8ca379e83ce2e0fe2b7c5b48b44c4f0ef8e110ce
[binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991, 1994 Free Software Foundation, Inc.
3 Modified from expread.y by the Department of Computer Science at the
4 State University of New York at Buffalo, 1991.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /* Parse an expression from text in a string,
23 and return the result as a struct expression pointer.
24 That structure contains arithmetic operations in reverse polish,
25 with constants represented by operations that are followed by special data.
26 See expression.h for the details of the format.
27 What is important here is that it can be built up sequentially
28 during the process of parsing; the lower levels of the tree always
29 come first in the result. */
30
31 #include "defs.h"
32 #include <string.h>
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "frame.h"
36 #include "expression.h"
37 #include "value.h"
38 #include "command.h"
39 #include "language.h"
40 #include "parser-defs.h"
41 \f
42 /* Global variables declared in parser-defs.h (and commented there). */
43 struct expression *expout;
44 int expout_size;
45 int expout_ptr;
46 struct block *expression_context_block;
47 struct block *innermost_block;
48 int arglist_len;
49 union type_stack_elt *type_stack;
50 int type_stack_depth, type_stack_size;
51 char *lexptr;
52 char *namecopy;
53 int paren_depth;
54 int comma_terminates;
55 \f
56 static void
57 free_funcalls PARAMS ((void));
58
59 static void
60 prefixify_expression PARAMS ((struct expression *));
61
62 static int
63 length_of_subexp PARAMS ((struct expression *, int));
64
65 static void
66 prefixify_subexp PARAMS ((struct expression *, struct expression *, int, int));
67
68 /* Data structure for saving values of arglist_len for function calls whose
69 arguments contain other function calls. */
70
71 struct funcall
72 {
73 struct funcall *next;
74 int arglist_len;
75 };
76
77 static struct funcall *funcall_chain;
78
79 /* Assign machine-independent names to certain registers
80 (unless overridden by the REGISTER_NAMES table) */
81
82 #ifdef NO_STD_REGS
83 unsigned num_std_regs = 0;
84 struct std_regs std_regs[1];
85 #else
86 struct std_regs std_regs[] = {
87
88 #ifdef PC_REGNUM
89 { "pc", PC_REGNUM },
90 #endif
91 #ifdef FP_REGNUM
92 { "fp", FP_REGNUM },
93 #endif
94 #ifdef SP_REGNUM
95 { "sp", SP_REGNUM },
96 #endif
97 #ifdef PS_REGNUM
98 { "ps", PS_REGNUM },
99 #endif
100
101 };
102
103 unsigned num_std_regs = (sizeof std_regs / sizeof std_regs[0]);
104
105 #endif
106
107
108 /* Begin counting arguments for a function call,
109 saving the data about any containing call. */
110
111 void
112 start_arglist ()
113 {
114 register struct funcall *new;
115
116 new = (struct funcall *) xmalloc (sizeof (struct funcall));
117 new->next = funcall_chain;
118 new->arglist_len = arglist_len;
119 arglist_len = 0;
120 funcall_chain = new;
121 }
122
123 /* Return the number of arguments in a function call just terminated,
124 and restore the data for the containing function call. */
125
126 int
127 end_arglist ()
128 {
129 register int val = arglist_len;
130 register struct funcall *call = funcall_chain;
131 funcall_chain = call->next;
132 arglist_len = call->arglist_len;
133 free ((PTR)call);
134 return val;
135 }
136
137 /* Free everything in the funcall chain.
