Introduce a separate debug objfile iterator
[binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <fcntl.h>
39 #include "gdb_obstack.h"
40 #include "hashtab.h"
41
42 #include "breakpoint.h"
43 #include "block.h"
44 #include "dictionary.h"
45 #include "source.h"
46 #include "addrmap.h"
47 #include "arch-utils.h"
48 #include "exec.h"
49 #include "observable.h"
50 #include "complaints.h"
51 #include "psymtab.h"
52 #include "solist.h"
53 #include "gdb_bfd.h"
54 #include "btrace.h"
55 #include "common/pathstuff.h"
56
57 #include <vector>
58
59 /* Keep a registry of per-objfile data-pointers required by other GDB
60 modules. */
61
62 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
63
64 /* Externally visible variables that are owned by this module.
65 See declarations in objfile.h for more info. */
66
67 struct objfile_pspace_info
68 {
69 struct obj_section **sections;
70 int num_sections;
71
72 /* Nonzero if object files have been added since the section map
73 was last updated. */
74 int new_objfiles_available;
75
76 /* Nonzero if the section map MUST be updated before use. */
77 int section_map_dirty;
78
79 /* Nonzero if section map updates should be inhibited if possible. */
80 int inhibit_updates;
81 };
82
83 /* Per-program-space data key. */
84 static const struct program_space_data *objfiles_pspace_data;
85
86 static void
87 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
88 {
89 struct objfile_pspace_info *info = (struct objfile_pspace_info *) arg;
90
91 xfree (info->sections);
92 xfree (info);
93 }
94
95 /* Get the current svr4 data. If none is found yet, add it now. This
96 function always returns a valid object. */
97
98 static struct objfile_pspace_info *
99 get_objfile_pspace_data (struct program_space *pspace)
100 {
101 struct objfile_pspace_info *info;
102
103 info = ((struct objfile_pspace_info *)
104 program_space_data (pspace, objfiles_pspace_data));
105 if (info == NULL)
106 {
107 info = XCNEW (struct objfile_pspace_info);
108 set_program_space_data (pspace, objfiles_pspace_data, info);
109 }
110
111 return info;
112 }
113
114 \f
115
116 /* Per-BFD data key. */
117
118 static const struct bfd_data *objfiles_bfd_data;
119
120 objfile_per_bfd_storage::~objfile_per_bfd_storage ()
121 {
122 }
123
124 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
125 NULL, and it already has a per-BFD storage object, use that.
126 Otherwise, allocate a new per-BFD storage object. Note that it is
127 not safe to call this multiple times for a given OBJFILE -- it can
128 only be called when allocating or re-initializing OBJFILE. */
129
130 static struct objfile_per_bfd_storage *
131 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
132 {
133 struct objfile_per_bfd_storage *storage = NULL;
134
135 if (abfd != NULL)
136 storage = ((struct objfile_per_bfd_storage *)
137 bfd_data (abfd, objfiles_bfd_data));
138
139 if (storage == NULL)
140 {
141 storage = new objfile_per_bfd_storage;
142 /* If the object requires gdb to do relocations, we simply fall
143 back to not sharing data across users. These cases are rare
144 enough that this seems reasonable. */
145 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
146 set_bfd_data (abfd, objfiles_bfd_data, storage);
147
148 /* Look up the gdbarch associated with the BFD. */
149 if (abfd != NULL)
150 storage->gdbarch = gdbarch_from_bfd (abfd);
151 }
152
153 return storage;
154 }
155
156 /* A deleter for objfile_per_bfd_storage that can be passed as a
157 cleanup function to the BFD registry. */
158
159 static void
160 objfile_bfd_data_free (struct bfd *unused, void *d)
161 {
162 delete (struct objfile_per_bfd_storage *) d;
163 }
164
165 /* See objfiles.h. */
166
167 void
168 set_objfile_per_bfd (struct objfile *objfile)
169 {
170 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
171 }
172
173 /* Set the objfile's per-BFD notion of the "main" name and
174 language. */
175
176 void
177 set_objfile_main_name (struct objfile *objfile,
178 const char *name, enum language lang)
179 {
180 if (objfile->per_bfd->name_of_main == NULL
181 || strcmp (objfile->per_bfd->name_of_main, name) != 0)
182 objfile->per_bfd->name_of_main
183 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack, name,
184 strlen (name));
185 objfile->per_bfd->language_of_main = lang;
186 }
187
188 /* Helper structure to map blocks to static link properties in hash tables. */
189
190 struct static_link_htab_entry
191 {
192 const struct block *block;
193 const struct dynamic_prop *static_link;
194 };
195
196 /* Return a hash code for struct static_link_htab_entry *P. */
197
198 static hashval_t
199 static_link_htab_entry_hash (const void *p)
200 {
201 const struct static_link_htab_entry *e
202 = (const struct static_link_htab_entry *) p;
203
204 return htab_hash_pointer (e->block);
205 }
206
207 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are
208 mappings for the same block. */
209
210 static int
211 static_link_htab_entry_eq (const void *p1, const void *p2)
212 {
213 const struct static_link_htab_entry *e1
214 = (const struct static_link_htab_entry *) p1;
215 const struct static_link_htab_entry *e2
216 = (const struct static_link_htab_entry *) p2;
217
218 return e1->block == e2->block;
219 }
220
221 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE.
