* parse.c (target_map_name_to_register): Check target specific
[binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991, 1994 Free Software Foundation, Inc.
3 Modified from expread.y by the Department of Computer Science at the
4 State University of New York at Buffalo, 1991.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 /* Parse an expression from text in a string,
23 and return the result as a struct expression pointer.
24 That structure contains arithmetic operations in reverse polish,
25 with constants represented by operations that are followed by special data.
26 See expression.h for the details of the format.
27 What is important here is that it can be built up sequentially
28 during the process of parsing; the lower levels of the tree always
29 come first in the result. */
30
31 #include "defs.h"
32 #include "gdb_string.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "frame.h"
36 #include "expression.h"
37 #include "value.h"
38 #include "command.h"
39 #include "language.h"
40 #include "parser-defs.h"
41 \f
42 /* Global variables declared in parser-defs.h (and commented there). */
43 struct expression *expout;
44 int expout_size;
45 int expout_ptr;
46 struct block *expression_context_block;
47 struct block *innermost_block;
48 int arglist_len;
49 union type_stack_elt *type_stack;
50 int type_stack_depth, type_stack_size;
51 char *lexptr;
52 char *namecopy;
53 int paren_depth;
54 int comma_terminates;
55 \f
56 static void
57 free_funcalls PARAMS ((void));
58
59 static void
60 prefixify_expression PARAMS ((struct expression *));
61
62 static void
63 prefixify_subexp PARAMS ((struct expression *, struct expression *, int, int));
64
65 /* Data structure for saving values of arglist_len for function calls whose
66 arguments contain other function calls. */
67
68 struct funcall
69 {
70 struct funcall *next;
71 int arglist_len;
72 };
73
74 static struct funcall *funcall_chain;
75
76 /* Assign machine-independent names to certain registers
77 (unless overridden by the REGISTER_NAMES table) */
78
79 #ifdef NO_STD_REGS
80 unsigned num_std_regs = 0;
81 struct std_regs std_regs[1];
82 #else
83 struct std_regs std_regs[] = {
84
85 #ifdef PC_REGNUM
86 { "pc", PC_REGNUM },
87 #endif
88 #ifdef FP_REGNUM
89 { "fp", FP_REGNUM },
90 #endif
91 #ifdef SP_REGNUM
92 { "sp", SP_REGNUM },
93 #endif
94 #ifdef PS_REGNUM
95 { "ps", PS_REGNUM },
96 #endif
97
98 };
99
100 unsigned num_std_regs = (sizeof std_regs / sizeof std_regs[0]);
101
102 #endif
103
104 /* The generic method for targets to specify how their registers are named.
105 The mapping can be derived from three sources: reg_names; std_regs; or
106 a target specific alias hook. */
107
108 int
109 target_map_name_to_register (str, len)
110 char *str;
111 int len;
112 {
113 int i;
114
115 /* First try target specific aliases. We try these first because on some
116 systems standard names can be context dependent (eg. $pc on a
117 multiprocessor can be could be any of several PCs). */
118 #ifdef REGISTER_NAME_ALIAS_HOOK
119 i = REGISTER_NAME_ALIAS_HOOK (str, len);
120 if (i >= 0)
121 return i;
122 #endif
123
124 /* Search architectural register name space. */
125 for (i = 0; i < NUM_REGS; i++)
126 if (reg_names[i] && len == strlen (reg_names[i])
127 && STREQN (str, reg_names[i], len))
128 {
129 return i;
130 }
131
132 /* Try standard aliases */
133 for (i = 0; i < num_std_regs; i++)
134 if (std_regs[i].name && len == strlen (std_regs[i].name)
135 && STREQN (str, std_regs[i].name, len))
136 {
137 return std_regs[i].regnum;
138 }
139
140 return -1;
141 }
142
143 /* Begin counting arguments for a function call,
144 saving the data about any containing call. */
145
146 void
147 start_arglist ()
148 {
149 register struct funcall *new;
150
151 new = (struct funcall *) xmalloc (sizeof (struct funcall));
152 new->next = funcall_chain;
153 new->arglist_len = arglist_len;
154 arglist_len = 0;
155 funcall_chain = new;
156 }
157
158 /* Return the number of arguments in a function call just terminated,
159 and restore the data for the containing function call. */
160
161 int
162 end_arglist ()
163 {
164 register int val = arglist_len;
165 register struct funcall *call = funcall_chain;
166 funcall_chain = call->next;
167 arglist_len = call->arglist_len;
168 free ((PTR)call);
169 return val;
170 }
171
172 /* Free everything in the funcall chain.
