sim: sh64: delete dv-sockser references
[binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 Modified from expread.y by the Department of Computer Science at the
6 State University of New York at Buffalo, 1991.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* Parse an expression from text in a string,
24 and return the result as a struct expression pointer.
25 That structure contains arithmetic operations in reverse polish,
26 with constants represented by operations that are followed by special data.
27 See expression.h for the details of the format.
28 What is important here is that it can be built up sequentially
29 during the process of parsing; the lower levels of the tree always
30 come first in the result. */
31
32 #include "defs.h"
33 #include <ctype.h>
34 #include "arch-utils.h"
35 #include "symtab.h"
36 #include "gdbtypes.h"
37 #include "frame.h"
38 #include "expression.h"
39 #include "value.h"
40 #include "command.h"
41 #include "language.h"
42 #include "f-lang.h"
43 #include "parser-defs.h"
44 #include "gdbcmd.h"
45 #include "symfile.h" /* for overlay functions */
46 #include "inferior.h"
47 #include "doublest.h"
48 #include "block.h"
49 #include "source.h"
50 #include "objfiles.h"
51 #include "user-regs.h"
52
53 /* Standard set of definitions for printing, dumping, prefixifying,
54 * and evaluating expressions. */
55
56 const struct exp_descriptor exp_descriptor_standard =
57 {
58 print_subexp_standard,
59 operator_length_standard,
60 operator_check_standard,
61 op_name_standard,
62 dump_subexp_body_standard,
63 evaluate_subexp_standard
64 };
65 \f
66 /* Global variables declared in parser-defs.h (and commented there). */
67 const struct block *expression_context_block;
68 CORE_ADDR expression_context_pc;
69 const struct block *innermost_block;
70 int arglist_len;
71 static struct type_stack type_stack;
72 const char *lexptr;
73 const char *prev_lexptr;
74 int paren_depth;
75 int comma_terminates;
76
77 /* True if parsing an expression to attempt completion. */
78 int parse_completion;
79
80 /* The index of the last struct expression directly before a '.' or
81 '->'. This is set when parsing and is only used when completing a
82 field name. It is -1 if no dereference operation was found. */
83 static int expout_last_struct = -1;
84
85 /* If we are completing a tagged type name, this will be nonzero. */
86 static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF;
87
88 /* The token for tagged type name completion. */
89 static char *expout_completion_name;
90
91 \f
92 static unsigned int expressiondebug = 0;
93 static void
94 show_expressiondebug (struct ui_file *file, int from_tty,
95 struct cmd_list_element *c, const char *value)
96 {
97 fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
98 }
99
100
101 /* Non-zero if an expression parser should set yydebug. */
102 int parser_debug;
103
104 static void
105 show_parserdebug (struct ui_file *file, int from_tty,
106 struct cmd_list_element *c, const char *value)
107 {
108 fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
109 }
110
111
112 static void free_funcalls (void *ignore);
113
114 static int prefixify_subexp (struct expression *, struct expression *, int,
115 int);
116
117 static struct expression *parse_exp_in_context (const char **, CORE_ADDR,
118 const struct block *, int,
119 int, int *);
120 static struct expression *parse_exp_in_context_1 (const char **, CORE_ADDR,
121 const struct block *, int,
122 int, int *);
123
124 void _initialize_parse (void);
125
126 /* Data structure for saving values of arglist_len for function calls whose
127 arguments contain other function calls. */
128
129 struct funcall
130 {
131 struct funcall *next;
132 int arglist_len;
133 };
134
135 static struct funcall *funcall_chain;
136
137 /* Begin counting arguments for a function call,
138 saving the data about any containing call. */
139
140 void
141 start_arglist (void)
142 {
143 struct funcall *newobj;
144
145 newobj = (struct funcall *) xmalloc (sizeof (struct funcall));
146 newobj->next = funcall_chain;
147 newobj->arglist_len = arglist_len;
148 arglist_len = 0;
149 funcall_chain = newobj;
150 }
151
152 /* Return the number of arguments in a function call just terminated,
153 and restore the data for the containing function call. */
154
155 int
156 end_arglist (void)
157 {
158 int val = arglist_len;
159 struct funcall *call = funcall_chain;
160
161 funcall_chain = call->next;
162 arglist_len = call->arglist_len;
163 xfree (call);
164 return val;
165 }
166
167 /* Free everything in the funcall chain.
168 Used when there is an error inside parsing. */
169
170 static void
171 free_funcalls (void *ignore)
172 {
173 struct funcall *call, *next;
174
175 for (call = funcall_chain; call; call = next)
176 {
177 next = call->next;
178 xfree (call);
179 }
180 }
181 \f
182
183 /* See definition in parser-defs.h. */
184
185 void
186 initialize_expout (struct parser_state *ps, size_t initial_size,
187 const struct language_defn *lang,
188 struct gdbarch *gdbarch)
189 {
190 ps->expout_size = initial_size;
191 ps->expout_ptr = 0;
192 ps->expout = xmalloc (sizeof (struct expression)
193 + EXP_ELEM_TO_BYTES (ps->expout_size));
194 ps->expout->language_defn = lang;
195 ps->expout->gdbarch = gdbarch;
196 }
197
198 /* See definition in parser-defs.h. */
199
200 void
201 reallocate_expout (struct parser_state *ps)
202 {
203 /* Record the actual number of expression elements, and then
204 reallocate the expression memory so that we free up any
205 excess elements. */
206
207 ps->expout->nelts = ps->expout_ptr;
208 ps->expout = (struct expression *)
209 xrealloc (ps->expout,
210 sizeof (struct expression)
211 + EXP_ELEM_TO_BYTES (ps->expout_ptr));
212 }
213
214 /* This page contains the functions for adding data to the struct expression
215 being constructed. */
216
217 /* Add one element to the end of the expression. */
218
219 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
220 a register through here. */
221
222 static void
223 write_exp_elt (struct parser_state *ps, const union exp_element *expelt)
224 {
225 if (ps->expout_ptr >= ps->expout_size)
226 {
227 ps->expout_size *= 2;
228 ps->expout = (struct expression *)
229 xrealloc (ps->expout, sizeof (struct expression)
230 + EXP_ELEM_TO_BYTES (ps->expout_size));
231 }
232 ps->expout->elts[ps->expout_ptr++] = *expelt;
233 }
234
235 void
236 write_exp_elt_opcode (struct parser_state *ps, enum exp_opcode expelt)
237 {
238 union exp_element tmp;
239
240 memset (&tmp, 0, sizeof (union exp_element));
241 tmp.opcode = expelt;
242 write_exp_elt (ps, &tmp);
243 }
244
245 void
246 write_exp_elt_sym (struct parser_state *ps, struct symbol *expelt)
247 {
248 union exp_element tmp;
249
250 memset (&tmp, 0, sizeof (union exp_element));
251 tmp.symbol = expelt;
252 write_exp_elt (ps, &tmp);
253 }
254
255 void
256 write_exp_elt_block (struct parser_state *ps, const struct block *b)
257 {
258 union exp_element tmp;
259
260 memset (&tmp, 0, sizeof (union exp_element));
261 tmp.block = b;
262 write_exp_elt (ps, &tmp);
263 }
264
265 void
266 write_exp_elt_objfile (struct parser_state *ps, struct objfile *objfile)
267 {
268 union exp_element tmp;
269
270 memset (&tmp, 0, sizeof (union exp_element));
271 tmp.objfile = objfile;
272 write_exp_elt (ps, &tmp);
273 }
274
275 void
276 write_exp_elt_longcst (struct parser_state *ps, LONGEST expelt)
277 {
278 union exp_element tmp;
279
280 memset (&tmp, 0, sizeof (union exp_element));
281 tmp.longconst = expelt;
282 write_exp_elt (ps, &tmp);
283 }
284
285 void
286 write_exp_elt_dblcst (struct parser_state *ps, DOUBLEST expelt)
287 {
288 union exp_element tmp;
289
290 memset (&tmp, 0, sizeof (union exp_element));
291 tmp.doubleconst = expelt;
292 write_exp_elt (ps, &tmp);
293 }
294
295 void
296 write_exp_elt_decfloatcst (struct parser_state *ps, gdb_byte expelt[16])
297 {
298 union exp_element tmp;
299 int index;
300
301 for (index = 0; index < 16; index++)
302 tmp.decfloatconst[index] = expelt[index];
303
304 write_exp_elt (ps, &tmp);
305 }
306
307 void
308 write_exp_elt_type (struct parser_state *ps, struct type *expelt)
309 {
310 union exp_element tmp;
311
312 memset (&tmp, 0, sizeof (union exp_element));
313 tmp.type = expelt;
314 write_exp_elt (ps, &tmp);
315 }
316
317 void
318 write_exp_elt_intern (struct parser_state *ps, struct internalvar *expelt)
319 {
320 union exp_element tmp;
321
322 memset (&tmp, 0, sizeof (union exp_element));
323 tmp.internalvar = expelt;
324 write_exp_elt (ps, &tmp);
325 }
326
327 /* Add a string constant to the end of the expression.
