5b18538f8fe032a64475695291c3a4b6177bcdc5
[binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991, 1994 Free Software Foundation, Inc.
3 Modified from expread.y by the Department of Computer Science at the
4 State University of New York at Buffalo, 1991.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /* Parse an expression from text in a string,
23 and return the result as a struct expression pointer.
24 That structure contains arithmetic operations in reverse polish,
25 with constants represented by operations that are followed by special data.
26 See expression.h for the details of the format.
27 What is important here is that it can be built up sequentially
28 during the process of parsing; the lower levels of the tree always
29 come first in the result. */
30
31 #include "defs.h"
32 #include <string.h>
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "frame.h"
36 #include "expression.h"
37 #include "value.h"
38 #include "command.h"
39 #include "language.h"
40 #include "parser-defs.h"
41 \f
42 /* Global variables declared in parser-defs.h (and commented there). */
43 struct expression *expout;
44 int expout_size;
45 int expout_ptr;
46 struct block *expression_context_block;
47 struct block *innermost_block;
48 struct block *block_found;
49 int arglist_len;
50 union type_stack_elt *type_stack;
51 int type_stack_depth, type_stack_size;
52 char *lexptr;
53 char *namecopy;
54 int paren_depth;
55 int comma_terminates;
56 \f
57 static void
58 free_funcalls PARAMS ((void));
59
60 static void
61 prefixify_expression PARAMS ((struct expression *));
62
63 static int
64 length_of_subexp PARAMS ((struct expression *, int));
65
66 static void
67 prefixify_subexp PARAMS ((struct expression *, struct expression *, int, int));
68
69 /* Data structure for saving values of arglist_len for function calls whose
70 arguments contain other function calls. */
71
72 struct funcall
73 {
74 struct funcall *next;
75 int arglist_len;
76 };
77
78 static struct funcall *funcall_chain;
79
80 /* Assign machine-independent names to certain registers
81 (unless overridden by the REGISTER_NAMES table) */
82
83 #ifdef NO_STD_REGS
84 unsigned num_std_regs = 0;
85 struct std_regs std_regs[1];
86 #else
87 struct std_regs std_regs[] = {
88
89 #ifdef PC_REGNUM
90 { "pc", PC_REGNUM },
91 #endif
92 #ifdef FP_REGNUM
93 { "fp", FP_REGNUM },
94 #endif
95 #ifdef SP_REGNUM
96 { "sp", SP_REGNUM },
97 #endif
98 #ifdef PS_REGNUM
99 { "ps", PS_REGNUM },
100 #endif
101
102 };
103
104 unsigned num_std_regs = (sizeof std_regs / sizeof std_regs[0]);
105
106 #endif
107
108
109 /* Begin counting arguments for a function call,
110 saving the data about any containing call. */
111
112 void
113 start_arglist ()
114 {
115 register struct funcall *new;
116
117 new = (struct funcall *) xmalloc (sizeof (struct funcall));
118 new->next = funcall_chain;
119 new->arglist_len = arglist_len;
120 arglist_len = 0;
121 funcall_chain = new;
122 }
123
124 /* Return the number of arguments in a function call just terminated,
125 and restore the data for the containing function call. */
126
127 int
128 end_arglist ()
129 {
130 register int val = arglist_len;
131 register struct funcall *call = funcall_chain;
132 funcall_chain = call->next;
133 arglist_len = call->arglist_len;
134 free ((PTR)call);
135 return val;
136 }
137
138 /* Free everything in the funcall chain.
