could use obstack_specify_allocation here instead, but
257 gdb_obstack.h specifies the alloc/dealloc functions. */
258 obstack_init (&objfile->objfile_obstack);
259 terminate_minimal_symbol_table (objfile);
260
261 objfile_alloc_data (objfile);
262
263 /* Update the per-objfile information that comes from the bfd, ensuring
264 that any data that is reference is saved in the per-objfile data
265 region. */
266
267 objfile->obfd = abfd;
268 gdb_bfd_ref (abfd);
269 if (abfd != NULL)
270 {
271 /* Look up the gdbarch associated with the BFD. */
272 objfile->gdbarch = gdbarch_from_bfd (abfd);
273
274 objfile->name = bfd_get_filename (abfd);
275 objfile->mtime = bfd_get_mtime (abfd);
276
277 /* Build section table. */
278 build_objfile_section_table (objfile);
279 }
280 else
281 {
282 objfile->name = "<<anonymous objfile>>";
283 }
284
285 objfile->per_bfd = get_objfile_bfd_data (objfile, abfd);
286 objfile->pspace = current_program_space;
287
288 /* Initialize the section indexes for this objfile, so that we can
289 later detect if they are used w/o being properly assigned to. */
290
291 objfile->sect_index_text = -1;
292 objfile->sect_index_data = -1;
293 objfile->sect_index_bss = -1;
294 objfile->sect_index_rodata = -1;
295
296 /* Add this file onto the tail of the linked list of other such files. */
297
298 objfile->next = NULL;
299 if (object_files == NULL)
300 object_files = objfile;
301 else
302 {
303 struct objfile *last_one;
304
305 for (last_one = object_files;
306 last_one->next;
307 last_one = last_one->next);
308 last_one->next = objfile;
309 }
310
311 /* Save passed in flag bits. */
312 objfile->flags |= flags;
313
314 /* Rebuild section map next time we need it. */
315 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
316
317 return objfile;
318 }
319
320 /* Retrieve the gdbarch associated with OBJFILE. */
321 struct gdbarch *
322 get_objfile_arch (struct objfile *objfile)
323 {
324 return objfile->gdbarch;
325 }
326
327 /* If there is a valid and known entry point, function fills *ENTRY_P with it
328 and returns non-zero; otherwise it returns zero. */
329
330 int
331 entry_point_address_query (CORE_ADDR *entry_p)
332 {
333 if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
334 return 0;
335
336 *entry_p = symfile_objfile->ei.entry_point;
337
338 return 1;
339 }
340
341 /* Get current entry point address. Call error if it is not known. */
342
343 CORE_ADDR
344 entry_point_address (void)
345 {
346 CORE_ADDR retval;
347
348 if (!entry_point_address_query (&retval))
349 error (_("Entry point address is not known."));
350
351 return retval;
352 }
353
354 /* Iterator on PARENT and every separate debug objfile of PARENT.
355 The usage pattern is:
356 for (objfile = parent;
357 objfile;
358 objfile = objfile_separate_debug_iterate (parent, objfile))
359 ...
360 */
361
362 struct objfile *
363 objfile_separate_debug_iterate (const struct objfile *parent,
364 const struct objfile *objfile)
365 {
366 struct objfile *res;
367
368 /* If any, return the first child. */
369 res = objfile->separate_debug_objfile;
370 if (res)
371 return res;
372
373 /* Common case where there is no separate debug objfile. */
374 if (objfile == parent)
375 return NULL;
376
377 /* Return the brother if any. Note that we don't iterate on brothers of
378 the parents. */
379 res = objfile->separate_debug_objfile_link;
380 if (res)
381 return res;
382
383 for (res = objfile->separate_debug_objfile_backlink;
384 res != parent;
385 res = res->separate_debug_objfile_backlink)
386 {
387 gdb_assert (res != NULL);
388 if (res->separate_debug_objfile_link)
389 return res->separate_debug_objfile_link;
390 }
391 return NULL;
392 }
393
394 /* Put one object file before a specified on in the global list.
