* ppc-linux-tdep.c (ppc_linux_convert_from_func_ptr_addr): Rename ...
[binutils-gdb.git] / gdb / ppc-linux-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "symtab.h"
26 #include "target.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "regcache.h"
32 #include "value.h"
33 #include "osabi.h"
34 #include "regset.h"
35 #include "solib-svr4.h"
36 #include "ppc-tdep.h"
37 #include "ppc-linux-tdep.h"
38 #include "trad-frame.h"
39 #include "frame-unwind.h"
40 #include "tramp-frame.h"
41
42 #include "features/rs6000/powerpc-32l.c"
43 #include "features/rs6000/powerpc-altivec32l.c"
44 #include "features/rs6000/powerpc-64l.c"
45 #include "features/rs6000/powerpc-altivec64l.c"
46 #include "features/rs6000/powerpc-e500l.c"
47
48 static CORE_ADDR
49 ppc_linux_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
50 {
51 gdb_byte buf[4];
52 struct obj_section *sect;
53 struct objfile *objfile;
54 unsigned long insn;
55 CORE_ADDR plt_start = 0;
56 CORE_ADDR symtab = 0;
57 CORE_ADDR strtab = 0;
58 int num_slots = -1;
59 int reloc_index = -1;
60 CORE_ADDR plt_table;
61 CORE_ADDR reloc;
62 CORE_ADDR sym;
63 long symidx;
64 char symname[1024];
65 struct minimal_symbol *msymbol;
66
67 /* Find the section pc is in; if not in .plt, try the default method. */
68 sect = find_pc_section (pc);
69 if (!sect || strcmp (sect->the_bfd_section->name, ".plt") != 0)
70 return find_solib_trampoline_target (frame, pc);
71
72 objfile = sect->objfile;
73
74 /* Pick up the instruction at pc. It had better be of the
75 form
76 li r11, IDX
77
78 where IDX is an index into the plt_table. */
79
80 if (target_read_memory (pc, buf, 4) != 0)
81 return 0;
82 insn = extract_unsigned_integer (buf, 4);
83
84 if ((insn & 0xffff0000) != 0x39600000 /* li r11, VAL */ )
85 return 0;
86
87 reloc_index = (insn << 16) >> 16;
88
89 /* Find the objfile that pc is in and obtain the information
90 necessary for finding the symbol name. */
91 for (sect = objfile->sections; sect < objfile->sections_end; ++sect)
92 {
93 const char *secname = sect->the_bfd_section->name;
94 if (strcmp (secname, ".plt") == 0)
95 plt_start = sect->addr;
96 else if (strcmp (secname, ".rela.plt") == 0)
97 num_slots = ((int) sect->endaddr - (int) sect->addr) / 12;
98 else if (strcmp (secname, ".dynsym") == 0)
99 symtab = sect->addr;
100 else if (strcmp (secname, ".dynstr") == 0)
101 strtab = sect->addr;
102 }
103
104 /* Make sure we have all the information we need. */
105 if (plt_start == 0 || num_slots == -1 || symtab == 0 || strtab == 0)
106 return 0;
107
108 /* Compute the value of the plt table */
109 plt_table = plt_start + 72 + 8 * num_slots;
110
111 /* Get address of the relocation entry (Elf32_Rela) */
112 if (target_read_memory (plt_table + reloc_index, buf, 4) != 0)
113 return 0;
114 reloc = extract_unsigned_integer (buf, 4);
115
116 sect = find_pc_section (reloc);
117 if (!sect)
118 return 0;
119
120 if (strcmp (sect->the_bfd_section->name, ".text") == 0)
121 return reloc;
122
123 /* Now get the r_info field which is the relocation type and symbol
124 index. */
125 if (target_read_memory (reloc + 4, buf, 4) != 0)
126 return 0;
127 symidx = extract_unsigned_integer (buf, 4);
128
129 /* Shift out the relocation type leaving just the symbol index */
130 /* symidx = ELF32_R_SYM(symidx); */
131 symidx = symidx >> 8;
132
133 /* compute the address of the symbol */
134 sym = symtab + symidx * 4;
135
136 /* Fetch the string table index */
137 if (target_read_memory (sym, buf, 4) != 0)
138 return 0;
139 symidx = extract_unsigned_integer (buf, 4);
140
141 /* Fetch the string; we don't know how long it is. Is it possible
142 that the following will fail because we're trying to fetch too
143 much? */
144 if (target_read_memory (strtab + symidx, (gdb_byte *) symname,
145 sizeof (symname)) != 0)
146 return 0;
147
148 /* This might not work right if we have multiple symbols with the
149 same name; the only way to really get it right is to perform
150 the same sort of lookup as the dynamic linker. */
151 msymbol = lookup_minimal_symbol_text (symname, NULL);
152 if (!msymbol)
153 return 0;
154
155 return SYMBOL_VALUE_ADDRESS (msymbol);
156 }
157
158 /* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
159 in much the same fashion as memory_remove_breakpoint in mem-break.c,
160 but is careful not to write back the previous contents if the code
161 in question has changed in between inserting the breakpoint and
162 removing it.