139 Used when there is an error inside parsing. */
140
141 static void
142 free_funcalls ()
143 {
144 register struct funcall *call, *next;
145
146 for (call = funcall_chain; call; call = next)
147 {
148 next = call->next;
149 free ((PTR)call);
150 }
151 }
152 \f
153 /* This page contains the functions for adding data to the struct expression
154 being constructed. */
155
156 /* Add one element to the end of the expression. */
157
158 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
159 a register through here */
160
161 void
162 write_exp_elt (expelt)
163 union exp_element expelt;
164 {
165 if (expout_ptr >= expout_size)
166 {
167 expout_size *= 2;
168 expout = (struct expression *)
169 xrealloc ((char *) expout, sizeof (struct expression)
170 + EXP_ELEM_TO_BYTES (expout_size));
171 }
172 expout->elts[expout_ptr++] = expelt;
173 }
174
175 void
176 write_exp_elt_opcode (expelt)
177 enum exp_opcode expelt;
178 {
179 union exp_element tmp;
180
181 tmp.opcode = expelt;
182
183 write_exp_elt (tmp);
184 }
185
186 void
187 write_exp_elt_sym (expelt)
188 struct symbol *expelt;
189 {
190 union exp_element tmp;
191
192 tmp.symbol = expelt;
193
194 write_exp_elt (tmp);
195 }
196
197 void
198 write_exp_elt_block (b)
199 struct block *b;
200 {
201 union exp_element tmp;
202 tmp.block = b;
203 write_exp_elt (tmp);
204 }
205
206 void
207 write_exp_elt_longcst (expelt)
208 LONGEST expelt;
209 {
210 union exp_element tmp;
211
212 tmp.longconst = expelt;
213
214 write_exp_elt (tmp);
215 }
216
217 void
218 write_exp_elt_dblcst (expelt)
219 double expelt;
220 {
221 union exp_element tmp;
222
223 tmp.doubleconst = expelt;
224
225 write_exp_elt (tmp);
226 }
227
228 void
229 write_exp_elt_type (expelt)
230 struct type *expelt;
231 {
232 union exp_element tmp;
233
234 tmp.type = expelt;
235
236 write_exp_elt (tmp);
237 }
238
239 void
240 write_exp_elt_intern (expelt)
241 struct internalvar *expelt;
242 {
243 union exp_element tmp;
244
245 tmp.internalvar = expelt;
246
247 write_exp_elt (tmp);
248 }
249
250 /* Add a string constant to the end of the expression.
251
252 String constants are stored by first writing an expression element
253 that contains the length of the string, then stuffing the string
254 constant itself into however many expression elements are needed
255 to hold it, and then writing another expression element that contains
256 the length of the string. I.E. an expression element at each end of
257 the string records the string length, so you can skip over the
258 expression elements containing the actual string bytes from either
259 end of the string. Note that this also allows gdb to handle
260 strings with embedded null bytes, as is required for some languages.
261
262 Don't be fooled by the fact that the string is null byte terminated,
263 this is strictly for the convenience of debugging gdb itself. Gdb
264 Gdb does not depend up the string being null terminated, since the
265 actual length is recorded in expression elements at each end of the
266 string. The null byte is taken into consideration when computing how
267 many expression elements are required to hold the string constant, of
268 course. */
269
270
271 void
272 write_exp_string (str)
273 struct stoken str;
274 {
275 register int len = str.length;
276 register int lenelt;
277 register char *strdata;
278
279 /* Compute the number of expression elements required to hold the string
280 (including a null byte terminator), along with one expression element
281 at each end to record the actual string length (not including the
282 null byte terminator). */
283
284 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
285
286 /* Ensure that we have enough available expression elements to store
287 everything. */
288
289 if ((expout_ptr + lenelt) >= expout_size)
290 {
291 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
292 expout = (struct expression *)
293 xrealloc ((char *) expout, (sizeof (struct expression)
294 + EXP_ELEM_TO_BYTES (expout_size)));
295 }
296
297 /* Write the leading length expression element (which advances the current
298 expression element index), then write the string constant followed by a
299 terminating null byte, and then write the trailing length expression
300 element. */
301
302 write_exp_elt_longcst ((LONGEST) len);
303 strdata = (char *) &expout->elts[expout_ptr];
304 memcpy (strdata, str.ptr, len);
305 *(strdata + len) = '\0';
306 expout_ptr += lenelt - 2;
307 write_exp_elt_longcst ((LONGEST) len);
308 }
309
310 /* Add a bitstring constant to the end of the expression.