395 This can be used to make sure an object file is destroyed before
396 another when using ALL_OBJFILES_SAFE to free all objfiles. */
397 void
398 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
399 {
400 struct objfile **objp;
401
402 unlink_objfile (objfile);
403
404 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
405 {
406 if (*objp == before_this)
407 {
408 objfile->next = *objp;
409 *objp = objfile;
410 return;
411 }
412 }
413
414 internal_error (__FILE__, __LINE__,
415 _("put_objfile_before: before objfile not in list"));
416 }
417
418 /* Put OBJFILE at the front of the list. */
419
420 void
421 objfile_to_front (struct objfile *objfile)
422 {
423 struct objfile **objp;
424 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
425 {
426 if (*objp == objfile)
427 {
428 /* Unhook it from where it is. */
429 *objp = objfile->next;
430 /* Put it in the front. */
431 objfile->next = object_files;
432 object_files = objfile;
433 break;
434 }
435 }
436 }
437
438 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
439 list.
440
441 It is not a bug, or error, to call this function if OBJFILE is not known
442 to be in the current list. This is done in the case of mapped objfiles,
443 for example, just to ensure that the mapped objfile doesn't appear twice
444 in the list. Since the list is threaded, linking in a mapped objfile
445 twice would create a circular list.
446
447 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
448 unlinking it, just to ensure that we have completely severed any linkages
449 between the OBJFILE and the list. */
450
451 void
452 unlink_objfile (struct objfile *objfile)
453 {
454 struct objfile **objpp;
455
456 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
457 {
458 if (*objpp == objfile)
459 {
460 *objpp = (*objpp)->next;
461 objfile->next = NULL;
462 return;
463 }
464 }
465
466 internal_error (__FILE__, __LINE__,
467 _("unlink_objfile: objfile already unlinked"));
468 }
469
470 /* Add OBJFILE as a separate debug objfile of PARENT. */
471
472 void
473 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
474 {
475 gdb_assert (objfile && parent);
476
477 /* Must not be already in a list. */
478 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
479 gdb_assert (objfile->separate_debug_objfile_link == NULL);
480 gdb_assert (objfile->separate_debug_objfile == NULL);
481 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
482 gdb_assert (parent->separate_debug_objfile_link == NULL);
483
484 objfile->separate_debug_objfile_backlink = parent;
485 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
486 parent->separate_debug_objfile = objfile;
487
488 /* Put the separate debug object before the normal one, this is so that
489 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
490 put_objfile_before (objfile, parent);
491 }
492
493 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
494 itself. */
495
496 void
497 free_objfile_separate_debug (struct objfile *objfile)
498 {
499 struct objfile *child;
500
501 for (child = objfile->separate_debug_objfile; child;)
502 {
503 struct objfile *next_child = child->separate_debug_objfile_link;
504 free_objfile (child);
505 child = next_child;
506 }
507 }
508
509 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
510 that as much as possible is allocated on the objfile_obstack
511 so that the memory can be efficiently freed.
512
513 Things which we do NOT free because they are not in malloc'd memory
514 or not in memory specific to the objfile include:
515
516 objfile -> sf
517
518 FIXME: If the objfile is using reusable symbol information (via mmalloc),
519 then we need to take into account the fact that more than one process
520 may be using the symbol information at the same time (when mmalloc is
521 extended to support cooperative locking). When more than one process
522 is using the mapped symbol info, we need to be more careful about when
523 we free objects in the reusable area. */
524
525 void
526 free_objfile (struct objfile *objfile)
527 {
528 /* Free all separate debug objfiles. */
529 free_objfile_separate_debug (objfile);
530
531 if (objfile->separate_debug_objfile_backlink)
532 {
533 /* We freed the separate debug file, make sure the base objfile
534 doesn't reference it. */
535 struct objfile *child;
536
537 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
538
539 if (child == objfile)
540 {
541 /* OBJFILE is the first child. */
542 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
543 objfile->separate_debug_objfile_link;
544 }
545 else
546 {
547 /* Find OBJFILE in the list. */
548 while (1)
549 {
550 if (child->separate_debug_objfile_link == objfile)
551 {
552 child->separate_debug_objfile_link =
553 objfile->separate_debug_objfile_link;
554 break;
555 }
556 child = child->separate_debug_objfile_link;
557 gdb_assert (child);
558 }
559 }
560 }
561
562 /* Remove any references to this objfile in the global value
563 lists. */
564 preserve_values (objfile);