163
164 Here is the problem that we're trying to solve...
165
166 Once upon a time, before introducing this function to remove
167 breakpoints from the inferior, setting a breakpoint on a shared
168 library function prior to running the program would not work
169 properly. In order to understand the problem, it is first
170 necessary to understand a little bit about dynamic linking on
171 this platform.
172
173 A call to a shared library function is accomplished via a bl
174 (branch-and-link) instruction whose branch target is an entry
175 in the procedure linkage table (PLT). The PLT in the object
176 file is uninitialized. To gdb, prior to running the program, the
177 entries in the PLT are all zeros.
178
179 Once the program starts running, the shared libraries are loaded
180 and the procedure linkage table is initialized, but the entries in
181 the table are not (necessarily) resolved. Once a function is
182 actually called, the code in the PLT is hit and the function is
183 resolved. In order to better illustrate this, an example is in
184 order; the following example is from the gdb testsuite.
185
186 We start the program shmain.
187
188 [kev@arroyo testsuite]$ ../gdb gdb.base/shmain
189 [...]
190
191 We place two breakpoints, one on shr1 and the other on main.
192
193 (gdb) b shr1
194 Breakpoint 1 at 0x100409d4
195 (gdb) b main
196 Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
197
198 Examine the instruction (and the immediatly following instruction)
199 upon which the breakpoint was placed. Note that the PLT entry
200 for shr1 contains zeros.
201
202 (gdb) x/2i 0x100409d4
203 0x100409d4 <shr1>: .long 0x0
204 0x100409d8 <shr1+4>: .long 0x0
205
206 Now run 'til main.
207
208 (gdb) r
209 Starting program: gdb.base/shmain
210 Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
211
212 Breakpoint 2, main ()
213 at gdb.base/shmain.c:44
214 44 g = 1;
215
216 Examine the PLT again. Note that the loading of the shared
217 library has initialized the PLT to code which loads a constant
218 (which I think is an index into the GOT) into r11 and then
219 branchs a short distance to the code which actually does the
220 resolving.
221
222 (gdb) x/2i 0x100409d4
223 0x100409d4 <shr1>: li r11,4
224 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
225 (gdb) c
226 Continuing.
227
228 Breakpoint 1, shr1 (x=1)
229 at gdb.base/shr1.c:19
230 19 l = 1;
231
232 Now we've hit the breakpoint at shr1. (The breakpoint was
233 reset from the PLT entry to the actual shr1 function after the
234 shared library was loaded.) Note that the PLT entry has been
235 resolved to contain a branch that takes us directly to shr1.
236 (The real one, not the PLT entry.)
237
238 (gdb) x/2i 0x100409d4
239 0x100409d4 <shr1>: b 0xffaf76c <shr1>
240 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
241
242 The thing to note here is that the PLT entry for shr1 has been
243 changed twice.
244
245 Now the problem should be obvious. GDB places a breakpoint (a
246 trap instruction) on the zero value of the PLT entry for shr1.
247 Later on, after the shared library had been loaded and the PLT
248 initialized, GDB gets a signal indicating this fact and attempts
249 (as it always does when it stops) to remove all the breakpoints.
250
251 The breakpoint removal was causing the former contents (a zero
252 word) to be written back to the now initialized PLT entry thus
253 destroying a portion of the initialization that had occurred only a
254 short time ago. When execution continued, the zero word would be
255 executed as an instruction an an illegal instruction trap was
256 generated instead. (0 is not a legal instruction.)
257
258 The fix for this problem was fairly straightforward. The function
259 memory_remove_breakpoint from mem-break.c was copied to this file,
260 modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
261 In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
262 function.
263
264 The differences between ppc_linux_memory_remove_breakpoint () and
265 memory_remove_breakpoint () are minor. All that the former does
266 that the latter does not is check to make sure that the breakpoint
267 location actually contains a breakpoint (trap instruction) prior
268 to attempting to write back the old contents. If it does contain
269 a trap instruction, we allow the old contents to be written back.
270 Otherwise, we silently do nothing.
271
272 The big question is whether memory_remove_breakpoint () should be
273 changed to have the same functionality. The downside is that more
274 traffic is generated for remote targets since we'll have an extra
275 fetch of a memory word each time a breakpoint is removed.