311
312 Bitstring constants are stored by first writing an expression element
313 that contains the length of the bitstring (in bits), then stuffing the
314 bitstring constant itself into however many expression elements are
315 needed to hold it, and then writing another expression element that
316 contains the length of the bitstring. I.E. an expression element at
317 each end of the bitstring records the bitstring length, so you can skip
318 over the expression elements containing the actual bitstring bytes from
319 either end of the bitstring. */
320
321 void
322 write_exp_bitstring (str)
323 struct stoken str;
324 {
325 register int bits = str.length; /* length in bits */
326 register int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
327 register int lenelt;
328 register char *strdata;
329
330 /* Compute the number of expression elements required to hold the bitstring,
331 along with one expression element at each end to record the actual
332 bitstring length in bits. */
333
334 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
335
336 /* Ensure that we have enough available expression elements to store
337 everything. */
338
339 if ((expout_ptr + lenelt) >= expout_size)
340 {
341 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
342 expout = (struct expression *)
343 xrealloc ((char *) expout, (sizeof (struct expression)
344 + EXP_ELEM_TO_BYTES (expout_size)));
345 }
346
347 /* Write the leading length expression element (which advances the current
348 expression element index), then write the bitstring constant, and then
349 write the trailing length expression element. */
350
351 write_exp_elt_longcst ((LONGEST) bits);
352 strdata = (char *) &expout->elts[expout_ptr];
353 memcpy (strdata, str.ptr, len);
354 expout_ptr += lenelt - 2;
355 write_exp_elt_longcst ((LONGEST) bits);
356 }
357
358 /* Type that corresponds to the address given in a minimal symbol. */
359
360 static struct type *msymbol_addr_type;
361
362 /* Add the appropriate elements for a minimal symbol to the end of
363 the expression. */
364
365 void
366 write_exp_msymbol (msymbol, text_symbol_type, data_symbol_type)
367 struct minimal_symbol *msymbol;
368 struct type *text_symbol_type;
369 struct type *data_symbol_type;
370 {
371 write_exp_elt_opcode (OP_LONG);
372 write_exp_elt_type (msymbol_addr_type);
373 write_exp_elt_longcst ((LONGEST) SYMBOL_VALUE_ADDRESS (msymbol));
374 write_exp_elt_opcode (OP_LONG);
375
376 write_exp_elt_opcode (UNOP_MEMVAL);
377 switch (msymbol -> type)
378 {
379 case mst_text:
380 case mst_file_text:
381 write_exp_elt_type (text_symbol_type);
382 break;
383
384 case mst_data:
385 case mst_file_data:
386 case mst_bss:
387 case mst_file_bss:
388 write_exp_elt_type (data_symbol_type);
389 break;
390
391 default:
392 write_exp_elt_type (builtin_type_char);
393 break;
394 }
395 write_exp_elt_opcode (UNOP_MEMVAL);
396 }
397 \f
398 /* Return a null-terminated temporary copy of the name
399 of a string token. */
400
401 char *
402 copy_name (token)
403 struct stoken token;
404 {
405 memcpy (namecopy, token.ptr, token.length);
406 namecopy[token.length] = 0;
407 return namecopy;
408 }
409 \f
410 /* Reverse an expression from suffix form (in which it is constructed)