328
329 String constants are stored by first writing an expression element
330 that contains the length of the string, then stuffing the string
331 constant itself into however many expression elements are needed
332 to hold it, and then writing another expression element that contains
333 the length of the string. I.e. an expression element at each end of
334 the string records the string length, so you can skip over the
335 expression elements containing the actual string bytes from either
336 end of the string. Note that this also allows gdb to handle
337 strings with embedded null bytes, as is required for some languages.
338
339 Don't be fooled by the fact that the string is null byte terminated,
340 this is strictly for the convenience of debugging gdb itself.
341 Gdb does not depend up the string being null terminated, since the
342 actual length is recorded in expression elements at each end of the
343 string. The null byte is taken into consideration when computing how
344 many expression elements are required to hold the string constant, of
345 course. */
346
347
348 void
349 write_exp_string (struct parser_state *ps, struct stoken str)
350 {
351 int len = str.length;
352 size_t lenelt;
353 char *strdata;
354
355 /* Compute the number of expression elements required to hold the string
356 (including a null byte terminator), along with one expression element
357 at each end to record the actual string length (not including the
358 null byte terminator). */
359
360 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
361
362 increase_expout_size (ps, lenelt);
363
364 /* Write the leading length expression element (which advances the current
365 expression element index), then write the string constant followed by a
366 terminating null byte, and then write the trailing length expression
367 element. */
368
369 write_exp_elt_longcst (ps, (LONGEST) len);
370 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
371 memcpy (strdata, str.ptr, len);
372 *(strdata + len) = '\0';
373 ps->expout_ptr += lenelt - 2;
374 write_exp_elt_longcst (ps, (LONGEST) len);
375 }
376
377 /* Add a vector of string constants to the end of the expression.
378
379 This adds an OP_STRING operation, but encodes the contents
380 differently from write_exp_string. The language is expected to
381 handle evaluation of this expression itself.
382
383 After the usual OP_STRING header, TYPE is written into the
384 expression as a long constant. The interpretation of this field is
385 up to the language evaluator.
386
387 Next, each string in VEC is written. The length is written as a
388 long constant, followed by the contents of the string. */
389
390 void
391 write_exp_string_vector (struct parser_state *ps, int type,
392 struct stoken_vector *vec)
393 {
394 int i, len;
395 size_t n_slots;
396
397 /* Compute the size. We compute the size in number of slots to
398 avoid issues with string padding. */
399 n_slots = 0;
400 for (i = 0; i < vec->len; ++i)
401 {
402 /* One slot for the length of this element, plus the number of
403 slots needed for this string. */
404 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
405 }
406
407 /* One more slot for the type of the string. */
408 ++n_slots;
409
410 /* Now compute a phony string length. */
411 len = EXP_ELEM_TO_BYTES (n_slots) - 1;
412
413 n_slots += 4;
414 increase_expout_size (ps, n_slots);
415
416 write_exp_elt_opcode (ps, OP_STRING);
417 write_exp_elt_longcst (ps, len);
418 write_exp_elt_longcst (ps, type);
419
420 for (i = 0; i < vec->len; ++i)
421 {
422 write_exp_elt_longcst (ps, vec->tokens[i].length);
423 memcpy (&ps->expout->elts[ps->expout_ptr], vec->tokens[i].ptr,
424 vec->tokens[i].length);
425 ps->expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
426 }
427
428 write_exp_elt_longcst (ps, len);
429 write_exp_elt_opcode (ps, OP_STRING);
430 }
431
432 /* Add a bitstring constant to the end of the expression.
433
434 Bitstring constants are stored by first writing an expression element
435 that contains the length of the bitstring (in bits), then stuffing the
436 bitstring constant itself into however many expression elements are
437 needed to hold it, and then writing another expression element that
438 contains the length of the bitstring. I.e. an expression element at
439 each end of the bitstring records the bitstring length, so you can skip
440 over the expression elements containing the actual bitstring bytes from
441 either end of the bitstring. */
442
443 void
444 write_exp_bitstring (struct parser_state *ps, struct stoken str)
445 {
446 int bits = str.length; /* length in bits */
447 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
448 size_t lenelt;
449 char *strdata;
450
451 /* Compute the number of expression elements required to hold the bitstring,
452 along with one expression element at each end to record the actual
453 bitstring length in bits. */
454
455 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
456
457 increase_expout_size (ps, lenelt);
458
459 /* Write the leading length expression element (which advances the current
460 expression element index), then write the bitstring constant, and then
461 write the trailing length expression element. */
462
463 write_exp_elt_longcst (ps, (LONGEST) bits);
464 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
465 memcpy (strdata, str.ptr, len);
466 ps->expout_ptr += lenelt - 2;
467 write_exp_elt_longcst (ps, (LONGEST) bits);
468 }
469
470 /* Add the appropriate elements for a minimal symbol to the end of
471 the expression. */
472
473 void
474 write_exp_msymbol (struct parser_state *ps,
475 struct bound_minimal_symbol bound_msym)
476 {
477 struct minimal_symbol *msymbol = bound_msym.minsym;
478 struct objfile *objfile = bound_msym.objfile;
479 struct gdbarch *gdbarch = get_objfile_arch (objfile);
480
481 CORE_ADDR addr = BMSYMBOL_VALUE_ADDRESS (bound_msym);
482 struct obj_section *section = MSYMBOL_OBJ_SECTION (objfile, msymbol);
483 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
484 CORE_ADDR pc;
485
486 /* The minimal symbol might point to a function descriptor;
487 resolve it to the actual code address instead. */
488 pc = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, &current_target);
489 if (pc != addr)
490 {
491 struct bound_minimal_symbol ifunc_msym = lookup_minimal_symbol_by_pc (pc);
492
493 /* In this case, assume we have a code symbol instead of
494 a data symbol. */
495
496 if (ifunc_msym.minsym != NULL
497 && MSYMBOL_TYPE (ifunc_msym.minsym) == mst_text_gnu_ifunc
498 && BMSYMBOL_VALUE_ADDRESS (ifunc_msym) == pc)
499 {
500 /* A function descriptor has been resolved but PC is still in the
501 STT_GNU_IFUNC resolver body (such as because inferior does not
502 run to be able to call it). */
503
504 type = mst_text_gnu_ifunc;
505 }
506 else
507 type = mst_text;
508 section = NULL;
509 addr = pc;
510 }
511
512 if (overlay_debugging)
513 addr = symbol_overlayed_address (addr, section);
514
515 write_exp_elt_opcode (ps, OP_LONG);
516 /* Let's make the type big enough to hold a 64-bit address. */
517 write_exp_elt_type (ps, objfile_type (objfile)->builtin_core_addr);
518 write_exp_elt_longcst (ps, (LONGEST) addr);
519 write_exp_elt_opcode (ps, OP_LONG);