138 Used when there is an error inside parsing. */
139
140 static void
141 free_funcalls ()
142 {
143 register struct funcall *call, *next;
144
145 for (call = funcall_chain; call; call = next)
146 {
147 next = call->next;
148 free ((PTR)call);
149 }
150 }
151 \f
152 /* This page contains the functions for adding data to the struct expression
153 being constructed. */
154
155 /* Add one element to the end of the expression. */
156
157 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
158 a register through here */
159
160 void
161 write_exp_elt (expelt)
162 union exp_element expelt;
163 {
164 if (expout_ptr >= expout_size)
165 {
166 expout_size *= 2;
167 expout = (struct expression *)
168 xrealloc ((char *) expout, sizeof (struct expression)
169 + EXP_ELEM_TO_BYTES (expout_size));
170 }
171 expout->elts[expout_ptr++] = expelt;
172 }
173
174 void
175 write_exp_elt_opcode (expelt)
176 enum exp_opcode expelt;
177 {
178 union exp_element tmp;
179
180 tmp.opcode = expelt;
181
182 write_exp_elt (tmp);
183 }
184
185 void
186 write_exp_elt_sym (expelt)
187 struct symbol *expelt;
188 {
189 union exp_element tmp;
190
191 tmp.symbol = expelt;
192
193 write_exp_elt (tmp);
194 }
195
196 void
197 write_exp_elt_block (b)
198 struct block *b;
199 {
200 union exp_element tmp;
201 tmp.block = b;
202 write_exp_elt (tmp);
203 }
204
205 void
206 write_exp_elt_longcst (expelt)
207 LONGEST expelt;
208 {
209 union exp_element tmp;
210
211 tmp.longconst = expelt;
212
213 write_exp_elt (tmp);
214 }
215
216 void
217 write_exp_elt_dblcst (expelt)
218 double expelt;
219 {
220 union exp_element tmp;
221
222 tmp.doubleconst = expelt;
223
224 write_exp_elt (tmp);
225 }
226
227 void
228 write_exp_elt_type (expelt)
229 struct type *expelt;
230 {
231 union exp_element tmp;
232
233 tmp.type = expelt;
234
235 write_exp_elt (tmp);
236 }
237
238 void
239 write_exp_elt_intern (expelt)
240 struct internalvar *expelt;
241 {
242 union exp_element tmp;
243
244 tmp.internalvar = expelt;
245
246 write_exp_elt (tmp);
247 }
248
249 /* Add a string constant to the end of the expression.
250
251 String constants are stored by first writing an expression element
252 that contains the length of the string, then stuffing the string
253 constant itself into however many expression elements are needed
254 to hold it, and then writing another expression element that contains
255 the length of the string. I.E. an expression element at each end of
256 the string records the string length, so you can skip over the
257 expression elements containing the actual string bytes from either
258 end of the string. Note that this also allows gdb to handle
259 strings with embedded null bytes, as is required for some languages.
260
261 Don't be fooled by the fact that the string is null byte terminated,
262 this is strictly for the convenience of debugging gdb itself. Gdb
263 Gdb does not depend up the string being null terminated, since the
264 actual length is recorded in expression elements at each end of the
265 string. The null byte is taken into consideration when computing how
266 many expression elements are required to hold the string constant, of
267 course. */
268
269
270 void
271 write_exp_string (str)
272 struct stoken str;
273 {
274 register int len = str.length;
275 register int lenelt;
276 register char *strdata;
277
278 /* Compute the number of expression elements required to hold the string
279 (including a null byte terminator), along with one expression element
280 at each end to record the actual string length (not including the
281 null byte terminator). */
282
283 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
284
285 /* Ensure that we have enough available expression elements to store
286 everything. */
287
288 if ((expout_ptr + lenelt) >= expout_size)
289 {
290 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
291 expout = (struct expression *)
292 xrealloc ((char *) expout, (sizeof (struct expression)
293 + EXP_ELEM_TO_BYTES (expout_size)));
294 }
295
296 /* Write the leading length expression element (which advances the current
297 expression element index), then write the string constant followed by a
298 terminating null byte, and then write the trailing length expression
299 element. */
300
301 write_exp_elt_longcst ((LONGEST) len);
302 strdata = (char *) &expout->elts[expout_ptr];
303 memcpy (strdata, str.ptr, len);
304 *(strdata + len) = '\0';
305 expout_ptr += lenelt - 2;
306 write_exp_elt_longcst ((LONGEST) len);
307 }
308
309 /* Add a bitstring constant to the end of the expression.