222 Must not be called more than once for each BLOCK. */
223
224 void
225 objfile_register_static_link (struct objfile *objfile,
226 const struct block *block,
227 const struct dynamic_prop *static_link)
228 {
229 void **slot;
230 struct static_link_htab_entry lookup_entry;
231 struct static_link_htab_entry *entry;
232
233 if (objfile->static_links == NULL)
234 objfile->static_links = htab_create_alloc
235 (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL,
236 xcalloc, xfree);
237
238 /* Create a slot for the mapping, make sure it's the first mapping for this
239 block and then create the mapping itself. */
240 lookup_entry.block = block;
241 slot = htab_find_slot (objfile->static_links, &lookup_entry, INSERT);
242 gdb_assert (*slot == NULL);
243
244 entry = XOBNEW (&objfile->objfile_obstack, static_link_htab_entry);
245 entry->block = block;
246 entry->static_link = static_link;
247 *slot = (void *) entry;
248 }
249
250 /* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if
251 none was found. */
252
253 const struct dynamic_prop *
254 objfile_lookup_static_link (struct objfile *objfile,
255 const struct block *block)
256 {
257 struct static_link_htab_entry *entry;
258 struct static_link_htab_entry lookup_entry;
259
260 if (objfile->static_links == NULL)
261 return NULL;
262 lookup_entry.block = block;
263 entry
264 = (struct static_link_htab_entry *) htab_find (objfile->static_links,
265 &lookup_entry);
266 if (entry == NULL)
267 return NULL;
268
269 gdb_assert (entry->block == block);
270 return entry->static_link;
271 }
272
273 \f
274
275 /* Called via bfd_map_over_sections to build up the section table that
276 the objfile references. The objfile contains pointers to the start
277 of the table (objfile->sections) and to the first location after
278 the end of the table (objfile->sections_end). */
279
280 static void
281 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
282 struct objfile *objfile, int force)
283 {
284 struct obj_section *section;
285
286 if (!force)
287 {
288 flagword aflag;
289
290 aflag = bfd_get_section_flags (abfd, asect);
291 if (!(aflag & SEC_ALLOC))
292 return;
293 }
294
295 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
296 section->objfile = objfile;
297 section->the_bfd_section = asect;
298 section->ovly_mapped = 0;
299 }
300
301 static void
302 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
303 void *objfilep)
304 {
305 add_to_objfile_sections_full (abfd, asect, (struct objfile *) objfilep, 0);
306 }
307
308 /* Builds a section table for OBJFILE.
309
310 Note that the OFFSET and OVLY_MAPPED in each table entry are
311 initialized to zero. */
312
313 void
314 build_objfile_section_table (struct objfile *objfile)
315 {
316 int count = gdb_bfd_count_sections (objfile->obfd);
317
318 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
319 count,
320 struct obj_section);
321 objfile->sections_end = (objfile->sections + count);
322 bfd_map_over_sections (objfile->obfd,
323 add_to_objfile_sections, (void *) objfile);
324
325 /* See gdb_bfd_section_index. */
326 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
327 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
328 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
329 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
330 }
331
332 /* Given a pointer to an initialized bfd (ABFD) and some flag bits,
333 initialize the new objfile as best we can and link it into the list
334 of all known objfiles.
335
336 NAME should contain original non-canonicalized filename or other
337 identifier as entered by user. If there is no better source use
338 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
339 NAME content is copied into returned objfile.
340
341 The FLAGS word contains various bits (OBJF_*) that can be taken as
342 requests for specific operations. Other bits like OBJF_SHARED are
343 simply copied through to the new objfile flags member. */
344
345 objfile::objfile (bfd *abfd, const char *name, objfile_flags flags_)
346 : flags (flags_),
347 pspace (current_program_space),
348 partial_symtabs (new psymtab_storage ()),
349 obfd (abfd)
350 {
351 const char *expanded_name;
352
353 /* We could use obstack_specify_allocation here instead, but
354 gdb_obstack.h specifies the alloc/dealloc functions. */
355 obstack_init (&objfile_obstack);
356
357 objfile_alloc_data (this);
358
359 gdb::unique_xmalloc_ptr<char> name_holder;
360 if (name == NULL)
361 {
362 gdb_assert (abfd == NULL);
363 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
364 expanded_name = "<<anonymous objfile>>";
365 }
366 else if ((flags & OBJF_NOT_FILENAME) != 0
367 || is_target_filename (name))
368 expanded_name = name;
369 else
370 {
371 name_holder = gdb_abspath (name);
372 expanded_name = name_holder.get ();
373 }
374 original_name
375 = (char *) obstack_copy0 (&objfile_obstack,
376 expanded_name,
377 strlen (expanded_name));
378
379 /* Update the per-objfile information that comes from the bfd, ensuring
380 that any data that is reference is saved in the per-objfile data
381 region. */
382
383 gdb_bfd_ref (abfd);
384 if (abfd != NULL)
385 {
386 mtime = bfd_get_mtime (abfd);
387
388 /* Build section table. */
389 build_objfile_section_table (this);
390 }
391
392 per_bfd = get_objfile_bfd_data (this, abfd);
393
394 /* Add this file onto the tail of the linked list of other such files. */
395
396 if (object_files == NULL)
397 object_files = this;
398 else
399 {
400 struct objfile *last_one;
401
402 for (last_one = object_files;
403 last_one->next;
404 last_one = last_one->next);
405 last_one->next = this;
406 }