173 Used when there is an error inside parsing. */
174
175 static void
176 free_funcalls ()
177 {
178 register struct funcall *call, *next;
179
180 for (call = funcall_chain; call; call = next)
181 {
182 next = call->next;
183 free ((PTR)call);
184 }
185 }
186 \f
187 /* This page contains the functions for adding data to the struct expression
188 being constructed. */
189
190 /* Add one element to the end of the expression. */
191
192 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
193 a register through here */
194
195 void
196 write_exp_elt (expelt)
197 union exp_element expelt;
198 {
199 if (expout_ptr >= expout_size)
200 {
201 expout_size *= 2;
202 expout = (struct expression *)
203 xrealloc ((char *) expout, sizeof (struct expression)
204 + EXP_ELEM_TO_BYTES (expout_size));
205 }
206 expout->elts[expout_ptr++] = expelt;
207 }
208
209 void
210 write_exp_elt_opcode (expelt)
211 enum exp_opcode expelt;
212 {
213 union exp_element tmp;
214
215 tmp.opcode = expelt;
216
217 write_exp_elt (tmp);
218 }
219
220 void
221 write_exp_elt_sym (expelt)
222 struct symbol *expelt;
223 {
224 union exp_element tmp;
225
226 tmp.symbol = expelt;
227
228 write_exp_elt (tmp);
229 }
230
231 void
232 write_exp_elt_block (b)
233 struct block *b;
234 {
235 union exp_element tmp;
236 tmp.block = b;
237 write_exp_elt (tmp);
238 }
239
240 void
241 write_exp_elt_longcst (expelt)
242 LONGEST expelt;
243 {
244 union exp_element tmp;
245
246 tmp.longconst = expelt;
247
248 write_exp_elt (tmp);
249 }
250
251 void
252 write_exp_elt_dblcst (expelt)
253 DOUBLEST expelt;
254 {
255 union exp_element tmp;
256
257 tmp.doubleconst = expelt;
258
259 write_exp_elt (tmp);
260 }
261
262 void
263 write_exp_elt_type (expelt)
264 struct type *expelt;
265 {
266 union exp_element tmp;
267
268 tmp.type = expelt;
269
270 write_exp_elt (tmp);
271 }
272
273 void
274 write_exp_elt_intern (expelt)
275 struct internalvar *expelt;
276 {
277 union exp_element tmp;
278
279 tmp.internalvar = expelt;
280
281 write_exp_elt (tmp);
282 }
283
284 /* Add a string constant to the end of the expression.
285
286 String constants are stored by first writing an expression element
287 that contains the length of the string, then stuffing the string
288 constant itself into however many expression elements are needed
289 to hold it, and then writing another expression element that contains
290 the length of the string. I.E. an expression element at each end of
291 the string records the string length, so you can skip over the
292 expression elements containing the actual string bytes from either
293 end of the string. Note that this also allows gdb to handle
294 strings with embedded null bytes, as is required for some languages.
295
296 Don't be fooled by the fact that the string is null byte terminated,
297 this is strictly for the convenience of debugging gdb itself. Gdb
298 Gdb does not depend up the string being null terminated, since the
299 actual length is recorded in expression elements at each end of the
300 string. The null byte is taken into consideration when computing how
301 many expression elements are required to hold the string constant, of
302 course. */
303
304
305 void
306 write_exp_string (str)
307 struct stoken str;
308 {
309 register int len = str.length;
310 register int lenelt;
311 register char *strdata;
312
313 /* Compute the number of expression elements required to hold the string
314 (including a null byte terminator), along with one expression element
315 at each end to record the actual string length (not including the
316 null byte terminator). */
317
318 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
319
320 /* Ensure that we have enough available expression elements to store
321 everything. */
322
323 if ((expout_ptr + lenelt) >= expout_size)
324 {
325 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
326 expout = (struct expression *)
327 xrealloc ((char *) expout, (sizeof (struct expression)
328 + EXP_ELEM_TO_BYTES (expout_size)));
329 }
330
331 /* Write the leading length expression element (which advances the current
332 expression element index), then write the string constant followed by a
333 terminating null byte, and then write the trailing length expression
334 element. */
335
336 write_exp_elt_longcst ((LONGEST) len);
337 strdata = (char *) &expout->elts[expout_ptr];
338 memcpy (strdata, str.ptr, len);
339 *(strdata + len) = '\0';
340 expout_ptr += lenelt - 2;
341 write_exp_elt_longcst ((LONGEST) len);
342 }
343
344 /* Add a bitstring constant to the end of the expression.