565
566 /* It still may reference data modules have associated with the objfile and
567 the symbol file data. */
568 forget_cached_source_info_for_objfile (objfile);
569
570 breakpoint_free_objfile (objfile);
571 btrace_free_objfile (objfile);
572
573 /* First do any symbol file specific actions required when we are
574 finished with a particular symbol file. Note that if the objfile
575 is using reusable symbol information (via mmalloc) then each of
576 these routines is responsible for doing the correct thing, either
577 freeing things which are valid only during this particular gdb
578 execution, or leaving them to be reused during the next one. */
579
580 if (objfile->sf != NULL)
581 {
582 (*objfile->sf->sym_finish) (objfile);
583 }
584
585 /* Discard any data modules have associated with the objfile. The function
586 still may reference objfile->obfd. */
587 objfile_free_data (objfile);
588
589 if (objfile->obfd)
590 gdb_bfd_unref (objfile->obfd);
591 else
592 free_objfile_per_bfd_storage (objfile->per_bfd);
593
594 /* Remove it from the chain of all objfiles. */
595
596 unlink_objfile (objfile);
597
598 if (objfile == symfile_objfile)
599 symfile_objfile = NULL;
600
601 if (objfile == rt_common_objfile)
602 rt_common_objfile = NULL;
603
604 /* Before the symbol table code was redone to make it easier to
605 selectively load and remove information particular to a specific
606 linkage unit, gdb used to do these things whenever the monolithic
607 symbol table was blown away. How much still needs to be done
608 is unknown, but we play it safe for now and keep each action until
609 it is shown to be no longer needed. */
610
611 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
612 for example), so we need to call this here. */
613 clear_pc_function_cache ();
614
615 /* Clear globals which might have pointed into a removed objfile.
616 FIXME: It's not clear which of these are supposed to persist
617 between expressions and which ought to be reset each time. */
618 expression_context_block = NULL;
619 innermost_block = NULL;
620
621 /* Check to see if the current_source_symtab belongs to this objfile,
622 and if so, call clear_current_source_symtab_and_line. */
623
624 {
625 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
626
627 if (cursal.symtab && cursal.symtab->objfile == objfile)
628 clear_current_source_symtab_and_line ();
629 }
630
631 /* The last thing we do is free the objfile struct itself. */
632
633 if (objfile->global_psymbols.list)
634 xfree (objfile->global_psymbols.list);
635 if (objfile->static_psymbols.list)
636 xfree (objfile->static_psymbols.list);
637 /* Free the obstacks for non-reusable objfiles. */
638 psymbol_bcache_free (objfile->psymbol_cache);
639 if (objfile->demangled_names_hash)
640 htab_delete (objfile->demangled_names_hash);
641 obstack_free (&objfile->objfile_obstack, 0);
642
643 /* Rebuild section map next time we need it. */
644 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
645
646 xfree (objfile);
647 }
648
649 static void
650 do_free_objfile_cleanup (void *obj)
651 {
652 free_objfile (obj);
653 }
654
655 struct cleanup *
656 make_cleanup_free_objfile (struct objfile *obj)
657 {
658 return make_cleanup (do_free_objfile_cleanup, obj);
659 }
660
661 /* Free all the object files at once and clean up their users. */
662
663 void
664 free_all_objfiles (void)
665 {
666 struct objfile *objfile, *temp;
667 struct so_list *so;
668
669 /* Any objfile referencewould become stale. */
670 for (so = master_so_list (); so; so = so->next)
671 gdb_assert (so->objfile == NULL);
672
673 ALL_OBJFILES_SAFE (objfile, temp)
674 {
675 free_objfile (objfile);
676 }
677 clear_symtab_users (0);
678 }
679 \f
680 /* A helper function for objfile_relocate1 that relocates a single
681 symbol. */
682
683 static void
684 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
685 struct section_offsets *delta)
686 {
687 fixup_symbol_section (sym, objfile);
688
689 /* The RS6000 code from which this was taken skipped
690 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
691 But I'm leaving out that test, on the theory that
692 they can't possibly pass the tests below. */
693 if ((SYMBOL_CLASS (sym) == LOC_LABEL
694 || SYMBOL_CLASS (sym) == LOC_STATIC)
695 && SYMBOL_SECTION (sym) >= 0)
696 {
697 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
698 }
699 }
700
701 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
702 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
703 Return non-zero iff any change happened. */
704
705 static int
706 objfile_relocate1 (struct objfile *objfile,
707 struct section_offsets *new_offsets)
708 {
709 struct obj_section *s;
710 struct section_offsets *delta =
711 ((struct section_offsets *)
712 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
713
714 int i;
715 int something_changed = 0;
716
717 for (i = 0; i < objfile->num_sections; ++i)
718 {
719 delta->offsets[i] =
720 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