411 to prefix form (in which we can conveniently print or execute it). */
412
413 static void
414 prefixify_expression (expr)
415 register struct expression *expr;
416 {
417 register int len =
418 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
419 register struct expression *temp;
420 register int inpos = expr->nelts, outpos = 0;
421
422 temp = (struct expression *) alloca (len);
423
424 /* Copy the original expression into temp. */
425 memcpy (temp, expr, len);
426
427 prefixify_subexp (temp, expr, inpos, outpos);
428 }
429
430 /* Return the number of exp_elements in the subexpression of EXPR
431 whose last exp_element is at index ENDPOS - 1 in EXPR. */
432
433 static int
434 length_of_subexp (expr, endpos)
435 register struct expression *expr;
436 register int endpos;
437 {
438 register int oplen = 1;
439 register int args = 0;
440 register int i;
441
442 if (endpos < 1)
443 error ("?error in length_of_subexp");
444
445 i = (int) expr->elts[endpos - 1].opcode;
446
447 switch (i)
448 {
449 /* C++ */
450 case OP_SCOPE:
451 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
452 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
453 break;
454
455 case OP_LONG:
456 case OP_DOUBLE:
457 case OP_VAR_VALUE:
458 oplen = 4;
459 break;
460
461 case OP_TYPE:
462 case OP_BOOL:
463 case OP_LAST:
464 case OP_REGISTER:
465 case OP_INTERNALVAR:
466 oplen = 3;
467 break;
468
469 case OP_FUNCALL:
470 oplen = 3;
471 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
472 break;
473
474 case UNOP_MAX:
475 case UNOP_MIN:
476 oplen = 3;
477 break;
478
479 case BINOP_VAL:
480 case UNOP_CAST:
481 case UNOP_MEMVAL:
482 oplen = 3;
483 args = 1;
484 break;
485
486 case UNOP_ABS:
487 case UNOP_CAP:
488 case UNOP_CHR:
489 case UNOP_FLOAT:
490 case UNOP_HIGH:
491 case UNOP_ODD:
492 case UNOP_ORD:
493 case UNOP_TRUNC:
494 oplen = 1;
495 args = 1;
496 break;
497
498 case STRUCTOP_STRUCT:
499 case STRUCTOP_PTR:
500 args = 1;
501 /* fall through */
502 case OP_M2_STRING:
503 case OP_STRING:
504 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
505 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
506 break;
507
508 case OP_BITSTRING:
509 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
510 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
511 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
512 break;
513
514 case OP_ARRAY:
515 oplen = 4;
516 args = longest_to_int (expr->elts[endpos - 2].longconst);
517 args -= longest_to_int (expr->elts[endpos - 3].longconst);
518 args += 1;
519 break;
520
521 case TERNOP_COND:
522 args = 3;
523 break;
524
525 /* Modula-2 */
526 case MULTI_SUBSCRIPT:
527 oplen=3;
528 args = 1 + longest_to_int (expr->elts[endpos- 2].longconst);
529 break;
530
531 case BINOP_ASSIGN_MODIFY:
532 oplen = 3;
533 args = 2;
534 break;
535
536 /* C++ */
537 case OP_THIS:
538 oplen = 2;
539 break;
540
541 default:
542 args = 1 + (i < (int) BINOP_END);
543 }
544
545 while (args > 0)
546 {
547 oplen += length_of_subexp (expr, endpos - oplen);
548 args--;
549 }
550
551 return oplen;
552 }
553
554 /* Copy the subexpression ending just before index INEND in INEXPR
555 into OUTEXPR, starting at index OUTBEG.
