Initial Fortran language support, adapted from work by Farooq Butt
[binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991, 1994 Free Software Foundation, Inc.
3 Modified from expread.y by the Department of Computer Science at the
4 State University of New York at Buffalo, 1991.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /* Parse an expression from text in a string,
23 and return the result as a struct expression pointer.
24 That structure contains arithmetic operations in reverse polish,
25 with constants represented by operations that are followed by special data.
26 See expression.h for the details of the format.
27 What is important here is that it can be built up sequentially
28 during the process of parsing; the lower levels of the tree always
29 come first in the result. */
30
31 #include "defs.h"
32 #include <string.h>
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "frame.h"
36 #include "expression.h"
37 #include "value.h"
38 #include "command.h"
39 #include "language.h"
40 #include "parser-defs.h"
41 \f
42 /* Global variables declared in parser-defs.h (and commented there). */
43 struct expression *expout;
44 int expout_size;
45 int expout_ptr;
46 struct block *expression_context_block;
47 struct block *innermost_block;
48 int arglist_len;
49 union type_stack_elt *type_stack;
50 int type_stack_depth, type_stack_size;
51 char *lexptr;
52 char *namecopy;
53 int paren_depth;
54 int comma_terminates;
55 \f
56 static void
57 free_funcalls PARAMS ((void));
58
59 static void
60 prefixify_expression PARAMS ((struct expression *));
61
62 static int
63 length_of_subexp PARAMS ((struct expression *, int));
64
65 static void
66 prefixify_subexp PARAMS ((struct expression *, struct expression *, int, int));
67
68 /* Data structure for saving values of arglist_len for function calls whose
69 arguments contain other function calls. */
70
71 struct funcall
72 {
73 struct funcall *next;
74 int arglist_len;
75 };
76
77 static struct funcall *funcall_chain;
78
79 /* Assign machine-independent names to certain registers
80 (unless overridden by the REGISTER_NAMES table) */
81
82 #ifdef NO_STD_REGS
83 unsigned num_std_regs = 0;
84 struct std_regs std_regs[1];
85 #else
86 struct std_regs std_regs[] = {
87
88 #ifdef PC_REGNUM
89 { "pc", PC_REGNUM },
90 #endif
91 #ifdef FP_REGNUM
92 { "fp", FP_REGNUM },
93 #endif
94 #ifdef SP_REGNUM
95 { "sp", SP_REGNUM },
96 #endif
97 #ifdef PS_REGNUM
98 { "ps", PS_REGNUM },
99 #endif
100
101 };
102
103 unsigned num_std_regs = (sizeof std_regs / sizeof std_regs[0]);
104
105 #endif
106
107
108 /* Begin counting arguments for a function call,
109 saving the data about any containing call. */
110
111 void
112 start_arglist ()
113 {
114 register struct funcall *new;
115
116 new = (struct funcall *) xmalloc (sizeof (struct funcall));
117 new->next = funcall_chain;
118 new->arglist_len = arglist_len;
119 arglist_len = 0;
120 funcall_chain = new;
121 }
122
123 /* Return the number of arguments in a function call just terminated,
124 and restore the data for the containing function call. */
125
126 int
127 end_arglist ()
128 {
129 register int val = arglist_len;
130 register struct funcall *call = funcall_chain;
131 funcall_chain = call->next;
132 arglist_len = call->arglist_len;
133 free ((PTR)call);
134 return val;
135 }
136
137 /* Free everything in the funcall chain.