520
521 if (section && section->the_bfd_section->flags & SEC_THREAD_LOCAL)
522 {
523 write_exp_elt_opcode (ps, UNOP_MEMVAL_TLS);
524 write_exp_elt_objfile (ps, objfile);
525 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_tls_symbol);
526 write_exp_elt_opcode (ps, UNOP_MEMVAL_TLS);
527 return;
528 }
529
530 write_exp_elt_opcode (ps, UNOP_MEMVAL);
531 switch (type)
532 {
533 case mst_text:
534 case mst_file_text:
535 case mst_solib_trampoline:
536 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_text_symbol);
537 break;
538
539 case mst_text_gnu_ifunc:
540 write_exp_elt_type (ps, objfile_type (objfile)
541 ->nodebug_text_gnu_ifunc_symbol);
542 break;
543
544 case mst_data:
545 case mst_file_data:
546 case mst_bss:
547 case mst_file_bss:
548 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_data_symbol);
549 break;
550
551 case mst_slot_got_plt:
552 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_got_plt_symbol);
553 break;
554
555 default:
556 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_unknown_symbol);
557 break;
558 }
559 write_exp_elt_opcode (ps, UNOP_MEMVAL);
560 }
561
562 /* Mark the current index as the starting location of a structure
563 expression. This is used when completing on field names. */
564
565 void
566 mark_struct_expression (struct parser_state *ps)
567 {
568 gdb_assert (parse_completion
569 && expout_tag_completion_type == TYPE_CODE_UNDEF);
570 expout_last_struct = ps->expout_ptr;
571 }
572
573 /* Indicate that the current parser invocation is completing a tag.
574 TAG is the type code of the tag, and PTR and LENGTH represent the
575 start of the tag name. */
576
577 void
578 mark_completion_tag (enum type_code tag, const char *ptr, int length)
579 {
580 gdb_assert (parse_completion
581 && expout_tag_completion_type == TYPE_CODE_UNDEF
582 && expout_completion_name == NULL
583 && expout_last_struct == -1);
584 gdb_assert (tag == TYPE_CODE_UNION
585 || tag == TYPE_CODE_STRUCT
586 || tag == TYPE_CODE_ENUM);
587 expout_tag_completion_type = tag;
588 expout_completion_name = xmalloc (length + 1);
589 memcpy (expout_completion_name, ptr, length);
590 expout_completion_name[length] = '\0';
591 }
592
593 \f
594 /* Recognize tokens that start with '$'. These include:
595
596 $regname A native register name or a "standard
597 register name".
598
599 $variable A convenience variable with a name chosen
600 by the user.
601
602 $digits Value history with index <digits>, starting
603 from the first value which has index 1.
604
605 $$digits Value history with index <digits> relative
606 to the last value. I.e. $$0 is the last
607 value, $$1 is the one previous to that, $$2
608 is the one previous to $$1, etc.
609
610 $ | $0 | $$0 The last value in the value history.
611
612 $$ An abbreviation for the second to the last
613 value in the value history, I.e. $$1 */
614
615 void
616 write_dollar_variable (struct parser_state *ps, struct stoken str)
617 {
618 struct symbol *sym = NULL;
619 struct bound_minimal_symbol msym;
620 struct internalvar *isym = NULL;
621
622 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
623 and $$digits (equivalent to $<-digits> if you could type that). */
624
625 int negate = 0;
626 int i = 1;
627 /* Double dollar means negate the number and add -1 as well.
628 Thus $$ alone means -1. */
629 if (str.length >= 2 && str.ptr[1] == '$')
630 {
631 negate = 1;
632 i = 2;
633 }
634 if (i == str.length)
635 {
636 /* Just dollars (one or two). */
637 i = -negate;
638 goto handle_last;
639 }
640 /* Is the rest of the token digits? */
641 for (; i < str.length; i++)
642 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
643 break;
644 if (i == str.length)
645 {
646 i = atoi (str.ptr + 1 + negate);
647 if (negate)
648 i = -i;
649 goto handle_last;
650 }
651
652 /* Handle tokens that refer to machine registers:
653 $ followed by a register name. */
654 i = user_reg_map_name_to_regnum (parse_gdbarch (ps),
655 str.ptr + 1, str.length - 1);
656 if (i >= 0)
657 goto handle_register;
658
659 /* Any names starting with $ are probably debugger internal variables. */
660
661 isym = lookup_only_internalvar (copy_name (str) + 1);
662 if (isym)
663 {
664 write_exp_elt_opcode (ps, OP_INTERNALVAR);
665 write_exp_elt_intern (ps, isym);
666 write_exp_elt_opcode (ps, OP_INTERNALVAR);
667 return;
668 }
669
670 /* On some systems, such as HP-UX and hppa-linux, certain system routines
671 have names beginning with $ or $$. Check for those, first. */
672
673 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
674 VAR_DOMAIN, NULL);
675 if (sym)
676 {
677 write_exp_elt_opcode (ps, OP_VAR_VALUE);
678 write_exp_elt_block (ps, block_found); /* set by lookup_symbol */
679 write_exp_elt_sym (ps, sym);
680 write_exp_elt_opcode (ps, OP_VAR_VALUE);
681 return;
682 }
683 msym = lookup_bound_minimal_symbol (copy_name (str));
684 if (msym.minsym)
685 {
686 write_exp_msymbol (ps, msym);
687 return;
688 }
689
690 /* Any other names are assumed to be debugger internal variables. */
691
692 write_exp_elt_opcode (ps, OP_INTERNALVAR);
693 write_exp_elt_intern (ps, create_internalvar (copy_name (str) + 1));
694 write_exp_elt_opcode (ps, OP_INTERNALVAR);
695 return;
696 handle_last:
697 write_exp_elt_opcode (ps, OP_LAST);
698 write_exp_elt_longcst (ps, (LONGEST) i);
699 write_exp_elt_opcode (ps, OP_LAST);
700 return;
701 handle_register:
702 write_exp_elt_opcode (ps, OP_REGISTER);
703 str.length--;
704 str.ptr++;
705 write_exp_string (ps, str);
706 write_exp_elt_opcode (ps, OP_REGISTER);
707 return;
708 }
709
710
711 const char *
712 find_template_name_end (const char *p)
713 {
714 int depth = 1;
715 int just_seen_right = 0;
716 int just_seen_colon = 0;
717 int just_seen_space = 0;
718
719 if (!p || (*p != '<'))
720 return 0;
721
722 while (*++p)
723 {
724 switch (*p)
725 {
726 case '\'':
727 case '\"':
728 case '{':
729 case '}':
730 /* In future, may want to allow these?? */
731 return 0;
732 case '<':
733 depth++; /* start nested template */
734 if (just_seen_colon || just_seen_right || just_seen_space)
735 return 0; /* but not after : or :: or > or space */
736 break;
737 case '>':
738 if (just_seen_colon || just_seen_right)
739 return 0; /* end a (nested?) template */
740 just_seen_right = 1; /* but not after : or :: */
741 if (--depth == 0) /* also disallow >>, insist on > > */
742 return ++p; /* if outermost ended, return */
743 break;
744 case ':':
745 if (just_seen_space || (just_seen_colon > 1))
746 return 0; /* nested class spec coming up */
747 just_seen_colon++; /* we allow :: but not :::: */
748 break;
749 case ' ':
750 break;
751 default:
752 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
753 (*p >= 'A' && *p <= 'Z') ||
754 (*p >= '0' && *p <= '9') ||
755 (*p == '_') || (*p == ',') || /* commas for template args */
756 (*p == '&') || (*p == '*') || /* pointer and ref types */
757 (*p == '(') || (*p == ')') || /* function types */
758 (*p == '[') || (*p == ']'))) /* array types */
759 return 0;
760 }
761 if (*p != ' ')
762 just_seen_space = 0;
763 if (*p != ':')
764 just_seen_colon = 0;
765 if (*p != '>')
766 just_seen_right = 0;
767 }
768 return 0;
769 }
770 \f
771
772 /* Return a null-terminated temporary copy of the name of a string token.
