Target FP: Use target format throughout expression parsing
[binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 Modified from expread.y by the Department of Computer Science at the
6 State University of New York at Buffalo, 1991.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* Parse an expression from text in a string,
24 and return the result as a struct expression pointer.
25 That structure contains arithmetic operations in reverse polish,
26 with constants represented by operations that are followed by special data.
27 See expression.h for the details of the format.
28 What is important here is that it can be built up sequentially
29 during the process of parsing; the lower levels of the tree always
30 come first in the result. */
31
32 #include "defs.h"
33 #include <ctype.h>
34 #include "arch-utils.h"
35 #include "symtab.h"
36 #include "gdbtypes.h"
37 #include "frame.h"
38 #include "expression.h"
39 #include "value.h"
40 #include "command.h"
41 #include "language.h"
42 #include "f-lang.h"
43 #include "parser-defs.h"
44 #include "gdbcmd.h"
45 #include "symfile.h" /* for overlay functions */
46 #include "inferior.h"
47 #include "doublest.h"
48 #include "dfp.h"
49 #include "block.h"
50 #include "source.h"
51 #include "objfiles.h"
52 #include "user-regs.h"
53 #include <algorithm>
54 #include "common/gdb_optional.h"
55
56 /* Standard set of definitions for printing, dumping, prefixifying,
57 * and evaluating expressions. */
58
59 const struct exp_descriptor exp_descriptor_standard =
60 {
61 print_subexp_standard,
62 operator_length_standard,
63 operator_check_standard,
64 op_name_standard,
65 dump_subexp_body_standard,
66 evaluate_subexp_standard
67 };
68 \f
69 /* Global variables declared in parser-defs.h (and commented there). */
70 const struct block *expression_context_block;
71 CORE_ADDR expression_context_pc;
72 const struct block *innermost_block;
73 int arglist_len;
74 static struct type_stack type_stack;
75 const char *lexptr;
76 const char *prev_lexptr;
77 int paren_depth;
78 int comma_terminates;
79
80 /* True if parsing an expression to attempt completion. */
81 int parse_completion;
82
83 /* The index of the last struct expression directly before a '.' or
84 '->'. This is set when parsing and is only used when completing a
85 field name. It is -1 if no dereference operation was found. */
86 static int expout_last_struct = -1;
87
88 /* If we are completing a tagged type name, this will be nonzero. */
89 static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF;
90
91 /* The token for tagged type name completion. */
92 static char *expout_completion_name;
93
94 \f
95 static unsigned int expressiondebug = 0;
96 static void
97 show_expressiondebug (struct ui_file *file, int from_tty,
98 struct cmd_list_element *c, const char *value)
99 {
100 fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
101 }
102
103
104 /* Non-zero if an expression parser should set yydebug. */
105 int parser_debug;
106
107 static void
108 show_parserdebug (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110 {
111 fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
112 }
113
114
115 static int prefixify_subexp (struct expression *, struct expression *, int,
116 int);
117
118 static expression_up parse_exp_in_context (const char **, CORE_ADDR,
119 const struct block *, int,
120 int, int *);
121 static expression_up parse_exp_in_context_1 (const char **, CORE_ADDR,
122 const struct block *, int,
123 int, int *);
124
125 /* Data structure for saving values of arglist_len for function calls whose
126 arguments contain other function calls. */
127
128 static std::vector<int> *funcall_chain;
129
130 /* Begin counting arguments for a function call,
131 saving the data about any containing call. */
132
133 void
134 start_arglist (void)
135 {
136 funcall_chain->push_back (arglist_len);
137 arglist_len = 0;
138 }
139
140 /* Return the number of arguments in a function call just terminated,
141 and restore the data for the containing function call. */
142
143 int
144 end_arglist (void)
145 {
146 int val = arglist_len;
147 arglist_len = funcall_chain->back ();
148 funcall_chain->pop_back ();
149 return val;
150 }
151
152 \f
153
154 /* See definition in parser-defs.h. */
155
156 void
157 initialize_expout (struct parser_state *ps, size_t initial_size,
158 const struct language_defn *lang,
159 struct gdbarch *gdbarch)
160 {
161 ps->expout_size = initial_size;
162 ps->expout_ptr = 0;
163 ps->expout
164 = (struct expression *) xmalloc (sizeof (struct expression)
165 + EXP_ELEM_TO_BYTES (ps->expout_size));
166 ps->expout->language_defn = lang;
167 ps->expout->gdbarch = gdbarch;
168 }
169
170 /* See definition in parser-defs.h. */
171
172 void
173 reallocate_expout (struct parser_state *ps)
174 {
175 /* Record the actual number of expression elements, and then
176 reallocate the expression memory so that we free up any
177 excess elements. */
178
179 ps->expout->nelts = ps->expout_ptr;
180 ps->expout = (struct expression *)
181 xrealloc (ps->expout,
182 sizeof (struct expression)
183 + EXP_ELEM_TO_BYTES (ps->expout_ptr));
184 }
185
186 /* This page contains the functions for adding data to the struct expression
187 being constructed. */
188
189 /* Add one element to the end of the expression. */
190
191 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
192 a register through here. */
193
194 static void
195 write_exp_elt (struct parser_state *ps, const union exp_element *expelt)
196 {
197 if (ps->expout_ptr >= ps->expout_size)
198 {
199 ps->expout_size *= 2;
200 ps->expout = (struct expression *)
201 xrealloc (ps->expout, sizeof (struct expression)
202 + EXP_ELEM_TO_BYTES (ps->expout_size));
203 }
204 ps->expout->elts[ps->expout_ptr++] = *expelt;
205 }
206
207 void
208 write_exp_elt_opcode (struct parser_state *ps, enum exp_opcode expelt)
209 {
210 union exp_element tmp;
211
212 memset (&tmp, 0, sizeof (union exp_element));
213 tmp.opcode = expelt;
214 write_exp_elt (ps, &tmp);
215 }
216
217 void
218 write_exp_elt_sym (struct parser_state *ps, struct symbol *expelt)
219 {
220 union exp_element tmp;
221
222 memset (&tmp, 0, sizeof (union exp_element));
223 tmp.symbol = expelt;
224 write_exp_elt (ps, &tmp);
225 }
226
227 void
228 write_exp_elt_msym (struct parser_state *ps, minimal_symbol *expelt)
229 {
230 union exp_element tmp;
231
232 memset (&tmp, 0, sizeof (union exp_element));
233 tmp.msymbol = expelt;
234 write_exp_elt (ps, &tmp);
235 }
236
237 void
238 write_exp_elt_block (struct parser_state *ps, const struct block *b)
239 {
240 union exp_element tmp;
241
242 memset (&tmp, 0, sizeof (union exp_element));
243 tmp.block = b;
244 write_exp_elt (ps, &tmp);
245 }
246
247 void
248 write_exp_elt_objfile (struct parser_state *ps, struct objfile *objfile)
249 {
250 union exp_element tmp;
251
252 memset (&tmp, 0, sizeof (union exp_element));
253 tmp.objfile = objfile;
254 write_exp_elt (ps, &tmp);
255 }
256
257 void
258 write_exp_elt_longcst (struct parser_state *ps, LONGEST expelt)
259 {
260 union exp_element tmp;
261
262 memset (&tmp, 0, sizeof (union exp_element));
263 tmp.longconst = expelt;
264 write_exp_elt (ps, &tmp);
265 }
266
267 void
268 write_exp_elt_floatcst (struct parser_state *ps, const gdb_byte expelt[16])
269 {
270 union exp_element tmp;
271 int index;
272
273 for (index = 0; index < 16; index++)
274 tmp.floatconst[index] = expelt[index];
275
276 write_exp_elt (ps, &tmp);
277 }
278
279 void
280 write_exp_elt_type (struct parser_state *ps, struct type *expelt)
281 {
282 union exp_element tmp;
283
284 memset (&tmp, 0, sizeof (union exp_element));
285 tmp.type = expelt;
286 write_exp_elt (ps, &tmp);
287 }
288
289 void
290 write_exp_elt_intern (struct parser_state *ps, struct internalvar *expelt)
291 {
292 union exp_element tmp;
293
294 memset (&tmp, 0, sizeof (union exp_element));
295 tmp.internalvar = expelt;
296 write_exp_elt (ps, &tmp);
297 }
298
299 /* Add a string constant to the end of the expression.