138 Used when there is an error inside parsing. */
139
140 static void
141 free_funcalls ()
142 {
143 register struct funcall *call, *next;
144
145 for (call = funcall_chain; call; call = next)
146 {
147 next = call->next;
148 free ((PTR)call);
149 }
150 }
151 \f
152 /* This page contains the functions for adding data to the struct expression
153 being constructed. */
154
155 /* Add one element to the end of the expression. */
156
157 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
158 a register through here */
159
160 void
161 write_exp_elt (expelt)
162 union exp_element expelt;
163 {
164 if (expout_ptr >= expout_size)
165 {
166 expout_size *= 2;
167 expout = (struct expression *)
168 xrealloc ((char *) expout, sizeof (struct expression)
169 + EXP_ELEM_TO_BYTES (expout_size));
170 }
171 expout->elts[expout_ptr++] = expelt;
172 }
173
174 void
175 write_exp_elt_opcode (expelt)
176 enum exp_opcode expelt;
177 {
178 union exp_element tmp;
179
180 tmp.opcode = expelt;
181
182 write_exp_elt (tmp);
183 }
184
185 void
186 write_exp_elt_sym (expelt)
187 struct symbol *expelt;
188 {
189 union exp_element tmp;
190
191 tmp.symbol = expelt;
192
193 write_exp_elt (tmp);
194 }
195
196 void
197 write_exp_elt_block (b)
198 struct block *b;
199 {
200 union exp_element tmp;
201 tmp.block = b;
202 write_exp_elt (tmp);
203 }
204
205 void
206 write_exp_elt_longcst (expelt)
207 LONGEST expelt;
208 {
209 union exp_element tmp;
210
211 tmp.longconst = expelt;
212
213 write_exp_elt (tmp);
214 }
215
216 void
217 write_exp_elt_dblcst (expelt)
218 double expelt;
219 {
220 union exp_element tmp;
221
222 tmp.doubleconst = expelt;
223
224 write_exp_elt (tmp);
225 }
226
227 void
228 write_exp_elt_type (expelt)
229 struct type *expelt;
230 {
231 union exp_element tmp;
232
233 tmp.type = expelt;
234
235 write_exp_elt (tmp);
236 }
237
238 void
239 write_exp_elt_intern (expelt)
240 struct internalvar *expelt;
241 {
242 union exp_element tmp;
243
244 tmp.internalvar = expelt;
245
246 write_exp_elt (tmp);
247 }
248
249 /* Add a string constant to the end of the expression.
250
251 String constants are stored by first writing an expression element
252 that contains the length of the string, then stuffing the string
253 constant itself into however many expression elements are needed
254 to hold it, and then writing another expression element that contains
255 the length of the string. I.E. an expression element at each end of
256 the string records the string length, so you can skip over the
257 expression elements containing the actual string bytes from either
258 end of the string. Note that this also allows gdb to handle
259 strings with embedded null bytes, as is required for some languages.
260
261 Don't be fooled by the fact that the string is null byte terminated,
262 this is strictly for the convenience of debugging gdb itself. Gdb
263 Gdb does not depend up the string being null terminated, since the
264 actual length is recorded in expression elements at each end of the
265 string. The null byte is taken into consideration when computing how
266 many expression elements are required to hold the string constant, of
267 course. */
268
269
270 void
271 write_exp_string (str)
272 struct stoken str;
273 {
274 register int len = str.length;
275 register int lenelt;
276 register char *strdata;
277
278 /* Compute the number of expression elements required to hold the string
279 (including a null byte terminator), along with one expression element
280 at each end to record the actual string length (not including the
281 null byte terminator). */
282
283 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
284
285 /* Ensure that we have enough available expression elements to store
286 everything. */
287
288 if ((expout_ptr + lenelt) >= expout_size)
289 {
290 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
291 expout = (struct expression *)
292 xrealloc ((char *) expout, (sizeof (struct expression)
293 + EXP_ELEM_TO_BYTES (expout_size)));
294 }
295
296 /* Write the leading length expression element (which advances the current
297 expression element index), then write the string constant followed by a
298 terminating null byte, and then write the trailing length expression
299 element. */
300
301 write_exp_elt_longcst ((LONGEST) len);
302 strdata = (char *) &expout->elts[expout_ptr];
303 memcpy (strdata, str.ptr, len);
304 *(strdata + len) = '\0';
305 expout_ptr += lenelt - 2;
306 write_exp_elt_longcst ((LONGEST) len);
307 }
308
309 /* Add a bitstring constant to the end of the expression.