345
346 Bitstring constants are stored by first writing an expression element
347 that contains the length of the bitstring (in bits), then stuffing the
348 bitstring constant itself into however many expression elements are
349 needed to hold it, and then writing another expression element that
350 contains the length of the bitstring. I.E. an expression element at
351 each end of the bitstring records the bitstring length, so you can skip
352 over the expression elements containing the actual bitstring bytes from
353 either end of the bitstring. */
354
355 void
356 write_exp_bitstring (str)
357 struct stoken str;
358 {
359 register int bits = str.length; /* length in bits */
360 register int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
361 register int lenelt;
362 register char *strdata;
363
364 /* Compute the number of expression elements required to hold the bitstring,
365 along with one expression element at each end to record the actual
366 bitstring length in bits. */
367
368 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
369
370 /* Ensure that we have enough available expression elements to store
371 everything. */
372
373 if ((expout_ptr + lenelt) >= expout_size)
374 {
375 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
376 expout = (struct expression *)
377 xrealloc ((char *) expout, (sizeof (struct expression)
378 + EXP_ELEM_TO_BYTES (expout_size)));
379 }
380
381 /* Write the leading length expression element (which advances the current
382 expression element index), then write the bitstring constant, and then
383 write the trailing length expression element. */
384
385 write_exp_elt_longcst ((LONGEST) bits);
386 strdata = (char *) &expout->elts[expout_ptr];
387 memcpy (strdata, str.ptr, len);
388 expout_ptr += lenelt - 2;
389 write_exp_elt_longcst ((LONGEST) bits);
390 }
391
392 /* Add the appropriate elements for a minimal symbol to the end of
393 the expression. The rationale behind passing in text_symbol_type and
394 data_symbol_type was so that Modula-2 could pass in WORD for
395 data_symbol_type. Perhaps it still is useful to have those types vary
396 based on the language, but they no longer have names like "int", so
397 the initial rationale is gone. */
398
399 static struct type *msym_text_symbol_type;
400 static struct type *msym_data_symbol_type;
401 static struct type *msym_unknown_symbol_type;
402
403 void
404 write_exp_msymbol (msymbol, text_symbol_type, data_symbol_type)
405 struct minimal_symbol *msymbol;
406 struct type *text_symbol_type;
407 struct type *data_symbol_type;
408 {
409 write_exp_elt_opcode (OP_LONG);
410 write_exp_elt_type (lookup_pointer_type (builtin_type_void));
411 write_exp_elt_longcst ((LONGEST) SYMBOL_VALUE_ADDRESS (msymbol));
412 write_exp_elt_opcode (OP_LONG);
413
414 write_exp_elt_opcode (UNOP_MEMVAL);
415 switch (msymbol -> type)
416 {
417 case mst_text:
418 case mst_file_text:
419 case mst_solib_trampoline:
420 write_exp_elt_type (msym_text_symbol_type);
421 break;
422
423 case mst_data:
424 case mst_file_data:
425 case mst_bss:
426 case mst_file_bss:
427 write_exp_elt_type (msym_data_symbol_type);
428 break;
429
430 default:
431 write_exp_elt_type (msym_unknown_symbol_type);
432 break;
433 }
434 write_exp_elt_opcode (UNOP_MEMVAL);
435 }
436 \f
437 /* Recognize tokens that start with '$'. These include:
438
439 $regname A native register name or a "standard
440 register name".
441
442 $variable A convenience variable with a name chosen
443 by the user.