773
774 Tokens that refer to names do so with explicit pointer and length,
775 so they can share the storage that lexptr is parsing.
776 When it is necessary to pass a name to a function that expects
777 a null-terminated string, the substring is copied out
778 into a separate block of storage.
779
780 N.B. A single buffer is reused on each call. */
781
782 char *
783 copy_name (struct stoken token)
784 {
785 /* A temporary buffer for identifiers, so we can null-terminate them.
786 We allocate this with xrealloc. parse_exp_1 used to allocate with
787 alloca, using the size of the whole expression as a conservative
788 estimate of the space needed. However, macro expansion can
789 introduce names longer than the original expression; there's no
790 practical way to know beforehand how large that might be. */
791 static char *namecopy;
792 static size_t namecopy_size;
793
794 /* Make sure there's enough space for the token. */
795 if (namecopy_size < token.length + 1)
796 {
797 namecopy_size = token.length + 1;
798 namecopy = xrealloc (namecopy, token.length + 1);
799 }
800
801 memcpy (namecopy, token.ptr, token.length);
802 namecopy[token.length] = 0;
803
804 return namecopy;
805 }
806 \f
807
808 /* See comments on parser-defs.h. */
809
810 int
811 prefixify_expression (struct expression *expr)
812 {
813 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
814 struct expression *temp;
815 int inpos = expr->nelts, outpos = 0;
816
817 temp = (struct expression *) alloca (len);
818
819 /* Copy the original expression into temp. */
820 memcpy (temp, expr, len);
821
822 return prefixify_subexp (temp, expr, inpos, outpos);
823 }
824
825 /* Return the number of exp_elements in the postfix subexpression
826 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */
827
828 int
829 length_of_subexp (struct expression *expr, int endpos)
830 {
831 int oplen, args;
832
833 operator_length (expr, endpos, &oplen, &args);
834
835 while (args > 0)
836 {
837 oplen += length_of_subexp (expr, endpos - oplen);
838 args--;
839 }
840
841 return oplen;
842 }
843
844 /* Sets *OPLENP to the length of the operator whose (last) index is
845 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
846 operator takes. */
847
848 void
849 operator_length (const struct expression *expr, int endpos, int *oplenp,
850 int *argsp)
851 {
852 expr->language_defn->la_exp_desc->operator_length (expr, endpos,
853 oplenp, argsp);
854 }
855
856 /* Default value for operator_length in exp_descriptor vectors. */
857
858 void
859 operator_length_standard (const struct expression *expr, int endpos,
860 int *oplenp, int *argsp)
861 {
862 int oplen = 1;
863 int args = 0;
864 enum f90_range_type range_type;
865 int i;
866
867 if (endpos < 1)
868 error (_("?error in operator_length_standard"));
869
870 i = (int) expr->elts[endpos - 1].opcode;
871
872 switch (i)
873 {
874 /* C++ */
875 case OP_SCOPE:
876 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
877 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
878 break;
879
880 case OP_LONG:
881 case OP_DOUBLE:
882 case OP_DECFLOAT:
883 case OP_VAR_VALUE:
884 oplen = 4;
885 break;
886
887 case OP_TYPE:
888 case OP_BOOL:
889 case OP_LAST:
890 case OP_INTERNALVAR:
891 case OP_VAR_ENTRY_VALUE:
892 oplen = 3;
893 break;
894
895 case OP_COMPLEX:
896 oplen = 3;
897 args = 2;
898 break;
899
900 case OP_FUNCALL:
901 case OP_F77_UNDETERMINED_ARGLIST:
902 oplen = 3;
903 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
904 break;
905
906 case TYPE_INSTANCE:
907 oplen = 4 + longest_to_int (expr->elts[endpos - 2].longconst);
908 args = 1;
909 break;
910
911 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */
912 oplen = 4;
913 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
914 break;
915
916 case UNOP_MAX:
917 case UNOP_MIN:
918 oplen = 3;
919 break;
920
921 case UNOP_CAST_TYPE:
922 case UNOP_DYNAMIC_CAST:
923 case UNOP_REINTERPRET_CAST:
924 case UNOP_MEMVAL_TYPE:
925 oplen = 1;
926 args = 2;
927 break;
928
929 case BINOP_VAL:
930 case UNOP_CAST:
931 case UNOP_MEMVAL:
932 oplen = 3;
933 args = 1;
934 break;
935
936 case UNOP_MEMVAL_TLS:
937 oplen = 4;
938 args = 1;
939 break;
940
941 case UNOP_ABS:
942 case UNOP_CAP:
943 case UNOP_CHR:
944 case UNOP_FLOAT:
945 case UNOP_HIGH:
946 case UNOP_ODD:
947 case UNOP_ORD:
948 case UNOP_TRUNC:
949 case OP_TYPEOF:
950 case OP_DECLTYPE:
951 case OP_TYPEID:
952 oplen = 1;
953 args = 1;
954 break;
955
956 case OP_ADL_FUNC:
957 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
958 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
959 oplen++;
960 oplen++;
961 break;
962
963 case STRUCTOP_STRUCT:
964 case STRUCTOP_PTR:
965 args = 1;
966 /* fall through */
967 case OP_REGISTER:
968 case OP_M2_STRING:
969 case OP_STRING:
970 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
971 NSString constant. */
972 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */
973 case OP_NAME:
974 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
975 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
976 break;
977
978 case OP_ARRAY:
979 oplen = 4;
980 args = longest_to_int (expr->elts[endpos - 2].longconst);
981 args -= longest_to_int (expr->elts[endpos - 3].longconst);
982 args += 1;
983 break;
984
985 case TERNOP_COND:
986 case TERNOP_SLICE:
987 args = 3;
988 break;
989
990 /* Modula-2 */
991 case MULTI_SUBSCRIPT:
992 oplen = 3;
993 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
994 break;
995
996 case BINOP_ASSIGN_MODIFY:
997 oplen = 3;
998 args = 2;
999 break;
1000
1001 /* C++ */
1002 case OP_THIS:
1003 oplen = 2;
1004 break;
1005
1006 case OP_F90_RANGE:
1007 oplen = 3;
1008
1009 range_type = longest_to_int (expr->elts[endpos - 2].longconst);
1010 switch (range_type)
1011 {
1012 case LOW_BOUND_DEFAULT:
1013 case HIGH_BOUND_DEFAULT:
1014 args = 1;
1015 break;
1016 case BOTH_BOUND_DEFAULT:
1017 args = 0;
1018 break;
1019 case NONE_BOUND_DEFAULT:
1020 args = 2;
1021 break;
1022 }
1023
1024 break;
1025
1026 default:
1027 args = 1 + (i < (int) BINOP_END);
1028 }
1029
1030 *oplenp = oplen;
1031 *argsp = args;
1032 }
1033
1034 /* Copy the subexpression ending just before index INEND in INEXPR
1035 into OUTEXPR, starting at index OUTBEG.