310
311 Bitstring constants are stored by first writing an expression element
312 that contains the length of the bitstring (in bits), then stuffing the
313 bitstring constant itself into however many expression elements are
314 needed to hold it, and then writing another expression element that
315 contains the length of the bitstring. I.E. an expression element at
316 each end of the bitstring records the bitstring length, so you can skip
317 over the expression elements containing the actual bitstring bytes from
318 either end of the bitstring. */
319
320 void
321 write_exp_bitstring (str)
322 struct stoken str;
323 {
324 register int bits = str.length; /* length in bits */
325 register int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
326 register int lenelt;
327 register char *strdata;
328
329 /* Compute the number of expression elements required to hold the bitstring,
330 along with one expression element at each end to record the actual
331 bitstring length in bits. */
332
333 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
334
335 /* Ensure that we have enough available expression elements to store
336 everything. */
337
338 if ((expout_ptr + lenelt) >= expout_size)
339 {
340 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
341 expout = (struct expression *)
342 xrealloc ((char *) expout, (sizeof (struct expression)
343 + EXP_ELEM_TO_BYTES (expout_size)));
344 }
345
346 /* Write the leading length expression element (which advances the current
347 expression element index), then write the bitstring constant, and then
348 write the trailing length expression element. */
349
350 write_exp_elt_longcst ((LONGEST) bits);
351 strdata = (char *) &expout->elts[expout_ptr];
352 memcpy (strdata, str.ptr, len);
353 expout_ptr += lenelt - 2;
354 write_exp_elt_longcst ((LONGEST) bits);
355 }
356
357 /* Type that corresponds to the address given in a minimal symbol. */
358
359 static struct type *msymbol_addr_type;
360
361 /* Add the appropriate elements for a minimal symbol to the end of
362 the expression. */
363
364 void
365 write_exp_msymbol (msymbol, text_symbol_type, data_symbol_type)
366 struct minimal_symbol *msymbol;
367 struct type *text_symbol_type;
368 struct type *data_symbol_type;
369 {
370 write_exp_elt_opcode (OP_LONG);
371 write_exp_elt_type (msymbol_addr_type);
372 write_exp_elt_longcst ((LONGEST) SYMBOL_VALUE_ADDRESS (msymbol));
373 write_exp_elt_opcode (OP_LONG);
374
375 write_exp_elt_opcode (UNOP_MEMVAL);
376 switch (msymbol -> type)
377 {
378 case mst_text:
379 case mst_file_text:
380 case mst_solib_trampoline:
381 write_exp_elt_type (text_symbol_type);
382 break;
383
384 case mst_data:
385 case mst_file_data:
386 case mst_bss:
387 case mst_file_bss:
388 write_exp_elt_type (data_symbol_type);
389 break;
390
391 default:
392 write_exp_elt_type (builtin_type_char);
393 break;
394 }
395 write_exp_elt_opcode (UNOP_MEMVAL);
396 }
397 \f
398 /* Return a null-terminated temporary copy of the name
399 of a string token. */
400
401 char *
402 copy_name (token)
403 struct stoken token;
404 {
405 memcpy (namecopy, token.ptr, token.length);
406 namecopy[token.length] = 0;
407 return namecopy;
408 }
409 \f
410 /* Reverse an expression from suffix form (in which it is constructed)
411 to prefix form (in which we can conveniently print or execute it). */
412
413 static void
414 prefixify_expression (expr)
415 register struct expression *expr;
416 {
417 register int len =
418 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
419 register struct expression *temp;
420 register int inpos = expr->nelts, outpos = 0;
421