300
301 String constants are stored by first writing an expression element
302 that contains the length of the string, then stuffing the string
303 constant itself into however many expression elements are needed
304 to hold it, and then writing another expression element that contains
305 the length of the string. I.e. an expression element at each end of
306 the string records the string length, so you can skip over the
307 expression elements containing the actual string bytes from either
308 end of the string. Note that this also allows gdb to handle
309 strings with embedded null bytes, as is required for some languages.
310
311 Don't be fooled by the fact that the string is null byte terminated,
312 this is strictly for the convenience of debugging gdb itself.
313 Gdb does not depend up the string being null terminated, since the
314 actual length is recorded in expression elements at each end of the
315 string. The null byte is taken into consideration when computing how
316 many expression elements are required to hold the string constant, of
317 course. */
318
319
320 void
321 write_exp_string (struct parser_state *ps, struct stoken str)
322 {
323 int len = str.length;
324 size_t lenelt;
325 char *strdata;
326
327 /* Compute the number of expression elements required to hold the string
328 (including a null byte terminator), along with one expression element
329 at each end to record the actual string length (not including the
330 null byte terminator). */
331
332 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
333
334 increase_expout_size (ps, lenelt);
335
336 /* Write the leading length expression element (which advances the current
337 expression element index), then write the string constant followed by a
338 terminating null byte, and then write the trailing length expression
339 element. */
340
341 write_exp_elt_longcst (ps, (LONGEST) len);
342 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
343 memcpy (strdata, str.ptr, len);
344 *(strdata + len) = '\0';
345 ps->expout_ptr += lenelt - 2;
346 write_exp_elt_longcst (ps, (LONGEST) len);
347 }
348
349 /* Add a vector of string constants to the end of the expression.
350
351 This adds an OP_STRING operation, but encodes the contents
352 differently from write_exp_string. The language is expected to
353 handle evaluation of this expression itself.
354
355 After the usual OP_STRING header, TYPE is written into the
356 expression as a long constant. The interpretation of this field is
357 up to the language evaluator.
358
359 Next, each string in VEC is written. The length is written as a
360 long constant, followed by the contents of the string. */
361
362 void
363 write_exp_string_vector (struct parser_state *ps, int type,
364 struct stoken_vector *vec)
365 {
366 int i, len;
367 size_t n_slots;
368
369 /* Compute the size. We compute the size in number of slots to
370 avoid issues with string padding. */
371 n_slots = 0;
372 for (i = 0; i < vec->len; ++i)
373 {
374 /* One slot for the length of this element, plus the number of
375 slots needed for this string. */
376 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
377 }
378
379 /* One more slot for the type of the string. */
380 ++n_slots;
381
382 /* Now compute a phony string length. */
383 len = EXP_ELEM_TO_BYTES (n_slots) - 1;
384
385 n_slots += 4;
386 increase_expout_size (ps, n_slots);
387
388 write_exp_elt_opcode (ps, OP_STRING);
389 write_exp_elt_longcst (ps, len);
390 write_exp_elt_longcst (ps, type);
391
392 for (i = 0; i < vec->len; ++i)
393 {
394 write_exp_elt_longcst (ps, vec->tokens[i].length);
395 memcpy (&ps->expout->elts[ps->expout_ptr], vec->tokens[i].ptr,
396 vec->tokens[i].length);
397 ps->expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
398 }
399
400 write_exp_elt_longcst (ps, len);
401 write_exp_elt_opcode (ps, OP_STRING);
402 }
403
404 /* Add a bitstring constant to the end of the expression.
405
406 Bitstring constants are stored by first writing an expression element
407 that contains the length of the bitstring (in bits), then stuffing the
408 bitstring constant itself into however many expression elements are
409 needed to hold it, and then writing another expression element that
410 contains the length of the bitstring. I.e. an expression element at
411 each end of the bitstring records the bitstring length, so you can skip
412 over the expression elements containing the actual bitstring bytes from
413 either end of the bitstring. */
414
415 void
416 write_exp_bitstring (struct parser_state *ps, struct stoken str)
417 {
418 int bits = str.length; /* length in bits */
419 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
420 size_t lenelt;
421 char *strdata;
422
423 /* Compute the number of expression elements required to hold the bitstring,
424 along with one expression element at each end to record the actual
425 bitstring length in bits. */
426
427 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
428
429 increase_expout_size (ps, lenelt);
430
431 /* Write the leading length expression element (which advances the current
432 expression element index), then write the bitstring constant, and then
433 write the trailing length expression element. */
434
435 write_exp_elt_longcst (ps, (LONGEST) bits);
436 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
437 memcpy (strdata, str.ptr, len);
438 ps->expout_ptr += lenelt - 2;
439 write_exp_elt_longcst (ps, (LONGEST) bits);
440 }
441
442 /* Return the type of MSYMBOL, a minimal symbol of OBJFILE. If
443 ADDRESS_P is not NULL, set it to the MSYMBOL's resolved
444 address. */
445
446 type *
447 find_minsym_type_and_address (minimal_symbol *msymbol,
448 struct objfile *objfile,
449 CORE_ADDR *address_p)
450 {
451 bound_minimal_symbol bound_msym = {msymbol, objfile};
452 struct gdbarch *gdbarch = get_objfile_arch (objfile);
453 struct obj_section *section = MSYMBOL_OBJ_SECTION (objfile, msymbol);
454 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
455 CORE_ADDR pc;
456
457 bool is_tls = (section != NULL
458 && section->the_bfd_section->flags & SEC_THREAD_LOCAL);
459
460 /* Addresses of TLS symbols are really offsets into a
461 per-objfile/per-thread storage block. */
462 CORE_ADDR addr = (is_tls
463 ? MSYMBOL_VALUE_RAW_ADDRESS (bound_msym.minsym)
464 : BMSYMBOL_VALUE_ADDRESS (bound_msym));
465
466 /* The minimal symbol might point to a function descriptor;
467 resolve it to the actual code address instead. */
468 pc = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, &current_target);
469 if (pc != addr)
470 {
471 struct bound_minimal_symbol ifunc_msym = lookup_minimal_symbol_by_pc (pc);
472
473 /* In this case, assume we have a code symbol instead of
474 a data symbol. */
475
476 if (ifunc_msym.minsym != NULL
477 && MSYMBOL_TYPE (ifunc_msym.minsym) == mst_text_gnu_ifunc
478 && BMSYMBOL_VALUE_ADDRESS (ifunc_msym) == pc)
479 {
480 /* A function descriptor has been resolved but PC is still in the
481 STT_GNU_IFUNC resolver body (such as because inferior does not
482 run to be able to call it). */
483
484 type = mst_text_gnu_ifunc;
485 }
486 else
487 type = mst_text;
488 section = NULL;
489 addr = pc;
490 }
491
492 if (overlay_debugging)
493 addr = symbol_overlayed_address (addr, section);
494
495 if (is_tls)
496 {
497 /* Skip translation if caller does not need the address. */