444
445 $digits Value history with index <digits>, starting
446 from the first value which has index 1.
447
448 $$digits Value history with index <digits> relative
449 to the last value. I.E. $$0 is the last
450 value, $$1 is the one previous to that, $$2
451 is the one previous to $$1, etc.
452
453 $ | $0 | $$0 The last value in the value history.
454
455 $$ An abbreviation for the second to the last
456 value in the value history, I.E. $$1
457
458 */
459
460 void
461 write_dollar_variable (str)
462 struct stoken str;
463 {
464 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
465 and $$digits (equivalent to $<-digits> if you could type that). */
466
467 int negate = 0;
468 int i = 1;
469 /* Double dollar means negate the number and add -1 as well.
470 Thus $$ alone means -1. */
471 if (str.length >= 2 && str.ptr[1] == '$')
472 {
473 negate = 1;
474 i = 2;
475 }
476 if (i == str.length)
477 {
478 /* Just dollars (one or two) */
479 i = - negate;
480 goto handle_last;
481 }
482 /* Is the rest of the token digits? */
483 for (; i < str.length; i++)
484 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
485 break;
486 if (i == str.length)
487 {
488 i = atoi (str.ptr + 1 + negate);
489 if (negate)
490 i = - i;
491 goto handle_last;
492 }
493
494 /* Handle tokens that refer to machine registers:
495 $ followed by a register name. */
496 i = target_map_name_to_register( str.ptr + 1, str.length - 1 );
497 if( i >= 0 )
498 goto handle_register;
499
500 /* Any other names starting in $ are debugger internal variables. */
501
502 write_exp_elt_opcode (OP_INTERNALVAR);
503 write_exp_elt_intern (lookup_internalvar (copy_name (str) + 1));
504 write_exp_elt_opcode (OP_INTERNALVAR);
505 return;
506 handle_last:
507 write_exp_elt_opcode (OP_LAST);
508 write_exp_elt_longcst ((LONGEST) i);
509 write_exp_elt_opcode (OP_LAST);
510 return;
511 handle_register:
512 write_exp_elt_opcode (OP_REGISTER);
513 write_exp_elt_longcst (i);
514 write_exp_elt_opcode (OP_REGISTER);
515 return;
516 }
517 \f
518 /* Return a null-terminated temporary copy of the name
519 of a string token. */
520
521 char *
522 copy_name (token)
523 struct stoken token;
524 {
525 memcpy (namecopy, token.ptr, token.length);
526 namecopy[token.length] = 0;
527 return namecopy;
528 }
529 \f
530 /* Reverse an expression from suffix form (in which it is constructed)
531 to prefix form (in which we can conveniently print or execute it). */
532
533 static void
534 prefixify_expression (expr)
535 register struct expression *expr;
536 {
537 register int len =
538 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
539 register struct expression *temp;
540 register int inpos = expr->nelts, outpos = 0;
541
542 temp = (struct expression *) alloca (len);
543
544 /* Copy the original expression into temp. */
545 memcpy (temp, expr, len);
546
547 prefixify_subexp (temp, expr, inpos, outpos);
548 }
549
550 /* Return the number of exp_elements in the subexpression of EXPR
551 whose last exp_element is at index ENDPOS - 1 in EXPR. */
552
553 int
554 length_of_subexp (expr, endpos)
555 register struct expression *expr;
556 register int endpos;
557 {
558 register int oplen = 1;
559 register int args = 0;
560 register int i;
561
562 if (endpos < 1)
563 error ("?error in length_of_subexp");
564
565 i = (int) expr->elts[endpos - 1].opcode;
566
567 switch (i)
568 {
569 /* C++ */
570 case OP_SCOPE:
571 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
572 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
573 break;
574
575 case OP_LONG:
576 case OP_DOUBLE:
577 case OP_VAR_VALUE:
578 oplen = 4;
579 break;
580
581 case OP_TYPE:
582 case OP_BOOL:
583 case OP_LAST:
584 case OP_REGISTER:
585 case OP_INTERNALVAR:
586 oplen = 3;