276
277 For the time being, we'll leave this self-modifying-code-friendly
278 version in ppc-linux-tdep.c, but it ought to be migrated somewhere
279 else in the event that some other platform has similar needs with
280 regard to removing breakpoints in some potentially self modifying
281 code. */
282 int
283 ppc_linux_memory_remove_breakpoint (struct gdbarch *gdbarch,
284 struct bp_target_info *bp_tgt)
285 {
286 CORE_ADDR addr = bp_tgt->placed_address;
287 const unsigned char *bp;
288 int val;
289 int bplen;
290 gdb_byte old_contents[BREAKPOINT_MAX];
291 struct cleanup *cleanup;
292
293 /* Determine appropriate breakpoint contents and size for this address. */
294 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
295 if (bp == NULL)
296 error (_("Software breakpoints not implemented for this target."));
297
298 /* Make sure we see the memory breakpoints. */
299 cleanup = make_show_memory_breakpoints_cleanup (1);
300 val = target_read_memory (addr, old_contents, bplen);
301
302 /* If our breakpoint is no longer at the address, this means that the
303 program modified the code on us, so it is wrong to put back the
304 old value */
305 if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
306 val = target_write_memory (addr, bp_tgt->shadow_contents, bplen);
307
308 do_cleanups (cleanup);
309 return val;
310 }
311
312 /* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather
313 than the 32 bit SYSV R4 ABI structure return convention - all
314 structures, no matter their size, are put in memory. Vectors,
315 which were added later, do get returned in a register though. */
316
317 static enum return_value_convention
318 ppc_linux_return_value (struct gdbarch *gdbarch, struct type *func_type,
319 struct type *valtype, struct regcache *regcache,
320 gdb_byte *readbuf, const gdb_byte *writebuf)
321 {
322 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
323 || TYPE_CODE (valtype) == TYPE_CODE_UNION)
324 && !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8)
325 && TYPE_VECTOR (valtype)))
326 return RETURN_VALUE_STRUCT_CONVENTION;
327 else
328 return ppc_sysv_abi_return_value (gdbarch, func_type, valtype, regcache,
329 readbuf, writebuf);
330 }
331
332 /* Macros for matching instructions. Note that, since all the
333 operands are masked off before they're or-ed into the instruction,
334 you can use -1 to make masks. */
335
336 #define insn_d(opcd, rts, ra, d) \
337 ((((opcd) & 0x3f) << 26) \
338 | (((rts) & 0x1f) << 21) \
339 | (((ra) & 0x1f) << 16) \
340 | ((d) & 0xffff))
341
342 #define insn_ds(opcd, rts, ra, d, xo) \
343 ((((opcd) & 0x3f) << 26) \
344 | (((rts) & 0x1f) << 21) \
345 | (((ra) & 0x1f) << 16) \
346 | ((d) & 0xfffc) \
347 | ((xo) & 0x3))
348
349 #define insn_xfx(opcd, rts, spr, xo) \
350 ((((opcd) & 0x3f) << 26) \
351 | (((rts) & 0x1f) << 21) \
352 | (((spr) & 0x1f) << 16) \
353 | (((spr) & 0x3e0) << 6) \
354 | (((xo) & 0x3ff) << 1))
355
356 /* Read a PPC instruction from memory. PPC instructions are always
357 big-endian, no matter what endianness the program is running in, so
358 we can't use read_memory_integer or one of its friends here. */
359 static unsigned int
360 read_insn (CORE_ADDR pc)
361 {
362 unsigned char buf[4];
363
364 read_memory (pc, buf, 4);
365 return (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
366 }
367
368
369 /* An instruction to match. */
370 struct insn_pattern
371 {
372 unsigned int mask; /* mask the insn with this... */
373 unsigned int data; /* ...and see if it matches this. */
374 int optional; /* If non-zero, this insn may be absent. */
375 };
376
377 /* Return non-zero if the instructions at PC match the series
378 described in PATTERN, or zero otherwise. PATTERN is an array of
379 'struct insn_pattern' objects, terminated by an entry whose mask is
380 zero.
381
382 When the match is successful, fill INSN[i] with what PATTERN[i]
383 matched. If PATTERN[i] is optional, and the instruction wasn't
384 present, set INSN[i] to 0 (which is not a valid PPC instruction).
385 INSN should have as many elements as PATTERN. Note that, if
386 PATTERN contains optional instructions which aren't present in
387 memory, then INSN will have holes, so INSN[i] isn't necessarily the
388 i'th instruction in memory. */
389 static int
390 insns_match_pattern (CORE_ADDR pc,
391 struct insn_pattern *pattern,
392 unsigned int *insn)
393 {
394 int i;
395
396 for (i = 0; pattern[i].mask; i++)
397 {
398 insn[i] = read_insn (pc);
399 if ((insn[i] & pattern[i].mask) == pattern[i].data)
400 pc += 4;
401 else if (pattern[i].optional)
402 insn[i] = 0;
403 else
404 return 0;
405 }
406
407 return 1;
408 }
409
410
411 /* Return the 'd' field of the d-form instruction INSN, properly
412 sign-extended. */
413 static CORE_ADDR
414 insn_d_field (unsigned int insn)
415 {
416 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
417 }
418
419
420 /* Return the 'ds' field of the ds-form instruction INSN, with the two
421 zero bits concatenated at the right, and properly
422 sign-extended. */
423 static CORE_ADDR
424 insn_ds_field (unsigned int insn)