310
311 Bitstring constants are stored by first writing an expression element
312 that contains the length of the bitstring (in bits), then stuffing the
313 bitstring constant itself into however many expression elements are
314 needed to hold it, and then writing another expression element that
315 contains the length of the bitstring. I.E. an expression element at
316 each end of the bitstring records the bitstring length, so you can skip
317 over the expression elements containing the actual bitstring bytes from
318 either end of the bitstring. */
319
320 void
321 write_exp_bitstring (str)
322 struct stoken str;
323 {
324 register int bits = str.length; /* length in bits */
325 register int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
326 register int lenelt;
327 register char *strdata;
328
329 /* Compute the number of expression elements required to hold the bitstring,
330 along with one expression element at each end to record the actual
331 bitstring length in bits. */
332
333 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
334
335 /* Ensure that we have enough available expression elements to store
336 everything. */
337
338 if ((expout_ptr + lenelt) >= expout_size)
339 {
340 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
341 expout = (struct expression *)
342 xrealloc ((char *) expout, (sizeof (struct expression)
343 + EXP_ELEM_TO_BYTES (expout_size)));
344 }
345
346 /* Write the leading length expression element (which advances the current
347 expression element index), then write the bitstring constant, and then
348 write the trailing length expression element. */
349
350 write_exp_elt_longcst ((LONGEST) bits);
351 strdata = (char *) &expout->elts[expout_ptr];
352 memcpy (strdata, str.ptr, len);
353 expout_ptr += lenelt - 2;
354 write_exp_elt_longcst ((LONGEST) bits);
355 }
356
357 /* Add the appropriate elements for a minimal symbol to the end of
358 the expression. */
359
360 void
361 write_exp_msymbol (msymbol, text_symbol_type, data_symbol_type)
362 struct minimal_symbol *msymbol;
363 struct type *text_symbol_type;
364 struct type *data_symbol_type;
365 {
366 write_exp_elt_opcode (OP_LONG);
367 write_exp_elt_type (lookup_pointer_type (builtin_type_void));
368 write_exp_elt_longcst ((LONGEST) SYMBOL_VALUE_ADDRESS (msymbol));
369 write_exp_elt_opcode (OP_LONG);
370
371 write_exp_elt_opcode (UNOP_MEMVAL);
372 switch (msymbol -> type)
373 {
374 case mst_text:
375 case mst_file_text:
376 case mst_solib_trampoline:
377 write_exp_elt_type (text_symbol_type);
378 break;
379
380 case mst_data:
381 case mst_file_data:
382 case mst_bss:
383 case mst_file_bss:
384 write_exp_elt_type (data_symbol_type);
385 break;
386
387 default:
388 write_exp_elt_type (builtin_type_char);
389 break;
390 }
391 write_exp_elt_opcode (UNOP_MEMVAL);
392 }
393 \f
394 /* Return a null-terminated temporary copy of the name
395 of a string token. */
396
397 char *
398 copy_name (token)
399 struct stoken token;
400 {
401 memcpy (namecopy, token.ptr, token.length);
402 namecopy[token.length] = 0;
403 return namecopy;
404 }
405 \f
406 /* Reverse an expression from suffix form (in which it is constructed)
407 to prefix form (in which we can conveniently print or execute it). */
408
409 static void
410 prefixify_expression (expr)