721 if (ANOFFSET (delta, i) != 0)
722 something_changed = 1;
723 }
724 if (!something_changed)
725 return 0;
726
727 /* OK, get all the symtabs. */
728 {
729 struct symtab *s;
730
731 ALL_OBJFILE_SYMTABS (objfile, s)
732 {
733 struct linetable *l;
734 struct blockvector *bv;
735 int i;
736
737 /* First the line table. */
738 l = LINETABLE (s);
739 if (l)
740 {
741 for (i = 0; i < l->nitems; ++i)
742 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
743 }
744
745 /* Don't relocate a shared blockvector more than once. */
746 if (!s->primary)
747 continue;
748
749 bv = BLOCKVECTOR (s);
750 if (BLOCKVECTOR_MAP (bv))
751 addrmap_relocate (BLOCKVECTOR_MAP (bv),
752 ANOFFSET (delta, s->block_line_section));
753
754 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
755 {
756 struct block *b;
757 struct symbol *sym;
758 struct dict_iterator iter;
759
760 b = BLOCKVECTOR_BLOCK (bv, i);
761 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
762 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
763
764 /* We only want to iterate over the local symbols, not any
765 symbols in included symtabs. */
766 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym)
767 {
768 relocate_one_symbol (sym, objfile, delta);
769 }
770 }
771 }
772 }
773
774 /* Relocate isolated symbols. */
775 {
776 struct symbol *iter;
777
778 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
779 relocate_one_symbol (iter, objfile, delta);
780 }
781
782 if (objfile->psymtabs_addrmap)
783 addrmap_relocate (objfile->psymtabs_addrmap,
784 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
785
786 if (objfile->sf)
787 objfile->sf->qf->relocate (objfile, new_offsets, delta);
788
789 {
790 struct minimal_symbol *msym;
791
792 ALL_OBJFILE_MSYMBOLS (objfile, msym)
793 if (SYMBOL_SECTION (msym) >= 0)
794 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
795 }
796 /* Relocating different sections by different amounts may cause the symbols
797 to be out of order. */
798 msymbols_sort (objfile);
799
800 if (objfile->ei.entry_point_p)
801 {
802 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
803 only as a fallback. */
804 struct obj_section *s;
805 s = find_pc_section (objfile->ei.entry_point);
806 if (s)
807 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
808 else
809 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
810 }
811
812 {
813 int i;
814
815 for (i = 0; i < objfile->num_sections; ++i)
816 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
817 }
818
819 /* Rebuild section map next time we need it. */
820 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
821
822 /* Update the table in exec_ops, used to read memory. */
823 ALL_OBJFILE_OSECTIONS (objfile, s)
824 {
825 int idx = s->the_bfd_section->index;
826
827 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
828 obj_section_addr (s));
829 }
830
831 /* Relocating probes. */
832 if (objfile->sf && objfile->sf->sym_probe_fns)
833 objfile->sf->sym_probe_fns->sym_relocate_probe (objfile,
834 new_offsets, delta);
835
836 /* Data changed. */
837 return 1;
838 }
839
840 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
841 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
842
843 The number and ordering of sections does differ between the two objfiles.
844 Only their names match. Also the file offsets will differ (objfile being
845 possibly prelinked but separate_debug_objfile is probably not prelinked) but
846 the in-memory absolute address as specified by NEW_OFFSETS must match both
847 files. */
848
849 void
850 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
851 {
852 struct objfile *debug_objfile;
853 int changed = 0;
854
855 changed |= objfile_relocate1 (objfile, new_offsets);
856
857 for (debug_objfile = objfile->separate_debug_objfile;
858 debug_objfile;
859 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
860 {
861 struct section_addr_info *objfile_addrs;
862 struct section_offsets *new_debug_offsets;
863 struct cleanup *my_cleanups;
864
865 objfile_addrs = build_section_addr_info_from_objfile (objfile);
866 my_cleanups = make_cleanup (xfree, objfile_addrs);
867
868 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
869 relative ones must be already created according to debug_objfile. */
870
871 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
872
873 gdb_assert (debug_objfile->num_sections
874 == bfd_count_sections (debug_objfile->obfd));
875 new_debug_offsets =
876 xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
877 make_cleanup (xfree, new_debug_offsets);
878 relative_addr_info_to_section_offsets (new_debug_offsets,
879 debug_objfile->num_sections,
880 objfile_addrs);
881
882 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
883
884 do_cleanups (my_cleanups);
885 }
886
887 /* Relocate breakpoints as necessary, after things are relocated. */
888 if (changed)
889 breakpoint_re_set ();
890 }
891
892 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
893 not touched here.