425 {
426 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
427 }
428
429
430 /* If DESC is the address of a 64-bit PowerPC GNU/Linux function
431 descriptor, return the descriptor's entry point. */
432 static CORE_ADDR
433 ppc64_desc_entry_point (CORE_ADDR desc)
434 {
435 /* The first word of the descriptor is the entry point. */
436 return (CORE_ADDR) read_memory_unsigned_integer (desc, 8);
437 }
438
439
440 /* Pattern for the standard linkage function. These are built by
441 build_plt_stub in elf64-ppc.c, whose GLINK argument is always
442 zero. */
443 static struct insn_pattern ppc64_standard_linkage[] =
444 {
445 /* addis r12, r2, <any> */
446 { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
447
448 /* std r2, 40(r1) */
449 { -1, insn_ds (62, 2, 1, 40, 0), 0 },
450
451 /* ld r11, <any>(r12) */
452 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
453
454 /* addis r12, r12, 1 <optional> */
455 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 },
456
457 /* ld r2, <any>(r12) */
458 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
459
460 /* addis r12, r12, 1 <optional> */
461 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 },
462
463 /* mtctr r11 */
464 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467),
465 0 },
466
467 /* ld r11, <any>(r12) */
468 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
469
470 /* bctr */
471 { -1, 0x4e800420, 0 },
472
473 { 0, 0, 0 }
474 };
475 #define PPC64_STANDARD_LINKAGE_LEN \
476 (sizeof (ppc64_standard_linkage) / sizeof (ppc64_standard_linkage[0]))
477
478 /* When the dynamic linker is doing lazy symbol resolution, the first
479 call to a function in another object will go like this:
480
481 - The user's function calls the linkage function:
482
483 100007c4: 4b ff fc d5 bl 10000498
484 100007c8: e8 41 00 28 ld r2,40(r1)
485
486 - The linkage function loads the entry point (and other stuff) from
487 the function descriptor in the PLT, and jumps to it:
488
489 10000498: 3d 82 00 00 addis r12,r2,0
490 1000049c: f8 41 00 28 std r2,40(r1)
491 100004a0: e9 6c 80 98 ld r11,-32616(r12)
492 100004a4: e8 4c 80 a0 ld r2,-32608(r12)
493 100004a8: 7d 69 03 a6 mtctr r11
494 100004ac: e9 6c 80 a8 ld r11,-32600(r12)
495 100004b0: 4e 80 04 20 bctr
496
497 - But since this is the first time that PLT entry has been used, it
498 sends control to its glink entry. That loads the number of the
499 PLT entry and jumps to the common glink0 code:
500
501 10000c98: 38 00 00 00 li r0,0
502 10000c9c: 4b ff ff dc b 10000c78
503
504 - The common glink0 code then transfers control to the dynamic
505 linker's fixup code:
506
507 10000c78: e8 41 00 28 ld r2,40(r1)
508 10000c7c: 3d 82 00 00 addis r12,r2,0
509 10000c80: e9 6c 80 80 ld r11,-32640(r12)
510 10000c84: e8 4c 80 88 ld r2,-32632(r12)
511 10000c88: 7d 69 03 a6 mtctr r11
512 10000c8c: e9 6c 80 90 ld r11,-32624(r12)
513 10000c90: 4e 80 04 20 bctr
514
515 Eventually, this code will figure out how to skip all of this,
516 including the dynamic linker. At the moment, we just get through
517 the linkage function. */
518
519 /* If the current thread is about to execute a series of instructions
520 at PC matching the ppc64_standard_linkage pattern, and INSN is the result
521 from that pattern match, return the code address to which the
522 standard linkage function will send them. (This doesn't deal with
523 dynamic linker lazy symbol resolution stubs.) */
524 static CORE_ADDR
525 ppc64_standard_linkage_target (struct frame_info *frame,
526 CORE_ADDR pc, unsigned int *insn)
527 {
528 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
529
530 /* The address of the function descriptor this linkage function
531 references. */
532 CORE_ADDR desc
533 = ((CORE_ADDR) get_frame_register_unsigned (frame,
534 tdep->ppc_gp0_regnum + 2)
535 + (insn_d_field (insn[0]) << 16)
536 + insn_ds_field (insn[2]));
537
538 /* The first word of the descriptor is the entry point. Return that. */
539 return ppc64_desc_entry_point (desc);
540 }
541
542
543 /* Given that we've begun executing a call trampoline at PC, return
544 the entry point of the function the trampoline will go to. */
545 static CORE_ADDR
546 ppc64_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
547 {
548 unsigned int ppc64_standard_linkage_insn[PPC64_STANDARD_LINKAGE_LEN];
549
550 if (insns_match_pattern (pc, ppc64_standard_linkage,
551 ppc64_standard_linkage_insn))
552 return ppc64_standard_linkage_target (frame, pc,
553 ppc64_standard_linkage_insn);
554 else
555 return 0;
556 }
557
558
559 /* Support for convert_from_func_ptr_addr (ARCH, ADDR, TARG) on PPC64
560 GNU/Linux.
561
562 Usually a function pointer's representation is simply the address
563 of the function. On GNU/Linux on the PowerPC however, a function
564 pointer may be a pointer to a function descriptor.
565
566 For PPC64, a function descriptor is a TOC entry, in a data section,
567 which contains three words: the first word is the address of the
568 function, the second word is the TOC pointer (r2), and the third word
569 is the static chain value.