407
408 /* Rebuild section map next time we need it. */
409 get_objfile_pspace_data (pspace)->new_objfiles_available = 1;
410 }
411
412 /* Retrieve the gdbarch associated with OBJFILE. */
413
414 struct gdbarch *
415 get_objfile_arch (const struct objfile *objfile)
416 {
417 return objfile->per_bfd->gdbarch;
418 }
419
420 /* If there is a valid and known entry point, function fills *ENTRY_P with it
421 and returns non-zero; otherwise it returns zero. */
422
423 int
424 entry_point_address_query (CORE_ADDR *entry_p)
425 {
426 if (symfile_objfile == NULL || !symfile_objfile->per_bfd->ei.entry_point_p)
427 return 0;
428
429 *entry_p = (symfile_objfile->per_bfd->ei.entry_point
430 + ANOFFSET (symfile_objfile->section_offsets,
431 symfile_objfile->per_bfd->ei.the_bfd_section_index));
432
433 return 1;
434 }
435
436 /* Get current entry point address. Call error if it is not known. */
437
438 CORE_ADDR
439 entry_point_address (void)
440 {
441 CORE_ADDR retval;
442
443 if (!entry_point_address_query (&retval))
444 error (_("Entry point address is not known."));
445
446 return retval;
447 }
448
449 separate_debug_iterator &
450 separate_debug_iterator::operator++ ()
451 {
452 gdb_assert (m_objfile != nullptr);
453
454 struct objfile *res;
455
456 /* If any, return the first child. */
457 res = m_objfile->separate_debug_objfile;
458 if (res != nullptr)
459 {
460 m_objfile = res;
461 return *this;
462 }
463
464 /* Common case where there is no separate debug objfile. */
465 if (m_objfile == m_parent)
466 {
467 m_objfile = nullptr;
468 return *this;
469 }
470
471 /* Return the brother if any. Note that we don't iterate on brothers of
472 the parents. */
473 res = m_objfile->separate_debug_objfile_link;
474 if (res != nullptr)
475 {
476 m_objfile = res;
477 return *this;
478 }
479
480 for (res = m_objfile->separate_debug_objfile_backlink;
481 res != m_parent;
482 res = res->separate_debug_objfile_backlink)
483 {
484 gdb_assert (res != nullptr);
485 if (res->separate_debug_objfile_link != nullptr)
486 {
487 m_objfile = res->separate_debug_objfile_link;
488 return *this;
489 }
490 }
491 m_objfile = nullptr;
492 return *this;
493 }
494
495 /* Put one object file before a specified on in the global list.
496 This can be used to make sure an object file is destroyed before
497 another when using objfiles_safe to free all objfiles. */
498 void
499 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
500 {
501 struct objfile **objp;
502
503 unlink_objfile (objfile);
504
505 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
506 {
507 if (*objp == before_this)
508 {
509 objfile->next = *objp;
510 *objp = objfile;
511 return;
512 }
513 }
514
515 internal_error (__FILE__, __LINE__,
516 _("put_objfile_before: before objfile not in list"));
517 }
518
519 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
520 list.
521
522 It is not a bug, or error, to call this function if OBJFILE is not known
523 to be in the current list. This is done in the case of mapped objfiles,
524 for example, just to ensure that the mapped objfile doesn't appear twice
525 in the list. Since the list is threaded, linking in a mapped objfile
526 twice would create a circular list.
527
528 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
529 unlinking it, just to ensure that we have completely severed any linkages
530 between the OBJFILE and the list. */
531
532 void
533 unlink_objfile (struct objfile *objfile)
534 {
535 struct objfile **objpp;
536
537 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
538 {
539 if (*objpp == objfile)
540 {
541 *objpp = (*objpp)->next;
542 objfile->next = NULL;
543 return;
544 }
545 }
546
547 internal_error (__FILE__, __LINE__,
548 _("unlink_objfile: objfile already unlinked"));
549 }
550
551 /* Add OBJFILE as a separate debug objfile of PARENT. */
552
553 void
554 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
555 {
556 gdb_assert (objfile && parent);
557
558 /* Must not be already in a list. */
559 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
560 gdb_assert (objfile->separate_debug_objfile_link == NULL);
561 gdb_assert (objfile->separate_debug_objfile == NULL);
562 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
563 gdb_assert (parent->separate_debug_objfile_link == NULL);
564
565 objfile->separate_debug_objfile_backlink = parent;
566 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
567 parent->separate_debug_objfile = objfile;
568
569 /* Put the separate debug object before the normal one, this is so that
570 usage of objfiles_safe will stay safe. */
571 put_objfile_before (objfile, parent);
572 }
573
574 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
575 itself. */
576
577 void
578 free_objfile_separate_debug (struct objfile *objfile)
579 {
580 struct objfile *child;
581
582 for (child = objfile->separate_debug_objfile; child;)
583 {
584 struct objfile *next_child = child->separate_debug_objfile_link;
585 delete child;
586 child = next_child;
587 }
588 }
589
590 /* Destroy an objfile and all the symtabs and psymtabs under it. */
591
592 objfile::~objfile ()
593 {
594 /* First notify observers that this objfile is about to be freed. */
595 gdb::observers::free_objfile.notify (this);
596
597 /* Free all separate debug objfiles. */
598 free_objfile_separate_debug (this);
599
600 if (separate_debug_objfile_backlink)
601 {
602 /* We freed the separate debug file, make sure the base objfile
603 doesn't reference it. */
604 struct objfile *child;
605
606 child = separate_debug_objfile_backlink->separate_debug_objfile;
607
608 if (child == this)
609 {
610 /* THIS is the first child. */