894 Return non-zero iff any change happened. */
895
896 static int
897 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
898 {
899 struct section_offsets *new_offsets =
900 ((struct section_offsets *)
901 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
902 int i;
903
904 for (i = 0; i < objfile->num_sections; ++i)
905 new_offsets->offsets[i] = slide;
906
907 return objfile_relocate1 (objfile, new_offsets);
908 }
909
910 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
911 SEPARATE_DEBUG_OBJFILEs. */
912
913 void
914 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
915 {
916 struct objfile *debug_objfile;
917 int changed = 0;
918
919 changed |= objfile_rebase1 (objfile, slide);
920
921 for (debug_objfile = objfile->separate_debug_objfile;
922 debug_objfile;
923 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
924 changed |= objfile_rebase1 (debug_objfile, slide);
925
926 /* Relocate breakpoints as necessary, after things are relocated. */
927 if (changed)
928 breakpoint_re_set ();
929 }
930 \f
931 /* Return non-zero if OBJFILE has partial symbols. */
932
933 int
934 objfile_has_partial_symbols (struct objfile *objfile)
935 {
936 if (!objfile->sf)
937 return 0;
938
939 /* If we have not read psymbols, but we have a function capable of reading
940 them, then that is an indication that they are in fact available. Without
941 this function the symbols may have been already read in but they also may
942 not be present in this objfile. */
943 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
944 && objfile->sf->sym_read_psymbols != NULL)
945 return 1;
946
947 return objfile->sf->qf->has_symbols (objfile);
948 }
949
950 /* Return non-zero if OBJFILE has full symbols. */
951
952 int
953 objfile_has_full_symbols (struct objfile *objfile)
954 {
955 return objfile->symtabs != NULL;
956 }
957
958 /* Return non-zero if OBJFILE has full or partial symbols, either directly
959 or through a separate debug file. */
960
961 int
962 objfile_has_symbols (struct objfile *objfile)
963 {
964 struct objfile *o;
965
966 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
967 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
968 return 1;
969 return 0;
970 }
971
972
973 /* Many places in gdb want to test just to see if we have any partial
974 symbols available. This function returns zero if none are currently
975 available, nonzero otherwise. */
976
977 int
978 have_partial_symbols (void)
979 {
980 struct objfile *ofp;
981
982 ALL_OBJFILES (ofp)
983 {
984 if (objfile_has_partial_symbols (ofp))
985 return 1;
986 }
987 return 0;
988 }
989
990 /* Many places in gdb want to test just to see if we have any full
991 symbols available. This function returns zero if none are currently
992 available, nonzero otherwise. */
993
994 int
995 have_full_symbols (void)
996 {
997 struct objfile *ofp;
998
999 ALL_OBJFILES (ofp)
1000 {
1001 if (objfile_has_full_symbols (ofp))
1002 return 1;
1003 }
1004 return 0;
1005 }
1006
1007
1008 /* This operations deletes all objfile entries that represent solibs that
1009 weren't explicitly loaded by the user, via e.g., the add-symbol-file
1010 command. */
1011
1012 void
1013 objfile_purge_solibs (void)
1014 {
1015 struct objfile *objf;
1016 struct objfile *temp;
1017
1018 ALL_OBJFILES_SAFE (objf, temp)
1019 {
1020 /* We assume that the solib package has been purged already, or will
1021 be soon. */
1022
1023 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1024 free_objfile (objf);
1025 }
1026 }
1027
1028
1029 /* Many places in gdb want to test just to see if we have any minimal
1030 symbols available. This function returns zero if none are currently
1031 available, nonzero otherwise. */
1032
1033 int
1034 have_minimal_symbols (void)
1035 {
1036 struct objfile *ofp;
1037
1038 ALL_OBJFILES (ofp)
1039 {
1040 if (ofp->minimal_symbol_count > 0)
1041 {
1042 return 1;
1043 }
1044 }
1045 return 0;
1046 }
1047
1048 /* Qsort comparison function. */
1049
1050 static int
1051 qsort_cmp (const void *a, const void *b)
1052 {
1053 const struct obj_section *sect1 = *(const struct obj_section **) a;
1054 const struct obj_section *sect2 = *(const struct obj_section **) b;
1055 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1056 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1057
1058 if (sect1_addr < sect2_addr)
1059 return -1;
1060 else if (sect1_addr > sect2_addr)
1061 return 1;