1036 In the process, convert it from suffix to prefix form.
1037 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
1038 Otherwise, it returns the index of the subexpression which is the
1039 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */
1040
1041 static int
1042 prefixify_subexp (struct expression *inexpr,
1043 struct expression *outexpr, int inend, int outbeg)
1044 {
1045 int oplen;
1046 int args;
1047 int i;
1048 int *arglens;
1049 int result = -1;
1050
1051 operator_length (inexpr, inend, &oplen, &args);
1052
1053 /* Copy the final operator itself, from the end of the input
1054 to the beginning of the output. */
1055 inend -= oplen;
1056 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1057 EXP_ELEM_TO_BYTES (oplen));
1058 outbeg += oplen;
1059
1060 if (expout_last_struct == inend)
1061 result = outbeg - oplen;
1062
1063 /* Find the lengths of the arg subexpressions. */
1064 arglens = (int *) alloca (args * sizeof (int));
1065 for (i = args - 1; i >= 0; i--)
1066 {
1067 oplen = length_of_subexp (inexpr, inend);
1068 arglens[i] = oplen;
1069 inend -= oplen;
1070 }
1071
1072 /* Now copy each subexpression, preserving the order of
1073 the subexpressions, but prefixifying each one.
1074 In this loop, inend starts at the beginning of
1075 the expression this level is working on
1076 and marches forward over the arguments.
1077 outbeg does similarly in the output. */
1078 for (i = 0; i < args; i++)
1079 {
1080 int r;
1081
1082 oplen = arglens[i];
1083 inend += oplen;
1084 r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
1085 if (r != -1)
1086 {
1087 /* Return immediately. We probably have only parsed a
1088 partial expression, so we don't want to try to reverse
1089 the other operands. */
1090 return r;
1091 }
1092 outbeg += oplen;
1093 }
1094
1095 return result;
1096 }
1097 \f
1098 /* Read an expression from the string *STRINGPTR points to,
1099 parse it, and return a pointer to a struct expression that we malloc.
1100 Use block BLOCK as the lexical context for variable names;
1101 if BLOCK is zero, use the block of the selected stack frame.
1102 Meanwhile, advance *STRINGPTR to point after the expression,
1103 at the first nonwhite character that is not part of the expression
1104 (possibly a null character).
1105
1106 If COMMA is nonzero, stop if a comma is reached. */
1107
1108 struct expression *
1109 parse_exp_1 (const char **stringptr, CORE_ADDR pc, const struct block *block,
1110 int comma)
1111 {
1112 return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL);
1113 }
1114
1115 static struct expression *
1116 parse_exp_in_context (const char **stringptr, CORE_ADDR pc,
1117 const struct block *block,
1118 int comma, int void_context_p, int *out_subexp)
1119 {
1120 return parse_exp_in_context_1 (stringptr, pc, block, comma,
1121 void_context_p, out_subexp);
1122 }
1123
1124 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1125 no value is expected from the expression.
1126 OUT_SUBEXP is set when attempting to complete a field name; in this
1127 case it is set to the index of the subexpression on the
1128 left-hand-side of the struct op. If not doing such completion, it
1129 is left untouched. */
1130
1131 static struct expression *
1132 parse_exp_in_context_1 (const char **stringptr, CORE_ADDR pc,
1133 const struct block *block,
1134 int comma, int void_context_p, int *out_subexp)
1135 {
1136 struct cleanup *old_chain, *inner_chain;
1137 const struct language_defn *lang = NULL;
1138 struct parser_state ps;
1139 int subexp;
1140
1141 lexptr = *stringptr;
1142 prev_lexptr = NULL;
1143
1144 paren_depth = 0;
1145 type_stack.depth = 0;
1146 expout_last_struct = -1;
1147 expout_tag_completion_type = TYPE_CODE_UNDEF;
1148 xfree (expout_completion_name);
1149 expout_completion_name = NULL;
1150
1151 comma_terminates = comma;
1152
1153 if (lexptr == 0 || *lexptr == 0)
1154 error_no_arg (_("expression to compute"));
1155
1156 old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
1157 funcall_chain = 0;
1158
1159 expression_context_block = block;
1160
1161 /* If no context specified, try using the current frame, if any. */
1162 if (!expression_context_block)
1163 expression_context_block = get_selected_block (&expression_context_pc);
1164 else if (pc == 0)
1165 expression_context_pc = BLOCK_START (expression_context_block);
1166 else
1167 expression_context_pc = pc;
1168
1169 /* Fall back to using the current source static context, if any. */
1170
1171 if (!expression_context_block)
1172 {
1173 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1174 if (cursal.symtab)
1175 expression_context_block
1176 = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (cursal.symtab),
1177 STATIC_BLOCK);
1178 if (expression_context_block)
1179 expression_context_pc = BLOCK_START (expression_context_block);
1180 }
1181
1182 if (language_mode == language_mode_auto && block != NULL)
1183 {
1184 /* Find the language associated to the given context block.
1185 Default to the current language if it can not be determined.
1186
1187 Note that using the language corresponding to the current frame
1188 can sometimes give unexpected results. For instance, this
1189 routine is often called several times during the inferior
1190 startup phase to re-parse breakpoint expressions after
1191 a new shared library has been loaded. The language associated
1192 to the current frame at this moment is not relevant for
1193 the breakpoint. Using it would therefore be silly, so it seems
1194 better to rely on the current language rather than relying on
1195 the current frame language to parse the expression. That's why
1196 we do the following language detection only if the context block
1197 has been specifically provided. */
1198 struct symbol *func = block_linkage_function (block);
1199
1200 if (func != NULL)
1201 lang = language_def (SYMBOL_LANGUAGE (func));
1202 if (lang == NULL || lang->la_language == language_unknown)
1203 lang = current_language;
1204 }
1205 else
1206 lang = current_language;
1207
1208 /* get_current_arch may reset CURRENT_LANGUAGE via select_frame.