498 if (address_p != NULL)
499 *address_p = target_translate_tls_address (objfile, addr);
500 return objfile_type (objfile)->nodebug_tls_symbol;
501 }
502
503 if (address_p != NULL)
504 *address_p = addr;
505
506 struct type *the_type;
507
508 switch (type)
509 {
510 case mst_text:
511 case mst_file_text:
512 case mst_solib_trampoline:
513 return objfile_type (objfile)->nodebug_text_symbol;
514
515 case mst_text_gnu_ifunc:
516 return objfile_type (objfile)->nodebug_text_gnu_ifunc_symbol;
517
518 case mst_data:
519 case mst_file_data:
520 case mst_bss:
521 case mst_file_bss:
522 return objfile_type (objfile)->nodebug_data_symbol;
523
524 case mst_slot_got_plt:
525 return objfile_type (objfile)->nodebug_got_plt_symbol;
526
527 default:
528 return objfile_type (objfile)->nodebug_unknown_symbol;
529 }
530 }
531
532 /* Add the appropriate elements for a minimal symbol to the end of
533 the expression. */
534
535 void
536 write_exp_msymbol (struct parser_state *ps,
537 struct bound_minimal_symbol bound_msym)
538 {
539 write_exp_elt_opcode (ps, OP_VAR_MSYM_VALUE);
540 write_exp_elt_objfile (ps, bound_msym.objfile);
541 write_exp_elt_msym (ps, bound_msym.minsym);
542 write_exp_elt_opcode (ps, OP_VAR_MSYM_VALUE);
543 }
544
545 /* Mark the current index as the starting location of a structure
546 expression. This is used when completing on field names. */
547
548 void
549 mark_struct_expression (struct parser_state *ps)
550 {
551 gdb_assert (parse_completion
552 && expout_tag_completion_type == TYPE_CODE_UNDEF);
553 expout_last_struct = ps->expout_ptr;
554 }
555
556 /* Indicate that the current parser invocation is completing a tag.
557 TAG is the type code of the tag, and PTR and LENGTH represent the
558 start of the tag name. */
559
560 void
561 mark_completion_tag (enum type_code tag, const char *ptr, int length)
562 {
563 gdb_assert (parse_completion
564 && expout_tag_completion_type == TYPE_CODE_UNDEF
565 && expout_completion_name == NULL
566 && expout_last_struct == -1);
567 gdb_assert (tag == TYPE_CODE_UNION
568 || tag == TYPE_CODE_STRUCT
569 || tag == TYPE_CODE_ENUM);
570 expout_tag_completion_type = tag;
571 expout_completion_name = (char *) xmalloc (length + 1);
572 memcpy (expout_completion_name, ptr, length);
573 expout_completion_name[length] = '\0';
574 }
575
576 \f
577 /* Recognize tokens that start with '$'. These include:
578
579 $regname A native register name or a "standard
580 register name".
581
582 $variable A convenience variable with a name chosen
583 by the user.
584
585 $digits Value history with index <digits>, starting
586 from the first value which has index 1.
587
588 $$digits Value history with index <digits> relative
589 to the last value. I.e. $$0 is the last
590 value, $$1 is the one previous to that, $$2
591 is the one previous to $$1, etc.
592
593 $ | $0 | $$0 The last value in the value history.
594
595 $$ An abbreviation for the second to the last
596 value in the value history, I.e. $$1 */
597
598 void
599 write_dollar_variable (struct parser_state *ps, struct stoken str)
600 {
601 struct block_symbol sym;
602 struct bound_minimal_symbol msym;
603 struct internalvar *isym = NULL;
604
605 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
606 and $$digits (equivalent to $<-digits> if you could type that). */
607
608 int negate = 0;
609 int i = 1;
610 /* Double dollar means negate the number and add -1 as well.
611 Thus $$ alone means -1. */
612 if (str.length >= 2 && str.ptr[1] == '$')
613 {
614 negate = 1;
615 i = 2;
616 }
617 if (i == str.length)
618 {
619 /* Just dollars (one or two). */
620 i = -negate;
621 goto handle_last;
622 }
623 /* Is the rest of the token digits? */
624 for (; i < str.length; i++)
625 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
626 break;
627 if (i == str.length)
628 {
629 i = atoi (str.ptr + 1 + negate);
630 if (negate)
631 i = -i;
632 goto handle_last;
633 }
634
635 /* Handle tokens that refer to machine registers:
636 $ followed by a register name. */
637 i = user_reg_map_name_to_regnum (parse_gdbarch (ps),
638 str.ptr + 1, str.length - 1);
639 if (i >= 0)
640 goto handle_register;
641
642 /* Any names starting with $ are probably debugger internal variables. */
643
644 isym = lookup_only_internalvar (copy_name (str) + 1);
645 if (isym)
646 {
647 write_exp_elt_opcode (ps, OP_INTERNALVAR);
648 write_exp_elt_intern (ps, isym);
649 write_exp_elt_opcode (ps, OP_INTERNALVAR);
650 return;
651 }
652
653 /* On some systems, such as HP-UX and hppa-linux, certain system routines
654 have names beginning with $ or $$. Check for those, first. */
655
656 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
657 VAR_DOMAIN, NULL);
658 if (sym.symbol)
659 {
660 write_exp_elt_opcode (ps, OP_VAR_VALUE);
661 write_exp_elt_block (ps, sym.block);
662 write_exp_elt_sym (ps, sym.symbol);
663 write_exp_elt_opcode (ps, OP_VAR_VALUE);
664 return;
665 }
666 msym = lookup_bound_minimal_symbol (copy_name (str));
667 if (msym.minsym)
668 {
669 write_exp_msymbol (ps, msym);
670 return;
671 }
672
673 /* Any other names are assumed to be debugger internal variables. */
674
675 write_exp_elt_opcode (ps, OP_INTERNALVAR);
676 write_exp_elt_intern (ps, create_internalvar (copy_name (str) + 1));
677 write_exp_elt_opcode (ps, OP_INTERNALVAR);
678 return;
679 handle_last:
680 write_exp_elt_opcode (ps, OP_LAST);
681 write_exp_elt_longcst (ps, (LONGEST) i);
682 write_exp_elt_opcode (ps, OP_LAST);
683 return;
684 handle_register:
685 write_exp_elt_opcode (ps, OP_REGISTER);
686 str.length--;
687 str.ptr++;
688 write_exp_string (ps, str);
689 write_exp_elt_opcode (ps, OP_REGISTER);
690 return;
691 }
692
693
694 const char *
695 find_template_name_end (const char *p)
696 {
697 int depth = 1;
698 int just_seen_right = 0;
699 int just_seen_colon = 0;
700 int just_seen_space = 0;
701
702 if (!p || (*p != '<'))
703 return 0;
704
705 while (*++p)
706 {
707 switch (*p)
708 {
709 case '\'':
710 case '\"':
711 case '{':
712 case '}':
713 /* In future, may want to allow these?? */
714 return 0;
715 case '<':
716 depth++; /* start nested template */
717 if (just_seen_colon || just_seen_right || just_seen_space)
718 return 0; /* but not after : or :: or > or space */
719 break;
720 case '>':
721 if (just_seen_colon || just_seen_right)
722 return 0; /* end a (nested?) template */
723 just_seen_right = 1; /* but not after : or :: */
724 if (--depth == 0) /* also disallow >>, insist on > > */
725 return ++p; /* if outermost ended, return */
726 break;
727 case ':':
728 if (just_seen_space || (just_seen_colon > 1))
729 return 0; /* nested class spec coming up */
730 just_seen_colon++; /* we allow :: but not :::: */
731 break;
732 case ' ':
733 break;
734 default:
735 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
736 (*p >= 'A' && *p <= 'Z') ||
737 (*p >= '0' && *p <= '9') ||
738 (*p == '_') || (*p == ',') || /* commas for template args */
739 (*p == '&') || (*p == '*') || /* pointer and ref types */
740 (*p == '(') || (*p == ')') || /* function types */
741 (*p == '[') || (*p == ']'))) /* array types */
742 return 0;
743 }
744 if (*p != ' ')
745 just_seen_space = 0;
746 if (*p != ':')
747 just_seen_colon = 0;
748 if (*p != '>')
749 just_seen_right = 0;
750 }
751 return 0;
752 }
753 \f
754
755 /* Return a null-terminated temporary copy of the name of a string token.