570
571 Throughout GDB it is currently assumed that a function pointer contains
572 the address of the function, which is not easy to fix. In addition, the
573 conversion of a function address to a function pointer would
574 require allocation of a TOC entry in the inferior's memory space,
575 with all its drawbacks. To be able to call C++ virtual methods in
576 the inferior (which are called via function pointers),
577 find_function_addr uses this function to get the function address
578 from a function pointer.
579
580 If ADDR points at what is clearly a function descriptor, transform
581 it into the address of the corresponding function, if needed. Be
582 conservative, otherwise GDB will do the transformation on any
583 random addresses such as occur when there is no symbol table. */
584
585 static CORE_ADDR
586 ppc64_linux_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
587 CORE_ADDR addr,
588 struct target_ops *targ)
589 {
590 struct section_table *s = target_section_by_addr (targ, addr);
591
592 /* Check if ADDR points to a function descriptor. */
593 if (s && strcmp (s->the_bfd_section->name, ".opd") == 0)
594 return get_target_memory_unsigned (targ, addr, 8);
595
596 return addr;
597 }
598
599 /* Wrappers to handle Linux-only registers. */
600
601 static void
602 ppc_linux_supply_gregset (const struct regset *regset,
603 struct regcache *regcache,
604 int regnum, const void *gregs, size_t len)
605 {
606 const struct ppc_reg_offsets *offsets = regset->descr;
607
608 ppc_supply_gregset (regset, regcache, regnum, gregs, len);
609
610 if (ppc_linux_trap_reg_p (get_regcache_arch (regcache)))
611 {
612 /* "orig_r3" is stored 2 slots after "pc". */
613 if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
614 ppc_supply_reg (regcache, PPC_ORIG_R3_REGNUM, gregs,
615 offsets->pc_offset + 2 * offsets->gpr_size,
616 offsets->gpr_size);
617
618 /* "trap" is stored 8 slots after "pc". */
619 if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
620 ppc_supply_reg (regcache, PPC_TRAP_REGNUM, gregs,
621 offsets->pc_offset + 8 * offsets->gpr_size,
622 offsets->gpr_size);
623 }
624 }
625
626 static void
627 ppc_linux_collect_gregset (const struct regset *regset,
628 const struct regcache *regcache,
629 int regnum, void *gregs, size_t len)
630 {
631 const struct ppc_reg_offsets *offsets = regset->descr;
632
633 /* Clear areas in the linux gregset not written elsewhere. */
634 if (regnum == -1)
635 memset (gregs, 0, len);
636
637 ppc_collect_gregset (regset, regcache, regnum, gregs, len);
638
639 if (ppc_linux_trap_reg_p (get_regcache_arch (regcache)))
640 {
641 /* "orig_r3" is stored 2 slots after "pc". */
642 if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
643 ppc_collect_reg (regcache, PPC_ORIG_R3_REGNUM, gregs,
644 offsets->pc_offset + 2 * offsets->gpr_size,
645 offsets->gpr_size);
646
647 /* "trap" is stored 8 slots after "pc". */
648 if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
649 ppc_collect_reg (regcache, PPC_TRAP_REGNUM, gregs,
650 offsets->pc_offset + 8 * offsets->gpr_size,
651 offsets->gpr_size);
652 }
653 }
654
655 /* Regset descriptions. */
656 static const struct ppc_reg_offsets ppc32_linux_reg_offsets =
657 {
658 /* General-purpose registers. */
659 /* .r0_offset = */ 0,
660 /* .gpr_size = */ 4,
661 /* .xr_size = */ 4,
662 /* .pc_offset = */ 128,
663 /* .ps_offset = */ 132,
664 /* .cr_offset = */ 152,
665 /* .lr_offset = */ 144,
666 /* .ctr_offset = */ 140,
667 /* .xer_offset = */ 148,
668 /* .mq_offset = */ 156,
669
670 /* Floating-point registers. */
671 /* .f0_offset = */ 0,
672 /* .fpscr_offset = */ 256,
673 /* .fpscr_size = */ 8,
674
675 /* AltiVec registers. */
676 /* .vr0_offset = */ 0,
677 /* .vscr_offset = */ 512 + 12,
678 /* .vrsave_offset = */ 528
679 };
680
681 static const struct ppc_reg_offsets ppc64_linux_reg_offsets =
682 {
683 /* General-purpose registers. */