611 separate_debug_objfile_backlink->separate_debug_objfile =
612 separate_debug_objfile_link;
613 }
614 else
615 {
616 /* Find THIS in the list. */
617 while (1)
618 {
619 if (child->separate_debug_objfile_link == this)
620 {
621 child->separate_debug_objfile_link =
622 separate_debug_objfile_link;
623 break;
624 }
625 child = child->separate_debug_objfile_link;
626 gdb_assert (child);
627 }
628 }
629 }
630
631 /* Remove any references to this objfile in the global value
632 lists. */
633 preserve_values (this);
634
635 /* It still may reference data modules have associated with the objfile and
636 the symbol file data. */
637 forget_cached_source_info_for_objfile (this);
638
639 breakpoint_free_objfile (this);
640 btrace_free_objfile (this);
641
642 /* First do any symbol file specific actions required when we are
643 finished with a particular symbol file. Note that if the objfile
644 is using reusable symbol information (via mmalloc) then each of
645 these routines is responsible for doing the correct thing, either
646 freeing things which are valid only during this particular gdb
647 execution, or leaving them to be reused during the next one. */
648
649 if (sf != NULL)
650 (*sf->sym_finish) (this);
651
652 /* Discard any data modules have associated with the objfile. The function
653 still may reference obfd. */
654 objfile_free_data (this);
655
656 if (obfd)
657 gdb_bfd_unref (obfd);
658 else
659 delete per_bfd;
660
661 /* Remove it from the chain of all objfiles. */
662
663 unlink_objfile (this);
664
665 if (this == symfile_objfile)
666 symfile_objfile = NULL;
667
668 /* Before the symbol table code was redone to make it easier to
669 selectively load and remove information particular to a specific
670 linkage unit, gdb used to do these things whenever the monolithic
671 symbol table was blown away. How much still needs to be done
672 is unknown, but we play it safe for now and keep each action until
673 it is shown to be no longer needed. */
674
675 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
676 for example), so we need to call this here. */
677 clear_pc_function_cache ();
678
679 /* Check to see if the current_source_symtab belongs to this objfile,
680 and if so, call clear_current_source_symtab_and_line. */
681
682 {
683 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
684
685 if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == this)
686 clear_current_source_symtab_and_line ();
687 }
688
689 /* Free the obstacks for non-reusable objfiles. */
690 obstack_free (&objfile_obstack, 0);
691
692 /* Rebuild section map next time we need it. */
693 get_objfile_pspace_data (pspace)->section_map_dirty = 1;
694
695 /* Free the map for static links. There's no need to free static link
696 themselves since they were allocated on the objstack. */
697 if (static_links != NULL)
698 htab_delete (static_links);
699 }
700
701 /* Free all the object files at once and clean up their users. */
702
703 void
704 free_all_objfiles (void)
705 {
706 struct so_list *so;
707
708 /* Any objfile reference would become stale. */
709 for (so = master_so_list (); so; so = so->next)
710 gdb_assert (so->objfile == NULL);
711
712 for (objfile *objfile : current_program_space->objfiles_safe ())
713 delete objfile;
714 clear_symtab_users (0);
715 }
716 \f
717 /* A helper function for objfile_relocate1 that relocates a single
718 symbol. */
719
720 static void
721 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
722 struct section_offsets *delta)
723 {
724 fixup_symbol_section (sym, objfile);
725
726 /* The RS6000 code from which this was taken skipped
727 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
728 But I'm leaving out that test, on the theory that
729 they can't possibly pass the tests below. */
730 if ((SYMBOL_CLASS (sym) == LOC_LABEL
731 || SYMBOL_CLASS (sym) == LOC_STATIC)
732 && SYMBOL_SECTION (sym) >= 0)
733 {
734 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
735 }
736 }
737
738 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
739 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
740 Return non-zero iff any change happened. */
741
742 static int
743 objfile_relocate1 (struct objfile *objfile,
744 const struct section_offsets *new_offsets)
745 {
746 struct section_offsets *delta =
747 ((struct section_offsets *)
748 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
749
750 int something_changed = 0;
751
752 for (int i = 0; i < objfile->num_sections; ++i)
753 {
754 delta->offsets[i] =
755 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
756 if (ANOFFSET (delta, i) != 0)
757 something_changed = 1;
758 }
759 if (!something_changed)
760 return 0;
761
762 /* OK, get all the symtabs. */
763 {
764 for (compunit_symtab *cust : objfile->compunits ())
765 {
766 for (symtab *s : compunit_filetabs (cust))
767 {
768 struct linetable *l;
769
770 /* First the line table. */
771 l = SYMTAB_LINETABLE (s);
772 if (l)
773 {
774 for (int i = 0; i < l->nitems; ++i)
775 l->item[i].pc += ANOFFSET (delta,
776 COMPUNIT_BLOCK_LINE_SECTION
777 (cust));
778 }
779 }
780 }
781
782 for (compunit_symtab *cust : objfile->compunits ())
783 {
784 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
785 int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust);
786
787 if (BLOCKVECTOR_MAP (bv))
788 addrmap_relocate (BLOCKVECTOR_MAP (bv),
789 ANOFFSET (delta, block_line_section));
790
791 for (int i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
792 {
793 struct block *b;
794 struct symbol *sym;
795 struct mdict_iterator miter;
796
797 b = BLOCKVECTOR_BLOCK (bv, i);