422 temp = (struct expression *) alloca (len);
423
424 /* Copy the original expression into temp. */
425 memcpy (temp, expr, len);
426
427 prefixify_subexp (temp, expr, inpos, outpos);
428 }
429
430 /* Return the number of exp_elements in the subexpression of EXPR
431 whose last exp_element is at index ENDPOS - 1 in EXPR. */
432
433 static int
434 length_of_subexp (expr, endpos)
435 register struct expression *expr;
436 register int endpos;
437 {
438 register int oplen = 1;
439 register int args = 0;
440 register int i;
441
442 if (endpos < 1)
443 error ("?error in length_of_subexp");
444
445 i = (int) expr->elts[endpos - 1].opcode;
446
447 switch (i)
448 {
449 /* C++ */
450 case OP_SCOPE:
451 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
452 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
453 break;
454
455 case OP_LONG:
456 case OP_DOUBLE:
457 case OP_VAR_VALUE:
458 oplen = 4;
459 break;
460
461 case OP_TYPE:
462 case OP_BOOL:
463 case OP_LAST:
464 case OP_REGISTER:
465 case OP_INTERNALVAR:
466 oplen = 3;
467 break;
468
469 case OP_F77_LITERAL_COMPLEX:
470 oplen = 1;
471 args = 2;
472 break;
473
474 case OP_F77_SUBSTR:
475 oplen = 1;
476 args = 2;
477 break;
478
479 case OP_FUNCALL:
480 case OP_F77_UNDETERMINED_ARGLIST:
481 oplen = 3;
482 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
483 break;
484
485 case UNOP_MAX:
486 case UNOP_MIN:
487 oplen = 3;
488 break;
489
490 case BINOP_VAL:
491 case UNOP_CAST:
492 case UNOP_MEMVAL:
493 oplen = 3;
494 args = 1;
495 break;
496
497 case UNOP_ABS:
498 case UNOP_CAP:
499 case UNOP_CHR:
500 case UNOP_FLOAT:
501 case UNOP_HIGH:
502 case UNOP_ODD:
503 case UNOP_ORD:
504 case UNOP_TRUNC:
505 oplen = 1;
506 args = 1;
507 break;
508
509 case STRUCTOP_STRUCT:
510 case STRUCTOP_PTR:
511 args = 1;
512 /* fall through */
513 case OP_M2_STRING:
514 case OP_STRING:
515 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
516 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
517 break;
518
519 case OP_BITSTRING:
520 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
521 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
522 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
523 break;
524
525 case OP_ARRAY:
526 oplen = 4;
527 args = longest_to_int (expr->elts[endpos - 2].longconst);
528 args -= longest_to_int (expr->elts[endpos - 3].longconst);
529 args += 1;
530 break;
531
532 case TERNOP_COND:
533 args = 3;
534 break;
535
536 /* Modula-2 */
537 case MULTI_SUBSCRIPT:
538 /* Fortran */
539 case MULTI_F77_SUBSCRIPT:
540 oplen = 3;
541 args = 1 + longest_to_int (expr->elts[endpos- 2].longconst);
542 break;
543
544 case BINOP_ASSIGN_MODIFY:
545 oplen = 3;
546 args = 2;
547 break;
548
549 /* C++ */
550 case OP_THIS:
551 oplen = 2;
552 break;
553
554 default:
555 args = 1 + (i < (int) BINOP_END);
556 }
557
558 while (args > 0)
559 {
560 oplen += length_of_subexp (expr, endpos - oplen);
561 args--;
562 }
563
564 return oplen;
565 }
566
567 /* Copy the subexpression ending just before index INEND in INEXPR
568 into OUTEXPR, starting at index OUTBEG.
569 In the process, convert it from suffix to prefix form. */
570
571 static void
572 prefixify_subexp (inexpr, outexpr, inend, outbeg)
573 register struct expression *inexpr;
574 struct expression *outexpr;
575 register int inend;
576 int outbeg;
577 {
578 register int oplen = 1;
579 register int args = 0;
580 register int i;
581 int *arglens;
582 enum exp_opcode opcode;
583
584 /* Compute how long the last operation is (in OPLEN),
585 and also how many preceding subexpressions serve as
586 arguments for it (in ARGS). */
587
588 opcode = inexpr->elts[inend - 1].opcode;