587 break;
588
589 case OP_COMPLEX:
590 oplen = 1;
591 args = 2;
592 break;
593
594 case OP_FUNCALL:
595 case OP_F77_UNDETERMINED_ARGLIST:
596 oplen = 3;
597 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
598 break;
599
600 case UNOP_MAX:
601 case UNOP_MIN:
602 oplen = 3;
603 break;
604
605 case BINOP_VAL:
606 case UNOP_CAST:
607 case UNOP_MEMVAL:
608 oplen = 3;
609 args = 1;
610 break;
611
612 case UNOP_ABS:
613 case UNOP_CAP:
614 case UNOP_CHR:
615 case UNOP_FLOAT:
616 case UNOP_HIGH:
617 case UNOP_ODD:
618 case UNOP_ORD:
619 case UNOP_TRUNC:
620 oplen = 1;
621 args = 1;
622 break;
623
624 case OP_LABELED:
625 case STRUCTOP_STRUCT:
626 case STRUCTOP_PTR:
627 args = 1;
628 /* fall through */
629 case OP_M2_STRING:
630 case OP_STRING:
631 case OP_NAME:
632 case OP_EXPRSTRING:
633 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
634 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
635 break;
636
637 case OP_BITSTRING:
638 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
639 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
640 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
641 break;
642
643 case OP_ARRAY:
644 oplen = 4;
645 args = longest_to_int (expr->elts[endpos - 2].longconst);
646 args -= longest_to_int (expr->elts[endpos - 3].longconst);
647 args += 1;
648 break;
649
650 case TERNOP_COND:
651 case TERNOP_SLICE:
652 case TERNOP_SLICE_COUNT:
653 args = 3;
654 break;
655
656 /* Modula-2 */
657 case MULTI_SUBSCRIPT:
658 oplen = 3;
659 args = 1 + longest_to_int (expr->elts[endpos- 2].longconst);
660 break;
661
662 case BINOP_ASSIGN_MODIFY:
663 oplen = 3;
664 args = 2;
665 break;
666
667 /* C++ */
668 case OP_THIS:
669 oplen = 2;
670 break;
671
672 default:
673 args = 1 + (i < (int) BINOP_END);
674 }
675
676 while (args > 0)
677 {
678 oplen += length_of_subexp (expr, endpos - oplen);
679 args--;
680 }
681
682 return oplen;
683 }
684
685 /* Copy the subexpression ending just before index INEND in INEXPR
686 into OUTEXPR, starting at index OUTBEG.
687 In the process, convert it from suffix to prefix form. */
688
689 static void
690 prefixify_subexp (inexpr, outexpr, inend, outbeg)
691 register struct expression *inexpr;
692 struct expression *outexpr;
693 register int inend;
694 int outbeg;
695 {
696 register int oplen = 1;
697 register int args = 0;
698 register int i;
699 int *arglens;
700 enum exp_opcode opcode;
701
702 /* Compute how long the last operation is (in OPLEN),
703 and also how many preceding subexpressions serve as
704 arguments for it (in ARGS). */
705
706 opcode = inexpr->elts[inend - 1].opcode;
707 switch (opcode)
708 {
709 /* C++ */
710 case OP_SCOPE:
711 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
712 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
713 break;
714
715 case OP_LONG:
716 case OP_DOUBLE:
717 case OP_VAR_VALUE:
718 oplen = 4;
719 break;
720
721 case OP_TYPE:
722 case OP_BOOL:
723 case OP_LAST:
724 case OP_REGISTER:
725 case OP_INTERNALVAR:
726 oplen = 3;
727 break;
728
729 case OP_COMPLEX:
730 oplen = 1;
731 args = 2;
732 break;
733
734 case OP_FUNCALL:
735 case OP_F77_UNDETERMINED_ARGLIST:
736 oplen = 3;
737 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
738 break;
739
740 case UNOP_MIN:
741 case UNOP_MAX:
742 oplen = 3;
743 break;
744
745 case UNOP_CAST:
746 case UNOP_MEMVAL:
747 oplen = 3;
748 args = 1;
749 break;
750
751 case UNOP_ABS:
752 case UNOP_CAP:
753 case UNOP_CHR:
754 case UNOP_FLOAT:
755 case UNOP_HIGH:
756 case UNOP_ODD:
757 case UNOP_ORD:
758 case UNOP_TRUNC:
759 oplen=1;
760 args=1;
761 break;
762
763 case STRUCTOP_STRUCT:
764 case STRUCTOP_PTR:
765 case OP_LABELED:
766 args = 1;
767 /* fall through */
768 case OP_M2_STRING:
769 case OP_STRING:
770 case OP_NAME:
771 case OP_EXPRSTRING:
772 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
773 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
774 break;
775
776 case OP_BITSTRING:
777 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
778 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
779 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
780 break;
781
782 case OP_ARRAY:
783 oplen = 4;
784 args = longest_to_int (inexpr->elts[inend - 2].longconst);
785 args -= longest_to_int (inexpr->elts[inend - 3].longconst);
786 args += 1;
787 break;
788
789 case TERNOP_COND:
790 case TERNOP_SLICE:
791 case TERNOP_SLICE_COUNT:
792 args = 3;
793 break;
794
795 case BINOP_ASSIGN_MODIFY:
796 oplen = 3;
797 args = 2;
798 break;
799
800 /* Modula-2 */
801 case MULTI_SUBSCRIPT:
802 oplen = 3;
803 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
804 break;
805
806 /* C++ */
807 case OP_THIS:
808 oplen = 2;
809 break;
810
811 default:
812 args = 1 + ((int) opcode < (int) BINOP_END);
813 }
814
815 /* Copy the final operator itself, from the end of the input
816 to the beginning of the output. */
817 inend -= oplen;
818 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
819 EXP_ELEM_TO_BYTES (oplen));
820 outbeg += oplen;
821
822 /* Find the lengths of the arg subexpressions. */
823 arglens = (int *) alloca (args * sizeof (int));
824 for (i = args - 1; i >= 0; i--)
825 {
826 oplen = length_of_subexp (inexpr, inend);
827 arglens[i] = oplen;
828 inend -= oplen;
829 }
830
831 /* Now copy each subexpression, preserving the order of
832 the subexpressions, but prefixifying each one.
833 In this loop, inend starts at the beginning of
834 the expression this level is working on
835 and marches forward over the arguments.
836 outbeg does similarly in the output. */
837 for (i = 0; i < args; i++)
838 {
839 oplen = arglens[i];
840 inend += oplen;
841 prefixify_subexp (inexpr, outexpr, inend, outbeg);
842 outbeg += oplen;
843 }
844 }
845 \f
846 /* This page contains the two entry points to this file. */
847
848 /* Read an expression from the string *STRINGPTR points to,
849 parse it, and return a pointer to a struct expression that we malloc.
850 Use block BLOCK as the lexical context for variable names;
851 if BLOCK is zero, use the block of the selected stack frame.
852 Meanwhile, advance *STRINGPTR to point after the expression,
853 at the first nonwhite character that is not part of the expression
854 (possibly a null character).
855
856 If COMMA is nonzero, stop if a comma is reached. */
857
858 struct expression *
859 parse_exp_1 (stringptr, block, comma)
860 char **stringptr;
861 struct block *block;
862 int comma;
863 {
864 struct cleanup *old_chain;
865
866 lexptr = *stringptr;
867
868 paren_depth = 0;
869 type_stack_depth = 0;
870
871 comma_terminates = comma;
872
873 if (lexptr == 0 || *lexptr == 0)
874 error_no_arg ("expression to compute");
875
876 old_chain = make_cleanup (free_funcalls, 0);
877 funcall_chain = 0;
878
879 expression_context_block = block ? block : get_selected_block ();
880
881 namecopy = (char *) alloca (strlen (lexptr) + 1);
882 expout_size = 10;
883 expout_ptr = 0;
884 expout = (struct expression *)
885 xmalloc (sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_size));
886 expout->language_defn = current_language;
887 make_cleanup (free_current_contents, &expout);
888
889 if (current_language->la_parser ())
890 current_language->la_error (NULL);
891
892 discard_cleanups (old_chain);
893
894 /* Record the actual number of expression elements, and then
895 reallocate the expression memory so that we free up any
896 excess elements. */
897
898 expout->nelts = expout_ptr;
899 expout = (struct expression *)
900 xrealloc ((char *) expout,