556 In the process, convert it from suffix to prefix form. */
557
558 static void
559 prefixify_subexp (inexpr, outexpr, inend, outbeg)
560 register struct expression *inexpr;
561 struct expression *outexpr;
562 register int inend;
563 int outbeg;
564 {
565 register int oplen = 1;
566 register int args = 0;
567 register int i;
568 int *arglens;
569 enum exp_opcode opcode;
570
571 /* Compute how long the last operation is (in OPLEN),
572 and also how many preceding subexpressions serve as
573 arguments for it (in ARGS). */
574
575 opcode = inexpr->elts[inend - 1].opcode;
576 switch (opcode)
577 {
578 /* C++ */
579 case OP_SCOPE:
580 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
581 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
582 break;
583
584 case OP_LONG:
585 case OP_DOUBLE:
586 case OP_VAR_VALUE:
587 oplen = 4;
588 break;
589
590 case OP_TYPE:
591 case OP_BOOL:
592 case OP_LAST:
593 case OP_REGISTER:
594 case OP_INTERNALVAR:
595 oplen = 3;
596 break;
597
598 case OP_FUNCALL:
599 oplen = 3;
600 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
601 break;
602
603 case UNOP_MIN:
604 case UNOP_MAX:
605 oplen = 3;
606 break;
607
608 case UNOP_CAST:
609 case UNOP_MEMVAL:
610 oplen = 3;
611 args = 1;
612 break;
613
614 case UNOP_ABS:
615 case UNOP_CAP:
616 case UNOP_CHR:
617 case UNOP_FLOAT:
618 case UNOP_HIGH:
619 case UNOP_ODD:
620 case UNOP_ORD:
621 case UNOP_TRUNC:
622 oplen=1;
623 args=1;
624 break;
625
626 case STRUCTOP_STRUCT:
627 case STRUCTOP_PTR:
628 args = 1;
629 /* fall through */
630 case OP_M2_STRING:
631 case OP_STRING:
632 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
633 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
634 break;
635
636 case OP_BITSTRING:
637 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
638 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
639 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
640 break;
641
642 case OP_ARRAY:
643 oplen = 4;
644 args = longest_to_int (inexpr->elts[inend - 2].longconst);
645 args -= longest_to_int (inexpr->elts[inend - 3].longconst);
646 args += 1;
647 break;
648
649 case TERNOP_COND:
650 args = 3;
651 break;
652
653 case BINOP_ASSIGN_MODIFY:
654 oplen = 3;
655 args = 2;
656 break;
657
658 /* Modula-2 */
659 case MULTI_SUBSCRIPT:
660 oplen=3;
661 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
662 break;
663
664 /* C++ */
665 case OP_THIS:
666 oplen = 2;
667 break;
668
669 default:
670 args = 1 + ((int) opcode < (int) BINOP_END);
671 }
672
673 /* Copy the final operator itself, from the end of the input
674 to the beginning of the output. */
675 inend -= oplen;
676 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
677 EXP_ELEM_TO_BYTES (oplen));
678 outbeg += oplen;
679
680 /* Find the lengths of the arg subexpressions. */
681 arglens = (int *) alloca (args * sizeof (int));
682 for (i = args - 1; i >= 0; i--)
683 {
684 oplen = length_of_subexp (inexpr, inend);
685 arglens[i] = oplen;
686 inend -= oplen;
687 }
688
689 /* Now copy each subexpression, preserving the order of
690 the subexpressions, but prefixifying each one.
691 In this loop, inend starts at the beginning of
692 the expression this level is working on
693 and marches forward over the arguments.
694 outbeg does similarly in the output. */
695 for (i = 0; i < args; i++)
696 {
697 oplen = arglens[i];
698 inend += oplen;
699 prefixify_subexp (inexpr, outexpr, inend, outbeg);
700 outbeg += oplen;
701 }
702 }
703 \f
704 /* This page contains the two entry points to this file. */
705
706 /* Read an expression from the string *STRINGPTR points to,
707 parse it, and return a pointer to a struct expression that we malloc.
708 Use block BLOCK as the lexical context for variable names;
709 if BLOCK is zero, use the block of the selected stack frame.
710 Meanwhile, advance *STRINGPTR to point after the expression,
711 at the first nonwhite character that is not part of the expression
712 (possibly a null character).