756
757 Tokens that refer to names do so with explicit pointer and length,
758 so they can share the storage that lexptr is parsing.
759 When it is necessary to pass a name to a function that expects
760 a null-terminated string, the substring is copied out
761 into a separate block of storage.
762
763 N.B. A single buffer is reused on each call. */
764
765 char *
766 copy_name (struct stoken token)
767 {
768 /* A temporary buffer for identifiers, so we can null-terminate them.
769 We allocate this with xrealloc. parse_exp_1 used to allocate with
770 alloca, using the size of the whole expression as a conservative
771 estimate of the space needed. However, macro expansion can
772 introduce names longer than the original expression; there's no
773 practical way to know beforehand how large that might be. */
774 static char *namecopy;
775 static size_t namecopy_size;
776
777 /* Make sure there's enough space for the token. */
778 if (namecopy_size < token.length + 1)
779 {
780 namecopy_size = token.length + 1;
781 namecopy = (char *) xrealloc (namecopy, token.length + 1);
782 }
783
784 memcpy (namecopy, token.ptr, token.length);
785 namecopy[token.length] = 0;
786
787 return namecopy;
788 }
789 \f
790
791 /* See comments on parser-defs.h. */
792
793 int
794 prefixify_expression (struct expression *expr)
795 {
796 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
797 struct expression *temp;
798 int inpos = expr->nelts, outpos = 0;
799
800 temp = (struct expression *) alloca (len);
801
802 /* Copy the original expression into temp. */
803 memcpy (temp, expr, len);
804
805 return prefixify_subexp (temp, expr, inpos, outpos);
806 }
807
808 /* Return the number of exp_elements in the postfix subexpression
809 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */
810
811 static int
812 length_of_subexp (struct expression *expr, int endpos)
813 {
814 int oplen, args;
815
816 operator_length (expr, endpos, &oplen, &args);
817
818 while (args > 0)
819 {
820 oplen += length_of_subexp (expr, endpos - oplen);
821 args--;
822 }
823
824 return oplen;
825 }
826
827 /* Sets *OPLENP to the length of the operator whose (last) index is
828 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
829 operator takes. */
830
831 void
832 operator_length (const struct expression *expr, int endpos, int *oplenp,
833 int *argsp)
834 {
835 expr->language_defn->la_exp_desc->operator_length (expr, endpos,
836 oplenp, argsp);
837 }
838
839 /* Default value for operator_length in exp_descriptor vectors. */
840
841 void
842 operator_length_standard (const struct expression *expr, int endpos,
843 int *oplenp, int *argsp)
844 {
845 int oplen = 1;
846 int args = 0;
847 enum range_type range_type;
848 int i;
849
850 if (endpos < 1)
851 error (_("?error in operator_length_standard"));
852
853 i = (int) expr->elts[endpos - 1].opcode;
854
855 switch (i)
856 {
857 /* C++ */
858 case OP_SCOPE:
859 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
860 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
861 break;
862
863 case OP_LONG:
864 case OP_FLOAT:
865 case OP_VAR_VALUE:
866 case OP_VAR_MSYM_VALUE:
867 oplen = 4;
868 break;
869
870 case OP_FUNC_STATIC_VAR:
871 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
872 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
873 args = 1;
874 break;
875
876 case OP_TYPE:
877 case OP_BOOL:
878 case OP_LAST:
879 case OP_INTERNALVAR:
880 case OP_VAR_ENTRY_VALUE:
881 oplen = 3;
882 break;
883
884 case OP_COMPLEX:
885 oplen = 3;
886 args = 2;
887 break;
888
889 case OP_FUNCALL:
890 case OP_F77_UNDETERMINED_ARGLIST:
891 oplen = 3;
892 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
893 break;
894
895 case TYPE_INSTANCE:
896 oplen = 5 + longest_to_int (expr->elts[endpos - 2].longconst);
897 args = 1;
898 break;
899
900 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */
901 oplen = 4;
902 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
903 break;
904
905 case UNOP_MAX:
906 case UNOP_MIN:
907 oplen = 3;
908 break;
909
910 case UNOP_CAST_TYPE:
911 case UNOP_DYNAMIC_CAST:
912 case UNOP_REINTERPRET_CAST:
913 case UNOP_MEMVAL_TYPE:
914 oplen = 1;
915 args = 2;
916 break;
917
918 case BINOP_VAL:
919 case UNOP_CAST:
920 case UNOP_MEMVAL:
921 oplen = 3;
922 args = 1;
923 break;
924
925 case UNOP_ABS:
926 case UNOP_CAP:
927 case UNOP_CHR:
928 case UNOP_FLOAT:
929 case UNOP_HIGH:
930 case UNOP_ODD:
931 case UNOP_ORD:
932 case UNOP_TRUNC:
933 case OP_TYPEOF:
934 case OP_DECLTYPE:
935 case OP_TYPEID:
936 oplen = 1;
937 args = 1;
938 break;
939
940 case OP_ADL_FUNC:
941 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
942 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
943 oplen++;
944 oplen++;
945 break;
946
947 case STRUCTOP_STRUCT:
948 case STRUCTOP_PTR:
949 args = 1;
950 /* fall through */
951 case OP_REGISTER:
952 case OP_M2_STRING:
953 case OP_STRING:
954 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
955 NSString constant. */
956 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */
957 case OP_NAME:
958 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
959 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
960 break;
961
962 case OP_ARRAY:
963 oplen = 4;
964 args = longest_to_int (expr->elts[endpos - 2].longconst);
965 args -= longest_to_int (expr->elts[endpos - 3].longconst);
966 args += 1;
967 break;
968
969 case TERNOP_COND:
970 case TERNOP_SLICE:
971 args = 3;
972 break;
973
974 /* Modula-2 */
975 case MULTI_SUBSCRIPT:
976 oplen = 3;
977 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
978 break;
979
980 case BINOP_ASSIGN_MODIFY:
981 oplen = 3;
982 args = 2;
983 break;
984
985 /* C++ */
986 case OP_THIS:
987 oplen = 2;
988 break;
989
990 case OP_RANGE:
991 oplen = 3;
992 range_type = (enum range_type)
993 longest_to_int (expr->elts[endpos - 2].longconst);
994
995 switch (range_type)
996 {
997 case LOW_BOUND_DEFAULT:
998 case HIGH_BOUND_DEFAULT:
999 args = 1;
1000 break;
1001 case BOTH_BOUND_DEFAULT:
1002 args = 0;
1003 break;
1004 case NONE_BOUND_DEFAULT:
1005 args = 2;
1006 break;
1007 }
1008
1009 break;
1010
1011 default:
1012 args = 1 + (i < (int) BINOP_END);
1013 }
1014
1015 *oplenp = oplen;
1016 *argsp = args;
1017 }
1018
1019 /* Copy the subexpression ending just before index INEND in INEXPR
1020 into OUTEXPR, starting at index OUTBEG.