798 BLOCK_START (b) += ANOFFSET (delta, block_line_section);
799 BLOCK_END (b) += ANOFFSET (delta, block_line_section);
800
801 if (BLOCK_RANGES (b) != nullptr)
802 for (int j = 0; j < BLOCK_NRANGES (b); j++)
803 {
804 BLOCK_RANGE_START (b, j)
805 += ANOFFSET (delta, block_line_section);
806 BLOCK_RANGE_END (b, j) += ANOFFSET (delta,
807 block_line_section);
808 }
809
810 /* We only want to iterate over the local symbols, not any
811 symbols in included symtabs. */
812 ALL_DICT_SYMBOLS (BLOCK_MULTIDICT (b), miter, sym)
813 {
814 relocate_one_symbol (sym, objfile, delta);
815 }
816 }
817 }
818 }
819
820 /* This stores relocated addresses and so must be cleared. This
821 will cause it to be recreated on demand. */
822 objfile->psymbol_map.clear ();
823
824 /* Relocate isolated symbols. */
825 {
826 struct symbol *iter;
827
828 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
829 relocate_one_symbol (iter, objfile, delta);
830 }
831
832 {
833 int i;
834
835 for (i = 0; i < objfile->num_sections; ++i)
836 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
837 }
838
839 /* Rebuild section map next time we need it. */
840 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
841
842 /* Update the table in exec_ops, used to read memory. */
843 struct obj_section *s;
844 ALL_OBJFILE_OSECTIONS (objfile, s)
845 {
846 int idx = s - objfile->sections;
847
848 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
849 obj_section_addr (s));
850 }
851
852 /* Data changed. */
853 return 1;
854 }
855
856 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
857 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
858
859 The number and ordering of sections does differ between the two objfiles.
860 Only their names match. Also the file offsets will differ (objfile being
861 possibly prelinked but separate_debug_objfile is probably not prelinked) but
862 the in-memory absolute address as specified by NEW_OFFSETS must match both
863 files. */
864
865 void
866 objfile_relocate (struct objfile *objfile,
867 const struct section_offsets *new_offsets)
868 {
869 int changed = 0;
870
871 changed |= objfile_relocate1 (objfile, new_offsets);
872
873 for (struct objfile *debug_objfile : objfile->separate_debug_objfiles ())
874 {
875 if (debug_objfile == objfile)
876 continue;
877
878 section_addr_info objfile_addrs
879 = build_section_addr_info_from_objfile (objfile);
880
881 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
882 relative ones must be already created according to debug_objfile. */
883
884 addr_info_make_relative (&objfile_addrs, debug_objfile->obfd);
885
886 gdb_assert (debug_objfile->num_sections
887 == gdb_bfd_count_sections (debug_objfile->obfd));
888 std::vector<struct section_offsets>
889 new_debug_offsets (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
890 relative_addr_info_to_section_offsets (new_debug_offsets.data (),
891 debug_objfile->num_sections,
892 objfile_addrs);
893
894 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets.data ());
895 }
896
897 /* Relocate breakpoints as necessary, after things are relocated. */
898 if (changed)
899 breakpoint_re_set ();
900 }
901
902 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
903 not touched here.
904 Return non-zero iff any change happened. */
905
906 static int
907 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
908 {
909 struct section_offsets *new_offsets =
910 ((struct section_offsets *)
911 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
912 int i;
913
914 for (i = 0; i < objfile->num_sections; ++i)
915 new_offsets->offsets[i] = slide;
916
917 return objfile_relocate1 (objfile, new_offsets);
918 }
919
920 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
921 SEPARATE_DEBUG_OBJFILEs. */
922
923 void
924 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
925 {
926 int changed = 0;
927
928 for (struct objfile *debug_objfile : objfile->separate_debug_objfiles ())
929 changed |= objfile_rebase1 (debug_objfile, slide);
930
931 /* Relocate breakpoints as necessary, after things are relocated. */
932 if (changed)
933 breakpoint_re_set ();
934 }
935 \f
936 /* Return non-zero if OBJFILE has partial symbols. */
937
938 int
939 objfile_has_partial_symbols (struct objfile *objfile)
940 {
941 if (!objfile->sf)
942 return 0;
943
944 /* If we have not read psymbols, but we have a function capable of reading
945 them, then that is an indication that they are in fact available. Without
946 this function the symbols may have been already read in but they also may
947 not be present in this objfile. */
948 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
949 && objfile->sf->sym_read_psymbols != NULL)
950 return 1;
951
952 return objfile->sf->qf->has_symbols (objfile);
953 }
954
955 /* Return non-zero if OBJFILE has full symbols. */
956
957 int
958 objfile_has_full_symbols (struct objfile *objfile)
959 {
960 return objfile->compunit_symtabs != NULL;
961 }
962
963 /* Return non-zero if OBJFILE has full or partial symbols, either directly
964 or through a separate debug file. */
965
966 int
967 objfile_has_symbols (struct objfile *objfile)
968 {
969 for (struct objfile *o : objfile->separate_debug_objfiles ())
970 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
971 return 1;
972 return 0;
973 }
974
975
976 /* Many places in gdb want to test just to see if we have any partial
977 symbols available. This function returns zero if none are currently
978 available, nonzero otherwise. */
979
980 int
981 have_partial_symbols (void)
982 {
983 for (objfile *ofp : current_program_space->objfiles ())
984 {
985 if (objfile_has_partial_symbols (ofp))