684 /* .r0_offset = */ 0,
685 /* .gpr_size = */ 8,
686 /* .xr_size = */ 8,
687 /* .pc_offset = */ 256,
688 /* .ps_offset = */ 264,
689 /* .cr_offset = */ 304,
690 /* .lr_offset = */ 288,
691 /* .ctr_offset = */ 280,
692 /* .xer_offset = */ 296,
693 /* .mq_offset = */ 312,
694
695 /* Floating-point registers. */
696 /* .f0_offset = */ 0,
697 /* .fpscr_offset = */ 256,
698 /* .fpscr_size = */ 8,
699
700 /* AltiVec registers. */
701 /* .vr0_offset = */ 0,
702 /* .vscr_offset = */ 512 + 12,
703 /* .vrsave_offset = */ 528
704 };
705
706 static const struct regset ppc32_linux_gregset = {
707 &ppc32_linux_reg_offsets,
708 ppc_linux_supply_gregset,
709 ppc_linux_collect_gregset,
710 NULL
711 };
712
713 static const struct regset ppc64_linux_gregset = {
714 &ppc64_linux_reg_offsets,
715 ppc_linux_supply_gregset,
716 ppc_linux_collect_gregset,
717 NULL
718 };
719
720 static const struct regset ppc32_linux_fpregset = {
721 &ppc32_linux_reg_offsets,
722 ppc_supply_fpregset,
723 ppc_collect_fpregset,
724 NULL
725 };
726
727 static const struct regset ppc32_linux_vrregset = {
728 &ppc32_linux_reg_offsets,
729 ppc_supply_vrregset,
730 ppc_collect_vrregset,
731 NULL
732 };
733
734 const struct regset *
735 ppc_linux_gregset (int wordsize)
736 {
737 return wordsize == 8 ? &ppc64_linux_gregset : &ppc32_linux_gregset;
738 }
739
740 const struct regset *
741 ppc_linux_fpregset (void)
742 {
743 return &ppc32_linux_fpregset;
744 }
745
746 static const struct regset *
747 ppc_linux_regset_from_core_section (struct gdbarch *core_arch,
748 const char *sect_name, size_t sect_size)
749 {
750 struct gdbarch_tdep *tdep = gdbarch_tdep (core_arch);
751 if (strcmp (sect_name, ".reg") == 0)
752 {
753 if (tdep->wordsize == 4)
754 return &ppc32_linux_gregset;
755 else
756 return &ppc64_linux_gregset;
757 }
758 if (strcmp (sect_name, ".reg2") == 0)
759 return &ppc32_linux_fpregset;
760 if (strcmp (sect_name, ".reg-ppc-vmx") == 0)
761 return &ppc32_linux_vrregset;
762 return NULL;
763 }
764
765 static void
766 ppc_linux_sigtramp_cache (struct frame_info *this_frame,
767 struct trad_frame_cache *this_cache,
768 CORE_ADDR func, LONGEST offset,
769 int bias)
770 {
771 CORE_ADDR base;
772 CORE_ADDR regs;
773 CORE_ADDR gpregs;
774 CORE_ADDR fpregs;
775 int i;
776 struct gdbarch *gdbarch = get_frame_arch (this_frame);
777 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
778
779 base = get_frame_register_unsigned (this_frame,
780 gdbarch_sp_regnum (gdbarch));
781 if (bias > 0 && get_frame_pc (this_frame) != func)
782 /* See below, some signal trampolines increment the stack as their
783 first instruction, need to compensate for that. */
784 base -= bias;
785
786 /* Find the address of the register buffer pointer. */
787 regs = base + offset;
788 /* Use that to find the address of the corresponding register
789 buffers. */
790 gpregs = read_memory_unsigned_integer (regs, tdep->wordsize);
791 fpregs = gpregs + 48 * tdep->wordsize;
792
793 /* General purpose. */
794 for (i = 0; i < 32; i++)
795 {
796 int regnum = i + tdep->ppc_gp0_regnum;
797 trad_frame_set_reg_addr (this_cache, regnum, gpregs + i * tdep->wordsize);
798 }
799 trad_frame_set_reg_addr (this_cache,
800 gdbarch_pc_regnum (gdbarch),
801 gpregs + 32 * tdep->wordsize);
802 trad_frame_set_reg_addr (this_cache, tdep->ppc_ctr_regnum,
803 gpregs + 35 * tdep->wordsize);
804 trad_frame_set_reg_addr (this_cache, tdep->ppc_lr_regnum,
805 gpregs + 36 * tdep->wordsize);
806 trad_frame_set_reg_addr (this_cache, tdep->ppc_xer_regnum,
807 gpregs + 37 * tdep->wordsize);
808 trad_frame_set_reg_addr (this_cache, tdep->ppc_cr_regnum,
809 gpregs + 38 * tdep->wordsize);
810
811 if (ppc_linux_trap_reg_p (gdbarch))
812 {
813 trad_frame_set_reg_addr (this_cache, PPC_ORIG_R3_REGNUM,
814 gpregs + 34 * tdep->wordsize);
815 trad_frame_set_reg_addr (this_cache, PPC_TRAP_REGNUM,
816 gpregs + 40 * tdep->wordsize);
817 }
818