1021 In the process, convert it from suffix to prefix form.
1022 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
1023 Otherwise, it returns the index of the subexpression which is the
1024 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */
1025
1026 static int
1027 prefixify_subexp (struct expression *inexpr,
1028 struct expression *outexpr, int inend, int outbeg)
1029 {
1030 int oplen;
1031 int args;
1032 int i;
1033 int *arglens;
1034 int result = -1;
1035
1036 operator_length (inexpr, inend, &oplen, &args);
1037
1038 /* Copy the final operator itself, from the end of the input
1039 to the beginning of the output. */
1040 inend -= oplen;
1041 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1042 EXP_ELEM_TO_BYTES (oplen));
1043 outbeg += oplen;
1044
1045 if (expout_last_struct == inend)
1046 result = outbeg - oplen;
1047
1048 /* Find the lengths of the arg subexpressions. */
1049 arglens = (int *) alloca (args * sizeof (int));
1050 for (i = args - 1; i >= 0; i--)
1051 {
1052 oplen = length_of_subexp (inexpr, inend);
1053 arglens[i] = oplen;
1054 inend -= oplen;
1055 }
1056
1057 /* Now copy each subexpression, preserving the order of
1058 the subexpressions, but prefixifying each one.
1059 In this loop, inend starts at the beginning of
1060 the expression this level is working on
1061 and marches forward over the arguments.
1062 outbeg does similarly in the output. */
1063 for (i = 0; i < args; i++)
1064 {
1065 int r;
1066
1067 oplen = arglens[i];
1068 inend += oplen;
1069 r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
1070 if (r != -1)
1071 {
1072 /* Return immediately. We probably have only parsed a
1073 partial expression, so we don't want to try to reverse
1074 the other operands. */
1075 return r;
1076 }
1077 outbeg += oplen;
1078 }
1079
1080 return result;
1081 }
1082 \f
1083 /* Read an expression from the string *STRINGPTR points to,
1084 parse it, and return a pointer to a struct expression that we malloc.
1085 Use block BLOCK as the lexical context for variable names;
1086 if BLOCK is zero, use the block of the selected stack frame.
1087 Meanwhile, advance *STRINGPTR to point after the expression,
1088 at the first nonwhite character that is not part of the expression
1089 (possibly a null character).
1090
1091 If COMMA is nonzero, stop if a comma is reached. */
1092
1093 expression_up
1094 parse_exp_1 (const char **stringptr, CORE_ADDR pc, const struct block *block,
1095 int comma)
1096 {
1097 return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL);
1098 }
1099
1100 static expression_up
1101 parse_exp_in_context (const char **stringptr, CORE_ADDR pc,
1102 const struct block *block,
1103 int comma, int void_context_p, int *out_subexp)
1104 {
1105 return parse_exp_in_context_1 (stringptr, pc, block, comma,
1106 void_context_p, out_subexp);
1107 }
1108
1109 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1110 no value is expected from the expression.
1111 OUT_SUBEXP is set when attempting to complete a field name; in this
1112 case it is set to the index of the subexpression on the
1113 left-hand-side of the struct op. If not doing such completion, it
1114 is left untouched. */
1115
1116 static expression_up
1117 parse_exp_in_context_1 (const char **stringptr, CORE_ADDR pc,
1118 const struct block *block,
1119 int comma, int void_context_p, int *out_subexp)
1120 {
1121 const struct language_defn *lang = NULL;
1122 struct parser_state ps;
1123 int subexp;
1124
1125 lexptr = *stringptr;
1126 prev_lexptr = NULL;
1127
1128 paren_depth = 0;
1129 type_stack.depth = 0;
1130 expout_last_struct = -1;
1131 expout_tag_completion_type = TYPE_CODE_UNDEF;
1132 xfree (expout_completion_name);
1133 expout_completion_name = NULL;
1134
1135 comma_terminates = comma;
1136
1137 if (lexptr == 0 || *lexptr == 0)
1138 error_no_arg (_("expression to compute"));
1139
1140 std::vector<int> funcalls;
1141 scoped_restore save_funcall_chain = make_scoped_restore (&funcall_chain,
1142 &funcalls);
1143
1144 expression_context_block = block;
1145
1146 /* If no context specified, try using the current frame, if any. */
1147 if (!expression_context_block)
1148 expression_context_block = get_selected_block (&expression_context_pc);
1149 else if (pc == 0)
1150 expression_context_pc = BLOCK_START (expression_context_block);
1151 else
1152 expression_context_pc = pc;
1153
1154 /* Fall back to using the current source static context, if any. */
1155
1156 if (!expression_context_block)
1157 {
1158 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1159 if (cursal.symtab)
1160 expression_context_block
1161 = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (cursal.symtab),
1162 STATIC_BLOCK);
1163 if (expression_context_block)
1164 expression_context_pc = BLOCK_START (expression_context_block);
1165 }
1166
1167 if (language_mode == language_mode_auto && block != NULL)
1168 {
1169 /* Find the language associated to the given context block.
1170 Default to the current language if it can not be determined.
1171
1172 Note that using the language corresponding to the current frame
1173 can sometimes give unexpected results. For instance, this
1174 routine is often called several times during the inferior
1175 startup phase to re-parse breakpoint expressions after
1176 a new shared library has been loaded. The language associated
1177 to the current frame at this moment is not relevant for
1178 the breakpoint. Using it would therefore be silly, so it seems
1179 better to rely on the current language rather than relying on
1180 the current frame language to parse the expression. That's why
1181 we do the following language detection only if the context block
1182 has been specifically provided. */
1183 struct symbol *func = block_linkage_function (block);
1184
1185 if (func != NULL)
1186 lang = language_def (SYMBOL_LANGUAGE (func));
1187 if (lang == NULL || lang->la_language == language_unknown)
1188 lang = current_language;
1189 }
1190 else
1191 lang = current_language;
1192
1193 /* get_current_arch may reset CURRENT_LANGUAGE via select_frame.