411 register struct expression *expr;
412 {
413 register int len =
414 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
415 register struct expression *temp;
416 register int inpos = expr->nelts, outpos = 0;
417
418 temp = (struct expression *) alloca (len);
419
420 /* Copy the original expression into temp. */
421 memcpy (temp, expr, len);
422
423 prefixify_subexp (temp, expr, inpos, outpos);
424 }
425
426 /* Return the number of exp_elements in the subexpression of EXPR
427 whose last exp_element is at index ENDPOS - 1 in EXPR. */
428
429 static int
430 length_of_subexp (expr, endpos)
431 register struct expression *expr;
432 register int endpos;
433 {
434 register int oplen = 1;
435 register int args = 0;
436 register int i;
437
438 if (endpos < 1)
439 error ("?error in length_of_subexp");
440
441 i = (int) expr->elts[endpos - 1].opcode;
442
443 switch (i)
444 {
445 /* C++ */
446 case OP_SCOPE:
447 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
448 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
449 break;
450
451 case OP_LONG:
452 case OP_DOUBLE:
453 case OP_VAR_VALUE:
454 oplen = 4;
455 break;
456
457 case OP_TYPE:
458 case OP_BOOL:
459 case OP_LAST:
460 case OP_REGISTER:
461 case OP_INTERNALVAR:
462 oplen = 3;
463 break;
464
465 case OP_F77_LITERAL_COMPLEX:
466 oplen = 1;
467 args = 2;
468 break;
469
470 case OP_F77_SUBSTR:
471 oplen = 1;
472 args = 2;
473 break;
474
475 case OP_FUNCALL:
476 case OP_F77_UNDETERMINED_ARGLIST:
477 oplen = 3;
478 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
479 break;
480
481 case UNOP_MAX:
482 case UNOP_MIN:
483 oplen = 3;
484 break;
485
486 case BINOP_VAL:
487 case UNOP_CAST:
488 case UNOP_MEMVAL:
489 oplen = 3;
490 args = 1;
491 break;
492
493 case UNOP_ABS:
494 case UNOP_CAP:
495 case UNOP_CHR:
496 case UNOP_FLOAT:
497 case UNOP_HIGH:
498 case UNOP_ODD:
499 case UNOP_ORD:
500 case UNOP_TRUNC:
501 oplen = 1;
502 args = 1;
503 break;
504
505 case STRUCTOP_STRUCT:
506 case STRUCTOP_PTR:
507 args = 1;
508 /* fall through */
509 case OP_M2_STRING:
510 case OP_STRING:
511 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
512 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
513 break;
514
515 case OP_BITSTRING:
516 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
517 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
518 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
519 break;
520
521 case OP_ARRAY:
522 oplen = 4;
523 args = longest_to_int (expr->elts[endpos - 2].longconst);
524 args -= longest_to_int (expr->elts[endpos - 3].longconst);
525 args += 1;
526 break;
527
528 case TERNOP_COND:
529 args = 3;
530 break;
531
532 /* Modula-2 */
533 case MULTI_SUBSCRIPT:
534 /* Fortran */
535 case MULTI_F77_SUBSCRIPT:
536 oplen = 3;
537 args = 1 + longest_to_int (expr->elts[endpos- 2].longconst);
538 break;
539
540 case BINOP_ASSIGN_MODIFY:
541 oplen = 3;
542 args = 2;
543 break;
544
545 /* C++ */
546 case OP_THIS:
547 oplen = 2;
548 break;
549
550 default:
551 args = 1 + (i < (int) BINOP_END);
552 }
553
554 while (args > 0)
555 {
556 oplen += length_of_subexp (expr, endpos - oplen);
557 args--;
558 }
559
560 return oplen;
561 }
562
563 /* Copy the subexpression ending just before index INEND in INEXPR
564 into OUTEXPR, starting at index OUTBEG.