1209 While we need CURRENT_LANGUAGE to be set to LANG (for lookup_symbol
1210 and others called from *.y) ensure CURRENT_LANGUAGE gets restored
1211 to the value matching SELECTED_FRAME as set by get_current_arch. */
1212
1213 initialize_expout (&ps, 10, lang, get_current_arch ());
1214 inner_chain = make_cleanup_restore_current_language ();
1215 set_language (lang->la_language);
1216
1217 TRY
1218 {
1219 if (lang->la_parser (&ps))
1220 lang->la_error (NULL);
1221 }
1222 CATCH (except, RETURN_MASK_ALL)
1223 {
1224 if (! parse_completion)
1225 {
1226 xfree (ps.expout);
1227 throw_exception (except);
1228 }
1229 }
1230 END_CATCH
1231
1232 reallocate_expout (&ps);
1233
1234 /* Convert expression from postfix form as generated by yacc
1235 parser, to a prefix form. */
1236
1237 if (expressiondebug)
1238 dump_raw_expression (ps.expout, gdb_stdlog,
1239 "before conversion to prefix form");
1240
1241 subexp = prefixify_expression (ps.expout);
1242 if (out_subexp)
1243 *out_subexp = subexp;
1244
1245 lang->la_post_parser (&ps.expout, void_context_p);
1246
1247 if (expressiondebug)
1248 dump_prefix_expression (ps.expout, gdb_stdlog);
1249
1250 do_cleanups (inner_chain);
1251 discard_cleanups (old_chain);
1252
1253 *stringptr = lexptr;
1254 return ps.expout;
1255 }
1256
1257 /* Parse STRING as an expression, and complain if this fails
1258 to use up all of the contents of STRING. */
1259
1260 struct expression *
1261 parse_expression (const char *string)
1262 {
1263 struct expression *exp;
1264
1265 exp = parse_exp_1 (&string, 0, 0, 0);
1266 if (*string)
1267 error (_("Junk after end of expression."));
1268 return exp;
1269 }
1270
1271 /* Parse STRING as an expression. If parsing ends in the middle of a
1272 field reference, return the type of the left-hand-side of the
1273 reference; furthermore, if the parsing ends in the field name,
1274 return the field name in *NAME. If the parsing ends in the middle
1275 of a field reference, but the reference is somehow invalid, throw
1276 an exception. In all other cases, return NULL. Returned non-NULL
1277 *NAME must be freed by the caller. */
1278
1279 struct type *
1280 parse_expression_for_completion (const char *string, char **name,
1281 enum type_code *code)
1282 {
1283 struct expression *exp = NULL;
1284 struct value *val;
1285 int subexp;
1286
1287 TRY
1288 {
1289 parse_completion = 1;
1290 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp);
1291 }
1292 CATCH (except, RETURN_MASK_ERROR)
1293 {
1294 /* Nothing, EXP remains NULL. */
1295 }
1296 END_CATCH
1297
1298 parse_completion = 0;
1299 if (exp == NULL)
1300 return NULL;
1301
1302 if (expout_tag_completion_type != TYPE_CODE_UNDEF)
1303 {
1304 *code = expout_tag_completion_type;
1305 *name = expout_completion_name;
1306 expout_completion_name = NULL;
1307 return NULL;
1308 }
1309
1310 if (expout_last_struct == -1)
1311 {
1312 xfree (exp);
1313 return NULL;
1314 }
1315
1316 *name = extract_field_op (exp, &subexp);
1317 if (!*name)
1318 {
1319 xfree (exp);
1320 return NULL;
1321 }
1322
1323 /* This might throw an exception. If so, we want to let it
1324 propagate. */
1325 val = evaluate_subexpression_type (exp, subexp);
1326 /* (*NAME) is a part of the EXP memory block freed below. */
1327 *name = xstrdup (*name);
1328 xfree (exp);
1329
1330 return value_type (val);
1331 }
1332
1333 /* A post-parser that does nothing. */
1334
1335 void
1336 null_post_parser (struct expression **exp, int void_context_p)
1337 {
1338 }
1339
1340 /* Parse floating point value P of length LEN.
1341 Return 0 (false) if invalid, 1 (true) if valid.
1342 The successfully parsed number is stored in D.
1343 *SUFFIX points to the suffix of the number in P.
1344
1345 NOTE: This accepts the floating point syntax that sscanf accepts. */
1346
1347 int
1348 parse_float (const char *p, int len, DOUBLEST *d, const char **suffix)
1349 {
1350 char *copy;
1351 int n, num;
1352
1353 copy = xmalloc (len + 1);
1354 memcpy (copy, p, len);
1355 copy[len] = 0;
1356
1357 num = sscanf (copy, "%" DOUBLEST_SCAN_FORMAT "%n", d, &n);
1358 xfree (copy);
1359
1360 /* The sscanf man page suggests not making any assumptions on the effect
1361 of %n on the result, so we don't.
1362 That is why we simply test num == 0. */
1363 if (num == 0)
1364 return 0;
1365
1366 *suffix = p + n;
1367 return 1;
1368 }
1369
1370 /* Parse floating point value P of length LEN, using the C syntax for floats.
1371 Return 0 (false) if invalid, 1 (true) if valid.
1372 The successfully parsed number is stored in *D.
1373 Its type is taken from builtin_type (gdbarch) and is stored in *T. */
1374
1375 int
1376 parse_c_float (struct gdbarch *gdbarch, const char *p, int len,
1377 DOUBLEST *d, struct type **t)
1378 {
1379 const char *suffix;
1380 int suffix_len;
1381 const struct builtin_type *builtin_types = builtin_type (gdbarch);
1382
1383 if (! parse_float (p, len, d, &suffix))
1384 return 0;
1385
1386 suffix_len = p + len - suffix;
1387
1388 if (suffix_len == 0)
1389 *t = builtin_types->builtin_double;
1390 else if (suffix_len == 1)
1391 {
1392 /* Handle suffixes: 'f' for float, 'l' for long double. */
1393 if (tolower (*suffix) == 'f')
1394 *t = builtin_types->builtin_float;
1395 else if (tolower (*suffix) == 'l')
1396 *t = builtin_types->builtin_long_double;
1397 else
1398 return 0;
1399 }
1400 else
1401 return 0;
1402
1403 return 1;
1404 }
1405 \f
1406 /* Stuff for maintaining a stack of types. Currently just used by C, but
1407 probably useful for any language which declares its types "backwards". */
1408
1409 /* Ensure that there are HOWMUCH open slots on the type stack STACK. */
1410
1411 static void
1412 type_stack_reserve (struct type_stack *stack, int howmuch)
1413 {
1414 if (stack->depth + howmuch >= stack->size)
1415 {
1416 stack->size *= 2;
1417 if (stack->size < howmuch)
1418 stack->size = howmuch;
1419 stack->elements = xrealloc (stack->elements,
1420 stack->size * sizeof (union type_stack_elt));
1421 }
1422 }
1423
1424 /* Ensure that there is a single open slot in the global type stack. */
1425
1426 static void
1427 check_type_stack_depth (void)
1428 {
1429 type_stack_reserve (&type_stack, 1);
1430 }
1431
1432 /* A helper function for insert_type and insert_type_address_space.
1433 This does work of expanding the type stack and inserting the new
1434 element, ELEMENT, into the stack at location SLOT. */
1435
1436 static void
1437 insert_into_type_stack (int slot, union type_stack_elt element)
1438 {
1439 check_type_stack_depth ();
1440
1441 if (slot < type_stack.depth)
1442 memmove (&type_stack.elements[slot + 1], &type_stack.elements[slot],
1443 (type_stack.depth - slot) * sizeof (union type_stack_elt));
1444 type_stack.elements[slot] = element;
1445 ++type_stack.depth;
1446 }
1447
1448 /* Insert a new type, TP, at the bottom of the type stack. If TP is
1449 tp_pointer or tp_reference, it is inserted at the bottom. If TP is
1450 a qualifier, it is inserted at slot 1 (just above a previous
1451 tp_pointer) if there is anything on the stack, or simply pushed if
1452 the stack is empty. Other values for TP are invalid. */
1453
1454 void
1455 insert_type (enum type_pieces tp)
1456 {
1457 union type_stack_elt element;
1458 int slot;
1459
1460 gdb_assert (tp == tp_pointer || tp == tp_reference
1461 || tp == tp_const || tp == tp_volatile);
1462
1463 /* If there is anything on the stack (we know it will be a
1464 tp_pointer), insert the qualifier above it. Otherwise, simply
1465 push this on the top of the stack. */
1466 if (type_stack.depth && (tp == tp_const || tp == tp_volatile))
1467 slot = 1;
1468 else
1469 slot = 0;
1470
1471 element.piece = tp;
1472 insert_into_type_stack (slot, element);
1473 }
1474
1475 void
1476 push_type (enum type_pieces tp)
1477 {
1478 check_type_stack_depth ();
1479 type_stack.elements[type_stack.depth++].piece = tp;
1480 }
1481
1482 void
1483 push_type_int (int n)
1484 {
1485 check_type_stack_depth ();
1486 type_stack.elements[type_stack.depth++].int_val = n;
1487 }
1488
1489 /* Insert a tp_space_identifier and the corresponding address space
1490 value into the stack. STRING is the name of an address space, as
1491 recognized by address_space_name_to_int. If the stack is empty,
1492 the new elements are simply pushed. If the stack is not empty,
1493 this function assumes that the first item on the stack is a
1494 tp_pointer, and the new values are inserted above the first
1495 item. */
1496
1497 void
1498 insert_type_address_space (struct parser_state *pstate, char *string)
1499 {
1500 union type_stack_elt element;
1501 int slot;
1502
1503 /* If there is anything on the stack (we know it will be a
1504 tp_pointer), insert the address space qualifier above it.