819 if (ppc_floating_point_unit_p (gdbarch))
820 {
821 /* Floating point registers. */
822 for (i = 0; i < 32; i++)
823 {
824 int regnum = i + gdbarch_fp0_regnum (gdbarch);
825 trad_frame_set_reg_addr (this_cache, regnum,
826 fpregs + i * tdep->wordsize);
827 }
828 trad_frame_set_reg_addr (this_cache, tdep->ppc_fpscr_regnum,
829 fpregs + 32 * tdep->wordsize);
830 }
831 trad_frame_set_id (this_cache, frame_id_build (base, func));
832 }
833
834 static void
835 ppc32_linux_sigaction_cache_init (const struct tramp_frame *self,
836 struct frame_info *this_frame,
837 struct trad_frame_cache *this_cache,
838 CORE_ADDR func)
839 {
840 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
841 0xd0 /* Offset to ucontext_t. */
842 + 0x30 /* Offset to .reg. */,
843 0);
844 }
845
846 static void
847 ppc64_linux_sigaction_cache_init (const struct tramp_frame *self,
848 struct frame_info *this_frame,
849 struct trad_frame_cache *this_cache,
850 CORE_ADDR func)
851 {
852 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
853 0x80 /* Offset to ucontext_t. */
854 + 0xe0 /* Offset to .reg. */,
855 128);
856 }
857
858 static void
859 ppc32_linux_sighandler_cache_init (const struct tramp_frame *self,
860 struct frame_info *this_frame,
861 struct trad_frame_cache *this_cache,
862 CORE_ADDR func)
863 {
864 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
865 0x40 /* Offset to ucontext_t. */
866 + 0x1c /* Offset to .reg. */,
867 0);
868 }
869
870 static void
871 ppc64_linux_sighandler_cache_init (const struct tramp_frame *self,
872 struct frame_info *this_frame,
873 struct trad_frame_cache *this_cache,
874 CORE_ADDR func)
875 {
876 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
877 0x80 /* Offset to struct sigcontext. */
878 + 0x38 /* Offset to .reg. */,
879 128);
880 }
881
882 static struct tramp_frame ppc32_linux_sigaction_tramp_frame = {
883 SIGTRAMP_FRAME,
884 4,
885 {
886 { 0x380000ac, -1 }, /* li r0, 172 */
887 { 0x44000002, -1 }, /* sc */
888 { TRAMP_SENTINEL_INSN },
889 },
890 ppc32_linux_sigaction_cache_init
891 };
892 static struct tramp_frame ppc64_linux_sigaction_tramp_frame = {
893 SIGTRAMP_FRAME,
894 4,
895 {
896 { 0x38210080, -1 }, /* addi r1,r1,128 */
897 { 0x380000ac, -1 }, /* li r0, 172 */
898 { 0x44000002, -1 }, /* sc */
899 { TRAMP_SENTINEL_INSN },
900 },
901 ppc64_linux_sigaction_cache_init
902 };
903 static struct tramp_frame ppc32_linux_sighandler_tramp_frame = {
904 SIGTRAMP_FRAME,
905 4,
906 {
907 { 0x38000077, -1 }, /* li r0,119 */
908 { 0x44000002, -1 }, /* sc */
909 { TRAMP_SENTINEL_INSN },
910 },
911 ppc32_linux_sighandler_cache_init
912 };
913 static struct tramp_frame ppc64_linux_sighandler_tramp_frame = {
914 SIGTRAMP_FRAME,
915 4,
916 {
917 { 0x38210080, -1 }, /* addi r1,r1,128 */
918 { 0x38000077, -1 }, /* li r0,119 */
919 { 0x44000002, -1 }, /* sc */
920 { TRAMP_SENTINEL_INSN },
921 },
922 ppc64_linux_sighandler_cache_init
923 };
924
925
926 /* Return 1 if PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM are usable. */
927 int
928 ppc_linux_trap_reg_p (struct gdbarch *gdbarch)
929 {
930 /* If we do not have a target description with registers, then
931 the special registers will not be included in the register set. */
932 if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
933 return 0;
934
935 /* If we do, then it is safe to check the size. */
936 return register_size (gdbarch, PPC_ORIG_R3_REGNUM) > 0
937 && register_size (gdbarch, PPC_TRAP_REGNUM) > 0;
938 }
939
940 static void
941 ppc_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
942 {
943 struct gdbarch *gdbarch = get_regcache_arch (regcache);
944
945 regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch), pc);
946
947 /* Set special TRAP register to -1 to prevent the kernel from
948 messing with the PC we just installed, if we happen to be
949 within an interrupted system call that the kernel wants to
950 restart.