713
714 If COMMA is nonzero, stop if a comma is reached. */
715
716 struct expression *
717 parse_exp_1 (stringptr, block, comma)
718 char **stringptr;
719 struct block *block;
720 int comma;
721 {
722 struct cleanup *old_chain;
723
724 lexptr = *stringptr;
725
726 paren_depth = 0;
727 type_stack_depth = 0;
728
729 comma_terminates = comma;
730
731 if (lexptr == 0 || *lexptr == 0)
732 error_no_arg ("expression to compute");
733
734 old_chain = make_cleanup (free_funcalls, 0);
735 funcall_chain = 0;
736
737 expression_context_block = block ? block : get_selected_block ();
738
739 namecopy = (char *) alloca (strlen (lexptr) + 1);
740 expout_size = 10;
741 expout_ptr = 0;
742 expout = (struct expression *)
743 xmalloc (sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_size));
744 expout->language_defn = current_language;
745 make_cleanup (free_current_contents, &expout);
746
747 if (current_language->la_parser ())
748 current_language->la_error (NULL);
749
750 discard_cleanups (old_chain);
751
752 /* Record the actual number of expression elements, and then
753 reallocate the expression memory so that we free up any
754 excess elements. */
755
756 expout->nelts = expout_ptr;
757 expout = (struct expression *)
758 xrealloc ((char *) expout,
759 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_ptr));;
760
761 /* Convert expression from postfix form as generated by yacc
762 parser, to a prefix form. */
763
764 DUMP_EXPRESSION (expout, gdb_stdout, "before conversion to prefix form");
765 prefixify_expression (expout);
766 DUMP_EXPRESSION (expout, gdb_stdout, "after conversion to prefix form");
767
768 *stringptr = lexptr;
769 return expout;
770 }
771
772 /* Parse STRING as an expression, and complain if this fails
773 to use up all of the contents of STRING. */
774
775 struct expression *
776 parse_expression (string)
777 char *string;
778 {
779 register struct expression *exp;
780 exp = parse_exp_1 (&string, 0, 0);
781 if (*string)
782 error ("Junk after end of expression.");
783 return exp;
784 }
785 \f
786 /* Stuff for maintaining a stack of types. Currently just used by C, but
787 probably useful for any language which declares its types "backwards". */
788
789 void
790 push_type (tp)
791 enum type_pieces tp;
792 {
793 if (type_stack_depth == type_stack_size)
794 {
795 type_stack_size *= 2;
796 type_stack = (union type_stack_elt *)
797 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
798 }
799 type_stack[type_stack_depth++].piece = tp;
800 }
801
802 void
803 push_type_int (n)
804 int n;
805 {
806 if (type_stack_depth == type_stack_size)
807 {
808 type_stack_size *= 2;
809 type_stack = (union type_stack_elt *)
810 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
811 }
812 type_stack[type_stack_depth++].int_val = n;
813 }
814
815 enum type_pieces
816 pop_type ()
817 {
818 if (type_stack_depth)
819 return type_stack[--type_stack_depth].piece;
820 return tp_end;
821 }
822
823 int
824 pop_type_int ()
825 {
826 if (type_stack_depth)
827 return type_stack[--type_stack_depth].int_val;
828 /* "Can't happen". */
829 return 0;
830 }
831
832 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
833 as modified by all the stuff on the stack. */
834 struct type *
835 follow_types (follow_type)
836 struct type *follow_type;
837 {
838 int done = 0;
839 int array_size;
840 struct type *range_type;
841
842 while (!done)
843 switch (pop_type ())
844 {
845 case tp_end:
846 done = 1;
847 break;
848 case tp_pointer:
849 follow_type = lookup_pointer_type (follow_type);
850 break;
851 case tp_reference:
852 follow_type = lookup_reference_type (follow_type);
853 break;
854 case tp_array:
855 array_size = pop_type_int ();
856 if (array_size != -1)
857 {
858 range_type =
859 create_range_type ((struct type *) NULL,
860 builtin_type_int, 0,
861 array_size - 1);
862 follow_type =
863 create_array_type ((struct type *) NULL,
864 follow_type, range_type);
865 }
866 else
867 follow_type = lookup_pointer_type (follow_type);
868 break;
869 case tp_function:
870 follow_type = lookup_function_type (follow_type);
871 break;
872 }
873 return follow_type;
874 }
875 \f
876 void
877 _initialize_parse ()
878 {
879 type_stack_size = 80;
880 type_stack_depth = 0;
881 type_stack = (union type_stack_elt *)
882 xmalloc (type_stack_size * sizeof (*type_stack));
883
884 /* We don't worry too much about what the name of this type is
885 because the name should rarely appear in output to the user. */
886
887 msymbol_addr_type =
888 init_type (TYPE_CODE_PTR, TARGET_PTR_BIT / HOST_CHAR_BIT, 0,
889 "void *", NULL);
890 }