1194 While we need CURRENT_LANGUAGE to be set to LANG (for lookup_symbol
1195 and others called from *.y) ensure CURRENT_LANGUAGE gets restored
1196 to the value matching SELECTED_FRAME as set by get_current_arch. */
1197
1198 initialize_expout (&ps, 10, lang, get_current_arch ());
1199
1200 scoped_restore_current_language lang_saver;
1201 set_language (lang->la_language);
1202
1203 TRY
1204 {
1205 if (lang->la_parser (&ps))
1206 lang->la_error (NULL);
1207 }
1208 CATCH (except, RETURN_MASK_ALL)
1209 {
1210 if (! parse_completion)
1211 {
1212 xfree (ps.expout);
1213 throw_exception (except);
1214 }
1215 }
1216 END_CATCH
1217
1218 reallocate_expout (&ps);
1219
1220 /* Convert expression from postfix form as generated by yacc
1221 parser, to a prefix form. */
1222
1223 if (expressiondebug)
1224 dump_raw_expression (ps.expout, gdb_stdlog,
1225 "before conversion to prefix form");
1226
1227 subexp = prefixify_expression (ps.expout);
1228 if (out_subexp)
1229 *out_subexp = subexp;
1230
1231 lang->la_post_parser (&ps.expout, void_context_p);
1232
1233 if (expressiondebug)
1234 dump_prefix_expression (ps.expout, gdb_stdlog);
1235
1236 *stringptr = lexptr;
1237 return expression_up (ps.expout);
1238 }
1239
1240 /* Parse STRING as an expression, and complain if this fails
1241 to use up all of the contents of STRING. */
1242
1243 expression_up
1244 parse_expression (const char *string)
1245 {
1246 expression_up exp = parse_exp_1 (&string, 0, 0, 0);
1247 if (*string)
1248 error (_("Junk after end of expression."));
1249 return exp;
1250 }
1251
1252 /* Same as parse_expression, but using the given language (LANG)
1253 to parse the expression. */
1254
1255 expression_up
1256 parse_expression_with_language (const char *string, enum language lang)
1257 {
1258 gdb::optional<scoped_restore_current_language> lang_saver;
1259 if (current_language->la_language != lang)
1260 {
1261 lang_saver.emplace ();
1262 set_language (lang);
1263 }
1264
1265 return parse_expression (string);
1266 }
1267
1268 /* Parse STRING as an expression. If parsing ends in the middle of a
1269 field reference, return the type of the left-hand-side of the
1270 reference; furthermore, if the parsing ends in the field name,
1271 return the field name in *NAME. If the parsing ends in the middle
1272 of a field reference, but the reference is somehow invalid, throw
1273 an exception. In all other cases, return NULL. Returned non-NULL
1274 *NAME must be freed by the caller. */
1275
1276 struct type *
1277 parse_expression_for_completion (const char *string, char **name,
1278 enum type_code *code)
1279 {
1280 expression_up exp;
1281 struct value *val;
1282 int subexp;
1283
1284 TRY
1285 {
1286 parse_completion = 1;
1287 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp);
1288 }
1289 CATCH (except, RETURN_MASK_ERROR)
1290 {
1291 /* Nothing, EXP remains NULL. */
1292 }
1293 END_CATCH
1294
1295 parse_completion = 0;
1296 if (exp == NULL)
1297 return NULL;
1298
1299 if (expout_tag_completion_type != TYPE_CODE_UNDEF)
1300 {
1301 *code = expout_tag_completion_type;
1302 *name = expout_completion_name;
1303 expout_completion_name = NULL;
1304 return NULL;
1305 }
1306
1307 if (expout_last_struct == -1)
1308 return NULL;
1309
1310 *name = extract_field_op (exp.get (), &subexp);
1311 if (!*name)
1312 return NULL;
1313
1314 /* This might throw an exception. If so, we want to let it
1315 propagate. */
1316 val = evaluate_subexpression_type (exp.get (), subexp);
1317 /* (*NAME) is a part of the EXP memory block freed below. */
1318 *name = xstrdup (*name);
1319
1320 return value_type (val);
1321 }
1322
1323 /* A post-parser that does nothing. */
1324
1325 void
1326 null_post_parser (struct expression **exp, int void_context_p)
1327 {
1328 }
1329
1330 /* Parse floating point value P of length LEN.
1331 Return false if invalid, true if valid.
1332 The successfully parsed number is stored in DATA in
1333 target format for floating-point type TYPE.
1334
1335 NOTE: This accepts the floating point syntax that sscanf accepts. */
1336
1337 bool
1338 parse_float (const char *p, int len,
1339 const struct type *type, gdb_byte *data)
1340 {
1341 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1342 return floatformat_from_string (floatformat_from_type (type),
1343 data, std::string (p, len));
1344 else
1345 return decimal_from_string (data, TYPE_LENGTH (type),
1346 gdbarch_byte_order (get_type_arch (type)),
1347 std::string (p, len));
1348 }
1349 \f
1350 /* Stuff for maintaining a stack of types. Currently just used by C, but
1351 probably useful for any language which declares its types "backwards". */
1352
1353 /* Ensure that there are HOWMUCH open slots on the type stack STACK. */
1354
1355 static void
1356 type_stack_reserve (struct type_stack *stack, int howmuch)
1357 {
1358 if (stack->depth + howmuch >= stack->size)
1359 {
1360 stack->size *= 2;
1361 if (stack->size < howmuch)
1362 stack->size = howmuch;
1363 stack->elements = XRESIZEVEC (union type_stack_elt, stack->elements,
1364 stack->size);
1365 }
1366 }
1367
1368 /* Ensure that there is a single open slot in the global type stack. */
1369
1370 static void
1371 check_type_stack_depth (void)
1372 {
1373 type_stack_reserve (&type_stack, 1);
1374 }
1375
1376 /* A helper function for insert_type and insert_type_address_space.
1377 This does work of expanding the type stack and inserting the new
1378 element, ELEMENT, into the stack at location SLOT. */
1379
1380 static void
1381 insert_into_type_stack (int slot, union type_stack_elt element)
1382 {
1383 check_type_stack_depth ();
1384
1385 if (slot < type_stack.depth)
1386 memmove (&type_stack.elements[slot + 1], &type_stack.elements[slot],
1387 (type_stack.depth - slot) * sizeof (union type_stack_elt));
1388 type_stack.elements[slot] = element;
1389 ++type_stack.depth;
1390 }
1391
1392 /* Insert a new type, TP, at the bottom of the type stack. If TP is
1393 tp_pointer, tp_reference or tp_rvalue_reference, it is inserted at the
1394 bottom. If TP is a qualifier, it is inserted at slot 1 (just above a
1395 previous tp_pointer) if there is anything on the stack, or simply pushed
1396 if the stack is empty. Other values for TP are invalid. */
1397
1398 void
1399 insert_type (enum type_pieces tp)
1400 {
1401 union type_stack_elt element;
1402 int slot;
1403
1404 gdb_assert (tp == tp_pointer || tp == tp_reference
1405 || tp == tp_rvalue_reference || tp == tp_const
1406 || tp == tp_volatile);
1407
1408 /* If there is anything on the stack (we know it will be a
1409 tp_pointer), insert the qualifier above it. Otherwise, simply
1410 push this on the top of the stack. */
1411 if (type_stack.depth && (tp == tp_const || tp == tp_volatile))
1412 slot = 1;
1413 else
1414 slot = 0;
1415
1416 element.piece = tp;
1417 insert_into_type_stack (slot, element);
1418 }
1419
1420 void
1421 push_type (enum type_pieces tp)
1422 {
1423 check_type_stack_depth ();
1424 type_stack.elements[type_stack.depth++].piece = tp;
1425 }
1426
1427 void
1428 push_type_int (int n)
1429 {
1430 check_type_stack_depth ();
1431 type_stack.elements[type_stack.depth++].int_val = n;
1432 }
1433
1434 /* Insert a tp_space_identifier and the corresponding address space
1435 value into the stack. STRING is the name of an address space, as
1436 recognized by address_space_name_to_int. If the stack is empty,
1437 the new elements are simply pushed. If the stack is not empty,
1438 this function assumes that the first item on the stack is a
1439 tp_pointer, and the new values are inserted above the first
1440 item. */
1441
1442 void
1443 insert_type_address_space (struct parser_state *pstate, char *string)
1444 {
1445 union type_stack_elt element;
1446 int slot;
1447
1448 /* If there is anything on the stack (we know it will be a
1449 tp_pointer), insert the address space qualifier above it.