901 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_ptr));;
902
903 /* Convert expression from postfix form as generated by yacc
904 parser, to a prefix form. */
905
906 DUMP_EXPRESSION (expout, gdb_stdout, "before conversion to prefix form");
907 prefixify_expression (expout);
908 DUMP_EXPRESSION (expout, gdb_stdout, "after conversion to prefix form");
909
910 *stringptr = lexptr;
911 return expout;
912 }
913
914 /* Parse STRING as an expression, and complain if this fails
915 to use up all of the contents of STRING. */
916
917 struct expression *
918 parse_expression (string)
919 char *string;
920 {
921 register struct expression *exp;
922 exp = parse_exp_1 (&string, 0, 0);
923 if (*string)
924 error ("Junk after end of expression.");
925 return exp;
926 }
927 \f
928 /* Stuff for maintaining a stack of types. Currently just used by C, but
929 probably useful for any language which declares its types "backwards". */
930
931 void
932 push_type (tp)
933 enum type_pieces tp;
934 {
935 if (type_stack_depth == type_stack_size)
936 {
937 type_stack_size *= 2;
938 type_stack = (union type_stack_elt *)
939 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
940 }
941 type_stack[type_stack_depth++].piece = tp;
942 }
943
944 void
945 push_type_int (n)
946 int n;
947 {
948 if (type_stack_depth == type_stack_size)
949 {
950 type_stack_size *= 2;
951 type_stack = (union type_stack_elt *)
952 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
953 }
954 type_stack[type_stack_depth++].int_val = n;
955 }
956
957 enum type_pieces
958 pop_type ()
959 {
960 if (type_stack_depth)
961 return type_stack[--type_stack_depth].piece;
962 return tp_end;
963 }
964
965 int
966 pop_type_int ()
967 {
968 if (type_stack_depth)
969 return type_stack[--type_stack_depth].int_val;
970 /* "Can't happen". */
971 return 0;
972 }
973
974 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
975 as modified by all the stuff on the stack. */
976 struct type *
977 follow_types (follow_type)
978 struct type *follow_type;
979 {
980 int done = 0;
981 int array_size;
982 struct type *range_type;
983
984 while (!done)
985 switch (pop_type ())
986 {
987 case tp_end:
988 done = 1;
989 break;
990 case tp_pointer:
991 follow_type = lookup_pointer_type (follow_type);
992 break;
993 case tp_reference:
994 follow_type = lookup_reference_type (follow_type);
995 break;
996 case tp_array:
997 array_size = pop_type_int ();
998 /* FIXME-type-allocation: need a way to free this type when we are
999 done with it. */
1000 range_type =
1001 create_range_type ((struct type *) NULL,
1002 builtin_type_int, 0,
1003 array_size >= 0 ? array_size - 1 : 0);
1004 follow_type =
1005 create_array_type ((struct type *) NULL,
1006 follow_type, range_type);
1007 if (array_size < 0)
1008 TYPE_ARRAY_UPPER_BOUND_TYPE(follow_type)
1009 = BOUND_CANNOT_BE_DETERMINED;
1010 break;
1011 case tp_function:
1012 /* FIXME-type-allocation: need a way to free this type when we are
1013 done with it. */
1014 follow_type = lookup_function_type (follow_type);
1015 break;
1016 }
1017 return follow_type;
1018 }
1019 \f
1020 void
1021 _initialize_parse ()
1022 {
1023 type_stack_size = 80;
1024 type_stack_depth = 0;
1025 type_stack = (union type_stack_elt *)
1026 xmalloc (type_stack_size * sizeof (*type_stack));
1027
1028 msym_text_symbol_type =
1029 init_type (TYPE_CODE_FUNC, 1, 0, "<text variable, no debug info>", NULL);
1030 TYPE_TARGET_TYPE (msym_text_symbol_type) = builtin_type_int;
1031 msym_data_symbol_type =
1032 init_type (TYPE_CODE_INT, TARGET_INT_BIT / HOST_CHAR_BIT, 0,
1033 "<data variable, no debug info>", NULL);
1034 msym_unknown_symbol_type =
1035 init_type (TYPE_CODE_INT, 1, 0,
1036 "<variable (not text or data), no debug info>",
1037 NULL);
1038 }