1505 Otherwise, simply push this on the top of the stack. */
1506 if (type_stack.depth)
1507 slot = 1;
1508 else
1509 slot = 0;
1510
1511 element.piece = tp_space_identifier;
1512 insert_into_type_stack (slot, element);
1513 element.int_val = address_space_name_to_int (parse_gdbarch (pstate),
1514 string);
1515 insert_into_type_stack (slot, element);
1516 }
1517
1518 enum type_pieces
1519 pop_type (void)
1520 {
1521 if (type_stack.depth)
1522 return type_stack.elements[--type_stack.depth].piece;
1523 return tp_end;
1524 }
1525
1526 int
1527 pop_type_int (void)
1528 {
1529 if (type_stack.depth)
1530 return type_stack.elements[--type_stack.depth].int_val;
1531 /* "Can't happen". */
1532 return 0;
1533 }
1534
1535 /* Pop a type list element from the global type stack. */
1536
1537 static VEC (type_ptr) *
1538 pop_typelist (void)
1539 {
1540 gdb_assert (type_stack.depth);
1541 return type_stack.elements[--type_stack.depth].typelist_val;
1542 }
1543
1544 /* Pop a type_stack element from the global type stack. */
1545
1546 static struct type_stack *
1547 pop_type_stack (void)
1548 {
1549 gdb_assert (type_stack.depth);
1550 return type_stack.elements[--type_stack.depth].stack_val;
1551 }
1552
1553 /* Append the elements of the type stack FROM to the type stack TO.
1554 Always returns TO. */
1555
1556 struct type_stack *
1557 append_type_stack (struct type_stack *to, struct type_stack *from)
1558 {
1559 type_stack_reserve (to, from->depth);
1560
1561 memcpy (&to->elements[to->depth], &from->elements[0],
1562 from->depth * sizeof (union type_stack_elt));
1563 to->depth += from->depth;
1564
1565 return to;
1566 }
1567
1568 /* Push the type stack STACK as an element on the global type stack. */
1569
1570 void
1571 push_type_stack (struct type_stack *stack)
1572 {
1573 check_type_stack_depth ();
1574 type_stack.elements[type_stack.depth++].stack_val = stack;
1575 push_type (tp_type_stack);
1576 }
1577
1578 /* Copy the global type stack into a newly allocated type stack and
1579 return it. The global stack is cleared. The returned type stack
1580 must be freed with type_stack_cleanup. */
1581
1582 struct type_stack *
1583 get_type_stack (void)
1584 {
1585 struct type_stack *result = XNEW (struct type_stack);
1586
1587 *result = type_stack;
1588 type_stack.depth = 0;
1589 type_stack.size = 0;
1590 type_stack.elements = NULL;
1591
1592 return result;
1593 }
1594
1595 /* A cleanup function that destroys a single type stack. */
1596
1597 void
1598 type_stack_cleanup (void *arg)
1599 {
1600 struct type_stack *stack = arg;
1601
1602 xfree (stack->elements);
1603 xfree (stack);
1604 }
1605
1606 /* Push a function type with arguments onto the global type stack.
1607 LIST holds the argument types. If the final item in LIST is NULL,
1608 then the function will be varargs. */
1609
1610 void
1611 push_typelist (VEC (type_ptr) *list)
1612 {
1613 check_type_stack_depth ();
1614 type_stack.elements[type_stack.depth++].typelist_val = list;
1615 push_type (tp_function_with_arguments);
1616 }
1617
1618 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1619 as modified by all the stuff on the stack. */
1620 struct type *
1621 follow_types (struct type *follow_type)
1622 {
1623 int done = 0;
1624 int make_const = 0;
1625 int make_volatile = 0;
1626 int make_addr_space = 0;
1627 int array_size;
1628
1629 while (!done)
1630 switch (pop_type ())
1631 {
1632 case tp_end:
1633 done = 1;
1634 if (make_const)
1635 follow_type = make_cv_type (make_const,
1636 TYPE_VOLATILE (follow_type),
1637 follow_type, 0);
1638 if (make_volatile)
1639 follow_type = make_cv_type (TYPE_CONST (follow_type),
1640 make_volatile,
1641 follow_type, 0);
1642 if (make_addr_space)
1643 follow_type = make_type_with_address_space (follow_type,
1644 make_addr_space);
1645 make_const = make_volatile = 0;
1646 make_addr_space = 0;
1647 break;
1648 case tp_const:
1649 make_const = 1;
1650 break;
1651 case tp_volatile:
1652 make_volatile = 1;
1653 break;
1654 case tp_space_identifier:
1655 make_addr_space = pop_type_int ();
1656 break;
1657 case tp_pointer:
1658 follow_type = lookup_pointer_type (follow_type);
1659 if (make_const)
1660 follow_type = make_cv_type (make_const,
1661 TYPE_VOLATILE (follow_type),
1662 follow_type, 0);
1663 if (make_volatile)
1664 follow_type = make_cv_type (TYPE_CONST (follow_type),
1665 make_volatile,
1666 follow_type, 0);
1667 if (make_addr_space)
1668 follow_type = make_type_with_address_space (follow_type,
1669 make_addr_space);
1670 make_const = make_volatile = 0;
1671 make_addr_space = 0;
1672 break;
1673 case tp_reference:
1674 follow_type = lookup_reference_type (follow_type);
1675 if (make_const)
1676 follow_type = make_cv_type (make_const,
1677 TYPE_VOLATILE (follow_type),
1678 follow_type, 0);
1679 if (make_volatile)
1680 follow_type = make_cv_type (TYPE_CONST (follow_type),
1681 make_volatile,
1682 follow_type, 0);
1683 if (make_addr_space)
1684 follow_type = make_type_with_address_space (follow_type,
1685 make_addr_space);
1686 make_const = make_volatile = 0;
1687 make_addr_space = 0;
1688 break;
1689 case tp_array:
1690 array_size = pop_type_int ();
1691 /* FIXME-type-allocation: need a way to free this type when we are
1692 done with it. */
1693 follow_type =
1694 lookup_array_range_type (follow_type,
1695 0, array_size >= 0 ? array_size - 1 : 0);
1696 if (array_size < 0)
1697 TYPE_HIGH_BOUND_KIND (TYPE_INDEX_TYPE (follow_type))
1698 = PROP_UNDEFINED;
1699 break;
1700 case tp_function:
1701 /* FIXME-type-allocation: need a way to free this type when we are
1702 done with it. */
1703 follow_type = lookup_function_type (follow_type);
1704 break;
1705
1706 case tp_function_with_arguments:
1707 {
1708 VEC (type_ptr) *args = pop_typelist ();
1709
1710 follow_type
1711 = lookup_function_type_with_arguments (follow_type,
1712 VEC_length (type_ptr, args),
1713 VEC_address (type_ptr,
1714 args));
1715 VEC_free (type_ptr, args);
1716 }
1717 break;
1718
1719 case tp_type_stack:
1720 {
1721 struct type_stack *stack = pop_type_stack ();
1722 /* Sort of ugly, but not really much worse than the
1723 alternatives. */
1724 struct type_stack save = type_stack;
1725
1726 type_stack = *stack;
1727 follow_type = follow_types (follow_type);
1728 gdb_assert (type_stack.depth == 0);
1729
1730 type_stack = save;
1731 }
1732 break;
1733 default:
1734 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1735 }
1736 return follow_type;
1737 }
1738 \f
1739 /* This function avoids direct calls to fprintf
1740 in the parser generated debug code. */
1741 void
1742 parser_fprintf (FILE *x, const char *y, ...)