1062 else
1063 {
1064 /* Sections are at the same address. This could happen if
1065 A) we have an objfile and a separate debuginfo.
1066 B) we are confused, and have added sections without proper relocation,
1067 or something like that. */
1068
1069 const struct objfile *const objfile1 = sect1->objfile;
1070 const struct objfile *const objfile2 = sect2->objfile;
1071
1072 if (objfile1->separate_debug_objfile == objfile2
1073 || objfile2->separate_debug_objfile == objfile1)
1074 {
1075 /* Case A. The ordering doesn't matter: separate debuginfo files
1076 will be filtered out later. */
1077
1078 return 0;
1079 }
1080
1081 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1082 triage. This section could be slow (since we iterate over all
1083 objfiles in each call to qsort_cmp), but this shouldn't happen
1084 very often (GDB is already in a confused state; one hopes this
1085 doesn't happen at all). If you discover that significant time is
1086 spent in the loops below, do 'set complaints 100' and examine the
1087 resulting complaints. */
1088
1089 if (objfile1 == objfile2)
1090 {
1091 /* Both sections came from the same objfile. We are really confused.
1092 Sort on sequence order of sections within the objfile. */
1093
1094 const struct obj_section *osect;
1095
1096 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1097 if (osect == sect1)
1098 return -1;
1099 else if (osect == sect2)
1100 return 1;
1101
1102 /* We should have found one of the sections before getting here. */
1103 gdb_assert_not_reached ("section not found");
1104 }
1105 else
1106 {
1107 /* Sort on sequence number of the objfile in the chain. */
1108
1109 const struct objfile *objfile;
1110
1111 ALL_OBJFILES (objfile)
1112 if (objfile == objfile1)
1113 return -1;
1114 else if (objfile == objfile2)
1115 return 1;
1116
1117 /* We should have found one of the objfiles before getting here. */
1118 gdb_assert_not_reached ("objfile not found");
1119 }
1120 }
1121
1122 /* Unreachable. */
1123 gdb_assert_not_reached ("unexpected code path");
1124 return 0;
1125 }
1126
1127 /* Select "better" obj_section to keep. We prefer the one that came from
1128 the real object, rather than the one from separate debuginfo.
1129 Most of the time the two sections are exactly identical, but with
1130 prelinking the .rel.dyn section in the real object may have different
1131 size. */
1132
1133 static struct obj_section *
1134 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1135 {
1136 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1137 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1138 || (b->objfile->separate_debug_objfile == a->objfile));
1139 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1140 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1141
1142 if (a->objfile->separate_debug_objfile != NULL)
1143 return a;
1144 return b;
1145 }
1146
1147 /* Return 1 if SECTION should be inserted into the section map.
1148 We want to insert only non-overlay and non-TLS section. */
1149
1150 static int
1151 insert_section_p (const struct bfd *abfd,
1152 const struct bfd_section *section)
1153 {
1154 const bfd_vma lma = bfd_section_lma (abfd, section);
1155
1156 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1157 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1158 /* This is an overlay section. IN_MEMORY check is needed to avoid
1159 discarding sections from the "system supplied DSO" (aka vdso)
1160 on some Linux systems (e.g. Fedora 11). */
1161 return 0;
1162 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1163 /* This is a TLS section. */
1164 return 0;
1165
1166 return 1;
1167 }
1168
1169 /* Filter out overlapping sections where one section came from the real
1170 objfile, and the other from a separate debuginfo file.