986 return 1;
987 }
988 return 0;
989 }
990
991 /* Many places in gdb want to test just to see if we have any full
992 symbols available. This function returns zero if none are currently
993 available, nonzero otherwise. */
994
995 int
996 have_full_symbols (void)
997 {
998 for (objfile *ofp : current_program_space->objfiles ())
999 {
1000 if (objfile_has_full_symbols (ofp))
1001 return 1;
1002 }
1003 return 0;
1004 }
1005
1006
1007 /* This operations deletes all objfile entries that represent solibs that
1008 weren't explicitly loaded by the user, via e.g., the add-symbol-file
1009 command. */
1010
1011 void
1012 objfile_purge_solibs (void)
1013 {
1014 for (objfile *objf : current_program_space->objfiles_safe ())
1015 {
1016 /* We assume that the solib package has been purged already, or will
1017 be soon. */
1018
1019 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1020 delete objf;
1021 }
1022 }
1023
1024
1025 /* Many places in gdb want to test just to see if we have any minimal
1026 symbols available. This function returns zero if none are currently
1027 available, nonzero otherwise. */
1028
1029 int
1030 have_minimal_symbols (void)
1031 {
1032 for (objfile *ofp : current_program_space->objfiles ())
1033 {
1034 if (ofp->per_bfd->minimal_symbol_count > 0)
1035 {
1036 return 1;
1037 }
1038 }
1039 return 0;
1040 }
1041
1042 /* Qsort comparison function. */
1043
1044 static int
1045 qsort_cmp (const void *a, const void *b)
1046 {
1047 const struct obj_section *sect1 = *(const struct obj_section **) a;
1048 const struct obj_section *sect2 = *(const struct obj_section **) b;
1049 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1050 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1051
1052 if (sect1_addr < sect2_addr)
1053 return -1;
1054 else if (sect1_addr > sect2_addr)
1055 return 1;
1056 else
1057 {
1058 /* Sections are at the same address. This could happen if
1059 A) we have an objfile and a separate debuginfo.
1060 B) we are confused, and have added sections without proper relocation,
1061 or something like that. */
1062
1063 const struct objfile *const objfile1 = sect1->objfile;
1064 const struct objfile *const objfile2 = sect2->objfile;
1065
1066 if (objfile1->separate_debug_objfile == objfile2
1067 || objfile2->separate_debug_objfile == objfile1)
1068 {
1069 /* Case A. The ordering doesn't matter: separate debuginfo files
1070 will be filtered out later. */
1071
1072 return 0;
1073 }
1074
1075 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1076 triage. This section could be slow (since we iterate over all
1077 objfiles in each call to qsort_cmp), but this shouldn't happen
1078 very often (GDB is already in a confused state; one hopes this
1079 doesn't happen at all). If you discover that significant time is
1080 spent in the loops below, do 'set complaints 100' and examine the
1081 resulting complaints. */
1082
1083 if (objfile1 == objfile2)
1084 {
1085 /* Both sections came from the same objfile. We are really confused.
1086 Sort on sequence order of sections within the objfile. */
1087
1088 const struct obj_section *osect;
1089
1090 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1091 if (osect == sect1)
1092 return -1;
1093 else if (osect == sect2)
1094 return 1;
1095
1096 /* We should have found one of the sections before getting here. */
1097 gdb_assert_not_reached ("section not found");
1098 }
1099 else
1100 {
1101 /* Sort on sequence number of the objfile in the chain. */
1102
1103 for (objfile *objfile : current_program_space->objfiles ())
1104 if (objfile == objfile1)
1105 return -1;
1106 else if (objfile == objfile2)
1107 return 1;
1108
1109 /* We should have found one of the objfiles before getting here. */
1110 gdb_assert_not_reached ("objfile not found");
1111 }
1112 }
1113
1114 /* Unreachable. */
1115 gdb_assert_not_reached ("unexpected code path");
1116 return 0;
1117 }
1118
1119 /* Select "better" obj_section to keep. We prefer the one that came from
1120 the real object, rather than the one from separate debuginfo.
1121 Most of the time the two sections are exactly identical, but with
1122 prelinking the .rel.dyn section in the real object may have different
1123 size. */
1124
1125 static struct obj_section *
1126 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1127 {
1128 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1129 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1130 || (b->objfile->separate_debug_objfile == a->objfile));
1131 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1132 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1133
1134 if (a->objfile->separate_debug_objfile != NULL)
1135 return a;
1136 return b;
1137 }
1138
1139 /* Return 1 if SECTION should be inserted into the section map.
1140 We want to insert only non-overlay and non-TLS section. */
1141
1142 static int
1143 insert_section_p (const struct bfd *abfd,
1144 const struct bfd_section *section)
1145 {
1146 const bfd_vma lma = bfd_section_lma (abfd, section);
1147
1148 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1149 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1150 /* This is an overlay section. IN_MEMORY check is needed to avoid
1151 discarding sections from the "system supplied DSO" (aka vdso)
1152 on some Linux systems (e.g. Fedora 11). */
1153 return 0;
1154 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1155 /* This is a TLS section. */
1156 return 0;
1157
1158 return 1;
1159 }
1160
1161 /* Filter out overlapping sections where one section came from the real
1162 objfile, and the other from a separate debuginfo file.