589 switch (opcode)
590 {
591 /* C++ */
592 case OP_SCOPE:
593 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
594 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
595 break;
596
597 case OP_LONG:
598 case OP_DOUBLE:
599 case OP_VAR_VALUE:
600 oplen = 4;
601 break;
602
603 case OP_TYPE:
604 case OP_BOOL:
605 case OP_LAST:
606 case OP_REGISTER:
607 case OP_INTERNALVAR:
608 oplen = 3;
609 break;
610
611 case OP_F77_LITERAL_COMPLEX:
612 oplen = 1;
613 args = 2;
614 break;
615
616 case OP_F77_SUBSTR:
617 oplen = 1;
618 args = 2;
619 break;
620
621 case OP_FUNCALL:
622 case OP_F77_UNDETERMINED_ARGLIST:
623 oplen = 3;
624 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
625 break;
626
627 case UNOP_MIN:
628 case UNOP_MAX:
629 oplen = 3;
630 break;
631
632 case UNOP_CAST:
633 case UNOP_MEMVAL:
634 oplen = 3;
635 args = 1;
636 break;
637
638 case UNOP_ABS:
639 case UNOP_CAP:
640 case UNOP_CHR:
641 case UNOP_FLOAT:
642 case UNOP_HIGH:
643 case UNOP_ODD:
644 case UNOP_ORD:
645 case UNOP_TRUNC:
646 oplen=1;
647 args=1;
648 break;
649
650 case STRUCTOP_STRUCT:
651 case STRUCTOP_PTR:
652 args = 1;
653 /* fall through */
654 case OP_M2_STRING:
655 case OP_STRING:
656 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
657 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
658 break;
659
660 case OP_BITSTRING:
661 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
662 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
663 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
664 break;
665
666 case OP_ARRAY:
667 oplen = 4;
668 args = longest_to_int (inexpr->elts[inend - 2].longconst);
669 args -= longest_to_int (inexpr->elts[inend - 3].longconst);
670 args += 1;
671 break;
672
673 case TERNOP_COND:
674 args = 3;
675 break;
676
677 case BINOP_ASSIGN_MODIFY:
678 oplen = 3;
679 args = 2;
680 break;
681
682 /* Modula-2 */
683 case MULTI_SUBSCRIPT:
684 /* Fortran */
685 case MULTI_F77_SUBSCRIPT:
686 oplen = 3;
687 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
688 break;
689
690 /* C++ */
691 case OP_THIS:
692 oplen = 2;
693 break;
694
695 default:
696 args = 1 + ((int) opcode < (int) BINOP_END);
697 }
698
699 /* Copy the final operator itself, from the end of the input
700 to the beginning of the output. */
701 inend -= oplen;
702 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
703 EXP_ELEM_TO_BYTES (oplen));
704 outbeg += oplen;
705
706 /* Find the lengths of the arg subexpressions. */
707 arglens = (int *) alloca (args * sizeof (int));
708 for (i = args - 1; i >= 0; i--)
709 {
710 oplen = length_of_subexp (inexpr, inend);
711 arglens[i] = oplen;
712 inend -= oplen;
713 }
714
715 /* Now copy each subexpression, preserving the order of
716 the subexpressions, but prefixifying each one.
717 In this loop, inend starts at the beginning of
718 the expression this level is working on
719 and marches forward over the arguments.
720 outbeg does similarly in the output. */
721 for (i = 0; i < args; i++)
722 {
723 oplen = arglens[i];
724 inend += oplen;
725 prefixify_subexp (inexpr, outexpr, inend, outbeg);
726 outbeg += oplen;
727 }
728 }
729 \f
730 /* This page contains the two entry points to this file. */
731
732 /* Read an expression from the string *STRINGPTR points to,
733 parse it, and return a pointer to a struct expression that we malloc.
734 Use block BLOCK as the lexical context for variable names;
735 if BLOCK is zero, use the block of the selected stack frame.
736 Meanwhile, advance *STRINGPTR to point after the expression,
737 at the first nonwhite character that is not part of the expression
738 (possibly a null character).