1171 Return the size of table after redundant sections have been eliminated. */
1172
1173 static int
1174 filter_debuginfo_sections (struct obj_section **map, int map_size)
1175 {
1176 int i, j;
1177
1178 for (i = 0, j = 0; i < map_size - 1; i++)
1179 {
1180 struct obj_section *const sect1 = map[i];
1181 struct obj_section *const sect2 = map[i + 1];
1182 const struct objfile *const objfile1 = sect1->objfile;
1183 const struct objfile *const objfile2 = sect2->objfile;
1184 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1185 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1186
1187 if (sect1_addr == sect2_addr
1188 && (objfile1->separate_debug_objfile == objfile2
1189 || objfile2->separate_debug_objfile == objfile1))
1190 {
1191 map[j++] = preferred_obj_section (sect1, sect2);
1192 ++i;
1193 }
1194 else
1195 map[j++] = sect1;
1196 }
1197
1198 if (i < map_size)
1199 {
1200 gdb_assert (i == map_size - 1);
1201 map[j++] = map[i];
1202 }
1203
1204 /* The map should not have shrunk to less than half the original size. */
1205 gdb_assert (map_size / 2 <= j);
1206
1207 return j;
1208 }
1209
1210 /* Filter out overlapping sections, issuing a warning if any are found.
1211 Overlapping sections could really be overlay sections which we didn't
1212 classify as such in insert_section_p, or we could be dealing with a
1213 corrupt binary. */
1214
1215 static int
1216 filter_overlapping_sections (struct obj_section **map, int map_size)
1217 {
1218 int i, j;
1219
1220 for (i = 0, j = 0; i < map_size - 1; )
1221 {
1222 int k;
1223
1224 map[j++] = map[i];
1225 for (k = i + 1; k < map_size; k++)
1226 {
1227 struct obj_section *const sect1 = map[i];
1228 struct obj_section *const sect2 = map[k];
1229 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1230 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1231 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1232
1233 gdb_assert (sect1_addr <= sect2_addr);
1234
1235 if (sect1_endaddr <= sect2_addr)
1236 break;
1237 else
1238 {
1239 /* We have an overlap. Report it. */
1240
1241 struct objfile *const objf1 = sect1->objfile;
1242 struct objfile *const objf2 = sect2->objfile;
1243
1244 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1245 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1246
1247 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1248
1249 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1250
1251 complaint (&symfile_complaints,
1252 _("unexpected overlap between:\n"
1253 " (A) section `%s' from `%s' [%s, %s)\n"
1254 " (B) section `%s' from `%s' [%s, %s).\n"
1255 "Will ignore section B"),
1256 bfd_section_name (abfd1, bfds1), objf1->name,
1257 paddress (gdbarch, sect1_addr),
1258 paddress (gdbarch, sect1_endaddr),
1259 bfd_section_name (abfd2, bfds2), objf2->name,
1260 paddress (gdbarch, sect2_addr),
1261 paddress (gdbarch, sect2_endaddr));
1262 }
1263 }
1264 i = k;
1265 }
1266
1267 if (i < map_size)
1268 {
1269 gdb_assert (i == map_size - 1);
1270 map[j++] = map[i];
1271 }
1272
1273 return j;
1274 }
1275
1276
1277 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1278 TLS, overlay and overlapping sections. */
1279
1280 static void
1281 update_section_map (struct program_space *pspace,
1282 struct obj_section ***pmap, int *pmap_size)
1283 {
1284 int alloc_size, map_size, i;
1285 struct obj_section *s, **map;
1286 struct objfile *objfile;
1287
1288 gdb_assert (get_objfile_pspace_data (pspace)->objfiles_changed_p != 0);
1289
1290 map = *pmap;
1291 xfree (map);
1292
1293 alloc_size = 0;
1294 ALL_PSPACE_OBJFILES (pspace, objfile)
1295 ALL_OBJFILE_OSECTIONS (objfile, s)
1296 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1297 alloc_size += 1;
1298
1299 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1300 if (alloc_size == 0)
1301 {
1302 *pmap = NULL;
1303 *pmap_size = 0;
1304 return;
1305 }
1306
1307 map = xmalloc (alloc_size * sizeof (*map));
1308
1309 i = 0;
1310 ALL_PSPACE_OBJFILES (pspace, objfile)
1311 ALL_OBJFILE_OSECTIONS (objfile, s)