1450 Otherwise, simply push this on the top of the stack. */
1451 if (type_stack.depth)
1452 slot = 1;
1453 else
1454 slot = 0;
1455
1456 element.piece = tp_space_identifier;
1457 insert_into_type_stack (slot, element);
1458 element.int_val = address_space_name_to_int (parse_gdbarch (pstate),
1459 string);
1460 insert_into_type_stack (slot, element);
1461 }
1462
1463 enum type_pieces
1464 pop_type (void)
1465 {
1466 if (type_stack.depth)
1467 return type_stack.elements[--type_stack.depth].piece;
1468 return tp_end;
1469 }
1470
1471 int
1472 pop_type_int (void)
1473 {
1474 if (type_stack.depth)
1475 return type_stack.elements[--type_stack.depth].int_val;
1476 /* "Can't happen". */
1477 return 0;
1478 }
1479
1480 /* Pop a type list element from the global type stack. */
1481
1482 static VEC (type_ptr) *
1483 pop_typelist (void)
1484 {
1485 gdb_assert (type_stack.depth);
1486 return type_stack.elements[--type_stack.depth].typelist_val;
1487 }
1488
1489 /* Pop a type_stack element from the global type stack. */
1490
1491 static struct type_stack *
1492 pop_type_stack (void)
1493 {
1494 gdb_assert (type_stack.depth);
1495 return type_stack.elements[--type_stack.depth].stack_val;
1496 }
1497
1498 /* Append the elements of the type stack FROM to the type stack TO.
1499 Always returns TO. */
1500
1501 struct type_stack *
1502 append_type_stack (struct type_stack *to, struct type_stack *from)
1503 {
1504 type_stack_reserve (to, from->depth);
1505
1506 memcpy (&to->elements[to->depth], &from->elements[0],
1507 from->depth * sizeof (union type_stack_elt));
1508 to->depth += from->depth;
1509
1510 return to;
1511 }
1512
1513 /* Push the type stack STACK as an element on the global type stack. */
1514
1515 void
1516 push_type_stack (struct type_stack *stack)
1517 {
1518 check_type_stack_depth ();
1519 type_stack.elements[type_stack.depth++].stack_val = stack;
1520 push_type (tp_type_stack);
1521 }
1522
1523 /* Copy the global type stack into a newly allocated type stack and
1524 return it. The global stack is cleared. The returned type stack
1525 must be freed with type_stack_cleanup. */
1526
1527 struct type_stack *
1528 get_type_stack (void)
1529 {
1530 struct type_stack *result = XNEW (struct type_stack);
1531
1532 *result = type_stack;
1533 type_stack.depth = 0;
1534 type_stack.size = 0;
1535 type_stack.elements = NULL;
1536
1537 return result;
1538 }
1539
1540 /* A cleanup function that destroys a single type stack. */
1541
1542 void
1543 type_stack_cleanup (void *arg)
1544 {
1545 struct type_stack *stack = (struct type_stack *) arg;
1546
1547 xfree (stack->elements);
1548 xfree (stack);
1549 }
1550
1551 /* Push a function type with arguments onto the global type stack.
1552 LIST holds the argument types. If the final item in LIST is NULL,
1553 then the function will be varargs. */
1554
1555 void
1556 push_typelist (VEC (type_ptr) *list)
1557 {
1558 check_type_stack_depth ();
1559 type_stack.elements[type_stack.depth++].typelist_val = list;
1560 push_type (tp_function_with_arguments);
1561 }
1562
1563 /* Pop the type stack and return a type_instance_flags that
1564 corresponds the const/volatile qualifiers on the stack. This is
1565 called by the C++ parser when parsing methods types, and as such no
1566 other kind of type in the type stack is expected. */
1567
1568 type_instance_flags
1569 follow_type_instance_flags ()
1570 {
1571 type_instance_flags flags = 0;
1572
1573 for (;;)
1574 switch (pop_type ())
1575 {
1576 case tp_end:
1577 return flags;
1578 case tp_const:
1579 flags |= TYPE_INSTANCE_FLAG_CONST;
1580 break;
1581 case tp_volatile:
1582 flags |= TYPE_INSTANCE_FLAG_VOLATILE;
1583 break;
1584 default:
1585 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1586 }
1587 }
1588
1589
1590 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1591 as modified by all the stuff on the stack. */
1592 struct type *
1593 follow_types (struct type *follow_type)
1594 {
1595 int done = 0;
1596 int make_const = 0;
1597 int make_volatile = 0;
1598 int make_addr_space = 0;
1599 int array_size;
1600
1601 while (!done)
1602 switch (pop_type ())
1603 {
1604 case tp_end:
1605 done = 1;
1606 if (make_const)
1607 follow_type = make_cv_type (make_const,
1608 TYPE_VOLATILE (follow_type),
1609 follow_type, 0);
1610 if (make_volatile)
1611 follow_type = make_cv_type (TYPE_CONST (follow_type),
1612 make_volatile,
1613 follow_type, 0);
1614 if (make_addr_space)
1615 follow_type = make_type_with_address_space (follow_type,
1616 make_addr_space);
1617 make_const = make_volatile = 0;
1618 make_addr_space = 0;
1619 break;
1620 case tp_const:
1621 make_const = 1;
1622 break;
1623 case tp_volatile:
1624 make_volatile = 1;
1625 break;
1626 case tp_space_identifier:
1627 make_addr_space = pop_type_int ();
1628 break;
1629 case tp_pointer:
1630 follow_type = lookup_pointer_type (follow_type);
1631 if (make_const)
1632 follow_type = make_cv_type (make_const,
1633 TYPE_VOLATILE (follow_type),
1634 follow_type, 0);
1635 if (make_volatile)
1636 follow_type = make_cv_type (TYPE_CONST (follow_type),
1637 make_volatile,
1638 follow_type, 0);
1639 if (make_addr_space)
1640 follow_type = make_type_with_address_space (follow_type,
1641 make_addr_space);
1642 make_const = make_volatile = 0;
1643 make_addr_space = 0;
1644 break;
1645 case tp_reference:
1646 follow_type = lookup_lvalue_reference_type (follow_type);
1647 goto process_reference;
1648 case tp_rvalue_reference:
1649 follow_type = lookup_rvalue_reference_type (follow_type);
1650 process_reference:
1651 if (make_const)
1652 follow_type = make_cv_type (make_const,
1653 TYPE_VOLATILE (follow_type),
1654 follow_type, 0);
1655 if (make_volatile)
1656 follow_type = make_cv_type (TYPE_CONST (follow_type),
1657 make_volatile,
1658 follow_type, 0);
1659 if (make_addr_space)
1660 follow_type = make_type_with_address_space (follow_type,
1661 make_addr_space);
1662 make_const = make_volatile = 0;
1663 make_addr_space = 0;
1664 break;
1665 case tp_array:
1666 array_size = pop_type_int ();
1667 /* FIXME-type-allocation: need a way to free this type when we are
1668 done with it. */
1669 follow_type =
1670 lookup_array_range_type (follow_type,
1671 0, array_size >= 0 ? array_size - 1 : 0);
1672 if (array_size < 0)
1673 TYPE_HIGH_BOUND_KIND (TYPE_INDEX_TYPE (follow_type))
1674 = PROP_UNDEFINED;
1675 break;
1676 case tp_function:
1677 /* FIXME-type-allocation: need a way to free this type when we are
1678 done with it. */
1679 follow_type = lookup_function_type (follow_type);
1680 break;
1681
1682 case tp_function_with_arguments:
1683 {
1684 VEC (type_ptr) *args = pop_typelist ();
1685
1686 follow_type
1687 = lookup_function_type_with_arguments (follow_type,
1688 VEC_length (type_ptr, args),
1689 VEC_address (type_ptr,
1690 args));
1691 VEC_free (type_ptr, args);
1692 }
1693 break;
1694
1695 case tp_type_stack:
1696 {
1697 struct type_stack *stack = pop_type_stack ();
1698 /* Sort of ugly, but not really much worse than the
1699 alternatives. */
1700 struct type_stack save = type_stack;
1701
1702 type_stack = *stack;
1703 follow_type = follow_types (follow_type);
1704 gdb_assert (type_stack.depth == 0);
1705
1706 type_stack = save;
1707 }
1708 break;
1709 default:
1710 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1711 }
1712 return follow_type;
1713 }
1714 \f
1715 /* This function avoids direct calls to fprintf
1716 in the parser generated debug code. */
1717 void
1718 parser_fprintf (FILE *x, const char *y, ...)