739
740 If COMMA is nonzero, stop if a comma is reached. */
741
742 struct expression *
743 parse_exp_1 (stringptr, block, comma)
744 char **stringptr;
745 struct block *block;
746 int comma;
747 {
748 struct cleanup *old_chain;
749
750 lexptr = *stringptr;
751
752 paren_depth = 0;
753 type_stack_depth = 0;
754
755 comma_terminates = comma;
756
757 if (lexptr == 0 || *lexptr == 0)
758 error_no_arg ("expression to compute");
759
760 old_chain = make_cleanup (free_funcalls, 0);
761 funcall_chain = 0;
762
763 expression_context_block = block ? block : get_selected_block ();
764
765 namecopy = (char *) alloca (strlen (lexptr) + 1);
766 expout_size = 10;
767 expout_ptr = 0;
768 expout = (struct expression *)
769 xmalloc (sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_size));
770 expout->language_defn = current_language;
771 make_cleanup (free_current_contents, &expout);
772
773 if (current_language->la_parser ())
774 current_language->la_error (NULL);
775
776 discard_cleanups (old_chain);
777
778 /* Record the actual number of expression elements, and then
779 reallocate the expression memory so that we free up any
780 excess elements. */
781
782 expout->nelts = expout_ptr;
783 expout = (struct expression *)
784 xrealloc ((char *) expout,
785 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_ptr));;
786
787 /* Convert expression from postfix form as generated by yacc
788 parser, to a prefix form. */
789
790 DUMP_EXPRESSION (expout, gdb_stdout, "before conversion to prefix form");
791 prefixify_expression (expout);
792 DUMP_EXPRESSION (expout, gdb_stdout, "after conversion to prefix form");
793
794 *stringptr = lexptr;
795 return expout;
796 }
797
798 /* Parse STRING as an expression, and complain if this fails
799 to use up all of the contents of STRING. */
800
801 struct expression *
802 parse_expression (string)
803 char *string;
804 {
805 register struct expression *exp;
806 exp = parse_exp_1 (&string, 0, 0);
807 if (*string)
808 error ("Junk after end of expression.");
809 return exp;
810 }
811 \f
812 /* Stuff for maintaining a stack of types. Currently just used by C, but
813 probably useful for any language which declares its types "backwards". */
814
815 void
816 push_type (tp)
817 enum type_pieces tp;
818 {
819 if (type_stack_depth == type_stack_size)
820 {
821 type_stack_size *= 2;
822 type_stack = (union type_stack_elt *)
823 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
824 }
825 type_stack[type_stack_depth++].piece = tp;
826 }
827
828 void
829 push_type_int (n)
830 int n;
831 {
832 if (type_stack_depth == type_stack_size)
833 {
834 type_stack_size *= 2;
835 type_stack = (union type_stack_elt *)
836 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
837 }
838 type_stack[type_stack_depth++].int_val = n;
839 }
840
841 enum type_pieces
842 pop_type ()
843 {
844 if (type_stack_depth)
845 return type_stack[--type_stack_depth].piece;
846 return tp_end;
847 }
848
849 int
850 pop_type_int ()
851 {
852 if (type_stack_depth)
853 return type_stack[--type_stack_depth].int_val;
854 /* "Can't happen". */
855 return 0;
856 }
857
858 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
859 as modified by all the stuff on the stack. */
860 struct type *
861 follow_types (follow_type)
862 struct type *follow_type;
863 {
864 int done = 0;
865 int array_size;
866 struct type *range_type;
867
868 while (!done)
869 switch (pop_type ())
870 {
871 case tp_end:
872 done = 1;
873 break;
874 case tp_pointer:
875 follow_type = lookup_pointer_type (follow_type);
876 break;
877 case tp_reference:
878 follow_type = lookup_reference_type (follow_type);
879 break;
880 case tp_array:
881 array_size = pop_type_int ();
882 if (array_size != -1)
883 {
884 range_type =
885 create_range_type ((struct type *) NULL,
886 builtin_type_int, 0,
887 array_size - 1);
888 follow_type =
889 create_array_type ((struct type *) NULL,
890 follow_type, range_type);
891 }
892 else
893 follow_type = lookup_pointer_type (follow_type);
894 break;
895 case tp_function:
896 follow_type = lookup_function_type (follow_type);
897 break;
898 }
899 return follow_type;
900 }
901 \f
902 void
903 _initialize_parse ()
904 {
905 type_stack_size = 80;
906 type_stack_depth = 0;
907 type_stack = (union type_stack_elt *)
908 xmalloc (type_stack_size * sizeof (*type_stack));
909
910 /* We don't worry too much about what the name of this type is
911 because the name should rarely appear in output to the user. */
912
913 msymbol_addr_type =
914 init_type (TYPE_CODE_PTR, TARGET_PTR_BIT / HOST_CHAR_BIT, 0,
915 "void *", NULL);
916 }