565 In the process, convert it from suffix to prefix form. */
566
567 static void
568 prefixify_subexp (inexpr, outexpr, inend, outbeg)
569 register struct expression *inexpr;
570 struct expression *outexpr;
571 register int inend;
572 int outbeg;
573 {
574 register int oplen = 1;
575 register int args = 0;
576 register int i;
577 int *arglens;
578 enum exp_opcode opcode;
579
580 /* Compute how long the last operation is (in OPLEN),
581 and also how many preceding subexpressions serve as
582 arguments for it (in ARGS). */
583
584 opcode = inexpr->elts[inend - 1].opcode;
585 switch (opcode)
586 {
587 /* C++ */
588 case OP_SCOPE:
589 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
590 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
591 break;
592
593 case OP_LONG:
594 case OP_DOUBLE:
595 case OP_VAR_VALUE:
596 oplen = 4;
597 break;
598
599 case OP_TYPE:
600 case OP_BOOL:
601 case OP_LAST:
602 case OP_REGISTER:
603 case OP_INTERNALVAR:
604 oplen = 3;
605 break;
606
607 case OP_F77_LITERAL_COMPLEX:
608 oplen = 1;
609 args = 2;
610 break;
611
612 case OP_F77_SUBSTR:
613 oplen = 1;
614 args = 2;
615 break;
616
617 case OP_FUNCALL:
618 case OP_F77_UNDETERMINED_ARGLIST:
619 oplen = 3;
620 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
621 break;
622
623 case UNOP_MIN:
624 case UNOP_MAX:
625 oplen = 3;
626 break;
627
628 case UNOP_CAST:
629 case UNOP_MEMVAL:
630 oplen = 3;
631 args = 1;
632 break;
633
634 case UNOP_ABS:
635 case UNOP_CAP:
636 case UNOP_CHR:
637 case UNOP_FLOAT:
638 case UNOP_HIGH:
639 case UNOP_ODD:
640 case UNOP_ORD:
641 case UNOP_TRUNC:
642 oplen=1;
643 args=1;
644 break;
645
646 case STRUCTOP_STRUCT:
647 case STRUCTOP_PTR:
648 args = 1;
649 /* fall through */
650 case OP_M2_STRING:
651 case OP_STRING:
652 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
653 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
654 break;
655
656 case OP_BITSTRING:
657 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
658 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
659 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
660 break;
661
662 case OP_ARRAY:
663 oplen = 4;
664 args = longest_to_int (inexpr->elts[inend - 2].longconst);
665 args -= longest_to_int (inexpr->elts[inend - 3].longconst);
666 args += 1;
667 break;
668
669 case TERNOP_COND:
670 args = 3;
671 break;
672
673 case BINOP_ASSIGN_MODIFY:
674 oplen = 3;
675 args = 2;
676 break;
677
678 /* Modula-2 */
679 case MULTI_SUBSCRIPT:
680 /* Fortran */
681 case MULTI_F77_SUBSCRIPT:
682 oplen = 3;
683 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
684 break;
685
686 /* C++ */
687 case OP_THIS:
688 oplen = 2;
689 break;
690
691 default:
692 args = 1 + ((int) opcode < (int) BINOP_END);
693 }
694
695 /* Copy the final operator itself, from the end of the input
696 to the beginning of the output. */
697 inend -= oplen;
698 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
699 EXP_ELEM_TO_BYTES (oplen));
700 outbeg += oplen;
701
702 /* Find the lengths of the arg subexpressions. */
703 arglens = (int *) alloca (args * sizeof (int));
704 for (i = args - 1; i >= 0; i--)
705 {
706 oplen = length_of_subexp (inexpr, inend);
707 arglens[i] = oplen;
708 inend -= oplen;
709 }
710
711 /* Now copy each subexpression, preserving the order of
712 the subexpressions, but prefixifying each one.
713 In this loop, inend starts at the beginning of
714 the expression this level is working on
715 and marches forward over the arguments.
716 outbeg does similarly in the output. */
717 for (i = 0; i < args; i++)
718 {
719 oplen = arglens[i];
720 inend += oplen;
721 prefixify_subexp (inexpr, outexpr, inend, outbeg);
722 outbeg += oplen;
723 }
724 }
725 \f
726 /* This page contains the two entry points to this file. */
727
728 /* Read an expression from the string *STRINGPTR points to,
729 parse it, and return a pointer to a struct expression that we malloc.
730 Use block BLOCK as the lexical context for variable names;
731 if BLOCK is zero, use the block of the selected stack frame.
732 Meanwhile, advance *STRINGPTR to point after the expression,
733 at the first nonwhite character that is not part of the expression
734 (possibly a null character).