951
952 Note that after we return from the dummy call, the TRAP and
953 ORIG_R3 registers will be automatically restored, and the
954 kernel continues to restart the system call at this point. */
955 if (ppc_linux_trap_reg_p (gdbarch))
956 regcache_cooked_write_unsigned (regcache, PPC_TRAP_REGNUM, -1);
957 }
958
959 static const struct target_desc *
960 ppc_linux_core_read_description (struct gdbarch *gdbarch,
961 struct target_ops *target,
962 bfd *abfd)
963 {
964 asection *altivec = bfd_get_section_by_name (abfd, ".reg-ppc-vmx");
965 asection *section = bfd_get_section_by_name (abfd, ".reg");
966 if (! section)
967 return NULL;
968
969 switch (bfd_section_size (abfd, section))
970 {
971 case 48 * 4:
972 return altivec? tdesc_powerpc_altivec32l : tdesc_powerpc_32l;
973
974 case 48 * 8:
975 return altivec? tdesc_powerpc_altivec64l : tdesc_powerpc_64l;
976
977 default:
978 return NULL;
979 }
980 }
981
982 static void
983 ppc_linux_init_abi (struct gdbarch_info info,
984 struct gdbarch *gdbarch)
985 {
986 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
987 struct tdesc_arch_data *tdesc_data = (void *) info.tdep_info;
988
989 /* PPC GNU/Linux uses either 64-bit or 128-bit long doubles; where
990 128-bit, they are IBM long double, not IEEE quad long double as
991 in the System V ABI PowerPC Processor Supplement. We can safely
992 let them default to 128-bit, since the debug info will give the
993 size of type actually used in each case. */
994 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
995 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
996
997 /* Handle inferior calls during interrupted system calls. */
998 set_gdbarch_write_pc (gdbarch, ppc_linux_write_pc);
999
1000 if (tdep->wordsize == 4)
1001 {
1002 /* Until November 2001, gcc did not comply with the 32 bit SysV
1003 R4 ABI requirement that structures less than or equal to 8
1004 bytes should be returned in registers. Instead GCC was using
1005 the the AIX/PowerOpen ABI - everything returned in memory
1006 (well ignoring vectors that is). When this was corrected, it
1007 wasn't fixed for GNU/Linux native platform. Use the
1008 PowerOpen struct convention. */
1009 set_gdbarch_return_value (gdbarch, ppc_linux_return_value);
1010
1011 set_gdbarch_memory_remove_breakpoint (gdbarch,
1012 ppc_linux_memory_remove_breakpoint);
1013
1014 /* Shared library handling. */
1015 set_gdbarch_skip_trampoline_code (gdbarch,
1016 ppc_linux_skip_trampoline_code);
1017 set_solib_svr4_fetch_link_map_offsets
1018 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1019
1020 /* Trampolines. */
1021 tramp_frame_prepend_unwinder (gdbarch, &ppc32_linux_sigaction_tramp_frame);
1022 tramp_frame_prepend_unwinder (gdbarch, &ppc32_linux_sighandler_tramp_frame);
1023 }
1024
1025 if (tdep->wordsize == 8)
1026 {
1027 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
1028 for the descriptor and ".FN" for the entry-point -- a user
1029 specifying "break FN" will unexpectedly end up with a breakpoint
1030 on the descriptor and not the function. This architecture method
1031 transforms any breakpoints on descriptors into breakpoints on the
1032 corresponding entry point. */
1033 set_gdbarch_adjust_breakpoint_address
1034 (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
1035
1036 /* Handle PPC GNU/Linux 64-bit function pointers (which are really
1037 function descriptors). */
1038 set_gdbarch_convert_from_func_ptr_addr
1039 (gdbarch, ppc64_linux_convert_from_func_ptr_addr);
1040
1041 /* Shared library handling. */
1042 set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
1043 set_solib_svr4_fetch_link_map_offsets
1044 (gdbarch, svr4_lp64_fetch_link_map_offsets);
1045
1046 /* Trampolines. */
1047 tramp_frame_prepend_unwinder (gdbarch, &ppc64_linux_sigaction_tramp_frame);
1048 tramp_frame_prepend_unwinder (gdbarch, &ppc64_linux_sighandler_tramp_frame);
1049 }
1050 set_gdbarch_regset_from_core_section (gdbarch, ppc_linux_regset_from_core_section);
1051 set_gdbarch_core_read_description (gdbarch, ppc_linux_core_read_description);
1052
1053 /* Enable TLS support. */
1054 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1055 svr4_fetch_objfile_link_map);
1056
1057 if (tdesc_data)
1058 {
1059 const struct tdesc_feature *feature;
1060
1061 /* If we have target-described registers, then we can safely
1062 reserve a number for PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM
1063 (whether they are described or not). */
1064 gdb_assert (gdbarch_num_regs (gdbarch) <= PPC_ORIG_R3_REGNUM);
1065 set_gdbarch_num_regs (gdbarch, PPC_TRAP_REGNUM + 1);
1066
1067 /* If they are present, then assign them to the reserved number. */
1068 feature = tdesc_find_feature (info.target_desc,
1069 "org.gnu.gdb.power.linux");
1070 if (feature != NULL)
1071 {
1072 tdesc_numbered_register (feature, tdesc_data,
1073 PPC_ORIG_R3_REGNUM, "orig_r3");
1074 tdesc_numbered_register (feature, tdesc_data,
1075 PPC_TRAP_REGNUM, "trap");
1076 }
1077 }
1078 }
1079
1080 void
1081 _initialize_ppc_linux_tdep (void)
1082 {
1083 /* Register for all sub-familes of the POWER/PowerPC: 32-bit and
1084 64-bit PowerPC, and the older rs6k. */
1085 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX,
1086 ppc_linux_init_abi);
1087 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX,
1088 ppc_linux_init_abi);
1089 gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX,
1090 ppc_linux_init_abi);
1091
1092 /* Initialize the Linux target descriptions. */
1093 initialize_tdesc_powerpc_32l ();
1094 initialize_tdesc_powerpc_altivec32l ();
1095 initialize_tdesc_powerpc_64l ();
1096 initialize_tdesc_powerpc_altivec64l ();
1097 initialize_tdesc_powerpc_e500l ();
1098 }