1312 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1313 map[i++] = s;
1314
1315 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1316 map_size = filter_debuginfo_sections(map, alloc_size);
1317 map_size = filter_overlapping_sections(map, map_size);
1318
1319 if (map_size < alloc_size)
1320 /* Some sections were eliminated. Trim excess space. */
1321 map = xrealloc (map, map_size * sizeof (*map));
1322 else
1323 gdb_assert (alloc_size == map_size);
1324
1325 *pmap = map;
1326 *pmap_size = map_size;
1327 }
1328
1329 /* Bsearch comparison function. */
1330
1331 static int
1332 bsearch_cmp (const void *key, const void *elt)
1333 {
1334 const CORE_ADDR pc = *(CORE_ADDR *) key;
1335 const struct obj_section *section = *(const struct obj_section **) elt;
1336
1337 if (pc < obj_section_addr (section))
1338 return -1;
1339 if (pc < obj_section_endaddr (section))
1340 return 0;
1341 return 1;
1342 }
1343
1344 /* Returns a section whose range includes PC or NULL if none found. */
1345
1346 struct obj_section *
1347 find_pc_section (CORE_ADDR pc)
1348 {
1349 struct objfile_pspace_info *pspace_info;
1350 struct obj_section *s, **sp;
1351
1352 /* Check for mapped overlay section first. */
1353 s = find_pc_mapped_section (pc);
1354 if (s)
1355 return s;
1356
1357 pspace_info = get_objfile_pspace_data (current_program_space);
1358 if (pspace_info->objfiles_changed_p != 0)
1359 {
1360 update_section_map (current_program_space,
1361 &pspace_info->sections,
1362 &pspace_info->num_sections);
1363
1364 /* Don't need updates to section map until objfiles are added,
1365 removed or relocated. */
1366 pspace_info->objfiles_changed_p = 0;
1367 }
1368
1369 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1370 bsearch be non-NULL. */
1371 if (pspace_info->sections == NULL)
1372 {
1373 gdb_assert (pspace_info->num_sections == 0);
1374 return NULL;
1375 }
1376
1377 sp = (struct obj_section **) bsearch (&pc,
1378 pspace_info->sections,
1379 pspace_info->num_sections,
1380 sizeof (*pspace_info->sections),
1381 bsearch_cmp);
1382 if (sp != NULL)
1383 return *sp;
1384 return NULL;
1385 }
1386
1387
1388 /* In SVR4, we recognize a trampoline by it's section name.
1389 That is, if the pc is in a section named ".plt" then we are in
1390 a trampoline. */
1391
1392 int
1393 in_plt_section (CORE_ADDR pc, char *name)
1394 {
1395 struct obj_section *s;
1396 int retval = 0;
1397
1398 s = find_pc_section (pc);
1399
1400 retval = (s != NULL
1401 && s->the_bfd_section->name != NULL
1402 && strcmp (s->the_bfd_section->name, ".plt") == 0);
1403 return (retval);
1404 }
1405 \f
1406
1407 /* Set objfiles_changed_p so section map will be rebuilt next time it
1408 is used. Called by reread_symbols. */
1409
1410 void
1411 objfiles_changed (void)
1412 {
1413 /* Rebuild section map next time we need it. */
1414 get_objfile_pspace_data (current_program_space)->objfiles_changed_p = 1;
1415 }
1416
1417 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1418 gdbarch method. It is equivalent to use the ALL_OBJFILES macro,
1419 searching the objfiles in the order they are stored internally,
1420 ignoring CURRENT_OBJFILE.
1421
1422 On most platorms, it should be close enough to doing the best
1423 we can without some knowledge specific to the architecture. */
1424
1425 void
1426 default_iterate_over_objfiles_in_search_order
1427 (struct gdbarch *gdbarch,
1428 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1429 void *cb_data, struct objfile *current_objfile)
1430 {
1431 int stop = 0;
1432 struct objfile *objfile;
1433
1434 ALL_OBJFILES (objfile)
1435 {
1436 stop = cb (objfile, cb_data);
1437 if (stop)
1438 return;
1439 }
1440 }
1441
1442 /* Provide a prototype to silence -Wmissing-prototypes. */
1443 extern initialize_file_ftype _initialize_objfiles;
1444
1445 void
1446 _initialize_objfiles (void)
1447 {
1448 objfiles_pspace_data
1449 = register_program_space_data_with_cleanup (NULL,
1450 objfiles_pspace_data_cleanup);
1451
1452 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
1453 objfile_bfd_data_free);
1454 }