1163 Return the size of table after redundant sections have been eliminated. */
1164
1165 static int
1166 filter_debuginfo_sections (struct obj_section **map, int map_size)
1167 {
1168 int i, j;
1169
1170 for (i = 0, j = 0; i < map_size - 1; i++)
1171 {
1172 struct obj_section *const sect1 = map[i];
1173 struct obj_section *const sect2 = map[i + 1];
1174 const struct objfile *const objfile1 = sect1->objfile;
1175 const struct objfile *const objfile2 = sect2->objfile;
1176 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1177 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1178
1179 if (sect1_addr == sect2_addr
1180 && (objfile1->separate_debug_objfile == objfile2
1181 || objfile2->separate_debug_objfile == objfile1))
1182 {
1183 map[j++] = preferred_obj_section (sect1, sect2);
1184 ++i;
1185 }
1186 else
1187 map[j++] = sect1;
1188 }
1189
1190 if (i < map_size)
1191 {
1192 gdb_assert (i == map_size - 1);
1193 map[j++] = map[i];
1194 }
1195
1196 /* The map should not have shrunk to less than half the original size. */
1197 gdb_assert (map_size / 2 <= j);
1198
1199 return j;
1200 }
1201
1202 /* Filter out overlapping sections, issuing a warning if any are found.
1203 Overlapping sections could really be overlay sections which we didn't
1204 classify as such in insert_section_p, or we could be dealing with a
1205 corrupt binary. */
1206
1207 static int
1208 filter_overlapping_sections (struct obj_section **map, int map_size)
1209 {
1210 int i, j;
1211
1212 for (i = 0, j = 0; i < map_size - 1; )
1213 {
1214 int k;
1215
1216 map[j++] = map[i];
1217 for (k = i + 1; k < map_size; k++)
1218 {
1219 struct obj_section *const sect1 = map[i];
1220 struct obj_section *const sect2 = map[k];
1221 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1222 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1223 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1224
1225 gdb_assert (sect1_addr <= sect2_addr);
1226
1227 if (sect1_endaddr <= sect2_addr)
1228 break;
1229 else
1230 {
1231 /* We have an overlap. Report it. */
1232
1233 struct objfile *const objf1 = sect1->objfile;
1234 struct objfile *const objf2 = sect2->objfile;
1235
1236 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1237 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1238
1239 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1240
1241 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1242
1243 complaint (_("unexpected overlap between:\n"
1244 " (A) section `%s' from `%s' [%s, %s)\n"
1245 " (B) section `%s' from `%s' [%s, %s).\n"
1246 "Will ignore section B"),
1247 bfd_section_name (abfd1, bfds1), objfile_name (objf1),
1248 paddress (gdbarch, sect1_addr),
1249 paddress (gdbarch, sect1_endaddr),
1250 bfd_section_name (abfd2, bfds2), objfile_name (objf2),
1251 paddress (gdbarch, sect2_addr),
1252 paddress (gdbarch, sect2_endaddr));
1253 }
1254 }
1255 i = k;
1256 }
1257
1258 if (i < map_size)
1259 {
1260 gdb_assert (i == map_size - 1);
1261 map[j++] = map[i];
1262 }
1263
1264 return j;
1265 }
1266
1267
1268 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1269 TLS, overlay and overlapping sections. */
1270
1271 static void
1272 update_section_map (struct program_space *pspace,
1273 struct obj_section ***pmap, int *pmap_size)
1274 {
1275 struct objfile_pspace_info *pspace_info;
1276 int alloc_size, map_size, i;
1277 struct obj_section *s, **map;
1278
1279 pspace_info = get_objfile_pspace_data (pspace);
1280 gdb_assert (pspace_info->section_map_dirty != 0
1281 || pspace_info->new_objfiles_available != 0);
1282
1283 map = *pmap;
1284 xfree (map);
1285
1286 alloc_size = 0;
1287 for (objfile *objfile : pspace->objfiles ())
1288 ALL_OBJFILE_OSECTIONS (objfile, s)
1289 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1290 alloc_size += 1;
1291
1292 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1293 if (alloc_size == 0)
1294 {
1295 *pmap = NULL;
1296 *pmap_size = 0;
1297 return;
1298 }
1299
1300 map = XNEWVEC (struct obj_section *, alloc_size);
1301
1302 i = 0;
1303 for (objfile *objfile : pspace->objfiles ())
1304 ALL_OBJFILE_OSECTIONS (objfile, s)
1305 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1306 map[i++] = s;
1307
1308 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1309 map_size = filter_debuginfo_sections(map, alloc_size);
1310 map_size = filter_overlapping_sections(map, map_size);
1311
1312 if (map_size < alloc_size)
1313 /* Some sections were eliminated. Trim excess space. */
1314 map = XRESIZEVEC (struct obj_section *, map, map_size);
1315 else
1316 gdb_assert (alloc_size == map_size);
1317
1318 *pmap = map;
1319 *pmap_size = map_size;
1320 }
1321
1322 /* Bsearch comparison function. */
1323
1324 static int
1325 bsearch_cmp (const void *key, const void *elt)
1326 {
1327 const CORE_ADDR pc = *(CORE_ADDR *) key;
1328 const struct obj_section *section = *(const struct obj_section **) elt;
1329
1330 if (pc < obj_section_addr (section))
1331 return -1;
1332 if (pc < obj_section_endaddr (section))
1333 return 0;