735
736 If COMMA is nonzero, stop if a comma is reached. */
737
738 struct expression *
739 parse_exp_1 (stringptr, block, comma)
740 char **stringptr;
741 struct block *block;
742 int comma;
743 {
744 struct cleanup *old_chain;
745
746 lexptr = *stringptr;
747
748 paren_depth = 0;
749 type_stack_depth = 0;
750
751 comma_terminates = comma;
752
753 if (lexptr == 0 || *lexptr == 0)
754 error_no_arg ("expression to compute");
755
756 old_chain = make_cleanup (free_funcalls, 0);
757 funcall_chain = 0;
758
759 expression_context_block = block ? block : get_selected_block ();
760
761 namecopy = (char *) alloca (strlen (lexptr) + 1);
762 expout_size = 10;
763 expout_ptr = 0;
764 expout = (struct expression *)
765 xmalloc (sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_size));
766 expout->language_defn = current_language;
767 make_cleanup (free_current_contents, &expout);
768
769 if (current_language->la_parser ())
770 current_language->la_error (NULL);
771
772 discard_cleanups (old_chain);
773
774 /* Record the actual number of expression elements, and then
775 reallocate the expression memory so that we free up any
776 excess elements. */
777
778 expout->nelts = expout_ptr;
779 expout = (struct expression *)
780 xrealloc ((char *) expout,
781 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_ptr));;
782
783 /* Convert expression from postfix form as generated by yacc
784 parser, to a prefix form. */
785
786 DUMP_EXPRESSION (expout, gdb_stdout, "before conversion to prefix form");
787 prefixify_expression (expout);
788 DUMP_EXPRESSION (expout, gdb_stdout, "after conversion to prefix form");
789
790 *stringptr = lexptr;
791 return expout;
792 }
793
794 /* Parse STRING as an expression, and complain if this fails
795 to use up all of the contents of STRING. */
796
797 struct expression *
798 parse_expression (string)
799 char *string;
800 {
801 register struct expression *exp;
802 exp = parse_exp_1 (&string, 0, 0);
803 if (*string)
804 error ("Junk after end of expression.");
805 return exp;
806 }
807 \f
808 /* Stuff for maintaining a stack of types. Currently just used by C, but
809 probably useful for any language which declares its types "backwards". */
810
811 void
812 push_type (tp)
813 enum type_pieces tp;
814 {
815 if (type_stack_depth == type_stack_size)
816 {
817 type_stack_size *= 2;
818 type_stack = (union type_stack_elt *)
819 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
820 }
821 type_stack[type_stack_depth++].piece = tp;
822 }
823
824 void
825 push_type_int (n)
826 int n;
827 {
828 if (type_stack_depth == type_stack_size)
829 {
830 type_stack_size *= 2;
831 type_stack = (union type_stack_elt *)
832 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
833 }
834 type_stack[type_stack_depth++].int_val = n;
835 }
836
837 enum type_pieces
838 pop_type ()
839 {
840 if (type_stack_depth)
841 return type_stack[--type_stack_depth].piece;
842 return tp_end;
843 }
844
845 int
846 pop_type_int ()
847 {
848 if (type_stack_depth)
849 return type_stack[--type_stack_depth].int_val;
850 /* "Can't happen". */
851 return 0;
852 }
853
854 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
855 as modified by all the stuff on the stack. */
856 struct type *
857 follow_types (follow_type)
858 struct type *follow_type;
859 {
860 int done = 0;
861 int array_size;
862 struct type *range_type;
863
864 while (!done)
865 switch (pop_type ())
866 {
867 case tp_end:
868 done = 1;
869 break;
870 case tp_pointer:
871 follow_type = lookup_pointer_type (follow_type);
872 break;
873 case tp_reference:
874 follow_type = lookup_reference_type (follow_type);
875 break;
876 case tp_array:
877 array_size = pop_type_int ();
878 if (array_size != -1)
879 {
880 range_type =
881 create_range_type ((struct type *) NULL,
882 builtin_type_int, 0,
883 array_size - 1);
884 follow_type =
885 create_array_type ((struct type *) NULL,
886 follow_type, range_type);
887 }
888 else
889 follow_type = lookup_pointer_type (follow_type);
890 break;
891 case tp_function:
892 follow_type = lookup_function_type (follow_type);
893 break;
894 }
895 return follow_type;
896 }
897 \f
898 void
899 _initialize_parse ()
900 {
901 type_stack_size = 80;
902 type_stack_depth = 0;
903 type_stack = (union type_stack_elt *)
904 xmalloc (type_stack_size * sizeof (*type_stack));
905 }