1719 {
1720 va_list args;
1721
1722 va_start (args, y);
1723 if (x == stderr)
1724 vfprintf_unfiltered (gdb_stderr, y, args);
1725 else
1726 {
1727 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1728 vfprintf_unfiltered (gdb_stderr, y, args);
1729 }
1730 va_end (args);
1731 }
1732
1733 /* Implementation of the exp_descriptor method operator_check. */
1734
1735 int
1736 operator_check_standard (struct expression *exp, int pos,
1737 int (*objfile_func) (struct objfile *objfile,
1738 void *data),
1739 void *data)
1740 {
1741 const union exp_element *const elts = exp->elts;
1742 struct type *type = NULL;
1743 struct objfile *objfile = NULL;
1744
1745 /* Extended operators should have been already handled by exp_descriptor
1746 iterate method of its specific language. */
1747 gdb_assert (elts[pos].opcode < OP_EXTENDED0);
1748
1749 /* Track the callers of write_exp_elt_type for this table. */
1750
1751 switch (elts[pos].opcode)
1752 {
1753 case BINOP_VAL:
1754 case OP_COMPLEX:
1755 case OP_FLOAT:
1756 case OP_LONG:
1757 case OP_SCOPE:
1758 case OP_TYPE:
1759 case UNOP_CAST:
1760 case UNOP_MAX:
1761 case UNOP_MEMVAL:
1762 case UNOP_MIN:
1763 type = elts[pos + 1].type;
1764 break;
1765
1766 case TYPE_INSTANCE:
1767 {
1768 LONGEST arg, nargs = elts[pos + 2].longconst;
1769
1770 for (arg = 0; arg < nargs; arg++)
1771 {
1772 struct type *type = elts[pos + 3 + arg].type;
1773 struct objfile *objfile = TYPE_OBJFILE (type);
1774
1775 if (objfile && (*objfile_func) (objfile, data))
1776 return 1;
1777 }
1778 }
1779 break;
1780
1781 case OP_VAR_VALUE:
1782 {
1783 const struct block *const block = elts[pos + 1].block;
1784 const struct symbol *const symbol = elts[pos + 2].symbol;
1785
1786 /* Check objfile where the variable itself is placed.
1787 SYMBOL_OBJ_SECTION (symbol) may be NULL. */
1788 if ((*objfile_func) (symbol_objfile (symbol), data))
1789 return 1;
1790
1791 /* Check objfile where is placed the code touching the variable. */
1792 objfile = lookup_objfile_from_block (block);
1793
1794 type = SYMBOL_TYPE (symbol);
1795 }
1796 break;
1797 case OP_VAR_MSYM_VALUE:
1798 objfile = elts[pos + 1].objfile;
1799 break;
1800 }
1801
1802 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
1803
1804 if (type && TYPE_OBJFILE (type)
1805 && (*objfile_func) (TYPE_OBJFILE (type), data))
1806 return 1;
1807 if (objfile && (*objfile_func) (objfile, data))
1808 return 1;
1809
1810 return 0;
1811 }
1812
1813 /* Call OBJFILE_FUNC for any objfile found being referenced by EXP.
1814 OBJFILE_FUNC is never called with NULL OBJFILE. OBJFILE_FUNC get
1815 passed an arbitrary caller supplied DATA pointer. If OBJFILE_FUNC
1816 returns non-zero value then (any other) non-zero value is immediately
1817 returned to the caller. Otherwise zero is returned after iterating
1818 through whole EXP. */
1819
1820 static int
1821 exp_iterate (struct expression *exp,
1822 int (*objfile_func) (struct objfile *objfile, void *data),
1823 void *data)
1824 {
1825 int endpos;
1826
1827 for (endpos = exp->nelts; endpos > 0; )
1828 {
1829 int pos, args, oplen = 0;
1830
1831 operator_length (exp, endpos, &oplen, &args);
1832 gdb_assert (oplen > 0);
1833
1834 pos = endpos - oplen;
1835 if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
1836 objfile_func, data))
1837 return 1;
1838
1839 endpos = pos;
1840 }
1841
1842 return 0;
1843 }
1844
1845 /* Helper for exp_uses_objfile. */
1846
1847 static int
1848 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
1849 {
1850 struct objfile *objfile = (struct objfile *) objfile_voidp;
1851
1852 if (exp_objfile->separate_debug_objfile_backlink)
1853 exp_objfile = exp_objfile->separate_debug_objfile_backlink;
1854
1855 return exp_objfile == objfile;
1856 }
1857
1858 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
1859 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info
1860 file. */
1861
1862 int
1863 exp_uses_objfile (struct expression *exp, struct objfile *objfile)
1864 {
1865 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1866
1867 return exp_iterate (exp, exp_uses_objfile_iter, objfile);
1868 }
1869
1870 /* See definition in parser-defs.h. */
1871
1872 void
1873 increase_expout_size (struct parser_state *ps, size_t lenelt)
1874 {
1875 if ((ps->expout_ptr + lenelt) >= ps->expout_size)
1876 {
1877 ps->expout_size = std::max (ps->expout_size * 2,
1878 ps->expout_ptr + lenelt + 10);
1879 ps->expout = (struct expression *)
1880 xrealloc (ps->expout, (sizeof (struct expression)
1881 + EXP_ELEM_TO_BYTES (ps->expout_size)));
1882 }
1883 }
1884
1885 void
1886 _initialize_parse (void)
1887 {
1888 type_stack.size = 0;
1889 type_stack.depth = 0;
1890 type_stack.elements = NULL;
1891
1892 add_setshow_zuinteger_cmd ("expression", class_maintenance,
1893 &expressiondebug,
1894 _("Set expression debugging."),
1895 _("Show expression debugging."),
1896 _("When non-zero, the internal representation "
1897 "of expressions will be printed."),
1898 NULL,
1899 show_expressiondebug,
1900 &setdebuglist, &showdebuglist);
1901 add_setshow_boolean_cmd ("parser", class_maintenance,
1902 &parser_debug,
1903 _("Set parser debugging."),
1904 _("Show parser debugging."),
1905 _("When non-zero, expression parser "
1906 "tracing will be enabled."),
1907 NULL,
1908 show_parserdebug,
1909 &setdebuglist, &showdebuglist);
1910 }