1743 {
1744 va_list args;
1745
1746 va_start (args, y);
1747 if (x == stderr)
1748 vfprintf_unfiltered (gdb_stderr, y, args);
1749 else
1750 {
1751 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1752 vfprintf_unfiltered (gdb_stderr, y, args);
1753 }
1754 va_end (args);
1755 }
1756
1757 /* Implementation of the exp_descriptor method operator_check. */
1758
1759 int
1760 operator_check_standard (struct expression *exp, int pos,
1761 int (*objfile_func) (struct objfile *objfile,
1762 void *data),
1763 void *data)
1764 {
1765 const union exp_element *const elts = exp->elts;
1766 struct type *type = NULL;
1767 struct objfile *objfile = NULL;
1768
1769 /* Extended operators should have been already handled by exp_descriptor
1770 iterate method of its specific language. */
1771 gdb_assert (elts[pos].opcode < OP_EXTENDED0);
1772
1773 /* Track the callers of write_exp_elt_type for this table. */
1774
1775 switch (elts[pos].opcode)
1776 {
1777 case BINOP_VAL:
1778 case OP_COMPLEX:
1779 case OP_DECFLOAT:
1780 case OP_DOUBLE:
1781 case OP_LONG:
1782 case OP_SCOPE:
1783 case OP_TYPE:
1784 case UNOP_CAST:
1785 case UNOP_MAX:
1786 case UNOP_MEMVAL:
1787 case UNOP_MIN:
1788 type = elts[pos + 1].type;
1789 break;
1790
1791 case TYPE_INSTANCE:
1792 {
1793 LONGEST arg, nargs = elts[pos + 1].longconst;
1794
1795 for (arg = 0; arg < nargs; arg++)
1796 {
1797 struct type *type = elts[pos + 2 + arg].type;
1798 struct objfile *objfile = TYPE_OBJFILE (type);
1799
1800 if (objfile && (*objfile_func) (objfile, data))
1801 return 1;
1802 }
1803 }
1804 break;
1805
1806 case UNOP_MEMVAL_TLS:
1807 objfile = elts[pos + 1].objfile;
1808 type = elts[pos + 2].type;
1809 break;
1810
1811 case OP_VAR_VALUE:
1812 {
1813 const struct block *const block = elts[pos + 1].block;
1814 const struct symbol *const symbol = elts[pos + 2].symbol;
1815
1816 /* Check objfile where the variable itself is placed.
1817 SYMBOL_OBJ_SECTION (symbol) may be NULL. */
1818 if ((*objfile_func) (symbol_objfile (symbol), data))
1819 return 1;
1820
1821 /* Check objfile where is placed the code touching the variable. */
1822 objfile = lookup_objfile_from_block (block);
1823
1824 type = SYMBOL_TYPE (symbol);
1825 }
1826 break;
1827 }
1828
1829 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
1830
1831 if (type && TYPE_OBJFILE (type)
1832 && (*objfile_func) (TYPE_OBJFILE (type), data))
1833 return 1;
1834 if (objfile && (*objfile_func) (objfile, data))
1835 return 1;
1836
1837 return 0;
1838 }
1839
1840 /* Call OBJFILE_FUNC for any objfile found being referenced by EXP.
1841 OBJFILE_FUNC is never called with NULL OBJFILE. OBJFILE_FUNC get
1842 passed an arbitrary caller supplied DATA pointer. If OBJFILE_FUNC
1843 returns non-zero value then (any other) non-zero value is immediately
1844 returned to the caller. Otherwise zero is returned after iterating
1845 through whole EXP. */
1846
1847 static int
1848 exp_iterate (struct expression *exp,
1849 int (*objfile_func) (struct objfile *objfile, void *data),
1850 void *data)
1851 {
1852 int endpos;
1853
1854 for (endpos = exp->nelts; endpos > 0; )
1855 {
1856 int pos, args, oplen = 0;
1857
1858 operator_length (exp, endpos, &oplen, &args);
1859 gdb_assert (oplen > 0);
1860
1861 pos = endpos - oplen;
1862 if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
1863 objfile_func, data))
1864 return 1;
1865
1866 endpos = pos;
1867 }
1868
1869 return 0;
1870 }
1871
1872 /* Helper for exp_uses_objfile. */
1873
1874 static int
1875 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
1876 {
1877 struct objfile *objfile = objfile_voidp;
1878
1879 if (exp_objfile->separate_debug_objfile_backlink)
1880 exp_objfile = exp_objfile->separate_debug_objfile_backlink;
1881
1882 return exp_objfile == objfile;
1883 }
1884
1885 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
1886 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info
1887 file. */
1888
1889 int
1890 exp_uses_objfile (struct expression *exp, struct objfile *objfile)
1891 {
1892 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1893
1894 return exp_iterate (exp, exp_uses_objfile_iter, objfile);
1895 }
1896
1897 /* See definition in parser-defs.h. */
1898
1899 void
1900 increase_expout_size (struct parser_state *ps, size_t lenelt)
1901 {
1902 if ((ps->expout_ptr + lenelt) >= ps->expout_size)
1903 {
1904 ps->expout_size = max (ps->expout_size * 2,
1905 ps->expout_ptr + lenelt + 10);
1906 ps->expout = (struct expression *)
1907 xrealloc (ps->expout, (sizeof (struct expression)
1908 + EXP_ELEM_TO_BYTES (ps->expout_size)));
1909 }
1910 }
1911
1912 void
1913 _initialize_parse (void)
1914 {
1915 type_stack.size = 0;
1916 type_stack.depth = 0;
1917 type_stack.elements = NULL;
1918
1919 add_setshow_zuinteger_cmd ("expression", class_maintenance,
1920 &expressiondebug,
1921 _("Set expression debugging."),
1922 _("Show expression debugging."),
1923 _("When non-zero, the internal representation "
1924 "of expressions will be printed."),
1925 NULL,
1926 show_expressiondebug,
1927 &setdebuglist, &showdebuglist);
1928 add_setshow_boolean_cmd ("parser", class_maintenance,
1929 &parser_debug,
1930 _("Set parser debugging."),
1931 _("Show parser debugging."),
1932 _("When non-zero, expression parser "
1933 "tracing will be enabled."),
1934 NULL,
1935 show_parserdebug,
1936 &setdebuglist, &showdebuglist);
1937 }