1334 return 1;
1335 }
1336
1337 /* Returns a section whose range includes PC or NULL if none found. */
1338
1339 struct obj_section *
1340 find_pc_section (CORE_ADDR pc)
1341 {
1342 struct objfile_pspace_info *pspace_info;
1343 struct obj_section *s, **sp;
1344
1345 /* Check for mapped overlay section first. */
1346 s = find_pc_mapped_section (pc);
1347 if (s)
1348 return s;
1349
1350 pspace_info = get_objfile_pspace_data (current_program_space);
1351 if (pspace_info->section_map_dirty
1352 || (pspace_info->new_objfiles_available
1353 && !pspace_info->inhibit_updates))
1354 {
1355 update_section_map (current_program_space,
1356 &pspace_info->sections,
1357 &pspace_info->num_sections);
1358
1359 /* Don't need updates to section map until objfiles are added,
1360 removed or relocated. */
1361 pspace_info->new_objfiles_available = 0;
1362 pspace_info->section_map_dirty = 0;
1363 }
1364
1365 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1366 bsearch be non-NULL. */
1367 if (pspace_info->sections == NULL)
1368 {
1369 gdb_assert (pspace_info->num_sections == 0);
1370 return NULL;
1371 }
1372
1373 sp = (struct obj_section **) bsearch (&pc,
1374 pspace_info->sections,
1375 pspace_info->num_sections,
1376 sizeof (*pspace_info->sections),
1377 bsearch_cmp);
1378 if (sp != NULL)
1379 return *sp;
1380 return NULL;
1381 }
1382
1383
1384 /* Return non-zero if PC is in a section called NAME. */
1385
1386 int
1387 pc_in_section (CORE_ADDR pc, const char *name)
1388 {
1389 struct obj_section *s;
1390 int retval = 0;
1391
1392 s = find_pc_section (pc);
1393
1394 retval = (s != NULL
1395 && s->the_bfd_section->name != NULL
1396 && strcmp (s->the_bfd_section->name, name) == 0);
1397 return (retval);
1398 }
1399 \f
1400
1401 /* Set section_map_dirty so section map will be rebuilt next time it
1402 is used. Called by reread_symbols. */
1403
1404 void
1405 objfiles_changed (void)
1406 {
1407 /* Rebuild section map next time we need it. */
1408 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1409 }
1410
1411 /* See comments in objfiles.h. */
1412
1413 scoped_restore_tmpl<int>
1414 inhibit_section_map_updates (struct program_space *pspace)
1415 {
1416 return scoped_restore_tmpl<int>
1417 (&get_objfile_pspace_data (pspace)->inhibit_updates, 1);
1418 }
1419
1420 /* Return 1 if ADDR maps into one of the sections of OBJFILE and 0
1421 otherwise. */
1422
1423 int
1424 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1425 {
1426 struct obj_section *osect;
1427
1428 if (objfile == NULL)
1429 return 0;
1430
1431 ALL_OBJFILE_OSECTIONS (objfile, osect)
1432 {
1433 if (section_is_overlay (osect) && !section_is_mapped (osect))
1434 continue;
1435
1436 if (obj_section_addr (osect) <= addr
1437 && addr < obj_section_endaddr (osect))
1438 return 1;
1439 }
1440 return 0;
1441 }
1442
1443 int
1444 shared_objfile_contains_address_p (struct program_space *pspace,
1445 CORE_ADDR address)
1446 {
1447 for (objfile *objfile : pspace->objfiles ())
1448 {
1449 if ((objfile->flags & OBJF_SHARED) != 0
1450 && is_addr_in_objfile (address, objfile))
1451 return 1;
1452 }
1453
1454 return 0;
1455 }
1456
1457 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1458 gdbarch method. It is equivalent to use the objfiles iterable,
1459 searching the objfiles in the order they are stored internally,
1460 ignoring CURRENT_OBJFILE.
1461
1462 On most platorms, it should be close enough to doing the best
1463 we can without some knowledge specific to the architecture. */
1464
1465 void
1466 default_iterate_over_objfiles_in_search_order
1467 (struct gdbarch *gdbarch,
1468 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1469 void *cb_data, struct objfile *current_objfile)
1470 {
1471 int stop = 0;
1472
1473 for (objfile *objfile : current_program_space->objfiles ())
1474 {
1475 stop = cb (objfile, cb_data);
1476 if (stop)
1477 return;
1478 }
1479 }
1480
1481 /* See objfiles.h. */
1482
1483 const char *
1484 objfile_name (const struct objfile *objfile)
1485 {
1486 if (objfile->obfd != NULL)
1487 return bfd_get_filename (objfile->obfd);
1488
1489 return objfile->original_name;
1490 }
1491
1492 /* See objfiles.h. */
1493
1494 const char *
1495 objfile_filename (const struct objfile *objfile)
1496 {
1497 if (objfile->obfd != NULL)
1498 return bfd_get_filename (objfile->obfd);
1499
1500 return NULL;
1501 }
1502
1503 /* See objfiles.h. */
1504
1505 const char *
1506 objfile_debug_name (const struct objfile *objfile)
1507 {
1508 return lbasename (objfile->original_name);
1509 }
1510
1511 /* See objfiles.h. */
1512
1513 const char *
1514 objfile_flavour_name (struct objfile *objfile)
1515 {
1516 if (objfile->obfd != NULL)
1517 return bfd_flavour_name (bfd_get_flavour (objfile->obfd));
1518 return NULL;
1519 }
1520
1521 void
1522 _initialize_objfiles (void)
1523 {
1524 objfiles_pspace_data
1525 = register_program_space_data_with_cleanup (NULL,
1526 objfiles_pspace_data_cleanup);
1527
1528 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
1529 objfile_bfd_data_free);
1530 }